AFIPS

CONFERENCE
PROCEEDINGS

VOLUME 28

1966

SPRING JOINT

COMPUTER
CONFERENCE

CONFERENCE
PROCEEDINGS

VOLUME 28

1966

SPRING JOINT
COMPUTER
CONFERENCE

The ideas and opinions expressed herein are solely those of the
authors and are not necessarily representative of or endorsed by the
1966 Spring Joint Computer Conference Committee or the American
Federation of Information Processing Societies.

Library of Congress Catalog Card Number 55-44701
Spartan Books, Div. of
Books, Inc.
1250 Connecticut Avenue, N. W.
Washington, D. C.

© 1966 by the American Federation of Information Processing Societies,
211 E. 43rd St., New York, N. Y. 10017. All rights reserved. This book,
or parts thereof, may not be reproduced in any form without permission of
the publishers.

Sole distributors in Great Britain, the British
Commonwealth, and the Continent of Europe:

Macmillan Co., Ltd.
4 Little Essex Street
London W.C. 2

CONTENTS

COHERENT OPTICAL INFORMATION PROCESSING

Computer Application of Electro-Optics

Basic Theory of Partial Coherence

The Role of Coherent Optical Systems in Data Processing

Requirements for Hologram Construction

Application of Coherent Optical Transducers to Optical Real-Time
Information Processing

TIME-SHARING

Time-Sharing with IBM System /360: Model 67

W. J. POPPELBAUM

GEORGE B. PARRENT, JR.

Louis J. CuTrRONA

E. N. LEITH
J. UPATNIEKS

DEAN B. ANDERSON

C. T. GIBSON

A Data Management System for Time-Shared File Processing Using a Cross-Index

File and Self-Defining Entries

An Analysis of Time-Sharing Computer Systems Using Markov Models

An Optimization Model for Time-Sharing

iii

E. W. FrRANKS

J. L. SMITH

DENNIS W. FIFE

17

25

43

53

61

79

87

97

iv CONTENTS

SIMULATION AND MODEL-BUILDING

A Digital System for On-Line Studies of Dynamical Systems T. C. BARTEE
J. B. Lewis

Simulation of Logical Decision Networks of Time-Delay Elements by Means Y. N. CHANG
of a General-Purpose Digital Computer O. M. GEORGE
Simulation of a Multiprocessor Computer System J. H. KaTz
Markovian Models and Numerical Analysis of Computer System Behavior V. L. WALLACE

RiCcHARD S. ROSENBERG

SMPS— A Tool Box for Military Communications Staffs KATHE JACOBY
DIANA FACKENTHAL

ARNO CASSEL

Digital Simulation of Large Scale Systems ROBERT V. JACOBSON

DSL /90— A Digital Simulation Program for Continuous System Modeling W. M. SyN
R. N. LINEBARGER

PROCESSING LARGE FILES

Techniques for Replacing Characters that are Garbled on Input GARY CARLSON
ADAM —A Generalized Data Management System THomAs B. CONNORS
The Engineer-Scientist and an Information Retrieval System C. ALLEN MERRITT

PauL J. NELSON

WAVEFORM PROCESSING

Effects of Quantization Noise in Digital Filters BERNARD GOLD
CHARLES M. RADER

A Real-Time Computing System for LASA H. W. BRIscoE
P. L. FLECK

High-Speed Convolution and Correlation THoMAS G. STOCKHAM, JR.

105

113

127

141

149

159

165

189

193

205

213

221

229

CONTENTS

PROGRAMMING LANGUAGES

A Computer Program to Translate Machine Language into Fortran WILLIAM A. SASSAMAN

Techniques and Advantages of Using the Formal Compiler Writing System RENATO ITURRIAGA
FSL to Implement a Formula Algol Compiler TuoMas A. STANDISH
RupoLpH A. KRUTAR

JAacksoN C. EARLEY

A Proposal for a Computer Compiler GERNOT METZE
SUNDARAM SESHU

BUSINESS APPLICATIONS

A Business-Oriented Time-Sharing System G. F. Durry
W. D. TIMBERLAKE

“Never-Fail” Audio Response System BRUCE DALE

Application of Computer-Based Retrieval Concepts to a Marketing
Information Dissemination System JaMES J. GATTO

CURRENT DEVELOPMENTS IN PERIPHERAL HARDWARE

A New Look in Peripheral Equipment Design Approach EARL MASTERSON
A Serial Reader-Punch with Novel Concepts DaAviD W. BERNARD
FraNk A. DiGiLio

FRANK V. THIEMANN
RoNALD F. BORELLI

The IBM 2560 Multi-Function Card Machine CHESTER E. SPURRIER

A New Development in the Transmission, Storage and Conversion of Digital R. P. BUrr
Data JouN J. RHEINHOLD

Roy K. ANDRES

IBM 2321 Data Cell Drive ALAN F. SHUGART
Y ANG-HU TANG

235

241

253

265

277

285

297

307

315

323

335

vi CONTENTS

ANALOG/HYBRID TECHNIQUES

Hybrid Simulation of a Helicopter

A Time-Shared Hybrid Simulation Facility

Hybrid Simulation of a Free Piston Engine

Hybrid Analog/Digital Techniques for Signal Processing Applications

Hybrid Simulation of a Reacting Distillation Column

Transient Neutron Distribution Solutions by Compressed and Real-Time
Computer Complexes :

W. J. KENNEALLY
E. E. L. MITCHELL
I. Hay

G. BOLTON

R. BELLUARDO
R. GocHT
G. PAQUETTE

R. E. GAGNE
E. J. WRIGHT

THoMAS G. HAGAN
ROBERT TREIBER

R. Ruszky
E..E. L. MITCHELL

J. E. GoDpTs

COMPUTER TECHNIQUES IN PATTERN RECOGNITION

Pattern Recognition Studies in the Biomedical Sciences

A Chess Mating Combinations Program

Multidimensional Correlation Lattices as an Aid to Three-Dimensional
Pattern Recognition

A Pattern Recognition Technique and its Application to High-Resolution
Imagery

ROBERT S. LEDLEY
JOHN JACOBSEN
MARILYN BELSON
JamEs B. WILSON
Louis RoTtoLo
THoMAS GOLAB

GEORGE W. BAYLOR
HERBERT A. SIMON

SAMUEL J. PENNY
JaMEs H. BURKHARD

R. D. JosepH
S. S. VIGLIONE

347

355

365

379

389

401

411

431

449

457

COMPUTER APPLICATION OF ELECTRO-OPTICS

W.J. Poppelbaum
Department of Computer Science, University of Illinois

1. INTRODUCTION

The first few years of existence of electro-optics
as a separate field have brought to light a wealth of
novel ideas and has warmed up a host of old ones
as well. It turns out that at this time there are two
large classes of ideas which have relatively little
overlap: the first class encompasses the development
of time-honored techniques into practical low-cost
designs; the second class contains the more futuristic
devices using laser amplification, laser logic, laser
source deflection, etc.' Unluckily the latter ideas
have not yet reached that stage of development
where they can compete with more classical designs
as far as cost is concerned. Since the author has
devoted a previous paper® to them, it might be use-
ful to examine all those areas where patient develop-
ment has produced reasonably low-cost designs that
have proved themselves in practice or are about to
do so.

The profusion of devices makes it mandatory to
reduce the length of the list of subjects still further
by eliminating arbitrarily the large field of tech-
niques aiming at adaptive systems® or making use
of nondissected forms of the incoming information.’
This field is amongst the most exciting but, because
of its links with biology, should perhaps be left
to a separate discussion.

The ordering principle for the topics will be their
occurrence in a highly symbolic system according to
Fig. 1. It might astonish you to see storage and dis-
play in one functional block: the reason is that the

majority of storage systems automatically give dis-
play and vice versa. It will also become apparent
that there is a preponderance of subjects in this
storage and display area and that further subdi-
vision according to the method of access (electron
beam, light beam, and static) is convenient. For
simplicity’s sake, areas, subdivisions and subjects
are indicated on the figure.

2. INTERFACE LOGIC

The great contribution of electro-optics (or more
precisely its all-optical branch) to information proc-
essing is probably the development of methods
giving Fourier Transforms by optical means (see
2.1). Once this Fourier Transform is obtained, it
is natural to operate in the frequency plane by ap-
propriate masks in order to eliminate high- or low-
frequency components or more generally to elimi-
nate noise of given frequency distribution by
matched filters. Such operations can be done by
purely electronic means using matrix arrays of
modulated elements (see 2.3). These techniques are
usually applied to continuous input information
(e.g., photographs), but there is no reason why the
same methods should not be applied to discon-
tinuous patterns of dots, leading to parallel proc-
essing of up to 10° bits of information.

Other developments in the area of interface logic
are based upon the availability of glass fibers and
the performance of OR and AND functions be-
tween the input medium and bundles of such fibers.

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

IN ——»

(LIGHT)

INTERFACE
LOGIC

FOURIER TRANSFORM OPTICS

4

(LIGHT)

ASSOCIATIVE FIBER SCANNER

PHASE MODULATION MATRIX

HYBRID D-A
PROCESSOR
(ELECTRICAL SIGNAL)
STORE
—» OUT
SCANNER (ELECTRICAL AND (LIGHT)
SIGNAL) DISPLAY
VIDICON, ELECTRON MEMOTRON 7 VIDICON
FLYING SPOT CRT. BEAMZ OSCILLATING CLOUD
PHOTOCHROMIC
ULTRASONIC DEFLECTORLZZ7Z(|GHT ELECTROLUMINESCENT
ARDENNE TUBE BEAM KERR EFFECT
DIFFRACTION GRATING
SCANISTOR | 'STATIC PARAMOSAIC

Figure 1. Practical electro-optical devices.

Encoding and decoding devices are particular ex-
amples of these techniques as is the associative fiber
:scanner described below (see 2.2).

2.1 Fourier Transform Optics

The idea of using lenses to obtain the Fourier
Transform of a planar density pattern has been
discussed at length by its protagonists Leith,®
Cutrona,’ Parrent'® and others. High-precision
optics and strong coherent sources have made such
a system highly practical and it is now entirely pos-
sible to process up to 10® bits of positional infor-
mation in parallel, e.g., by spatial filtering (see
below).

The fundamental principle of the (one-dimen-
sional) optical Fourier Transform is shown in Fig.
2. The planes—or better, lines—of interest are the
left and right focal planes: the left-hand one con-
tains the object, the right-hand one what we shall
here call the image even if it is not the image of the
object in the conjugate sense. Let P be a point in the
image plane which is w below the optical axis: its
illumination or amplitude is determined by the

brightness and the phase of all beams coming from -

the object. Because P is in a focal plane, these

beams are all parallel on the left side of the lens and
form an angle of w/f with the optical axis, where f
is the focal length. The beam issuing from the sec-
tion between x and x + dx contributes an ampli-

tude a(x) dx cos % where s is the path delay with

respect to some reference point—here chosen to be
the intersection of the object plane with the optical
axis. Geometry shows that s is a linear function of
x: thisis the crux of the matter. Assumption of an
object and image of infinite extension and a change
of notation (i.e., replacing cos by the real part of an
exponential with an imaginary exponent) lead to the
realization that the total amplitude in P (called il-
lumination) is simply the real part of the Fourier
Transform of a(x). Of course it is well known that
measuring devices—including our eye—actually see
the intensity, i.e., the square of the amplitude. This
leads to certain difficulties in practical systems, none
of which, however, cannot be overcome.

2.2 Associative Fiber Scanner

The use of GaAs lamps and photodiodes together
with fiber light conductors offers some rather in-
teresting possibilities. As an example, consider the

COMPUTER APPLICATION OF ELECTRO-OPTICS

- f Lo/ A —_—
, A f !
/ |
dx / |
H\// |
=W, |
3 // S f X |
X |
I
W |
COHERENT LIGHT /Y \ |
EnCAVAVAL <
Ao
REFERENCE w
PHASE
ALL P
PARALLEL !
v
OBJECT (INFINITE) LENS IMAGE (INFINITE)
LET a(x)= TRANSMISSIVITY IN x, THEN
+ oo + oo + o0
TOTAL ILLUMINATION IN P=fo(x)dx cos &7 f a(x) cos(27rw) dx = Rfa(x) el X dx =
- 00 >\o —on >\0f — o0
call wy
=R{F [o(x)]} = RA(wy)

Figure 2. Fourier Transform optics (one-dimensional).

arrangement in Fig. 3. It is assumed that we have a
film frame containing an m-»n matrix of dark and
light spots as well as the m - n matrix of the negative
(i.e., the digit-wise complement). We want to build
a device which can decide in one operation whether
a given key word (x;...X;...x,) is among the m

words (@y...ax...am)(A = 1...m) in the frame,

and if so, in what position.

The principle is to inject into the fibers going into
the first digits the signal x| via lamp L,, etc., so that
digits a,; are illuminated by X;. Similarly the digits
a,; on the negative are illuminated by x;. If we now
collect—by a second set of fibers—the outputs of
each row of photocells, the left-hand cell #A will
receive a signal V,ayX; while the corresponding
right-hand cell will receive V;a,;x;. If we check the
cells by pairs via OR circuits, only that OR circuit
for which both inputs are 0 will correspond to
a, = X,;: its position gives the A we search for, If
no such OR circuit exists, the key word is not con-
tained in the frame.

The system described above has been realized at
the Department of Computer Science of the Uni-

versity of Illinois" in slightly modified form. It is
presently being converted in such a fashion that the
key word does not necessarily contain all the digits:
provision is then made to read out the remaining
digits upon coincidence. It will also be possible to
change the key word (and the digits involved) as a
function of the last word read out. This obviously
will lead to a Turing-machine-like behavior of the
system.

2.3 Phase Modulation Matrix

One of the astonishing photolithographic feats of
recent times is Anderson’s'? production of varactor
diodes having overall dimensions of the order of 10
microns. By suitable doping and reverse biasing, it
is possible to make the depletion region behave like
an optical transmission line, i.e., to use the regions
of high carrier density as mirrors at a distance of a
few thousand angstroms. It is not too hard to con-
vince oneself that light going through the plane of
the junction will suffer a phase change ® determined
by the thickness d of the depletion layer where 4 is

4 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

i

\
of
O,

O

-

*i

\/01'\.

Bcs
w v
Be

A

‘0 IF WORD IN FRAME
(POS. OF OR GIVES \)
1 OTHERWISE

PRINCIPLE: Va,; X;=0 and \i/a“-xpo means a,; =x; for all i!
L

Figure 3. Associative fiber scanner.

approximately given by the Early-formula d =
V3Ve,€e0/2aq, q being the charge of one electron
and a the gradient of the donor density minus that
of the acceptor density. Figure 4 contains the ex-
pression ® as a function of 4.

Instead of using the diodes as transmission op-
tical phase shifters, it is also possible to expose one

surface of the depletion layer by a transparent sub-
strate and to shine the light into the device from the
side. Such reflective optical phase shifters lend
themselves more naturally to two-dimensional ar-
rays, although it is not impossible to use transmis-
sion shifters in a matrix. A possible use of reverse
biased diodes as storage elements makes such phase

COMPUTER APPLICATION OF ELECTRO-OPTICS 5

FOURIER TRANSFORM

INVERSE FOURIER TRANSFORM

v
L

X ARRAY X'
A ‘r OF DIODES ‘r “
.
— 1o
(b]
| "]
{ P | "
alx)] a(x)
COHERENT LIGHT ——
e VAVAL J [
E= £ elwT e TV
0 Awg| w1t | l"—A' (wy)
[o |
| _n_|—o
-
—n]
v b L v
INPUT PLANE LENS | FOURIER PLANE LENS 2 OUTPUT PLANE
(POSITIONAL) (FREQUENCY) (POSITIONAL)

L = LENGTH OF DIODES
€, = DIELECTRIC CONSTANT OF DIODES
d =d(V) = THICKNESS OF DEPLETION LAYER

Rlwy) = AlwgeiPlen

2meye 4 |
¢(wx)=%&\/€.-(w) T

Figure 4. Phase modulation matrix used as a spatial filter.

modulation matrices especially attractive, since it is
not necessary to connect a given diode to the input
control voltage at all times: a charging mechanism
using a scanner would be adequate.

Figure 4 shows a possible application of a phase
modulation matrix in the Fourier Transform Plane:
this is a form of spatial filtering. In the example
the frequency-analyzed version of the input infor-
mation in the w,-plane is subjected to phase delays
in the array of diodes, the control voltage V(w,)
being an impressed function of w,. If A(w,) is the
amplitude in the w,-plane, spatial filtering will pro-
duce A'(w,) = A(wy)e* > and a reconstitution by
means of an inverse Fourier Transform will lead to
a filtered version of the input information. It is pos-
sible to convert the phase modulation into ampli-
tude modulation by mixing the output with a ref-
erence phase as is done in holography.?

3. SCANNERS

The purpose of scanners is to convert incoming
parallel pictorial information into serial information
for subsequent transmission or processing: they are
serializers. At the same time, using persistence of
phosphors, the human eye, etc., they can be used to
reconstitute the parallel information: they are also
staticizers.

The scanning mechanism is_usually an appro-
priately deflected beam of electrons or a beam of
light. Neglecting the well-known examples of elec-
tron beam deflecting in flying spot analyzers (for
slides) or vidicons (in which the optical information
is converted to a charge distribution by a photo-
cathode) our discussion will be limited to practical
low-cost light deflectors. These are presently of the -
ultrasonic (see 3.1) and the KDP-CRT Type (see
3.2) if one neglects unfashionable mechanical de-
vices like vibrating mirror galvanometers and rotat-
ing mirrors. This unluckily temporarily leaves out
such exciting developments as those proposed by
Pole'* and Fleisher.'

A recent technique, using the Scanistor, is also in
a stage where practical applications can be con-
sidered. This device is essentially static in nature
and the scanning is done by applying appropriate

. voltages to the photosensitive element to be inter-
rogated (see 3.3).

3.1 Ultrasonic Deflector

One of the most efficient systems for deflecting
light through several degrees with an optical path
inside the device of a few centimeters is the ultra-
sonic deflector shown schematically in Fig. 5. Here
a quartz transducer injects an acoustical wave into

6 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

ot A R T R P A T TR AT E AR

MATCHED ABSORBER

SCANNING BEAM

CRITICAL
\J ZONE

NARROW INCIDENT
LIGHT BEAM
(COHERENCE NOT REQD) E:

HIGH DENSITY

LOW DENSITY

Sty
~

S Ry e

Figure 5.

a compressible liquid at a frequency corresponding
to the desired scanning action. The wave travels
across a critical zone in which a (coherent or non-
coherent) light beam is deflected in “Fata Morgana
fashion” by the variable densities (and the ensuing
varying index of refraction) generated by the wave.
Upon reaching the far side of the device a matched
absorber eliminates acoustical reflection and stand-
ing waves.

This system has been successfully used by Reich
at Lockheed in the design of a photochromic semi-
random access memory.'® The liquid used was
simply water and the operating frequency one mega-
cycle, the source being a laser providing a beam nar-
row with respect to the acoustical wavelength. The
beauty of the system is that two-dimensional scan-
ning is possible by using a cell containing two
acoustical waves traveling at right angles to each

NN
AT EHETETETiHi H; HEETHTT I STl it Rl s nst R AR n v

\ACOUSTICAL

WAVE IN A LIQUID

ORI

QUARTZ TRANSDLUCER

Ultrasonic deflector (Scophony system).

other. It is perhaps interesting to note that a quarter
of a century ago the Scophony Television receivers
in England used precisely the same method of light
deflection!

3.2 Ardenne Tube

Another device saved from oblivion by Pole of
IBM is the Ardenne Tube!” shown in Fig. 6. In-
vented in 1934 for the German Postoffice for fac-
simile transmission, it is essentially a CRT with a
special faceplate: a KDP crystal between two elec-
trodes, one reflecting and the other transparent.
When an electron beam hits the reflecting electrode,
the negative charge (together with the induced posi-
tive charge in the transparent electrode) produces a
strong electric field in the KDP. Due to the Electric
Kerr Effect there will be a phase difference between
ordinary and extraordinary components of light,

COMPUTER APPLICATION OF ELECTRO-OPTICS 7

TRANSPARENT FRONT ELECTRODE

REFLECTING BACK ELECTRODE

INCIDENT LINEARLY
POLARIZED LIGHT

STRONG
FIELD REFLECTED LIGHT WITH
= TP PHASED DIFFERENCE BETWEEN
CHARGE ::< ORDINARY AND EXTRAORDINARY
oEFLECTION g~ — ANALYZER
VOLTAGE | 77777 g T T T T w1
FIELD
\ KDP
CRYSTAL.
THE ELECTRIC FIELD, CAUSED IN THE KDP BY OUTPUT
THE CHARGE DEPOSITED BY THE ELECTRON BEAM, =
PRODUCES A PHASE DIFFERENCE BETWEEN THE FACEPLATE

TWO COMPONENTS. THESE GO THROUGH THE CRYSTAL

TWICE AND ARE REFLECTED BY THE BACK ELECTRODE.

Figure 6. Ardenne tube.

this difference being proportional to the field. Light
from a linearly polarized source in front of the face-
plate traverses the crystal twice (being reflected by
the back electrode) and finally goes through an
analyzer. If the analyzer is appropriately po-
sitioned, it is possible to make the high field por-
tions of the KDP “light up,” the rest of the face-
plate remaining dark. Clearly the position of the
“light source” is solely controlled by the electron
beam: we have a method for positioning a high
luminosity source of light by controlling a CRT.
Similar designs have been investigated by Pulvari'®
and Lindberg"? of Motorola.

3.3 Scanistor

The basic idea of Horton’s Scanistor® is to ac-
cess an array of light-sensitive elements connected
between a bus and a set of linearly increasing return
voltages by applying to the bus an appropriate time-
dependent voltage. The selection of any given ele-
ment is actually performed by making the voltage
across it nearly zero: the reason that this succeeds
is that a back-to-back diode pair has always a big
resistance as long as one or the other diode is
strongly reverse biased. Zero total drop across the
pair, however, puts both diodes into a region of
relatively low impedance. If light is now received
by one of the diodes (which therefore must be not
only a diode but a photodiode) it starts acting like
a current source, the source intensity being approxi-
mately proportional to the incoming light intensity.

Figure 7 shows an array of diode pairs illumi-
nated by a step-function light distribution. The bus
is used to sweep through the gamut of return volt-.
ages, i.e., e(¢) goes from 0 to some voltage E, within
some scanning period T. For the first two diode
pairs nothing happens, even when e(¢) reaches 0
and Ey/n. The third pair, however, suddenly passes
a current through the upper bus as e(f) reaches
2FE,y/n. Similarly the fourth pair produces a current
through the bus as e(¢) reaches 3E, /n, etc. By using
a transformer, each current increment produced
during the sweep gives an output pulse to v(z), the
height being roughly proportional to the light in-
tensity on the pair being accessed. It is easy to see
that an appropriate integration (or even a running
together of widened v(¢) pulses) produces an enve-
lope which imitates the light intensity after mapping
position into time: this is precisely what a scanner
has to do.

It is important to note that the voltage divider
chain between E, and ground can be built into the
diode array. Semi-integrated forms of the circuit
have had as many as 200 diode pairs per inch and
have performed very satisfactorily. One of the main
attractions is the very low power requirements of
the device.

4. STORAGE AND DISPLAY

Storage devices must typically accept an optical
input or the corresponding electric input in the form

8 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

LIGHT
INTENSITY
\
o X
ouT
BUS —— e o)
PHOTODIODES --- E)
BLOCKING DIODES TS L
] — —0 ¢)
0 Eq 26, 3E, 4E, Eo
n N n n
<———— 1 DIODE PAIRS >

v(Tt)

'}

EACH DIODE PAIR
GIVES OFF A PULSE
PROVIDED IT IS

I. ILLUMINATED
2.HAS PRACTICALLY NO
VOLTAGE ACROSS IT

Figure 7. Scanistor principle.

of a time sequence of electrical signals generated by
the electronic scanning of the picture. On demand
they must repeat this time sequence after an arbi-
trarily long period. Excepting core storage of a
digitized version of the time sequence (which will
have to be quantized for this effect by subdividing
scanning lines into a sequence of points!), it is inter-
esting to note that all presently used devices per-

form the storage on a continuous or discontinuous
matrix. It is this latter fact which makes such
storage devices good candidates for display.

The continuous storage matrix may be as trivial
as an old-fashioned memotron (i.e., a CRT with a
flood-gun which, by selective secondary emission on
the screen, keeps bright positions bright and dark
positions dark) coupled to a vidicon to examine the

COMPUTER APPLICATION OF ELECTRO-OPTICS 9

stored information. It can be made more sophisti-
cated by essentially uniting all elements into a
“Tonotron” (Hughes) or Scan Convertor, even if, at
present, readout for both is somewhat destructive.
It can finally take on the slightly esoteric form of an
Oscillating Cloud Tube in which the information is
a planar electron-density distribution being bounced
back and forth between suitable electrodes (see 4.1).
In all these versions the access is provided by an
electron beam. It is quite possible to obtain storage
on a continuous matrix using a light beam for ac-
cess. A practical system developed by Lockheed
uses a photochromic emulsion for storage and an
ultrasonic scanner. A version with a mechanical
scanner was designed by NCR. The most elegant
continuous light-accessed array is, however, the
electroluminescent panel (see 4.2) in which a CdS-
film is used to store the information and an overlay
of electroluminescent material as a light emitter
controlled by the CdS-film.

Discontinuous storage matrices using light beams
for access are presently of the thin magnetic film
type: here spots are magnetized by a coincident
current system in an underlying grid of wires. The
state of magnetization can be read out by observing
the angle through which the plane of polarization is
rotated by the magnetic Faraday effect, using a
plane-polarized scanning beam. Such work has led

OPTICAL INFORMATION PHOTOCATHODE ELECTRON CLOUD

7

y
%
%
7

to angles of rotation of several degrees but is yet
unpublished. Another, now well-developed, tech-
nique is based on the existence of striated domains
and their observation by a diffraction grating effect
(see 4.3).

There is, finally, a static storage and display de-
sign which is a sort of two-dimensional analog of
the Scanistor. In this ‘“Paramosaic’ system a curve
can be written into a matrix by making its grid-
points equipotential and storing this fact on appro-
priate elements (see 4.4).

4.1 Oscillating Cloud Tube

In the Oscillating Cloud Tube?' designed by Berg
and Smith of Imperial College and shown in Fig. 8
we have three distinct sections. To the left is an
orthicon-like structure in which the electrons given
off by a photocathode are accelerated by a weak

axial electric field to a rather low velocity. The
identity of electron bunches originating from var-

ious parts of the photocathode is preserved by ap-
plying a strong axial magnetic field. The cloud now
enters the storage section and is trapped between
gate 1 and gate 2, the electric field applied via V sin
wt bouncing them back and forth. When informa-
tion is required from the store, gate 2 is opened as
the cloud approaches it. The selected electrons are
then accelerated into section 3 (iconoscope) which

GATE | GATE 2 CHARGED MOSAIC
C
d -
-/
ELECTRON
BEAM
VsinwT

4————— ORTHICON SECTION ————————#% 4———STORAGE SECTION ——— “@— ICONOSCOPE SECTION —»

(AXIAL ELECTRIC AND MAGNETIC FIELD)

(OSCILLATING CLOUD) (SCANNER)

Figure 8. Oscillating cloud storage tube.

10 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

contains an intermediate mosaic in which the
charges are stored for subsequent scanning by an
electron beam.

The present resolution is in the vicinity of 100
lines. It seems entirely possible to store a sequence
of distinct electron clouds, each corresponding to
one frame of the input information. Selection of
the appropriate cloud is then operated by timing
the exit through gate 2. The access time to any in-
formation in the store is of the order of 200 nano-
seconds.

4.2 Electroluminescent Storage

Electroluminescent Panels are ideal display de-
vices although they still have a somewhat low light
output. Recently panels have been made? which
incorporate storage facilities.

Figure 9 shows the principles of operation. On
the left is shown a pn diode reverse biassed by —FE
applied to the p-region. Without light, the potential
barrier Ay across the junction is relatively high, its
value being approximately given by

Ay = Eln f—’%
q n;

+ E

where n and p are the electron and hole densities
and n; a constant. Let us now shine a light onto the
n-region, generating hole-electron pairs. Some sup-
plementary electrons neutralize a part of the donors
and consequently lower the value of n (assuming
space charge neutrality!). The formula above, al-
though strictly valid only for equilibrium, shows
that this amounts to a decrease of Ay and therefore
a stronger current flow. Other supplementary elec-
trons are trapped: their slow release after the light
disappears continues to neutralize donors, i.e., the
current will remain strong. It is assumed that the
current itself replenishes the traps, so that the low-
impedance state of the diode is indefinitely con-
served once light has struck it. Only the removal of
E and the emptying of all traps (in darkness) will
bring the diode back to its high-impedance state.
The storage and display combination is obtained
by essentially putting a continuous sheet of pn
diodes on top of an electroluminescent substance.
Practically the diode action occurs in the barrier
between a transparent electrode and an underlying
CdS-film. An opaque layer separates the CdS-film
and the electroluminescent material and a voltage is
applied across the whole sandwich. In those spots

TRANSPARENT

I . N NORMAL

SMALL { P
v

AV | BiG BARRIER

=

H+

THE pn JUNCTION
I IS REVERSE BIASSED.

ELECTRODES

{DONORS NEUTRALIZED BY
GENERATED ELECTRONS)

BIG| p n
_E ||

v
AY |smALL BARRIER

2‘ LIGHTQ-) N, DECREASED

SOME DONORS,

LIGHT GENERATES PAIRS AND
THE ELECTRONS NEUTRALIZE =

OTHER ELECTRONS FILL TRAPS.

LIGHT

3 N DECREASED
* (DONORS NEUTRALIZED BY
TRAPPED ELECTRONS)

AMNNN—_—_—TTTTTTESTS

ELECTROLUMINESCENT MATERIAL

L % p n I

_AT ¥
SMALL BARRIER

WHEN THE LIGHT DISAPPEARS,
TRAPPED ELECTRONS
NEUTRALIZE THE DONORS.

av= 4T 1n 2B 1
ni

Figure 9.

Electroluminescent storage.

V O
PRINCIPLE : THOSE PORTIONS OF THE CdS
WHICH WERE |ILLUMINATED HAVE
PERMANENTLY ACQUIRED A LOW RESISTANCE.
MOST OF V IS THEREFORE PERMANENTLY
APPLIED TO THE ELECTROLUMINESCENT
MATERIAL IN THESE SPOTS.

COMPUTER APPLICATION OF ELECTRO-OPTICS 11

where the series diode has been locked into its low
impedance state by incident light, we shall have light
emission from the highly polarized electrolumi-
nescent layer.

4.3 Diffraction Grating Display

Fuller of LFE? has produced a combined storage
and readout system in which a thin magnetic film is
magnetized in spots by a coincident current arrange-
ment as shown in Fig. 10. The composition of the
magnetic film is such that for one direction of
magnetization the domains are long and narrow, the
width of each being of the order of that of the wave-
length of visible light and constant from one to the
next. -

A Bitter Solution (essentially iron filings in a suit-
able viscous liquid) is held between two transparent
covers adjoining the magnetic film. As soon as the
right magnetization occurs, the Bitter Solution will
show a bunching effect and will take on the aspect

of a periodic structure having all the properties of
a diffraction grating. Incident light will therefore
be diffracted into an observer’s eye in the correctly
magnetized spots, giving direct optical readout of
the state of magnetization. The memory action
obviously stems from the retention of this state even
after the selecting currents have been taken away.
Certain difficulties with diffused light and higher
order diffractions can be attenuated by covering the
device with a supplementary plate, producing total
reflection for all but the desired direction of output
light.

4.4 Paramosaic

A principle similar to that used in the Scanistor
(but extended to two dimensions) was used at the
Department of Computer Science of the University
of Illinois* to produce storage and display in a
matrix of wires with suitable elements thrown across

DIFFRACTED LIGHT OCCURS IF |
nX\o =d(sina + sinG3)

2 A vl 5 4 6 7 I 07 2 %P
I 2 & 8 g & 5 B S 7 &

« LIQUID

BITTER SOLUTION (IRON FILINGS)

PERIODIC’ DENSITY

UNIFORM DENSITY

PULLELH R

THIN FILM

<-——d——

STRIATED MAGNETIZATION

RANDOM MAGNETIZATION

COINCIDENT CURRENT
SELECTION SYSTEM

Figure 10. Diffraction grating display.

12 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

each grid-point (see Fig. 11). The practicality of
such a “Paramosaic” hinges upon the cost of each
display element. The one shown in the figure only
gives temporary storage due to the inertia of the
lamp and the actual model (32 x 32) used a more
sophisticated design, consisting of a sensitive com-
parator and a flip-flop with readout via a tungsten
light: if the grid-points were within 0.2v of each
other, the light would come on permanently.

The interesting property ofithe system is that any
single-valued function y = f(x) can be displayed by
giving a minimum amount of information, namely
the voltage distribution u(x) = kf(x) on the verti-
cal wires. Making v(y) = ky for the horizontal
wires, only points with y = f(x) (or nearly) will
light up. Transmitting a sequence of ‘“profiles”
u(x) can display line drawings with arbitrary com-

plications and there is a considerable bandwidth re-
duction when the profiles are sent as time sequences.

5. GRAPHICAL PROCESSING AND
COMPUTERS

Graphical processors always involve input and
output devices of the type described above.
Usually, however, the scanner is followed by a
digitizer, and a general-purpose computer is used
for processing and storage. The author feels that in
graphical processing, many interesting operations
can be performed at high speed and low cost by
appealing to the latest designs in analog circuitry
and by using storage principles of the kind discussed
in Section 4. The reasoning is simply that the best
scanners give resolutions of the order of 1000 lines

MATRIX OF WIRES

\@\ \@\ Vi u{3)=u(3)
pos

u(l)=v(2)
y=f(x)
e o &
u(0)=v(0) \QD\ \D\ \(D\
v-proFe Y N l
(NORMALIZED TO BE LINEAR) ulx) | ux)=kf(x) |
DISPLAY ELEMENT: : I
|
|

0

Figure 11.

opbF-— — —_———

|
|
|
|
2

X-PROFILE

(CHOSEN TO GIVE CURVE TO BE DISPLAYED)

Paramosaic.

COMPUTER APPLICATION OF ELECTRO-OPTICS - : 13

(10° bits per frame after quantization) and that as
long as the machine interacts with a human a frame
rate of a few frames per second is adequate: the
data rate inside the processor is then of the order
of a few megacycles per second.

The Department of Computer Science at the Uni-
versity of Illinois is presently engaged in proving

these views in a system according to Fig. 12 used in
automating the constructions of Euclidian geom-
etry. In this Artrix System? use is made of hybrid
digital-analog circuits with 0.3% precision from DC
to 2 megacycles, the signal swings being from —10v
to +10v. The three stores (PERMANENT, PAD
and ACCUMULATOR) are all formed on memo-

Figure 12. The Artrix system.

) }
(r a b)®—JOYSTICK
CIRCLE
GENERATOR DISPLAY _
A " ADDRESS _
’ ’ \t\{\ GEN. [
.._.f\._.___o’/
TRANSF TRIAL 1 256
[POINTER])
DISPLAY
INDICATOR _ _T
s PERMANENT - X
- —» STORE 1 |counter| * 7]
LINE (POINTS))
)
GENERATOR \\ i
| ERASER x
DISPLAY A
'l \‘
AD ——T [
P
INTERSECTION 2 N
FINDER (TEMPORARY) |g—§ COUNTER COMMUT.
[ERASER]
DISPLAY
INDICATOR' J
ACCUMULATOR [~
(DWGS.) | CLOCK

14 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

tron-vidicon pairs with a 300-line resolution: their
contents are simultaneously sent to a display moni-
tor which is also used for light-pen writing. A digi-
tal system positions all beams in synchronism and
permits the transmission of digitized coordinates to
the processing boxes (CIRCLE GENERATOR,
LINE GENERATOR and INTERSECTION
FINDER), thus obviating the storage of analog
signals: the digital versions, after being converted,
feed the analog processors.

Erasure is obtained by selective transfer of in-
formation from the permanent store or the accumu-
lator to the PAD: the portions not to be transferred
are pointed at with a large aperture “ERASER”
light-pen. The “POINTER™ light-pen is used to set
the initial construction points into the permanent
store: it has a small aperture. The “INDICATOR”
light-pen has again a large aperture and generates
a gating signal which allows the system to look up
the exact value of coordinates in the permanent
store. The two fundamental operations are the
automatic drawing of straight lines through two
points and the construction of circles with a given
center (a,b) and a given radius r.

ACKNOWLEDGMENTS

The author is indebted to Harold Fleisher and
Robert Pole of IBM, Charles Koester of American
Optical, Dean Anderson of Autonetics, Louis Cut-
rona of Conductron Corporation, Harrison Fuller
of LFE and James Tippett of NSA for helpful dis-
cussions and suggestions.

REFERENCES

1. C.J. Koester, “Some Properties of Fiber Op-
tics and Lasers,” Optical Processing of Information,
Pollock, Koester and Tippett,.eds., Spartan Books,
Baltimore, 1963, Part B.

2. W. F. Kosonocky, “Laser Digital Devices,”

Optical and Electro-Optical Information Processing,

J. Tippett et al, eds., MIT Press, Cambridge, Mass.,
1965.

3. C.J.Koester and C. H. Swope, “Some Laser
Effects Potentially Useful in Optical Logic Func-
tions,” ibid.

4. G. J. Lasher and A. B. Fowler, “Mutually
Quenched Injection Lasers as Bistable Devices,”
IBM Journal of Research and Development, Sept.
1964.

5. W. J. Poppelbaum, *Electro-Optical Infor-

mation Processing,” Proceedings of the IFIP Cong-
ress, 1965,

6. R. E. J. Moddes and L. O. Gilstrap, “Re-
search on Optical Modulation and Learning
Automata,” Optical and Electro-Optical Information
Processing, J. Tippett et al, eds., MIT Press, Cam-
bridge, Mass., 1965.

7. J. C. Bliss and H. D. Crane, “Relative Mo-
tion and Nonlinear Photocells in Optical Image
Processing,” ibid.

8. E. N. Leith, L. J. Porcello and L. T. Cutrona,
“Coherent Optical Data Processing Techniques,”
Proceedings of the NEC, 1959.

9. L. T. Cutrona, “Recent Developments in
Coherent Optical Technology,” Optical and Electro-
Optical Information Processing, J. Tippett et al, eds.,
MIT Press, Cambridge, Mass., 1965.

10. G. Parrent, “Relation Between Bandwidth
and Spatial Coherence in Experiments Involving
Dispersion,” Journal of the Optical Society, vol. 55,
no. 9 (1965).

11. W. J. Poppelbaum et al, “Film Scanner,”
Quarterly Technical Progress Report of the Depart-
ment of Computer Science, University of Illinois,
July-Sept. 1965. ‘

12. D. B. Anderson, ‘“Application of Semicon-
ductor Technology to Coherent Optical Transducers
and Spatial Filters,” Optical and FElectro-Optical
Information Processing, J. Tippett et al., eds., MIT
Press, Cambridge, Mass., 1965.

13. G. W. Stroke, “Theoretical and Experimental
Foundations of Optical Holography,” ibid.

14. R. V. Pole et al, “Laser Deflection and Scan-
ning by Internally Lifting Degeneracy of Multimode
Cavities,” ibid.

15. H. Fleisher et al, “An Optically Accessed
Memory Using the Lippman Process for Informa-
tion Storage,” ibid.

16. A. Reich and G. H. Dorion, “Photochromic,
High-Speed, Large Capacity, Semirandom Access
Memory,” ibid.

17. M. Von Ardenne, Tabellen der Elekironen-
physik, Ionenphysik und Uebermikroskopie, Deut-
scher Verlag der Wissenschaften, 1956, vol. 1, p.
202.

18. C. F. Pulvari, letter in Electronics, Feb. 28,
1964.

19. E. Lindberg, “Solid Crystal Modulates Light
Beam,” Electronics, Dec. 20, 1963, p. 58.

20. J. W. Horton, R. V. Mazza and H. Dym,
“The Scanistor—A Solid-State Image Scanner,”
Proceedings of the IEEE, Dec. 1964, p. 1513.

COMPUTER APPLICATION OF ELECTRO-OPTICS 15

21. A.D. Berg and R. Smith, “An Electron Im-

age Information Store,” AGARD Symposium on

Opto-Electronics, Paris, 1965.

22. N. H. Lehrer and R. D. Ketchpel, “Thin
Film Conductive Memory Effects Applicable to
Electron Devices,” Optical and Electro-Optical In-
Sformation Processing, J. Tippett et al, eds., MIT
Press, Cambridge, Mass., 1965.

23. H. W. Fuller and R. J. Spain, “A Thin Mag-
netic Film for Wall Panel Display,” ibid.

24. W. J. Poppelbaum et al, “Paramatrix Sys-
tem,” Technical Progress Report of the Department
of Computer Science, University of Illinois, June
1964.

25. ——, “The Artrix System,” ibid, July-Sept.
1965.

BASIC THEORY OF PARTIAL COHERENCE

George B. Parrent, Jr.
Technical Operations Research
Burlington, Massachusetts

INTRODUCTION

The structure for a fundamental treatment of
image formation problems already exists in the
formalism of modern coherence theory as intro-
duced by Wolf.!! An adequate introduction to the
subject is provided by Born and Wolf,? (Chap. 10),
and a detailed description of most of the results of
the theory to date may be found in Beran and
Parrent.> Therefore it will not be necessary to re-
view. the subject extensively here. Rather, we shall
limit ourselves to a statement of the pertinent defini-
tions and a summary of the treatment of the imag-
ing problem in coherence theory.

BASIC DEFINITIONS

Mutual Coherence Function

The basic entity in the theory of partial coherence
is the mutual coherence function, I';;(7), which may
be defined by

(7)) = (x6x2,7) = <V(xL,0) V*xt +7)> (1)

Here the underscore denotes position vector, the
asterisk a complex conjugate, and the sharp brack-
ets indicate a long time average,* i.c.,

. 1 r
TlerDlo 3T [det 2)

‘<f>z

*Equation (2) is equivalent to the definition introduced by
Wolf, though in a slightly different form.

In (1) V is the analytic signal associated with the
optical disturbance, which we assume to be a single
Cartesian component of the electric field vector. In
terms of the mutual coherence function, the com-
plex degree of coherence, v,,(7) is defined as

sz(T)
VT'iu(0)I'»(0)

It should be noted that the complex degree of co-
herence, like the mutual coherence function, is a
function of seven variables, six position coordinates,
and the time-delay coordinate 7. The physical sig-
nificance of these parameters is illustrated by the
example discussed below. The treatment of prob-
lems involving partially coherent light involves the
solution of the two wave equations:

Yi2(7) = 3)

1 62P|2(T)

V?I‘u(’l’) = ? 31-2 (S = 1,2) (4)

* where V? denotes the Laplacian operator in the co-

17

ordinates of the point x,. A typical problem in-
volves determining the mutual coherence in the
source or object plane, solving (4) to obtain the
mutual coherence on a later surface, such as the
image plane, and then recovering the intensity, I, in
the plane of interest from the relation

I(x,) = I'(x,,x,,0))

Equation (5) follows directly from the definition of

18 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

the mutual coherence function and the properties of
the analytic signal.

For a large class of problems the theory outlined
in the preceding paragraph may be greatly simpli-
fied. These problems are characterized by the quasi-
monochromatic approximations, which are stated

as
Av < v
{I/Av <« |7 |}
where Av is the spectral width. Of these two con-
straints, the second is obviously the more signifi-
cant. White light may often be treated as quasi-
monochromatic if the path differences, ¢ | 7|, in-
volved in the experiment are suitably small. In
those circumstances for which the approximations
above are applicable, the mutual coherence func-

tion may be replaced by the mutual intensity func-
tion, I'(x, x,),

I'(x:1,x,) = Iy = T'(x1,x,,0) (6)

The complex degree of coherence reduces to
v12(0) = v, and the wave equations (4) reduce to
the two Helmholtz equations

Vil + kT, =0 (s =12)

where k is the wave number.

Coherent and Incoherent Fields

Equations (1) through (7) provide the basis of the
theory of partial coherence as introduced by Wolf.
To apply this theory to the imaging problem and
recover the familiar limiting forms, several thearems
due to Parrent are required. Principal among these
are:

1. A field is coherent if and only if the
mutual intensity function describing it
can be factored in the form

Iy = Uxy)U*(xy)
where
VZU(I|)+k2U(2C.|)=0)

2. An incoherent field cannot exist in free
space; however, an incoherent source
consistent with this result may be de-
fined.

(For the proof of these theorems and their exten-
sions to polychromatic fields the reader is referred
to Beran and Parrent.’) Of particular significance
for the problem of image evaluation is the second

of these theorems. We shall reserve a discussion of
the significance of the incoherent limit for a later
point (a comprehensive treatment may be found in
Beran and Parrent,’* Chaps. 2 and 3).

The van Cittert-Zernike Theorem

An additional theorem is required before attack-
ing the treatment of the image formation problem.
The van Cittert-Zernike theorem may be stated as
follows:

The mutual intensity of the illumination
derived from a distant incoherent scurce
may be expressed in the form

20 4 (- x,)

T(x,x,) = [I(§)e® dt)

Here I is the intensity distribution across the source,
and R is the distance from the source plane to the
observation plane. If the source is placed. in the
focal plane of a iens and the coherence of the
emergent beam examined, it is found to follow the
same law with the R replaced by the focal length f.

THE IMAGING PROBLEM

We may now direct our attention to the formula-
tion of the general imaging problem. As will be-
come clear in the following discussion, a basic de-
scription of image formation (at least as far as the
lenses are concerned) already exists in coherence
theory and, in fact, may be found in Refs. 2 and 3.
This theory has not however been applied to the
significant problems of image evaluation. Indeed,
the theory has been applied to very few problems.
In the next section the basic theory is outlined and
those pertinent problems that have been solved are
reviewed and discussed.

Review of Image Theory

In coherence theory an object is described by its
mutual intensity* (or mutual coherence) distribu-
tion rather than its intensity distribution. Thus the
object described by Ty(£,,£,) and the relationship
between object and image, I';(x,,X,), is developed
by solving the two Helmholtz equations (7) subject
to the appropriate boundary conditions. The gen-

*Qur discussion in this section will be limited to quasi-
monochromatic radiation. This serves to introduce the concepts,
and at the same time keeps the development tractable.

BASIC THEORY OF PARTIAL COHERENCE 19

eral solution is (see Ref. 3, Chaps. 7 and 8):

Lixi,x) = [/ Tolér, £)K(xi — &)
K*(x; - §2)d§|d§2 (10)

Here K denotes the amplitude impulse response of
the lens; i.e., denoting the complex transmission of
the aperture by 4 («), we may write

k@) = k(L) - fA(a)ezfoig'ﬁda (11
s A @

The two familiar limits may be recovered from (10)
by using the theorems of the previous section. Thus,
in the coherent limit, I';, = U, U¥, and (10) reduces
to

Fix,x;) = on(gl)K(il - §1)d§1
S Us(E)K*(x, — £)dE, (12)

From (12) and theorem 1 (“Coherent and Inco-
herent Fields,”” above), it is clear that the image of
a coherently illuminated object is coherent. A some-
what more surprising result (and certainly more in-
teresting in the image evaluation problem) is ob-
tained in the incoherent limit. Thus, we may take*
Ty, = I(§)6(E — &) to describe the object. The
general image, Eq. (10), then reduces to

Lix,x) = [IEKx - §K*(x, — £dg (13)

From (13) it is clear that the image mutual intensity
is no longer of the same form as the object mutual
intensity; i.e., the image of an incoherent object is
not incoherent but is partially coherent. This result
will be seen to have rather far-reaching implications
in the problems of image formation.

For most applications, the primary exposing radi-
ation may be safely taken as incoherent. For ex-
ample, sunlight is coherent only over a distance of
approximately 1/20 mm. Thus, even a reconnais-
sance system which resolved an inch on the ground
could probably be safely described by the incoherent
limit of Eq. (10). In this case, the intensity in the
image can be obtained by setting x; = x, in (13);
thus

L) = [LE | Kx - ol2de (14)

Equation (14) will be recognized as the familiar
incoherent imaging equation. The difficulty arises,
of course, when the scale of the mutual coherence
function becomes comparable with the resolution of
the optical instrument. (This point will be discussed

* Actually this form for the incoherent limit is only an approxi-
mation and must be used with care. However, it is sufliciently
precise to illustrate the present problem.

at length in a later section.) While this condition is
not likely to arise in the original taking system in
the near future, it becomes serious in viewing and
analyzing equipment such as microscopes, en-
largers, and microdensitometers at the present state
of the art. If one envisions improvements in taking
equipment of a factor of two or more, it will become
even more serious. This point will become clear as
we analyze transilluminated objects.

While (10) represents the general solution to the
partially coherent imaging problem, a more useful
form for application to spatial filtering is obtained
by considering the object to be a transparency that
is transilluminated. This is, of course, the case in
almost all viewing of reconnaissance imagery, and
certainly in all uses of microscopes and microdensi-
tometers in image evaluation. To describe this class
of problems, it is necessary to describe the object in
terms of its complex transmission ?(§). For trans-
illuminated objects Eq. (10) may be expressed as

Li(x1,X5) = [[Tol§1, £2)1(E)* (&)
) ‘K(x, — §|)K*(£2 - §2)d§1d§2 (15)

In most cases, one is interested in the intensity of
the image, which may be obtained from (15) by set-
ting x, = x,. Thus, ,

L(x) = [[Toler, £)1ED* EDK(x — &)
K*(x — £)dtdt, (16)

In (15) and (16) T'y(£,, £;) must be interpreted as the
coherence of the illumination incident on the trans-
parency. The illumination in most cases of practical
interest will be derived from a primary incoherent
source. In this case T'y(&,, £;) takes a special form-
(because of the van Cittert-Zernike theorem):

F0(§1,§2) = I‘o(gl - &) (17)

That is, it becomes a function of coordinate differ-
ences only. Under these circumstances (16) be-
comes

L(x) = [[Tols — &)1ENH(E)KE - &)
K*(x — &)dtdE, (18)

From (18) it is clear that for transilluminated ob-
jects the transition from object intensity | £(£)|? to
image intensity is nonlinear. The significance of
this conclusion is that the customary image evalua-
tion techniques and criteria are not, in general, ap-
plicable to such systems. For example, knowing
how such a system images sine waves or edges does
not permit us to describe how it images other ob-
jects. Furthermore, the same optical system could

20 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

be expected to yield different results if the coher-
ence of the illumination varied. At high resolutions
a small variation in the scale of the coherence func-
tion can produce dramatic changes in the image.
This may account, in part, for the difficulty encoun-
tered in intercalibrating instruments in different
laboratories, or in the cross-checking of microdensi-
tometers that have essentially equivalent optical
components but produce different results in edge
trace analysis.

Since systems of this type are inherently non-
linear, it is impossible to characterize them by a
transfer function. This point is easily established by
taking the Fourier transform of both sides of (18).
Thus,

iw = 1@ @ - O/ Tk - @ + B
K(p — 0)K*(0)do}dp (19)

In (19) the inner integral is characteristic of the in-
strument only, while the factors ¢(8) and ¢*(x — B8)
are determined solely from the object spectrum.
However, (19) is not in the form of ““object spectrum
times transfer function equals image spectrum.” The
inner integral has been referred to as a generalized
transfer function, but that nomenclature is rather
misleading since the function is not used as a trans-
fer function at all. A better terminology is the more
cumbersome one introduced by Wolf, the “trans-
mission cross coefficient,” which emphasizes that it
is a function of two frequencies.

With these general reservations in mind, we may
direct our attention to the development of the sys-
tem analysis for spatial filtering systems.

SYSTEM ANALYSIS

In this section the relationships between ‘““‘object™
and ‘“‘image” for three cases of imaging with co-
herent radiation are derived. Denoting by z, and z,,
respectively, the object and image distances, we de-
fine these cases as follows:

L N I
.21 Z3 f
2.Z|=Zz=f

3.2|=0, 22=f

Condition (1) produces an image in the ordinary
sense only if the object is in the near field of the
lens. Condition (2) yields an ‘“‘image” which is the
Fourier transform of the object, and condition (3)
yields a Fourier transform multiplied by a quadratic
phase term.

/ / /
VY

X

Figure 1. Coordinate system.

The geometry is illustrated in Fig. 1, in which £ is
the coordinate in object space, « is the coordinate in
the aperture plane, and x is the coordinate image
space. Assuming paraxial optics and ignoring
obliquity factors, we may express the relation be-
tween object and “‘image” as follows (Beran and
Parrent,’ Chaps. 3 and 7):

TG, x0) = [[[[Toltr, £)R(c)R* (@)

2 2
ik | r(E e, 00) = F(Ea @) — St 2 g ey, %) — P(etg, x3)
.e STANY) :]

-dtydédada, (20)

Here R («) describes the transmission of the aperture
and all integrals are infinite. The term «?/2f is, of
course, the saggital approximation and the r’s re-
main from the Green’s function.

Assuming coherent quasi-monochromatic radia-
tion, we find that

Lo(§1, &) = Uo(8) US (£2) N

and the image becomes
Fi(x1,x2) = Ui(x1) UF (x2) (22)

where

U = JJ Un@R@e LT g

(23)
SR’
Ignoring terms of order &_s_a)_ we may write
z
N2
rEa) -z + E2 @4
2Z|
and
2
r(e,x) = z; + (iz‘zz—x) (25)

Hence, omitting constant phase terms we may re-
write (23) as

Uix) = [Us(®)
. fR(a)eik %’(TI.J':]T_}') +2£z’—.+;z’—,-a(:7+zg._)]

~dadt (26)

BASIC THEORY OF PARTIAL COHERENCE 21

1 1 1

—_ 4 — = —
Z] 22 f

Under these conditions (26) becomes

Case (1):

af x?

Ux) = J Ua(® [R(@)e" R dadf (27)

Consider first the integral

ik[£? - 2a] _ ika?
JUse # di=e * Ua) (28)
Here
ik(f - a)?
Ule) = [Us(§)e = dt (29)

Equations (28) and (29) are obtained by simply
completing the square in the exponent. We may
now write (27) as ‘

ax_ «a

Uix) = [R(@)U@)e 5 5lae 00
Or completing the square again we have
ikx? [2 + g] ik(a +:T'x)1
= [R@U@e =
ihxtz, k(a+—x)
e [R@)U@e * da (32)

If the lens is unapodized and unaberrated, (32) be-
comes

Ui(x) da (31)

2
i o+ 24 2)

ikx’z.
U(x) = e ¥ f Ule = da (33)
Under the condition
2z
LR it & 34
a k (34)

i.e., object in near field of lens, the limits —a to a
(the aperture size) may be regarded as infinite and
(33) may be evaluated by the inversion theorem for
Fresnel transforms, giving

Ui(x) = e), C—' x) (35)
2

that is, an image multiplied by a quadratic phase
term.

Case(2): z, =z, =f
Under these conditions, (26) reduces to

ik[a® + £+ x? = 2a(x + £)]
Ux) = [[U®R@e 7 dadt (36)
Completing the square on the exponent in (36) gives

nkir g ikla= (et BP
U(x)—on(f)e - f e ¥ dadt (37)

a

Here an ideal lens is assumed again. Provided «, x,
and { and the condition

2 2

a > =
k

is met, the inner integral yields a constant C and
(37) becomes

tkEx
U(x) = C [Usg)e ¥ dt (38)
or
Uix) = €O, (Kf) (39)

i.e., a Fourier transform with no quadratic phase
term.

Case(3): z, =0 z; = f
Under these conditions we have immediately
from Eq. (20)
thx? ~ Hax
U(x) = e7 [Uya)R(@e ¥ da (40)
or
ikx?

Udx) = e U0<2>\f>*R (2>\f> (41)

Spatial filtering systems are properly constructed
around the configuration characteristics of case 2.
That is, this setup is used to display the Fourier
transform of the input transparency. A second
transparency is placed in the Fourier transform
plane to modify the spectrum. Then the process is
repeated and the “filtered” image is displayed in the
final Fourier transform plane.

In each spatial filtering experiment the coherence
conditions should be adjusted in accordance with
the foregoing analysis in order to be sure that the
approximations of the theory have been satisfied
and at the same time to minimize the degrading
effects associated with coherent imaging. These
effects arise primarily from the fact that such sys-
tems are nonlinear in intensity. Some examples of
these effects are shown below.

EXPERIMENTAL EXAMPLE OF
COHERENCE EFFECTS

A simple experiment that illustrates the effects of
the spatial and temporal coherence is to form two-
beam interference fringes by division of a wavefront.
Figure 2 shows the result of such an experiment.
Figure 2a shows high-contrast fringes formed with a
He-Ne gas laser illuminating a pair of small circular

22 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

d

Figure 2. Effect of coherence length. A and B—with gas lasers; C and D—with mercury arc.

apertures. The envelope function is the diffraction
pattern of the single aperture. In Fig. 2b, a piece of
plane optical quality glass 0.5 mm thick was intro-
duced in front of one of the apertures only, to add
an extra optical path. Again illuminating with the
He-Ne gas laser, we observe no difference in the
fringe contrast. However, when the experiment is
repeated with a coherent field produced by a
mercury arc lamp without the glass plate, high-
contrast fringes are again seen (Fig. 2c¢), but with
the glass in place, the fringes disappear (Fig. 2d).
The slight scale change between the two pairs of
illustrations results from the different wavelengths
(6328 A for He-Ne and 5461 A for the Hg green

line). This illustration shows that the coherence
length of the mercury arc radiation is quite small.
Both fields were spatially coherent but the coherence
lengths were quite different. Introducing fine
ground glass across the pair of pinholes results in
the intensity distribution of Fig. 3. The extra paths
introduced by the ground glass did not exceed the
coherence length; hence, high-contrast fringes are
seen over the whole field. A discussion of these
types of speckle patterns in terms of their auto-
correlation function and their power-spectral den-
sity are to be found in a paper by Goldfischer. An
attempt to build a coherent projection printer is re-
ported by Milinowski,® in which a rotating piece of

BASIC THEORY OF PARTIAL COHERENCE 23

Figure 3. Two-beam interference with diffusing plate.

ground glass is used to remove some of the co-
herence effects.

REFLECTED LIGHT

The different speckle patterns formed when co-
herent light is reflected from a rough surface have
been commented upon a number of times and per-
haps form the most objectionable feature of co-
herent imaging by reflected light (as opposed to
transmitted light discussed in the last section).
Figure 4 shows a standard bar target that has been
printed on a matte photographic paper and then

Figure'4. Photograph in refiected coherent light.

rephotographed in reflected coherent light. The
edge-ringing effects are masked by the speckle pat-
terns. The speckling is produced by the interference
between the scattered light and is determined by
the coherence length of the incident radiation. Fig-
ure 5a is a photograph of a portion of a cement-
block wall illuminated by a mercury arc so that the
light is spatially coherent. In Figure 5a the same
portion of the wall is illuminated by a gas laser; the
speckling completely obscures any structure of the
wall. Both beams had approximately the same
spatial coherence, but the gas laser has a consider-
able longer coherence length.

a
Figure 5. Effect of coherence length. A—spatially coherent only; B—spatially and temporally coherent.

24 PROCEED!NGS—SPRING JOINT COMPUTER CONFERENCE, 1966

REFERENCES 3. M. Beran and G. B. Parrent, Theory of Partial

‘ Coherence, Prentice-Hall, Englewood Cliffs, N.J.,
1. E. Wolf, Proc. Roy. Saoc., vol. (A) 230, p. 246 1963.

(1954). ' 4. L. I. Goldfischer, J. Opt. Soc. Am., vol. 55,
2. M. Born and E. Wolf, Principles of Optics, 2nd p- 247 (1965).

ed., Pergamon Press, New York, 1964. 5. A.S. Milinowski, ibid, vol. 54, p. 1406 (1964).

THE ROLE OF COHERENT OPTICAL SYSTEMS IN
DATA PROCESSING

L. J. Cutrona
Conductron Corporation
Ann Arbor, Michigan

INTRODUCTION

This paper describes a number of signal process-
ing techniques in which coherent optical techniques
play an important role. The techniques are power-
ful and of great versatility.

Examples of both two-dimensional and multi-
channel one-dimensional signal operations are de-
scribed. Of particular importance is the fact that
the most general linear operation can be mechanized
optically. Further examples show how antenna pat-
terns can be simulated optically.

A configuration useful for achieving fine resolu-
tion in radar by the generation of a synthetic
antenna is described.

Finally, the use of several optical configurations
for communication purposes are discussed.

FUNDAMENTAL PRINCIPLES

Much of the capability of optical configurations
arises from the ease with which certain one-dimen-
sional and two-dimensional spectral analyses are
made.'* Two basic configurations appear re-
peatedly. These configurations are

1. A configuration using a spherical lens
which produces two-dimensional dif-
fraction, and '

2. A configuration consisting of a spheri-
cal lens in conjunction with a cylindri-

25

cal lens which produces a multiplicity of
one-dimensional diffraction patterns.

The basic configuration for obtaining two-
dimensional diffraction patterns is shown in Fig. 1.

In this figure S represents a source of light, L,
represents a collimating lens, P, represents the input
plane in which a transparency is placed, and lens L,
is the spherical lens which is the essential element
for producing a two-dimensional diffraction pattern.
Plane P, is the plane in which the two-dimensional
spectrum (of the transparency in plane P;) is ex-
hibited.

In order that the distribution of light in plane P,
be the two-dimensional spectrum analysis of the
density distribution of the transparency in plane P,
it is necessary that planes P, and P, be spaced a
focal length on either side of lens L,. If f(x,y) rep-
resents the amplitude of light emerging from plane
P,, then the distribution of light amplitude in plane
P, is given by Eq. (1):

F(a,8) = [[f@x,p)ere+® dxdy (1)
In Eq. (1), the amplitude of the light in plane P,

CB-0-D-&

Figure 1.

Configuration for two-dimensional

analysis.

spectrum

26 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

is given by F(a,(). Here k represents the wave
number of the light while « and B represent the
direction cosines of the diffracted beam with re-
spect to the x and y axes.

The configuration of Fig. 1 can be converted to
a multichannel one-dimensional diffraction equip-
ment by the addition of a cylindrical lens to the
configuration of Fig. 1. The cylindrical lens is
placed between planes P, and P, to give the con-
figuration shown in Fig. 2.

In this case the distribution of light in plane P,
is given by Eq. (2). It will be noted that this expres-
sion indicates distribution of light corresponding to
a multichannel spectrum analysis. The parameter y
is an index referring to a given channel. The other
parameters have been previously defined.

F(a,y) = [f(x,p)e* = dx)

Figures 1 and 2 will be seen to appear in a num-
ber of configurations in the following sections. A
photograph of equipment using the configuration of
Fig. 2 is shown in Fig. 3.

LINEAR OPERATIONS

Signal processing operations include a large num-
ber of linear operations. Among these operations
are spectrum analysis, filtering, auto-correlation,
cross-correlation, etc. Each of these operations,
including (a) the most general linear operation on a

:—(O ».41/ @ le

Figure 2. Configuration for one-dimensional multichannel
diffraction.

function of a single continuous variable, and (b) the
most general linear operations on vectors, can be
mechanized optically.

Spectrum Analysis

The configuration of Figs. 1 and 2 are those essen-
tial for two-dimensional spectrum analysis or multi-
channel one-dimensional spectrum analysis. The
operation of these configurations formed the con-
tent of the above section.

Filtering

It is often desirable to perform filtering opera-
tions upon recorded signals. In such cases, it is
usually required to view the signals corresponding
to these altered spectra. To achieve this alteration
of the spectrum and viewing of the result, it is neces-
sary to modify the optical configurations shown in
Figs. 1 and 2 to those shown in Figs. 4 and 5,
respectively.

The configurations in Figs. 4 and 5 permit opera-
tions on the spectra by filtering operations in plane
P,. A number of filtering operations are possible:

In the simplest case, one can achieve bandpass
and bandstop filtering in plane P,. A bandpass is
achieved by having a transparent region at the ap-
propriate location in plane P,. A bandstop is
achieved by locating an opaque spot at the appro-
priate position in plane P,.

A more complicated filtering operation can be
achieved by placing in plane P, a transparency hav-
ing a density varying as a function of position. This
corresponds to a filter which changes. the relative
magnitudes of the spectral components.

A different filter is one in which phase variations
are desired. Difficulties in making filters of this
kind arise from the short wavelengths of light.

Figure 3. Equipment for one-dimensional multichannel spectrum analysis.

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 27

O+ Q=0+

Figure 4. Configuration for two-dimensional spectrum analysis
and filtering.

(OO0 00A

Figure 5. Configuration for one-dimensional multichannel
spectrum analysis and filtering.

In the most general case, a filter is desired in
which both the magnitude and the phase shift of the
spectra can be varied. In this case one can place
two transparencies in contact in plane P,; one of
the transparencies has a varying density while the
other has a varying thickness or phase shift. This
permits the most general filtering operation to be
performed optically.

Information theory indicates a number of cases
in which a desirable signal operation is that of pass-
ing a signal through a matched filter. In general the
matched filter will require a variation of both mag-
nitude and phase, hence the general filter consisting
of variable magnitude and phase is required.

A scheme for achieving the equivalent of a com-
plex filter (magnitude and phase shift both variable)
makes use of a technique recently demonstrated by
Leith and Upatnieks,” and Vander Lugt.

In this case a recording is made in which both
phase and magnitude are preserved but in which

this information can be recovered from a trans--

parency having density variations only.

Auto-Correlation and Cross-Correlation

Important linear operations are those of auto-
correlation and cross-correlation. These functions
will be considered together since the equipment
needed to mechanize the operations is identical. In
performing a cross-correlation the operations per-
formed are those indicated by Eq. (3) while an auto-
correlation is given by Eq. (4).

er(x0) = Jf(x)g(x — xo)dx 3)
en(xo) = [f(x) flx = x0) dx @)

It will be noted from Egs. (3) and (4) that to
mechanize these operations, techniques are needed

for performing multiplication, translation, and inte-
gration. A configuration capable of performing a
multiplicity of one-dimensional auto-correlations or
cross-correlations is given in Fig. 6. In this figure
the source and collimating lens to the left of the
plane P, causes a plane coherent wave to be incident
on the transparency f(x,y).

The optics between planes P, and P, causes the
multichannel spectrum analysis of f(x, y) to appear
in the plane P,. The optics between planes P, and P,
perform a second multichannel spectrum analysis of
the signals in plane P,. Thus, incident upon P; is
the function f(x,y). If one looks through plane P
toward the source, the distribution of light will be
the product f(x,) g(x, »).

Let the holder which contains the function f(x, y)
have provision for transporting this transparency
along the x axes. If this displacement is through a
distance x,, then the distribution of light in plane P,
looking toward the source will be the product
S(x,»)g(x — x0,).

The combination of spherical and cylindrical
optics between planes P; and P, cause a multi-
channel spectrum analysis of the light distribution
emerging from plane P;. Hence, the distribution of
light in plane P, is described by Eq. (5).

e(x0,y;) = [f(x,) g(x — x0,)&’ 7dx (5)

where « = 2w /A sin 6.

It will be noted that Eq. (5) resembles Eq. (3)
except that a multiplicity of operations is performed
(one for each value of y) and that the factor e/=*
appears as a factor in the integrand. In Eq. (5),
« = 0 corresponds to the light in a slit parallel to
the y axis. If only the light in this slit is recorded,
the exponential factor in Eq. (5) assumes the value
unity. In this case, Eq. (5) becomes identical with
Eq. (3) except for its multichannel feature. This
result is written as Eq. (6):

¢’(Xo,}’,0) = (9/’3(an) (6)

As the plane P, is transported, at a given position in
plane P,, there will appear an amplitude of light
corresponding to the value of the cross-correlation
function for that value of the displacement x,. This
auto-correlation function can be recorded by trans-
porting a film past the slit. The configuration in
Fig. 6 is, thus, capable of performing a multiplicity
of simultaneous correlations.

To perform an auto-correlation using the con-
figuration of Fig. 6 one uses a second copy of f(x, y)
in plane P;. '

28 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

f(x,y)

9(x- xorY)

oxg,v,0)

2

e(x,,%0)= [f(x,y) g(x-x ,y) dx

Figure 6. Cross-correlator configuration.

In the mechanization shown as Fig. 6 a relatively
complicated optical arranigement was shown to
image plane P; onto plane P;. It is necessary to use
this configuration in order to remove errors arising
from bias levels used in recording the signals in
planes P, and P;.

Auto-correlations and cross-correlations are im-
portant operations and there are many instances for
which information theory indicates these as opti-
mum signal detection and/or parameter estimation
operations. It will be noted that the configuration
of Fig. 6 performs a multiplicity of such auto-
correlations or cross-correlations simultaneously.
There is no difficulty in recording onto film a den-
sity of 50 cycles per mm. -Hence 35mm film can be
used in configuration of Fig. 7 to perform simul-
taneously more than 1000 simultaneous auto-cor-
relations or cross-correlations. Equipments having
the configuration of Fig. 6 are commercially avail-

able. A photograph of such a device is shown as
Fig. 7.

General Linear Operation

The most general linear operation [0] on a func-
tion f(¢) to produce an output g(¢) can be written
in the form given by Eq. (7):

g(t) = O[f (] = [h(r,0) (r) d7 (7)

In this equation, the nature of the operation to be
performed determines the kernel function A(r,¥).
The fact that Eq. (7) represents a general linear
operation is discussed in texts dealing with func-
tional analysis.” Pertinent discussion has also been
given in publications by L. A. Zadeh.?

In order to mechanize the operation given by
Eq. (8), the configuration shown in Fig. 8 may be

used.
g(t) = [h(r,0) f(7) dr)

Figure 7.

h(T,t)

Cross-correlator.

£(7) slit

08008

g(t) =fh(1,i) f(r) dr

)

Figure 8. General linear operation configuration.

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 29

If one looks toward the left, the light amplitudes
in the plane containing f(7) contains the product of
h(r,t) with f(7).

Between the transparency f(7) and the output slit
in which g(r) is found, is a pair of lenses, one of
which is spherical, the other of which is cylindrical.
This configuration performs the function of causing
the line-by-line spectral analysis of the light in the
f(7) plane to be displayed in the output plane. The
distribution of light in the output plane is described
by Eq. (9). It will be noted that Eq. (9) is a some-
what more general operation than that described by
Eq. (8), and that it describes a two-dimensional dis-
tribution of light in the output plane.

I(t,w) = [h(r,0)f(r)e7* dr 9)

It will be further noted that Eq. (9) becomes iden-
tical with Eq. (8) if w is set equal to 0. Thus, per-
forming a linear operation expressed as Eq. (8) is
accomplished simply by observing the light which is
present in the central slit in the output plane.

Thus, performing a general linear operation op-
tically requires the configuration shown in Fig. 8

together with the ability to record on two trans-
parencies the functions A(r,t), which represents the
operation to be performed, and the function f(7),
which represents the function upon which the opera-
tion is performed. The result of the operation is
present in a centrally located slit in the output
plane of the equipment.

It is known that, if a number of linear operations
are performed in tandem, one can represent the tan-
dem sequence of operations by a single equivalent
operation. Hence, Eq. (8) represents not only a
single operation but a sequence of linear operations,
if such is desired.

Matrix Multiplication

Eq. (8) and Fig. 8 are pertinent when a general
linear operation or a function of one variable is to
be performed. It is useful, however, to consider the
case in which a linear operation is to be performed
in a space of a finite number of dimensions. In this
case each input and output quantity of interest will
be a vector (n-tuple) and the linear operation will
be that of matrix multiplication. If ¥ and V; repre-

. Laser Condenser
Pinhole
—Collimator'Lens
) / Antenna Master Transparency

/ Transform Objective

/ For Field Pattern

/‘/ Enlcvging Lens
Master

Transparency

Figure 9. Microwave antenna simulator at optical frequency.

30 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

sent two vectors and if M represents a matrix one
may write
v, = MV, (10)

to indicate that ¥, is derived by a linear operation
on F.

In Eq. (10) ¥ and V¥, are vectors (column ma-
trices whereas M is a k by n matrix. These matrices
may be of the form given by'Eqgs. (11) and (12).

Vi
v - .
Vin
(11
Va1
v - .
Van
myy ... My,
M= - : (12)
My My

The operation indicated by Eq. (10) can be per-
formed by the optical configuration shown in Fig. 8.
In this case, the transparency h(r + t) is replaced
by a rectangular array representing the matrix M,
and f(r) is replaced by V. The output slit now
contains the values of 7; instead of g(¢).

Thus, the configuration of Fig. 8 makes possible
the general linear operation for ¢, a continuous vari-
able, as well as for discrete variables.

ANTENNA PATTERN SIMULATION

The far field pattern of an antenna can be com-
puted from its illumination function f(x,y) by the
use of the relation

F(a,B) = [[fx,p)e ™ *Pdxdy (13)

over
aperture

In this equation « and 3 are direction cosines of the
beam, F(a,B) is the far field pattern, and k is de-
fined by

k= =0 (14)

Figure 10. Antenna simulation—Illumination Plane.

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 31

This quantity is the wave number and A represents
the wavelength used. If Eq. (13) is compared with
Eq. (1) it will be seen to have the same form. Thus,
the optical configuration shown in Fig. 9 can be
used to display the far field pattern of an antenna.’
In this case, a transparency containing the aperture
function f(x,y) is placed in plane P, and the far
field pattern is observed in plane P,.

In some cases, the far field pattern found in plane
P, may be too small. It is desirable in this case to
use another lens to magnify the image found in
plane P,. Such a configuration is shown in Fig. 9
where an enlarged image of the field in plane P, is
displayed in plane Ps.

In fig. 9, one finds that an image of plane P,
occurs between lenses L; and plane P; at plane P,.
Thus, between planes P, and P; one has an oppor-
tunity to observe the pattern as it emerges from the

“illumination function through the near field until at
plane P; the far field pattern is obtained. With this
configuration, studies of the relationship between
near field and far field can be made. In addition, by

inserting perturbations into the regions between
plane P, and P;, for example, by simulating a non-
homogeneous medium, it is possible to observe the
effects of perturbations on the far field pattern.

A series of photographs showing the far field de-
veloping from the illumination function for an array
antenna’ is shown in Figs. 10-15. This set of photo-
graphs is the optical simulation of an antenna array
being built by J. P. Wild in Australia. The array
consists of 96 parabolas arranged on a circle about
115 miles in diameter. Each parabola has a diam-
eter of 45 feet. The frequency of operation is 80
megacycles.

Assuming that the far field pattern begins at a
distance 2D?/X the far field pattern begins approxi-
mately 2400 miles from earth. This poses real prob-
lems for measurement of the far field pattern. The
configuration of Fig. 9, however, enables one to
obtain not only the far field pattern shown in Figs.
14 and 15 but also views of the near field pattern.

Thus, antenna simulation is another.demonstra-
tion of the versatility of optical equipments.

Figure 11. Antenna simulation—near field. ‘

32 PROCEEDINGS~SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 12. Antenna simulation—near field.

SYNTHETIC ANTENNA GENERATION

One of the most successful and important appli-
cations of optical data processing has been that of
synthetic antenna generation in airborne radar ap-
plications. Here, a sequence of signals collected as
an airborne radar is translated along a straight line
is used to achieve the effect of a long linear array.
The term synthetic antenna derives from the fact
that signal processing generates the long linear
array. f

The fundamental idea can best be grasped by con-
sideration of Fig. 16. For the physical antenna
array shown in Fig. 16a, the individual transmitting
and receiving elements are dipoles. While each di-
pole has a broad radiation pattern, the assemblage
of dipoles is made to produce a narrow antenna
beam by making the electrical lengths of the in-
dividual transmission lines such that signals arriving

in phase at the dipoles are added in phase at the
main transmission line to the radar. Since trans-
mission and reception at each of the dipoles is
simultaneous, this fixed adjustment of phases serves
to maintain the desired beam pattern.

Figure 16b depicts the generation of the synthetic
array. In this case the individual elements of the
array, as indicated by the x’s, do not exist simul-
taneously. Starting with the position at the extreme
left, a radar pulse is transmitted and the return sig-
nals recorded. A short time later the aircraft has
carried the side-looking antenna to the second posi-
tion where another pulse is transmitted and the re-
ceived signals recorded. In this way a signal is re-
corded for each of the positions of the synthetic
array. To achieve the effect of a linear array such
as Fig. 16a, the return signals must contain phase
information which is preserved in the recording.
Then by appropriate data processing it should be

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 33

Figure 13. Antenna simulation—near field.

possible to retrieve the stored data and combine it
in proper phase to synthesize the desired effect of a
narrow-beamed antenna.

It was evident that the radar would have to have
excellent transmitter frequency stability and a stable
frequency reference for use in comparing the_phase
of the return signals with the phase of the trans-
mitted pulses. The method of signal storage (re-
cording) had to preserve the range information so
that the data processing could be accomplished
separately for each element of radar range.

The well-known formula for antenna beamwidth

showed that, at least in theory, the synthetic-antenna’

concept had a great potential for fine angular reso-
lution. The half-power beamwidth 3 of the physical
side-looking antenna (Fig. 17) is

: A .
= k — radians 15
B P radia (15)

in which

A is the wavelength of the radar,
D is the length of the physical aperture, and
k is the illumination factor (greater than unity).

The distance across the antenna beam for a radar
range r is 87, which represents the amount of data
that can be collected between half-power points for
this range. If this amount of data is processed at
each range, this would represent a synthetic antenna
length

L, = Brfeet (16)
if @ is expressed in feet. The phase information ob-
tained for each of the element positions of the syn-
thesized antenna is based on the round-trip distance
between the side-looking antenna and echoing ob-
jects; for the physical array the phase depends on
the one-way path length. As a consequence of this
difference, the phase difference between elements

i

34

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 14. Antenna simulation—far field.

of equally spaced elements of a synthetic array is
twice that of a physical array with the same spacing;
a synthetic antenna has half the beamwidth of a
physical antenna of a given length. That is,

A .
Bs = k, ST radians 17

§

in which k| is the illumination function for the syn-
thetic-sized antenna. Using Eq. (15) this can be ex-
pressed in terms of the size of the physical antenna
and radar range as

ky D

iy radians (18)

:35 =

This indicates that the synthetic beamwidth 3 is not

only independent of frequency, but also decreases
with radar range.

To obtain a measure of resolution, the usual as-

sumption was made that targets could be resolved

in angle if they were separated by one antenna

beamwidth. For the beamwidth 8, of the synthetic
antenna, the distance across the beam at any radar
range r is

k, D
AX = Br i) feet (19)

if the length of the physical antenna aperture D is
expressed in feet.

In theory, then, the resolution in the azimuth
direction for a synthetic antenna radar is independ-
ent of range, independent of radar frequency, and
smaller than the physical length of the actual side-
looking antenna carried by the aircraft. This as-
sumes the generation of a synthetic antenna of a
length equal to the distance across the radar beam
at each radar range.

In the analysis represented by Eqgs. (15)-(19), the
generation of a focused synthetic antenna was im-
plicitly assumed. If unfocused synthetic antennas
are generated, one obtains a resolution given by
Eq. (21). '

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 35

Figure 15. Antenna simulation—far field (longer exposure).

TIr'Yr17rrTy

Transmission Line

To Radar
(a)

HHRXRK KKK X XK KKK X)+'

Position at Which Pulse is Transmitted
and Received Signals Recorded

(b)

Figure 16. (a) Physical array of dipoles. (b) Synthetic array
generation.

It is useful to compare the azimuth resolution
capabilities of conventional radars, unfocused syn-
thetic antenna radars, and focused synthetic an-
tenna radars. The theoretical results are given by
Egs. (20), (21), and (22). These results are plotted
as Fig. 18,

1. The conventional technique: In this
technique azimuth resolution depends
upon the width of the radiated beam.

2. The unfocused synthetic antennt tech-
nigue: In this case the synthetic an-

tenna length is made as long as the un-
focused technique permits.

3. The focused synthetic antenna technique:
In this case the synthetic antenna length
is made equal to the linear width of the
radiated beam at each range.

As is shown in the sections which follow, the
linear transverse resolution for the conventional case

D

Figure 17. Synthetic antenna geometry.

36 PROCEEDINGS --SPRING JOINT COMPUTER CONFERENCE, 1966

1000
500

200
100

Resolution (ft)
S

Curve c (focussed case)

1 10° 100
Runge (N.M.)

Figure 18. Aximuth resolution for three cases: (a)
conventional; (b) unfocused; (c) focused.

is given by

Resolution.m = (20)

For the unfocused case, the resolution is given by

Resolution,s = 4 VAR @n

whereas for the focused case, the resolution is given .

by

Resolutiongy, = (22)

2
In the above expressions X is the wavelength of the
radar signal transmitted, D is the horizontal aper-
ture of the antenna, and R is the radar range.

Figure 18 is a plot of the resolution for each of
these cases as a function of radar range. This plot is

for an antenna aperture of 5 ft and a wavelength of"

0.1 ft.

One of the most successful applications of co-
herent optical data processing is the conversion of
raw data obtained from a synthetic antenna type
radar system into a fine-resolution radar map. Syn-
thetic aperture radars may! well become the most
important of the ground-mapping types of radars,
since they have a resolution potential at long ranges
which is considerably greater than that of other
types of mapping radars. Coherent optical process-
ing is eminently well suited to the processing tasks
which arise in such radar systems.

The azimuth or angular resolution of a conven-
tional radar is limited by the width of the physical
radar beam, which is given by A/D, where A is the
wavelength and D is the antenna width. Because
radar wavelengths are several orders of magnitude
larger than optical wavelengths, very large values
of D must be used if radars are to achieve angular
resolutions comparable with those of photorecon-
naissance systems. If one wishes to have fine (lin-
ear) azimuth resolution at long ranges, the required
antenna length will be of the order of hundreds or
thousands of feet; obviously, such an antenna could
not be carried by an aircraft.

The synthetic antenna technique offers a way
around this impasse: the aircraft carries a small,
side-looking antenna, producing a beam that is rela-
tively wide in the azimuth direction, which scans the
terrain by virtue of the aircraft motion. The an-
tenna is carried by the aircraft to a sequence of
positions which can be treated as if they were the
positions occupied by the individual elements of a
linear antenna array. At each position, the antenna
radiates a pulse, then receives and stores the re-
flected signal. These stored data are then processed
in a manner analogous to the coherent weighted
summation carried out in a large linear array. The
processed radar signals bear a quantitative simi-
larity to those which would be obtained if a large
antenna were used; in particular, the resolution and
the signal-to-noise ratio are greatly improved by the
signal processing.

Array-type antennas add, or integrate, the returns
received on each of the array elements. The syn-
thetic antenna falls into the array category. One
can readily generate synthetic apertures which are
so long that they will only realize their full gain and
azimuth-resolution capabilities if they are focused
at the range at which the radar is operating. The
focusing operation represents a phase adjustment of
the signal received on each array so that, in the sum-
mation process, the contributions from all array
elements are combined in phase.

10-12

The Radar Signal

An aircraft carries an antenna which illuminates
a ground-swath parallel to the flight path; the radar
beam is oriented in azimuth roughly normal to the
direction of flight; at range R, the azimuth lineal
beamwidth B8R is much larger than the desired
azimuth resolution at that range. Finally, the radar
is coherent, that is, the receiver has available a

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 37

reference signal from which the transmitted signal
was derived.

Synthetic antenna radars derive range informa-
tion through pulsing, and derive fine azimuth reso-
lution by processing Doppler-shifted radar returns
which lie in a spectral band which is adequately
sampled by the pulse rate of the radar. For our pur-
poses, we may neglect this intermediate sampling
process and consider only the reconstructed azimuth
histories which are easily derived from the samples.
We will assume that the entire radar receiver and
processor behave as a linear system; we can then
investigate the response of the radar to a single point
target, and by superposition extend the results to
apply to realistic reflective complexes.)

Examples of radar imagery obtained by the use of

synthetic antenna techniques are shown in Figs. 19
and 20.

The radar data is recorded onto film as an inter-
mediate step. This film, called a signal history film,
is then used in an optical configuration such as that
shown in Fig. 21.

In this figure, the conical lens is the primary ele-
ment responsible for focusing, while the combina-
tion of cylindrical and spherical lenses causes the
device to become multichannel so that the separate
range intervals remain resolved.

COMMUNICATIONS APPLICATIONS

The essential components of a communications
system are shown in Fig. 22. In such a system the

Figure 19. Fine resolution radar image, Washington, D.C.

38 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 20. Fine resolution radar image, southeastern Michigan.

Figure 21. Optical processor using a conical lens.

source generates the information which is eventually
delivered to the destination. The source may be any
of a number of items. It may be oral as in voice
communication; it may be a picture as in TV trans-
mission; it may be a series of digits if digital data is
transmitted; it may be an analog voltage.

The output of the source is sent to a coder. It is
the object of the coder to perform such operations
on the output of the source as will adapt these sig-
nals to the transmission channel. Often a trans-
ducer of some type is included in the coder such as a
microphone in the case of oral sounds, a TV camera
for scenes, so that the information is converted into
electrical form. Additional operations are also per-
formed. The most common of these is to impress
the information onto some electromagnetic carrier.
Many types of modulation exist, such as amplitude
modulation, frequency modulation, and a number
of pulse modulations.

These operations are primarily for the purpose of
adapting the signal to the channel. However, in
more sophisticated communications systems addi-
tional coding is employed for a variety of purposes.
For example, such additional coding may be used

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING .39

- T T T T T

I |
| [I |
Source Coder } Ch I ll Decod Destination l
| | | |
| : I | , |
Transmitter 4 Receiver J

L RSN CEREAD GEEEE) gl G, GEREEED ERNES EnED
Noise
Figure 22. Essential components of a communications system.

for the purpose of signal-to-noise improvement,
error correction, etc.

The output of the coder is fed to the communi-
cations channel. Two general types of channels are
employed, in one case a wire system connects the
transmitter to the receiver; in the other case (radio
transmission) an electromagnetic wave is launched
by way of a transmitting antenna and a receiving
antenna associated with the receiver abstracts from
this electromagnetic energy. A wide range of fre-
quencies is available for either wire transmission or
radio transmission. Recently, this spectrum has
been extended to include visual frequencies so that
modulation of light sources such as lasers may now
be considered.

In either wire transmission or radio transmission,
noise is added to the signals. Often, this is additive

5o

noise. However, multiplicative noise and multipath
transmission are operations (generally undesirable)
which may also be performed on signals as they pass
through the channel.

The signals from the channel become the input to
a receiver. It is the function of the receiver to detect
the signal and to convert it into a form suitable for
acceptance by the destination. If coding for signal-
to-noise improvement dr error correction have also
been included in the coder, the operations necessary
to achieve these improvements are also performed
by the decoder.

Not shown in Figure 22 but sometimes used and
necessary are a -number of administrative equip-
ments. These equipments perform such functions
as automatic testing, automatic switching to a
standby unit in case of failure, etc.

CODER

Amplifier Modulat:

TV Channel

. Flying
Source }— Logic |—pt Spot
Elements
Scanner
Alphabet
Time Base
Generator l |

Figure 23. Optical coding.

40 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Condenser and Filter

/— Collimator

/—Ultrusonic Cell

Reference Function

Final
Objective

Channelizer Lens —/

Figure 24. Optical decoding.

Block diagrams of optical coders and decoders’

are shown in Figs. 23 and 24. In these figures it is
assumed that an alphabet (set of symbols) and rules
for their selection have been previously determined
using information theoretic considerations.

CONCLUDING REMARKS

In this paper optical computing and optical signal
processing have been applied to a number of prob-
lems. The list of problems;is by no- means complete.

Optical signal processing must be considered as
an extremely powerful and versatile technique.

ACKNOWLEDGMENTS

The author gratefully acknowledges the contribu-
tions of many of his colleagues and former col-
leagues to the content of this paper.

REFERENCES

1. L. J. Cutrona, E. N. Leith and L. J. Porcello,
“Filtering Operations Using Coherent Optics,” Pro-
ceedings of the National Electronics Conference, vol.
15, 1959. *

2. ——, “Coherent Optical Data Processing,”
IRE WESCON Convention Record, Part 4, 1959,
pp. 141-153, and IRE Transactions on Automatic
Control, vol. AC-4, no. 2, pp. 137-149 (1959).

3. , “Data Processing by Optical Tech-
niques,” Proceedings of the Third National Con-
vention on Military Electronics, 1959.

4. L.J. Cutrona et. al, “Optical Data Processing
and Filtering Systems,” IRE Transactions on Infor-
mation Theory, June 1960, pp. 386-400.

5. E. N. Leith and J. Upatnieks, “Wavefront
Reconstruction with Continuous Tone Objects,” J.
of the Optical Society of America, vol. 53, no. 12, pp.
1377-1381 (Dec. 1963).

6. B. A. Vander Lugt, “Signal Detection for
Complex Spatial Filtering,” IEEE Transactions on
Information Theory, vol. 1T-10, no. 2, pp. 139-145
(Apr. 1964).

7. B. Friedman, Principles and Techniques of Ap-
plied Mathematics, John Wiley and Sons, New
York, 1956.

8. L. A. Zadeh, “A General Theory of Linear
Signal Transmission Systems,” J. of Franklin Insti-
tute, vol. 253, pp. 293-312 (Jan.-June 1952).

9. A. L. Ingalls, “Optical Simulation of Micro-
wave Antennas,” IEEE Professional Technical

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 41

Group on Antennas and Propagation International
Symposium Program and Digest, Sept. 1964, pp.
203-208.

10. L. J. Cutrona et al, “A High Resolution
Radar Combat-Surveillance System,” IRE Transac-
tions on Military Electronics, Apr. 1961, pp. 127-
131.

11. L.J. Cutrona and G. O. Hall, “A Compari-
son of Techniques for Achieving Fine Azimuth
Resolution,” IRE Transactions on Military Elec-
tronics, vol. MIL-6, no. 2, pp. 119-121 (Apr. 1962).

12. L. J. Cutrona et al, ““On The Application of
Modern Optical Techniques to Radar Data Process-
ing,” presented at 9th Symposium of AGARD
Avionics Panel on Opto-Electronic Components
and Devices, Paris, Sept. 1965.

BIBLIOGRAPHY

Born, M., and E. Wolf, Principles of Optics, Per-
gamon Press, New York, 1959.

Cheatham, T. P., Jr., and A. Kohlenberg, ““Analysis
and Synthesis of Optical Processes,” Boston
University Physics Research Laboratories
Technical Note 84, Part I (Mar. 1952).

——, “Optical Filters—Their Equivalence to and
Differences from Electrical Networks,” IRE
National Convention Record, 1964, pp. 6-12.

Conductron Corporation Final Technical Report,
“Coherent Light Investigation,” Conductron

No. D-5210-503-T246, Contract AF33(615)-
2738 (Dec. 1965).

Cutrona, L. J.,, “Optical Computing Techniques,”
IEEFE Spectrum, Oct. 1964, pp. 101-108.

——, “Recent Developments in Coherent Op-
tical Technology,” Optical and Electro-Optical
Information Processing, MIT Press, Cambridge,
Mass., 1965.

Elias, P., “Optics and Communication Theory,” J.
of the Optical Society of America, vol. 43, pp.
229-232 (Apr. 1953).

——, D. Grey and D. Robinson, “Fourier Treat-
ment of Optical Processes,” ibid, vol 42, pp.
127-134 (Feb. 1952).

O’Neill, E., “The Analysis and Synthesis of Linear
Coherent and Incoherent Optical Systems,”
Boston University Physics Research Labora-
tories Technical Note No. 122 (Sept. 1955).

——, “Selected Topics in Optics and Communica-
tion Theory,” ibid, no. 133 (Oct. 1957).

——, “Spatial Filtering in Optics,” IRE Transac-
tions on Information Theory, vol. IT-2, pp.
56-65 (June 1956).

Rhodes, J., “Analysis and Synthesis of Optical
Images,” American Journal of Physics, vol. 21,
pp. 337-343 (Jan. 1953).

Woodward, P. M., Probability and Information
Theory, with Applications to Radar, Pergamon
Press, New York, 1960.

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION

E. N. Leith, A. Kozma and J. Upatnieks
Institute of Science and Technology
The University of Michigan, Ann Arbor, Michigan

INTRODUCTION

Holography has in the last two years undergone a
tremendous resurgence. The laser has contributed
immeasurably to this, through the remarkable co-
herence of its light, which permits previously per-
formed experiments to be carried out with relative
ease, and in addition allows the performance of
experiments which were hitherto hardly conceivable.
Old experiments have been repeated with vastly im-
proved results, and the new interest has given rise
to new ideas with exciting promise.

This paper has a twofold purpose: first, to discuss
the techniques for making good holograms and to
describe how various factors degrade the process;
second, to describe other forms of holography, in
which phase is preserved by methods other than
through phase modulation of an interferometrically
produced grating.

ANALYSIS OF SOME STABILITY
REQUIREMENTS

Ideal conditions for biographic recording include,
among other items, completely stationary compo-
nents, monochromaticity of the source, optical flat-
ness of the recording surface, and linearity of the
recording process, Failure to achieve these con-
ditions causes in general some degradation of the
hologram image.

43

Vibrations

Vibration of the reference beam mirror, the ob-
ject, or the recording plate results in image degrada-
tion that, subject to a few rather plausible con-
straints, can be readily analyzed.

A hologram is made of the moving point P (Fig.
1). Let the mean position of the point lie at a dis-
tance zo from the hologram. Also, let the motion be
resolved into two components, one along the line
from object to recording plate, and the other normal
to this direction. For simplicity, consider each of
the motions separately. '

The former case was. treated by Powell and Stet-

Zm fe Zo

Figure 1. Hologram for a point object vibrating axially.

44 . PROCEEDINGS— SPRING JOINT COMPUTER CONFERENCE, 1966 .

son’ for the case of sinusoidal motion. We treat this
case more generally by assuming a random motion
with a prescribed probability density function for
z,, the deviation of the object point from its mean
position.

The hologram of the moving point is a photo-
graphic record of the time-averaged light intensity
exposing the recording plate, or, to the usual first-
order approximation,

E(x) = _[T
(1)

Here z,, = Kz,,, where K is a scaling factor related
to the relative amplitude of vibration (K = 0 for
negligible motion of the point), e is the reference
wave, and k is a constant. The virtual image term is

T 2
f k exp —i(ax PR R S— + 2r Kz,,,(t))dt
0

2dt

. 2
e + kexp —i 2—75(%---+ zo+z,’,,(t)>
A 2y

A zo + Kz, A

= KT exp —i(ax + %zox2 + 2% zo>

1 r 2w x?
7 -[[exp —1 T K(l - Z) Zm] dt (2)

Assuming that the random process z, is ergodic,
the integral becomes

27 Cox?
M,, |:-5\— K (1: — g)] 3)

where M,,, is the characteristic function of z,, evalu-

2
ated at %‘Zr— K(I - x_2) Since x is usually much less
Zy '

than zy, the argument of M, can be taken as g{i K.

The reconstructed image is thus attenuated b'y the
factor M,,; M,,(0) = 1 and M,,(v) < M,,,(0) for

all v. Thus, M, is always an attenuating factor. In’

the case of a sinusoidal motjon, the attenuating fac-
toris a zero order Bessel function Jy. Since Jp is
oscillatory rather than monotonic, fringes (repre-
senting contours of constant vibrational amplitude)
form on the reconstructed image.

If the probability density function is Gaussian,
the characteristic function similarly is Gaussian; the
attenuation factor is monotone decreasing and
therefore no fringes are produced on the recon-
structed image, only an attenuation proportional to
K.

A similar analysis for a random motion x,, in the
lateral direction results in a time-averaging factor

L Jfrexp ik =)|t @)
T 0 AZO " "

Let the vibration be sinusoidal; x,, = A cosw,t.
The integral becomes

-!— exp |—1 2mA’
7 P17 Iz
}dt

T 2
f exp —i-2—1r— 4 cos?wut — AXCOS Wyt
0 AZO 2
)

A Bessel function expansion, after neglect of var-
ious small terms, leads to the hologram signal term

being multiplied by Jo(Z;rAx). This is similar to the

20
case for axial vibration, except that the presence of
the variable x within the argument is a complication
which no longer makes this factor merely attenua-
tive.

Another interpretation is applicable, however.
The diffraction field of the point source, as formed
at the hologram plate, has the phase distribution

Zp
fracted field is

W, = i(l_ x2) _ 2mx ©6)

Az 0

exp _i<)\L x2>. The spatial frequency of the dif-

Substitution into the Bessel function argument
yields

Jo(Aw,) Q)

The lateral motion thus has, approximately, the ef-
fect of a low pass filter which degrades the resolu-
tion of the hologram and also reduces the angular
field over which the reconstructed image can be
observed. Note that the filter operates on the object
spectrum before its modulation onto the spatial
carrier a.

Finally, consider the effect of lateral motion of
the recording plate. In this case, a time-averaging
factor

1 fT ., T 2 7\2001 1
T J, exp lxzo [x,,, (2x - x,,,‘dt 8)

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION) 45

is produced. An analysis similar to the one just
given for the case of sinusoidal lateral vibration of
the object shows that the process acts, as in the
previous case, like a low pass filter except that this
filter acts on the signal after its modulation onto a
spatial carrier; the attenuation is thus more severe.

The Propagation Medium

The propagation medium in general is indiffer-
ent to whether the imagery is holographic or con-
ventional; an important exception must be noted,
however. If the medium is time-invariant and is
available for the reconstruction process, then the
medium serves, in the reconstruction process, as a

compensator for the errors introduced in the holo-’

gram-making process. Thereby, high-quality imag-
ery is supported in a medium which otherwise is
incapable of supporting good imagery. This is ac-
complished by using the real image term in the
reconstruction process: the real image term is con-
jugate to the original object; thus, phase irregulari-
ties are canceled when the real image term of the
hologram is formed through the irregular medium.

This process has been demonstrated experi-
mentally in two instances. In the first, a lens with
severe spherical aberration was part of the medium,?
in the second, several pieces of ground glass were
inserted between object and hologram.* In each
case, imagery was produced in which the deleterious
effects of the medium were eliminated.

Coherence Requirements

The basic coherence requirements of the source
can be stated quite simply, although the coherence
problem when examined in depth becomes indeed
abstruse and could itself well be the subject of a
paper. For example, holograms can be made in
completely incoherent light, as proposed originally
by Mertz and Young, and discussed more recently
by others.

In the case of a transparency, the object can be
assumed to have no depth, and the coherency re-
quirement is determined solely by the number of
fringes required across the hologram, which is, in
fact, just twice the number of resolution elements
required across the object transparency. Indeed,
techniques exist whereby holographic signals can be
modulated onto diffraction grating images, and the

source need not have the coherence required to pro- -

duce such a raster of fringes. The minimum co-
herence length is that needed to produce the re-

required dispersion of the object signal. For
example, if a resolution cell on the object trans-
parency is dispersed into a Fresnel zone plate image
for impulse response having M fringes, coherence
necessary for producing only M fringes is needed.
The space-spatial bandwidth product of the signal
(the spatial analog of the time-bandwidth or TW
product) is M. Thus, the required coherence is re-
lated to the TW product of the system impulse
response.

For the case of three-dimensional objects, the
situation is more severe, since superimposed on the
previous requirements is the requirement that the
coherence length encompass the object depth. For
an object of depth L, the second requirement is

2
%’X > L, where AM is the wavelength spread of the
source.* If the source has spectrum S(w), the re-
construction will have implanted on it, in the form
of intensity variations as a function of depth, the
autocorrelation function of the spectrum. This sug-
gests the use of holographic methods for interfero-
metri¢ spectroscopy. Alternatively, proper selection
of S(w) offers a basis for giving precise information
about the depth dimension of the object. For ex-
ample, in the case of a two-frequency source, fringes
that approximately represent the contours of con-
stant depth are present in the reconstructed object.

FILM TRANSFER CHARACTERISTICS

In holography, photographic film plays the role
of both a square-law detector and a spatial storage
device or recorder. In an ideal recording, the inten-
sity of the sum of two spatially modulated coherent
waves is recorded so that a linear relation is ob-
tained between the intensity and the specular ampli-
tude transmission of the resulting recording. On
subsequent readout using a coherent interrogating
beam, the original incident wave amplitudes can be
faithfully recreated from the stored data.

It is well known that if one uses photographic
film in the linear region of the D-log E curve, a two-
step recording process with a gamma product of two
gives a linear relation.> However, the efficiency of
this type of recording, in terms of the brightness of
the reconstruction, is low and the process is difficult
to accomplish with good fidelity at high spatial
frequencies.

A more straightforward practice is to use a one-
step process with exposure versus amplitude trans-

46 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

mission as the photographic transfer curve, where
exposure is the product of ithe light intensity and
the time of exposure. The amplitude transmission

is defined as
I'*
o

where I’ is the light intensity transmitted by the
recording while 1§ is the total intensity of the co-
herent interrogating beam. Here we assume that
the amplitude transmission is a real function which
requires that the thickness variations of the film be
negligible or that the film be immersed in an index
matching fluid during readout.

Figure 2 shows the exposure-transmittance (E-T,)
curve for a high-constrast film used in wavefront

operating bias point

Ta (amplitude transmission)

|
{
|
[
|
|
|
|
|
|
|
|
3

0

T H T T T T T T T ¥ T

0 200 600 1000 1400 1800 2200
E (exposure)

Figure 2. Log exposure vs densitfy curve. Kodak 649 plate,

exposed with HeNe laser light (6328), developed in
D19 for 12 minutes at 68°F.

reconstruction while Fig. 3 shows the D-log E curve
for the same film. One observes from these figures
that there is a considerable region on the E-T, curve
over which approximate linearity is achieved. Also,
this linear region does not coincide with the linear
region of the D-log E curve, but corresponds with
the toe and the lower part of the linear region of the
D-log E curve. ;

From these observations it is clear that the D-
log E curve is of little interest in wavefront recon-
struction. Generally, a film which is optimally
recorded for wavefront reconstruction will be un-
derexposed by conventional standards. Also, it is
apparent that attempts to achieve a specific ¥ of

3,64 /

3.24
2.8+
2.4

2,0

DENSITY
>
]

w
|

operating bias point

1000 1800 2600
LOG EXPOSURE

Figure 3. Exposure vs amplitude transmission curve. Kodak
649F plate, exposed with HeNe laser light (6328),
developed in D19 for 12 minutes at 68°F.

the D-log FE curve is of interest only as a means of
relating conventional sensitometry to this applica-
tion.

The linearity of the E-T, curve mentioned above
is the same type of inverse linearity achieved with
a vacuum tube, that is, linearity about an operating
bias point. This poses no problem since the inten-
sity functions of interest contain a bias term which
can be scaled to coincide with the operating point of
the E-T, curve. That the linearity is inverse is -of
little consequence for the type of wavefront recon-
struction considered here since the spatial fluctu-
ations of the intensity are modulated by a spatial
carrier frequency. The net effect is that the fluctu-
ating part of the recorded signal is changed in phase
by 180° and in the readout the amplitude of the
recovered signal is similarly reversed in phase.
However, the recovered signal is ultimately sensed
by an energy detector such as the eye or a photocell
and the 180° phase change cannot be detected.

The reference wave U, and the signal wave U
combine at the recording surface to produce the
intensity

I=|Uy+ U|? (10)
Letting Uy = ke, and U = ae™*, we have
I =k?*+ a®> + kacos(ax + ¢) (11)

The exposure time is chosen so that the product of
the constant part of Eq. (11) and the time is equal
to Ey, the operating bias point on the T,-E curve.
The amplitude transmission of the film is then made
up of a constant part, Ty, and a spatially fluctuating

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION 47

part g(x,y) and is given by

To(xy) = Ty + g(x.p) (12)

If k is large compared to a(x,y) then the exposure
will be confined to the linear portion of the T,-E
curve and the transmission T, is

Ta(x'y) = TO - ﬂt{az(x’y)
+ 2ka(x,y)co.s[ax + o(x,¥)} (13)

where ¢ is the time exposure and g is the slope of the
T,-E curve at the operating bias point Ey. Thus,
we have achieved a linear transfer in the sense de-
scribed above.

Effects of Film Resolution

To study the effects of the film resolution we as-
sume that the amplitude of the reference wave is
sufficiently larger than the signal so that we achieve
a linear transfer. Under this condition, k is large
compared to a(x,y), a*(x,y) is small compared to
2ka(x,y), and Eq. (13) can be rewritten as

T.(x.y) = To — Bt{2ka(x,y) cos[ax + ¢(x,y)}} (14)

Since we are assuming linearity, we can take into
account the film resolution by assigning an impulse
response to the film and treating the film as a device
in a linear system. The ideal transmission of the
film, 7,, is modified by the response of the film and
the result is given by

T,(x,y)*H(x,y) (15)

where H(x, y) is the appropriately defined impulse
response of the film and * denotes the convolution
operation.

The physical effect of the frequency transfer char-
acteristics of the film is most easily illustrated by
considering film resolution as it affects Fraunhofer
diffraction holograms. In this type of hologram the
complex wave U is the Fourier transform or the
Fraunhofer diffraction pattern of the object. Thus,
a(x,y)e*>» = J[a(u,v)) where d(u,v) is the object
which is to be stored as a hologram and later re-
constructed. The reconstruction, in this case, is
performed by placing the photographic record in a
collimated beam of coherent light and, with a lens,
taking the Fourier transform of the record. The
result, the light amplitude distribution at the back
focal plane of the lens, is given by

R(uy) = Tu(x,p)* H(x.p)) (16)

Using (14) this can also be written as

R(u,v) = J{[To — Kelox+#xn
— Ke~lex+#xn) 1% H(x)} (17)

where K = 281k.
Performing the Fourier transform operation we
obtain

R(u,v) = Tod(u,v) — Ka(u— a,v)H(u,v)
— Ka(—u—oa, —v)H(u,v) 18)

The second and the third terms of this expression
are usual images, displaced by +a, from the lens
axis, which one expects; however, the images are at-
tenuated by the modulation transfer function of the
film. .

This situation is quite different from the usual
effect of the film transfer function, which is to cause
a loss of resolution through attenuation of the
higher spatial frequency components. Here, the
resolution is unaltered by the transfer function
curve; instead, the image is attenuated by an
amount proportional to its angular displacement
from the reference beam. axis. This effect, of the
film transfer function, is to cause a narrowing of
the field over which the reconstruction can be
viewed.

Effects of Nonlinear Recording

In order to increase the brightness of the recon-
struction it is desirable to make the amplitude k, of
the reference beam about the same magnitude as
the amplitude of the signal, a(x,y). However, if this
is done, the recording is no longer linear. The effect
of this nonlinear recording can be analyzed by us-
ing the characteristic function technique for han-
dling nonlinear circuits.® Let the input to the non-
linearity be E,(x,y), the original exposure, E(x,y),
with the bias removed. Then the output from the
nonlinearity is some nonlinear function of this input
given by —g(x,y). Then by expressing —g(x,y) as
an inverse Fourier transform we have

-g(x.y) = G[E (x,y)]

1 f T By e Eie) '
= 5=). G@e*m™do (19)

o

where G is the Fourier transform of the nonlinear-
ity, G, and E\(x) = ta®*(x,y) + 2tka(x,y) cos [ax +
¢(x)]. After substituting E; in Eq. (19) we have

~g(x,y) =
21_11- [a’(w) elwla* (xy)+2ka(x.y)cosiax+ vyl g (20)

. 00

48 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Expanding part of the expopcntial term using the
Jacobi-Anger formula’ we have

~g(xy) = 2 Hylaxy)lcoslax + s(xy)] (1)
j=
where

Hjla(x,y)] = —21 @)’ [G(w)e'’ 1 [2tkaw]dw
w ©

(22)

and where J; is the Bessel function and ¢¢ = 1, ¢; =

- 2(j=1,2,...). The resulting transmission of the
record is

Ta(x’y) = TO - {HO[a(xry)]

+ 2 Hjla(x.y)]cos jlax + ¢(x.y)1}4(23)
j=
Some general observations ¢an be made about the
recording process from-Eqs. (13) and (23). Forj =
1, we have preserved the phase of the original signal
while distorting the amplitude. If the spatial carrier
frequency is large compared: with the spatial band-
width of the signal, the various terms in the series
(23) will not contain overlapping spatial frequencies
even though the amplitude distortion tends to widen
the bandwidth of each term. In cases where a(x,y)
is a slowly varying function or a constant, most of
the information is contained in the phase part and
the nonlinearity is of no importance.

As an example, consider the case where the ob-
ject consists of many randomly distributed points
of amplitude a,, and with random phase 6,. For
simplicity, we take these points along a line parallel
to the hologram so that we can reduce the problem
to one-dimensional notation. The total amplitude,
due to the points at the hologram plane is

a(x)e-1%® - Z a,, e140=8m) + o] (24)
m

Here we have approximated the phase of each point
at the hologram plane by a quadratic phase term.
Then

a(x) = [Z ak + 22 Gma,cos[A(x — Bnm)?
m mn 1/2

-4 (x - 3»)2 + om - 0,,]:| (25)
where m = 1,2,.., N—1land n= (m + 1),..., N
in the second sum. We can also write
Y Gusin[A(x — Bm)? + O]
¢(x) = tan™! - (26)
Z a,cos[A(x — Bm)? + 0,]

The intensity at the hologram using a plane ref-
erence wave, ke'®*, is given by

I(x) = k* + a*(x) + 2ka(x)cos[ax + ¢(x)] (27)

. where

cosfax + ¢(x)]

> ansin(ax + [A(x = Bn)? + 0,])
= ” ' . 28
a(x) (28)
Suppose we take for the T,-E curve of the film
a hard-limiter. This is an extreme case since film is
never this nonlinear; however, this nonlinearity can
be handled simply and it illustrates the effects.* For

a hard-limiter /5 '(w) = 3—[' where L defines the
w
transmission limits of the film. Then substituting

for 5((.:) in (22) we have for H;

L
HlaGo) = L2 @ [

— @

w ™

e

J;[2tkaw] dw (29)

If we expand the integrand using a power-series ex-

pansion we have for H;

L o= (D)*H - 1[q21#
Hjla(x)] = ef_ﬂ’_ Z:o ﬂ_;'_[’_“__]_
~ !

. f w12 tkaw] dw (30)

We assume that ta® is small enough when com-
pared to 2tka so that only the first two terms of the
power-series expansion need be used. We also as-
sume that the carrier frequency, a, is sufficiently
high that the coefficients H;, for j = 0 and j > 1,
can be dropped since the spatial frequencies will not
overlap with the terms H,. Then the coefficient of
interest H, (that coefficient associated with the re-

constructed images) is
2L
Hila(x) = - 31

Then, the part of the recording needed for recon-
structing the points is

Ti(x) = 271‘ cos[ax + ¢(x)] (32)

*Strictly speaking the hard-limiter or any other odd sym-
metric limiter cannot be a true model for the film since film
does not have odd symmetry about the bias point. However,
the even contributions from the film nonlinearity are usually
much smaller than the odd ones. Other models which can be
used are the error function limiter (see A. Kozma, ‘“Photo-
graphic Recording of Spatially Modulated Coherent Light,”
J. Opt. Soc. Am. (in press) or a vth law device®).

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION 49

or, using (25) and (28) we can write

Z amsin(ax + [4(x — Bu)? + 0n))

Tix) = - 2£.
™
Since sin a = —cos(a + w/2) we see that the

numerator of Eq. (33) is the correct transmission
function needed to accurately reconstruct the
points. If the amplitudes of the points are all of
about the same magnitude (the object is of mod-
erate dynamic range), then the first sum of the de-
nominator is significantly larger than the double
sum. To see why this is true we can write the de-
nominator of (33) as

[Z arzn + 2 Z [amanCOS[A (-x - ﬂm)2 - A(x - 6!:)2 + 0m - 0n]]] 12

(33)

ods. There are indeed various other possible
approaches, several of which we will proceed to
describe. All the ones described here involve lens
systems and most involve various forms of spatial
filtering.

The twin image term arises from the attempt to
record a complex function using a phase-discard-

2D GnanCOS[A[2(Bm — Bn)X — B% — B2l + O — 0,] |2

et |1

The second term in the brackets is a large sum of
sinusoids with small amplitude and random phase.
In the limit as the number of points considered be-
come large this term will go as the square root of

2a,,a L. . .
Em 2" which is << 1. In this case, the denominator
Am

reduces to approximately a constant and the object
points are reconstructed without distortion.

If one of the points, say a,, in the object is very
much greater than the other points combined then
this is not the case. In this case the denominator
can be expanded as

ai 2 2 a% mn aj

A straightforward but tedious calculation shows
that, in this case, the weaker object points will be
suppressed relative to the point with amplitude a,
and that false points will appear in the reconstructed
image.

OTHER FORMS OF HOLOGRAPHY

The holographic process, ever since its invention
by Gabor, has been beset with the problem of elim-
inating the twin image that arises because of incom-
plete recording of the phase relations in the wave
field. The off-axis reference or spatial carrier
method has proved an effective solution to the prob-
lem. With this method now convincingly demon-
strated, we turn our attention to alternative meth-

1 [1 _LZ.‘é_ Za,,.za,. cos[A(x

2 dh
m

ing method. The traditional objects used in
holography have generally been transparencies,
which normally are real functions; however, the
Fresnel diffraction patterns are complex. The gen-
eration of a complex function from a real one is
explained by considering that the space between the
object and hologram planes treats the signal as an
all-pass dispersive filter; the phase relations in the
signal are thereby altered.

Accordingly, we might consider producing holo-

- 6m)2 - A()C - ﬁn)z + om - Bn]] (34)

grams through a process having a real impulse re-
sponse, which would therefore retain the real nature
of the original signal. Figure 4 shows such a holo-
gram-producing system. The signal (a transpar-
ency) is introduced at P, and is imaged at P;. A
spatial filter having the property F(w) = F*(-w)

Jogog

Figure 4. Optical system for generalized holograms.

50 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

is placed at P,; this ensures a real signal at P;.
The signal is thus recorded with completeness with-
out the need for a carrier-frequency reference beam

or other phase-preserving technique. We record
linearly in amplitude, producing
Up + U = Uy + s*f 35)

where fis the impulse response of the spatial filter
F, and s is the signal transparency, which is con-
verted into the function u = s*f.

In the reconstruction prodess, we image the holo-
gram signal through a second spatial filter with
impulse response g(x), or transfer function G (w).
We require that, to within a constant,

SFG = § (36)
or
F(@)G(w) = 1 37

For convenience, we can let F and G be pure phase
filters,

F(w) = e'®@ (38)
G(w) = '@ (39
thus we require
eitdite) _ | (40)
or |
$1(w) = -2 (w) 1)

It is often convenient to use the same filter both
for making the hologram and reconstructing it.
Two cases arise: The signal may be passed through
the filter in the same manner in both cases, or the
signal (or the filter) may be reversed. In the former
case, we require for reconstruction that

|Fl?=1 (42)
from which we obtain
F = eie(@)f (43)

where ¢(w) is a function that assumes the value 0 or
1 and satisfies the condition e(—w) = — e(w).

Alternatively, if the reconstruction is to be made
with the filter of the signal reversed, the reconstruc-
tion condition becomes

FwF(-w) =1 44)
or since f(w) = F*(—w), we have

FF*(w = |F|?=1 45)

from which we derive
F(w) = e'*@ (46)
with
¢(-w) = —¢(w) 47

Thus, if we want a filter that produces a real output
when the input is real, and if we want the function
1/ F to be the filter reverse F(—w), and if the filter
is to be purely phase, then we require the phase fac-
tor to be antisymmetric, ¢(—w) = ¢(w). An ex-
ample of this case is a lens, one half of which is con-
cave and the other convex, as shown in Fig. 5. To a

Figure 5. The antisymmetrical lens used in an optical system for
generalized holograms.

first-order approximation, we have F(w) = e®¢ for
w > 0, and F(w) = ¢ %“ for w > 0. Thus we may
write

F(w) = eXlele (48)

Clearly, the fabrication of such a lens is not prac-
ticable, since both halves must be matched to within
a fraction of a fringe. One might consider using a
symmetrical Fresnel zone plate; it obviously satisfies
the condition F(w) = F*(~w). Unfortunately, it
fails to satisfy the requirement | F| = constant.
There is a feasible solution, however. With a car-
rier-frequency method used in making holograms,
we may substitute for the required function e *!¢!¢
its real function equivalent 1 + cos (aw + K | @ | w);
the first-order diffracted wave of this function, writ-
ten on a transparency, yields the desired filter func-
tion. A straightforward analysis shows that the re-
quired function can be produced, for a cylindrical
Fresnel zone plate (focal power in one-dimension
only) by removing a portion from the center of the
zone plate and joining the two outer portions.
Another method of producing a real function
diffraction pattern involves the use of two identical
objects, positioned so that their summation pro-
duces a diffraction pattern with constant phase (i.e.,

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION 51

the diffraction pattern is real). A well-known
method of accomplishing this is to use a lens, which
takes the Fourier transform of the object. By mak-
ing the signal symmetrical, its Fourier transform
will be real. Placing a strong point source on axis
in the object plane then causes the Fourier trans-
form to be positive as well, and thus recordable
without the loss of phase. This technique is similar
to methods used in crystal analyses by X-ray dif-
fraction. A positive real Fresnel diffraction pattern
can be generated by displacing the object trans-
parencies in the axial dimension, but maintaining
symmetry about the point source which supplies the
bias.

REFERENCES

1. R. Powell and K. Stetson, J. Opt. Soc. Am.,
vol. 55, p. 1593 (1965). ‘

2. E. Leith, J. Upatnieks, and A. Vander Lugt,
ibid, p. 595.

3. —— and ——, SPIE Journal, vol. 4, p. 3
(1965).

4. M. Born and E. Wolf, Principles of Optics,
Pergamon Press, Bath, England, 1959.

5. D. Gabor, Nature, vol. 161, p. 777 (1948);
Proc. Roy. Soc. (London), vol. A197, p. 454 (1949);
ibid, vol. B64, p. 449 (1951).

6. W. B. Davenport and W, L. Root, An Intro-
duction to the Theory of Random Signals and Noise,
McGraw-Hill, New York, 1958, Chap. 13.

7. W. Magus and F. Oberhettinger, Functions of
Mathematical Physics, Chelsea, New York, 1949,
p. 18. :

BIBLIOGRAPHY

Baez, A. V., J. Opt. Soc. Am., vol. 42, p. 756 (1952).

Duffieux, P. M., L'Intégrale de Fourier et ses Appli-
cation a I'Optique, chez 1'Auteur, Université
de Besangon, Besangon, France (1946).

El-Sum, H. M. A., “Reconstructed Wavefront Mi-
croscopy,” PhD thesis, Stanford University,
Nov. 1952 (available from University Micro-

El-Sum, H. M. A., and A. V. Baez, Phys. Rev., vol.
99, p. 624 (1955).

Haine, M. E., and J. Dyson, Nature, vol. 166, p. 315
(1950).

Haine, M. E., and T. Mulvey, J. Opt. Soc. Am., vol.
42, p. 763 (1952).

Kirkpatrick, P., and H. M. A. El-Sum, ibid, vol. 46,
p. 825 (1956). _

Leith, E., and J. Upatnieks, ibid, vol. 53, p. 1377
(1963); vol. 54, p. 1295 (1964).

Lohmann, A., Opt. Acta (Paris), vol. 3, p. 19 (1956).

Rogers, G. L., Proc. Roy. Soc. (Edinburgh) vol.
A63, p. 193 and p. 313 (1952); vol. A64, p. 209
(1956).

Papers presented at Washington Conference on

~ Electron Microscopy, National Bureau of
Standards, Nov. 1951.

APPLICATION OF COHERENT OPTICAL TRANSDUCERS TO OPTICAL
REAL-TIME INFORMATION PROCESSING*

Dean B. Anderson
Autonetics, A Division of North American Aviation, Inc.
_..Anaheim, California

INTRODUCTION

Interest in optical information processing stems
from the never-ending effort to increase data han-
dling capacity and to improve the interface with
human senses. . The manipulation of two-dimen-
sional data in an image format and processing in a
parallel organized integral transform distinguishes
the optical analog computer from its counterpart—
the electronic digital computer processing one-
dimensional data in a sequential manner.! The
optical analog computer is admirably suited to per-
forming linear operations such as matrix products,
Fourier transform integration, and related correla-
tions and convolutions. The photographic plate is
usually employed as the input, memory, control
function, and output to demonstrate optical infor-
mation processing concepts.

The high- signal sensitivity, large data storage,
and wide spatial bandwidth are the attractive char-
acteristics of a photographic emulsion. However,
the time required to develop the latent image to
obtain access to data is both dismally slow and
cumbersome in comparison to electronic means.
The chemical amplification encumbrance has led to
consideration of thermoplastic and ultrasonic delay
line recording as an alternative with the attendant
compromise of serial data input. If optical analog
computers are to compete with the developing elec-

*Work supported in part by the Office of Naval Research

53

tronic art, it is essential that the access time to
current data be reduced to a small fraction of a sec-
ond without compromise of data capacity. Further-
more, as real-time optical processing is achieved, a
requirement for an optical adaptive capability will
also arise.

Optical information processing systems require
the functions of amplification, modulation, and de-
tection to be performed throughout the signal spa-
tial field. These functions can be effectively syn-
thesized by an array of coherent optical transducers
extending across the signal spatial field provided
that the spacing between the individual transducers
and their size are comparable to the radiation wave-
length. A quasi-microwave approach to coherent
infrared transducers and their arrays using micro-
photolithographic techniques is delineated.

OPTICAL OPERATIONS

The application of communication theory to phy-
sical optics has provided the foundations of optical
information processing.>®> The basic image trans-
formation operation is illustrated in Fig. 1. The
spatial signal is usually introduced at the object
plane by coherent plane wave illumination of a
photographic transparency. The resulting diffrac-
tion pattern in the Fraunhofer region is the Fourier
transform of the spatial signal. The use of a lens
(focal length F) permits the scaling of the Fraun-

54 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

o

e
AT

\

F

y

DISTRIBUTION

(OBJECT) APERTURE

PLANE 1 (LENS)

PLANE 2 /
¢
FREQUENCY
(IMAGE)
PLANE 3
Figure 1. Basic image transformation operation.

hofer diffraction region to a more convenient loca-
tion at the focus of the lens. The Fourier transform
of the spatial signal is formed in the lens image
plane as a spatial frequency spectrum. For some
applications, this spectral analysis is the desired
output.

If various shaped aperture stops or blocks are
inserted into the frequency plane, it follows that the
output signal distribution from a second transform
lens system will be altered by the filter impulse re-
sponse. In fact, a lens acts as a low-pass filter.
Matched filter enhancement of the signal-to-noise
ratio can be demonstrated by inserting the complex
conjugate of the signal transform into the frequency
plane. The realization of a complex-valued spatial
function in a photographic transparency is ex-
tremely difficult due to the required phase response.

An interferometric approach has been introduced
to record complex functions on photographic
plates.** The addition of a reference wavefront
as a carrier to the spatial signal produces in a photo-
graphic plate one component resembling a diffrac-
tion grating. The grating frequency is proportional

to the angular separation between signal and
reference beams. An interferometric recorded spa-
tial filter of the symbol ¥ is shown in Fig. 2.

The operations of convolution and correlation
can be realized by further compounding the system
with additional image transformations. The results

Figure 2. Interferometric spatial filter.

COHERENT OPTICAL TRANSDUCERS TO OPTICAL REAL-TIME INFORMATION PROCESSING 55

from use of the spatial filter, Fig. 2, for pattern
recognition is shown in Fig. 3. The diffraction grat-
ing in the spatial filter has provided a convenient
means to separate, by orders, the various compo-
nents of the matched filter process. Using the sym-
bol 1 as the input, three components are observed
in the output: 1) the input convolved with the filter
impulse response; 2) a crude image reconstruction,
and 3) the input cross-correlation with the filter
conjugate impulse response—indicative of recog-
nition.

Gabor’s® holography has been rekindled anew

with introduction of interoferometric methods be- -

cause of the vivid three-dimension reconstruction of
the scene with parallax.” A hologram is a spatial
filter for a particular scene when coupled with the
transform in a human eye. The hologram, when
illuminated by a delta-function distribution (point
source), which has a uniform spectrum, allows pas-
sage of only those spatial frequencies which will
form the reconstructed wavefront and thus the de-
sired image. For optical pattern recognition, the
holography process is inverted so that the unknown
object serving as a source illuminates a spatial filter
producing a single point image (correlation point).
'Figure 3 also shows the symbol reconstruction using
the spatial filter in Fig. 2 as a hologram. Both the
real and virtual images of the symbol are apparent.

ZERQ ORDER

ERO ORDER:

Figure 3. Spatial filter operations.

Current optical pattern recognition techniques re-
quire a rigorous matching of the spatial filter and
the input. Factors such as position, scale factor,
orientation aspect, and inversion severely com-
promise the recognition fidelity. Some problems
can be solved by restricting the list of symbols to a
particular style.

Consider the problems of recognition and track-
ing of hurricanes in cloud patterns recorded by
satellites. Pattern characteristics peculiar to the
hurricane spiral and invariant with observation con-
ditions are obviously obscured by noise. Therefore,
during the learning phase it will be necessary to
assemble a large catalog of spatial filters from suc-
cessive cross-correlations of known hurricane spec-
tra. From the catalog of spatial filters, a charac-
teristic set are selected and the decision criteria
established. The correlation of unknown cloud
patterns with the stored filters provides a basis of
comparison in the recognition process. Of the
utmost importance is the optimization of the recog-
nition process by including an adaptive feature; that
is, a measurement of the correlation point amplitude
ratio with respect to the side lobe skirt level and
distribution to alter the filters within the classifica-
tion set. This means that techniques must be devel-
oped to alter the spatial filters dynamically so that
they can change their functional properties with
time in accordance with new data.

SPATIAL MODULATOR

The requirements of a spatial modulator to dy-

‘namically implement optical spatial filters are briefly

outlined. A spatial modulator is schematically
illustrated as an array in Fig. 4. The functions of
amplification, modulation, and detection must be
performed throughout the aperture in a linear
fashion with respect to the control signal, while the
quantized elements of the array must operate inde-
pendently without crosstalk. A spatial modulator
may operate in either a transmission or reflection
mode and may alter either the amplitude or phase
characteristic.

Factors which influence the quantization of the
spatial modulator into an array are available from
antenna theory. Some of these are:

1. The half period factor (T) of the highest
spatial frequency component must be
greater than the array period which
must be greater than one-half the wave-
length. (T/2 > s > A/2)

56 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

>

¢:'m /
A ;
4

‘s

S

S
=

d

4
T

Figure 4. Spatial modulator.

2. The array factor giving rise to a grating
lobe period must exceed the angular
diameter of the lens (see Fig. 1) for an
unambiguous operation. (A\/s > D/F)

3. The beamwidth of a single element
must exceed the angular diameter of the
lens to be included within the integra-
tion. (2N/d > D/F)

4. Random phase and amplitude errors
should be minimized to preserve the dy-
namic range in the optical system.

A wide variety of bulk .interaction phenomena
exist to alter the optical properties of materials by
application of electric and magnetic fields or by
mechanical stress. Most of these interaction phe-
nomena are weak—even in high fields. It is also
difficult to induce from the outside the spatial per-
turbations. Therefore, a bulk spatial modulator
without quantization and with a significant spatial
bandwidth is impractical. However, heteroepitaxial
semiconductor, ferroelectric and ferromagnetic® ma-
terials imbedded with conductor arrays are a
promising approach.

Current integrated circuit technology provides an
approach to quantize the array. Moss® has analyzed
various methods of modulating infrared radiation
using semiconductor materials which will respond
rapidly. A quasi-microwave approach using semi-
conductor diode junctions which may be assembled
into arrays for modulation and amplification will
be discussed in the following sections. The deple-

tion layer in diodes is considered as an optical
transmission line where its length is controlled by
the applied voltage. Current integrated circuit tech-
nology is now becoming interconnection-limited.
The interconnection limitation also prevails in an
optical spatial modulator. However, there are
several means to circumvent the problem. A variety
of photoeffects occur in semiconductor material and
junctions when the illumination radiation wave-
length is shorter than the band edge. Of particular
interest here is the photovoltaic effect in a junction.
The electron-hole pair created by absorption near
the junction is separated by the internal field at
the junction and thus alters the optical properties
of the depletion layer for radiation longer than the
band edge. Through this process, it should be pos-
sible to control the optical spatial modulator diode
array by illumination of the array with a second
beam containing the spatial control signal. A simi-
lar control of a parametric amplifier array is also
possible through pump excitation. The photo-
detector array art is currently well established and
need not be discussed.

PASSIVE INFRARED WAVEGUIDE

Implementation of an optical spatial transducer
requires interconnection by a waveguide which
preserves the state of polarization and mode of
propagation. Optical dielectric waveguides of cir-
cular and planar cross section have been demon-
strated and reported in the literature.!®'? Control of
a specific mode of propagation is best accomplished
in transmission line with dimensions comparable to
the wavelength. The binding of the electromagnetic
field to the dielectric structure depends upon the
relative index of refraction of the transmission
medium being greater than the surrounding en-
vironment. An active and a passive infrared wave-
guide structure is illustrated in Fig. 5. The rec-
tangular diclectric image line supported on a
reflecting surface is ideally suited for coupling and
integration with optically active devices such as
semiconductor junctions.'

As an example of dielectric image line waveguide,
Fig. 6 shows a ‘“‘rat race” hybrid junction formed
photolithographically. The dielectric is thermally
grown silicon dioxide on a highly doped, polished
silicon substrate. The dielectric cross section is
0.6 x 2.0 microns and thus is useful in the near
infrared region.

The results of an experiment demonstrating the
propagation of a single, lowest-order mode through

'COHERENT OPTICAL TRANSDUCERS TO OPTICAL REAL-TIME INFORMATION PROCESSING 57

=

— DEPLETION LAYER

Figure 5. Passive and active infrared waveguide structures.

a dielectric image line waveguide are shown in
Fig. 7. A cleaved cross section of dielectric image
line (0.3 x 1.2 micron cross section) and substrate
was used for the photomicrographs. A Lloyd’s
mirror'* demonstration of interference fringes from
the image line waveguide substrate is shown in the
upper figure. The black region is the silicon sub-
strate. The visibility of the fringes immediately
adjacent to the substrate surface disappears because
the light source is polychréomatic and temporally

Figure 6. Dielectric image line waveguide—“rat race”
hybrid junction.

incoherent. The presence of the waveguide is clearly
apparent. The discontinuity in the fringes immedi-
ately adjacent to the substrate is due to the reflection
from the outer surface of the dielectric image line
waveguide. Note the subdued interference normal
to the substrate resembling a Fraunhofer pattern.
This is due to reflection from the dielectric image
line waveguide at greater depth. The Lloyd’s mirror
illumination has been removed and replaced by a
laser beam focused on the dielectric image wave-
guide in the lower figure. The transmission of a
single mode through the waveguide is apparent. The
circular radiation distribution is due to the dipolar
field and the offset is due to the image phenomena.
The substrate surface in the lower figure is indi-
cated by some scattering at the focused input
coupling. .

ACTIVE INFRARED WAVEGUIDE

The depletion layer in a reverse-biased semicon-
ductor junction diode will also guide optical
waves.""” The free carriers in both n and p give
rise to a solid state plasma having a slightly reduced
index of refraction which confines light propagation
in the depletion layer. In the back-biased planar
diode, the thickness of the depletion layer sand-
wiched between n and p regions is controlled by the
applied bias field and may be comparable to infra-
red wavelengths. A depletion layer waveguide is a
useful active device because it provides an electronic
means to control an optical wave phase velocity.

58 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 7. Results of Lloyd’s mirror experiment showing
transmission through dielectric image line wave-
guide.

Obviously, a depletion layer used as a dielectric
waveguide or resonator must be used in the spectral
region where it is transparent. Most semiconduc-
tors are opaque in the visible region but are trans-
parent in an adjacent infrared region. The intrinsic
absorption is due to excitation of electrons across

the forbidden energy gap. Lattice absorption and
Reststrahlen bands exist in the far infrared region.
The intervening region is comparatively transparent
except for impurity and free carrier absorption. The
differéntial index of refraction between the various
layers in a depletion layer is comparatively small
(10~% to 10~%) so that a wave field is weakly bound

‘to the junction. Careful attention must be given to

the selection of doping elements, their concentra-
tion and gradient, and the host lattice defects be-
cause fields surrounding the junction will cause ab-
sorption, diffraction, and scattering losses.

The work of Nelson and Reinhart? is illustrated
in Fig. 8 which shows the transmission through a
GaP diode junction. Although their work exploited
the linear electro-optic effect for modulation, this
photograph vividly illustrates the changing dimen-
sions of the depletion layer waveguide as a function
of the applied bias field.

GALLIUM PHOS
10D

Figure 8. Transmission through GaP diode junction deple-
tion layer waveguide. (By permission of Bell
Telephone Laboratories. See Ref. 20.)

There are various other mechanisms to control
the phase velocity in a depletion layer waveguide
besides that of geometry. One is the electro-optic
effect as above which leads to birefringence in the
index of refraction. Another is the change of the
index of refraction below the band edge of a semi-
conductor due to the dispersion associated with the

COHERENT OPTICAL TRANSDUCERS TO OPTICAL REAL-TIME INFORMATION PROCESSING 59

Franz-Keldysh effect. The Franz-Kelkysh effect is a
shift of the band edge to a longer wavelength be-
cause of the application of an intense electric field.
The various considerations which enter into the use
of depletion layer waveguide as an active optical
circuit element suggest a [11-V semiconductor mate-
rial and a wavelength just short of the band edge.

A depletion layer boundary may also be used in
the reflection mode as a movable mirror. A photo
field effect transistor shown in the photomicrograph
of Fig. 9 has been used for a demonstration experi-
ment. An alloy gate contact and an etched channel

Figure 9. Photo field effect transistor.

were formed in the silicon slice between source and
drain. The use of a preferential etch, the alloy
junction technique, and oriented silicon has led to a
high degree of parallelism between the etched chan-
nel surface and the depletion layer boundary. The
pinch-off characteristic curve is indicative of the
optical quality in the boundary planes and shows
that the depletion layer can be driven into planar
contact with the channel surface. Experiments
show that the position of the reflected beam from
the etched channel front surface and the depletion
layer is controllable by the applied gate bias.
Illumination of the channel also provided a control
of the beam position.

PARAMETRIC INTERACTION

To provide optical amplification and a means to
control an operation by an optical logic field, the

characteristics and feasibility of infrared parametric
interactions are discussed. Parametric interactions
involve the mixing of one or more signal frequencies
with an intense source called a “pump” producing
sum and difference combinations. The Manley and
Rowe?' energy relations show that there are two
basic amplification mechanisms distinguished by the
manner that the signal and pump frequencies are
allowed to combine. Further discussion will be
restricted to the difference combination which
creates an effective negative absorption and results
in a signal spectrum inversion.

Parametric interactions depend upon a reactive
nonlinear phenomena. The nonlinear capacity of a
varactor diode is due to the change of the deple-
tion layer thickness. In the infrared region the
carrier inertia prevents a similar response; however,
the index of refraction of some materials have a
nonlinear behavior in intense light. The polariza-
tion nonlinear susceptibility of III-V semiconductor
compounds is several orders of magnitude larger
than the piezoelectric crystals which have been used
for optical parametric amplification.

Recently, positive gain has been realized in dif-
ference frequency parametric interactions by Wang
and Racette?? using NH,H,PO, and by Giordmaine
and Miller® using LiINbO;. They used a Q-spoiled
solid state laser to pump a nonlinear cyrstal under
index matching to efficiently produce a second
harmonic. After filtering and collimating the beam,
the harmonic was applied as a pump to a second
nonlinear crystal to obtain quasi-degenerate opera-
tion. Birefringence in the crystal was used to bal-
ance the index of refraction dispersion to obtain
matched phase velocities in their traveling wave
circuit.

A quasi-microwave approach? which differs sig-
nificantly from the above investigations using piezo-
electric crystals is currently under way. A planar
section of depletion layer waveguide is used as a
multimode resonator tuned to the signal idler and
pump frequencies. The dimensions have been
selected sufficiently small to prevent other undesir-
able resonances. The requirements for index match-
ing in a traveling wave structure are removed by
the use of low-order modes within the resonator
wherein the fields and geometry defining the bound-
ary conditions establish resonances which are alge-
braically related to the pump frequency. Within
the constraints of known material technology, the
available power and emission lines from continuous
wave gas lasers, and for an acceptably high non-
linear susceptibility, gallium arsenide is preferred

60 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

for diode fabrication. The current state of micro-
photolithography extends the quasi-microwave ap-
proach into the one-micron region and thus matches
with gallium arsenide. Signal coupling to the
amplifier will be provided by image line dielectric
waveguide. An optical circulator is desirable to
separate the input and output ports and provide a
degree of stability. The development of heteroepi-
taxial ferrite and the associated photolithography
completes the requirements so that a circulator may
be integrated with the optical parametric amplifier.

CONCLUSION

It is hoped that a future report will verify that the
quasi-microwave approach to optical information
processing is feasible by demonstration of opera-
tion. At this point in the development, interest may
be kindled for the extension into adaptive image
processing by an array where spatial logic is
achieved optically.

ACKNOWLEDGMENTS

Although the conclusions are those of the author,
he is indebted to many colleagues at the Autonetics
Research Center. In particular, sincere appreciation
is due to Mr. R. R. August for the many stimulating
discussions of optical semiconductor technology, to
Dr. W. T. Cathey and Mr. J. E. Rau for use of the
spatial filters, and to Mr. D. Medellin for the
photomicrography.

REFERENCES

1. J. T. Tippett et al, eds., Optical and Electro-
Optical Information Processing, MIT Press, Cam-
bridge, Mass., 1965.

2. E. L. O’Neill, “Spatial Filtering in Optics,”
IRE Trans. Inform., T., 1T-2, p. 56 (1956).

3. L.J. Cutrona et al, “Optical Data Processing
and Filtering Systems,” ibid, IT-6, p. 386 (1960).

4. A. Vander Lugt, “Signal Detection by Com-
plex Spatial Filtering,” ibid, IT-10, p. 139 (1964).

5. E. N. Leith and J. Upatnieks, “Reconstructed
Wavefronts and Communication Theory,” J. Opt.
Soc. Am., vol. 52, no. 10, p. 1123 (1963).

6. D. Gabor, “Microscopy by Reconstructed
Wave-Fronts,” Proc. Roy. Soc. (London) Ser. A,
vol. 197, p. 454 (1949).

7. E. N. Leith and J. Upatnieks, ‘“Wavefront
Reconstruction with Continuous-Tone Objects,”
J. Opt. Soc. Am., vol. 53, no. 12, p. 1377 (1963).

8. G. R. Pulliam et al, “Epitaxial Ferrite Mem-

ory Planes,” 1965 NAECON, Dayton, Ohio, pp.
241-245 (1965).

9. T. S. Moss, “Methods of Modulating Infra-
red Beams,” Infrared Physics, vol. 2, p. 129 (1962).

10. E. Snitzer, “Cylindrical Dielectric Waveguide
Modes,” J. Opt. Soc. Am., vol. 51, p. 491 (1961).

11. N. S. Kapany and J. J. Burke, ‘“Dielectric
Waveguides at Optical Frequencies,” solid/state/
design, vol. 3, p. 35 (1962).

12. J. Kane and H. Osterberg, “Optical Charac-
teristics of Planar Guided Modes,” J. Opt. Soc.
Am., vol. 54, p. 347 (1964).

13. D. B. Anderson and R. R. August, “Applica-
tions of Microphotolithography to Millimeter and
Infrared Devices,” Proc. IEEE, vol. 54, (Apr. 1966).

14. M. Born and E. Wolf, Principles of Optics,
Pergamon Press, New York, 1959, p. 261.

15. A. Yariv and R. C. C. Leite, “Dielectric-
Waveguide Mode of Light Propagation in p-n Junc-
tions,” Appl. Phys. Letters, vol. 2, p. 55 (1963).

16. W. L. Bond et al, “Observation of the Dielec-
tric Waveguide Mode of Light Propagation in p-n
Junctions,” ibid, p. 57.

17. A. Ashkin and M. Gershenzon, ‘“Reflection
and Guiding of Light on p-n Junctions,” J. Appl.
Phys., vol. 34, p. 2116 (1963).

18. R. C. C. Leite and A. Yariv, “On Mode
Confinement in p-n Junctions,” Proc. IEEE, vol.
51, p. 1035 (1963).

19. W. W. Anderson, “Mode Confinement and
Gain in Junction Lasers,” IEEE Journal of Quantum
Electronics, vol. QE-1, no. 6, p. 228 (1965).

20. D. F. Nelson and F. K. Reinhart, “Light
Modulation by the Electro-Optic Effect in Reverse-
Biased GaP p-n Junctions,” Appl. Phys. Letters, vol.
5,n0. 7, p. 148 (1964).

21. J. M. Manley and H. E. Rowe, “Some Gen-
eral Properties of Nonlinear Elements—Part I
General Energy Relations,” Proc. IRE, vol. 44, p.
9041 (1956).

22. C. C. Wang and G. W. Racette, ‘“Measure-
ment of Parametric Gain Accompanying Optical
Difference Frequency Generation,” Appl. Phys.
Letters, vol. 6, no. 8, p. 169 (1965).

23. J. A. Giordmaine and R. C. Miller, “Tunable
Coherent Parametric Oscillation in LiNbO, at
Optical Frequencies,” Phys. Rev. Letters, vol. 14,
no. 24, p. 973 (1965).

24. D. B. Anderson, “Application of Semicon-
ductor Technology to Coherent Optical Transducers
and Spatial Filters,” Optical and Electro-Optical
Information Processing, J. Tippett et al, eds., MIT
Press, Cambridge, Mass., 1965, pp. 221-234.

TIME-SHARING IN THE IBM SYSTEM/360:
MODEL 67

Charles T. Gibson
International Business Machines Corporation
Cambridge, Massachusetts

INTRODUCTION

The basic architecture of the IBM System /360
makes it well suited to processing in a multipro-
gramming and multiprocessing environment. The
Model 67 extends this basic architecture to provide
the additional capabilities of an advanced time-
sharing system.

The Model 67 incorporates .multiprogramming,
multiprocessing, and multiaccess capabilities. Mul-
tiaccess allows several users at remote consoles to
communicate directly with the system and to present
a number of applications ranging from conversa-
tional compiling to desk calculator functions. Mul-
tiprogramming is defined as the ability to have
several active programs reside in core simultan-
eously. Assoon as one job is finished, or is held up
by an I/O request, or has depleted its time allow-
ance, the next task can begin immediately.

The dynamic relocation feature built into the
hardware facilitates multiprogramming; peripheral
operations will now be just like any other tasks in
the memory. Even without the multiaccess capa-
bility, multiprogramming provides much more
efficient utilization of the computer’s resources than
in a stacked job operation. For the first time, a
central processing unit is a resource that can be
allocated. With multiaccessing, where some of the
jobs in core belong to remote terminals, the multi-
programming capability is further enhanced as this

61

enables the rapid switching between jobs, or “time-
slicing.”

The Model 67 enables each processor of a multi-
processor system to operate as a single processor
with its own 1/O subsystem, or, jointly with other
processors in a symmetric multiprocessing config-
uration.

To achieve time-sharing and multiprogramming,
certain modifications to the product line were made.
It is the object of this paper to discuss a typical
configuration of equipment and how it will be used.
Certain areas where the programming systems relate
to the hardware will also be discussed.

CONFIGURATION

Bus Structure

A sample configuration is shown in Fig. 1. The
most significant part of the equipment is the shared
memories. Each memory module has four “tails,”
or buses, with one tail connected to each CPU and
one to each channel controller. A system having
two processors and two channel controllers has four
buses. Each memory module of 262,144 bytes of
750 nanosecond storage is independent and three
memory accesses can occur simultaneously. Con-
flicts that occur among the several buses connected
to each storage unit are resolved at the storage unit.
This conflict resolution adds 150 nanoseconds to

62 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

2067 2067
CENTRAL CENTRAL
PROCESSING PROCESSING
1052 UNIT UNIT 1052
KEYBOARD KEYBOARD
2365 2365 2365
PROCESSOR PROCESSOR PROCESSOR
STORAGE STORAGE STORAGE
262, 144 BYTES 262, 144 BYTES 262, 144 BYTES
i] .
—1 [
2846 2846
CHANNEL CONTROLLER CHANNEL CONTROLLER
2167 2870
2860-3 2860-3
e SPEED, SELECTOR CONFIGURATION SELECTOR u'{:f{'l,ffggk
UL PLEX CHANNEL CONSOLE CHANNEL AL
Mfa]3] 3211 1 2] [2[3]¢]
|- T
I : 1l
2840 2814 —
l:sm.m cournov.l swm:uJ — B‘}'@,‘[olsnugve:;%nmoﬂ
2301
DRUM
STORAGE]
— —
2841

STORAGE CONTROL

2260
DISPLAY
STATION

2973-2
238 DISK SWITCH

—1 T 11 T
2803 2803 2803 26803
TAPE CONTROL TAPE CONTROL TAPE CONTROL TAPE ‘CONTROL

|

2816-1
4116 SWITCHING UNIT

] B
PR

[

2821-3
CONTROL UNIT

282|1-8
CONTROL UNIT

1403-HI
2540 PRINTER 2540
CARD RD/PCH CARD RD/PCH
Le 1-¢ 1¢- =
2701 2702 2702 270]
DATA ADAPTER TRANSMISSION TRANSMISSION DATA ADAPTER
URIT CONTROL CONTROL UNIT

o] (o) (Bm] [roorew |

2741
COMMUNIGATIONS
TERMINAL

Figure 1. Configuration of typical Model 67.

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 63

storage access time. Channel controller requests for
storage cycles are given priority over processor re-
quests. No longer is the CPU tied to a particular
memory in the classical configuration. Now, both
channels may be loading two memories simultan-
eously at the maximum data rates, and there will be
no interference with the CPU’s if they operate from
the third module. Likewise, a CPU and channel
could associate with one module in the classical
simplex method. Besides permitting higher data
rates to and from core, and with less interference,
the Module 67 frees the processors from the usual
role of working on a single job until it is done. One
CPU can work on a job in one core until it requires
a routine from the disk, for example. While the
data transfer is being made, that CPU could process
another job in another module.

Common Routines

With shared storage, both CPU’s could access the
same compiler and monitor and could utilize the
same job queues. In order for more than one CPU
to use the same copy of a routine, the routine must
be in reenterable coding. That is, there are no ad-
dress modification or common storage locations
that would be affected by a second program which
happened to start the routine before the first ended
it. In fact, one job, partly through a routine, might
be interrupted to return after other jobs in the same

CPU had passed through. Reentrancy, therefore,

is a requirement of multiprogramming as well as
multiprocessing.

A parallel reenterable routine is one which can be
executed simultaneously by more than one task. In
Time-Sharing System /360 there is only one copy of
the supervisor in core regardless of the number of
CPU’s attached. All of the supervisor is in reenter-
able coding; some of it parallel reenterable.

In many cases, however, it is impossible or un-
desirable to have more than one task at a time in a
routine; for example, one that sets or detects bits in
a common table. These routines are consequently
written in a serially reenterable fashion.

To aid in this, a new instruction, Test and Set, is
implemented. Its operation uses the left-most bit of
the specified byte to set the condition code. Simul-
taneously, the byte is set to all ones before another
access to the same storage is permitted. Test and Set
allows a second processor to check whether the first
has started a serially reenterable routine. In this
way, the first processor job can finish with the rou-
tine before allowing its further use. Also, Test and

Set is a means of breaking ties between two CPU’s
which become available for a new task at the same
moment.

Signaling

For communications through common storage ele-
ments, a processor must be alerted when a message
has been prepared for it by another processor. The
extended direct-control feature and external inter-
rupt lines of the Model 67 perform this function.

Associated with the direct-control instructions is
an interface at which eight signals are made avail-
able. A signal from one processor is connected to
one of the external interruption lines of another
processor. By means of the Read Direct or Write
Direct instructions, the program in one processor
causes an external interruption in another processor.

If a CPU recognizes a hardware error as indicated
by a machine check interrupt, it alerts another CPU
by the direct-control feature and causes a malfunc-
tion alert interrupt. The troubled CPU then goes
into the wait state while the second begins the re-
covery procedure.

Channel Controller

It is difficult to break away from traditional
thinking of a memory-CPU channel system config-
uration. With multiple tails on the memory and
independent channels, the CPU’s really behave as
pumps, with one or more processing units working
on many jobs located in multiple memories. The
2846 Channel Controller is essentially the same bus
control unit as in the CPU. It enables the 2860
Selector and 2870 High Speed Multiplexor Channels
to communicate directly with the memories without
interfering with the CPU’s bus control units. Chan-
nels are addressed by, and can return their interrup-
tions to, either CPU, providing a flexible and gen-
eral organization. 1/O terminations, therefore, are
not unique to a CPU, but may cause an interruption
in whatever CPU, by masking, is conditioned to
accept them.

The 2870 High Speed Multiplexor has the ability
to handle up to eight control units and 192 devices
on the basic interface, which can operate in the mul-
tiplexor or burst modes. Up to four medium speed
interfaces, which can address up to 16 devices, are
available on the 2870. These selector subchannels
only operate in the burst mode.

The basic interface can handle an aggregate rate
of 110k bytes per second with no selector subchan-

64 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Table 1. 2870 Data Rates in kbps*
Basic Selector Subchannel
Interface Ist 2d 3d 4th
110
88 180
66 180 180
44 180 180 180
30 180 180 180 100

*kbps = Thousand bytes per second.

nels attached. Lower data rates can be sustained
with the subchannels as shown in Table 1.

Dual Data Paths

Dual data paths have been provided to enable the
memories to reach any I/O device by at least two
paths. Partly for reasons of reliability, the dual
paths also provide flexibility in pathfinding in case
one control unit is busy. All of the I/O control
units have two tails, one to each 1/O control ele-
ment, which are under program control. This al-
lows each channel controller to reach each 1/0
device, and via any control unit in the case of pooled
devices. The 2973-2 Disk Switch, for example, al-
lows any two 2311 Disk Storage Units to operate
simultaneously through the two 2841 Storage Con-
trol Units. Because of the twin tails on the 2841s,
each Channel Controller can have as many as two
2311 disks operating through it simultaneously.

Similarly, any four of the sixteen 90K.C 2400 tape
units may be operating with any combination of
channels. The 2973 switch and two-tailed control
units are unique to time-sharing configurations.

Pathfinding

With more than one possible logical route from
memory to a device, a pathfinding routine is neces-
sary. The pathfinding routine will locate the first
available logical route in which the channel and
control unit are neither busy nor unavailable. In
Fig. 1, for example, there are eight possible paths
for data to get to memory from a tape unit.

The routine is serially reenterable. The supervisor
enters the pathfinder by giving it a symbolic device
address. From a Symbolic Address table, the low
order bits of the actual I/Q address, called the de-
vice address, are immediately available.

The Symbolic Address table points to a Device
Group table where all possible device paths for a
group consisting of similar devices in a common
pool are given,

The pathfinding routine, knowing from the device
path which channel and control unit are needed,

‘checks the corresponding Channel and Control Unit

tables for their availability.

In the System/360, a selector channel is busy if
any device is operational on it. On the multiplexor
channel, however, the data rates of each operational
subchannel must be examined so that the total mul-
tiplexing data capability will not be exceeded by the
addition of another device. Consequently, the mul-
tiplexor channel is not busy until the total “‘weights™
of all devices attached exceeds 110ke. The
“weights” of devices connected to the basic inter-
face are their data rates and come from the Device
Group table; the weights for any 90kc magnetic
tapes on the selector subchannels are 15kc; for
180kc tapes the weights are 22ke.

If the channel or the control unit is busy, the path
is abandoned. If all the possible paths are busy, the
pathfinding routine returns with the appropriate
“busy” or “not available” bit set. A reverse path-
finding mechanism also exists to clear the busy bits
for the device, control unit and channel when an
operation is completed. The tables are created at
system generation time and can be modified by the
partitioning routines.

Error Recovery Procedures

When a machine error is determined by CPU
hardware, a machine check interrupt occurs in the
CPU and this same signal is broadcast to all other
CPU’s in the system, which receive such indications
as malfunction (external) interrupts.

The original CPU will be put in wait state with in-
terrupts masked, thus preventing it from disrupting
the total system. One of the other CPU’s in the
system accepts the associated malfunction alert; the
others going into the wait state. It is the function of
the active CPU via the “recovery nucleus” to iden-
tify the failing unit in order to remove it from the
active system. Each CPU has a recovery nucleus in
a different memory module.

When a less disastrous fault occurs in the system,
such as failure to read a record correctly from a
storage device, the time-sharing monitor will invoke
a standard retry routine. If this retry routine fails to
read the record correctly, it will report this informa-
tion to the time-sharing supervisor. The supervisor
will log this information and will then call for a sys-
tem error analysis program, which will decide which
units are to be eliminated from the resource table
in the supervisor.

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 65

The decision as to which unit or units to drop
from the resource table is made by examining the
recorded error environment information, then de-
termining the partitioning which would have the
least impact on system performance. For example,
when a fault occurs in a unit which has two data
paths, the system error analysis program will ana-
lyze the fault to determine if one of the data paths
or the unit itself should be eliminated from the re-
source table. The program will not eliminate an
operational unit from a resource table if there is at
least one data path to that unit.

Messages will be sent to the operator when a data
path is eliminated from the resource table, but no
maintenance action will be taken until either all data
paths to the unit are out or until the customer en-
gineer and operator decide that maintenance is re-
quired. At this time, the customer engineer will call
for the diagnostic monitor and begin the diagnostic
procedures. If a CPU or memory element fails, a
warning message is broadcast to all active terminal
users who might be affected.

Remote Access

The Time-Sharing System will support the IBM
1052, 2741 and 2260 Display as remote terminal
devices. The terminals may be connected locally as
operator consoles, or remotely as user terminals.
The 2702 Transmission Control and 2848 Display
Control accept data, serially by bit, and the transfer
to memory is made one byte at a time. The 2701
Data Adapter Unit is the general interface enabling
remote on-line attachment of IBM Model 20s,
Model 30s, other computers, data sources, and plot-
ters. The interface can be a serial-by-bit communi-
cations adapter or the parallel data adapter. The
latter is an interface which can accept data up to
1,200,000 bytes per second and up to 48 bits at a
time.

DYNAMIC RELOCATION

Multiprogramming

While the typical scientific computing installation
may have many large production programs in its
work load, it will have many more programs which
are small compared to the hardware resources. The
maximal claims made by such programs do not in-
clude all of the I/O units or all of the core storage.
Moreover, these claims are indeed maximal in that
they include space in the storage for instructions,

intermediate results, and initial and final values
which are highly dependent on the precise data set
used in a particular execution of the program. The
claims include channels and I/O units, the use of
which is also highly dependent on the data set.
Some recent measurements indicate that for many
programs a storage area two or three times as large
as necessary is claimed.

Multiprogramming is a processing mode in which
a control program attempts to honor the hardware
claims of several distinct programs simultaneously.
The object is to keep the CPU busy executing prob-
lem program instructions rather than allow it to re-
main idle during 1/O operations which may arise in
a problem program or in a control program which is
removing one problem program from the machine
and bringing in another. The goal is to increase
throughput.

A further refinement in multiprogramming comes

_from the observation that many machine runs con-

sist of a compilation and an execution or an as-
sembly and an execution. In a multiprogramming
system, one would therefore discover many copies
of the compiler, assembler, 1/O routines, and pro-
grams from a math library existing in core storage
at the same time. Consequently, the notion of
common, reenterable programs arise.

A crude picture of time-sharing shows a control
program which, during these moments of idleness
with respect to one console, outputs all of the op-
tional storage, inputs a previously outputted store
image for a second console, and then permits the
execution of a transaction for that console. There
is a cost in this operating mode in terms of time
used for the exchange of core images in order to
respond to console requests. In fact, the larger and
more complex the program, the more useful on-line
debugging can be, and the greater the cost of ex-
changing problem programs. This cost is an espe-
cially painful burden since the debugging process
is often such that no more information is required
for a console transaction for a large program than
would be required for debugging a small program.

What is needed in view of the application is a
system technique which encourages the transaction
aspect of time-sharing for debugging purposes, a
technique for elimination of redundant copies of
popular functions, and a facility for dynamic core
allocation. An ability on the part of the control
program to put a problem program in ready status
without honoring the complete storage claims and
without the necessity of altering the addressing
structure of the program is of great value. Properly

66 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

arranged, it permits effective multiprogramming
and multiprocessing. _

This ability can be obtained through the notion of
a logical store and the high-speed monitoring of
addresses used by problem programs, and the. con-
version of these logical addresses into other physical
addresses. Virtual storage is defined as the entire
storage which can be reached by the logical address-
ing scheme. Thus, with 24 bits, there are 2%, or
16,777,216 byte locations in virtual memory. With
the 32-bit relocation option, 2% or 4,294,967,296
bytes are addressable in virtual memory. However,
in either case, the physical storage in the sample
configuration would be only 786,432 bytes. The
dynamic relocation scheme described here is the
method by which the virtual storage is mapped into
the physical storage.

Dynamic relocation is achieved by treating the
addresses supplied by the program as logical ad-
dresses, or relative addresses. A logical address is
identical to a physical address when the relocation
feature is not operative. When relocation is em-
ployed, the logical address is that address known by
the program. The physical address is the address
(after any relocation) presented to memory for a
reference. The logical addresses are translated by
means of a relocation table to physical addresses
when storage is addressed.

The relocation function provides the ability to
interrupt a program and record it on external media
such as a file or drum and at a later time to return
the program to main storage at different storage
locations without disturbing the execution of the
program except for the time element involved. The
locations at which a program and its data are stored
are assigned by the relocation table and occur in
4096-byte blocks. These blocks need not be con-
tiguous even though they may be addressed by a
contiguous set of logical addresses. The physical
fragmentation of programs is thus not apparent to
the programmer.

Relocation Operation

Space-sharing is facilitated by breaking user pro-
grams into segments and sectioning these segments
into pages. By breaking programs up into pages,
physical memory may be allocated in page incre-
ments. Only those active pages are brought into
physical core storage.

The Model 67 CPU may operate in either the re-
location or nonrelocation mode. With the 32-bit
option, the CPU may also run in either the 24- or

32-bit mode. The modes are specified by bits 4 and
5 of the extended mode Program Status Word
(XPSW) as follows:

Bit 4 Bit 5 Modes
0 0 No relocation, 24-bit address
0 1 Relocation, 24-bit address
1 1 Relocation, 32-bit address
1 0 Data exception

The function of the Program Status Word is ex-
plained below (under ‘“Other Features”). All
normal instructions are relocated when bit 5 is set.
Addresses of control words and data in I/O opera-
tions, however, are not relocated. Addresses gen-
erated by the CPU or channels for interruption
purposes, such as timer, CSW, and PSW addresses,
are not relocated. The standard, 24-bit relocation
scheme is described in this section.

All logical addresses are formed using full 32-bit
arithmetic. The sum of the 32-bit base register
specified in an instruction as R1, the 32-bit index
register specified as X1, and the 12-bit byte address,
or displacement, less the 8 high order bits forms
the 24-bit logical address. The logical address is
broken into three sections of 4, 8, and 12 bits speci-
fying the ‘“‘segment” number, the ‘“‘page” number,
and the byte, or “line”” number, respectively. Figure
2 shows this breakdown.

0 3|4 12 23
SEGMENT PAGE BYTE
NUMBER NUMBER NUMBER

Figure 2. Logical address.

There are 4096 bytes per page, where a page of
programs resides in a block of core storage. With 8
bits for the page number, there are 256 possible
pages per segment. Each segment (1,048,576-byte
address space) can contain a program. It can con-
tain a data set. It can also be a million-byte area of
working space. If the segment number is ignored,
each such program, data set, or space begins at
address zero. In the 24-bit scheme, several routines
will be packed in the same segment.

The relocation scheme operates essentially as fol-
lows. Each task in the system requires for its opera-
tion one segment table and a page table for each
segment used. These tables are developed by the
monitor as the task is created and as new segment
and page requirements are made by the task. As re-

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 67

quired pages are fetched into physical core, the
monitor enters in the page table the physical loca-
tion of the logical page. During program execution,
the hardware automatically does a table look-up on
each address as it is referenced by the user and the
physical address is chosen for each logical address
reference. If the user references a location in a page
- that is not in physical core, an automatic interrupt
occurs to the monitor, which then sets up a page
turning routine to fetch the missing page. The
monitor then gives the CPU to the next user in the
queue. The waiting program is held in the wait
status until its required page has been fetched and
assigned somewhere in physical core. It is then re-
turned to the queue of active users and takes its
turn vying for CPU time. All of this is transparent
to the user. To him, the memory is as many as 16
segments of as many as 1,048,576 bytes each.
Let us look at the relocation scheme in more de-
tail. There is a 32-bit Table Register, program
addressable, shown in Fig. 3. Bits 0-7 of the Table

0 718 25(26 3l

SEGMENT SEGMENT TABLE 00000
TABLE ORIGIN (BYTES)

LENGTH

NO. ENTRIES

=(L+1)x

16

Figure 3. Table Register.

Register specify the length of the segment table, and
bits 8-31 specify its origin. The segment table must
be located at an address which is a multiple of 64,
and thus bits 26 to 31 of the Table Register must be
zero. If any bits 26 to 31 are one, a specification
exception occurs (program interruption with bit
21 set). Bits 0-3 of the logical address are added
to bits 26-29 of the Table Register. The resulting
24-bit address (TRjs3;) points to a unique 4-byte
entry in the segment table.

The number of entries in the segment table is 16
times the number formed by the sum of the Table
Register, bits 0-7, and one. Thus, the minimum
length, with bits 0-7 zero, is 16 entries. These bits
0-7, with 4 appended low order virtual bits of one,
are compared with the segment number. If the seg-
ment number is greater, a relocation exception is
recognized (program interruption with bit 16 set).
Obviously, in the 24-bit relocation scheme, the
logical address cannot specify more than 16 entries,

SEGMENT
NUMBER
s o 3 LOGICAL ADDRESS
T
1
| :
[}
t |
Io 7 ! !
! I] '
] !]
: +
0 78 25 | masLe ResisTER
T
SEGMENT | SEGMENT TABLE ORI 000 00
TABLE
*LENGTH"
0 29| | puysicaL ADDRESS oOF

00 SEGMENT TABLE ENTRY

Figure 4. Segment table entry.

the minimum size; a greater-than compare can never
result; and this check is academic.

Each 4-byte entry in the segment table is similar
to the Table Register. Bits 8-31 specify the origin
of a page table, while bits 0-7 give its length. Each
page table is originated at an address which is a
multiple of 16 so that bit 31 of the segment table
entry must be zero. If bit 31 is one, a relocation
exception is recognized.

The page number, bits 4-11 of the logical address,
is added to the page table origin, bits 23-30 of the
segment table entry, to give the unique page table
entry. Each entry consists of two bytes. As with
the Table Register, a relocation exception occurs if
the page number is greater than the page table
length. The minimum page table has bits 0-7 zero,
corresponding to one entry, which translates ad-
dresses in the range 0-4095. The maximum page
table has 256 entries, one for each page in the seg-
ment.

PAGE NUMBER
4 [LocicAL ADDRESS
i l |
[} t
- :
[} ¥ [}
[o 7| 22 30 | seMent TBLE EnTRY
PAGE 1 ol
TABLE PAGE TABLE ORIGIN
LENGTH
0 22| | pHvsicaL aboRess oF

0 PAGE TABLE ENTRY

Figure 5. Page table entry.

68 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

0 niz| isf PAGE TABLE ENTRY
| PAGE ADDRESS i AVAIL-
. | ABILITY
1

|
i |
|
. 12 23| LOGICAL ADDRESS
| ' BYTE|ADDRESS
! I |
| | |
| | [
! |

y A 4

0 iz 23| PHYSICAL ADDRESS

Figure 6. Physical address.

The 2-byte page table entry consists of 12 bits
specifying the high order 12 bits of the physical
address. The low order 12 bits of the address are
the same as the corresponding part of the logical
address. There is no relocation within the page,
consequently. Bit 12 of the page table entry is the
availability bit. When zero, the respective program
page is in core and the entry may be used for reloca-
tion. When a one, the address may not be relocated
because the desired page is not in core, and must be
brought in under monitor control. Therefore, a
protection exception (bit 19) is recognized and the
instruction is syppressed.

If the instruction uses variable length fields, a
look-ahead operation is performed first to see if the
storage page boundary will be crossed and, if so,
whether the new page is available. If the next page
is used but unavailable, execution is suppressed.

Bits 13 to 15 of the page table entry are undefined
and must be zero. When a relocation exception
occurs, no storage reference is made. The logical
address that would have been translated is recorded

LOGICAL ADDRESS [0 3f4 iz 23|
]

v

=1
T7USED

LOGICAL | PHYSICAL | |4-vaLiDITY
PAGE BLOCK F
NUMBER | NUMBER
- ASSOCIATIVE
0 iz 23| | |26 29] mEmoORY

|—$ T

PHYSICAL ADDRESS [0 njre 23

Figure 7. Associative compare.

in the Relocation Exception Address Register. It
may be inspected there by the new Store Multiple
Control instruction.

Implementation

Although the dynamic relocation is performed
entirely by hardware, one can see that two memory
accesses would be required for each relocation.
Each operand would require three memory accesses
instead of one thereby greatly degrading per-
formance. Therefore, the implementation of the
Model 67 dynamic relocation has been modified.

A high-speed associative memory in local store is
located in each IBM 2067 CPU. It contains 8
registers, each 30 bits wide. When an address is to
be translated, the logical segment and page ad-
dresses are compared to bits 0-11 of each entry in
the associative memory, in parallel. If there is an
equality, bits 12-23 become directly the page ad-
dress; the physical address and the relocation is
completed without memory access. The use of the
associative memory adds only 150 nanoseconds to
the cycle time for each relocation.

Bit 25 in each association memory entry tells
whether that entry refers to a page that is in core.
If a zero, the corresponding page is not in core,
the entry is invalid, and it is not used in comparison.

All bits in position 25 are reset upon a change in
the Table Register since all the entries would be
invalid. Bit 24 is set to one as each entry is used
in relocation. When that bit vector is all ones, they
are reset and the cycle repeats itself. When no com-
parison is found, the relocation hardware must look
through the segment and page tables to find the
physical page address. The new page table entry is
then put into the associative memory. The new
entry will leave bit 24 set to one. It will displace
in the associative memory the next entry from the
last one used whose ‘‘use” bit (24) is zero. By this
algorithm, the least used entries are replaced and the
associative memory holds the most frequently ref-
erenced page numbers to avoid the table look-up
procedure.

A ninth associative register is a relocated instruc-
tion counter which is updated along with the in-
struction address bits of the Program Status Word.
Therefore, there is both a logical and a relocated
instruction counter. Upon a successful branch or
crossing of a page boundary, the new logical address
is relocated and the relocated instruction counter is
updated by hardware.

Figure 8 is an overall picture of how the reloca-
tion works.

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 69

i ———————— »>O¢-—-—-— -
1)
| PO -—-—=—o I
' ' o 34 i 24{ LOGICAL ADDRESS
i I Segment Page Byte
| | TABLE REGISTER 1
I 0 718 segment Table 2526 3 |
Length Origin L e e ——
i_ | 000000 >é

« SEGMENT TABLE

Length Page Table Origin

I

I

|

|
W _ASSOCIATIVE_MEMORY

26
0 njie 23)alu zaJ

I
Logical Page Physical

PAGE TABLES

Block 15

0 mms - je¢———— i

n Biock |

RELOCATED Instruction Cougnfer

|
|
|
|
L A 4 4

® LosICAL COMPARE
@ LOGICAL ADDITION 0

o3| PHYSICAL ADDRESS

(53

Block Byte

A = AVAILABLE BIT
-U= USED BIT

DYNAMIC ADDRESS TRANSLATION

Figure 8. Relocation address translation.

An instruction Load Real Address has been
added which inserts into a general register the
dynamically translated address of the operand. This
enables the supervisor to check the translation
tables and find what a physical address is for a cor-
responding logical address.

We now have a scheme by which we can use all
16,777,216 bytes of virtual storage. Our logical
addresses can cover the entire range from 0 to 22— 1
without regard to the amount of physical storage.
The mapping from logical store to physical ad-
dresses is done by hardware, with supervisor calls

70 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

needed only to call into core storage a page of
coding from external storage.

Virtual Memory

Although a programmer can address byte 22— 1,
he will not be able to make use of the entire physical
storage. There is a permanently resident supervisor
which is not in a user’s virtual memory and is not
relocated. [t runs in the System/360 supervisor
state and so it can execute input/output and other
privileged instructions. A user can only get to those
pages in physical core that are in his virtual mem-
ory. "All tables are managed by the supervisor. A
user’s Table Register points to a Segment Table
whose entries in turn point to the Page Tables which
define valid program pages and thus define accept-
able addresses. Another user’s virtual memory is
made available simply by changing the Table
Register. Virtual memory can therefore be defined
as a set of relocation tables. Paging, I/O and in-
terrupt handling are done by the supervisor which is
protected from user programs because it is not in
any user’s virtual memory. Between the problem
programs and the resident supervisor, there is an
intermediate level of privileged service programs, as

Fig. 9 shows. The figure also shows that the service
programs are protected from errant problem pro-
grams by being in the supervisor state. _

This is dynamic, hardware-aided address reloca-
tion. It has created a new concept of virtual storage,
in which the user need not worry about the limits of
physical storage nor about where his program really
is in core. With relocation, users share common
reentrant coded subroutines to avoid redundant
copies. Complete storage claims of programs are
honored only when needed, greatly reducing core
requirements. True multiprogramming with several
programs sharing core is possible for the first time,
and this is the heart of the Model 67.

OTHER FEATURES

Extended Program Status Word

The Program Status Word (PSW) is a 64-bit pro-
gram-addressable word that contains all the detailed
CPU and program status information necessary to
describe the present condition of the machine. It
includes bits to mask off 1/O and program inter-
rupts, bits that can be sensed following a logical
operation (cc), the program protection key and the

HOW CALLS
WORK IN A .
BEGIN 1/0 RE - USER'S
OPERATION ENTER- VIRTUAL RE- PROTECTION
EXAMPLE ABLE? STATE MEMORY? LOCATED ? PAGED ? BY
PROBLEM PROGRAMS
/ FORTRAN, ASSEMBLER ? PROBLEM YES YES YES NONE
sve
SUPERVISOR
CALL
INSTRUCTION
| SERVICE PROGRAMS
ACCESS METHODS,
/ COMMAND LANGUAGE YES SUPERVISOR YES YES YES PROTECT KEY
10CAL T
MACRO
Nl , NOT IN VIRTUAL
RESIDENT SUPERVISOR NO SUPERVISOR NO NO NO MEMORY
$10
PRIVILEGED
INSTRUCTION
HARDWARE MICRO-
PROGRAM - - - - READ - ONLY

Figure 9. Protection levels.

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 71

STANDARD PROGRAM STATUS WORD (PSW)

SYSTEM PRO- PRO-
SYSTEM TECT INTERRUPTION ILC GRAM
MASK KEY AMWP CODE CC MASK INSTRUCTION ADDRESS
b 71 ul s 31| 35| 39 63
o salslefrl u| 15| o] 23 31 39| 63
0000 PRO- AMWP ILC PRO- 32 BIT INSTRUCTION ADDRESS
24/32 TECT CC GRAM 00000000 ADDRESS
RELY KEY MASK EXTENSION
RATION EXTERNAL INTERRUPT MASK
1/0 MASK, ALL CHANNELS
RELOCATION

EXTENDED PROGRAM STATUS WORD (XPSW)

Figure 10. Program status word format.

instruction counter. Upon receiving an enabled
interrupt, a new PSW is automatically loaded while
the old PSW is stored in a unique core location,
thereby immediately entering an error routine with
a different machine status. The five types of inter-
rupts are 1/0, machine-check, program exception,
supervisor call, and external signal and each type
causes a unique PSW to be loaded.

The Model 67 makes use of an Extended Pro-
gram Status Word (XPSW) which has some ex-
panded functions, while other functions are left
in various control registers. The normal and ex-
tended PSW are shown in Fig. 10.

The native mode of the Model 67 is that of any
other System/360. After power-on, there is no re-
location and a standard PSW format is used so that
it is compatible with System/360. However, the
Load Multiple Control instruction can load bit 8 of
control register 6 to make use of the Extended Pro-
gram Status Word. When using the XPSW, the
interruption codes are placed in core locations 14
through 23.

Fetch Protection

To achieve effective System/360 time-sharing, it
is necessary to provide for confidential files, which
are available only to privileged users. Accounting
data, password information and personnel files are
examples of restricted files. There is also the need
for protection of one task against an errant prob-
lem program. Consequently, a read protect feature
has been incorporated in the Model 67 by adding a
fifth, fetch-protect bit to the 4-bit storage key.

There is a 4-bit key associated with every 2048-
byte block in System/360. A problem program is
allowed to write into that block only if the key
matches the current key in the Program Status
Word. An exception occurs if there is no match.
The block is likewise protected against I/O data
by the requirement of a similar matching key in the
Channel Address Word. On the Model 67, if the
fifth bit is a one, the corresponding 2048-byte block
is fetch (read) protected as well whenever it is read
protected. Fetch protect without write protect is
neither possible nor desirable. The privileged in-
structions Set and Insert Storage Key now transmit
seven instead of four bits to and from the storage
key.

The fetch and write protection features are used
to keep a problem program from service routines in
its virtual memory, as Fig. 9 shows.

There are two other means of protection in the
Model 67. One is the limitation of a problem pro-
gram to addresses within its virtual memory, as de-
fined by its set of page tables. Attempts to transfer,
read, or write outside of one’s virtual memory re-
sults in a relocation exception.

There is also the supervisor state in System /360
which restricts nonprivileged programs to certain
instructions. This effectively protects the super-
visor against unintentional or intentional memory
accesses that are out-of-bounds.

Rolling out of a user’s page at the end of his time
slice is necessary if the memory spéce is needed for
another task. However, if nothing has been written
into that page, there is no need to swap it out be-

72 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

2048-BYTE BLOCK

CHANGE
B (172 PAGE)

REFERENCE BIT
XXXX FIR]|C

AN
[N—— 11 L)

FETCH,

STORAGE
PROTECT
KEY

Figure 11. Fetch protect.

cause a valid, up-to-date copy of the page already
exists on the paging device. Two extra bits on the
Model 67 have been added to the standard System/
360 protect key, one to indicate if the corresponding
2048-byte block has been referenced, and one to
indicate if the block has been written in. These are
tested by the Insert Storage Key instruction to de-
termine if paging is necessary.

Figure 11 shows the fetch protect and reference
bits.

Control Registers

A set of up to 16 control registers is provided on
the Model 67 to implement various features and to
allow for the increased number of memories and
channels that a CPU may address. Each may be as
long as 32 bits. Some registers may be used to
sense positions of switches and are not actually
“hard” registers. The control registers may be
loaded (where possible) and stored using the two
new instructions, Load Multiple Control and Store
Multiple Control. A list of the control registers
is given in Table 2.

When using the Extended PSW, the I/O channel
masks are used from control registers 4 and 5, and
are controlled by XPSW bit 6.

Extended 1/ O Addressing

Each CPU can now address and mask up to 28
channels. The channel address is designated by bits
19-23, instead of 21-23, of the logical address in
addition to the remainder of the address in bits 24
to 31. The condition code 3:is set in the PSW if a
nonoperational channel is addressed. Figure 12
shows the bit structure of an 1/O device address as
used by the Start I/O instruction.

19 20 23 27 3l

CHAN- CHAN- CONTROL DEVICE
NEL NEL UNIT

CON-

TROLL-

ER

Figure 12. 1/0 address format

Timer

Each CPU contains an interval timer, which per-
mits necessary time-accounting functions to be per-
formed in addition to the above mentioned program
monitoring. The timer has a counting interval of 13
microseconds, corresponding to a frequency of 19.2
kc. Counting takes place in bit 31 of the timer loca-
tion, storage location 80. Actual implementation
includes the use of an internal register to reduce
storage interference to the level of the standard 60-
cycle timer. Location address 80 is monitored to
assure an updated timer content whenever this loca-
tion is referenced.

Prefix

Each CPU uses absolute core locations 0-127 for
PSW’s, channel address words, channel status
words, timer residence and initial program loading.
Were these locations common, they would be shared
by several CPU’s and interference between CPU’s
would result. Therefore, to provide each CPU with
separate assigned storage, a quantity called a prefix
is used to relocate dynamically the first 4096 storage
locations. In multiprocessor operation each CPU is
normally assigned a unique prefix and hence the
sharing of these preferred locations is avoided. Al-
ternate prefixes are provided for each CPU in case
of malfunction. The identity of the CPU executing
a program may be determined at any moment by
the setting apart of one of the addresses in the range
0-4095 as the address of an identifying location, and
then loading an identification in each corresponding
physical location.

The prefix area also contains the recovery nu-
cleus, machine check information and temporary
register storage when a base register is unavailable.

Each CPU has a prefix area in a different memory
module for reasons of reliability. "

Partitioning

A Time-Sharing System which is designed for
availability may have enough redundant major

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 - 73

Table 2. Control Register Functions

Function

Relocation Exception Address Register.
Extended PSW 1/0O channel mask for channels 0-31; un-

Machine check mask extensions for channel controller 0-3.

Status of core storage partitioning switches. One byte/

memory module; one bit/tail. A one indicates that con-

Core storage address assignment. 4 bits/each memory

module, containing bits 11 to 14 of the assigned core

Control
Register
No. Bits »
0 0-31 Dynamic relocation Table Register.
2 0-23
4,5 0-63
assigned mask bits.
6 0-3
8 Extended control mode.
24-31 External interrupt masking.
8,9 0-63
nection is established.
10 0-31
storage address.
11 0-15

Status of channel controller partitioning switches. 4 bits/

each controller; 1-bit/tail. A one indicates that a con-
nection is established.
16-31 Channel address assignment (as viewed from the CPU
' executing the STMC instruction), 4 bits/CPU. A field
containing 1111 indicates that for the particular CPU all
channel controllers are assigned their prewired addresses
(i.e., channels 0-7, 8-15, 16-23, 24-31). A field contain-
ing 3 zeros and a one indicates that, for the particular
CPU, only the channel controller corresponding to the
bit position which is a one is addressable, and its chan-
nel addresses are 0-6. No other bit combinations are
possible in these 4-bit fields.
12,13 States of control-unit partitioning switches, with at least 2
bit positions assigned to each control unit. A one indi-

14 24-27

cates that connection is established.
States of direct control partitioning switches, one bit for

each CPU. A one indicates that the direct control inter-
face of the corresponding CPU is connected to the other

CPU’s.

28-31 States of prefix deactivation switches, one bit for each
CPU. Zero indicates that the prefix of the correspond-
ing CPU is deactivated.

systems components so that it is possible to divide
or partition the system. Partitioning can be
achieved without any additional hardware by rely-
ing on the programs in each system to refer only to
those components which have been assigned to their
use. However, often a more absolute means of par-
titioning may be required, such as-when undebugged
supervisors and real-time experiments might other-
wise penetrate subsystem boundaries. This is done
by physically partitioning the Model 67 by means of
switches at a separate unit, the 2167 Partitioning

Console, which allow any combination of memory
modules, CPU’s, channel controllers, 1/O control
units and I/O devices to be connected to the same
system. Figure 13 shows the partitioning switches
in the sample configuration.

The addresses of the memory units can be indi-
vidually set under switch control for partitioning.
In multiprocessing, the addressing for any particular
byte is the same for either CPU, and the modules
are addressed contiguously. In partitioning, the
addresses of each module may be set to a multiple of

74

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

2067 2067
: CENTRAL CENTRAL
PROCESSING PROCESSING
052 . UNIT UNIT 1052
KEYBOARD: KEYBOARD
2365 2365 2365
PROCESSOR PROCESSOR PROCESSOR
STORAGE STORAGE STORAGE
262,144 BYTES 262,144 BYTES 262,144 BYTES
35 [XXX PO DD
p 4 0 a el 8
[:]]
2846
CHANNEL CONTROLLER 2067 CHANNEL CONTROLLER
2870 2860-3 2860-3 2870
HIGH SPEED SELECTOR CONFIGURATION SELECTOR | HIGH SPEED
CONSOLE
1 S
L
pread]]
| L — 2814 2640 u
i SW. | DISPLAY CONTROL
Lo o
2314 2840 | 2041
DIRECT STORAGE CONT STORAGE CONTROL
ACCESS 973-2 ‘ OPLAY
STORAGE 228 DISK SWITCH STATION
@ @ 230 230
W 3
2603 2603
E CONTROL TAPE CONTROL
2816-1
4116 SW. UNIT :
: 1
: 1403-NI 1403-N1 1403-Ni 1403-NI
2540 PRINTER PRINTER PRINTER PRINTER 2540
CARD RD/PCH CARD RD/PCH
) [B
70l 2700
DATA ADAPTER DATA ADAPTER
UNIT UNIT
-]
SYSTEM/360 REMOTE 18M 1800
MODEL 20 DATA SOURCE SYSTEM PLOTTERS

Figure 13. Configuration of typical Model 67 with partitioning switches.

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 75

the array size. Thus, with three memory modules,
one partitioned CPU might have memory addresses
0-256k while the other CPU has 0-512k. This is
referred to as floating memory addressing. An in-
valid address indication results if an unavailable
memory unit is addressed.

In a partitioned mode, the floating channel ad-
dress switch determines which CPU’s may initiate
commands on which controller. Bits in control
register 11 reflect the setting of the channel address
switch. In a multiprocessing mode using the Ex-
tended PSW, any CPU can address any device on
any channel and the floating channel address switch
is ignored. If a path is disabled, a command to that
channel causes condition code 3 in the PSW to be
set, indicating the channel is not operational. The
CPU-memory, channel-memory, and CPU-channel
control lines can thus be severed for partitioning.

The 4 x 16 IBM 2816 Tape Switch normally con-
nects any of the pool of 16 drives to any tape control
unit at program speeds. To partition, a plugboard
enables.each tape unit to be excluded from or con-
nected to each control unit. Tape drives can thus be
connected to separate channels, or shared on a
channel. The IBM 2973-2 Disk Switch works sim-
ilarly. The status of the partitioning switches may
be sensed by means of the Store Multiple Control
instruction. It is, therefore, possible for the two
- CPU systems to operate as two single processors,
as independent processors sharing common storage
and I/O units, or as a single multiprocessor system.

Reconfiguration can be achieved dynamically by
means of privileged operator commands. The DE-
TACH command will logically separate the speci-
fied unit from the system without disruption of
services. If an I/O device is specified, activity on the
unit is allowed simply to cease to achieve logical
partitioning. If a memory unit is specified, the user
data is allowed to be paged out without reassigning
the core blocks. When the user areas are free, any
remaining supervisor pages are moved to a remain-
ing storage element. Any prefix area in the memory
is reassigned to another memory element. When
activity has “dried up” on the requested unit, a
request is made for the operator to set the switch to
partition off the unit. When the action is completed,

the program will test the switch setting by checking:

the bits in Control Register 8, 9, 12 or 13, The
supervisor then sets the appropriate bits in the path-
finding device table to indicate unavailability and
confirms physical partitioning by a message to the
operator. The DETACH command therefore al-

lows off-line operation by requiring TSS to grace-
fully: withdraw from the affected units. An AT-
TACH command reverses the above procedure.

When the system is to be reconfigured, a PAR-
TITION command can be given to logically parti-
tion the system according to one of several cata-
loged configurations. Again, after activity has
“dried up,” the supervisor first asks the operator to
set the partitioning switches, then tests the switches
and acknowledges physical partitioning.

TIMING

Memory Cycle Time

The basic storage cycle of the Model 67 is 750
nanoseconds. One double word of 8 bytes can be
fetched every 750 nsec, interleaved with another 8-
byte word 375 nsec after the first provided the
double words have addresses which are alternately
even and odd multiples of 8. .

If repeated accesses were made to a byte within a
group whose first byte has an address which is an
odd multiple of 8 bytes, and then to one whose
group has an address as an even 8 bytes, the mem-
ory cycle time would be 375 nsec. Furthermore,

- System /360 instructions are 2-, 4-, and 6-bytes long,

with most being 4 bytes. Therefore, many pairs of
consecutive instructions will occur in one 8-byte
double word so that the second instruction will be
available “free”” with no access time. Therefore,
memory accesses for operands will occur at an aver-
age rate of between 375 and 750 nsec.

The delay caused by priority determination of the
four tails at each memory is 150 nanoseconds. This
delay only occurs if consecutive accesses are not
made from the same CPU or channel controller.
There is no delay caused by priority determination
where consecutive accesses are made from the same
CPU or channel, such as with continuous instruc-
tion fetches by one CPU.

If the relocation action is active, relocation re-
quires another 150 nsec if the address is found in the
associative memory; 2100 if not. Since the basic
CPU cycle rate is 200 nsec, the CPU clock is ac-
tually stopped for 150 nsec (“stuttered”) to allow
for the associative compare. The clock is blocked
for 2.1 microseconds if no valid associative compare
occurs while the page table entry is fetched and
loaded into one of the associative registers. Since
the instruction counter is kept in relocated form, a
relocation delay occurs only during a branch in-

76 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

struction or when the instruction counter crosses a
page boundary, Input/output accesses are also not
relocated, so that the 150 nsec relocation delay ap-
plies only to memory accesses for data.

The maximum memory cycle time would there-
fore be 750 + 150 + 150 or 1050 nsec, assuming
no interleaving, assuming a different CPU requests
service each time, and assuming the only accesses
are for operands. The effective cycle rate is con-
siderably less than 1050 nsec and depends on the
instructions used, the location of data and other
program dependent factors.

Figure 14 shows the floor plan for the two-CPU
four-memory configuration. Because some memory

MEMORY
MODULE

CPU

A B

Figure 14. Floor plan of typical Model 67.

modules are physically more distant from some
CPU’s, the signal travel time is increased, and
memory access time is degraded. For the above
system, the following table shows the additional
memory times in nanoseconds due to table length.

To Memory Module:
From: 1 2 3 4

CPU, 0 0 50 100
CPUp 100 50 0 0

Because this is a symmetric multiprocessing system
with one copy of the supervisor in core, no attempt
is made to optimize its location in a “midway”
memory module. Therefore, the cable delay for
memory fetches may be considered roughly an
.average of these figures, or 38 nsec for a 4-memory
system.

To achieve a single average overall memory access
figure would be difficult because of the assumptions
about the program that must be made. For pur-
poses of discussion, including average cable length
delay, including priority and relocation delay for
operands and taking advantage of some interleaving
of instructions a conservative figure of 800 nsec will
be used.

Data Rates

The data paths between CPU’s, memories, Chan-
nel Controllers and channels are eight bytes wide.
Between the channel and 1/0 control units, the path
is one byte wide. Parity is on the byte level. The
data rates and bandwidths for the devices and chan-
nels are shown in Table 3 for the configured system.
The CPU in a typical program makes 540 storage
references in a 1000-microsecond interval. This
means a data rate of 540,000 double words per
second, or 4,320,000 bytes per second.

A conservative memory access time for a three-
memory module Model 67 system, as shown in Fig.
1, is 800 nsec. Since the four storage bus systems
are independent, all three storage units may be
executing storage cycles concurrently, thus resulting
in an effective storage data rate of three double
words per 800 nsec., or 30,000,000 bytes/second.
The table assumes concurrent use of all three stor-
age units and shows that the memories are being
accessed at an average rate of 369, of their capacity.
To be sure, if both CPU’s and all I1/O activity refer
to the same unit, the bandwidth is exceeded and
CPU operation is delayed. However, in no case will
the 1/O activity be restricted by the channel or
memory bandwidths.

A simulation run was made with only one proc-
essor executing the instruction mix and without any
cable or priority determination delay. This run was
used as the base run. Next, a model assuming four
memory modules and .two CPU’s was simulated.
All memories in the model have an equal chance of
being selected regardless of the device making the
request or the number of other devices contending
for the storage unit at that time. A random amount
of interleaving is assumed, and an instruction mix
which uses 429 of the available memory cycles was
assumed. Cable and priority delays are included.
The following table giving the simulation results of
the model relative to the simplex Model 67 as a
function of the 1/O data rate shows the expected
system degradation. Degradation is defined as the
expected increase in job run time.

I/0 Rate System
Degradation
| 0 megabytes 8.8%
1.6 9.7
3.2 10.8

The data rate of 1.6 megabytes, is about average
for the configured system with the drum and disks

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 77

Table 3.. Date Rates and Bandwidths

Max. Data Rate

: (system as configured Max. Data Rate
Data Source in Fig. 1) (bandwidths)

2301 Drum (4 x 10®bytes cap.) 1200 kbps* 1300 kbps*
2314 Disk storage (207 x 10° '

bytes cap.) 312 1300
2311 Disk storage (7.3 x 10*

bytes cap.) ' 156 1300
Total, 2860 Selector channels 1678 3900
Four 2402 tapes (90kc) 360 640
Basic 2870 MPX activity 10 110
Total, 2870 HS MPX channel 370
Total, 2846 channel controller 2048 —7F
CPU A, average access 4320
CPU B, average access 4320
Average CPU activity 8640
Total memory access 10,688 30,000

*Thousand bytes per second.

12846 data rate capacity exceeds requirements for this configur-

ation. Exact rate to be determined.

in operation. Nevertheless, the additional degrada-
tion of 0.99 in job run time is small. The overall
9.7% includes the priority and relocation delays and
is the penalty to be paid for the advantages in the
flexibility of shared memories and throughput in-
crease with multiprogramming.

GROWTH

The configuration shown, although typical, is by
no means the only one possible. System /360 Model
67 was planned with growth and flexibility in mind:
As experience is gained with the time-sharing sys-
tem, better systems balances may be obtained as a
function of the type of applications.« For example,
an increase in memory size may very well be the pri-
mary requirement to achieve higher throughput in
a certain installation.

The minimum time-sharing system consists of one
processor, one memory and three channels. The in-
dependent memory modules of 256k bytes each may -
be increased to eight. Each module may have up to
eight tails for eight independent bus systems. The
total on-line directly addressable 750-nanosecond
storage thus becomes 2,097,152 bytes. The system
may grow from one to four CPU’s.

The system may expand to include four IBM 2846

Channel Controllers. Each controller may have up
to six selector channels, four high-speed multiplex
subchannels, and 192 low-speed subchannels, as
long as the maximum allowable data rates listed
above (under “Other Features’’) are not exceeded.

Each selector channel may have up to eight con-
trol units and 256 1/O devices. Thus, the 1/O ca-
pacity of the Model 67 is almost unlimited. Pre-
sumably with the maximum number of devices,
control units, channels, and channel controllers, the
total number of I/O devices that may be connected
to a multiprocessor Model 67 is 7168.

The Model 67, when operating in the nonrelocate
mode, is completely compatible with the rest of Sys-
tem/360. In fact, a simplex Model 67 operates
identically as a Model 65 when running in the non-
relocate mode. Therefore, Operating System /360
can run on a complete or partitioned Model 67. The
Time-Sharing System /360 will have a monitor, con-
versation FORTRAN and assembler, PL/1,
COBOL and sort-merge. The TSS monitor will
support as terminals the standard IBM 1050 and
2741 “Selectric”” typewriters, as well as 2250 and
2260 display units. Eventually remote digital and
analog devices will be tied in and will operate with
the Model 67 in a time-shared, data-logging mode.
It is expected that conservatively at least 100 termi-

78 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

nals can be active at one time in a two processor
system such as described here.

In one installation, it is planned that about 50%,
of the work will be conventional batch processing
and will be run as “background” to the time-shar-
ing. The on-line card readers, card punches, print-
ers and plotters will be used with all the background
jobs, and those terminal-oriented jobs which require
them. The Time-Sharing System will support a
SPOOL operation.

It is expected that both CPUs will be used for the
time-sharing mode of operation during prime hours.
At other times, the second CPU will be partitioned
and used exclusively for batched jobs under Oper-
ating System /360 or else with real-time experiments.

With dynamic relocation, independent memories,
a new bus system and dual data paths, the Model
67 provides a revolutionary method of operation.
The hardware, when first delivered in April 1966,
will be IBM’s most advanced commercially avail-
able data processing system. The Time-Sharing
System /360 programming system, when available
later, will allow the Model 67 to fully realize its
potential.

ACKNOWLEDGMENTS

The author wishes to recognize the original log-
ical and systems design work on the Model 67 and
on Time-Sharing System/360 done by Dr. A.
Blaauw, Dr. E. Bertram, Mr. H. A. Kinslow and
many others of IBM’s System Development Di-
vision.

BIBLIOGRAPHY

Comfort, W. T., “A Computing System Design
for User Service,” Proc. FJCC 1965, Spartan Books,
Washington, D.C., 1965.

“IBM System /360 Principles of Operation,” IBM
Document, Form A22-6821-1.

“IBM System/360 Model 67 Time-Sharing Sys-
tem Technical Summary,” IBM Document, Aug.
1965.

“Time-Sharing System /360 Development Work-
book,” IBM Internal Document.

“System /360 Model 67 Time-Sharing System Pre-
liminary Technical Summary,” IBM Document,
Form C20-1647-0.

A DATA MANAGEMENT SYSTEM FOR TIME-SHARED
FILE PROCESSING USING A CROSS-INDEX FILE
AND SELF-DEFINING ENTRIES

E. W. Franks
System Development Corporation
Santa Monica, California

INTRODUCTION

The Time-Shared Data Management System
(TDMS), under development at System Develop-
ment Corporation (SDC) for use in its Research and
Technology Laboratory, is intended to provide the
users of the SDC Time-Sharing System with a
powerful set of tools for the manipulation of large
volumes of formatted, that is, not free text data.
The functions to be provided include the description
of data, the storage of files or data bases into the
computer environment, the retrieval of the data
either in response to human query or under program
control for processing by other programs of the
system, and the maintenance of data already loaded.

TDMS is for the use of subscribers to the Re-
search and Technology Laboratory’s facility; many
of these users are not professional programmers.
This imposes the requirement that the system be
 controlled by a nonprogrammer-user-oriented lan-
guage. The data management function for which
TDMS is the instrument is by no means the sole
function of the computer system in the laboratory.
Furthermore, it operates on a time-shared basis with
the other functions performed by the computer and
- may therefore be used simultaneously by several
users. This aspect of the environment imposes a
requirement to provide responses acceptable to on-
fine users of the time-sharing system in circum-

79

stances where there may be many users and where
the volume of data from which responses are re-
quired is very large. The organization of the data is
designed to optimize on-line retrieval of this kind
where the criteria- for selecting data from the file
are not known in advance. The two aspects of
TDMS emphasized in this paper are the user-orien-
tation features and the file organization scheme.

STRUCTURE OF TDMS

TDMS is designed to operate under the control of
a Time-Sharing executive program using IBM S/360
computers. One feature of the system is that it will
be easy to adapt the system to various models of the
IBM S/360 computers. Although the system will at
first be designed for model 65 IBM S/360 com-
puters, as advances are made to the computers, the
system can be adapted to increasingly sophisticated
versions, such as the proposed model 67. Com-
munication with the programs is by means of the
TDMS language, which is a reactive, or dialogue,
type of language, whose rules of use are always
available to the user on request to the program.

The control program of TDMS can be contacted
through the time-sharing system by any user from
either remote or local stations. The control pro-
gram of TDMS will enter a dialogue with the user.
After the control program has communicated the

80 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

user’s requirements to the time-sharing executive
and to the computer console operators, as appro-
priate, the user will be granted access to various
functions of the system without having to be aware
of the program structure of TDMS. From the user’s
point of view, he is dealing only with the program
he called through the time-sharing system, although,
in fact, in the course of performing data manage-
ment operations, he may have used and communi-
cated with as many as half a dozen different pro-
grams.

In addition to the control program, TDMS in-
cludes a data description translator, a data load
program, an on-line query and update program, a
report-generator program, and a maintenance pro-
gram which, in addition to performing batched up-
dating, permits the user to create a subset of a file,
to merge files and to restructure files including the
computation or generation of new data elements.
Space and time limitations preclude presentation of
a more detailed description of the programs in-
corporated in TDMS. However, to describe the
user orientation features and file organization
‘scheme, it is necessary to first say something about
the underlying philosophy of data upon which
TDMS is based.

CONCEPT OF THE ENTRY

A TDMS data file or data base, as it is often
called, is a collection of information sets or entries.
Each entry contains information about one object.
The object itself need not be named, but may be
understood from the description provided by the
name in the data base itself. Thus, a data base de-
scribing the personnel in a corporation might have
one entry for each employee, and yet, within that
entry, it would never be necessary to state ex-
plicitly “this is the description of a person.” The
kinds of data collections encountered in Command
Control problems and other management problems
are seldom as straightforward as the example just
given. Each entry in a data base describes an ob-
ject, but the objects are not all of the same kind.
For example, a resources file may contain entries
dealing with factories and other entries dealing with
training schools. It is essential, in such circum-
stances, for each entry to identify the object which
it describes. What TDMS allows, in fact, is the
accomodation of more than one logically consistent
file in the same file structure. This makes the cross-
coordination of different kinds of data much easier

and more efficient in an on-line environment than
would be the case if separate files had to be run
together and matched.

The logical structure of the TDMS entry is a col-
lection of predefined elements or descriptors. Each
entry will have a subset of these elements appro-
priate to the object being described. For example,
the entry describing factories would have an ele-
ment “GROSS PRODUCT IN THOUSANDS OF
DOLLARS,” but would not have the element
“AVERAGE SIZE OF GRADUATING CLASS
OVER LAST 10 YEARS.” The reverse would be
true of an entry describing a training school.

The TDMS data base is not organized into sort
hierarchies such as COUNTY within STATE within
COUNTRY. Provision is made, however, to ac-
comodate naturally occurring hierarchies in the
data. For example, in a data base defining tactical
military organization, an entry might exist for a
group. The Group Headquarters, names of staff
officers, mission, and so forth, would pertain to the
whole group. Each company of the group, how-
ever, might be in a different location, and each
might have a specific subordinate mission. One
possibility of handling this situation would be to
establish separate entries for each company, each
containing an element labeled “GROUP TO
WHICH ASSIGNED.” But, because TDMS is a
general system, there would be no special magic in
that particular label which would enable the system
to know that these entries were really part of the
group description. To ensure retrieval of the whole
set, the retriever would have to know of the ex-
istence of this element and to use it as part of the
retrieval key expression. To solve this problem,
TDMS permits the automatic association of data
connected by a natural hierarchical relationship
through the device called a repeating group. A re-
peating group is, in effect, a set of subentries which
are part of an entry. Thus, the elements in an entry
which belong to one of its subordinate repeating
groups may have several values within that entry,
but only one value within each of the subentries.
The flexibility of this device is such that, on the one
hand, it will accomodate a simple multivalue ele-
ment like “PROFESSIONAL ASSOCIATION
MEMBERSHIP”’; on the other hand, an order-of-
battle file with only three basic entries, ARMY,
NAVY and AIR FORCE, would contain all the
subordinate organizations appearing as repeating
groups within the three basic entries. As this state-
ment implies, repeating groups may themselves
contain repeating groups to any level of nesting.

DATA MANAGEMENT SYSTEM FOR TIME-SHARED FILE PROCESSING 81

DESCRIPTION OF DATA

The best way to understand how data is de-
scribed is to take a hypothetical example and show
the process being performed. Let us imagine that
our hypothetical user is a mail-order merchant who
handles a variety of merchandise. Let us suppose
he has access to TDMS and the SDC Time-Sharing
System through a teletype machine in his office. Let
us further suppose that he is so committed to using
a system that he does all of his paper work on that
one teletype.

His first task is to describe his data to the system.
He contacts the TDMS control through the Time-
Sharing Executive. He may request a list of the
functions available, but, in this case, we assume that
he knows that the function he wants is called DE-
FINE. The DEFINE program then asks him to
name his data base. He responds by typing in

COMPANY OPERATIONS

From now on he is able to refer to the descriptions

he will supply and to the collected data itself by this
name.

The data our merchant is about to describe will
exist in two forms: outside the computer system, the
data will exist as data input; inside the system the
data will exist as the stored file. The following
conventions exist for input data. The data input to
TDMS always exists as card images on tape, or as
input entered by teletype, but the scheme is the same
in either case. Each data element is preceded by an
identifying number field, and the set of elements and
repeating groups constituting one set or entry is
terminated by a special symbol selected by the user.
The sequence of the elements is immaterial except
that the elements in a repeating group must all be
listed before the elements of the next repeating
group or nonrepeating element. Thus, after receiv-
ing the name of the data base, the DEFINE pro-
gram asks the user for the terminating symbol. In
this case, let us say that the user chooses the term
ALL. When the data is loaded, the system will
know that whenever the term ALL is encountered in
the input, and the term is not preceded by an
identifying number, the last of the data for a par-
ticular entry has been received.

The user now proceeds to name the various ele-
ments of data he will be dealing with. He may re-
quest the system to spell out the rules for the
description process, and, if he is uncertain of his
typing skill, he may request the ECHO function,
under which the program types back what he has

input, giving him a chance to make corrections to
what he has just typed before proceeding.

The elements of data are listed one at a time on
the teletype. First the identifying number which
will appear on the input is given. Then the name of
the data element is stated. Following the name is
the specification of the data type in one of the fol-
lowing three possible types:

NAME
INTEGER
DECIMAL

(alphanumeric character string)

The names of repeating groups, or subentries, are
given in the same way—first the identifying number,
then the name of the repeating group, then the term
REPEATING GROUP (abbreviated as RG). Data
elements within a repeating group are specified like
other data elements, except that, following the data
type specification, the name of the repeating group
to which the element belongs appears. Thus the
order in which elements are described does not
matter. Finally, as an option, input legality check
information may be inserted. This information may
be a list of acceptable values, one or more ranges
of values for numeric data, or a data format de-
scription. A list of some of the data input elements
entered by the hypothetical merchant is shown in
Example 1, below.

Example 1

1 ENTRY TYPE (NAME) VALUES
CUSTOMER PRODUCT

2 CUSTOMER NAME (NAME)

3 CUSTOMER CATEGORY (NAME)
VALUES ACCOUNT PROSPECT

4 ACCOUNT SYMBOL (NAME) FORMAT
1999

5 PRODUCT (NAME)

ACCOUNT HISTORY (RG).

61 DATE OF ORDER (NAME IN
ACCOUNT HISTORY) FORMAT
091/1991/199

62 AMOUNT OF ORDER (DECIMAL IN
ACCOUNT HISTORY)

63 BILL OF MATERIAL (RG IN
ACCOUNT HISTORY

631 MERCHANDISE (NAME IN BILL OF

_ MATERIAL)

632 QUANTITY (INTEGER IN BILL OF
MATERIAL)

633 UNIT PRICE (DECIMAL IN BILL OF
MATERIAL)

634 ACTION (NAME IN BILL OF

82 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

MATERIAL) VALUES SHIPPED
BACK/ORDER
635 SUBTOTAL (DECIMAL IN BILL OF
MATERIAL)
636 STOCK CODE (NAME IN BILL OF
MATERIAL) FORMAT LL999
7 ADDRESS (NAME)
8 CURRENT STATUS (NAME) VALUES
PAID OPEN
9 BALANCE (DECIMAL)
10 CODE (NAME) FORMAT LL999
11 WAREHOUSE (NAME)
12 UNITS ON HAND (INTEGER)
13 UNITS ON ORDER (RG)
131 NUMBER ORDERED (INTEGER IN
UNITS ON ORDER)
132 SOURCE (NAME IN UNITS ON
ORDER)
133 ORDER NUMBER (NAME IN UNITS
ON ORDER) FORMAT 009LLL
134 COST (DECIMAL IN UNITS ON
ORDER)

The list is, of course, by no means the complete
set of elements which would be required for the
hypothetical operation. It is sufficient, however, to
illustrate the features of the descriptive language.

The data base contains two types of entries—
customer entries and product entries—so that bill-
ing and mailing operations and inventory control
operations can be performed from the same file.
The first element described, ENTRY TYPE, speci-
fies which kind of data is included in a particular
entry. Only two values are possible for this item of
data, namely CUSTOMER and PRODUCT, and
these values are listed, following the word VALUES
for checking the legality of input. Input Element 2,
identified as input by a field containing the num-
ber ““2” preceding the data value, occurs only if the
entry is the customer-type entry. The third element,
also applicable only to the customer-type entry,
shows a distinction between actual customers (value
ACCOUNT) and hoped-for customers (value
PROSPECT). The PROSPECT entries would be
entered for mailings or in response to queries. Al-
though no such elements are shown in the example,
data about correspondence, brochure mailings, and
areas of interest would probably be included in such
entries.

Element 5, PRODUCT, is the first element de-
scribed which would be applicable to the inventory
type of entry. The next element in this category
does not occur until Element 10, the product code.

The legality check for this element is a format check.
The L’s stand for letters and the nines for numbers.
Thus value AA010 would be a legal product code
and value A33 would not. An additional example
of format control is shown in Element 61, where the
slashes in the data are enclosed in square brackets,
indicating that these exact characters must occur.
The example shows several repeating groups. The
first of these, ACCOUNT HISTORY, occurs in
customer-type entries. The user has chosen to
number the inputs for the repeating group 6 as 61,
62, etc. This is an example of a user-devised conven-
tion, and is not required by TDMS. The repeating
group, ACCOUNT HISTORY, itself contains a
repeating group, occurring for each order recorded;
this repeating group is BILL OF MATERIAL. The
third repeating group is Element 13, UNITS ON
ORDER, which relates to the inventory type of
entry.

The list given is merely the description of the data
given to TDMS. It is not the data itself. To clarify

‘the significance of the description, two examples of

input data are given below, one for a customer and
one for stock.

Example 2
Input Data for a Customer-Type Entry

1) CUSTOMER 2) JOHN Q JONES
3) ACCOUNT
4 J021 6)
61) 5/21/64 62) 20563 63)
631) TABLECLOTH 632) 17
633) 540 634)
SHIPPED
635) 9180 636) TC301 63)
631) PLACE SETTINGS 632) 3
633) 3781 634)
SHIPPED
635) 11343 636) SV002
7) 2000 LONDELIUS ST LOS
ANGELES CALIFORNIA
8) OPEN
9) 105.00

Example 3
Input Data for a Product-Type Entry

1) PRODUCT

2) TIKI FIGURES

100 TKO000 11)

‘ 205 13)

131) 50 132) PORYNESHA KK
YOKOHAMA

133) 127PKK 134)

ZELZAH 12)

410.00

DATA MANAGEMENT SYSTEM FOR TIME-SHARED FILE PROCESSING 83

When the user has finished entering his descrip-

tion, he may have it presented to him for checking.
He may add, delete, or change a description already
made at any time by calling the REDEFINE func-
tion. He needs to know very little about the opera-
tion of the program or about computers. Tech-
nically, he need only know that data may be numeric
or nonnumeric. The logic of the organization is the
logic of the data itself as it appears to him. Once
the data is described in these user-oriented terms, he
may load the data into the TDMS system at any
time by calling the LOAD program. The LOAD
program expects inputs which agree with the de-
scription given. Discrepancies are logged, and the
user may have them logged on-line for immediate
correction. Once the data is entered, it may be
called by name, and again the user does not need to
know how it is stored or accessed. He may perform
spot queries for fact retrieval. He may describe
formats of output and call a report generator to
make up bills or bookkeeping summaries. In the
example given, the inventory is presented as it
would appear if listed by product within a ware-
house. He may want to obtain summaries by
_product, regardless of warehouse location, or he
may want a summary of all products by warehouse.
He is not restricted by the organization implicit in
the way he has chosen to define his data. This free-
dom results from the way the data is actually or-
ganized in the computer.

TDMS DATA BASE STRUCTURE

The data structure created by TDMS when the
input data is loaded is designed to optimize retrieval
in an on-line environment if it is assumed that the
user has no prior knowledge about what data is
most likely to be retrieved or what criteria will be
used to select data for retrieval. It is also assumed
that retrieval will be requested from the file on the
basis of some Boolean expressions given in terms of
data elements and values. Such Boolean expressions
define a subset of the data base, namely, those en-
tries in the data base for which the Boolean expres-
sion is true. Frequently, however, instead of re-
quiring the entire contents of this data subset only
certain values from the qualifying will be needed.
Thus, the selection path is entered with a combina-
tion of element names and values associated with
them. This defines a list of entries which meet the
criteria. The retrieval path is then entered with a
list of entries and a list of element names for which
values are required from these entries. The data

base organization is designed to optimize both the
selection of qualifying entries and the retrieval of
the specified element values.

From the data user’s point of view, the data base
appears to be a collection of values to which he may
wish to refer. These values have two sets of associa-
tions. In the first place each value is part of the total
description of one of the objects in the data base.

~ In the second place each value is both a value for a

specified element and a member of the set of all
values for that element. The TDMS organization
of the data base reflects both types of value associa-
tion, the element set and the object set.

The actual values are stored according to the ele-
ment set relationship. That is, for each element
there is a block of storage for the unique values
occurring for that element. Each value is stored
only once, regardless of how many entries of the
input data may contain it. Associated with these
lists of unique values are two other groups of lists,
The first of these has the function of ordering the
raw value list algebraically, or in the case of sym-
bolic values, alphabetically. The items on the value
list are stored in a random arrangement; the value
list orders the values in the sequence in which they
appear in the input. The ordering list is generated
to speed up search by permitting the use of binary
search techniques. The second group of lists asso-
ciated with the blocks of values is the entry group.
For each entry there is a list of the elements which
were found in the entry and a reference to the place
in the value list for that element where ihe specific
value for that entry may be found. This part of the
organization is represented schematically in Fig. 1.

For the purposes of selection, the ordering lists,
in addition to pointing to values in the value list,
also point to occurrence lists. The occurrence lists
are lists of entries in which each value of each ele-
ment occurs. Thus, in order to make a selection on
the basis of a Boolean expression, the ordering list
is searched for values which meet the various cri-
teria. When a matching value is found, a list of
entries containing this value is obtained. The vari-
ous lists obtained for different parts of the Boolean
expression are merged, using AND or OR logic; the
result is a final list which represents a subset of the
data base that meets the criteria for selection. This
list of entries is then used in combination with the
names of the elements to be retrieved to obtain the
values of these elements from the appropriate value
lists.

The entire retrieval process becomes clearer if we
take an example. Let us imagine that our mail-

84 PROCEEDINGS — SPRING JOINT COMPUTER CONFERENCE, 1966

Entries Value Lists Ordering Lists

Entry 1 Element 1 Element 1

Entry 2

Element 2 Element 2

Element 1
[Element 2]

Element i

Ordering Value Value Ordering Value Ordering
List i List § List 2 List 2 . List1 List 1

-

Occurrence

List:
1 Lists

A]
-]

Entry 3 // ‘_____—-———<
Element N Element N
Entry N
f—
> \

Figure 1.

order merchant wishes to obtain a list of the cus-
tomers who currently owe him money—an accounts
receivable list. He might do this through the
TDMS QUERY program with the following re-
quest:

PRINT CUSTOMER NAME, BALANCE
WHERE CURRENT STATUS EQUALS OPEN

The subset of the data base to be selected is the set
of entries which have the value OPEN for the ele-
ment called CURRENT STATUS. Through the
Data Definition Table the program converts the
name CURRENT STATUS to the address of its
ordering list. This list is accessed, and is found to
have only two entries, one for the value PAID and
one for the value OPEN. The value OPEN points
to a list of the entries which have the value for
CURRENT STATUS. Then entry references are
converted to entry list addresses by means of a
directory table. The qualifying entries are accessed,
and, for each one, the pointers to the value lists for
the elements CUSTOMER NAME and BALANCE
are followed, and the values are recovered and
printed. ,

The query in the above example is a simple and
straightforward one, not involving AND and OR
logic, and not concerned with the complexities of
nested repeating groups. It does serve, however, to
~ introduce the entire data base structure as created
by TDMS when the data is loaded. Figure 2 shows
this structure schematically.

[]
[]
L]

Figure 2.

The route is from definition table to ordering list.
The ordering list permits an efficient examination
of the value list for qualifying values. For each
qualifying value there is an occurrence list. The
occurrence list points to the data base entry where
the value occurs. Each entry, in turn, points to the
value lists for all the elements present in it. The
occurrence list actually points indirectly to the entry
via a directory of entry addresses. In cases where a
value occurs only once for a given element, the or-
dering list bypasses the occurrence list and points
immediately to the directory to save storage space.

So far little has been said about the directory
table, which, in its simplest form, simply lists the
address of each entry in the sequence in which the
entries were loaded. In cases where repeating
groups are involved, however, the directory assumes
greater importance, since it is here that the hier-
archical restrictions imposed by repeating groups
are observed. This concept is best explained by
means of an example. Again using the merchandis-
ing data base, let us imagine that the user wishes to
obtain a list of customers who have ordered sardines
in quantities of 100 cans or more as part of an order
totaling $100 or more. In this case, “sardines” is a
potential value for the element MERCHANDISE
and “100 cans or more” represents a potential
value for the element QUANTITY. Both elements
occur in the repeating group BILL OF MATE-
RIAL. Both must occur in the same group. In
other words a value of 100 for QUANTITY is not
sufficient to qualify the entry unless it is directly as-

DATA MANAGEMENT SYSTEM FOR TIME-SHARED FILE PROCESSING 85

sociated with the value SARDINES for the element
MERCHANDISE. Furthermore, the co-occur-
rence of these two values does not qualify the entry
unless the total order of which the sardines are a
part equals or exceeds $100. It is necessary then to
find entries in which one of the values for
AMOUNT OF ORDER in the repeating group
ACCOUNT HISTORY is equal to or greater than
100 at the same time as the values for MERCHAN:-
DISE and QUANTITY in the BILL OF MATE-
RIAL for that particular order meet the criteria
respectively of “sardines” and “‘equal to or greater
than” 100.

This complex matching problem is solved by
carrying an entry for each repeating group, as well
as for each data base entry proper in the directory
table. In the case of directory entries for repeating
groups, instead of an entry address there is a
reference to the directory entry for the next higher
level in the hierarchy. In this way it is possible to
determine whether values for two elements of the
same repeating group (in the example SARDINES
and 100 or more cans) actually occur together. If
they do, the references from their respective occur-
rence tables will be the same. Then, by following
the pointer from this directory entry to the next

higher level, namely to the particular order in AC-

COUNT HISTORY to which it belongs, it is pos-
sible to see whether or not the total order was equal
to or greater than 100 dollars. The entry containing
this information will qualify if an entry number in
the directory for an occurrence of AMOUNT OF
ORDER greater than ‘or equal to 100 dollars is the
same as the next higher entry pointed to by the di-
rectory entry meeting the MERCHANDISE and
QUANTITY criteria.

The fact that the elements dealt with are parts of
repeating groups is determined by the selection pro-
gram from the definition table, as is the relative
level in the hierarchy of each repeating group. In
summary, the following is the path followed in re-
sponse to a request phrased

PRINT CUSTOMER NAME WHERE
AMOUNT OF ORDER GQ

100 AND MERCHANDISE EQUALS
SARDINES

AND QUANTITY GQ 100

The program determines that the selection criteria
elements are members of repeating groups. Starting
at the highest level where the element appears, it
accumulates a list of entry numbers in the directory
table, for which AMOUNT OF ORDER qualifies.

It then accumulates a list of entries for MER-
CHANDISE equal to SARDINES and a list of
entries for QUANTITY greater than or equal to
100. These last two lists are ANDed together to
eliminate entries with insufficient sardines and en-
tries with a sufficient quantity but the wrong mer-
chandise. The resulting intersection list is then con-
verted to the next higher level by substituting the
“up” pointers from the directory. The converted
list is then ANDed with the AMOUNT OF OR-
DER list to produce a list of fully qualifying entries.
This is not, however, the final step, since the
AMOUNT OF ORDER list contains entries for a
repeating group, ACCOUNT HISTORY. This
must be converted to actual entry references again
by substituting the “up” links, which now results
in a list of basic entries. These entries are retrieved,
and the output values, in this case, CUSTOMER
NAME, are retrieved and printed exactly as in the
first simple example.

BACKGROUND

The data handling techniques of TDMS have
evolved over several years of research and experi-
ment conducted at SDC, and the new system bene-
fits from experience gained elsewhere. In particular,
the idea of the cross-reference file was developed
and tested in an experimental data management
system called LUCID, and was refined and ex-
panded in TSS-LUCID (Time-Sharing LUCID)
which is currently in operation at SDC on the IBM
ANFS/Q32 computer under the Time-Sharing Sys-
tem. The cross-reference file is that part of the data
structure which consists of the value lists, the order-
ing lists and the entry directory table. The concept,
and indeed, the name of the repeating group is de-
rived from the ADAM system of the MITRE Cor-
poration. The inadequacy of LUCID in dealing
with the natural hierarchies occurring in data
prompted this borrowing. What is entirely new in
TDMS is the entry structure which has been termed
the “self-defining entry.” In LUCID the entry
association is determined solely from storage jux-
taposition. The values are tightly packed in the
entries. The values also occur in the value list, thus
duplicating storage requirements. Furthermore,
much additional storage space is required to ac-
commodate bits of storage assigned to data elements
not actually present. In the case of multiple value
elements with assigned bit locations, this arrange-
ment requires a great deal of space for empty data

86 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

base storage. Most important, however, in motivat-
ing the development of the new structure, are time
considerations. In a general system the locations of
packed data elements are known to the program
through parameter tables. An average of more than
100 machine instructions required to convert such
parameters to an actual retrieval, and, in iterative
operations, the process is likely to be very slow.
TDMS does away with packing parameters so that
everything is standardized, and in all probability,
the number of instructions required to move a data
element is always fewer than ten.

OTHER OPERATIONS

The heart of TDMS has been described in some
detail. The data description language has been pre-
sented to give some idea of the essential simplicity
of the approach to the system and, thus, of its suita-
bility for nonprogrammer users. The operation of
retrieval has been explained with some examples of
the on-line query language being used as illustra-
tions. The retrieval mechanism is the same through-
out the system, whether it is triggered by an on-line
query or by the execution of a report-generator
function. What has not been covered is the arith-
metic capability of the system. The extent of this
capability is illustrated by the following query which
shows that the system accepts arithmetic expressions
involving elements of data both as output specifica-
tions and as selection criteria.

PRINT SUM OF HOURS WORDS
* HOURLY WAGE

WHERE 1966 - BIRTHDATE

GR 21

To optimize operations such as the above without
sacrificing efficiency in cases of simple retrieval, the
value lists for numeric elements contain both the
symbolic form of the values originally input as well
as binary representations of them in either integer of
floating point format. In this way the original value
can be retrieved and printed without going through
a conversion routine, and arithmetic and magnitude
comparisons can be made in the binary mode.

CONCLUSIONS

TDMS is a generalized system which makes no
a priori assumptions about the way in which the
data will be used. In cases where this is known, the
data can be converted to the more conventional hi-
erarchical format by the maintenance program so
that the efficiency of specific usages can be maxi-
mized. Nevertheless, the basically general approach
is sound. The life expectancy of a special-purpose
data management program is short, and in terms of
cost effectiveness, likely to be very poor. Our ex-
perience has been that the collectors and users of
data approach théir problems initially with a some-
what vague and largely intuitive notion of the uses
to which a data base will be put. It is only as they
begin to use the data that its full utility becomes ap-
parent. TDMS is an attempt to give users a facility
which does not preclude the easy and inexpensive
evolution of data management procedures, and
which, at the same time, is remarkably efficient as
generalized programs go. It is designed for the non-
programmer user. We do not like to say it is for
the unsophisticated user, because the more sophis-
ticated he is in the terms of his own data and his
own problems, the better TDMS will serve him.

AN ANALYSIS OF TIME-SHARING COMPUTER SYSTEMS
USING MARKOV MODELS*

J. L. Smith
Systems Engineering Laboratory, The University of Michigan
Ann Arbor, Michigan

INTRODUCTION

The development of RQA' (Recursive Queue
Analyzer), a program for the numerical solution of
the stationary distribution of large scale Markov
processes, has made possible the accurate analysis
of large stochastic systems with modest computa-
tional costs. In particular, time-shared computer
systems with their random program and user char-
acteristics are examples of systems which can be
modeled as multidimensional Markov queueing
processes and analyzed by the method. Having
obtained a solution for the limiting state proba-
bilities of the model using RQA, one can readily
derive many time average performance and usage
characteristics. Thus a useful tool is available to
provide guides in the design and modification of
such systems and to forecast user response and sys-
tem capacity in terms of the number of users and
the operating statistics.

In current time-sharing systems the major prob-
lem is the sharing of high-speed memory. Economic
considerations have limited the availability of high-
speed memory from which user programs can be
executed. Hence large capacity slower access time
memories have been added to these systems in a
manner which allows most efficient use of the high-
speed memory.? In effect there may be many levels

*This work was supported by Rome Air Development Center
under Contract No. AF-30(602)-3553.

87

of memory with capacity and access time increasing
as we go down the levels, and there will be continual
transfer of information between these levels. Thus
queues arise not only for the use of the central
processor but also for the use of high-level memory
and data channels. In practice only a certain num-
ber of user programs can be allowed to occupy the
highest levels of memory without serious reduction
in some performance criteria. Useful models depict
the important queueing phenomena in this regard.

We now proceed to describe the process of model-
ing a time-sharing system and illustrate some results
for a particular system.

DESCRIPTION OF A TIME-
SHARING SYSTEM

Figure 1 shows a block diagram of the major
hardware components of a time-sharing system
which is representative of current designs using a
single central processor. There are three types of
memory, the high-speed core memory and memory
modules A and B which represent two lower levels
of memor{ with increasingly larger capacity and
slower access times. A number of remote com-
munication consoles and the necessary data chan-
nels for the interconnection of all components
complete the hardware.

The high-speed core memory would be operated
on a paging or segment and paging scheme®* to
allow maximum benefit from the use of common

88 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

CENTRAL
PROCESSING
UNIT
CORE
MEMORY]
]
I/0
CONTROL ’ CONSOLES
|
MEMORY
A
MEMORY
B
Figure 1. Block diagram of a time-sharing computer system.

routines and multiprogramming. Part of the core
would be devoted to an executive program and com-
munication tables and the remainder to use pro-
grams.

Memory module B represents a very large-
capacity file store (for example several disc memory
units) wherein each user of the system is assigned
a storage area solely for his own use. Files of source
decks and binary decks and data files are stored
here. When a user is operating at a console he will
activate some of these files and they will be trans-
ferred under executive program control to allotted
pages of the core memory for processing. They will
then be subject to swapping procedures between
core memory and module A as described below.

During each user’s session at a console he will
use his own files, many system programs, and in-
formation generated at the console. For efficient
memory sharing it is desirable that only the current
working section of each user’s program be resident

in core and that other sections be readily available
to enter core on a swapping or overlay operation.
Memory module A (typically consisting of high-
speed drum units) acts as a core store overflow
medium to contain such currently active files and
system programs. As many working sections as
possible should remain in core in order to take
advantage of averaging their demands on system
processors. When the system is serving a large
number of users one would expect frequent changes
in the working section currently executing in the
CPU, and continual traffic of pages or segments
between memory module A and the core store.

DEVELOPMENT OF A QUEUEING MODEL
OF THE TIME-SHARING SYSTEM

We will now derive a queueing model of the time-
sharing system described, indicating assumptions
involved and some further details of the system
operation necessary to complete the model.

The executive program will include a scheduling
algorithm for allotting user programs use of the
CPU and other system processors. When a user
program is assigned the use of the CPU we assume
that it executes for a random length of time which
is short compared with the average time an operator
takes to interact with the system. Scheduling

.algorithms may induce short execution phases by

penalizing long programs and assigning execution
time limits. Also the following three types of events
will cause random execution phase lengths.

1. Transfer of control in a users program
is required to a segment or page which
is not residing in core and thus pages
must be swapped or overlaid from
module A before execution can begin or
continue.

2. Console output has been generated and
the users program is ineligible to exe-
cute until some further information or
command is supplied by the user.

3. A user file or program previously un-
used at the current session has been
called by the user program and must be
loaded from module B before execution
can continue. Alternatively the user has
elected to store a file.

Thus the program of a user currently operating
at a console will always have associated with it one
or more of the following phases of system operation:

TIME-SHARING COMPUTER SYSTEMS USING MARKOV MODELS 89

1. CPU execution.

2. Segment or page swap (or overlay) from
module A.

3. Operator response.

4. File transfer to or from module B.

5. Queueing for phases 1, 2, or 3.

Programs may also queue for information transfer
in the console data channels, but the significant
operations are the thinking and response generation
by the user and these may occur simultaneously
when each user has his own console.

The queueing model shown in Fig. 2 is based on
these five phases of operation. The service opera-
tions corresponding to phases 1 through 4 are de-
picted by blocks containing a parameter (1/u,, 1/u,,
1/us, or 1/u,) which is the mean execution time in
that phase. Wherever queues may form this is indi-
cated by a circle containing the value of the maxi-
mum possible queue length. It is assumed that there
are N consoles in use at all times. The maximum
queue lengths for swapping and file transfer opera-
tions have been designated N, and N, respectively.
There is also a limit on n, the sum of the entries in
these two queues (# < N), and this limit is the maxi-
mum number of user programs which can concur-
rently have pages of core memory assigned to them.
If the system reaches the state in which both these
I/0 queues are full, then there is no user program
in core memory eligible to execute. Likewise it is
implied that a maximum of N, + N, programs in
the queue for CPU execution can have sections
resident in core memory.

Once a program completes a CPU execution
phase it is assumed that it always generates a

USER

|
[
N CHANNELS

|
! USER

q

C.RU. SWAPPING

_ OR OVERLAY
—®O—) [he|—e

FILE
TRANSFER

Figure 2. Queueing model of the time-sharing system.

request for one or more of the operation phases
2, 3, and 4; that is it does not simply remain in core
to await rescheduling in the CPU. This assumption
should be accurate when the system is operating
near its maximum capacity of users, for then com-
petition for the use of the high-speed core will result

- in reassignment of the core space used by programs

which complete or are interrupted by the scheduler.
Further, under these conditions a program waiting
for a user response would almost certainly lose its
core memory assignment; therefore it is assumed
that any completion of a CPU execution phase
which results in user activity also results in a swap-
ping operation to reassign the pages of core memory
involved. Thus we denote the probabilities with
which a user program generates requests on com-
pletion of phase 1 for phase 2, phases 2 and 3, and
and phase 4 by p, g and r respectively (p +q +r = 1).
These probabilities would be functions of the pro-
gram statistics and the system operating rules.

it is assumed that each CPU execution phase in-
volves some executive program execution for sched-
uling, monitoring interrupts, setting up 1/O opera-
tions, etc.

ANALYSIS AND INTERPRETATION OF
THE MATHEMATICAL MODEL

It is emphasized that the only property of a
mathematical model required for its solution by
RQA is that it be a Markov process consisting of
a closed class of states. There is an upper limit im-
posed on the number of states of the model in ac-
cordance with storage restrictions of current compu-
tational facilities. For details of the RQA program
and the theory underlying this approach to stochas-
tic system analysis, the paper given by V. L. Wallace
and R. 8. Rosenberg at another session of this con-
ference should be consulted.

The results which can be obtained from analysis
of the model described using RQA are of the follow-
ing nature. Assuming or given statistics on the
programs, user responses and data transfers, we can
examine relationships such as the response received
by each user versus the number of users, or the
change in this response which can be obtained by
controlling the usage statistics or increasing proces-
sor capacity. To analyze the model we must first
develop a state description (for example n; pro-
grams awaiting CPU execution, n, programs await-
ing operator response, n; programs awaiting page
transfers and n, programs awaiting file transfers,
so that the four variables n,, n,, n;, n, describe the

90 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

state of the system). RQA uses a transition intensity
matrix to solve for the stationary probabilities of
the system existing in any state. The allowable state
transitions of the model are determined by the sys-
tem constraints and the transition intensities are a
function of the model parameter values. There is
some restriction on the probability distributions of
the model describing the random execution times.
These must be of a particular class of distributions
satisfying the Markov property and so are based on
the exponential distribution (although some excep-
tions can be made®). A considerable range of dis-
tributions derived from the exponential distribution
exist with properties useful for modeling real sys-
tems. In general it is the mean values of these dis-
tributions (e g., 1/u;) which appear in the transition
intensity matrix, although for the derived distribu-
tions more than one parameter is necessary.’

The parameters of the model must be related in
a simple manner to measurable system characteris-
tics. A meaningful subdivision of user operation at
a console has been defined as a user interaction.’
This is the act of a user requesting and receiving
service from the system and involves the user think-
ing, generating an input, waiting for system re-
sponse and observing the output. It has been pro-
posed that the number of interactions during a
console session is a good measure of the amount of
useful work accomplished by a user. In the model a
new interaction begins each time a user program
enters phase 3 at some console. Thus the following
characteristics defined in terms of the model param-
eters are useful in describing the system:

Mean CPU execution time (plus
—_ 1 executive overhead) for a user pro-

mq gram per user interaction.

p Mean number of swapping or over-
—+ 1 lay operations per user program
q per user interaction.*

Mean number of user file trans-
— . fers per user program per user
q interaction.

Other characteristics can be equated to individual
model parameters.

Some measures of performance and system usage
readily calculated from the vector of stationary
probabilities are essential for interpretation of this
solution. Two parameters which measure different

*This characteristic should show considerable dependence on
the number of pages of core storage allotted to a user program.

aspects of the system response to a user are now
defined.

1. User busy fraction: The average frac-
tion of each interaction period that a
user is busy, that is, making a response.

The absolute value of this parameter depends on
the relative mean values of the user program pro-
cessor times and the individual user’s mental and
physical response times. However it probably repre-
sents the average user’s subjective evaluation of the

“system.

2. User program response: The average
fraction of the total time a user pro-
gram is eligible to use system processors
(CPU and data channels) that it does
actually use them.

This parameter is a measure of the overall queueing
delays experienced by user programs. If there were
only one system user, this parameter value would
be 1.

A measure of the total useful system output is
given by

3(a). Program throughput: The rate of
completion of user programs.

or
3(b). Interaction rate: The rate of comple-
tion of user interactions.

Finally, parameters indicating the fraction of time
various processors of the system are in use identify
capacity limitations.

A PARTICULAR APPLICATION

We now discuss the use of several variations of
the model proposed above (‘“Development of a
Queueing Model”) for the analysis of a small spe-
cial-purpose time-sharing system.

The system corresponds to Fig. 1, and the ac-
companying description with the following restric-
tions. Memory modules A and B are the one unit
(a disc file) using the same data channel. The core is
not operated on a paging scheme but it is segmented
on a coarse scale with hardware protection between
segments. Segments are assigned to individual user
programs and during execution these programs
generate, under executive control, I/O operations
with the disc file. These operations consist of the
transfer of fixed-size blocks of information and they
can be considered equivalent to page swaps in the
general model. There is only a small number of

TIME-SHARING COMPUTER SYSTEMS USING MARKOV MODELS 91

users so that in general each user program can be
assigned a segment of core memory which is not
reassigned during most of his interaction periods.
Most user programs will be executed repeatedly to
perform information storage and retrieval or com-
mand and control functions. These programs will
be loaded from the disc file as required.

The loading of a new user program in this system
corresponds to a file transfer in the general system.
Additional tables to be transferred in the loading
operation increase the time of use of the disc data
channel to an average of approximately two seconds
for the total loading operation. Fixed-size blocks
of information transferred in the swapping or over-
lay operations instigated by a user program have an
average transfer time of 150 milliseconds. As the
same data channel is in use for loading new pro-
grams and swapping operations the executive 1/O
scheduling algorithm must resolve conflicts by pri-
ority. Two possible alternatives for the algorithm,
priority to loading operations and preemptive pri-
ority to swapping operations, were incorporated in
different models and their effect is illustrated in the
results.

The phases of program execution previously de-
fined have the same meaning in these models once
we equate file transfers to the loading of a new user
program. In each model we assumed that the dis-
tributions for the execution times in phases 1, 2,
and 3 were negative exponential with appropriate
means. These assumptions give a degree of sim-
plicity to the models; however there is evidence”®
that this type of distribution is to be found in prac-
tice. Two distributions with identical means were
used in different models to describe the execution
time for phase 4 (program loading). These were the
exponential and the second order Erlang. The
Erlang distribution has smaller variance than the
exponential and also gives very small probability of
short loading times. These characteristics were con-
sidered representative in describing the program
loading time for this system.

We now discuss the results from three queueing
models which correspond to Fig. 2 with the follow-
ing qualifications:

Model 1: Exponential distribution for program
loading time, priority to program load-
ing operations for use of the disc file data
channel.

Model 2: Erlang distribution for program loading
time, priority to program loading opera-
tions for use of the disc file data channel.

Model 3: Erlang distribution for program loading
time, preemptive priority to swapping
operations for use of the disc file data
channel.

We will not discuss the state descriptions necessary
to incorporate these details in the mathematical
models.

RESULTS

Because of the essentially unchanging class of
user programs in this application it is convenient
to use the performance parameters given above
(*“Analysis and Interpretation of the Mathematical
Model’’) and defined on a per program basis. These
pdrameters are plotted in Figs. 3-7 as functions of
the number of users. All times have been normal-
ized to the mean transfer time involved in phase 2.
The system characteristics are defined below in
terms of the model parameters:

1 Mean CPU execution time (plus execu-
w,r ~ tive overhead) for a user program.
1 Mean block transfer time between disc
s file and core memory.
1 .
— Mean user response time.
M3
1 Mean user program loading time.
MHa
q Mean number of user interactions per
r user program.
b Mean number of block transfers per
r user program.
N Number of users.

Most of the results given are for model 3. Fig-
ure 7 and Table 1 include results from models 1
and 2 for comparison. All the general inferences
made from the model 3 results could also be made
from the results of the other models.

Figure 3 shows how performance is limited as
user programs generate increasing numbers of block
swapping operations. For these curves the mean

user program execution time is short (L = 1),
wr
and hence the CPU is idle most of the time. When

each user program makes only light use of the disc
channel <% = 5) , we see that the user busy fraction

stays high for at least three users. Nevertheless the
user programs experience significant queueing de-

92 PROCEEDINGS-—SPRING JOINT COMPUTER CONFERENCE, 1966

user program:response
— — —— operator busy fraction
— - —— probability that disc channel is in use

1.0
2
%) ~
1 -~ ’ 2/'
Oy 08— - / |
ZF_ = - = -~ - ./-/'
ws ~d a7
2§ 06+ N~ =g
2% %%
’ -3
Sw /// N
wwv .
06 "/ S N
“°8 v
o2f (2) p/r =10
(3) p/r=20
0 1 L |
5
8.5 ! (b)
Ws2 gl 7]
JaX 3
<og 3
=00
xoqe
O&I 2
Z
| l A i
] 2 3 4 5
N
Figure 3. System performance parameters from model 3 for
[] l/plr =1, l/uz =1, l/;.l,g = 20, 1/pug = 15,

q/r = 5.

lays (note user program response) since the increase
in the number of users causes the disc channel use
to rise noticeably.

When disc channel usage increases to p/r = 20,
the disc channel becomes saturated. With five users
it is in use 95% of the time, and the user busy
fraction drops from 0.73 for one user to 0.46 for
five users. The task program response curve indi-
cates the queueing delays in the disc channel.

The program throughout is plotted in Fig. 3b
showing that for p/r = 5 and five users, programs
are completed at 4.7 times the rate when there is
only one user. The reason is that the dominant
factor in program completion rate is the user re-
sponse time and users can respond in parallel. How-
ever for p/r = 20, the program throughput is only
3.7 for five users; here queueing in the disc channel
is causing significant delays and the user response
time is no longer the dominant factor in the comple-
tion rate.

For the program statistics assumed in Fig. 3 the
CPU was not in use more than 5% of the time. In
Fig. 5 a contrasting set of statistics has been chosen
in which the CPU capacity is now the performance
limit. User response time does not solely determine
the completion rate even when there is only a single
user of the system. Queueing delays for use of the
CPU become significant as soon as there is more
than one user. Performance is fairly insensitive to
the range of disc channel usage chosen. Owing to
the saturation of the CPU, the program throughput
increases very little for more than three users, and
for five users the user busy fraction has been halved.
Note that the program throughput is slightly higher
for p/r = 20 than for p/r = 5. The higher fre-
quency of swapping operations for user programs
increases the number of phases of CPU execution
per program but reduces the average duration of
each phase. The net result is to reduce queueing
delays and thus improve the program throughput.

user program response
————— user busy fraction
- === user busy fraction (dynamic curve)
— —— probability that disc channel is in-use

1.0
‘(u)
&
Quw
2
25
=
6a
ax
n
oaQ
= w05
wwv
52 1y
>a , .
na /;/; () p/r=5
@ g (2) p/r=10
’& (3)p/r=20
(4)p/r=40
o) ! ! |
5 T I |
a_5 (b)
W=z 4f A
- T —
325 -
=33 3 4
oak 2|
= E | { 1
H 2 3 4 5
N

Figure 4. System performance parameters for model 3 for
Vuir = 25, 1/pp = 1, V/py = 20, 1/ug = 15,
q/r = 5.

TIME-SHARING COMPUTER SYSTEMS USING MARKOV MODELS 93

In the discussion so far we have assumed that an
increase in the number of users does not affect the
number of swapping operations for each user pro-
gram. However if the amount of core storage allo-
cated to each user program is reduced as more users
are allowed to use the system, the mean number of
block transfers per user program p/r must increase.
We can therefore treat the curves plotted for fixed
values of p/r as static performance parameters, and

" to obtain the true performance parameters we must
use a dynamic operating characteristic which gives
p/r as a function of N. An example is shown in
Fig. 4 where a dynamic curve for user busy fraction
is plotted assuming the relationship between p/r
and N given by the following table:

N 1 3 4 5
plr 5 ‘10 20 40

The result is a much more rapid degrading in per-
formance with increasing N.

The aspects discussed have concerned the varia-
tion in system processor use and the resultant per-

user program response
————— operator busy fraction
——- — probability that cp.u.is in use
10

' ///;/ (a)

o8| //}'/3
7 (1) p/r =5

7
7

(2)p/r=10
(3)p/r=20

SYSTEM USAGE AND
RESPONSE PARAMETERS

02

(b)

[ISV I N)
I

NORMALIZED
PROGRAM
THROUGHPUT

2 3 4 5

N
Figure 5. System performance parameter from model
3 for Vjuyr =75, ljuy = 1, 1/u3 = 20,
1/ug = 15,q/r = 5.

formance obtained by each user with different
program statistics and a range in the number of
users. It is apparent that the user response time
in each iteration is a key factor in determining how
many consoles can be serviced by this type of sys-
tem. The user responses envisaged for this system
are elementary so that the curves of Figs. 3, 4, and 5
correspond to rapid responses. If slower response
times were expected the performance parameters for
the same number of users would be considerably
changed. This is illustrated by the curves of Fig. 6
where the mean response time is 2.5 times that for
the other figures.

In Fig. 7 the same performance parameters are
plotted as a function of the number of users for two
sets of statistics. Two curves for each parameter are
given corresponding to models 2 and 3. The curves

user program response

user busy fraction
probability that c.p.u. isin use
probability that disc channel

is in use
1.0
(a)
&
o, 08
=t
wZ
2z 06
a8
EI-UI-; .
Eg 04 | / ——1
w 7/ -/.‘//
& 0ol o=
'./,.’/ -
(l)l//‘qr'zs
@)/ r=75
5 | i |
i} T T
o k] (b)
NET 4 :
3
352 3|
063
mﬂ’:g 20
oo x
= - | | | |
| 2 3 4 5

Figure 6. System performance parameters from model 3 for
%uz =1, 1/uz = 50, 1/uq = 15, q/r = 5, p/r =

94

10

SYSTEM USAGE AND RESPONSE PARAMETERS

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

(a)

(b)

|] |] 1 |
2 3 4 51 2 4
N
user program response
————— user busy fraction
~—— —— probability that c.p.u. isin use
——-—— probability that disc channel is in use
Figure 7. System performance parameters from models 2 and 3 for 1/pyr = 25,1/uy = 1, 1/u3 = 20, 1/uq = 15,q/r = 5.
Table 1
L s, L _ 9, 1 _ s, 4 _s
myr M3 Ha r
Prob. CPU User Busy Prob. Disc Channel is in Use
p/r N is in Use Fraction Program Loading Swapping
Model 1 Model2 Modell Model2 Modell Model2 Modell Model 2
5 1 172 172 .689 .689 .103 .103 .035 .035
5 3 447 450 .597 .600 264 268 .089 .090
5 5 .626 .633 .502 .507 .370 377 125 127
10 1 167 167 .667 .667 .100 .100 .067 .067
10 3 423 425 .565 .568 251 254 .169 .170
10 5 .584 .589 468 472 .346 351 234 235
20 1 156 156 .625 .625 .094 .094 125 125
20 3 .387 .388 515 517 228 231 310 311
20 5 522 .524 416 418 .308 311 418 419

TIME-SHARING COMPUTER SYSTEMS USING MARKOV MODELS 95

show that the I/O strategy of model 3 (preemptive
priority to block swapping operations) gives better
performance for larger N. One would expect a sig-
nificant advantage to be given by this strategy when-
ever there is frequent use of the disc channel.

In Table 1 performance parameters derived from
models | and 2 with the same statistics are plotted.
The loading process has been modeled by an ex-
ponential distribution in model 1 and by a second
order Erlang distribution in model 2. For equal
mean values of these distributions it is seen ‘that the
maximum difference in performance parameter
values is approximately 1%. This indicates a good
degree of insensitivity of these performance param-
eters to loading time statistics other than the mean
value.

CONCLUSION

An example has been given of the use of Markov
models in the analysis of computer systems. With
sufficient statistics available on the user and pro-
gram characteristics, useful predictions on the sys-
tem performance and capacity could be made. The
curve for the dynamic operator busy fraction in
Fig. 4 illustrates the limitations involved in multi-
programming and the segmenting of programs. The
nonlinear increase in the amount of page swapping,
as the number of pages of core memory assigned
to a program is reduced, is not unrealistic. As the
effect on system performance is so marked it is sug-
gested that considerable care will have to be taken
in assigning a suitable working area of core to each
user program.

The general model proposed for the time-sharing
system of Fig. 1 involves approximations and as-
sumptions on the operation of such a system and the
probability of the service times. Experience to date
has indicated that, provided one is only interested
in mean value performance, liberal approximation

and lumping of processing functions may be made
in the modeling without changing the significant
results. However it is possible to develop a more
detailed and accurate mathematical model than that
of Fig. 2 which is still solvable by RQA. Significant
points which could be included are the interruption
of user programs at discrete time intervals, specific
representation of the executive program execution,
and the use of multiple processors.

This modeling technique presents a useful and
economic alternative to constructing general simu-
lation models in the analysis of time-sharing com-
puter systems.

REFERENCES

1. V. L. Wallace and R. S. Rosenberg, “Markov
Models for Numerical Analysis of Computer Sys-
tem Behavior,” this volume.

2. T. Kilburn. et al, “One-Level Storage System,”
IRE Trans. on Electronic Computers, Apr. 1962.

3. J. B. Dennis, “Segmentation and the Design of
Multiprogrammed Computer Systems,” J. ACM,
vol. 12, no. 4 (Oct. 1965).

4. B. W. Arden et al, “Program and Addressing
Structure in a Time Sharing Environment,” to be
published.

5. P. M. Morse, Queues, Inventories and Main-
tenance, Wiley, New York, 1958.

6. A. L. Scherr, ““An Analysis of Time Shared
Computer Systems,” Doctoral Thesis, Department
of Electrical Engineering, MIT, June 1965.

7. E. G. Coffman and R. C. Wood, “Interarrival
Statistics for TSS,” System Development Corpora-
tion Document SP-2161 (Aug. 1965).

8. D. W. Fife and J. L. Smith, “Transmission
Capacity of Disc Storage Systems with Concurrent
Arm Positioning,” IEEE Trans. on Electronic Com-
puters, vol. EC-14, no. 4 (Aug. 1965).

AN OPTIMIZATION MODEL FOR TIME-SHARING *

Dennis W. Fife
Massachusetts Institute of Technology
Cambridge, Massachusetts

INTRODUCTION

The proper design of scheduling processes for
time-shared computers has provoked much dis-
cussion. One of the factors promoting discussion
is the great variety of scheduling procedures which
one can feasibly program, and which will operate
with adequate efficiency. There is wide latitude for
conjecturing possibly improved procedures. More-
over, the performance requirements of time-sharing
demand more sophisticated schemes than one can
analyze with simple queueing theory, yet it is not
feasible to experiment with many alternative pro-
cedures in operational systems and produce quan-
titative evidence of their relative merits.

The scheduling techniques in use today are of two
major types: round-robin procedures and multiple

priority level procedures. A round-robin process"?

treats the queue of users uniformly, giving each
program a “slice” of execution time and then swap-
ping it for another. This conforms to one intuitive
notion of time-sharing, inasmuch as each user may
obtain an equal share of computer time on a short-
term basis. Multiple priority schemes® allow the
choice of a job for execution to be determined by

*This paper is based upon research performed at the Systems
Engineering Laboratory of the University of Michigan and sub-
mitted as a Ph.D dissertation in electrical engineering. The
author is grateful for financial support from the U.S. Air
Force Rome Air Development Center and the National Science
Foundation. Assistance in publication was also provided by
Project MAC at MIT.

97

its initial priority and the amount of execution time
it has received. Compared to the round-robin, the
priority procedure has greater flexibility inherent in
the choice of initial priority assignments and the
maximum execution time allocated to jobs of each
priority level. By a proper simplification, a multiple
priority scheme becomes a round-robin procedure.

The pioneers of the time-sharing field have experi-
mentally found successful versions of the above pro-
cedures for their particular systems. But the future
development of on-line computer systems will un-
doubtedly benefit from attempts to establish general
quantitative properties of scheduling schemes, in-
cluding ones which are not necessarily in current
use. A good approach to take for this objective is
to model the queueing situation resulting from a
proposed scheduling procedure. Even more de-
sirable however is an optimization technique which
will allow one to model a class of scheduling pro-
cedures, and which will systematically synthesize
an optimum procedure according to some specified
criterion. The importance of Markov stochastic
models in queueing theory suggests that the theory
of Markov sequential decision processes*® will pro-
vide the desired optimization model.

This paper describes some results produced by
this type of model for a time-shared computer with
four remote consoles and three queue levels for
user jobs. Swapping and program loading time are
included, and a rather general execution time dis-
tribution is treated. The optimal system has been
computed for two distinctly different performance

98 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

measures, both related to response time. Although,
a wide class of procedures is admissible, the optimal
systems have much the same structure as those used
in contemporary systems.

THE SYSTEM

The model concerns a hypothetical time-sharing .

system typical of those currently in operation,
illustrated in Fig. 1. The mass memory is a large
capacity magnetic drum, and we assume its revolu-
tion time to be 50 msec. The main core memory
contains the Executive Control Program (ECP) for
the system and a memory area allocated to the user
program being executed. No multiprogramming is
involved, so only one user program resides in core
at any time. The user area is also taken to be of
modest size, say 8000 words, allowing a user core
image to be stored in one drum field. Thus swap-
ping of two user programs can be accomplished in
100 msec minimum. In order to also accomodate
ECP scheduling overhead we extend the swapping
time to 150 msec.

The real time clock provides an interrupt every
50 msec, equal to the drum revolution time. In
order to measure the passage of an arbitrary time
interval, a timekeeping function is part of the ECP,
and this activity occurs in response to every clock
interrupt. A clock interrupt may also initiate the
scheduling operation, as shown in Fig. 2. Because
of this, the scheduling process involves discrete time

steps, with a scheduling action possible occurring at
any 50-msec step.

Two important conventions will be imposed on
system operation. A user console may only have
one command in process at any time. Also, every
command must be initiated from a user console,
thereby excluding one job from initiating another.
As a result, the system may have at most four user
jobs in process. The completion of any command
marks the beginning of a user reaction time, after
which another command arrives from the console.

One can conceive at this point of a very general
scheduling procedure in which each decision re-
quires a dual choice:

1. Selection of a job from queue to be
executed.

2. Selection of a maximum time interval
for execution of the job before return-
ing it to queue.

The decision at any time could be based upon a
variety of data, such as the accomplished execution
time of jobs in queue, the size of job programs,
the originating consoles, and the time at the deci-
sion point. We will only investigate a ‘“‘context-
free’” case, in which jobs in queue are distinguish-
able only on the basis of the execution time each has
already received and their time of arrival. More-
over, in keeping with the simplicity of existing
systems, the allowable execution time intervals in
(2) above will be restricted to three values in such a

Main Central
Memory Processor

Remote
Consolel Telephone Lines
L]
* + | Communication
. —>
¢ o Interface
(]
Remote
Console 4

Clock Interrupt

Mass

Memory Clock

Figure 1. Equipment organization.

AN OPTIMIZATION MODEL FOR TIME-SHARING 99

Type of
Interrupt or Exit
Command | Enter in
Input Interpret | Queue g
. 2 g the " .
Character Character] . ove to R
User Data User Buffer
Clock Interrupt Advance Time No
g Elapsed Up? »
. p!
Time
Exit Yes
Return
from
Currently Program to
Executing | pata Request™® Terminate
J .
Program Error ob Execution
» at Schedule &
N > a
Successful ext Clock Load Next >
Interrupt User Program
Completion y
Buffer Full
Program Move
to Output
Output® Buffer Buffer Not Full
*Typewriter
Input-Output

Figure 2. Executive control functions.

Head-of-line selection

[

First pass execution: L .
maximum time intervaize, Completed

jobs depart
|

L Queue 2 Head -of-line selection
Jobs requiring
total time > ey

Second pass: L
maximum time interval= e5-e, Completed
J jobs

New Queue 1
arrivals __gf ——

New arrivals

Ly| Queue3 Head -of-iine selection
Jobs requiring

[~» total time > e3 1

Next pass:
maximum time interval=q Completed

J jobs

Return to end -of - line

Figure 3. Multiple queue structure of the system.

way as to establish three queues as shown in Fig. 3.

In this scheme only one job is executed at a time.
This structure is very similar to that in multiple

priority procedures. But additional flexibility comes

about because we may choose to serve a job from
any queue that is occupied. There is no restriction
on the choice, such as a priority ranking would
impose. The choice can depend upon the number
of jobs in each queue and will of course be in-
fluenced by the specified values for the maximum
execution intervals, e,, e; — e;, and g. The model
allows us to determine the optimum choice relative
to a specified measure of performance, and to in-
vestigate optimal values of e,, e3, and g.

MEASURES OF PERFORMANCE

The quality of performance which users observe
for a time-sharing system depends upon many
factors. Reliability and ease of communication via
suitable high-level languages are important ex-
amples of such factors. A queueing and scheduling
study, however, emphasizes queueing delay as a
performance factor. In doing so, one should recog-
nize that the population of users generally consists
of “interactive’” and ‘““background” users, where the
distinction is loosely established by the average

100 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

amount of processor time per request. It seems
clear that interactive users are usually more sensitive
to delay, and constitute the more significant portion
of the user population for a well-developed time-
sharing system. Thus, without implying scorn for
the performance requirements of background users,
we will concentrate on the response time per-
formance for interactive users.

Two quantitative measures of response time per-
formance are of interest here. For the first we con-
sider the system performance over any period of
time to be measured by the sum of the intervals for
all user jobs in that period. An improvement of
response time performance can be achieved by seek-
ing a scheduling procedure which minimizes this
sum. Recognizing that job arrivals and completions
are random, and taking an arbitrarily long period
of time this optimization criterion becomes equiv-
alent to minimizing the average number of user jobs
in process at any instant of time.

The second optimization criterion arises from the
realization that the minimum response time to any
command is its execution time, and a user who re-
quests a long computation must, by his own choice,
be satisfied with a correspondingly long response
time. Thus, for example, 0.5 sec additional delay
on a job taking a minimum of 3 sec to do should not
be as degrading to performance as the same addi-
tional delay on a 10-msec job. This reasoning sug-
gests measuring system performance by a weighted
sum of the response times for all jobs over some
time period, where the weight applied to the re-
sponse time of a job depends upon its execution

1.0

0.8

0.6

0.4

0.2

Weight per unit of response time

0 |] | | 1 J
(o] | 2 3 4 5 6
Execution time in seconds

Figure 4. Weighting function for the second optimization
criterion.

time. Figure 4 depicts one weighting function which
we have used to explore this case. Note that the
first mentioned measure of performance corre-
sponds to a unit weight for any value of execution
time. The second optimization criterion therefore
amounts to minimizing the average total weighted
response time to user commands in any long time
period of system operation. Table | summarizes the
two criteria.

Table 1. Optimization Criteria

No. Statement

1 Minimize average total response time for all
user commands in a period of system
operation.

2 Minimize average total response time for all
user commands, each weighted according
to Fig. 4, over a period of system oper-
ation.

MODELING

As one should anticipate, modeling of the time-
shared system as a Markov sequential decision
process depends upon certain idealizations. Among
these is the assumption that the user reaction time,
t., and the execution time per command, t., are
independent random variables. These time intervals
are the human time and the central processor time,
respectively, in a man-machine interaction. The
probability distributions treated are the following:

Probabilityof t, < T = 1 — ¢ /" 1)

where T, is the mean value of ¢,, and

Probability of 1, < T = 1 — yie™™T — y,e™*7 (2)

where u; and u, are positive, and <, and +, are
probabilities with unit sum. The mean execution
timeis T, = v1/pu1 + v2/u2. Equation (2) is called
a hyperexponential distribution (Ref. 7, p. 19), and
its use stems from some observations of execution
time on the batch-processing operation of the Com-
puting Center at the University of Michigan.® In
Fig. 5 some points are given from these batch-
processing observations, as well as two curves de-
rived from Eq. (2) by different choices of the param-
eters. One sees that the observations could be fitted
fairly well by a suitable member of the family rep-
resented by Eq. (2). We will concentrate on curves
1 and 2 of Fig. 5 as representative members of this
family. ‘

AN OPTIMIZATION MODEL FOR TIME-SHARING 101

1.0
s °
~ 08
Vi
‘._0
s 0.6
>
5 04
s © Observation from
e U. of M.Batch
& 02 Processing
System
ol | |] o
0o | 2 3 4

T/Te

Figure 5. Execution time distributions.

Both distributions (1) and (2) above seem reason-
able, but there is little data available to irrefutably
justify them. Our batch-processing observations
certainly provide some evidence supporting the
general shape of the distribution for execution time.
Also, there has been some statistical data from the
MIT system® which indicates these idealizations are
good approximations, as are the particular system
parameter values we will use (see Table 2).

In addition we take constant values for both the
swapping time, s, and the set-up time, S. The latter
is the CPU time spent in initial relocation and link-
ing of subroutines for a command. The ECP over-
head occurring between successive scheduling deci-
sions is neglected.

Based upon these assumptions and the physical
properties of the system one can proceed to formu-
late a Markov model and derive the data needed
for the optimization algorithm devised by Howard®
and Jewell.® Such data includes probabilities on the
command arrivals and the job completion during an
execution pass, and the mean time durations be-

tween successive scheduling decisions. Also in-
volved are quantities which measure the per-
formance during an execution pass as determined
by the optimization criterion of interest. A full
discussion of the formulation of the model and how
the necessary data are derived is beyond the scope
of this paper. The interested reader should consult
the references and the full report from which this
paper is drawn. '

OPTIMAL SCHEDULING

The alternative choices of the queue to be served
for each combination of numbers of jobs in the
queues give rise to well over one billion different

. scheduling procedures for this system. Included in

this number are the first-come, first-served pro-
cedure (FCFS), and the six priority procedures
possible with this system. Among the latter, our
results point especially to the “1-3-2 Priority,”
which assigns priorities 1, 3, and 2 to Queue 1,
Queue 2, and Queue 3, respectively. (Priority 1 is
top priority.) The optimization computation de-
termines an optimal procedure from the admissible
set for a given set of values of the system parameters
listed in Table 2. The computation is fast enough,
however, so that we have economically obtained
solutions and general conclusions for the range of
parameter values shown. These may hold for even
wider variation of the parameters.

Table 2. System Parameters

Appropriate
Symbol Definition Values
T. Mean user reaction time 20-30 sec
T, Mean execution time per 1-4 sec
~ interaction
s Swap time 150 msec
S Setup time for relocation 1 sec or less
and subroutine linking
e, Execution time alloca- Arbitrary,
e; — e,, tions subject to
and g modeling
limitations

To begin the discussion, consider the first optimi-
zation criterion. The execution time distribution
shown in Fig. 5 as curve 1, although not as ap-
propriate as curve 2 perhaps, produces a rather
interesting result. The optimal procedure is first-
come, first-served for all parameter values. This
makes sense intuitively, for FCFS avoids swapping
time. Moreover, with this execution time distribu-
tion FCFS is always processing a job having min-
imum mean execution time to completion.

For the execution time distribution given by curve
2, one must consider both the optimal procedure
and the optimal values for e, e;, and g. The min-
imum value of e; permitted by the Markov model is
1.5 T,, and any larger value gives poorer per-
formance. A smaller value of e; is therefore likely
to further improve performance. Subject to this
limitation, optimization of the model indicates that
the optimum procedure is 1-3-2 Priority and
optimal values of e, and ¢ are T. and one clock
interval (50 msec), respectively. This holds for

102 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Table 3. Average Total Queue for
Optimal Scheduling with Criterion 1

Optimal Aver.

T, T. S e e3 q Policy = Queue
seconds Priority:

30 4 0 0.6 6 0.05 1-3-2 0.8131
30 4 0 3.5 6 0.05 1-3-2 0.6691
30 4 0 4.0 6 0.05 1-3-2 0.6671
30 4 0 425 6 0.05 1-3-2 0.6690
30 4 0 4.0 6 0.50 1-3-2 0.6725
20 1 1 0.50 1.5 0.05 1-3-2 0.4893
20 1 1 1.0 1.5:0.05 1-3-2 0.4853
20 1 1 145 1.5 0.05 1-3-2 0.4862
20 1 5 1.0 1.5 0.05 FCFS 1402

values of S not exceeding T,. Table 3 gives the com-
puted average total queue of jobs for typical cases.
The minimum queue occurs for the optimal values
of e; and q.

Now consider the second optimization criterion.
The minimum value of e; permitted by the model is
the larger of 1.5 T, and 4 sec, the latter arising from
a need to have constant weight for jobs taking
longer execution than e; (see Fig. 4). Although this
limitation has some effect, it is still surprising that
the optimal system is much the same as for the first
criterion. Moreover, the optimal system is the same
for both execution time distributions (1) and (2) of
Fig. 5, in contrast to the case of the first criterion.
Table 4 shows typical values of the computed per-
formance measure over a one-unit (50-msec) time
interval.

Table 4. Average Unit Time Performance Measure
for Optimal Scheduling with Criterion 2

. Aver.
Optlmal Unit Time
T T, S e es g Policy Performance
seconds Priority:

30 4 0 2 6 0.05 1-3-2 0.0806
30 4 0 3 6 0.05 1-3-2 0.0782
30 4 0 4 6 0.05 1-3-2 0.0788
30 4 0 3 6 050 1-3-22 0.0821
30 1 1 050 4 005 1-2-3 0.1592
30 1 1 1.5 4 0.05 1-3-2 0.159
30 1 1 20 4 0.05 1-3-2 0.1595
30 1 1 1.0 4 0.50 1-2-3 0.1599

Several important points emerge from the optimi:
zation of the model. The optimal system is sub-
stantially insensitive to the precise values of the
system parameters. This makes it feasible to apply

the results of the model to a physical system, where
parameters are not known exactly and may change
gradually. The fact that all optimal procedures are
priority procedures is noteworthy both in regard to
simplicity of implementation and the current prac-
tice in time-shared systems. The emphasis upon a
minimum execution time allocation for the third
queue indicates a need for very rapid preemption of
low priority jobs. This is a contribution, for ap-
parently no existing system allows preemption
except after a significant delay.

This study leads us to suggest a scheduling pro-
cedure which should produce somewhat better per-
formance than those considered here. The system
would have two priority levels, with new jobs enter-
ing the first priority queue. A first priority job
would preempt a lower priority job one clock inter-
val after the former’s arrival, and would then receive
execution for a maximum time equal to T., the
mean execution time of the population. After this it
would be relegated to second priority. The lower
queue would be served round-robin with an execu-
tion quantum much larger than T.,.

COMPARISON OF PROCEDURES

A much better picture of the performance of the
optimal system can be obtained from the mean
response time of a command, given the execution
time required. Table 5 describes the optimal system
and three other scheduling policies used in existing
systems. The round-robin procedure is essentially
a 2-1-3 Priority system, which places new arrivals at
the head of the round-robin queue. Figures 6 and 7

Table 5. Scheduling Policies for Comparison

Policy Type e e q
Fig. 6 Cases:

Priority: seconds
Round-

Robin 2-1-3 — 6.0 6.0
Priority A 1-2-3 2.0 6.0 8.0
Priority B 1-2-3 2.0 6.0 20
Optimum 1-3-2 4.0 6.0 0.05
Fig. 7 Cases:

Round-

Robin 2-1-3 — 1.5 1.5
Priority A 1-2-3 0.5 1.5 2.0
Priority B 1-2-3 0.5 1.5 0.5
Optimum 1-3-2 1.0 1.5 0.05

-

AN OPTIMIZATION MODEL FOR TIME-SHARING 103

(50.5 sec.)
22—
20+
18—
o
@
(2]
v 61—
[
£
o 14—
(7]
c
S
&
©
'g 10—
§ (48.7 sec.)
S 8 L (49.0 sec.)
] / (52.; sec.)
Expectation of response
time for jobs over '
6 sec. duration
I
0 | 2 3 4 5 6

Required execution time-sec.

Figure 6. Response time vs execution time for distribution
), T, = 20sec, T, = 4sec,S = 0.

o
T

{12.2 sec)
4.

(12.1 sec.)

(12.9 sec.)
3. (12.1 sec.)

Expectation of response
time for jobs over
1.5 sec. duration

n

T

Expectation of response time-sec.

| | |
0 0.25 0.50 075 1.0 1.25 .50
Required execution time-sec.

Figure 7. Response time vs execution time for distribution
2), T, = 20sec, T, = 1sec, S = 1sec.

compare the mean response time for these policies.
One can see that the optimal system achieves a
smaller response time for trivial computations at a

cost of larger response time for jobs requiring exe-
cution time 7, or greater. The other policies ex-
perience a large jump in response time at an execu-
tion time of 1.5 T,, so this aspect of the optimal
system should not be disturbing.

CONCLUSIONS

The optimization approach we have used is quite
new for systems with queues, and the practical re-
sults one can obtain commend it for future studies.

The time-shared computer system we have
modeled is quite typical of existing systems. Three
noteworthy conclusions relative to time-sharing
practice have been found. To begin, it makes no
substantial difference under the performance meas-
ure we have treated whether or not one gives extra
importance-to the response time of trivial compu-
tations. The optimal system, subject to the limita-
tions of the model, is a multiple priority scheme
and is reasonably insensitive. to the values of the
system parameters. There is a need for more rapid
preemption of lower priority jobs than presently
used in operational systems.

Our results suggest a two-priority scheme where
new arrivals are given first priority and are relegated
to second priority after receiving the mean execution
time. A new arrival should preempt a lower priority
job as soon as possible. There is a need to study
multiple priority schemes with more levels, and with
greater flexibility in execution time allocations than
we have treated.

REFERENCES

1. S. Boilen et al, “A Time-Sharing Debugging
System for a Small Computer,” Proc. SJCC, 1963,
pp. 51-57.

2. J. Schwartz et al, ““A General Purpose Time-
Sharing System,” ibid, 1964, pp. 397-411.

3. F. Corbatd et al, “An Experimental Time-
Sharing System,” ibid, 1962, pp. 335-334.

4. R. Howard, Dynamic Programming and
Markov Chains, MIT Press, Cambridge, Mass.,
1960.

5. ——, “Semi-Markovian Control System,”
Tech. Report No. 3, Contract Nonr-1841 (87),
Operations Research Center, MIT, Cambridge,
Mass.

6. W. S. Jewell, “Markov-Renewal Program-

104 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

ming,” Operations Research, vol. 11, 938-971
(1963).

7. P. M. Morse, Queues, Inventories and Main-
tenance, Wiley and Sons, New York, 1958.

8. E. Walter and V. Wallace, “Further Analysis
of a Computing Center Environment,” Systems
Engineering Laboratory Tech. Report, University
of Michigan, Ann Arbor, to be published.

9. A. L. Scherr, “An Analysis of Time-Shared
Computer Systems,” Project MAC.-TR-18, MIT,
Cambridge, Mass (June 1965).

10. D. W. Fife, “The Optimal Control of Queues,
with Application to Computer Systems,” Cooley
Electronics Laboratory Tech. Report No. 170, Uni-
versity of Michigan, Ann Arbor (Nov. 1965).

A DIGITAL SYSTEM FOR ON-LINE STUDIES OF
DYNAMICAL SYSTEMS

T. C. Bartee
Harvard University,
Cambridge, Massachusetts

and

J. B. Lewis
Lincoln Laboratory,* Massachusetts Institute of Technology
Lexington, Massachusetts

INTRODUCTION

The study of dynamical systems with the aid of
analog and digital computers has developed rapidly
in the past two decades. Increased interest in sys-
tems described by differential equations which are
nonlinear or have time-varying coefficients, has re-
sulted in more reliance on techniques requiring
on-line computation. Usually less is known a priori
of how the solutions will develop or what param-
eter values or initial conditions should be used. The
recent trend to using hybrid computers (combina-
tions of digital and analog equipment) has been
"motivated by the desire to study complex dynamical
systems with computer configurations which are
designed with particular classes of problems in
mind. Extensive use of display, plotting, and print-
ing equipment as well as elaborate consoles attest
the on-line capability of such computers.

Designing a computer for the on-line study of
dynamical systems involves many factors, but
among others, speed, accuracy, cost, and user
convenience are particularly important. The system
described here has emphasized user convenience so

*QOperated with support from the U.S. Air Force.

105

that experimental or “trial and error” computa-
tional methods are encouraged. An accuracy of
0.19% to 0.019, was considered adequate, and the
speed (as measured by ability to solve problems in
real time) is roughly equal to the fastest commercial
digital computers. Although many modern analog
computers are considerably faster in solving systems
of ordinary differential equations, and much greater
accuracy can be obtained on digital computers, this
compromise still allows the study of many problems
of great interest. The system is a laboratory experi-
mental model rather than a production prototype,
and the cost was kept low by using many com-
ponents which were on hand. The added cost to the
large time-shared system, of which it is a part, was
relatively small.

The basic computer configuration is similar to
many hybrid computers in that it includes a general-
purpose digital computer and a special-purpose
computer which is largely a collection of integrators.
Most frequently, the special-purpose computer in
a hybrid is a high-speed analog computer that meets
the need for real-time simulation. In the system
discussed here, the special-purpose computer is a
high-speed digital differential analyzer (DDA)—
a collection of digital summers which approximate

106 PROCEEDINGS—SPRING JOINT COMPUTER- CONFERENCE, 1966

integration. (See Ref. 7 also.) One great con-
venience to the user results from the fact that the
interconnection of the integrators is specified as part
of the 86-bit words that describe the integrators.
Thus, a patch board is not needed, and as a result,
it is possible to write programs for a general-
purpose computer to set up the DDA. It is the
combination of hardware, which allows rapid,
program-controlled changes in interconnection, and
software, which translates a problem statement into
interconnection information, that makes this system
quite attractive. High-speed operation is important
in reducing reaction time, and flexible controls that
allow start/stop, display, sampling, and repetition
are other notable features.

The interconnection of the small general-purpose
digital computer, the LINC, and the DDA is de-
scribed in the next section. The setup of the DDA
is done by transferring information from the LINC
core memory to the DDA core memory. The in-
formation in the LINC core memory is obtained by
transfer from a large time-shared computer in which
a mapping and scaling program operates. At pres-
ent, interconnection to the Project MAC computer
over a teletype line has been made, and connection
to the Lincoln Laboratory IBM 360 System will be
completed soon. The mapping and scaling can be
done manually for simple problems and the results
inserted directly into the LINC core memory. The
operation of the system is described in a later sec-
tion; an important feature is the special combination
of LINC and DDA which the user may operate in
an experimental fashion with less concern for the
usual high charges for time on a large central
processor. The large processor is used only when it
is necessary to map or scale.

A HIGH-SPEED DIGITAL DIFFERENTIAL
ANALYZER

Basic DDA Algorithms and Other Features

The design of early DDA’s was centered about
the use of magnetic drums, these being memory
devices of reasonable cost with a serial operation
which was especially attractive in the processing of a
set of DDA integrators. The development of core
memories of modest price with cycle times in the
I-microsecond region provides the designer with the
possibility of making a DDA with a much higher
speed and at quite reasonable costs.

A DDA in which a core memory is used requires
a structure different from the usual one, In addi-

tion, when one desires to connect a general-purpose
machine in a reasonable way, and in particular, to
organize the DDA so that the general-purpose
machine easily can load (or change) the intercon-
nections of the integrators, the starting and inter-
mediate values in the integrators, the scale factors,
and so forth, a different organization becomes
attractive. Each word in the memory stores the in-
formation concerning a single integrator, and all
operations for updating an integrator are performed
using parallel arithmetic.

Before proceeding with the organization of the
machine, let us briefly examine the integrator algo-
rithm and number system selected. These date back
to MADDIDA, and (to the best of our knowledge)
were the work of I. S. Reed. Each integrator in the
system consists of a single word in the core memory.
Variables in the system are represented by 24 binary
bits including sign. The number system used is a
2’s complement system with sign bit complemented.
For 4-bit numbers, the number representation is as
shown below:

i1l = +7 0111 = -1
1110 = +6 0110 = -2
1101 = +5 0101 = -3
1100 = +4 0100 = —4
1011 = +3 0011 = -5
1010 = +2 0010 = -6
1001 = +1 0001 = -7
1000 = 0 . 0000 = -8

Each integrator realizes the relation
dz = Cydx 1

where C is a constant, dz an ‘“‘output increment,”
and dx an “input increment,” and y the integrand.
The definite integral of the above relation is

) =20 + C [yman @

This definite integral is approximated by a sum.
The interval (7o, v) is divided into n subintervals of
length Ay so that +v; = v, + kAy, and we choose
xo = x(o) and x = x(y). Therefore,

2(x) = z(xo) + C,; (V) Ax(vi) + €
where

Ax(ve) = x(ve) — x(Ye-1)
and

Yvee) + Ay(re) = y(vi)

A DIGITAL SYSTEM FOR ON-LINE STUDIES OF DYNAMICAL SYSTEMS 107

and ¢, is an approximation error. Finally, letting
y(vk) Ax(vx) = Az(v4), the result is

2(x) = z(xo) + c; Az(vi) + & (3)

where €, is again an error term.

This mathematical representation shows that the
DDA performs incremental computations rather
than full-word operations, and the approximation
to integration is usually called rectangular integra-
tion. As shown below, the computations are fixed-
point, so that scaling is very important. Finally, it
should be noted that the DDA solves initial-value
problems.

Let us now consider a part of an integrator regis-
ter. An integrator register can be looked upon as a
“black box” with two inputs, dx and dy, an output
dz, and a stored value y, such that relation (1) above
is approximated.

In this machine there are 256 integrators which
are sequentially updated. Each integrator is in
reality a word in the core memory consisting of
24-bit R-register and a 24-bit Y-register, plus in-
formation as to which outputs from the other inte-
grators comprise the dy and dx inputs to the inte-

grator. There is also other information in each .

word, and this is discussed in the following section.
Figure 1 is a block diagram of an integrator.

a. 8ymbol for a Single Integrator

DX

Y >4
oY
R REGISTER
24 BITS

ADDER-SUBTRACTOR NET|
R+AX-Y Y REGISTER ax
24 BITS
AZ SIGN _ A,
216 ADD-SUB NET e
oo THEG I
AZ SELECTIONAZ | | laY SELECTION
NETWORK =3 | 238817 =1 NETWORK
T | REGISTER
S REGISTER| [6X SELECTION,4 |aX, REGISTER
5BITS NETWORK 98ITS

b. O fons in a Single

Figure 1. Block diagram of DDA integrator.

The Y-register part of each word contains values
of the variable y. Provision is made so that the
Y-register can be added to or subtracted from the
R-register, and this is controlled by the dx input,
which is a one-bit input that we call AX.

The overflow or carry from the most significant
bit of R (each time Y is added to R) is called AZ,
and it has value +1 if an overflow of R occurs and
—1if no overflow occurs. '

The dy input is actually a sum of the outputs (or
AZ’s) from up to 16 other integrators. We call this
sum AY and the particular AZ’s which are added
together to form AY are selected in a manner which
is described later.

The AZ’s from each integrator are stored in a
circular shift register of 256 flip-flops. Each position
in the shift register corresponds to an address in
the memory. . The integrators are processed or up-
dated starting with the integrator at address 1 in the
memory proceeding through the integrators until all
those that are being used have been updated; then
the integrator at location 1 is again updated fol-
lowed by the others. The core memory is a split-
cycle memory requiring 0.75usec for each half-cycle
so that it takes 1.5usec to update a single integrator.
A problem with 16 integrators would then require
24usec for a single iteration or updating of all
integrators.

During each updating of an integrator the follow-
ing operations occur (see Figs. 1 and 2):

1. The AZ’s in the shift register, the sum
of which comprise the AY for the inte-

¢——ith Cycle ——

ClockPutses: | | | | 1 1 L 0 1L L 1 [1 1 111
(4 Mc) 0 1 2 3 4 5 0 1 2 3 4 5 01 2 3 4 &
Read/Write: | R, | | Wi Il Rt | Lwi]
Transters: | | |
MBR w Q
- - -
w Q MBR
Operations: (. | | |
Aysel Axsel TAX
R
l |
Y+AY R
over
——) —
Y AZ

Figure 2. Timing for processing the ith integrator. The AY,
bits for the /th integrator are stored in the (i — 1)th
word.

108 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

grator being updated, are selected and
added together and stored in five flip-
flops.

2. The AX input is selected from the AZ
shift register and stored in a flip-flop.

3. The value of AY is added to the current
value of Y.

4. The new value of Y is multiplied by AX
and this is added to R. The value of the
overflow from R is then stored in the
appropriate location in the AZ shift
register.

Proof that this algorithm will yield a system in
which the integrators approximate the relation given
earlier may be found in Ref. 1. Other DDA’s are
described in Refs. 2, 3, 4, and 8.

A servo mode of operation for the integrators
also is included, in which, instead of using the over-
flow from R as the value to be placed in the AZ
shift register, the sign of y is placed in AZ each
time. This makes it possible to obtain an increment
which approximates a sum of increments. A bit in
each integrator word tells the control whether servo
mode or conventional mode is to be used with a
particular integrator.

It is also possible to invert or complement the
AZ output from a given integrator. A bit in each
integrator word tells whether or not the overflow
from R (or sign of Y in the servo mode) is to be
complemented before being stored in the AZ shift
register.

Description of Machine Organization

The basic difference between this DDA and
others which have been constructed to date is that
each integrator carries with it information as to
which of the other integrators comprise the AY and
AX inputs. Also, complete information is provided
as to whether it is to be used as an integrator or in
the servo mode, whether or not it should be sam-
pled, and so forth. As a result, each word in the
core memory contains 86 bits.

Figure 3 shows a simplified block diagram of the
DDA. Each time an integrator is to be updated,
it is selected and read into the memory buffer regis-
ter, which is a part of the memory. The integrator
word is then transferred into the W register. The
parts of each 86-bit word are as follows:

1. R is the remainder, or running sum, as ex-
plained previously; 24 bits are used for R.
2. Y contains the current value of the variable y

— INDEX
TO X-AXIS SCOPE 10 Y-AXIS
OF SCOPE OF SCOPE

D0 A 070 A 2 MEMORY ADDRESS
CONVERTER | | CONVERTER CONTROL COUNTERS
10 BITS 10 BITS | aems
ROTARY
SWITCHES
BUFFER-REGISTER] IBUFFER-REGISTER MEMORY ADDRESS
I 24 BITS R“i 24 BITS J RECISTER
TED BY D !
SELECTED SELEC
8Y D §
x NDOM-ACCESS
R Y |ax,|ay1az,) m | D] E| S FEw RA
llTSL 24| 9% 18| 1 " 2 ‘ 2 \ ' l 5] SU5E (e e| CORE MEMORY
R 256 WORDS
3oy 86 8ITS PER WORD
A
ay lax, rg; av,
or ax 2127 Ty
LINEAR NUMBER OF
AND-ADD -t CONTROL COUNTER oout

NETWORK 15 BITS

AZ REGISTER
256-BIT SHIFT REGISTER

SAMPLE RAT!
CONTROL_COUNTE o out
9 8ITS
r _l._INE 1 CONTROL m¥wm%ns
!
| GENERAL AND © ’

1 PURPOSE L__ | TIMING
|c0MPu'mi] DISTRIBUTION|

b

Figure 3. Block diagram of DDA.

as explained in the previous section; 24 bits are used
for Y.

3. AX, contains 9 binary bits, 8 of these are used
to select the value of AX from the 256-bit AZ regis-
ter, or an independent increment, AT, is selected
by the 9th bit.

4. AY, contains 18 bits. This part of the register
is used to select the AY-inputs to be added to Y.
The selection can be made in three ways, and 2 bits
of the register tell which way AY; is to be used. The
possibilities are:

a) AY, may be used as a linear mask; in
which case, the 16 selection bits of AY,
are simply placed over the AZ register
with the 8th bit on the AZ from the cur-
rent integrator. If a given bit in AY, is
a 1, the corresponding AZ is selected to
be added into AY; if the bit is a 0, the
corresponding AZ is not added into
AY.

b) The first 8 of the selection bits of AY,
can be used to select a single AZ to be
added to Y. Any one of the 256 AZ’s
can be selected in this manner.

¢) The first 8 selection bits of AY, can be
used to select a AZ and the second
8 bits to select another AZ, so that AY
will be the sum of these two selected
AZ’s.

5. D consists of two bits and tells the display
equipment whether or not the current value of Y is

A DIGITAL SYSTEM FOR ON-LINE STUDIES OF DYNAMICAL SYSTEMS 109

to be displayed on the oscilloscope; and if it is to be
displayed, whether it should be used to deflect along
the X or Y axis of the scope.

6. E is a 1-bit register that tells whether or not
the Y-value of the integrator should be given to the
LINC computer for examination. The frequency at
which the integrators are to be examined by the
LINC computer is loaded into the DDA as the
number of iterations to be performed between each
examination. Only those registers which have I’s
in their E-position will have their Y-values trans-
ferred to the LINC computer. At this time, the
system also can change values in the Y-registers.
This enables the user to introduce step functions or
other functions and also to check on current pro-
grams, record data, or display it when required.

7. S contains 5 bits and is used to give the scale
factor that determines the length of the Y and R
registers for the integrator. S determines which
carry or overflow from the added stages is examined
to form AZ for a given integrator.

8. M consists of two mode bits. One bit indicates
whether the integrator is to operate in normal or
servo mode. The second indicates that the program-
mer wishes to stop the DDA if C(Y) = 0.

9. AZ,, is a bit which indicates whether the AZ
output is to be complemented.

The use of AY, as a linear selector permits up to
16 AZ inputs to a single integrator i, but these
must be within the interval (/ — 7, i + 8). A study of
the problem of interconnecting integrators with
this capability revealed that while most problems
could be mapped by adding “dummy”’ integrators,
it made the actual number of integrators in use in
some cases unreasonably large. The addition of an
optional selection mode allowing either one or two
AZ’s from among any of the 256 integrators allevi-
ated this problem and greatly increased the apparent
capacity of the DDA.

In setting up a problem, the LINC computer must
give the DDA certain information in addition to
that in the integrator. For instance, the number of
integrators to be used is first entered into DDA
circuitry. The machine is constructed so that the
number of integrators processed is determined by
this number. Integrators are processed in sequence,
and one can use 16, 32, 48,..., or 256 integrators
in a problem. Thus for small problems only 16 inte-

grators are processed each cycle of the machine, |

requiring only 24usec. However, for a 100-integra-
tor problem, 112 integrators would be processed
each cycle and a single updating would require 168

usec. Any unused integrators in these groups are
processed, but no harm results except a slight loss in
speed of operation. The LINC also loads a counter
with the number of iterations or passes through the
integrators which are to be made. The DDA will
then stop after having performed the required num-
ber of iterations. Finally, the LINC loads the num-
ber of iterations between samples into the DDA.
The sampling rate is determined by this. If the
LINC loads the number N into the DDA, after each
N iterations the DDA will pause on each integrator
having a 1 in the £ bit and transfer the contents
(Y-register) of this integrator to the LINC. The
LINC program examines each of the selected inte-
grators in turn, and the value in each of the integra-
tors also may be changed.

In order to use the memory efficiently, a split-
cycle memory is used, and the integrators are not
processed in a direct line. When the word associ-
ated with an integrator is called, and the memory
delivers the word, there is not enough time to pro-
cess the integrator and write the results back into
the memory without a delay. We therefore process
integrator i while writing the word for i — 1 into
memory and reading i + 1 from memory. This is
possible since an extra buffer, the Q-register, is in-
cluded in addition to the W-register and the mem-
ory buffer register (MBR). Three transfers are in-
volved: MBR to W, W to @, and Q to MBR.
Figure 2 illustrates the timing of the combined pro-
cessing of i, the writing of i — 1, and the reading of
i + 1 during a 1.5-usec cycle.

A cause for interruption of the processing of the
integrators is the overflow of a Y-register. The
contents of a given Y-register can exceed the capac-
ity of the (scaled) register in either a positive or a
negative direction, and each Y-register is checked
before and after the AY is added to see if overflow
has occurred. If this happens, the DDA transfers
this information to the LINC.

Finally, a stop on a zero crossing, (i.e., C(Y) = 0)
can be programmed so that some decision capabil-
ity is included. This allows the user to stop the
DDA when certain dependent variables reach
selected values.

METHOD OF USING THE SYSTEM

The basic input to the system that the user must
supply is very much like the usual format used in
the study of ordinary differential equations. The
user must have his equation in first-order normal

110 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

form. After calling the mapping program, he first
enters his equations. For exdmple, if the original
equation is

§—qq —sing =0 C))
let
q, = sing and dq, = cos qdgq
g, = cosq dg, = —sin qdq
g3 = q dq; = dq = qdt
q4s = g dgs = dq = gdr = (5)
and the required form is then
dq, = q,dq;
dg, = —qidqs
dqs = qadt
dqs = q3q4dl + q,dt)
This information is types as
DQ1 = Q2*DQ3
DQ2 =-Q1*DQ3
DQ3 = Q4*DT
DQ4 = Q3*Q4*DT + QI*DT @)

and the mapping program then generates a map.
Although a number of arbitrary rules are used in
the mapping, test problems and recent experience
indicate that the program generates maps which are
almost as efficient as those done manually in very
simple problems. In complex cases, maps that
would be quite time-consuming if done manually
are generated in several seconds.’

The interconnection table that is generated by the
mapping program is next used as an input to the
scaling program. The user also must supply an
estimate of the maximum magnitude of each vari-
able, i.e., | g;|max,i = 1, 2,... This information
is then used to compute an optimal set of scale fac-
tors using a linear programming routine which
maximizes the sum of the numbet of bits used in all
the Y-registers.® Finally, ¢, a variable in the scaling
program that relates problem time to machine time,
must be specified within limits set by the scaling
program.

The mapping and scaling are illustrated in Fig. 4
and Tables 1 and 2. Since the user generally does
not need this information, it is saved in the large
computer system and supplied only on special re-
quest. Figure 4 is a map of Egs. (6), and Table 1
is the corresponding interconnection table. Table 2
is a table of scale factors that illustrates the inter-
action of scaling variables; the: time scale and maxi-
mum values were chosen arbitrarily.

—

Figure 4. Map.

Upon completion of mapping and scaling, the
initial contents of R (set to zero), AX,, AY,, M,
AZgs, and S have been specified. The remaining
inputs required of the user are the initial values
q:(0), the number of iterations to be run, the sam-
pling period, and an indication of what variables
are to be displayed and sampled. The transfer of
this binary information to the LINC is initiated,
and after completion, the run on the DDA is made.

Table 1. Interconnection Table

Int. No. DX-Input DY-Inputs
1 4 2
2 4 1
3 0 1
4 0 3,5
5 4 4

NoTE: 0 indicates a DT input.

Table 2. Scaling Table

Int.

No. Ul ¥ «a € 0 v
1 * 12 1 -11 —11 12
2 * —12 1 -1 —11 12
3 1* —15f 6 -9 -11 17
4 3* —15% 3 -12 -9 12
5 3* —12 3 -9 =12 15

*Obtained from user estimates as in b) below.
tDetermine DT scale relative to problem time.
1 These must be equal.

NOTES:

a) v, 8y, €; are scales on dx;, dy;, dz;, e.g., dX; = 2”idx;.

b) a; > m; where 2|yl max = 2" > | il max, and gyis y;
in the example.

) v =a;— 4 and 23> v; > 4.

d) a; + v = €.

e) S; = v; + 1, i:2., the S-bits of Integrator i.

A DIGITAL SY#TEM FOR ON-LINE STUDIES OF DYNAMICAL SYSTEMS 111

Repeated runs may be made and new variables may
be sampled or displayed by making changes at the
LINC keyboard. If parameters in -the differential
equations are changed, rescaling may be required,
and the scaling program is then called again on the
time-shared computer. The same is necessary if
overflow occurs because of wrong estimates on
the | g; | max.

It is of interest to estimate some typical operating
times. After input typing is completed, the reaction
times are between several minutes and several sec-
onds depending on the accessibility of the time-
shared system programs. The loading and running
time on the DDA is at most about 20 seconds for
215 iterations of 256 integrators. The time for re-
peated runs depends largely on the time required
for the user to enter new information at the LINC
keyboard.

SUMMARY

The design of a system for on-line studies of
dynamical systems has been described, and the
details of operation of the high-speed DDA have
been given. Two applications of the system which
are showing its usefulness are

1. Spectral analyses of radar data in which
a number of frequencies, spectral win-
dows, smoothing times, and range gates
were examined. On-line techniques en-
able the user to search for combinations
of interest rather quickly. The LINC/-
DDA combination can generate 30
spectral lines, compute a periodogram,
and display the results in about 20 sec-
onds.

2. Trajectory generation in simulation
studies where the effect of changing
parameters in an estimation algorithm
are of interest. A set of 3-degree-of-
freedom equations that includes at-
mospheric drag variations and gravita-
tional variations requires 55 integrators.
One run (i.e., one trajectory) requires
5 seconds in this case.

A subject requiring further study on the system is
error analysis. Error prediction for equations that
are integrated by incremental arithmetic operations
is extremely difficult, but it is believed that more

experience will provide some insight. Very little
theoretical work has been done, and the combina-
tion of nonlinear equations, incremental methods,
and quantization makes the prospect of estimating
useful error bounds discouraging. It also may be
noted that the sequential processing of the integra-
tors introduces an ordering problem in the mapping
program, and the effect of a given ordering scheme
on computational errors is again difficult to predict.

Nevertheless, the system is proving very useful
in problems where on-line searching -and experi-
mentation lead to more complete understanding of
certain physical problems. The combination of
general and special-purpose digital computers is
of great value for studying complex dynamical
systems.

ACKNOWLEDGMENTS

The authors wish to thank Dr. H." K. Knudsen
for his valuable work on the mapping and scaling
programs, and Mr. R? A. Carroll for his work in the
planning and construction of the DDA.

REFERENCES

1. T. C. Bartee, I. Lebow and 1. Reed, Theory
and Design of Digital Machines, McGraw-Hill, 1962,
pp. 252-269.

2. G. F. Forbes, Digital Differential Analyzers,
G. F. Forbes, Sylman, Calif., 4th ed., 1957.

3. M. Palevsky, “The Design of the Bendix Digi-
tal Differential Analyzer,” Proc. IRE, vol. 41, no.
10, pp. 1352-1356 (Oct. 1953).

4. J. M. Mitchell et al, “The TRICE—A High
Speed - Incremental Computer,” IRE Nat. Conv.
Record, Part 4, pp. 206-216 (1958).

5. H. K. Knudsen, “A Program for Automatic
Mapping of Differential Equations on a DDA”
(to appear).

6. H. K. Knudsen, “The Scaling of Digital Dif-
ferential Analyzers,” IEEE Transactions G-EC,
EC-14, no. 4, pp. 583-589 (Aug. 1965).

7. O. A. Reichardt, M. W. Hoyt, W. T. Lee,
“The Parallel Digital Differential Analyzer and Its
Application as Hybrid Computing System Ele-
ment,” Simulation 4, n.z., pp. 104-113 (Feb. 1965).

8. M. W. Goldman “Design of a High Speed
DDA,” Proc. FJCC, pp. 929-949 (1965).

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY
ELEMENTS BY MEANS OF A GENERAL-PURPOSE DIGITAL COMPUTER

Y. N. Chang and O. M. George
North American Aviation, Space and Information Systems Division
Downey, California

INTRODUCTION

For the purpose of this paper, a logical decision

network is defined as a system whose elements can
be in either of only two states, TRUE or FALSE.
Therefore the operation of the system can be de-
scribed by a set of simultaneous Boolean equations
which are functions of time. These states must be
defined specifically for each of the elements of the
system, and in particular might represent yes and
no, on and off, energize and de-energize a coil,
“make”” and “break” of a relay contact, presence
and absence of voltage at a node, open and close a
mechanical valve, etc.

Digital switching networks, relay control systems,
production and manpower scheduling, and the
transportation. problem are examples of logic sys-
tems. In logic systems like the last two examples,
the digital program is used to solve the problem. In
the first two examples, where hardware is involved,
simulation on a general-purpose digital computer is
used to verify the time-sequential operation of the
system before money and time have been spent in
building it. A simulation should also permit one to
vary the time delays in order to set tolerances for
design specifications. A third application would be
a study of the effects on the system of malfunctions
of any elements. Finally, if one has simulated the
checkout of various subsystems, it should be pos-
sible to simulate a combined system witheut recod-
ing the Boolean equations. All of this can be done

113

with the IBM 7094 program described herein. In
addition, the time-sequential states of all the ele-
ments are plotted on the S-C 4020 in the form of an
n-channel recorder chart.

The art of simulation involves building a mathe-
matical model which represents the system. Bool-
can algebra is the natural mathematics for a logic
system; however, Boolean algebra does not incor-
porate time per se. The authors propose and il-
lustrate an extension of standard notation so that
time relationships between cause and effect can be
expressed explicitly in the Boolean equations that
are written to describe the logical operation of a
system.

MECHANIZATION OF A LOGICAL SYSTEM

Input and Dependent Elements

Any physical device (e.g., relay coil, switch, light,
squib, or hydraulic valve) which has only two pos-
sible states is defined as a ‘logical element.” A
logical element can also be abstract (e.g., the set or
reset action of a motor switch, the grounding of a
buss, the short circuiting of a battery, or the pres-
ence of voltage at a node): Letter T is used to rep-
resent the ‘“‘true” state (i.e., on, closed, energized,
shorted, etc.) of an element, and the letter F repre-
sents the opposite “false’ state. A device which has
more than two states must be resolved into »n logical
elements. For example, an n-position rotary-type
stepping switch must be programmed as n logical

114 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

elements where each element is in state T only while
the switch makes contact at its position. In order
to simulate the operation of a system by means of
the digital computer program described in this
paper, each logical element must be identified by a
name of six or fewer legitimate alphameric char-
acters.

Input elements (e.g., hand-set switches, or radio-
command signals) are defined as those logical ele-
ments whose states are independent of the states of
other elements. The states of input elements are as-
signed from time to time during the simulation by
the entry of data.

A dependent element is defined as a logical ele-
ment whose state is determined by solving a Bool-
ean equation which expresses the state as a function
of time-delay variables and/or the states of input
elements.

Time-Delay Variables

A time-delay variable is always related to a logi-
cal element and, therefore, is identified by the same
name as its associated control element. For in-
stance, the coil of a relay (say dependent element
DEPEND) may control the operation of two time-
delay contacts. The states of these contacts would
then be time-delay variables in Boolean equations.
To indicate the source of control of the two con-
tacts, the name DEPEND would be used for each
appearance of the variables in the set of Boolean
equations for the logic system. The time-sequential
effect of the operation of each of the two contacts is
determined by their specific delays.

A special Boolean algebra notation is introduced
here to specify the time dependence of cause and
effect for a variable. Two types of time delay are
recognized. The a-delay is defined as the elapsed
time between a change of state from F to T of an
element and the resulting change from F to T of an
associated variable. The B-delay is defined sim-
ilarly for a change from T to F. These delays are
separated by a comma and written as a numerical
superscript on the name designating the variable
(e.g., V**fis written as DEPEND?>?). Each variable
may have a different set of « and @3 values even
though the variables are associated with the same
logical element (i.e., a relay may have several dif-
ferent time-delay contacts). The omission of o and
B implies that the change of state of the variable oc-
curs instantaneously with that of the control ele-
ment (i.e., no time delay).

As an example of this extended Boolean algebra
notation, refer to the equations given below in the

section “Application of Program to a Simplified
System.” In Egs. (1-3) switches START and
STOP are input elements (manually controlled), and
we have a 2-contact relay, CONRLY, and a 4-
contact device, TIMER, as dependent elements.
Equation (1) defines the state of dependent element
HORN as a function of three variables and relative
time. Time is explicitly included by means of the
a- and B-delays. The * represents the logical opera-
tion AND, -+ represents OR, and the bar over the
third variable represents NOT. Note that a time-
delay variable TIMER appears in all three equa-
tions but with different values of a. These three
terms (variables) represent three of the contacts of
the timing device, a dependent element whose state
is defined by Eq. (2).

The validity of the results of any simulation de-
pends on the accuracy with which the mathematical
model represents the physical system. The Boolean
program described in this paper is no exception to
the rule. The fundamental principles of modeling a
logic system are illustrated by the set of Boolean
equations (1-13). Since the illustrative control
system comprises only single-input electrical devices
(relays and timers) connected in series—parallel
groups, one can write the Boolean equations more
or less by inspection once the schematic diagram,
Fig. 3, has been drawn. However, an explanation
of scme of the details might be desirable.

The term (START + TIMER), in Eq. (2) for
the state of dependent element TIMER, represents
the fact that START is a momentary push button
which starts the timer immediately, but TIMER
continues in state T after the push button is re-
leased (i.c., after START changes from T to F).
The meaning of the time-delay variable TIMER %
is that although dependent element TIMER
changed from F to T state, the effective state of this
term will not become F (i.e., complement of T)
until 15 seconds later as indicated by the a-delay. A
similar time-delay variable TIMER>® appears in
Eq. (1). Therefore, the horn will start blowing
when the start push button is pressed, but it will
stop automatically 5 seconds later. The variable
TIMER ' in Eq. (3) signifies that dependent ele-
ment CONRLY changes from F to T state 10 sec-
onds after TIMER = T. Note that STOP is a
normally closed push button. The variable
CONRLY in the term (CONRLY + TIMER '%9)
maintains the element in state T until push button
STOP is pressed, even though the timer stopped
automatically after running for 15 seconds.

A f-delay of zero is indicated for each time-delay

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 115

variable in Egs. (1-3), which signifies that the
“drop-out” action of the contact is instantancous.
For hardware, the delays are never zero but they
may be small compared to other time intervals in
the sequential operation of the system. Proper
simulation may necessitate entering a small value,
rather than zero, for such a delay. The behavior
of dependent elements HORN, CONRLY and
TIMER is independent of the value of 8 so the
use of 8 = 0 is satisfactory for the simulation de-
scribed in Egs. (1-3). Conveyor A (Fig. 2) must not
start until after conveyor B is in motion, and should
shut down automatically if conveyor B stops. These
requirements are expressed in Eq. (4) by the a- and
B-delays on the time-delay variable CNVB*?,

A simple illustrative control system was chosen so
that the use of a- and B-delays in a Boolean model
could be explained. Many control systems incor-
porate multiple-input devices such as motor
switches, latching relays, and flip-flops. The states
of such a device should be related to the inputs by
means of a Veitch diagram so that the Boolean
equation will give a correct state for all combina-
tions of the inputs. A discussion of these techniques
for modeling logic devices is presented in the Ap-
pendix.

FUNCTIONAL DESCRIPTION OF DIGITAL
COMPUTER PROGRAM

The functional organization of the complete
program is shown diagrammatically in Fig. 1. The
philosophy of the basic control program is similar
to that of an earlier program' written by the au-
thors in machine language for the IBM 704. In de-
tail, however, the current program differs consider-
ably because it has been coded for a seven-index-
register IBM 7094 for operation ig the FORTRAN

1V IBSYS/IBJOB system, and new features have’

been incorporated as a result of use of the original
program in the analysis of many control systems.?

Basic specifications for the current program were
1) efficient use of core and 2) maximum execution
speed so that logical systems of 2000 or more ele-
ments could be simulated economically. The Bool-
ean structure of the FORTRAN IV source language
is not compatible with these specifications. Conse-
quently, the major part of the program is written
in the MAP symbolic language.

The Boolean equations which describe the logic
system are coded in MAP and assembled as a sub-
routine named BOOLEQ as illustrated in the fol-
lowing section and also in Fig. 4. The basic con-

CODED
BOOLEAN
EQUATIONS
AP
ASSEMBLY
| ! DATA CARDS [
[}
’ :
sooed | | eemens CONTROL sequenTIAL | |
susROUTING | 1 | NaME TaBLE CARDS weuts |
i |
S S AP BRSO J
CONTROL
PROGRAM
PRINT 5-C 4020 OPTIONAL
SEQUENTIAL PLOT OF SEQUENTIAL
DATA AND STATES PRINT 0F
DIAGNOSTICS VS TIME STATE CHANGES

Figure 1. Functional diagram of Boolean simulator program.

CONVEYOR A PUSH BUTTON STATION

o [START
L0 o STOP
O | SELECTOR SWITCH

G<] HORN

LOCKOUT STOP o CONVEYOR 8

CRUSHER /°© LOCKOUT STOP

4—— LEFT — CONVEYOR C — RIGHT—»

°LOCKOUT STOP
CONVEYOR E\‘

FLASHING SIGNAL

CONVEYOR D

FLASHING SiGNAL:

2 LOCKOUT STOP ° LOCKOUT STOP

CLASSIFIER STORAGE BIN

© LOCKOUT STOP

Figure 2. A conveyor system.

trol program solves the equations, checks for
incompatible states, prints diagnostic comments,
and increments time automatically to simulate the
operation of the logic system. The desired sequence
is directed by 1) states of input elements entered as
data at any time, 2) the time delays (which may be

116 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

SYMBOLS
-.\:Selsctor Switch Q Relay Coil or Device
e O Start Button Normally Open Relay Contact Normally Open

Rt Stop Button Normally Closed -~ Relay Contact Normally Closed

TIMER TIMERLS. 0
S o /A'Rl\ TIMER
\MERS, 0
- TIMER >M$ HORN
P4
START 10,0
TIMER™™ Control Relay
STOP | CONRLY l _/ CONRLY
Master Push Buttons
i 5,3
== CONRLY 53 cNVB 7\ Conveyor A
CNVCR } AK1
53 \of CWA
CRUSH™® "~ Cconveyor B
53 4 | AK2
cNveL ! \\ LT
! [Crusher
NODEA AK3
CRSHLO _/ CRUSH
3
SELSW C':“,’Ds @mnveyor C Right
ety & owee
CRVelo | SELSW 't @Conveyorc Left
CNVCL
: Selector Switch
| SELSW D
: ‘ fAi-(b\ Conveyor
| == CNVDLO (¢ acc5.3 CWD
SELSW v AKT Conveyor E
CNVELO X CNVE
Classifier
Y AK8
CLASLO y ncpg N asss
" rA;M\ Flashing Signal
hdd FLASHA
cnvel 0 FLASHA. 3
1 1 Flashing Signal
1t 1 FLASHB

Figure 3. Conveyor system schematic diagram.

varied), and 3) malfunctions simulated by the entry
of special data at any time.

At the option of the user, the states of selected
elements are compared with specifications (the ex-
pected states at that time entered as data) and the
results of the comparison are printed. If the specifi-
cations are met, the simulation continues. The user
may direct the program to continue if a specification
is not met; otherwise, it stops. Dependent elements
may be “disabled” to a T or F state at any time to
simulate the malfunction of a device. Subse-
quently, they may be ‘“‘enabled’” to simulate a repair
or replacement. The ‘“‘enable” feature is also used
to initialize the state of a dependent variable. The
normal «- and @-delays are specified in the coding
of the equations in subroutine BOOLEQ but they
may be varied at any time by a special data entry.
At the end-simulation time, entered as initial data,
the program plots the states of all the elements on
the S-C 4020 as a time-sequential recorder chart. At
the option of the user, a time-sequential tabulation
of all the changes of state will be printed. Provision
is made for entering a brief description of the system

which will be printed on the S-C 4020 plot to iden-
tify the results.

The simulated operation of the system starts at
time zero. The time is incremented variably, the
increment being determined at any time by the time
delays that are effective or by the entry of data or
specifications. This automatic feature of the pro-
gram relieves the user of the responsibility of
analyzing the system and selecting the proper incre-
ment at each instant of time and ensures that the
simulation will run at the maximum speed compat-
ible with the delays and the inputs of data. At each
increment of time, the program determines the
stable state of each dependent element by a repeti-
tive solution of the set of Boolean equations. The
transition states that appear during these solutions
may be used to detect critical and noncritical race
conditions as defined by Caldwell? A time-delay
subroutine applies the a- and g-delays of a variable
to the recorded time at which the associated control
element changes state and thus determines the effec-
tive state of the variable at each increment of time.
These delays permit the analysis of systems using
make before break, and break before make, types of
contacts. '

Debugging routines print diagnostic comments
and stop the simulation for indeterminate or incom-
patible states, or the improper entry of input states
and specifications.

APPLICATION OF PROGRAM TO A
SIMPLIFIED SYSTEM

The example described below was chosen to il-
lustrate the procedures for using the control pro-
gram and to show the input data and the printed
and plotted results of an analysis of a switching
network.

Description of the System

The physical arrangement of the system is shown
in Fig. 2. Conveyor A transports ore from a load-
ing area to the plant site. Conveyor B transfers
rough ore from conveyor A to the crusher. After
being crushed, the fine ore can be directed either
through conveyors C and D to a storage bin, or
through C and E to a classifier where the ore is
separated according to size. Start and stop push
buttons and a selector switch, which selects one of
the two modes of operation, are provided at the
master station. A horn warns workers off the con-
veyors prior to their movement, and several emer-
gency lock-out push buttons and flashing lights

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 117

SIBMAP CONVYR) €CCere10
* BOALTAN EQUATIONS FOR CCNVEYOR SYSTEM SWITCHING NETWORK cceese2c
. MAP ASSEMALED FOR USE WITH FORTRAN IV DECK 8L-030 €CCCECs0
» 0. M., GEORGE, 41-200-300, 4 JUN 1965 €CCLeG50
MAXN EQU SPECIFY PROPER WUMEFICAL VALUE CCCOuCs5
TABLE CONTRL TABLL cceeaced
usE TABLE ELEMENT~NAMES TABLE ceeeacel
RSS 50 MUST BE MULTIPLE OF 50 ceecnce?
. SET VARIABLE DIMENSIONS FUR ARRAYS ccecLore
[CONTRL € €CCeee?s
USE c 0CCCLOTs
85S 28MAXN# L ELEMENT STATES AND TIMES cCeenc??
BUFFA CONTRL BUFFA cceeecors
USE RUFFA INPUT-0UTPUT PUFFRER SIZE, €CeLoers
BSS 3eMAXN BUT NCT LESS THAN 2 TIMES THE MAXIMUM CCLGOCAn
. NUMBER OF BCOLEAN INPUTS AT ANY TIME £CCCO0A1L
USE €ceecon?
T £0U TEMP OEFINES T AS ALTCRNATE SYMBCL FUR TEMP. €C000084
. 10 ERASABLE LOCATIONS, TENP TG TEMP+9 €CCeoess
. 0CCesone
. FCLLEWING .*EQU' CARLS DEF INC THE 0€COCORT
. ELEMENT-NAME TABLE, 1.E. THE ASSIGNMENT OF €Ceeeona
. INTERNAL SEQUENTIAL CLEMENT NUMHERS. 0€CC0089
5TART EQU Cel 85CCLCO1
sTeP EW0 ce2 85€C9002
SELSW EWU C+3 850605003
FLASH EQU ce23 a5(Cy023
SPARE EQU Ce24 85€CI024
NODEA EQU ce25 a5cC5025
. €CCOCOov0
BOOLEQ SAVE €eeeceas
® START OF A3IOLIAN EQUATIEN NO. 1 FOR DEPENDENT EEEMERT *HONN® CCCen1ce
STR HOR! €CCOr105
cAL START LOAD LOGICAL ACCUMULATOR WITH STATE OF ¢START! €CC01:110
URA TIMER LOGICAL *OR* TO ACCUMULATGOR cccoul2e
SLW TEMP SAVE TEMPORARILY €CCCO130
. CALL THE DELAY SUBROUTINE FOR CONTRCL ELEMENT *TIMER? €CCE0140
. BASIC UMIT FOR ALL DELAYS IS CECISECONDS €CCoc14l
cALL DELAY(TINER,50,0) €CCooIse
. ARGUMENTS ARE (CCATROL ELEMENT,ALFA DELAY,BETA CELAY) £CC00155
com LOGICAL *NOT* ceeeciro
ANA TEMP LOGICAL *AND! TG ACCUMULATOR cecea1ao
TRA STATE ENC OF ROOLEAN EQUATICN FOR *HORN® €CCoe1se
* DBOJLEAN EQUATION NO. 2 FCR *TIMER® €0C062CC
STR TIMER €CCcee210
cAL START €ceer220
orA TIMER) €cCeon2ae
SLW M OPTIONAL USE OF T FOR TEMP €CCCC240
CALL DELAY(TINER,150,0) cocecase
com ccceearo
e EQUATIUN NO. 13 FOR FLASHING LIGHT B €CCO14C0
STR FLASHB €C€001401
. ILLUSTRATES COCED 0,0 DELAYS FOR VARIABLL FELAY FEATURE 0C0C1405
CALL NELAY(CNVE0,0) 0C001410
SLw T €CCO1415
CALL NELAY(FLASHA,30,30) €CC01420
ANA CUNRLY 0CC01440
ANA T €C00145C
TRA STATC €C001460
RETURN ROALLG,L ENC OF ALL ACOLEAN EQUATIGNS €CC01598
END €CC0is8%9

Figure 4. Sample page from subroutine BOOLEQ.

are installed at various points for safety reasons.
The relay switching schematic diagram is shown in
Fig. 3. Equipments are interlocked with time-
delay relays so that no equipments can start until
the downstream equipments are in motion. These
same interlocks automatically stop the upstream
components of the system when a piece of equip-
ment fails. With the time delays and selector switch
position shown in Fig. 3, the sequence of major
events for a possible operation are given in Table 1.

Procedures for Using the Control Program

1. Assign identifier names (6 or fewer legitimate
alphameric characters) to the input and dependent
elements (refer to Fig. 3). Prepare a descriptive list
of all the elements defining the T and F states for
each. For the conveyor system, F means off and T
means on, except for the selector sw1tch where F
means left and T means right.

2. Write Boolean equations for the dependent
elements as illustrated in Eqgs. (1-13). Use an * to

indicate a logical AND, a + for inclusive OR, a —
for exclusive OR, and a bar over the name (or an
expression) to indicate NOT.

HORN = (START + TIMER)

* TIMER™®)
(START + TIMER)

* TIMER '*° Q)
STOP * (CONRLY

+ TIMER'%%) 3)
CONRLY * (CNVCR?*?

+ CNVCL?*3) * CNVALO

* CNVB*? 4)
CONRLY * (CNVCR?*?

+ CNVCL%?) * CNVBLO

* CRUSH*?)
CONRLY * (CNVCR?*?

+ CNVCL%*?) * CRSHLO (6)
CONRLY * CNVCLO

* SELSW * CNVD?>?)
CONRLY *CNVCLO

* SELSW * CNVE*?)

TIMER

CONRLY

CNVA

CNVB

CRUSH

CNVYCR

CNVCL

118

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Table 1. A Simulated Operation of the Conveyor System
Time
seconds Inputs to, and /or Responses of, System

0 Input: Press master push button (i.e., input START = T).
Selector switch to the left (i.e., = F) for classifier opera-
tion is standard initial state; do not enter an INPUT.

0.1 Input: Set START = F to simulate release of momentary push
button.

5 Resp: Horn stops blowing.

10 Resp: Control relay CONRLY energized and starts classifier.

15 Resp: Timer resets to 0, and conveyor E starts together with its
associated flashing signals (they flash alternately).

20 Resp: Conveyor C left drive starts.

25 Resp: Crusher starts.

30 Resp: Conveyor B starts.

35 Resp: Conveyor A starts. All selected equipments operating.

50 Input: DISABLE conveyor E to off (= F) to simulate a mal-
function.

51 Resp: Flashing signals stop.

53 Resp: Conveyor C left drive stops.

55 Input: Press safety lockout button (CNVELO = T). Set selector
switch to right (= T) for storage bin operation while con-
veyor E is being repaired.

Resp: Classifier stops; conveyor D starts.

56 Resp: Conveyors A and B and the crusher stop because the
selector switch was changed.

60 Resp: Conveyor C right drive starts.

65 Resp: Crusher restarts.

70 Resp: Conveyor B restarts.

75 Resp: Conveyor A restarts.

90 Input: Reset lockout button (CNVELO = F), set selector switch
back to left (SELSW = F) and ENABLE conveyor E to
off (= F) to simulate restoration of classifier operation
after repair of conveyor E.

Resp: Conveyors D and C-right-drive stop; classifier starts.

93 Resp: Conveyors A and B and the crusher stop.

95 Resp: Conveyor E and associated flashing lights restart.
100 Resp: Conveyor C left drive starts.
105 Resp: Crusher starts.
110 Resp: Conveyor B starts.
115 Resp: Conveyor A starts.
118 Input: Push master stop button (STOP = T). Stops entire

120

system.

End of simulation.

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 119

CNVD = CONRLY * SELSW
* CNVDLO ©)

CNVE = CONRLY * SELSW
* CNVELO * CLASS™? (10)

CLASS = CONRLY * SELSW
* CLASLO (11)

FLASHA = CONRLY * CNVE®
* FLASHB (12)

FLASHB = CONRLY * CNVE®
* FLASHA™? (13)

Note thrat conveyor C has been assigned two names:
CNVCR for motion to the right, CNVCL for
motion to the left. Also note in Eqgs. (12) and (13),
that the delays for variable CNVE have been spe-
cifically indicated as®®. This was done so that the
Boolean equations contain nominal walues which
can be varied at execution time, like all the other
delays, by the entry of special data. This feature
is illustrated by the printout in Fig. 6, which shows
that the 3-delay was changed to 10 deciseconds.

The term [CONRLY * (CNVCR?®? 4+
CNVCL?*?)] appears in each of Egs. (4-6). The
code for subroutine BOOLEQ may be simplified
by assigning name NODEA (see Fig. 3) to a point
in the schematic diagram. Now we write

NODEA = CONRLY * (CNVCR*?
+ CNVL*?) (14)

so that Eqs. (4-6) can be simplified to
CNVA = NODEA * CNVALO

* CNVB*? @"

CNVB = NODEA * CNVBLO
* CRUSH*? (5"
CRUSH = NODEA * CRSHLO (6")

A further simplification can be made in the code for

subroutine BOOLEQ when one has a string of terms

of the form

A*B*C*...
By using DeMorgan’s theorem, Eq. (11) could be
written
CLASS = CONRLY * (SELSW + CLASLO)

a1

so that instead of complementing each variable, we

OR the variables and complement the result.

3. Code the Boolean equations in the language of
the particular digital computer being used. For the
IBM 7094, a typical example follows for dependent
element HORN;, i.e., Eq. (1):

Code Comment
STR HORN Start of instructions for the horn
CALL DELAY Control element is timer, «-
(TIMER,5,0) delay is 5, B-delay is O
COM Complement the state
(i.e., NOT)
SLW TEMP Save temporarily
CAL TIMER Load the logical accumulator
with state of the timer
ORA START OR the state of start switch
ANA TEMP AND the result saved from
DELAY
TRA STATE End of Boolean equation

4. Assemble the code to produce a MAP sub-
routine named BOOLEQ, that is compatible with,
and will be combined with, the machine-language
control program (see the sample in Fig. 4). The
Boolean equations need not be written or coded in
a particular order. If there is a stable set of states
at each instant of time, the repetitive solution pro-
cedure in the control program will terminate nor-
mally; otherwise, a diagnostic message is printed
and the simulation is aborted.

INPUTS TO PROGRAM AT
EXECUTION TIME

Figure 5 is a sample of the type of data sheets
that were prepared for a simulation of the operation
of the conveyor system. Note that a set of data
cards, terminated by an * in column 1, is prepared
for each data-read time. At ¢ = 0, the element
name table, a special control card and one to six
title cards terminated by an * in column 1 must be
the first cards of the data deck. These cards are not
illustrated. Initial Boolean data are entered as
shown on card No. 9. In addition, the basic criteria
for the simulation must be entered as shown on card
No. 10. An entry on this card gives the next time in
basic units (deciseconds in this case) at which data
can be read.

Note that element numbers, which are determined
by the order of element names in the name table,
are used in entering the T or F states of the element.
A special data-reading subroutine is used to facili-
tate the entry of Boolean data in the relatively free
form indicated on cards No. 9 and 18. This sub-
routine also permits the intermixture of Boolean
and integer data cards; the type is indicated by a
designator in the first field of each card. Subsequent
to ¢ = 0, it is only necessary to prepare cards for the
Boolean data to be read at each data-read time, and

120 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966
NUMBER IDENTIFICATION DESCRIPTION DO NOT KEY PUNCH

L] Trwrue r=0
Slijr,3.7.,.8 Boolean dats, Four classes possible: INPUT, SPECIFY, DISABIE and
28 ENABIE. Order of these cards is not significant. The $ indicstes
[ﬂ the end of a variable length string for each class.
ol

E _ Y
:Ll— I 1 Integer-t; data,
‘2 Q E__Nonzero o8 check for race conditions |
[2—5 12 0 0 MAXT Maximum simulation time (basic units of tims)

[!1 1.0 ALE (e basic unit is decisec rints in seconds |
i 1f; NXTIME Next time to read data (basic units of time)

s] 1 1, 0] ISPEC Nonzero for continue if bad specification

ll- L 1.0 * indicates last data card at ourrent time

l'—3- 1 Number of sets of variable delays entered

lﬂ. 2.2 ndent element number

EI _ 2.0 Control element number

[L [0 14 { Alpha delay (not changed but must enter)

E 1l 0 1, 1] Reta delay (changed from coded O; basic units of time)

- - st
,_/-\—"‘—’\MNW——.\/ e e

[ll D I SA B LE t = 50
I'—’j 2]o F. ,$ or E (dependent elément No, 20) to off, Simlates a
2 of the e 1% t ate to.F and euaing |
Z the solution of the Boolean equation until some later ENABLE

&)

o s

Figure 5. Sample of data sheets.

to designate NXTIME. The simulation is ter-
minated automatically at time MAXT.

OUTPUT FROM EXECUTION
OF PROGRAM

For the example shown in Fig. 3 and Table I,
input conditions were entered at times 0, 0.1, 50, 55,
90 and 118 seconds and specifications at various
times. Several incorrect specifications were entered
to illustrate the bad-specification printout. The data
and specifications printout is shown in Fig. 6. The
program can print a maximum of six lines of prob-
lem description (60 alphameric characters maximum
per line). Unused lines are left blank. Note in
Fig. 6 that a state was entered at time zero for input
variable START only. The program automatically
sets all the other states to F., No input element
should ever be set to F by data unless it has pre-
viously been set to T. Also, note that operation of
the spring-loaded master start button START was

simulated by a data entry at 0.1 second signifying
release of the button.

In addition to the data and specifications print-
out, the control program plots a complete time
history of the states of the elements on the S-C 4020
(see Fig. 8). A print subroutine is provided to
enable the engineer to obtain a selective time-
sequential printout of the elements which changed
state as illustrated in Fig. 7.

SUMMARY

The original program' has been used for the
analysis of many aerospace control systems? and
this experience provided the basis for the new pro-
gram described in the present paper. One result
was the development of a special data-reading sub-
routine to simplify the entry of Boolean data.
Another result was a simplification of the printed
output which eliminated the searching of records on
tape and shortened the execution time. The con-

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 121

CHECKOQUT CF 8L-02C BUOJLEAN ANALYSIS PRUGRAM WITH EQUATIONS
FOR CONVEYOR SYSTEM SWITCHING NETWUORK.
3ASIC UNIT OF TIME IS DECISECONDS

O+ Me GFCRGEy 41-20C-300y 4 JUN 1965

¥k T [ME 0.0 SECCNDS
MAX ELEMENT NO. = 25 MAX TIME =
CONTINUE = T PRINTY = T. NEXT CASE = F

INPUT VARTABLES ENTERED

ELEMENT STATE
1 T
VARIABLE DELAYS ENTERED
ELEMENT CONTROL ALFA DELAY
22 20 0

kT IME Oe«1 SECCNDS

INPUT VARTABLES ENTERED

ELEMENT STATE
1 F
%% TIME 5.0 SECCNDS
SPECIFICATICNS ENTERED
ELEMENT STATE
1# T
2l T
11 F
FOLLCWING SPECS NOT MET
ELEMENT STATE
18 F G.0
21 F 0.0

*%% TIME S0.0 SECCNDS
DEPENCENT ELEMENTS DISABLED
ELEMENT STATE
20 F

1200

SCALE
SAVE STATE

10
F RACE-CHECK INDICATOR = F

BETA DELAY
10

SINZE TIME (SECONDS

Figure 6. Sample printout of inputs and specifications.

veyor system simulation summarized in the plot
(Fig. 8) represents a two-minute operation of the
system; the IBM 7094 execution time was only eight
seconds. This increase in speed of execution was
also due to the programming of a greatest-increment
selection procedure which relieves the user of the
responsibility of analyzing the system and selecting
the proper increment at each instant of time. This
automatic feature also ensures that no critical event
will be missed as a result of making a time step that
exceeds any effective delay. An S-C 4020 plot of the
results was added which increases the accuracy and
speed of analysis of a logical system. In most cases,
this plot is sufficient and the maximum speed of
execution is obtained by not entering any specifica-
tions and by not requesting a printout of the results.

Normally, the production of a digital simulator
program involves two steps: creating the model, and
then writing the program. SIMSCRIPT* is a gen-
eralized language that permits the model and simu-
lator program to be written in a terminology that is
more oriented to simulation than is the language of
FORTRAN. The SIMSCRIPT preprocessor pro-
duces a set of routines which can be compiled by
FORTRAN to produce machine-language decks for
a general-purpose digital computer. We recognize
the power of a generalized language for pro-
gramming simulations, but wish to point out that
for the class of problems (analysis and debugging
of control systems, the transportation problem, and
certain manpower and production scheduling prob-
lems) which can be solved by the special program

122 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

RESULTS GF BOOLEAN ANALYSIS

%% TIME 0.0 SECONDS
ELEMENT STATE ELEMENT STATE
*START T HORN T TIMER
*%% TIME Ce1l SECCNDS
ELEMENT STATE ELEMENT STATE
*START F
***x TIME 5.0 SECCNDS
ELEMENT STATE ELEMENT STATE
HORN F
*x% TIME 10.0 SECCNDS)
ELEMENT STATE ELEMENT STATE
CCNRLY T CLASS T
*%% TIME 15.0 SECCNDS
ELEMENT STATE ELEMENT STATE
TIMER F CNVE T
% TIME 18.0 SECONDS
ELEMENT STATE ELEMENT STATE
FLASHA F FLASHB T
*k%x TIME 20.0 SECCNDS
ELEMENT STATE ELEMENT STATE
CNVCL T
*%xx TIME 21.0 SECCNDS
ELEMENT STATE ELEMENT STATE
FLASHA T FLASHB F

ELEMENT

ELEMENT

ELEMENT

ELEMENT

ELEMENT

FLASHA

ELEMENT

ELEMENT

ELEMENT

ST?TE ELEMENT STATE ELEMENT STATE
STATE ELEMENT STATE ELEMENT STATE
STATE ELEMENT STATE ELEMENT STATE
STATE ELEMENT STATE ELEMENT STATE
ST:TE ELEMENT STATE ELEMENT STATE
STATE ELEMENT STATE ELEMENT STATE
STATE ELEMENT STATE ELEMENT STATE
STATE ELEMENT STATE ELEMENT STATE

Figure 7. Sample printout of results of simulation.

described in this paper, only the model needs to be.

programmed and debugged. The executive program
is invariant; it has already been written and checked
out for correct operation, simplicity of data entry,
appropriate diagnostic messages, and a concise pre-
sentation of the results of the simulation.

The program described in this paper has saved
thousands of dollars and man-hours by permitting
the checkout of a control-system design before time
and money are spent in building it. The program
has also been used for the analysis of ‘“‘race” condi-
tions in relay circuits, single-point failures, and the
effects of malfunctions or proposed changes in
design.

Appendix

TECHNIQUES FOR MODELING
LOGIC DEVICES

A logic device is described conventionally by
stating the relationship of its outputs to the inputs.

In this paper, instead of relating the outputs directly
to the inputs, we establish an intermediate state for
the device, or so-called dependent element. The
outputs are then related to the dependent element
by time-delay variables. To relate the states of the
element to the inputs, it is necessary to have a com-
plete logical description of the states, otherwise the
simulation may give incorrect states to the element
for those input conditions which are not defined. A
good way to relate states to inputs is to use a Veitch
diagram except for single-input devices in which
case the state-to-input relationships are sequential
(i.e., time-delay relationships) rather than combina-
tional.> The model of the element is simply the
Boolean equation for the Veitch diagram. The fol-
lowing exampiles illustrate this procedure.

Motor Switch

This device uses a motor to open or close a set of
contacts. There are two inputs, one for the set
action and the other for reset. Figure 9 is a
schematic diagram of a motor switch in which it

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 123

CHECKOUT OF 8L~030 BOOLEAN ANALYSIS PROGRAM WITH EQUATIONS FOR CONVEYOR SYSTEM SWITCHING NETWORK,
BASIC UNIT OF TIME IS DECISECONDS
O. M. GEORCE, 41-200-300, 4 JUN 1965

NODEA
SPARE
FLASHB
FLASHA
CLASS
CNVE
CNVD
CNVCL
CNVCR
CRUSH
CNVB
CNVA
CONRLY)
TIMER
HORN
CLASLO
CNVELO
CNVDLO|
CNVCLO
CRSHL.
CNVBLO
CNVAL
SELSW
STOP
START

D 1i8Ta033334485133800008383)0aRRTTTT T
182’ 336925 33 S 33 b.!llﬁﬂ
6666666bédéd6666606660666600000“0“06“{

TIME IN SECONDS

Figure 8. S-C 4020 plot of true states.

takes 10 milliseconds to open or close the contacts. The action of the motor can be written very simply
Let us label the components and actions by the fol- as follows:
lowing identifiers:

SET = SNODE * MTRSW?o. 00! (15)
MTRSW the motor switch

SNODE input node for set RESET = RNODE * MTRSW?%.00! (16)
RNODE input node for reset
SET set action of motor The state of the motor switch, however, should first

RESET reset action of motor be represented by a Veitch diagram

124 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

miRsw fs;\ [SET ACTION
v i

SNODE

INPUTS

RNODE

-
]
]
]
|
]
|
|
|
|

a,B
| MIRSW mTRESET ACTION
L — RESET

!

]
]
]
]
]
I
|
]
|
|
]
L

OUTPUT VARIABLE— | o-MTRSW 8

COMPLEMENT VARIABLE ot o~ MTRSW "2

———— e

Figure 9. Motor switch.

SET SET
impossible F
RESET T

no change

so that all the possible states are included in the
Boolean equation that is written for dependent ele-
ment MTRSW. Note that one block of the diagram
is labeled “‘impossible”” because of the interlocks
indicated in Eqg$. (15) and (16). The Boolean equa-
tion for the motor switch can now be written from
the Veitch diagram and comprises two terms as
follows:

MTRSW = (SET * RESET) _
+ (MTRSW * SET * RESET) (17)

The first term specifies the T state, and the second
defines “no change” (i.e., it is a memory term). It
is not necessary to have a term for the F state be-
cause it is implied by the nature of binary algebra.

Magnetic Latching Relay

~ In this device, two permanent magnets are used in
conjunction with a set coil and a reset coil. When
both coils are energized or de-energized simul-
taneously, there is no resultant force to move the
switch; it remains in its previous state. When only
one coil is energized, the relay is set or reset accord-
ingly. Figure 10 is a schematic diagram of a mag-
netic latching relay with 5 millisecond «- and g-
delays for the output variables. Let us identify the
components by the following names:

LATRLY the latching relay
SNODE input node for the set coil
RNODE input node for the reset coil

SET the set coil
RESET the reset coil

SET COIL

()
MAGNET

r bl
]]
] [}
1 [}
] [}
T]
] |
1]
' LATRLY @8 !
I i !
INPUTS OUTPUT VARJABLES
1 1
! T~ !
|]
] [}
] }
] [}
|, |
[|
] i
] |
1 [}
L J

SNODE

LATRLY 8

ﬂ:\cnn

RESET COIL

RNODE

Figure 10. Magnetic latching relay.

The equations for the set and reset coils are
SET = SNODE (18)
RESET = RNODE (19)

The possible states of latching relay LATRLY may
be shown in the Veitch diagram

SET SET
RESET no change F
RESET T no change

from which the Boolean equation

LATRLY = (SET * RESET)
+ LATRLY * [(SET * RESET)
+ (SET * RESET)] (20)

may be written. This example is similar to that for
the motor switch, but it shows how an additional
item in the Veitch diagram affects the equation for
dependent element LATRLY. The output of the
device will appear as a time-delay variable
LATRLY*? in the equations for other elements
of the system. In a particular case we might have
a = # = 0.005 seconds.

The latching relay is a frequently used component
coding of its representation in the Boolean equa-
tions for the system, one should code a subroutine
for such a device and merely call the subroutine
with specific arguments (i.e., element names) each
time that type of device is encountered. Figure 11
is the IBM 7094 code for a magnetic latching-relay
subroutine,

Three-Input Flip-Flop

The three inputs might be set, reset and clock rep-
resented by S, R, and K respectively in the following
diagram.

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 125

$IBMAP LATCH 00C00C00
. BASIC MAGNETIC LATCHING—-RELAY SUBROUTINE occoceol
* USE AS FOLLOWS €€C0CC02
» STR RELAY 06C00CO03
* CALL LATCH(RELAY,SET,RESET) 00Cc0CCOo4
- TRA STATE 0gceccos
. A PARTICULAR CASE MIGHT BE CCCOCCOo6
- STR LR234 BEGIN EQUATION FOR LATCHING RELAY gococcaor
L CALL LATCH{LR234,LR234S,LR234R) gccoccos
L4 TRA STATE END EQUATION FOR LATCH RELAY LR234% cccocco9
ENTRY LATCH €CC00010
LATCH CAL+* 404 00C00011
ORA# Set 0CcCcoCl2
COM 00co0013
SLW T 00000014
CAL» b4 0CCOCO015.
ANA#® 5S4 0CCC0016
ORA T 00C00017
ANA# 3,4 00€00018
SLW T oceccocle
CAL» 5+4 €€Ccoo020
CoM 0cco0o021
ANA= 444 00c0cc22
GRA T €0C00023
TRA 1,4 RETURN TO BOOLE AN EQUATIONS 00€00024
T BSS 1 Q0C00C25
END €CC00026
Figure 11. Magnetic latching-relay subroutine.
S —— D
FF g _ + . R
]) H—
K
The output Q may be defined by the Veitch diagram for which the Boolean equations are quite straight-
_ - forward. For example
5 > S > N A*B C 22)
R [no change F no change | no change (_) M (
= R=D+E*H (23)
R T no change | no change { no change
K X The input signal K to the flip-flop might come from

from which the Boolean equation for the clock-
controlled flip-flop is

Q=(I_(_*S*—R)+Q*[K*(R*S+T{*§)’
+ K] €2y
This type of flip-flop is used in digital logic design
where the set and reset signals S and R might come
from gating logic such as

A

F— + f— s

a ‘“‘one-shot” pulse generator M, a single input
device, where J is the input to device M which gen-
erates a pulse 0.5 msec wide.

J— M —K

M= (24)
Then

K = J * M09 (25)
or a simpler expression is ‘

K = J* Jo000 (26)

126 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

However, if the input K to the flip-flop comes from
al-KCclock V,

whose input is P, then

K — P * V0.0005,0.0005 (27)
for the signal K, and
V=P*K (28)

for the 1-KC clock.

REFERENCES

1. Y. N. Chang and O. M. George, “Use of
High-speed Digital Computers to Study Per-
formance of Complex Switching Networks In-
corporating Time Delays,” AIEE Transactions, vol.
78, pt. I, pp. 982-987 (1960).

2. T. C. Preston and E. A. Estrine, “Spacecraft
Electrical System Analysis,” IEEE Proceedings of
International Conference on Aerospace Electrotech-
nology, vol. AS2, no. 2, pp. 623-629 (1964).

3. S. H. Caldwell, Switching Circuits and Logical
Design, John Wiley and Sons, New York, 1958.

4. H. M. Markowitz, B. Hausner and H. W.
Karr, SIMSCRIPT, a Simulation Programming
Language, Prentice-Hall, New York, 1963.

SIMULATION OF A MULTIPROCE3SOR COMPUTER SYSTEM

Jesse H. Katz
International Business Machines Corporation, Scientific Center
Los Angeles, California

1. INTRODUCTION

Computer simulators have generally been con-
structed at one of two levels of detail: the instruc-
tion level or the bit-time (logic) level. Such simula-
tors have been produced for many years now and
their value is well established. By contrast, only
minor attention has been given to simulating com-
puter systems at a macroscopic level. One type of
macro-level simulator has been reported recently by
Hutchinson'; in his model the simulated system
consists of an entire computation center, with the
computer representing merely a component.

As computer systems grow increasingly complex
the macro-level modeling of such systems becomes
increasingly useful. By applying such a model one
can predict the performance of the system on a pre-
scribed job load, and/or evaluate the effect of var-
ious parameters on system performance.

In this paper we report on an experimental model
that is applicable to a class of multiprocessor oper-
ating systems including IBM’s Direct-Couple Oper-
ating System (DCS). The model has enabled us to
evaluate the effect of selected hardware parameters,
software parameters and environmental parameters
on the performance of a DCS-type multiprocessor
operating system. The principal measures of system
performance produced by the model are statistics
on turnaround time, throughput, equipment utili-
zation, and job queues.

The paper is in eight sections. Section 2 discusses

127

the main features of the existing Direct-Couple
Operating System. Section 3 sketches the simulated
system treated by the model. Section 4 gives an
overview of the simulation system, which consists
of two computer programs—the Job Generator and
the Simulator. Section 5 discusses the Job Gener-
ator, an auxiliary program which generates the
properties of specific sets of jobs that are fed to the
Simulator. Section 6, the principal section of the
paper, discusses the Simulator itself. Section 7 dis-
cusses the analysis supporting the specification of
the Overhead Analyzer, an important component of
the Simulator. And Section 8 summarizes the main
findings.

2. MAIN FEATURES OF THE DIRECT-
COUPLE OPERATING SYSTEM

A main purpose of the multiprocessor model is
to evaluate the Direct-Couple Operating System.
Thus DCS, as actually implemented, is of central
importance in the model. DCS is described in vary-
ing levels of detail in appropriate documents of the
IBM Systems Reference Library.”* 1In this section
we discuss its main features. The section is offered
as background for subsequent sections of the paper.

The development of DCS is a natural result of
two major trends in computer development. One is
the trend towards multiprocessing computer sys-

128

[BM 704x Data Proccasing System IBM 709x Data Proccssing System |
o Performs execution of DCS DC Channel | ® Performs job processing

program itself T ® Requests 1/O via 704x
® Services 709x I/O requests {
@ Selects jobs for 709x 1
® Provides for man/machine

communication |

|
Channel A Channel B ﬂ.

IBM 1402 Card Read Punch

® Provides direct link from 1301
to 709x for transmitting 709x
programming systems

® Provide for punched
card 1/0

Preprocessing Phase

IBM 1403 Printers 1BM 1301 Digk Storage

________________ - -~ — s e L e

® Provides for residence of
709x programming systems

® Provides intermediate storage
for 1/0

® Provide for printed output

IBM 1014 Remote

_____ ® Provide for tape 1/O
® Provides additional
facilities for man/machine

communication

Figure 1. DCS machine configuration.

tems. The other is the trend towards increasingly
automatic operating systems. Figure 1 shows the
general machine configuration of DCS and the
principal functions of the various equipments.

The main advantages of DCS are that 1) it mini-
mizes the need for operator intervention (and gener-
ally overlaps such intervention with useful compu-
tation) and 2) it processes several jobs in parallel.
The parallel processing of jobs makes it possible
for the system to time-share'its various equipments
to a greater extent than is realizable with serial
processing.

In general, any given job which DCS processes
goes through three phases: a preprocessing phase,
a processing phase and a postprocessing phase.
Each phase consists of one or more stages. The
preprocessing phase consists of the input and setup
stages; the processing phasg consists of the execu-
tion stage; and the postprocessing phase consists of
the breakdown, punch, print and purge stages. An
additional stage, the utility stage, is not associated
with any of the three phases; it occurs in lieu of the
execution stage. The phases and stages, and their
principal functions, are shown in Figs. 2, 3 and 4.

With regard to modeling, three properties of DCS
stand out in importance.

1. Commutator Control. The main loop of the
DCS control program consists of a commutator,
i.e., a sequence of gates (or switches) which re-
linquishes.control to various parts of the DCS con-

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

® Analyzes a job's control carde and
enters job in DCS

® Converts a job's input deck to "DCS"
format and stores on disk¥

® Selects available tape units

® Signals operator to mount tape units

® If necessary, converts input tapes to
DCS format and stores on disk

Figure 2. DCS: preprocessing phase.

et
3

Proéqssing Phase

-—---

Execution Stage

®Selects job from queue for processing

® Transmits (part of) job's input file to
704x buffers

® Establishes 704x buffers to receive
job's output

® Transmits appropriate programming
system (DC-IBSYS) to 709x

eTransfers control to job via DC-IBSYS

® Performs tape-to-print, tape-to-punch
and card-to-tape operations for records
in DCS format

Figure 3. DCS: processing phase.

¥

Postprocessing Phase

oIf necessary, deblocks
709x output (from DCS for-
mat) and transmits to tape

®Rewinds tapes and returns
them to availability status

o If necessary, deblocks 709x
output for (simulated) 720
printing

® Punches output previously

stored on disk

® Prints output previously
stored on disk

® Purges data pertaining to
job from 704x and disk

Figure 4. DCS: postprocessing phase.

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 129

trol program for only very short bursts of time.*
Therefore, in a strictly imitative model, the model
clock would advance in microscopic increments.
This renders a strictly imitative approach incom-
patible with a macro-level model.

2. Parallel Processing. The fact that DCS proc-
esses jobs in parallel means that the model must
view all jobs in the system concurrently. This re-
quirement has led to the system-state approach
described in Section 6.

3. Facility Sharing. For efficiency purposes cer-
tain facilities within a multiprocessor system are
generally shared by several jobs. An important
instance of facility-sharing in DCS is the sharing of
the disk by programs residing on the 709x and 704x.
Whenever programs on both computers make com-
petitive demands for the disk, one program is de-
layed while the other is serviced. Thus, the sharing
of facilities is a major contributor to overhead'
occurring in a multiprocessor system. The treat-
ment of overhead in the model is of basic impor-
tance and is handled by the Overhead Analyzer.

3. THE SIMULATED SYSTEM

The extent of the simulated system is indicated in
Fig. 5.

An individual job may be submitted by a pro-
grammer at a remote station or a remote terminal;
it is at this point in time that simulation of the job

begins. Simulation of the job continues until the

time the job is returned to the originating station or
terminal, Thus, the model is able to give simulated
results on turnaround time. The gross events for a
job submitted at a station are the following:

e A messenger picks up the job at the sta-
tion and transmits it to keypunching
and/or “central in” of the computer sys-
tem. . o .

e The job is processed by the computer
system proper and stacked at ‘‘central
out”’ of the computer system.

e A messenger picks up the job at “central
out” and delivers it to the originating
station.

For a job submitted at a remote terminal, messenger
pickup service is not required; messenger delivery

*A multiprocessor control program is mechanized in this way
in order to (try to) keep the various equipments in the system
continually busy.

Overhead, in a general sense, is defined as time not devoted
to the performance of directly useful work. Overhead is defined
in a numerical sense under “Updating the Matrix”* in Section 6.

e —————— = ————— ﬁ
Remote | . .)
Stations | M |
L e oo —-——d
Key Central Central
Punch In Out

——--

| |
1 i
| |
| |
! I
| l
! [
| |
| !
L |
] |
| |
| |
| |
L _I

Remote
Terminals

Computer System Proper

Figure 5. Simulated system.

service may or may not be required, depending on
whether or not off-terminal output is generated.

An individual job is simulated at a more detailed
level during its passage through the computer sys-
tem proper. Here, a job is simulated at the “‘stage”
level. Thus, the model is able to give simulated
results on throughput time, i.e., time through the
computer system proper. Figure 5, Computer Sys-
tem Proper, shows the 12 stages included in the
model. In a typical case a job might be processed
by the following stages:

Card input stage—to read job’s input onto disk;

Setup A stage—to mount an input tape for the job;

Setup B stage—to convert contents of input tape to
an internal f)rocessing format;

Execution stage—to perform job’s main execution
(input from disk and output to disk);

Breakdown stage—to reconvert tape output and re-
lease tape;

130 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Punch stage—-to punch output stored on disk; and
Print stage—to print output stored on disk.

The arrows shown in Fig. 5 indicate the preced-
ence relations among stages. This concept is an im-
portant one in connection with a multiprocessor
system and will be discussed in Section 6 (under
“Software Parameters’).

4. OVERVIEW OF THE SIMULATION
SYSTEM

The multiprocessor simulation system (Fig. 6)
consists of two computer programs: the Job Gener-
ator and the Simulator.

The Job Generator is an auxiliary program which
generates the properties of jobs that are fed to the
Simulator. The program accepts as input the sta-
tistical properties of the user’s job population. Its
output consists of parameters that characterize a set
of specific jobs; the set represents a sample drawn
from the user’s population of jobs.

The Simulator accepts two general kinds of input:
1) the output produced by the Job Generator and 2)
user-supplied input. The latter includes parameters
that characterize the hardware system, the software
system, and the environment of the computer
system. Output from the Simulator consists of
various statistics that give measures of system per-
formance.

The Simulator consists of two parts: the Simula-
tor Proper and the Overhead Analyzer. The Over-
head Analyzer is subordinate to the Simulator
Proper and services the Simulator Proper on de-
mand. The Simulator Proper is virtually inde-
pendent of the computer system configuration, the
configuration-dependence being buried almost ex-
clusively in the Overhead Analyzer.

5. THE JOB GENERATOR

An individual job fed to the Simulator is charac-
terized by 21 parameters:

1. Job identification number.
2. Time-of-arrival in system.
3. Station or terminal at which job ar-
rives.
4. Job priority, e.g., 0,1,2,..., with
“zero” the lowest priority.
5. Maximum time in execution stage, as
specified by programmer.*
6. Maximum number of lines of printed
output, as specified by programmer.
7. Maximum number of cards of punched
output, as specified by programmer.
Keypunching time,
9. Whether job enters computer system
via cards or tape.
10. Whether I/O is direct mode or com-
patibility mode."
11. Rate of I/O calls during execution
stage.
12. Number of cards of input.
13. Number of characters of remote termi-
nal input.

oo

*Parameters (5), (6) and (7) are programmer-specified cutoff
parameters.

Two modes are available in DCS for data transmission be-
tween the 709x and 704x: direct and compatibility. Direct
mode I/O conventions take full advantage of DCS facilities
whereas compatibility mode I/O conventions do not; thus direct
mode transmission is faster. Jobs written in FORTRAN 1V,
COBOL and MAP operate in the direct mode inasmuch as the
IBM 7090/7094 IBJOB Processor operates on DCS in the direct
mode. Other kinds of jobs written for the standard 709x Data
Processing System operate on DCS in the compatibility mode.

User-supplied Input:
esimulation control parameters SIMULATOR
ehardware parameters r TTTTETEs s -'
e software parameters
eenvironmental parameters | !
> PART I: !
| |—p| Measures of
Statistical | | o] _# SIMULATOR PROPER Persf};srt::\?nce
Properties JOB Parameters for * *
of User's Job GENERATOR Specific Set of Jobs
Population : PART II:

|
|
|
| JOVERHEAD ANALYZER
|
|
|

Figure 6. Simulation system.

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 131

14. Base time* for setup A stage.

15. Base time for setup B stage.

16. Base time for execution stage.

-17. Base time for utility stage.

18. Base time for breakdown stage.

19. Number of cards of punched output.

20. Number of lines of printed output.

21. Number of characters of remote termi-
nal output.

It is the function of the Job Generator to construct
sets of job parameters that reflect the actual jobs of
a particular user’s installation. Thus, the input to
the Job Generator consists of statistics on the user’s
job population. The input consists mostly of 1)
frequency distributions for individual job param-
eters and 2) data specifying correlations among
various parameters.

In order to help specify the generator an extensive
analysis was made of a full month’s actual data of
a large aerospace company. The analysis included
the computation of frequency distributions, means
and standard deviations for all job variables, as well
as the computation of scatter diagrams and cor-
relation coefficients for various pairs of variables.
In addition, statistical significance tests were made
in order to insure that the data sample was suf-
ficiently reliable.

6. THE SIMULATOR

In this section we describe the Simulator itself.
The section consists of six parts. The first two dis-
cuss input and output of the Simulator respectively.
The third part discusses the basic approach of the
model, the system-state approach. Part four pre-
sents the model logic. The fifth part reviews some
basic concepts in Simscript, the language in which
the model is mechanized. And the final part de-
scribes the program organization of the Simulator.

Simulator Input

In addition to the sets of job parameters fed to the
Simulator (Section 5), four other classes of param-
eters are required: simulation control parameters,
hardware parameters, software parameters and en-
vironmental parameters.

Simulation Control Parameters. Parameters that
control simulation include 1) time simulation be-

*Base time for a multiprocessor stage is the processing time
for that stage under conditions of “no overhead” in the multi-
processor system. In general, actual processing time for a stage
is greater than base time due to the existence of overhead.

gins, 2) time observation begins,t 3) time simulation
ends, and 4) options governing simulation output.

Hardware Parameters. Hardware parameters in-
clude 1) number of read-punch units, 2) number and
types of printers, and 3) number of remote termi-
nals. Thus, hardware parameters serve to specify
an equipment configuration.

Software Parameters. Software parameters enable
us to study the effect of scheduling jobs within a
multiprocessor system under various scheduling
policies.

Fixed Versus Dynamic Stage Scheduling. One
such parameter is fundamental and specifies the
stage scheduling mode: fixed or dynamic. DCS,
as implemented, schedules job stages in a fixed
sequence, i.e., a given job has its stages executed in
an unvarying sequence each time it is run. It is
possible, however, for a multiprocessor control
program to schedule job stages dynamically, i.e., in
accordance with on-the-spot conditions within the
system. The idea of dynamic scheduling in connec-
tion with parallel processing of jobs has been sug-
gested by Leiner et al.®

With regard to dynamic scheduling the concept
of precedence relations is basic. In Fig. 5, if two
stages are connected by arrow (e.g., execution and
breakdown), then one stage (execution) must pre-
cede the other (breakdown). However, if two stages
are not connected by arrow (e.g., punch and print),
then the order in which the stages are executed is
immaterial. Under the dynamic scheduling option
the model observes the stage precedence relations
shown in Fig. 5, with the pool queue stage holding
the queue of jobs scheduled for the punch, print,
and remote terminal output stages.

Stage Queue Disciplines. Each stage in the simu-
lated computer system has a job queue associated
with it. For each job queue there is a queue disci-
pline which specifies the basis on which jobs in the
queue are ranked for service. The queue disciplines
to be invoked at various multiprocessor stages are
specified by means of a class of software parameters.

At the print stage, for instance, one might choose
to service jobs in the queue 1) on the basis of prior-
ity and time-of-arrival in the computer system; 2) on
the basis of priority, maximum number of lines of

t1In simulating a traffic system it is sometimes useful to con-
sider the simulation period as consisting of an initialization
period followed by an observation period. This enables the user
to suppress the gathering of statistics while the system is building
up into a more-or-less ““steady state.” The feature has been used, .
for example, in the simulation of an automobile traffic network.

132 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

printed output, and time-of-arrival in the computer
system; or 3) on some other user-specified basis.
Each of these options is available by parameter,
with option (3) requiring user-supplied code in the
program.

Queue discipline options are also available at the
execution, punch, terminal input and pool queue
stages.

The implementation of queue discipline options
in the model raises a question in Simscript. In the
terminology of Simscript the problem of ranking
jobs in a queue becomes the following: How can
the entities belonging to a Simscript set be ranked
on the basis of n attributes, given that Simscript
provides machinery for ranking on the basis of one
attribute only? A discussion of the problem is given
in the Appendix.

Cutoff Parameters. A final class of software
parameters specifies 1) the maximum time any job
can spend in the execution stage; 2) the maximum
number of lines of printed output for any job; and
3) the maximum number of cards of punched output
for any job. These installation-specified cutoff
parameters are used by the multiprocessor system
in the event the programmer himself does not
supply overriding cutoff parameters.

Environmental Parameters. Environmental param-
eters specify the environment within which the com-
puter system operates. These parameters include
the following: 1) the number of stations in the sys-
tem, 2) the messenger pickup and delivery schedules
at each station, and 3) the messenger transmission
times from (to) each station to (from) the computer
system.

Simulator Output

Simulator output reports are delivered at inter-
mediate points of simulation as specified by user
option and at the end of simulation. Each report
contains two types of statistics: updating and cumu-
lative. Updating statistics are those that are gath-
ered since the issuance of the previous output re-
port, while cumulative statistics are those that are
gathered since the beginning of observation.

Before describing the items of output on a report,
we define four kinds of statistics:

1. Throughput time for a job is defined as the time
it takes for the job to pass through the multi-
processor computer system.

2. Turnaround time for a job is defined as the dif-
ference between the time the job is returned to a
station and the time the job' was submitted to the
station.

3. Each job is assigned a sequence number when
it enters the computer system. Similarly each job
is assigned a sequence number when it exits from
the computer system. The computer system service
displacement for a job is defined as the computer
system entrance number minus the computer system
exit number. The absolute computer system service
displacement is defined as the absolute value of the
computer system service displacement.

4. Corresponding to (3), a job is also assigned
sequence numbers when it enters the system at a
station and when it leaves the system. This gives
analogous definitions for system service displacement
and absolute system service displacement.

The definitions in (3) and (4) make it possible to
measure the extent to which the (computer) system
deviates from being a first-in, first-out service fa-
cility.

A simulator output report contains ten classes of
statistics:

1. Overall performance of the system—
including the mean, high, low, range
and standard deviation for each of the
following: throughput time, turn-
around time, absolute computer sys-
tem service displacement, and absolute
system service displacement.

2. Job queues at stations.

3. Job queues at the various computer
system stages.

4. The activity/inactivity of the various
computer system stages.

5. Computer system stage performance,
including base time vs overhead time.

6. The activity/inactivity of computer

system equipments.

. Throughput time by priority.

. Turnaround time by priority.

. Turnaround time by station.

. The distribution of jobs within the sys-

tem.

O O oo

Figures 7, 8, 9 and 10 illustrate selected sections
of output in more detail. Figure 7 illustrates job
queues at computer system stages. Figure 8 illus-
trates computer system stage performance. Figure
9 illustrates activity/inactivity of computer system
equipments. And Fig. 10 illustrates throughput
time by priority.

In addition to the aggregative statistics above,
detailed statistics are collected on each individual

. job processed by the Simulator.

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 133

SECTION 3. STAGE QUEUES

SUBSFCTION 3.1 UPDATING

NO. OF JNBS NO. OF JOBS HIGH NO. OF LOW NO. OF MEAN NO. OF
IN QUEUE IN OUEUE JOBS IN QUEUE JOBS IN QUEUE JOBS IN QUEUE TIME TINE JoB-
STAGE AT START OF AT END OF DURING DUR ING DURING QUEUE QUEYE QUEUE
REPORTING REPORT ING REPORT ING REPIRTING REPORTING EMPTY NON- HOURS
PERIOD PERIOD PERIOD PERIID PERIOD EMPTY
(1) CARD INPUT 0 0 26 0 2.7911 2.7561 1.2439 11.1645
(2) TAPE INPUT 0 0 0 0 0. 4,0000 0. 0.
(3) TERMINAL INPUT 0 0 0 0 0. 4,0000 0, 0.
(4) SETUP A 0 0 1 0 0. 4.0000 O, 0.
(5) SETUP B 0 0 0 0 0. 4,0000 0. 0.
(6) EXECUTION 0 26 32 0 8.9819 1.6276 2,3726 35.9276
(7) UTILITY 0 0 1 0 0. 4.0000 0. 0.
(8) BREAKDOWN 0 0 0 o 0. 4.0000 0. 0.
(9) POOL OUEUE o 0 0 0 0. 4,0000 O, 0.
(10) PUNCH 0 0 4 0 0.0547 3.9076 0.0924 0.2188
(11) PRINT 0 0 2 0 0.0434 3.,8839 0.1161 0.1738
(12) TERMINAL OUTPUT 0 0 0 0 0. 4.0000 0. 0.
Figure 7. Job queues at computer system stages.
SECTION 5, STAGE PERFORMANCE
SURSFCTION 5.1 UPDATING
STAGE DC SYSTEM STAGE GROSS NET
STAGE DIMEN- BASE OVERHEAD EXECUTION 0VERHEAD MULTIPROCESSING MULTIPROCESSING
. SION TIME TINE TIME FACTOR FAC TOR FACTOR
(n t2) (3)= ta)= 5)= (6)=
(1)e(2) (3¢ (3)/SYS BUSY T (1)/SYS BUSY T
(1) CARD INPUT 1 1.3059 0.0200 1.3259 1.0153 0.49 0.49
(2) TAPE INPUT 1 0. 0. 0. 0. 0. 0.
(3) TERMINAL INPUT 1 0. 0. 0. o. 0. 0.
(4) SETUP A 1 0.4178 0. 0.4178 - 1.0000 0.16 0.16
15) SETUP B 1 0. 0. 0. 0. 0. 0.
16) FXECUTIUN 1 2.5466 0. 2.5466 1.0000 0.95 0.95
(7) uTILETY 1 0.0849 0. 0.0849 1,0000 0.03 0.03
(8) BREAKDDWN 1 0. 0. 0. 0. 0. 0.
(10) PUNCH 1 0.3067 0.0599 0.3666 1.1955 0.14 0.11
€11) PRINT 3 3,0251 0.3463 3.3714 1.1145 1.26 1.13
(12) TERMINAL OUTPUT 1 0. 0. 0. o, 0. 0.
Figure 8. Computer system stage performance.
SECTION 6. EQUIPMENT ACTIVITY/INACTIVITY
SUBSECTION 6.1 UPDATING
DISTRIBUTION OF 0BSERVAT ION TIME JISTRIBUTION OF SYSTEM BUSY TIME
BY EQUIPMENT BUSY/IDLE BY EQUIPMENT BUSY/IOLE
EQUIPMENT TIME PERCENTAGE TIME PERCENT AGE
BUSY IDLE BUSY IDLE BUSY IDLE BUS Y IDLE
709X DATA PROCESSING SYSTEM 2.5466 1.4534 63,7 36.3 2.5466 0.1391 94.8 5.2
704X DATA PRNCESSING SYSTEM 2.6857 1.3143 67.1 32.9 2. 6857 0. 100.0 0.
CARD READER 1 1.3259 2.6741 33.1 66.9 , 1.3259 1.3598 49.4 50.6
CARD PUNCH 1 043666 3.6334 9.2 90.8 0.3666 2,3191 13.7 86.3
PRINTER 1 . 1.6554 2.3446 4104 5846 1. 6554 1.0303 6l.6 38.4
PRINTFR 2 1.2446 2.7554 31.1 68.9 1.2446 1.4411 46,3 53.7
PRINTFR 3 0.4714 3,.5286 1.8 88.2 0.4714 2.2143 17.6 82.4
RFMOTE TERMINAL 1 0. 4.0000 0. 100.0 0. 2.6857 0. 100.0
Figure 9. Activity/inactivity of computer system equipments.
SECTION 7. THROUGHPUT TIMF BY PRIDRITY
PRIORITY NUMBER OF JOBS THROUGHPUT TIME (MINUTES)
MEAN HIGH LOW RANGE STANDARD ..
"DEVIATION
0 81 30,79 78.63 0.55 78.08 21.52
1 3 10.96 18.70 3.13 15.57 6436

Figure 10. Throughput time by priority.

134 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

The System-State Approach -

In simulating a multiprocessor system at a macro-
level we have rejected a strictly imitative approach
and have constructed a model based upon the sys-
tem-state approach. The basic concept in this ap-
proach is that the multiprocessor computer system
is considéred to ‘“‘change state’” whenever any job in
the computer system completes any stage or when-
ever a new job enters the computer system. Each
such change of state is accompanied by an advance
in the model clock.

The system-state approach yields four important
benefits:

1. The model clock is advanced in the largest
possible increments, consistent with a faithful simu-
lation. Consequently, the resulting model is at an
appropriate level of abstraction and its running time
is relatively short.

2. The system-state approach is conceptually
straightforward whereas a strictly imitative ap-
proach would have been conceptually difficult. By
definition, a strictly imitative approach is one in
which the model logic resembles in very large meas-
ure the logic of the multiprocess or control program
itself. Hence, a strictly imitative approach leads to
model logic which tends to become as complex as
multiprocessor control program logic.

3. In order to characterize multiprocessor over-
head in the model, it suffices to measure actual

overhead empirically, i.e., by observing the effects of
overhead in an actual multiprocessor system. This
kind of measurement has turned out to be feasible.
The kind of measurement required in support of a
strictly imitative model might not have been feasi-
ble. A strictly imitative model would have required
an extensive analysis and timing of the multiproces-
sor control program itself.

4. The model is relatively independent of the
computer system configuration being modeled. The
model can be viewed as consisting of two compo-
nents: a large-sized configuration-independent
component and a small-sized configuration-depend-
ent component. Since these components are prac-
tically distinct, the effect of making a change to the
computer system configuration can be determined
on the basis of making a corresponding change to
the appropriate part of the configuration-dependent
component of the model.

Model Logic

In the system-state approach the state of the
multiprocessor computer system is represented by
a 7-by-12 matrix (Fig. 11). The 12 columns of the
matrix represent the 12 stages of the model. The
movement of a job through the computer system
is represented in the model by the movement of a
job from column-to-column of the matrix.

Not all elements of the matrix are relevant. Some
elements are never relevant; some are relevant for

1 2 3 4 5 6 7 8 9 10 11 12
stage | card tape ter- setup | setup | execu-| utility | break-} pool punch| print | ter-
input | input | minal A B tion down { queue minal
row- vector input output
1 | d = dimension X X X X X X X X X X X X
2 | p = queue discipline X X X X X X X X D F F F
3 | q = job queue X X X X X X X X D F F F
4 | e = job execution X X X X X X X X (e} X X X
5 | t = base time remaining | X X X X X X X X o X X X
6 | v = overhead accumulation X X X X X X X X fo) X X X
7 | s = successor stages X X X X X X X X D X X D

Figure 11.

System-state matrix.

SIMULATION OF A MULTIPROCESSOR COMPUTER .SYSTEM 135

fixed stage scheduling only; and some are relevant
for dynamic stage scheduling only.

The System-State Matrix. The system-state matrix
consists of seven 12-dimensional row vectors.

1. Dimension Vector. Let d; denote the ith ele-
ment of the dimension vector d. The value d; speci-
fies the number of jobs which the ith stage can
process concurrently. We have

d=(al,e1,1,1,1,1,0,a,b,c)

where ¢ = number of read-punch units, » = num-
ber of printers, and ¢ = number of remote terminal
units. Note that dy = 0 since no job can be proc-
essed by the pool queue stage which is merely a
queue for punch, print, and remote terminal output
under dynamic stage scheduling.

2. Queue Discipline Vector. Let p; denote the ith
element of the queue discipline vector p. The value
pi is a code which specifies the queue discipline to be
invoked to rank the jobs in the queue belonging to
the ith stage.

A discussion of queue disciplines is given above
(under “Software Parameters”).

3. Job Queue Vector. Let gq; denote the ith ele-
ment of the job queue vector gq.

Fori = 9, g, identifies the set of jobs waiting for
ith stage execution. Thus ¢; is a vector. The job
identification numbers constituting this vector are
ordered according to p;, the queue discipline for ith
stage execution.

For i = 9, g; identifies the set of jobs waiting for
10th, 11th or 12th stage execution. Again ¢; is a
vector. This vector is relevant only in the case of
dynamic stage scheduling. The job identification
numbers constituting this vector are ordered accord-
ing to ps.

4. Job Execution Vector. Let e; denote the ith ele-
ment of the job execution vector e.

Then e;, i = 9, is itself a vector whose jth element
isdenoted ¢;;,j = 1,...,d;. If e;; > 0, then ¢;; is
the identification number of the job being executed
in the jth position* of the ith stage. If e;; = 0,
then no job is being executed in the jth position of
the ith stage.

The value e, is null.

5. Base Time Remaining Vector. Let t; denote the
ith element of the base time remaining vector ¢.

Then ¢;, i = 9, is itself a vector whose jth element
is denoted ¢;;. The value ¢,; specifies the base time

*The number of “positions”’ of the ™ stage equals d;.

remaining for the job in the jth position of the ith
stage.
The value 1, is null.

6. Overhead Accumulation Vector. Let v; denote
the ith element of the overhead accumulation vector
V.

Then v;, i = 9, is itself a vector whose jth element
is denoted v;;. The value v;; specifies the overhead
time which has accumulated for the job in the jth
position of the ith stage.

The value vy is null.

7. Successor Stages Vector. Let s; denote the ith
element of the successor stages vector s.

Then s, is itself a vector whose jth element is de-
noted s;;. The value s;; is in turn a vector that speci-
fies the successor stages for the job in the jth posi-
tion of the ith stage.

Updating the Matrix. The essential steps in updat-
ing the system-state matrix are the following:

1. Overhead Factor Vector. In accordance with
relevant properties of the system-state currently
existing, the subroutine called the Overhead Ana-
lyzer computes the overhead for each job being
processed. Relevant properties include 1) the par-
ticular stages that are active; 2) the number of jobs
that are active in each of those stages; and 3) the
input/output properties of active jobs. The over-
head factor for the job in the jth position of the
ith stage is designated f;; > 1.

An example of an overhead factor is the follow-
ing: Assume “printer 2"’ has a maximum rate of
1100 Ipm and assume that due to overhead existing
in the current system-state its actual rate is 1000
lpm. Then f;;; = 1.1

The analysis supporting the specification of the
Overhead Analyzer is discussed in Section 7.

2. Potential Advancement of Model Clock. The
potential advancement in the model clock is

mi
w = l;n {tir]'fi’i}l e;j > Oa] = 1,--'ydi, i
=1,...,12

No job in the'system will complete its current stage
until this amount of time passes.

3. Actual Advancement of Model Clock. The
actual advancement in the model clock is

r = min {w,z}

where z is the amount of time remaining before the
next job enters the computer system.

136 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

-4, The New Base Time Remaining Vector. Let
(® = (1®) = (2))
designate the value of the ¢ vector following execu-
tion of the gth system-state. And let
® — (o®) = ((e®
e® = () = (%)

designate the value of the e vector following execu-
tion of the gth system-state. Then the value of the ¢
vector following execution of the (g + 1)th system-
state is
N _ Ny _ 1)
(D = (1) = (5
where
@ _
0, e =0

r
1 - e® 5 0
ij fi,j Lj

@+) _
FAREE

5. The New Overhead Accumulation Vector. Let
® _ (v®Y — ((v®
Ve = (v®) = (V)

designate the value of the v vector following execu-
tion of the gth system-state. Then the value of the
v vector following execution of the (g + 1)th sys-
tem-state is

Ve - (vE) = ()
where

@+ _ ,® ® (g+1)
vET = VB 4 r — 18 + 18

6. Inter-Stage Movement of Jobs. Any job whose
stage is complete is moved from its current stage to
its new stage queue. As many jobs as possible are
moved from stage queues to stage execution.

Review of Simscript Concepts

The Simulator has been mechanized using the
Simscript language and hence is structured within
the general framework provided by Simscript. The
reader is referred to Dimsdale and Markowitz’
for a description of Simscript or to Markowitz
et al® for a complete reference manual on the lan-
guage. In this section we review by example the
basic Simscript concepts, namely, the concepts of
temporary entity, permanent entity, attribute, set,
exogenous event and endogenous event. Entities,
attributes and sets depict the status of the simulated
system, and events cause changes to the status.

An example of a type of temporary entity is job.
Each job fed to the Simulator is an entity; it is
temporary since in general the job is not present in
the system during the full course of simulation.

An example of a type of permanent entity is

printer. Each printer in the simulated computer
system is an entity; it is permanent since it exists in
the system for the full course of simulation.

Examples of attributes are “number of cards of
input” and “time printer busy’’; the former is an
attribute of job while the latter is an attribute of
printer. '

An example of a type of Simscript set is stage
queue. Each of the 12 stage queues is a set. The
members of each set are the jobs in the queue.

An exogenous event is an event caused by forces
outside the boundary of the simulated system. An
example is the event ENTER, which marks the en-
trance of a job in the system.

An endogenous event is an event caused by pre-
ceding events within the boundary of the simulated
system. An example is the event DONE, which
marks the completion of a job on the computer.

Program Organization

The Simulator consists of two phases that are ex-
ecuted serially. Phase I performs the simulation and
writes output data on disk, and Phase II delivers the
output reports constructed from this data.

Data Description. The data description of the Simu-
lator is expressed by means of 2 types of temporary
entities and their attributes, 10 types of permanent
entities and their attributes, and 6 types of sets.

Temporary Entities. A temporary entity JOB
exists for each job in the simulated system. This
entity is described by a total of 46 attributes. A
temporary entity BATCH exists for each batch of
jobs being carried 1) from station to keypunching
and/or “central in” and 2) from “‘central out” to
station. This entity is described by a total of three
attributes.

Permanent Entities. A permanent entity STAGE
(with 29 attributes) exists for each of the 12 stages
in the computer system. A permanent entity STA-
TION (with 27 attributes) exists for each station in
the system. A permanent entity READ/PUNCH
(with four attributes) exists for each read/punch
unit in the computer system. A permanent entity
PRINTER (with three attributes) exists for each
printer in the computer system. And a permanent
entity PRIORITY (with 10 attributes) exists for
each job priority level.

In addition to the above, four more permanent
entities serve array-dimensioning functions.

Finally, the (implied) permanent entity SYSTEM
is described by a total of 94 attributes.

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 137

Sets. A set STATION QUEUE is owned by each
station in the system. A set KEYPUNCH QUEUE
is owned by the SYSTEM. A set STAGE QUEUE
is owned by each stage in the computer system. A
set EXECUTION QUEUE is owned by the SYS-
TEM. A set CENTRAL OUT QUEUE is owned
by each station in the system. And a set BATCH
QUEUE is owned by each batch of jobs in the sys-
tem.

The member entities of each of the above sets are
JOB’s.

Program Logic. The logic of the Simulator is ex-
pressed by means of 2 exogenous event routines
and 10 endogenous event routines. For supporting
logic the event routines, in turn, call upon 28 sub-
routine subprograms, 3 function subprograms and
10 report subprograms.

Exogenous Event Routines. The routine GO per-
forms program initialization. This routine is the
first in the program to be executed and is executed
once only. The routine ENTER is executed each
time a job is entered in the simulated system.

Endogenous Event Routines. The routine LOOK
is executed at the beginning of the observation
period. This routine performs initialization for
statistics gathering. The routine STOP is executed
at the conclusion of the simulation period. This
routine terminates Phase 1 of the Simulator and
calls report-writing Phase II. The routine STAT is
executed each time a report is to be issued. This
routine generates output data for the report. The
routine TO is executed each time a messenger picks
up a batch of jobs at a station for transmittal to
keypunching and/or “central in” of the computer
system. The routine KEY is executed each time a
batch of jobs arrives at keypunching. The routine
ON is executed whenever there arrives at the com-
puter system 1) a batch of jobs direct from a sta-
tion; 2) an individual job via keypunching; or 3) an
individual job via a remote terminal. The routine
DONE is executed each time the computer system
completes processing of a job. The routine FROM
is executed each time a messenger picks up a batch
of jobs at “central out” for transmittal to a station.
The routine EXIT is executed each time a job exits
from the simulated system. And the routine STEP

is executed at the conclusion of each system-state.

This routine carries out the logic indicated under
“Model Logic™ above.

7. ANALYSIS OF MULTIPROCESSOR
OVERHEAD

The specification of the Overhead Analyzer repre-
sented a major phase of the modeling process. The
specification was based on an intensive, empirical
analysis of the occurrence of overhead in an actual
multiprocessor system (DCS).

Modification to DCS Operating System

In order to measure actual DCS overhead, the
DCS Operating System was modified so that it pro-
duces a binary tape containing a sequence of ““time-
stamps.” The time-stamps are created during DCS
operation and stored in 460-word data buffers, just
like other output. The resulting time-stamp data
provides a profile of actual system-states and a pro-
file of individual jobs passing through the computer
system,

Prior to modifying DCS we consulted with DCS
experts on the question of what effect the collection
of time-stamp data would have on actual DCS op-
eration. Their judgment was that DCS operation
would be affected in only a negligible way and that
the act of observing DCS ““from the inside” would
not affect significantly our observation results.*
This judgment was shown to be correct by an actual
experiment carried out following modification of
the system. The experiment consisted of running a
set of jobs twice—under standard DCS and under
modified DCS. The running times differed by 15
hundredths of 1 percent—specifically 3 seconds in
some 34 minutes.

Time-Stamp Data

Entries on the time-stamp tape are of three types:
state identifiers, events and I/O counts.

State Identifiers. Each occurrence of a change-of-
state in DCS causes a time-stamp entry identifying
the new system-state.

Events. Each occurrence of an event in DCS causes
an event time-stamp entry. ‘An event time-stamp
consists of four components: 1) type of event, 2)
buffer saturation indicator, 3) job number identify-
ing the job associated with the event, and 4) time of
occurrence. The principal types of events time-
stamped are the following:

* An exception to this is the occurrence of buffer saturation;
the collection of time-stamps induces buffer saturation some-
what earlier than normal.

138 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

e Reading one card from the ith reader,
i=12,...

e Printing one line on the ith printer, i =
1,2,...

e Punching one card on the ith punch
unit, i = 1,2,...

e Typing one character.

e Reading one card image from tape.

e Beginning /ending of DCS purge stage.

e Beginning/ending of system load.

e Beginning/ending of library load.

e Beginning/ending of dump.

I/ 0 Counts. Each occurrence of an end-of-system-
state on DCS causes seven time-stamp entries giving
counts of input/output activity that occurred
during the preceding system-state:

e Number of 709x reads.

e Number of 709x writes.

e Number of 709x non-data selects.

e Number of 709x input buffer loads.
e Number of 709x output buffer loads.
e Number of 704x input buffer loads.
o Number of 704x output buffer loads.

Analysis of Time-Stamp Data

Using routines that print and plot time-stamp
data and that compute overhead factors for speci-
fied system-states, we have been able to construct
appropriate statistical distributions for inclusion in
the Overhead Analyzer of the model.

Table 1 illustrates four sets of overhead factors
collected in S-second intervals from a 7094/7044
installation. Each of the four columns represents
a cumulative frequency distribution. The meaning
of a typical entry in this table, e.g., entry 45 in col-
umn 2, is as follows: Consider the case where jobs
on the 7094 are in the compatibility mode and is-
sue I/O calls at a rate of less than 4-per-second, and
compute overhead factors for the 1100 line-per-
minute printer every 5 seconds. Then 45 percent of
these overhead factors are 1.04 or less.

8. SUMMARY

With the advent of multiprocessor computer sys-
tems the prediction of computer system perform-
ance on a prescribed job load has become a prob-
lem of considerable complexity. This paper has
described a model whose principal purpose is to
ease this problem. A second important purpose of
the model is to determine the effect of varying basic

Table 1. Illustrative Overhead Factors
Cumulative Percentage
Overhead | Reader | Printer (1100 Ipm)
Factor Compatibility | Direct
<41/0
calls per >101/0 calls
sec per sec
¢)) () 3 “

1.01 64 12 0 4
1.02 76 26 2 10
1.03 78 36 3 22
1.04 80 45 9 26
1.05 87 49 14 30
1.08 39 59 19 36
1.15 99+ 75 27 52
1.30 84 42 68
1.50 91 61 84
2.00 98 77 93
2.50 99+ 91 97
3.00 97 99+
3.50 99+

system parameters—hardware, software and en-

vironmental.

The model is at a macroscopic level, i.e., it at-
tempts a relatively high degree of abstraction of the
real system. This level of simulation has been made
possible in connection with a multiprocessor sys-
tem as a result of using the system-state approach,
the main idea in the model. With simulation at a
macro-level the running time of the program is at-
tractively short. For a sample of the runs com-
pleted to date the ratio of real time to simulated
time is 195. That is, a typical 16-hour workload
can be simulated in less than 5 minutes. The 5
minutes here refers to 7094 time using a 7094/7044
Direct-Couple System to host the simulation.

Following are some representative questions to
which the model has helped provide answers:

e For a given equipment configuration and a speci-
fied job load, what improvement in throughput
can be achieved using dynamic stage scheduling
rather than fixed stage scheduling?

e If all jobs submitted from Station 1 are assigned
priority level 9 (highest priority) rather than their
currently assigned priorities, what change will re-
sult in the mean throughput time (and high
throughput time) for jobs submitted from each of
the individual stations?

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 139

o If a third printer is added to a given two-printer
equipment configuration, what change will result
in the mean number (and high number) of jobs in
the print stage queue? What change will result
in printer equipment utilization? Answer ques-
tions two ways—assuming third printer 600 Ipm
and 1100 lpm.

e For a given equipment configuration and a speci-
fied job load, suppose the queue discipline for the
execution stage is changed from 1) priority and
time-of-arrival to 2) priority, maximum time in
execution stage, and time-of-arrival. What
change will result in the mean throughput time
(and high throughput time)? What change will
result in the mean (high) absolute computer sys-
tem service displacement?

e Suppose messenger service is improved by adding
one messenger and by making prescribed changes
in the messenger schedule. What change will re-
sult in the turnaround time at each station?

An indication of the level of effort of the multi-
processor simulation project is the amount of pro-
gramming involved. The Simulator itself consists of
some 2650 source cards in Simscript. The Job Gen-
erator consists of some 375 source cards, also in
Simscript. The modification to DCS consists of
some 650 source cards in MAP. And the routines
that analyze the time-stamp tape produced by the
modified DCS consist of some 2175 source cards,
in FORTRAN and Autocoder.

ACKNOWLEDGMENTS

I am grateful to R. A. Rock and L. A. Verret for
their collaboration on the multiprocessor simula-
tion project, to H. Jacobs for his consulting services
on the project, and to B. Dimsdale for his counsel
and encouragement.

Appendix
RANKING A SET ON » ATTRIBUTES
Simscript provides automatic machinery for rank-

ing the entities of a set on the basis of one attribute.
It is sometimes necessary, however, to rank the

entities of a set on the basis of n attributes. In such
a case one can employ a function that maps » at-
tribute values into a ‘‘composite attribute value”
and rank the set on the basis of the composite
attribute.

Consider, for example, the following problem:

Let n equal the number of attributes on which
the ranking is to be based.

Let the ith attribute ‘“outrank” in importance
the (/ + 1)th attribute,i = 1,...,n — 1.

Let x; denote the value of the ith attribute; as-
sume Xx; is positive integer-valued, with its maximum
m;; e, x; = 1,2,...,m;.

Then the n attribute values (x,,...,x,) can be
mapped into an appropriate composite attribute
value by means of the function

n-1 n

(X1, ,%0) = 2, +Z z; II m;
i=1 j=i+l
where z; = x; if ith attribute is ranked “high” in
Simscript sense (i = 1,...,n), and z; = m; — x; if
ith attribute is ranked “low’’ in Simscript sense.

REFERENCES

1. G. K. Hutchinson, “A Computer Center
Simulation Project,” Comm. ACM, vol. 8, no. 9,
pp. 559-568 (1965).

2. IBM 7090/7040 Direct-Couple Operating Sys-
tem: Operator’s Guide, IBM Systems Reference
Library, C28-6384.

3, ——— Programmer’s Guide, ibid, C28-6382.

4, ———: System Programmer’s Guide, ibid,
C28-6383.

5. J. H. Katz, “Simulation of a Traffic Network,”
Comm. ACM, vol. 6, no. 8, pp. 480-486 (1963).

6. A. L. Leiner et al, “Organizing a Network of
Computers to Meet Deadlines,” Proceedings of the
EJCC, 1957, pp. 115-128.

7. B. Dimsdale and H. M. Markowitz, “A De-
scription of the Simscript Language,” IBM Systems
Journal, vol. 3, no. 1, pp. 57-67 (1964).

8. H. M. Markowitz, B. Hausner and H. W.
Karr, Simscript: A Simulation Programming Lan-
guage, Prentice-Hall, Englewood Cliffs, N. J., 1963.

MARKOVIAN MODELS AND NUMERICAL ANALYSIS
OF COMPUTER SYSTEM BEHAVIOR*

Victor L. Wallace
Systems Engineering Laboratory
The University of Michigan, Ann Arbor, Michigan

and

Richard S. Rosenberg
Logic of Computers Group
The University of Michigan, Ann Arbor, Michigan

INTRODUCTION

The advent of multiple-access computing, the
increasing variety of processors in systems, and the
growing use of multiprocessing and multiprogram-
ming in computing systems has put many new bur-
dens on the computing system designer-planner-
programmer. The selection of suitable system
structure and programming structure, as well as the
selection of scheduling rules, requires a much more
detailed and precise understanding of the stochastic
behavior of system traffic than has been required in
the past. In short, the “architect” of system hard-
ware and software is finding a need for more and
more insight into the behavior of computers as net-
works of queues and processors.

As a rule, his chief tool for obtaining this insight
has been by the use of Monte Carlo simulations.
However, as the systems gain in complexity, and as
system design becomes more sensitive to the effects
of congestion, these simulations become either too
expensive or their estimations of probability too
imprecise to be viable as tools for exploring system
behavior in depth. Accuracy can be obtained only

*This work was sponsored by the Rome Air Development
Center, Rome, N.Y., under Contract No. AF 30(602)-3558.

141

at the expense of very large samples. Exploration
means even further calculation as parameter values
and structures are changed and solution repeated.
Even if everything has been done to reduce the sys-
tem to the simplest model having the desired
properties, the calculations are still likely to be
extensive (hence expensive).

In this paper we will discuss an approach to the
solution of computing system congestion which is
very often an attractive alternative to simulation
for a system designer or “architect.” The approach
is based on the use of finite-state Markov chains
as models for the system, followed by a numerical
solution of a set of algebraic equations for the equi-
librium probabilities of those Markov chains.}
It will be shown that, through the use of an efficient
program for the accurate solution of large problems
of the above type, much less computation time is
needed than would be needed to simulate the same
system. :

This technique also shows promise of providing a
procedure which is well suited to use on-line in a

man-machine interactive mode. In such a mode, a

tFollowing Churchman,' we note that since our procedure
does not involve “sampling” of the model, it is not a simulation
technique at all.

142 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

user of the procedure should be able to explore
systems freely, and without excessive delays, while
solutions to the problems he poses are prepared for
him. He should also receive precise, reproducible
answers which can be rationally compared with the
results of other analyses and other systems. The
procedure described here comes close to these goals
in many respects.

MARKOV CHAIN MODELS

It should first be pointed out that the mathe-
matical models known as Markov chains represent
a quite broad and useful class of stochastic models
for computer systems. Indeed, most models usually
represented by networks of queues and processes
can be approximated quite closely by some model
derived from a Markov chain. However, the usual
problem encountered in the use of these models is
one of size; the number of states in the chain repre-
senting the system can easily exceed all reasonable
bounds. By going to numerical methods, rather
than the analytical methods typical of queueing
theory, it is possible to deal with much larger
Markov chains and hence to make substantial use of
their generality.

Now, in the most common cases we regard the
system being modeled as an interconnection of
queues and processes,I with a prescribed stochastic
flow of tasks among them. In this context, any
processing capability which can be occupied by at
most one task at a time can be considered a process.
Thus an arithmetic processor, a segment of memory,
a data channel, a stored program, a console, or even
an operator or user can be considered processes.
Also, in this context, a queue is any list or collection
of uncompleted tasks whose routes are stochasti-
cally indistinguishable. There will usually be an
integer variable associated with each queue or group
of processes: e.g., the number of tasks waiting in
that queue, or the number of processes in that group
currently occupied by tasks. Also associated with
each process will be a random time variable repre-
senting the duration of time that a task will occupy
the process. At the end of that interval the values of
some of the integer variables will change, due to the
motion of the task from the process to its next
process. Many things can happen to this flow:
processes may be blocked by other processes, pre-
emptions may occur, priorities may be assigned.
Whatever happens it should be represented in the

1In queueing theory, the term server would be more common.

model. However, in order to be solved it must be
described in terms of a mathematical model which
is capable of solution.

As a practical matter, the most useful model for
the purpose is the Markov chain, which will be
described in the following sentences. For the sake
of generality, and in order not to lose the ability to
represent blocking, preemptions, priorities, and
other complications, this discussion is relatively
abstract and general.

The process of creating a Markovian model
whose characteristics approximate a given com-
puter system having any complexity in its rules of
behavior is, broadly speaking, a part of queueing
theory, and a thorough presentation of that process
will not be attempted here. It suits our purposes
merely to indicate the nature of the Markovian
restrictions, and so to give assurance that Markov
chains can be often applied as models. A paper by
Smith,? appearing in another session of this con-
ference, presents a discussion of several such models
which represent aspects of a time-shared computer
system, along with conclusions derived from RQA-1
analysis. That paper will serve to illustrate the next
remarks more concretely. Two previous applica-
tions of Markovian models and of RQA-1 have also
been discussed elsewhere, > and serve as good il-
lustrations.

Consider the state of a system to be described by
an n-component vector x = {x.,x;,...,x,,}. Let
the components x; be integer-valued and 0 <
x; < N;, where N, is a known finite integer, for each
i =1,2,...,n Let the value of the state x at any
particular time ¢ be represented by a random vari-
able x, so that {x,, 0 <t < »} represents a con-
tinuous-time stochastic process. Since the value of
x, will vary with time by distinct jumps, the time
intervals between successive jumps can be desig-
nated by a sequence of random variables {7, 75,...}.

Under certain conditions, the process x, can be
represented by a Markov chain. Let

i

t,-=ZTk, i=]92,-" (1)
k=1
and
o= 0" (2)
so that the ¢, i = 1,2,..., represent time values

immediately after occurrence of a jump. Then let
the following be true:

(1) For every pair of states ([, m) represent-
ing a jump from / to m which is possi-

MARKOVIAN MODELS AND NUMERICAL ANALYSIS 143

ble (probability = 0), the sequence {r,
72,...}is a family of conditionally in-
dependent® random variables: given
Xy = ._lalr,» = m.

(2) For each i and each fixed pair of states

(/, m) in the above set
prin < 7 |x, | = 1Lx, = m)

=1 = et 3)

1

_ where »,,, is a positive constant.

Under these circumstances x, is a continuous-time
finite-state Markov chain.

If we interpret the state variables as represent-
ing values of queue lengths, numbers of occupied
processes of a particular type, etc., and if we inter-
pret the times ¢; as the times just after arrivals occur
or processes complete, then what this implies is that
the intervals of time between arrivals, and the inter-
vals of time during which a task occupies a process,
must be

1. Independent of all other inter-arrival or
occupancy times, and

2. Exponentially distributed random vari-
ables when the state at the beginning of
the interval, and the consequences of
ending the interval, are known.

However, since state variables may represent any
integer variable related to the system modeled, the
latter interpretation is sometimes unnecessarily re-
strictive. It should especially be noted that fre-
quently a model which is not Markovian in a par-
ticular defined state space will be Markovian if
several additional variables are added. One usually
attempts to choose as state variables x; the smallest
set of variables for which x, is Markovian.

The requirement that all processing intervals must
be exponentially distributed, in the sense of Eq. (3),
is often too severe a restriction. Fortunately, there
are several recourses available. First, there is a con-
siderable range of derived distributions which can
be constructed by appropriate interconnection of
“exponential” processes.® In other words, a “non-
exponential” process can be replaced by several arti-
fical exponential processes. The cost of this artifice
is the addition of more state variables, and thus an
increase in the complexity of the model. Figure 1
(adapted from a figure of Morse®) shows several of
these derived distributions in order to illustrate
some of the variety of distributions available by
this means. If we represent, schematically, an ex-
ponential process by the symbol of Fig. 2, then the

\
1
2 3 BT

Figure 1. Distribution functions and density functions derived
from the exponential. The mean of each distribution
is 1/u. (a) Exponential, parameter u. (b) Special
second order Erlang, parameter u. (c) Special fifth
order Erlang, parameter u. (d) Hyperexponential,
second order uy = p/2, py = 2p, a; = az = 1/2.

n >

Figure 2. Schematic representation of an exponential process
with mean service time 1/u.

Erlang and Hyperexponential processes can be
represented by Figs. 3 and 4 respectively.

Secondly, if only one of the processors does not
have an exponentially distributed processing inter-
val, the entire system can be transformed into a
related discrete-time Markov chain by a process
known as imbedding.” Once the discrete-time
imbedded chain has been solved, one proceeds
(usually in a straightforward manner) to find the
related solution of the original process. One im-
portant class of processes for which this approach

— B op

e I_L

>

Figure 3. Schematic diagram modeling an nth order Erlang
process.

144 : PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Q
— H
az
> M2
—————————— "

Figure 4. Schematic diagram of an nth order hyper-exponential
process.

is highly useful is the class of semi-Markov pro-
cesses.?

This survey of modeling techniques was neces-
sarily brief, and intended merely to indicate that a
great deal of flexibility in modeling is available if
one can treat either continuous-time or discrete-
time Markov chains which have a large number of
states. Again, for examplés of the power of the
models Refs. 2, 3, and 4 are recommended. They
are, in fact, relatively simple models; many more
complex models can and have been treated ef-
fectively.

EQUILIBRIUM JOINT PROBABILITY
DISTRIBUTIONS

The prime objective of most analyses of queueing
systems is the evaluation of the equilibrium® proba-
bilities of state. Since the state is described by the
vector {x,xs,...,X,}, the probability distribution
of the state will be a multivariate distribution, and
the state probabilities will be joint probabilities for
the variables x,, x,,...,x,. Once these joint proba-
bilities are known many other probabilistic meas-
ures are readily established as marginal distribu-
tions, expectations, or simple functions of these.
Through-put rates, processor utilization efficiency,
expected waiting times, distributions of queue
lengths, distributions of the number of processes
occupied, and probability of “‘busy signal” are but a
few of these which are readily computed from the
equilibrium probabilities of state.

In order to simplify what follows, we will refer to
the states without regard to their vector character.
In other words, we will refer to a state as a positive
integer { which is the result of a function i = i(x)
which assigns an integer value to each distinct vec-
tor state which occurs with a nonzero probability.
(Since each dimension of every x is finite, the set of
values of { will also be finite). The vector interpre-
tation is readily recovered after the calculation of
the “probability of state i”’ is completed. Appro-
priate marginal distributions, expectations, etc., can
thus still be computed. By this device, we can treat
the state as a finite integer, and the vector-valued
Markov chain {x,: 0 < ¢ < »} by a one-dimensional
continuous-time finite-state Markov chain {i,: 0 <
t < o}, Correspondingly, if it is a discrete-time
vector-valued Markov chain {x,: k = 0,1, ...} which
must be solved, then it can be treated as a one-
dimensional discrete-time Markov chain.

THE RECURSIVE QUEUE ANALYZER

The Recursive Queue Analyzer,'® RQA-1, is a
computer program designed to evaluate the equi-
librium joint probability distributions of -the state
variables in very large, finite Markovian queueing
systems. It has been designed to facilitate the
analysis of both discrete- and continuous-time
Markov chains having as many as 5000 states. The
primary design goal has been to provide a compu-
tation fast enough to encourage experimentation
with models in the study of system design. This has
been achieved through efficient use of available
(32K) high-speed storage in the computer (an IBM
7090), and through careful program design. The
program was written in the MAD language, with
selective use of the UMAP assembly language.

For a continuous-time Markov chain with a finite
state space, one can always write an equation for
the equilibrium probabilities in the form

10=0 @

where 7 is a vector whose ith element is the equi-
librium probability that the system is in state i, and
Q is a matrix of constants called the transition in-
tensity matrix of the chain. Q is descriptive of the
system model.

For a discrete-time Markov chain with a finite
state space, one can equivalently write an equation
for the equilibrium probabilities in the form

7A == 5)

MARKOVIAN MODELS AND NUMERICAL ANALYSIS 145

where = has the same significance, and 4 is a matrix
of constants called the transition matrix of the
chain.

The RQA-1 employs an iterative procedure to
determine the solution = to Egs. (5) and (6). The
procedure is a straightforward power-iteration pro-
cedure,! so that if w, is the kth iterate,

Tkl = G (6)

is the (k + D)th iterate, The matrix G may be either
equal to the matrix AQ + I, (A a scalar), or the
matrix £4 + (1 — £§)I, (¢ a scalar), depending on
whether Eq. (4) or (5) is to be solved. The A and £
are chosen so as to guarantee efficient convergence
to a solution of (4) or (5).

Clearly, a 5000 degree matrix when stored as a
two-index array requires 25,000,000 locations of
storage, which is unreasonable for a ‘‘fast” pro-
gram. However, both 4 and Q are generally sparse
matrices (have mostly zero-valued elements) and
will usually have a high degree of repetition of equal
element values. Hence a scheme of storage which
lists location information along with value informa-
tion is a necessary starting point.* The repetitive-

ness is partially a result of a “block structure™

imposed on the matrices 4 or Q by a choice of a
well-behaved mapping function i(x), and partially a
result of the fact that the probabilities of transition
from a state / to a state m are often constant func-
tions of one or more of the coordinates of /, at least
over some range of values. Both of these effects are
often imperfect, but still useful. " (If they were per-
fect, they would have to have been the result of a
process having independent projections, and the
matrices 4 or Q would be Kronecker sums of the
matrices of the projection processes.)

In the program a set of four vectors, together
called a transition table, are constructed which
implicitly define the matrix. Let us call them «, 8,
v, and B and denote their ith elements by «;, G,
vi, and B, respectively. The quadruple («;, 8:, vi, B))
specifies one or more elements of a matrix in the fol-
lowing manner:

The value of the element is «; and its matrix co-
ordinates are (3;,y;). Due to the repetition usually
found in the matrices, the value o; may occur in
other locations of the matrix with coordinates
(Bi+r8, vi+ré), where & is a constant (fixed

*The storage scheme below, and the procedure for carrying
out the iteration when using this storage scheme, were suggested
to the authors by Prof. R. V. Evans, of the Case Institute of
Technology (private correspondence).

throughout the transition table) and r takes values
0,1,2,...,(B; — 8:)/6. In other words, the quadru-
ple («, By, vi, B;) specifies the occurrence in the ma-
trix of elements with value «; at coordinates (8;, v:),
Bi+ 6, vi + 6),....(Bi,vi + (B — 8)). Thus, the
quadruple («;, 8i, vi, B;) might represent the matrix

Yi Yi+06, vi+Bi—8i,

_ | ¢ _
0 0 0 0
0000
0000
0000
0000
0000
61"‘6_b 0 00(100 0 0
0000
0000
0000
B —| ° © omoo
i | 0000 i
@

and the matrices represented by the other quadru-
ples can be considered to be added to it to form A4,
or Q. If no repetition of the value «; occurs, the
value of B; will be equal to the value of 3,.

‘For this matrix storage scheme, it is possible to
carry out a vector-matrix product very efficiently.
Let 7% denote the ith component of the kth iterate.
Then each iteration (Eq. (6)) is carried out in the
following sequence:

1. The vector to contain ., is initially
zeroed.

2. Seti=1,j=0.

3. Multiply «; by #§i*/* and accumulate
into wi?®.

4. Repeat step (3) for j=1,2,..., until
(B; + jd) is greater than B;.

5. Reset j = 0, and repeat steps (3) and (4)
for i=2,3,..., until all quadruples
have been treated.

SPEED OF SOLUTION—A COMPARISON

For the simple power-iteration used in the RQA-1
program, the number of multiplications required
per iteration is equal to the number of nonzero
elements in the matrix (4 or Q). This is exactly

146 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

equal to the number of distinct pairs of states (/, m)
which represent possible starting and ending values,
respectively, of a jump in: the stochastic process
{x.} (or {x,}). Thus, if we average over all / the num-
ber of distinctly different values that can be reached
in a single step from I, and represent that average
by the symbol E, then the number of multiplica-
tions per iteration is the product ES of the average
“activity” F, and the number of states S.

In order to compare the speed of solution of
RQA-1 with that of simulation in a continuous-
time case, we will estimate the relative error % in
the computation of the equilibrium probability of
some event. Let this probability have value », and
be the sum of any number of limiting state proba-
bilities. Let the absolute initial error, resulting from
the choice of the initial iterate, be ¢o. Then, it has
been shown' that the convergence error of the
RQA-1 algorithm after k iterations is usually

o

where |y | is the nonzero eigenvalue of the matrix
QO having smallest modulus, v is the rate of occur-
rence of jumps averaged over all states, and it is

known that —'—%—I < 1. Thus, the number of itera-
tions required to reduce the relative error to the
order O(n) is

Iz_ﬂM)

| v |
log(l -

where 79 = ¢o/w. Further, the number of multipli-
cations required is of the order of

v - ES1log (a/no) | (10;
log (1 - I—i'—-)

Of course, other operations are also required, but
RQA-1 holds the iteration time to about twice the
multiplication time, and all tasks other than itera-
tion and output do not significantly increase this
computation time.

These figures are consistent with experience on
the IBM 7090. Generally, for 100-state problems
such as that reported by Fife and Rosenberg,’ about
30 iterations per second were obtained, with com-
plete solutions (within 0.0001) in about two seconds.
For 1000-state problems, three iterations per second
is typical, with solution times on the order of
20 seconds.

In contrast, we now estimate the number of ran-
dom number generations required for simulation of
the same models. It will be assumed that the limit-
ing probability = is estimated by calculating the per-
centage of total time that the system is found to be
in the state i. Then the standard deviation s of the
estimate of & can be approximated by the expression

§ ~ 27(l — m)
lyIT

where T is the duration of the simulation (7 is in the
time units of the system, as is also 1/v). For the
absolute convergence error, nm, to be within two
standard deviations of the estimate a duration of
simulation of

(11

L 34 -7

T
7|y |9

(12)
is required. The number of random numbers gen-
erated (assuming one per jump) would need to be

8y(l — =)

R ~
7|y |9

(13)

It should be observed that the typical time to
generate a random number is much greater than a
“multiply-time,” and that present simulators often
take much more time for housekeeping than for
actual generation of the random numbers. Thus a
simple comparison of R with M is biased strongly
in favor of simulation. Nevertheless, we proceed to
make only a simple comparison. The ratio of R/M

is approximated by
K I)
vlog (1 — ——
R _ 8(1 —) g(v (14

M ESwq*|log(n/n0) | [y]

Typically —I-?:—I— << 1, and the second factor is thus

approximately unity. Hence

R _ 8(1 — m)

X L 15
M ESwn?|log(n/no) | 1

Since the usual applications will be ones in which
w is not close to unity, we can usually also neglect
the (1 — w) factor. The remaining function,

8
ES mn* | log(n/n0) |
which approximates R/M, is plotted in Fig. 5 for

no = 1 (a fairly conservative choice). This figure
graphically shows that the ratio R/M increases very

(16)

MARKOVIAN MODELS AND NUMERICAL ANALYSIS 147

1000

100

8
ESTN%l0g M

10 100 1000
EST

|
10,000

Figure 5. Illustrating the computational merit of the numerical
~ techniques.

rapidly as more accuracy (smaller) is required, and
decreases as the number of states, the activity E, or
w are increased. Thus for small enough 5 the num-
ber of random number generations required in the
simulation can be very much larger than the number
of multiplications required in the iterative process.
This results from the fact that simulation error
(from Eq. (11)) normally decreases as the square
root of simulation time, while iteration error (from
Eq. (9)) decreases exponentially with the number
of iterations. Where repeatability and comparison
of results are important, errors of the order of 0.001
are not at all unreasonable. In such a case, even in
an extreme problem having S = 5000, £ = 20, and
x = 0.1, the iterative techniques will have an advan-
tage of two orders of magnitude over simulation.
Add to this the much greater housekeeping involved
in simulation, and the advantage is dramatic.

A comparison for the discrete-time Markov chain
solution would result in similar conclusions.

CONCLUSIONS

The purpose of the foregoing comparison was not
to issue a call for everyone to abandon simulation
for the analysis of computer systems, Rather, it was
intended to point up a potential which should not
be ignored. There are many difficulties incurred in
the use of a program like the RQA-1 which need to
be overcome before it will be universally applied.
The process of modeling systems by Markov chains
is a relatively sophisticated one, and often requires
a great deal more ‘‘cleverness’” than does a Monte
Carlo approach using GPSS or Simscript. Secondly,

the representation of the model in the form of a
matrix in the RQA format is now a quite tedious
process. (A coupling of an RQA-like procedure
with a problem-oriented language can relieve this
difficulty, and is currently under study.) Thirdly,
although the Markovian models have much gen-
erality, there will always be problems which cannot
be so modeled, and hence must be simulated (unless
the expense is prohibitive).

On the other hand, even one order of magnitude
improvement in the time required to solve a system
congestion problem with precision can make a man-
machine interactive exploration of system configura-
tions by a system ‘‘architect’” practical when it
might otherwise have been impractical. Also, with
the current provisions in RQA-1 for defining the
transition matrices in literal form, so that param-
eters can be altered by a simple change of data at
execution time, it is possible to obtain extensive
sets of graphs describing functional relationships
accurately and economically, as was done in Refs.
2, 3, and 4. Using these features, all of Smith’s
published results? required less than 4 minutes of
IBM 7090 computation.

REFERENCES

1. C. W. Churchman, “An Analysis of the Con-
cept of Simulation,” Symposium on Simulation
Models: Methodology and Application to the Be-
havioral Sciences, A. C. Hoggatt and F. E. Balder-
ston, eds., South-Western Publishing Co., Cincin-
nati, 1963, pp. 1-12.

2. J. L. Smith, “An Analysis of Time-Sharing
Computer Systems Using Markov Models,” this
volume.

3. D. W. Fife and R. S. Rosenberg, “Queueing
in a Memory-Shared Computer,” Proc. of the 19th
Nat. Conf. A.C.M., Philadelphia, 1964,

4. —— and J. L. Smith, “Transmission Ca-
pacity of Disk Storage Systems with Concurrent
Arm Positioning,” IEEE Trans. on Electronic Com-
puters, vol. EC-14, no. 4, pp. 575-582, (Aug. 1965).

5. M. Loeve, Probability Theory, 3d ed., Van
Nostrand, 1962, pp. 351-353.

6. P. M. Morse, Queues Inventories and Main-
tenance, Wiley, 1958, Chap. 5.

7. D. G. Kendall, “Stochastic Processes Occur-
ring in the Theory of Queues and their Analysis by
the Method of Imbedded Markov Chains,” Ann.
Math. Stat., vol. 24 (1953).

8. W. L. Smith, “Regenerative Stochastic Pro-

148 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

cesses,” Proc. Roy. Soc. (London), Ser. A, vol. 232, The recursive Queue Analyzer,” Systems Engineer-

p. 6 (1955). f ing Laboratory Technical Report No. 2, University
9. E. Parzen, Stochastic Processes, Holden-Day, of Michigan, Ann Arbor.

1962, pp. 247-253. 11. J. Todd, Survey of Numerical Analysis,

10. V. L. Wallace and R. S. Rosenberg, “RQA-1, McGraw-Hill, 1962, pp. 196-197.

SMPS—A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS

Kathe Jacoby, Diana Fackenthal and Arno Cassel
Franklin Institute Research Laboratories
Philadelphia, Pennsylvania

INTRODUCTION

Many papers oriented to the computer user deal
with programming languages. These languages may
be either flexible or oriented toward a particular
problem field, such as military information retrieval
or simulation; however, they are languages requir-
ing the user to learn vocabulary, grammar, punctua-
tion, and spelling to translate his problem into the
specific language. This is not easy and generally re-
quires considerable practice. '

An officer on the communications staff of a mili-
tary headquarters does not have time to study a
language and learn how to express himself in it. In
addition, he does not have the experience of an in-
dustrial engineer who is accustomed to flow-chart-
ing the operations needed to accomplish a function.
Nevertheless, he needs to evaluate the effectiveness
of his present methods and procedures and level of
staffing under conditions which would occur when
the workload might suddenly change because of
world or local military or political events. He also
needs to be able to determine whether any changes
in methods, procedures, or staffing will improve the
total response of the system.

The prime criterion for evaluation of a com-
munication system is message transit time. Within
this criterion are subcriteria to be chosen by the
headquarters involved, which may specify:

The maximum transit time for messages of
a specific class shall be less than 7 min-
utes.

149

The percentage of messages of a specific
class with transit time less than T minutes
shall be greater than P percent.

Transit time through a system depends on two
factors: processing time and waiting time. Process-
ing time can be determined without the use of
computers by observing the required time to per-
form specific tasks and by summing this time over
all the tasks to be performed on a specific message.
Waiting time is either batching or queuing time.
Batching time is the time an operator waits after
completing one task on a message before delivering
it to the next task or operator, so that the first op-
erator can continue performing the same task on a
number of messages; this time can be estimated.
Queuing time can be mathematically estimated
when only a few queuing points are involved.
However, when many dynamically interacting
queues must be considered, Monte Carlo simula-
tion techniques must be used to gather information
about the formation of queues and the delays
caused by queuing. This requires digital-computer
simulation.

The Franklin Institute Research Laboratories

(FIRL) has developed two tools for officers on the

communication staff of a military headquarters to
use for system evaluation; these tools were de-
veloped as part of a study for the Department of
the Army and the Defense Communications Agency
to improve message processing operations within a
headquarters.! One tool is a method called Auto-

150

matic Flow Process Analysis (AFPA) which allows
personnel without any flow-charting or system-
analysis experience to develop accurate flow charts
by carrying out a set of procedures.? The second is
Simplified Message Processing Simulation (SMPS),
with which the same personnel can prepare a simu-
lation model and message samples by following a
set of simply stated procedures; SMPS does not
require personnel to learn any programming
language.

With SMPS, members of a military communica-
tions staff can evaluate a message-processing system
under dynamic conditions without requiring the
services of personnel experienced in computer
technology or programming. The SMPS toolbox
contains building blocks and a framework with
which a model of a message-processing system
can be built.

COMMUNICATIONS STAFF NEEDS

The communications staff at a military head-

quarters needs to be continually aware of the capa-.

bilities and effectiveness of their current message-
processing systems, not only with respect to current
traffic but also with respect to crisis conditions
which may occur. Figure 1' shows an overview of
the activities within ‘'a Message Communications
Terminal office (communications center and staff
message control) at a military headquarters. Within
the limits of military regulations and command

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

structure, this staff is able to suggest changes to
improve system operation. However, changes
should not be implemented unless there is assur-
ance that the total system operation will be im-
proved; therefore, methods for evaluation are re-
quired. Because of the differences in needs, regu-
lations, and traffic at different headquarters, only
the staff at the individual headquarters (rather than
a higher agency) can best evaluate its own systems.
The likelihood that these operational staff personnel
have programming background or inclination is
very small.

TOOL 1, AFPA

AFPA permits the non-system analyst to con-
struct an accurate flow chart of the operation of his
system. In the message-processing case for which
AFPA was designed, the message passes along the
flow of the chart through the tasks performed in
the boxes of the flow chart. A task is called an
event and specifies what personnel and equipment
are involved (such as a communications-center re-
ceive operator or a Xerox machine), what is done
(such as tearing the message from the teletype
monitor), and how long the event takes (such as 30
seconds).

TOOL 2, SMPS

Figure 2 shows a smalil fragment of an AFPA
flow chart. A detailed simulation including all of

INITIAL - | »| HaRD-cOPY FINAL
ADMINISTRATION ROUTING OUPLICATION | o] ADMINISTRATION [
T 1
| 1 |
IN-LOG & HARD-COPY
REFERENCE FILE
MW RECEIVER FILE
DELIVERY INTERNAL
DISTANT Lo
STATIONS | o "
"L B UT-LOG &
’LH TRANSMITTER "”g‘l‘LZ“PE REFERENCE
FILE
¥ L]
| — |
1]
FINAL PAPER-TAPE INITIAL
ADMINISTRATION fe— ~DUPLICATION [e—{ = ROUTING [*—1 ADMINISTRATION fe—
MESSAGE COMMUNICATIONS TERMINAL OFFICE

Figure 1.

Overview of activities within a message communications terminal office.

SMPS—A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS. 151

e
EARSTHOM | MsG RUN TWICE FOR FLASH
TTY (MAT) K E Y
FLas | DETERMINES | not FLash] oreration
015 (PRECEDENCE) 10 l () TRaNSPORTATION
'"5553'5 TRIMS WITH () secTioN
GARBLE SCISSORS
020 5 v
DETERMINES
PROCESSING JOINS
(PRECEDENCE)
025
RECORDS INSPECTS
EC IN NO. FOR
ON FIRST MAT GARBLE
030
sECRET | DETERMINES | NOT SECRET Low_PRECEDENCE | DETETMINES | iMMEDIATE
PROCESSING (PRECEDENCE)
035 065
RECORDS FROM SEPARATES INSPECTS RANSPORTS!
MSG ON FIRST 8 FOR CHANNEL TO XEROX
FORM 228 SECOND MATS NO MACHINE
as0 RECOmS FFom
JOINS FORM SG FoRM 3827 "E,';"E"&‘,’,E,“
TO MaT WRITER) ON_XEROX
075 030 |
045 NOT
SEPARATES RECORDS STAMPS IN.NO, SECRET | DETERMINES | SECRET
FIRST 8 OPSCTR COPY | | kAUTO. NUMBER PROCESSING
SECOND MATS DISTRIBUTION STAMP)
{ 080 ¥ 035
TAMPS D.T.G. RECORDS
FirsT MaT / PLACES \ SECOND MAT CHAINS 065 _~ s
e i BiaaTe
TUBE e
085 1 1 a0 1
STAMES N NO. RECORDS
opscrn Cory | oM s JOINS FORM OPSCTR COPY
DISTRIBUTION STAMP) DISTRIBUTION
END = Fen N PLACES HAI 5 ‘
CHAINS 005 INSPECT T 1 XEROX CQPY _/ XEROX COPY CHAINS 205 —
123 FOR (AUTO. DATE IN TUBE 245
245 CHANNEL NO. STA! CARRIE
365
070 095§ 085
RECORDS ¥ ROM RANSPORTS RECORT
M SocumeNT | romm1s 1o | [{ 70 gpscr N | opSera copy
SRITER) MESSAGE Fue DISTRIBUTION
i] END 7
_ —~~ —~

CHAINS 025
145

265
385

Figure 2. Fragment of an AFPA flow chart.

the events on an entire AFPA flow chart, would
take many hours to construct; however, Simplified
Message-Processing Simulation permits the AFPA
events to be grouped into broader tasks which may
be matched directly to the SMPS building blocks.
Thus, a simulation model may be assembled quickly
and easily. The outlined area of Fig. 3 is the SMPS
simplification of the outlined portion of the AFPA
flow chart fragment shown in Fig. 2.

A technical report, “SMPS—Simplified Message-
Processing Simulation,”? instructs the user how to
construct simplified flow charts from the AFPA
flow charts, how to fill out task-description work-
sheets from the simplified flow chart, and how to
match the SMPS building blocks to the tasks de-
fined.

When the SMPS building blocks are matched to
the tasks, the simulation model is essentially com-

plete. The SMPS report also describes how the
input messages for the simulation may be prepared
from a real traffic sample or from statistically gen-
erated messages.

What SMPS Is

SMPS is a language derived from the macro-
assembler capabilities of IBM’s GPSS II. The
building blocks of SMPS include a set of GPSS
variables defined in terms of the parameters of a
GPSS transaction, a set of functions for the gen-
eration of GPSS parameters from a deck of cards
generated independently to describe a message sam-
ple, a few other GPSS system variables, and a set
of GPSS macro instructions. SMPS relies heavily
on the development of DMPS (Detailed Message-
Processing Simulation') for the method of param-
eter construction and assignment.

152

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

K 005
TEAR OFF
MESSAGE FROM
TT RECEIVER \ﬁ\
G J 010 H
SET DECISION: ' SET
PRE CEDENCE FLASH i NON PRECEDENCE
TO FIFO FLASH TO FIFO
B SECOND COPYm.5 F TRIM AND Hg
MINISTRA- @ | SPLICE 015
TION COPY MESSAGE
105
€ lpeciston 920
IMMEDIATE
OR NOT
C | ADMINIS- 065 D |ADMINIS- 120
TRATIVE IBA%E{ A
PROCESS ING- - —~———"1PROCESSING- -
LOW PRIORITY 105 IMMEDIATE 105
L 7 !
Al route o 140
STAFF .
AGENCIES 185
Figure 3. Simplified flow chart fragment.
Use of SMPS it may be necessary to divide it into several simpler

The simplified flow chart is derived from the
AFPA flow chart of chains of events, which is in
tree form. First, uninterrupted tasks are identified,
and identical chains of tasks are merged. The first
worksheet describes personnel and equipment (Fig.
4). The second worksheet describes the tasks in
the simplified flow charts in terms of personnel and
equipment required, next tasks to be performed
under what conditions, and processing time ex-
pected, either in numbers or'as a formula in terms
of message characteristics (Fig. 5). The next task
is the selection of SMPS building blocks. In the
simplest cases, a SMPS building block matches each
task. However, if the task is complex or unusual,

tasks to find a match.

In the case of communications-terminal process-
ing for which SMPS was designed, the usual tasks
are decision-making, logging, routing, poking (tape
cutting), tape reproduction, offline encryption/de-
cryption, inspection, transmission, filing, reference
lookup, transportation or delivery between major
staff areas of a headquarters, typing, reproduction,
collation, distribution of copies, and additional
administrative functions.

The SMPS building blocks, called modules, are
divided into six categories. The first category
contains general-purpose modules which involve
queue number, personnel or equipment identifica-

SMPS—A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS 153

Associated |Unique No. . Associated [Unique No.

Personnel Code Code |Identical || Eduipment Code Code |Identical
SMC Inclerk 2 1 Xerox 4 1
SMC Message 3 1 Multilith 5 2

Controller
Multilith 5 - 1

Operator
L/-E/'

Figure 4. Worksheet 1, personnel and equipment.

tion, next module, and time factors; the time factors
are for processing or batching. The second cate-
gory contains decision modules for usual decisions.
The third category contains modules which repre-
sent transportation and contain facilities to record
transit times within the GPSS simulation and for ex-
ternal statistical analysis. The fourth category con-
tains a set of modules to permit delivery at regular
intervals. The fifth group contains the modules used
to control the flow of the three types of messages
into the model. The first type of message is the
sample concerning which transit times are to be
measured to evaluate system effectiveness; this is the
group which is specified on a card deck generated
independently of the model. The second type con-

cerns service and similar messages which are not
being directly evaluated but which occupy both
personnel and equipment within the communica-
tions facility; these are an integral part of the model.
The third type of message does not represent actual
traffic but is used to account for any other activi-
ties, such as breaks for personnel or downtime for
equipment, which would impede the processing of
significant message traffic by occupying personnel
or equipment and making them unavailable. The
sixth group contains flexible modules which allow
most unusual tasks to be performed without re-
quiring knowledge of GPSS.

Figure 6 contains the description of a few
modules.

154

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Incoming v
Headquarters: Staff Agency: SMC Outgoin
Task Personnel and | Processing Time Queue Output
1D Task Description Equipment AFPA Event |Sec Next Task | Disci- Batched
Code Needed : pline
K Tear off message from TT Recelver SMC Inclerk 005 33 J FIFO No
J Deocision flash or not SMC Inolerk 010 1 GG it flash FIFO No
H if not flash
G Set queue discipline to Preoc FIFO - - 0 B None -
B Administrative processing flash message SMC Inoclerk 015...105 h1 A Prec No
FIFQ
A Routing of Messages SMC Message Controller 140.,,185 109 Off ochart Prec No
FIFO
H Set queue discipline to Preo FIFO - - 0 F None -
F Trim and splice message SMC Inclerk 110.,,015 30 E Prec No
FIFO
E Decision immediate or not SMC Inolerk 020 1 D if immediate Prec No
C if not FIFO
D Administrative processing immediate message | SMC Inolerk 120...105 89 A Prec No
Xerox copler FIFO
[Administrative processing low precedence SMC Inolerk 065...105 24 A Preo Yes
. message FIFO
Figure 5. Worksheet 2, task definition.
No. s Meaning of Variables
l&ame Var?ab?gs Module Description 9
1 2 3 4 5 6 7 8
Al 5 General Queue | Identity Next Time Time
One individual or plece of equipment No. of equip-| Task Faotor Factor
ment or 1 2
takes a message from a numbered
personnel
queue and processes it for & time
gpecified by two time factors which
desoribe either a rectangular dis-
*tribution of tlme or speocifies a
formula for time. The message 1is
then passed to the next task.
Bl 7 General Queue | Identity Next Time Time Time Time
No. of equip-| Task Faqtor Factor | Faotor | Fastor
Same as Al except two additlonal ment or 1 2 3 L
time factors are available for
peraonnel
batohing delay.
B2 8 General Queue | Identity |Identity | Next Time Time Time Time
No. of first jof second| Task Faotor | Faotor | Faotor Faator
Seme as Bl except that additional .
equipment|equipment 1 2 3 -
equipment or personnel is required.
or per- |or per-
gonnel gonnel
/_—_—//_—§ ___,/

Figure 6. Selection of available modules.

SMPS—A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS 155

Incoming v

Staff Agency: swc

Headquarters: 4 Outgoing
T?Sk Modu]e V;;fagle Interpretation of Variable Code
Code Identity Module for use in this Task
K Al 1 Queue 1 1
2 SMC inclerk 2
3 Task J next J
L Time factor 1 mean 33 sec 33
5 Time faotor 2 spread 3 sec 3
J A1y 1 Queue 2 2
2 SMC inclerk 2
3 Next task if flash — G G
4 Next task if not flash —H H
G F3 1 Task B next B
/JN/JW

Figure 7. Worksheet 3, module assignment.

Worksheet 3 (Fig. 7) aids in the matching of
modules to tasks. The function-definition work-
sheet (Fig. 8) aids in the construction of functions
to define processing times in terms of message char-
acteristics.

The cards representing the significant sample are
prepared by a computer program to a form accept-
able by the simulation program; these cards con-
tain the identification and significant characteristics
of each message. The computer program (written in
FORTRAN) also prints these characteristics of
each message in English (Fig. 9). This printout
includes time of arrival in the system as day, hour,
and minute, as well as the simulator clock time for
arrival in total seconds. It also includes the identi-
fication number, which indicates whether the mes-
sage is incoming or outgoing (those numbered over
20,000 are incoming), precedence, classification;
number of addresses, number of lines of text, num-
ber of communications channels required, number
of pages, number of staff agencies on local distribu-
tion, number of local copies, whether off-line en-
cryption or decryption is required, special security
categories, or other special characteristics involved.

Two programs are available to prepare a mes-
sage deck.

One program uses an actual message sample, in
which case the message characteristics are de-
termined by examining a message. These char-
acteristics then are transcribed onto cards, which
are used as data by this input-preparation program.

If statistical generation of messages is desired, an

Figure 8.

Function-definition worksheet.

. Fugzﬁon GPSS
Function b Variable . s s Variable Definition in Multiplier
Application I?grr;;cnéty for Variable Definition GPSS Language (Time Factor 1)
Factor 2) Function
Pony circult FN10 vé Number of lines Primary variable 7 or 14
Time
MCPU time FN11 V20 135 + 60 (number of channels) K135 + K60 * V7 + K140 * V8 1
+ 140 x (number of pages)
Multilith time FN12 V2l (Number of copies)/2 x {number | V11/K2 * V8 + K150 * V8 + K10 1
of pages) + 150 x (number of
pages) + 10
Poking time FN13 V22 67 + 4,3 x (number of addres- K67 + Kh3 sk V5/K10 + K9 * V6 1
sees) + 9 x (number of lines)
/Lf

156

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

-=--=NJMBER OF =-~—====-- ceseseec -
DAY HR MIN TIME IN/DUT PREC. CLASS. ADD. LINES CHAN.PAGE AGEN. COPY CRYP SPECAT SPEC.ORIS/ADD
V12 vl v2 V3 Ve V5 V5 vT Vs V10 Vil vy V13 vie
0 o 9 540 20001. IMMED., CONFID 1 4 1 1 3 5 NO 0 0
n 0 18 1080 20002 IMMED. CONFID 1 12 1 1 3 5 NO 0 0
0 0 20 1200 20003’ [MMED. CONFID 1 2 1 1 3 5 NO 0 0
0 118 4680 1 IMMED, CONFID 4 29 4 2 10 31 NO 0 o}
0 3 39 13140 20004: PRIOR. CONFID 9 39 4 2 4 10 NO 0 0
0 8 41 31260 2° ROUT. CONFID 1 2 1 1 6 18 NO 0 0
0 9 48 35280 3. ROUT. SECRET 2 39 1 1 4 5 NO 0 0
1] 9 49 35340 4. ROUT. SECRET 3 5 1 1 4 5 NO 0 0
[¢] 9 50 35400 5 ROUT. CONFID 2 6 2 1 3 11 NOD 0 o]
0 9 58 35880 20005 ROUT,. EFTO 2 1? 1 1 2 4 NO 0 0
0 10 4 36240 6. ROUT. CONFID 2 5 1 1 3 19 NO 0 0
0 10 27 37620 20006; IMMED. UNCLAS 11 22 7 1 1 1 NOD 0 0
o 10 29 37740 20007 ROUT, TS 3 %) 1 2 2 8 YES, 0 o]
0 10 39 37800 20008 ROUT. SECRET 3 14 3 1 3 9 NO 0 0
0 10 52 39120 7 ROUT, CONFID 3 29 1 1 3 5 NO 0 0
n 10 53 39180 8 ROUT. CONFID 1 2 1 1 3 4 NO 0 0
0 10 54 39240 9 ROQUT. CONFID 4 [3:] 2 3 11 39 NO 0 0
9 10 55 39300 10. 0vur, CONFID 5 27 ! 2 4 11 NO 0 0
0 11 53 42780 20009; [MME), CONFID 2 7 2 1 i 1 NO 0 0
0 11 53 42780 20010 PRIOR. EFTOD 5 8 1 1 4 12 NO 0 0
0 11 54 42840 20011: ROUT, EFTO 5 9 3 1 1 5 ND 0]
0 11 Sé6 42960 20012 PRIOR. UNCLAS 2 32 1 2 4 13 NO 0 0
0 11 5% 42960 20013. ROUT, UNCLAS 17 11 8 1 2 7 NO 0 o]
2 11 56 42960 20014 ROUT, UNCLAS 1 12 1 1 2 8 NO 0 0
‘0 12 6 43560 20015: 20UT. CONFID 3 13 1 1 1 4 NO 0 0
0 12 22 44520 20016, ROUT. CONFID 12 14 7 1 3 3 NO 0 0
0 1222 44520 20017 ROUT. CONFID 3 15 1 ! 1 5 ND 0 0
0 12 23 44580 20018: PRIOR, CONFID 2 38 i 2 4 5 NO 0 o]
0 12 45 45900 11° ROUT. CONFID 1 17 1 1 3 17 NO 0 o]
0 12 46 45960 12 ROUT. CONFID 1 1 1 1 2 8 NO 0 0
0 12 50 46200 20019 PRIOR. SECRET 16 50 4 3 5 9 NO 1 ¥
END OF LISTING OF INPUT CARDS

Figure 9. Listing of input messages provided by input programs.

alternative FORTRAN input-preparation program
is available with which the message characteristics
necessary for the run can be easily specified. A
listing of these specifications and detailed diagnostic
routines concerning card or logical errors is pro-
vided. The other outputs of this program are the
same as those of the first input program.

Relatively few items in:the printout of the simu-
lation run are significant to this type of model.
Hence, the volume of printout to examine is not
excessive.

The most important question in evaluating a
model of a message-processing system is, “How
long does it take a message to get through the
system?” This information is most meaningful in
terms of the cumulative distribution function of the
total transit time through the system; however, it
may also be important to know the time through
major subsystems, as well as the time for messages
with special characteristics.

A major output of SMPS is a deck of cards,
each of which contains all the characteristics of a
message, a transit time either through the entire
system or through a major portion of the system,
and an _identifier specifying the meaning of the
transit time given. Thus, this card deck can be
processed manually, by EAM equipment, or by

computer to select the messages with the character-
istics of interest and to determine the transit-time
distributions for these characteristics.

The other output of SMPS is the printout pro-
duced by the GPSS program. The portions of the
output significant to the user include the tables
which give the fraction of total number of mes-
sages with transit times less than each increment of
an accumulating time scale, and the queue statistics
which indicate where bottlenecks occur.

RANGE OF APPLICABILITY OF THE
PRESENT PACKAGE

Although this application is based on AFPA flow
charts, the technique does not require that AFPA
be used. The flow chart which describes system
operation may be constructed independently; how-
ever, in this case, more skill may be required in
defining the tasks of suitable size. The basic con-
cept is that a task must be small enough that the
personnel and equipment involved would not be in-
terrupted to perform any service for any other
message.

The basic structure of SMPS assumes that a mes-
sage has certain properties which are recorded in the
simulation representation of the message—namely,

SMPS—A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS 157

the GPSS transaction parameters. Two properties
are not fixed and may be defined at each head-
quarters; however, these properties may have, at
most, 10 values. The characteristics chosen are
ones most meaningful to a variety of military head-
quarters. Hence, although the processing examples
carried out thus far involved military terminal proc-
essing, SMPS should be useful for any processing of
military or nonmilitary messages. Although such
properties as off-line encryption or security classi-
fication are not apt to be meaningful for nonmili-
tary applications, any properties defined can be ig-
nored in a model. If the statistical input program
is used, each specified characteristic must be ex-
amined to determine whether it can be ignored in
creating the message sample.

In its current form, SMPS can be used to simulate
. any message-processing application where the
transit time for a message and its flow through the
processing steps depend only on the message char-
acteristics defined in SMPS and on statistical
variables.

APPLICABILITY OF TECHNIQUE
FOR OTHER USES

The SMPS technique is not limited to dynamic
analysis of message processing. Whenever a system
can be looked on as consisting of processing units
which can be described by a small number of char-
acteristics and where both processing time and
batching time depend on characteristics of these
units alone, a set of building blocks and a structure
similar to SMPS can easily be constructed in a
very short time by personnel with programming
experience.

Because most flow charts contain relatively few
patterns of boxes and lines, it is possible to de-
scribe most systems by reusing a few modules with
different variable values. For example, one general
equipment- or personnel-use module can be used
which includes as variables a queue number, three
or four equipment/personnel identities, the next

- task, and several time factors.

Two decision
modules corresponding to two- and three-path
branchings, will probably be sufficient. Decision
modules have variables of relations (less than, equal
to, greater than, for example), a number being
tested by the relation, next task if true, and next
task if false. A few special modules can be pro-
grammed to insert in the flow-process chart for
priority assignments, tabulations, origination rates,
and the like. With these types of modules, a model
can easily be constructed.

ADVANTAGES OF THE SIMPLIFIED
MESSAGE-PROCESSING SIMULATION

A “language” such as SMPS is easier to learn
than a simulation or programming language: it
has no grammar and little vocabulary. A model in
SMPS can be constructed very quickly. Changes
are readily made and alternatives are easily com-
pared. Because the level of abstraction is high, the
model is easily understood in terms of activities
which occur and of what is required for the activ-
ities.

REFERENCES

1. A. Cassel et al, “Improved Message Process-
ing (IMP)—An Analysis of Headquarters Message-
Processing Operations,” Technical Report 1-055,
Franklin Institute Research Laboratories (Oct.
1965).

2. P. W. Maraist and A. Barskis, ‘“Automated
Flow Process Analysis (AFPA)—A Technique for
Analysis of Headquarters Message Processing,”
ibid, no. 1-160 (Nov. 1965).

3. K. Jacoby and D. Fackenthal, “Simplified
Message-Processing Simulation (SMPS)—A Tech-
nique for Analysis of Headquarters Message Proc-
essing,” ibid, no. 1-161 (Nov. 1965).

4. General Purpose Systems Simulator II, Form
B20-6346-1, International Business Machines Cor-
poration (1963).

DIGITAL SIMULATION OF LARGE-SCALE SYSTEMS

Robert V. Jacobson
Advanced Systems Department, Space and Information Systems Division
Raytheon Company, Sudbury, Massachusetts

Over the past decade systems analysis teams have
repeatedly demonstrated the feasibility of using
general purpose digital.computers to simulate the
operation of large-scale real-world systems. BAG,
DECAP, INCA, STAGE, TEFORM and TEMPER
are all representative examples. However, the
process of developing and using these system simu-
lations has not always been entirely satisfying to the
ultimate users. The purpose of this paper is to
examine the process of simulating systems, and so
to suggest some causes of dissatisfaction and their
remedies. Because of the diversity of usage, it seems
to be important to define the key words to be used.

System Model is used to mean the interre-
lationships and logic which describe
the system adequately for the task at
hand.

A Simulation is a mechanism based on a
-model which operates “like” the sys-
tem. That is to say, a simulation is an
operating version of the model.

A Digital Simulation is a simulation in
which the system quantities are repre-
sented by digits, and so is most easily
implemented on a digital computer.

This usage follows M. R. Lackner’s paper “Digi-
tal Simulation and System Theory.”! Note that
the term computer simulation under these defi-
nitions would mean a simulation of a computer.
Other writers? have used “computer simulation” in
the same sense that “‘digital simulation” is used

159

here, but this author believes that clarity suffers as
a result.

The task flow diagram (Fig. 1) shows how a
typical case moves from the problem statement to
the final analysis. The figure shows five different

"CUSTOMER"

SYSTEM
ANALYSIS

SYSTEMS
ANALYST
COMPUTER PRINT-OUT
(FOR ANALYSIS)

SYSTEM
PROBLEM

MODEL CONCEPT
8 SCENARIOS

COMPUTER PRINT-OUT
(FOR DESIGN)

COMPUTER

MODEL
DESIGNER

DIGITAL SIMULATION
& ANALYSIS INPUT
DATA

DIGITAL SIMULATION

8 TEST DATA
SIMULATION
DESIGNER
Task flow diagram of model/simulation construc-
tion and use.

MODEL DESIGN
8 TEST DATA

Figure 1.

160 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

people (or organizations) in the ‘“loop;” while in
fact a smaller number of individual people may be
involved, the division of tasks into these five cate-
gories seems to be a useful one.

The flow begins with the “customer” who states
the problem to be analyzed to the systems analyst.
(The customer is defined as the person or organi-
zation with a principal mission other than the proc-
esses to be described below.) Let us assume that
the systems analyst determines that the problem
can best be solved through the use of a digital simu-
lation and that he directs the model designer to
design a system model. In many cases the systems
analyst and the designer of the system model will
be the same person or organization. The simula-
tion designer, bearing in mind the scenarios which
are to be analyzed, designs a simulation which is
based on the model. The system analyst uses the
output data generated by the digital simulation to
draw conclusions about the operation of the real-
world system, and reports them to the customer.
Once a working computer program for the digital
simulation has been constructed, the system ana-
lyst/model designer hopefully can deal directly with
the computer with the help of the computer sup-
porting staff.

With the above definitions in mind let us consider
first the information flow from the system analyst to
the model designer. The model designer would like
to identify and define the variables and constants
which the system analyst considers significant, and
to find expressions which adequately describe their
interrelationships. Next he wants to develop a logic
diagram which represents the flow (often with time)
of events or processes in the system, and which ties
together the interrelationships. Two problems often
arise here. The system analyst would like to have
“every” real-world variable included in the model,
and would like relationships to be ‘“completely ac-
curate.”* In fact, the systems analyst probably
doesn’t know quantitatively the contribution made
to the accuracy of the model by each of the param-
eters and variables which he can identify, or a com-
plete representation of their interrelationships. It
is the author’s view that the model designer can best
serve the system analyst by urging the initial selec-
tion of variables and relationships which will most
simply (rather than accurately) describe the real-

*The words “‘large-scale” are included in the title to exclude
from this discussion systems which can in fact be completely
simulated such as savings bank records or an airlines reservation
system. :

world system, with the long-range objective that, as
understanding of the operation of the model grows,
complexity can be introduced. As an example of
initial simplicity if one were to simulate detection of
a target by a radar, one might compute the effect
of each of the dozens of quantities which enter into
the detection of a target. On the other hand, one
might begin with a model which says that for a given
radar, detection never occurs beyond a given range,
but at lesser ranges detection always occurs for all
targets. Oversimplified? Perhaps, but indeed be-
cause received signal varies roughly as the fourth
root of target range the approximation would not be
significantly in error if, for example, one were
modeling an air defense information processing
system, and were not directly concerned with the
sensors, in this case the radar, but rather with such
things as data storage and correlation, data link
saturation, and displays. The fact that a large air-
craft was “detected” at 75 miles instead of 80 miles
as it would be in the real-world may contribute far
less to the inaccuracies of the model than other as-
sumptions which had been made by default so to
speak, rather than explicitly. That is to say that the
model designer may overlook factors having a far
greater effect on accuracy.

Since the very purpose of constructing the model
and simulation is system analysis, it is implicit that
the contribution to similitude, or accuracy of each
of the model’s elements is not known quantitatively
at the beginning of the design effort. If the model
designer can restrain the systems analyst’s desire to
model “‘everything,” and rather model as little as
possible initially, the result will be that the complete
structure of the model will emerge at the earliest
possible date and then can be quickly converted
into a digital simulation. The systems analyst, and
the model designer are now in a position to test the
significance of each of the elements of their model
in a systematic way. Continuing the example given
above, they might like to make detection range a
yes-no function of the target range, modified by
a linear function of the nominal target cross section.
If this elaboration yields a significantly different
result, they might go a step further and try a model
in which target cross section was a function of both
nominal target cross section and target attitude
relative to the radar.

The important point is that as early as possible in
the design cycle they have a model (and a computer
simulation of it) which operates and generates out-
put. They have been forced to think through the
entire system, as a result have gained a better under-

DIGITAL SIMULATION OF LARGE-SCALE SYSTEMS 161

standing of the system operation, and so have more
accurately identified the really significant system
parameters and variables. The level of detail to
which the model will then be expended is far more
likely to be uniform, and both have the assurance
that something will come from their efforts, however
much it may fall short of their original aspirations.
Equally important, the systems analyst .will have a
clear image of the model’s structure and so will be
better able to evaluate its output. These points may
be summarized as:

The Model Designer’s

Role: To convert the significant elements
of the real-world system into a unified
mathematical/logical model.

Objective: To maximize the utility of the
mathematical model.

Guidelines: Evolutionary model design to
achieve a uniform level of detail, and
systematic evaluation of the model de-
sign.

The problems which the simulation designer must
solve revolve around the conflict between the gener-
ality of the model and the explicit character. of com-
puters. The model’s logic and expressions must be
stated in an explicit way, input data must be of a
stated form and content, and the format of the out-
put data must be described in advance. On the
other hand, the model designer can be expected to
want to make changes during the design process,
and each change will cost time and money. The
simulation designer will be of greatest service to
the model designer and systems analyst if he accepts
this fact of life, and keeps in mind the thoughts sug-
gested below.

The Simulation Designer’s

Role: To convert the mathematical model
into a useful computer program.

Objectives: To maximize machine inde-
dependence and to simplify the proc-
ess of changing the model/simulation.

Guidelines: To serve the problem at hand,
not the computer.

The simulation designer should first take steps to
minimize the impact of the particular computer to
be used on the problem to be solved. That is to say
the computer should serve rather than dominate the
problem. Secondly through forward-looking design
techniques, the simulation designer can often facili-
tate the changes which will inevitably be sought by
the model designer after he has experimented with

the first primative versions of the simulation. The
resulting computer program should have the follow-
ing characteristics:

e Inherent adaptability.

e Complete labeling of output.

o Careful source program record keeping.

e User-oriented input and output, and
operating documents.

‘@ Graphical outputs as appropriate.

o Machine independence.

As an example of adaptability the computer pro-
gram may call for a list to be scanned. In a FOR-
TRAN program this would probably be done with a
DO-LOOP. If there is some uncertainty about the
list size, the DO-LOOP upper limit can be an input
parameter, so that it can be easily and universally
changed if necessary. Likewise if a number of
WRITE formats use a common list of labels which
are subject to change, it might be better to input the
labels rather than store them in the individual for-
mat statements. The important point is not so much
these primitive examples themselves as the design
objective of simplifying changes.

Obviously the simulation designer should be alert
to the effect of computer limitations on simulation
design, and so model design. The size of memory
core storage is the most obvious current limitation,
but running time, turn-around time, and input/out-
put device selection are also significant. Depending
upon his personal background the model designer
may need little or considerable guidance from the
simulation designer. However, the latter should
resist the temptation to overwhelm the model de-
signer by detailing the prohibitions placed on the
model design, but rather seek to minimize them.
The impossible cannot be achieved, but imaginative
thinking can often reveal clever solutions to the
problem at hand.

In many cases, the simulation design process will
consume time and money comparable to if not
greater than that devoted to operating the com-
pleted simulation. This fact focuses attention on
the need for careful, systematic simulation design
procedures. For example as a general rule the
output should include an appropriate heading which
adequately identifies the computer run. Adequate
identification might include identification of the
input base data used, the particular version of the
simulation used (since it may be in a state of flux),
the date, and some statement of the objectives of the
run. Equally important is the proper and consistent
use of such a heading. In the rush to meet a com-

162 PRQCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

puter run submission deadline while debugging,
there is a temptation to bypass the process of up-
dating the heading data. However, this is one place
where haste does indeed make waste, and sooner or
later the time and money expended on at least one
computer run of a series is lost because the printout
has lost its identity. At best the run must be re-
peated; at worst wrong conclusions are drawn and
additional runs wasted.

It is equally important to keep careful records of
changes to the program. It should always be pos-
sible to associate a given set of printouts with the
. specific program that produced it. This permits the

model designer to track the evolving model design
with the output of the simulation. Not uncom-
monly a change in the model (and its reflection as a
change in the simulation) will produce an unex-
pectedly negative effect and the model designer will
want to rescind the change, If he has failed to mark
changes systematically, the simulation designer may
have difficulty in retracing his steps.

A technique has been evolved at Raytheon for
using the field 73-80 of the standard FORTRAN
punch card to record changes. Field 73-78 is coded
with the name of the subroutine, for example
SAMPLE. Field 79-80 holds the serial number of
the change. Assuming subroutine SAMPLE were
included in the first attempt at compilation, field
73-80 for all punched cards would show SAMPLE
01. If no more changes were made until say the fifth
batch of compilations, the new and changed cards
would be identified as SAMPLE 05. Furthermore
the simulation designer inserts a comment card at
the head of SAMPLE which briefly identifies the 05

changes to SAMPLE and assists the model designer
in controlling the growth of the simulation. When
subroutine SAMPLE has been completed the final
punched card deck can have a short subroutine
identifier, i.e., SAMP, and sequential serial numbers
inserted in field 77-80 by a standard utility program.

Finally the simulation designer makes a major
contribution to the value of the model simulation by
providing customer-oriented input and output
formats, and straightforward and well-documented
operating procedures. If he has done his job well,
the completed simulation can be operated by the
model designer directly as suggested by Fig. 1.
Hopefully the input format matches the normal
practices of the system analyst. If he is accustomed
to thinking of a quantity in nautical miles, he ob-
viously should not be required to input it in meters.
Likewise output data should conform to and should
be labeled in his terms, not computer program sym-

bols. During the design and test of a simulation a
variety of output formats will likely be developed
for debugging. Since the specific data which the
system analyst will want to see will vary with the
purpose of the specific run, it is useful to be able
to suppress specific output formats through the
setting of control parameters. The analyst can con-
centrate on the subject of interest, and I1/O device
charges are minimized. Lastly, recognizing that one
picture often is worth ten thousand words the simu-
lation designer should be alert for situations in
which graphical output would be useful to the sys-
tems analyst. Some languages such as DYNAMO?
specifically include graphical output. Generalized
programs have been developed which will produce
graphs on a line printer.*® Many computer systems
now feature X-Y plotters, but conventional line
printers can be used in a graphical mode, and can be
assumed to be available at almost all computer in-
stallations.

Figure 2 is a plot of aircraft and decoy positions
relative to a surface-to-air missile (SAM) site gen-
erated by the DECAP model. Notice that all labels
are designed for easy reading. Distances are shown
in nautical miles East-West, and North-South of the
site. The program was designed so that the SAM
site is automatically located in the appropriate
quadrant of the map, and the scales are adjusted
to match. In the case illustrated the program sensed
that the cloud of targets was roughly South-West of
the SAM site and so it located the SAM site in the
North-West quadrant of the map. The symbols
used for targets are defined at the right. The game
and run are identified, and the specific time and
location depicted is noted. Figure 3 is a plot of
cumulative kill probability as a function of reentry
vehicles used for each of four different attacks
against a point target. It is part of the DACE model
developed by Raytheon using the Bolt, Beranek,
and Newman, Incorporated remote-access, time-
share system, TELCOMP. The basic plotting func-
tion is a part of the system software. The simulation
designer specified the headings, and scales, and
modified the variables to be plotted to match the
specifications of the PLOT function. Specifically
the variable to be plotted may range from —1to +1.
In the case illustrated the variable to be plotted,
cumulative kill probability, ranges from 0 to +1.
The Instructions to transform and plot the variable
take the following form:

PK (A, B) = (PK (A, B) - 0.5)*2
PLOT PK(A,B) ONNUM

DIGITAL SIMULATION OF LARGE-SCALE SYSTEMS

163

GAME-Q09 RUN-X05

AT 810 SECONDS - TARGET ARRAY AT SITE 2.

$-TARGET ENGAGED

NM] EAST/MEST 10 s %4 5 10 15 20 25 ~aA0 %-TARGET TRALKED
.......... . PPN e 6 s e s 6 et 4 s s e st e \one anmars
. Y-TWO BOMBRS
10. 10 1=-0NE DECOY
. . 2-Tw0 DECOYS
A=-ONE BOMBER
NME . +ONE DECOY
B=0NE _BOMBER
See .5, +TW0 DECYS
L=Twn0 EOMBRS
. . +ONE DECOY
1 M=Tw0 80!
NORTH e, I en +TWO DECYS
A8 1-2-2 1 1.1 AL X=-I00 MANY.
. 21 21 1 TARGETS
1 1 1 11
. 1 i .
5 1 } 5
AND .
. .2
$2
10, .10
SOUTH . 1
lﬂl 1 15
CF THE .
20. .20
SITE .
25 25
30. .30
10 S. e 5. 10 15 20 28 30

TARGET ENGAGED- 2

TARGETS BEING TRACKED- 1

Figure 2. A computer-generated map to show disposition of aircraft, and decoys.

(A and B define the four different cases being
studied and NUM is the number of reentry vehicles
yielding the plotted kill probability.) The advantage
to the simulation designer of the generalized instruc-
tion, PLOT, is that he can concentrate his attention
on the problems of the specific simulation. Figure 3
also illustrates a valuable feature of on-line com-
puting. The system analyst monitors the output
from the simulation. When he obtains the desired
results, he can interrupt the computation and go on
to the next case.

The same effect can be achieved on batch com-
puters by storing successive values of a variable on a
scratch tape with appropriate tags. When the run is
completed, the executive portion of the simulation
can make use of an auxiliary program to provide
appropriate headings and scales and to construct
a plot of the variable as a function of the inde-
pendent variable with which each value was tagged.
TEFORM, a central war model, computes counter-

force and countervalue potential ratios at each event
cycle time and stores the values. These are brought
back at the end of a game and converted into a time
plot which follows the event initiated printout.

Since the above implicitly has been stated in terms

~ of the current family of high-speed batch processing

computers, one might ask what changes the new
remote-access, time-sharing computers will have.
The author’s own limited experience suggests that
the model designer will appear to absorb the simula-
tion designer’s job in large part because he will com-
municate directly with the computer directly
through his remote console. In fact, it is likely that
the simulation designer’s function will remain but in
a new form. First his role in a specific task will be-
come consultive. In looking over the model de-
signer’s shoulder either literally, or figuratively, he
will spot program needs which can be best met with
techniques unfamiliar to the model designer, and
suggest them. More important, however, will be the

164 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

’ CUMULATIVE KILL PROBABILITY
RV'S 1] 2 .4 6 -8 1.0
ASGN'D *senekeosoKeooakosookonookeoosHoonakoaaaRkesaokaoaok
0.0000 >

1.0000)

2.0000)

3.0000 +)

4.0000

//\/

17.0000 >
18.0000 >

PN
INTERRUPTED AT STEP 6.1200
«D0 PART 40

Figure 3. A graph generated by a computer in real time.

simulation designer’s contributions to the pro-
gramming language. Being able to anticipate at
least to some extent the things the model designer
is going to do, he can seek out ways to adapt the
programming language to the needs. The other area
in which the simulation designer can contribute is in
applications of mass memories. If the computer sys-
tem is capable of storing the input data and results
from a large number of previous runs, the system
analyst may want to be able to compare current
runs with earlier runs. He may want to be able to
repeat an earlier run with only one or few changes,
and compare the results. Since the limitations on
data links are not likely to: be eased quickly, the
remote-access, time-sharing system is probably
going to be characterized by a low data transfer rate
for some time to come. As a consequence the sys-
tems analyst will appreciate a programming lan-

guage which enables him to state his problem suc-
cinctly, and to receive only the answer desired
without being distracted by unwanted output. The
simulation designer will be challenged in the decade
ahead to bring to the systems analyst and the model
designer the full power of on-line computing
coupled to a mass memory.

To summarize, system simulations are susceptible
to two broad defects, lack of credibility, and lack
of accessibility. The first is within the control of
the model designer. If he begins his design with the
maximum simplicity rather than complexity, he can
strive for uniformity of detail, and at the same time
give the systems analyst a clear quantitative measure
of the effect of departures from ‘“complete ac-
curacy.” By imaginative design of input and output
formats, and operating procedures, the simulation
designer can give the systems analyst a computer
program that is easy to operate, and adaptable to
the problem at hand. In the last analysis all of the
above comes down to being customer-oriented.
Each individual in the loop serves best when he
adopts the viewpoint of the person preceding him.

REFERENCES

1. M. R. Lackner, “Digital Simulation and Sys-
tem Theory,” Document No. SP-1612, System De-
velopment Corp. (Apr. 6, 1964).

2. M. Greenberger, “A New Methodology for
Computer Simulation,” Document No. MAC-TR-
13, MIT Project MAC.

3. A. L. PughIll, Dynamo User’s Manual, 2d ed.,
MIT Press.

4. R.G. West and J. R. Reynolds, “FORTRAN
Programs for Plotting Two Dimensional Graphs,”
Document No. NMC-TM-65-31, U.S. Naval Mis-
sile Center (June 21, 1965).

5. G. H. Grace, ‘“Application of Empirical
Methods to Computer-Based System Design,”
Document No. SP-1952, System Development
Corporation (June 1, 1965).

DSL/90—A DIGITAL SIMULATION PROGRAM
FOR CONTINUOUS SYSTEM MODELING

W. M. Syn
Systems Development Division

and

Robert N. Lingbarger
Data Processing Division
IBM Corporation, San Jose, California

INTRODUCTION

Computer simulation has been used for some time
in the analysis and design of dynamic systems. With
recent advancements in computer performance, the
field of dynamic simulation—long the exclusive
domain of the analog computer—has begun to
utilize digital methods. No less than a score of
digital simulation programs have appeared since
R. G. Selfridge’s pioneering effort in 1955; and the
number is ever-increasing. These programs offer a
convenient method of simulating continuous sys-
tem dynamics employing well-known and easy-to-
use analog computer programming techniques.
The common starting point for such simulation is
the conventional analog block diagram, and the
common approach is the breakdown of the mathe-
matical system model into its component parts or
functional blocks. These blocks, having a near one-
to-one correspondence with analog computing ele-
ments such as integrators, summers, limiters, etc.,
usually appear as subroutines within the simulator
program. Using one of the simulation packages,
“programming’ involves no more than merely in-
terconnecting the functional blocks by a sequence of
connection statements according to the rules laid
down by the input language. This interconnecting

165

of blocks is analogous to the wiring of the patch-
board on an analog computer. Therefore, these
digital-analog simulation programs combine the
best features of the analog and digital computers:
the flexibility of block connection structure of the
former and the accuracy and reliability of the latter.

DSL/90 is a new digital simulation package for
the 7090 family of computers. The program is avail-
able from the SHARE library (IWDSL No. 3358).
Its development, from drawing board to production
code, was guided by the following broad objectives:

e To incorporate within it all the desirable
and proven features of its predecessors;

o To make this useful technique of digital
simulation attractive to a group of users
who are not analog-computer-oriented,
yet retain the large following of analog
programmers who are devoted to the
building-block approach to system anal-
ysis;

e To provide a “‘continuous system simu-
lator” program that is applicable to a
broad range of continuous system anal-
ysis and not restrained by conventional
digital-analog simulator techniques.

166 PROCEEDINGS-—SPRING JOINT COMPUTER CONFERENCE, 1966

Some of the DSL /90 features are:

e A library of DSL system blocks such as
integrator, limiter, summer, etc.;

e A simple nonprocedural applications-
oriented input language specifying the
rules for connecting the library blocks
together;

e An input routine which permits quick
and easy parameter entry and data
changes;

e Complete print output routines includ-
ing a graphical output facility;

e Choice of numerical integration routines
with or without error bounds using cen-
tralized or noncentralized integration
schemes;

e Automatic sequencing of input language
statements (this is called ‘“‘sorting” in
programs such as ASTRAL and
MIDAS);

e Facility to add to the DSL/90 library
any user-defined blocks in the form of
subroutines (FORTRAN, MAP or
binary decks);

o Intermixing of DSL and FORTRAN
language statements;

e Repeatability of language statements
(macro-generation);

e Dynamic storage of data.

Although DSL/90’s input language statements
are block-oriented, they are not restricted solely to
block notation. DSL/90 permits an intermixing of
its input language statements (henceforth called
DSL statements) and FORTRAN IV statements.
Thus, the power of FORTRAN is made available
to the problem solver. One far-reaching implica-
tion of this language feature is that simulation
“programming” may begin anywhere from the
analog block diagram formulation of the problem
to the higher-level mathematical model in the form
of ordinary differential equations.

OPERATIONAL FEATURES

Basic Language Features

The DSL/90 language statements may be classi-
fied into three general categories: 1) structure or
connection statements which define the intercon-
nection of the functional blocks, 2) data statements
which permit the entry of alphanumeric informa-
tion, and 3) simulation control statements.

The Connection Statements. In the DSL/90 input
language, the basic functional block is characterized
by an output (outputs) that is functionally related
to one or more inputs. Parameter names and initial
conditions, if any, are also included in the statement
which has the following general form:

Outputs = Block name (Initial conditions,
Parameters, Inputs)

Below are examples of basic DSL connection or
structure statements:

1. OUTNAM = SQRT (TEMP)
In the block diagram representation (Fig. 1),
SQRT is the name of the functional block. It has a

single input called TEMP and the output is given
the name OUTNAM.

TEMP —=| [[——=0UTNAM

SQRT
Figure 1.
2. Y = INTGRL (IC2, YDOT)

Figure 2 represents the block INTGRIL which is
the basic DSL/90 integrator block. IC2 and YDOT
are its initial condition and input name respectively.

IC2

!

YDOT — f

INTGRL
Figure 2.

3. OUTL,OUT2 = VALVE (LEVEL, INHI,
INMED, INLO)

Figure 3 illustrates a user-supplied functional
block named VALVE with two outputs OQUT1 and
OUT2. LEVEL is a unique parameter name se-

LEVEL

:

INHI
INMED —
INLO —*

= 0CuT |

f—0uT 2

VALVE
Figure 3.

DSL/90—A DIGITAL SIMULATION PROGRAM 167

lected by the user, and INHI, INMED and INLO
are the names of the three input variables to the
block.

From the above illustrations, it should be evident
that a functional block in the DSL/90 language is
completely specified by the unique names assigned
to the inputs and outputs of each block. The user
is free to select names meaningful to his process
simulation, the only restriction being that a name
consists of no more than 6 alphanumeric characters,
the first of which is alphabetic. User-supplied
blocks may have any name following the same re-
striction above. However, the names of standard

blocks supplied as part of the DSL/90 simulation
package are preassigned. DSL/90 provides an ex-
tensive library of functional blocks which are listed
in Table 1.

The above format for characterizing functional
blocks in DSL/90 is consistently adhered to. How-
ever, there are these exceptions: the basic operations
of multiplying, dividing, summing and subtracting
are replaced by the operators *,/, + and —, re-
spectively. To this list of operators we add ** for
exponentiation. Let us illustrate one of these opera-
tions by simulating a multiplier output (Fig. 4),

OUT = A-B.

Table 1. Functional Description of Standard DSL/90 Blocks

GENERAL FORM

FUNCTION

%%| Y=INTGRL (IC, X)
Y(0) = IC
INTEGRATOR

t
Y=j;th+IC

EQUIVALENT LAPLACE TRANSFORM : ;—

%*| Y =MODINT (IC, P;, Py, X)

MODE-CONTROLLED INTEGRATOR

Y=f°'xm+|c Pi=l, P, =0
Y=ic P, =0, Py = |
Y= LAST OUTPUT P,=0, Pp=0

*| Y=REALPL (IC, P, X)
Y{0) = IC
IST ORDER SYSTEM (REAL POLE)

PY + Y =X

EQUIVALENT LAPLACE TRANSFORM : Wlﬂ

*| Y=LEDLAG (IC, P, Py, X) PaY+Y = B X+ X
Y(0) = 1IC
PS+I
LEAD - LAG EQUIVALENT LAPLACE TRANSFORM
. 2

*[Y =CMPXPL (IC|,ICa, P, P, X)
Y(0) = IC,
Y(0) = IC,
2ND ORDER SYSTEM (COMPLEX POLE)

Y+ 2P, PyY + P2Y = X

EQUIVALENT LAPLACE TRANSFORM: H5——————;
S2+2P B, S + P}

Y =DERIV (IC, X)
Y{©) =1IC
DERIVATIVE

Y= % QUADRATIC' INTERPOLATION

EQUIVALENT LAPLACE TRANSFORM: S

Y =DELAY (N, P, X)

P =TOTAL DELAY IN TERMS OF INDEPENDENT VAR.
N= MAX NO. OF POINTS DELAY

DEAD TIME (DELAY)

Y (t) = X(t-P) t2P
Y=0 t<P

EQUIVALENT .LAPLACE TRANSFORM : e ~PS

Y = ZHOLD (P, X)
¥(0) =0
ZERO-ORDER HOLD

Y=X P=
Y = LAST OUTPUT P=0
EQUIVALENT LAPLACE TRANSFORM : -é- (1-e3

Y = IMPL (IC, ERROR, FUNCT)
IMPLICIT FUNCTION

Y=IC t=0 FIRST ENTRY
Y = FUNCT (Y) t20
|Y- FUNCT (Y)| <ERROR - |Y|

168 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

SWITCHING FUNCTIONS

Y = FCNSW (P, X,, X2, X3) Y= X, P<0
Y =Xz P=0
FUNCTION SWITCH Y=X3 P>0
Y = INSW (P, X,, X5) Y=X, P<oO
INPUT SWITCH (RELAY) Y=X5 P20
Y,,Yp = OUTSW (P, X) Y, =X, Y520 P<O
OUTPUT SWITCH Y, =0, Yp= X P20
Y = COMPAR (X ,X2) Y=0 X; < Xa
COMPARATOR Y= X, 2 X
Y = RST (P,, Py, P3) Y=0 P,>0
Y= Pz >0, (P, &« 0)
Y=0 P3 >0, Yapa=t, (P2 20,P; £0)
RST FLIP-FLOP Y« | P3s > 0, Yp-1=0, " "

% THESE FOUR BLOCKS EXIST AS BUILT-IN MACRDS WITHIN DSL. IN-LINE CODE REPRESENTING
AN EQUIVALENT INTEGRATOR CIRCUIT IS GENERATED FOR EACH USE TO PERMIT THE USE OF
CENTRALIZED INTEGRATION SCHEMES WITHIN THE BLOCKS.

%% INTGRL MUST BE THE RIGHTMOST TERM FOR EACH LEVEL OF USAGE. IF X IS A SINGLE VARIABLE
NAME THEN IT MUST BE UNIQUE WITHIN THE PROBLEM. IC MUST ALSO BE UNIQUE. (-IC IS

NOT VALID). A LITERAL MAY BE USED FOR IC.

We have decided not to use OUT = MULT (A,
B), but simply OUT = A*B. Let us summarize
these ideas by considering a solution to Mathieu’s
equation:

5+ +Acost)y =0 y(0) = 0, y0) = YO

As the DSL connection statements for this circuit
follow a near one-to-one correspondence with the
functional blocks in Fig. 5, they may be written as:

FCN A * COS (TIME)

MULT FCN *Y

Y2DOT = -Y - MULT

YDOT INTGRL (0., Y2DOT)

Y = INTGRL (Y0, YDOT)
(Note that TIME is a DSL system name represent-
ing the independent variable of integration. It may
easily be renamed by the user.) '

Observe that the DSL statements in the above

example are also FORTRAN arithmetic statements,

il

B

1

A——— X p—>ouT

Figure 4.

ALSO SEE SECT. 5-i.

and the right-hand portions of the statements are
merely FORTRAN expressions. Therefore, as such,
their complexity is restricted only by the rules that
govern arithmetic expressions in the FORTRAN
language.

Furthermore, these expressions can serve as
inputs to any functional block, regardless of
whether it is a DSL/90 or user-supplied block. For
example, the first three DSL structure statements in
the problem above may be written as one statement,

Y2DOT = —Y — A * COS (TIME) * Y;

or perhaps as
Y2DOT = —-Y *(1. + A * COS (TIME)).

y+(1+A cos t)y=0. y(0)=0, y(0)= Yo

Y,00T YDOT
N J /

MULT

FCN
A cos t

Figure 5.

DSL/90—A DIGITAL SIMULATION PROGRAM

FUNCTION GENERATORS

169

GENERAL FORM

FUNCTION

Y=AFGEN (FUNCT, X)

ARBITRARY LINEAR FUNCTION GENERATOR

Y=FUNCT (X) Xq&X € Xp
LINEAR INTERPOLATION

Y=FUNCT (X,) X< X,

Y=FUNCT (Xq) X >Xn

Y=NLFGEN (FUNCT, X)

Y= FUNCT(X) Xo&X £Xp

QUADRATIC INTERPOLATION (LA GRANGE)

Y=FUNCT(Xg) X< Xq
NON-LINEAR FUNCTION GENERATOR Y=FUNCT (X)) X>X,
Y=LIMIT (P, Py, X) Y=P, X< P, P|Y f7
Y=P, X>P, X
LIMITER Y= X Pi£X< Py
Y=zQNTZR (P, X) Y=kP (k-1/2)P<X2(k+1/2)P ; P
k=0,1,+2,43,.... X
QUANTIZER ~
Y=DEADSP (P, Py, X) Y=0 P =X<P, AL IS .
Y’X'Pz X> Pz 45°
DEAD SPACE Y=X-P X<P,
Y=HSTRSS (IC, P, P,, X) Y=X-P {X-Xq.)>0 AND Y %
Y- £(X=P))
Y(0) = IC Y=X-Pp {X=Xp)<O AND Pa P, \a5°
Yn_|§(X'P2) x
HYSTERESIS LOOP OTHERWISE Y=LAST OUTPUT s/ Y
Y=STEP (P) Y=0 t<pP L T
STEP FUNCTION Y= taPp I 4 t .
Y=RAMP (P) Y=0 t<p YA Kase
RAMP FUNCTION Y=t-P tap
Y=IMPULSE (P,P,) Y=0 t<Pp Y4
Y= (t-P) = kP Y ;
Y=0 (t-P))# kP, _j_tj__L.
IMPULSE GENERATOR k=0,1,2,3,.... Py
Y= PULSE (P, X) Y:0 INITIAL
Y= Tret<(Tg +X) X
Y=0 OTHERWISE o '
k=1,2,3,....
PULSE GENERATOR WITH P AS TRIGGER Ty= t OF PULSE k, P, T T2
Y=SINE (P, P, P3) Y=0 t<p,

P,=FREQUENCY IN RADIANS/ SEC.
P3=PHASE SHIFT IN RADIANS

TRIGONOMETRIC SINE WAVE WITH
AMPLITUDE, PHASE, AND DELAY

Y=SIN [P (t-P)) +Ps] taP

Y=NORMAL (P, P,, Py)

NOISE GENERATOR
(NORMAL DISTRIBUTION)

Y= GAUSSIAN DISTRIBUTION
WITH MEAN, B, AND
'STANDARD DEVIATION, Py
(Pi=ANY ODD INTEGER)

Y=UNZRPI (P,) Y= UNIFORM DISTRIBUTION 0 To 1 A1V
(Py= ANY ODD INTEGER) 0 4
Y=UNMIPI (P Y=UNIFORM DISTRIBUTION, fn|
‘ -1 TO +I M
Y=UNATOB (P,, Py, P3) Y=UNIFORM DISTRIBUTION, - p,
NOISE GENERATOR P2 TO P2 +Py - ||v
(UNIFORM DISTRIBUTION) 2 L

170 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

In addition, if the output, YDOT, of the first in-
tegrator is not a variable of interest, the two integra-
tors may be “nested” as follows:

Y = INTGRL (Y0, INTGRL (0., Y2DOT)).

Finally, if the variable Y is the only one whose out-
put is desired, the problem may be described by a
single DSL connection statement, namely,

Y = INTGRL (Y0, INTGRL (0., - Y *
(1. + A * COS (TIME)))).

The Data Statements. The subject of data entry was
given prime consideration during the development
of language features of DSL/90. The end result is
free-form and symbolic specification of parameter
values and initial conditions following a card identi-
fier label which is punched left-adjusted in the first
six columns of a data card. For example,

Cols 1-6 7-72
PARAM A = 0.5,PARI] = 624,
PAR2 = 3.215E + 4
ICI = 0.2, XDOT = 1.3
CIC = 7.3,C2C = 100.,
T = 46.25,
EPSILN = 1.0 — 05

The identifying labels begin in column one. The
data items, separated by commas, may be placed
anywhere in columns 7-72. Blanks are ignored.
Three consecutive decimal points at the end of any
statement indicate that it is to be continued on the
next card. Continuation may begin anywhere in
columns 1-72. Data statements may be inter-
mingled with connection statements.

INCON
CONST

The Control Statements. The statements may be
conveniently grouped into three types:

1. Problem output control statements include
print and plot requirements, title information and
labeling of graphs, such as:

PRINT .01, Y, Y2DOT

PREPAR .005,Y, Y2DOT

GRAPH 8,6, TIME, Y, Y2DOT

LABEL SOLUTION OF MATHIEU’S
EQUATION

RANGE DELT,X

The above cards will cause the printing of TIME,
Y, and Y2DOT at intervals of 0.01 units of time,
and preparation of TIME, Y, and Y2DOT for
graphing at intervals of 0.005 units of time. A
single 8 x 6-inch graph properly labeled as directed,
will be made with Y and Y2DOT plotted vs TIME.
The maximum and minimum values attained by
DELT and X will be printed at the end of the run.

2. Problem execution control statements are
used to set error bounds and step size for integra-
tion routines, prescribe run cutoff conditions, and to
specify other pertinent run information. Typical
examples are

CONTRL DELT = .05, FINTIM = 2.0
ABSERR YDOT = 1.0E - 5,Y = 5.0E - 4.

The simulation will be executed from 0 to 2.0 with
an integration interval of 0.05. The error bounds
on YDOT and Y will be held at 1.0 x 10~° and
5.0 x 1074, respectively. The latter bound will be
applied to all other unspecified integrator outputs.

3. System control statements provide the user
with a number of options, the most important ones
being choice of integration methods, bypassing the
sequencing routine, and renaming of system vari-
ables. They also include an END card which sig-
nifies the end of a logical set of data cards, and a
STOP card which ends the computer run.

For example:

CONTIN

INTEG MILNE

NOSORT

RENAME TIME = X, DELT = DELX
FINISH DIST = 0.

These cards cause continuation of the simulation
from the last calculated point, selection of the Milne
Sth-order integration scheme, exercise of the no-sort
option, renaming of two systems variables, and
termination of the run when the value of DIST
reaches zero.

All data and control cards, with the exception
of the END and STOP cards and certain logical
groups of cards (such as continuation statements)
may be intermixed with DSL structure statements
and may appear in any order. Proper statement
order is determined by an internal sort based on
correct information flow. Table 2 shows a complete
list of DSL/90 data and control statements. Re-
turning to Mathieu’s equation, a complete DSL /90
program for y + (1 + A cost) y = 0 may be written
as follows:

1-6 7-72
TITLE SOLUTION OF MATHIEU’S
EQUATION

Y2DOT = —Y*(1.0 + A * COS
(TIME))

PARAM A = 0.5
Y = INTGRL (Y0, INTGRL (0.,
Y2DOT))

INCON YO = 20.0

INTEG MILNE

DSL/90—A DIGITAL SIMULATION PROGRAM 171

TABLE 2 Summary of DSL/90 Data Statement Formats
Label Function (By Example)
COL. 1-6 7-72

PROBLEM DATA INPUT:
PARAM TAU = 25., PAR = 3,158E3, C4=2.0E-5

CONST CON1 =45.3, Pl =3.14159, K=3

INCON IC1 = 20., A=50.2, 1C3=0

AFGEN FCN=3,,25.,5.2, 26.4, 6.0, 24,, 7.5, 21.3
NLFGEN Fy3=0., 850., 5., 1245., 8., 1.574E3, 12.4, 2 ,4E03
TABLE PARI(8) = 4.5, INPUT(1-4) = 2., 2*8.6, 3.52E3

PROBLEM OUTPUT CONTROL:
PRINT 0.1, X, XDOT, VELOC

TITLE MASS, SPRING, DAMPER SYSTEM IN DSL/90
PREPAR .05, X, Y, XDOT

GRAPH 10., 8., TIME, X, XDOT

LABEL MASS, SPRING, DAMPER SYSTEM - 6/1/65
RANGE X, XDOT, VELOC, DELT

PROBLEM EXECUTION CONTROL:)
CONTRL DELT = .002, FINTIM = 8.0, DELMIN =1.0E-10

FINISH DIST = 0., ALT = 5000.
RELERR X =1.E-4, XDOT = 5.E-5
ABSERR X =1.E-3, XDOT =1 E-4
CONTIN

INTEG MILNE

RESET GRAPH, PRINT

DSL/90 TRANSLATOR PSEUDO-OPERATIONS:
RENAME TIME = DISPL, DELT = DELTX

INTGER K, GO
MEMORY INT({4), DELAY (100)
STORAG IC(6), PARAM (10)
DECK
SORT
NOSORT
PROCED X = FCN (A, B, PARS, IC3)
ENDPRO
MA‘CRO OUT = FCN2 (ICQ1, R, T, X}
ENBMAC
END
STOP
CONTRL DELT = .02, FINTIM = 2.0
ABSERR Y2DOT = 10E-5,Y = 20E-5
PRINT 0.05,Y, Y2DOT
END
STOP

It should be apparent by now that the DSL input
language is block-oriented, symbolic, and free-form.
The use of FORTRAN is not limited to arithmetic
statements. All FORTRAN library functions such
as SQRT, SIN, COS, etc., are available. Under
the rules which are clearly defined within DSL/90,
a large subset of FORTRAN becomes available to
the simulation user without sacrificing the ease of
block notation programming. What this means to
the engineer who is unskilled in FORTRAN pro-
gramming is simply this: he can still perform his
process simulation with a simple language, follow-
ing a step-by-step building block approach. As he
becomes more proficient, his programming becomes
correspondingly more efficient and he may want to
include elementary FORTRAN language features in
his connection statements. Still later, as the com-
plexity of his problem increases, he may use to ad-
vantage the more powerful features of DSL and
FORTRAN. .

Advanced Language Features

There are a number of other DSL/90 language
features which are especially useful for the simula-
tion of large or complex problems. We shall ex-
amine several of these.

Procedural Statements. Recall that the order in
which DSL statements are entered is unimportant
because connection statements are separated from
the rest and sequenced (or “sorted’”) by the DSL
processor (unless a ‘“‘no-sort” option is exercised).
In other words, the DSL/90 language may be con-
sidered as nonprocedural. In contrast, FORTRAN
is a procedural language since FORTRAN state-
ments are executed in the order in which they are
written. Frequently, in a complex process simula-
tion, it is desirable to introduce procedural state-
ments within the simulation program. The purpose
may be to control signal flow in certain portions of
the program, or perhaps to compute a large number
of parameter values once and only once. DSL/90
uses a pair of pseudo-operations, PROCED and
ENDPRO, punched in columns 1-6, to designate
the beginning and end of a block of procedural
statements (they may be DSL or FORTRAN state-
ments). Input and output names may be specified
on the PROCED card to allow the procedural state-
ments to be sorted as a block relative to other DSL
statements. For example:

PROCED TEMP = BLOCKA (TEST, IN)
IF (TEST) 10, 10, 20
10 TEMP = LIMIT (PARI, PAR2, IN)
GO TO 30
20 TEMP = IN + TEST
30 CONTINUE
ENDPRO

During the sequencing of DSL statements, the
above procedural statements will be treated as a
single functional block with output TEMP and in-
puts TEST and IN, as illustrated in Fig. 6. The
order of the statements within the procedural block
remains unchanged.

Macro-Generation. Pseudo-operations MACRO
and ENDMAC, which are punched in columns

IN ——>
———> TEMP

TEST —>

BLOCKA
Figure 6.

172 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

1-6, are used to define a macro block. One may
think of a macro as a repeatable procedural block
with parameter variations. This is best illustrated
by example. The following statements constitute a
macro-definition:
1-6 7-72
MACRO OUT = FILTER (V1, V2, K, IN)
V1 = (IN - V2)/K
V2 = INTGRL (0., V1)
OUT = V2 + 0.5*V1

ENDMAC

During the definition of the macro, no language
statements are produced. The name of this macro,
FILTER, must be unique. However, the output
name OUT and the input names, V1, V2, K, and
IN, are dummy symbols which will be replaced by
the actual names specified at the time when the
macro is used. The subsequent appearance of the
statement

LINE 1 = FILTER (Al, A2, TAU, XIN)

will cause the following three statements to be gen-
erated in-line:

Al = (XIN - A2)/TAU
A2 - INTGRL (0., A1)
LINEl = A2 + 0.5*Al

Just as in the case of the procedural block, these
statements will be sequenced as a single functional
block with LINE]1 as output and Al, A2, TAU and
XIN as inputs (see Fig. 7). The statements within
the block are not sorted. Both DSL and FOR-
TRAN statements may appear within a macro.

Al

LINEL

——

A2 ——>
TAU ———

XIN ————

Figure 7.

Implicit Function Block. DSL/90 provides an im-
plicit function block called IMPL for the solution of
an implicit equation f(y) = 0 expressed in the form
of y = f(y). Clearly some iterative technique must
be employed. These iterations must be performed
within each integration interval until a convergence
criterion is satisfied. The program for IMPL uses
the direct iteration method developed by Wegstein.
If there is no convergence after some preassigned
maximum number of iterations, the simulation of
the problem is terminated with appropriate diag-
nostic printout.

To use the implicit function block, one writes the
DSL statement,

Y = IMPL (YO, ERROR, FOFY)

followed by the set of DSL or FORTRAN (or both)
statements evaluating FOFY. Y, YO, ERROR
and FOFY are symbolic names selected by the user.
The DSL/90 system then sets up the necessary
iterative loop. Let us illustrate by solving the im-
plicit equation

=C-(ey— 1)

e’

y (C is some constant)

One simply writes:

Y - IMPL (YO, ERROR, FOFY)
A ~ EXP(Y)
FOFY = C*(A — 1.0)/ A

The DSL/90 translator will automatically gener-
ate the following statements:

30001Y = IMPL (YO, ERROR, FOFY)
IF (NALARM .LE.0) GO TO 30002
A - EXP(Y)
FOFY = C*(A — 1.0)/A
GO TO 30001

30002 CONTINUE

Note that three statements, and only those three, are
added to the ones written by the user. The first time
the IMPL routine is entered, NALARM is set to
one, and Y is given the initial guess YO. After each
calculation of f(y), program flow returns to the
IMPL subroutine where the convergence criterion is
tested. If satisfied, NALARM is set equal to zero
and y assumes the most recently calculated value of
f(»). Otherwise the iteration continues.

User-Supplied Functional Blocks. Although DSL/
90 provides an extensive library of operational
blocks, there are occasions when special blocks are
required to simulate specific process elements.
These special blocks are programmed by the user as
subroutines either in FORTRAN or MAP and
simply added to the data at the time the simulation
run is made. The user may treat these special blocks
like all other DSL library blocks, interconnecting
them to build a complex system model.

As an example of the use of special blocks, con-
sider the modeling of the analog-to-digital converter
shown as a nonlinear stepwise quantization in Fig.
8. If no such general block existed in the DSL Ii-
brary, it would be difficult to construct such a char-
acteristic from the standard blocks available. How-

DSL/90—A DIGITAL SIMULATION PROGRAM 173

XOUT A

» XIN

Figure 8.

ever, the quantization effect is easily modeled by the
following FORTRAN statements:

FUNCTION QNTZR (P, XIN)
QNT = AINT (0.5 + ABS (XIN)/P)
QNTZR = SIGN (P*QNT, XIN)
RETURN

END

The parameter named P containing the value of the
quanta step size is the only parameter supplied to
the QNTZR block. This value of P is entered into
the simulation program in exactly the same way as
any other DSL parameter—on a PARAM card.
Note also that the two blocks AINT (for truncation)
and SIGN (for transfer of sign) are standard sub-
routines of the FORTRAN library. The above
FORTRAN subprogram for the quantizer may be
entered directly with the data cards for the simula-
tion run, or as an alternative, it may be compiled
independently and the resulting machine language
deck (binary deck) added to the data deck. This
functional block may even be added to the perma-
nent DSL library by simply loading it on the library
tape. In fact this was the case with the QNTZR
block when we found it to be sufficiently useful to
warrant a place in the DSL library. The ease with
which a difficult nonlinearity has been modeled in a
few lines of FORTRAN coding is quite apparent
and typifies the flexibility of DSL/90 for handling
nonlinear functions and special blocks.

Arbitrary Functions. DSL/90 provides two func-
tional blocks, AFGEN and NLFGEN, for handling
arbitrary functions of one variable. The x, y coor-
dinates of the function points are entered sequen-
tially following an identifying label and the symbolic
name of the function, e.g.:

1-6 7-72

AFGEN FCl1 = -10.2,2.3, -5.6,6.4,1.0, 5.9, etc.

Although the total number of data storage locations
is necessarily fixed by machine size, there is no re-
striction on the number of points one may use to
define any function. The only requirement is that
the x coordinates in the sequence x1, y1, X2, ¥2,...
are monotonically increasing. Any number of arbi-
trary functions may be defined, identified only by
their symbolic names assigned by the user. As an
example, the DSL statement Y3 = AFGEN (FCl1,
XIN) will refer to the function called FC1. AFGEN
provides linear interpolation between consecutive
points, while NLFGEN uses a second-order La-
grange interpolation formula.

Tabular Data. This feature of DSL/90 allows
blocks of data to be transmitted to the UPDATE
subroutine in tabular form. In the construction of
a special block, the user may have to consider sets of
initial conditions, history and input parameters.
This DSL/90 feature will eliminate the need for a
lengthy subroutine argument string. To illustrate,
suppose we wish to build a special block called
SPEC which requires two initial conditions and 10
parameters. We begin by writing the following two
DSL statements:

1-6 7-72

STORAG IC(2), PAR(10)

TABLE IC(1) = 2.0, IC(2) = 0.0, PAR(1)

= 4., PAR(2-10) = 9*1.5

The first statement instructs the DSL/90 system to
assign a total of 12 locations—2 for the array IC
and 10 for PAR. The second statement illustrates
the manner in which numeric values are entered into
these reserved locations. Now, when we subse-
quently use a statement such as

YOUT = SPEC (IC, PAR, XINPUT)

DSL. /90 system will replace the names IC and PAR
with the addresses of the first locations of the arrays
IC and PAR respectively. Obviously, the user when
programming his subroutine SPEC must realize that
the first two arguments in SPEC are location point-
ers to his arrays. His subroutine could begin with
the following: :

FUNCTION SPEC (LOCIC, LOCPAR, XIN)

COMMON/CURVAL/C(1)
I = LOCIC
J = LOCPAR

CURVAL is the labeled common where the current
values of all variables are stored, and I and J are
indices referencing the first initial conditions IC
and parameter values PAR.

174 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

System Features

DSL/90 System Organization. The DSL/90 Oper-
ating System is separated into two major functions:
language translation and model simulation. Each
function operates independently under standard
IBSYS control but as one continuous single-pass
operating system. The transition is made by having
the translator develop on an IBSYS scratch tape all
the elements of a standard IBSYS job as well as the
representation of the model to be simulated. This
tape is then switched in as the standard IBSYS input
for compilation and execution to complete the simu-
lation. Diagnostics are printed if errors are found
in translation or simulation. Elements which may
appear as input to the translator are: 1) DSL/90
problem-oriented language sentences to describe the
model, 2) data input to the model for parameter
values and control of the simulation and output, 3)
binary and BCD subroutines and functions supplied
by the user for the simulation, and 4) appropriate
controls to load binary or BCD subroutines and
functions from a library tape. The entire system
may be placed at any level of a standard batched
IBSYS run. Three additional tape drives are re-
quired—two auxiliary and one for plotting.

DSL/90 may be run as an independent program
or it may be used as a subprogram of a conventional
FORTRAN program for control purposes.

Sort. A nonprocedural input language such as
DSL/90 transfers the responsibility of establishing
the execution sequence from the user to the pro-
gram. To accomplish this DSL/90 alters the se-
quence of input statements according to the rule: an
operational element (or statement) is properly se-
quenced if all its inputs are available either as input
parameters or ‘initial conditions or as previously
computed values in the current iteration cycle. Un-
specified algebraic loops are identified and, if any,
the run is halted. The result of this sequencing oper-
ation is a properly organized FORTRAN IV sub-
program.

Main Program Control. DSL /90 provides for call-
ing the simulation routines from a MAIN program
specified by the user. Hence the actual digital simu-
lation may be placed under control of a FORTRAN
routine compiled at execution time. This feature
allows for testing of response conditions, matching
boundary values, and dynamic alteration of param-
eters, initial conditions, or run control data between
parameter studies.

Centralized Integration. By use of the block name,
INTGRL, a user may specify that centralized inte-
gration is desired. The translator sets up statements
so as to compute all inputs to the integrators but
bypass computation of outputs until the end of the
iteration cycle. At this time, all integrator outputs
are updated simultaneously. A choice can be made
between the 5th-order Milne Predictor-Corrector,
4th-order Runge-Kutta, Simpson’s Trapezoidal, or
Rectangular Integration methods. The first three
allow the integration interval to be adjusted by the
system to meet a specified error criterion, a factor
which allows it to take large or small steps depend-
ing on the rate of change of one or more variables.
There is provision in DSL/90 for the user to supply
his own integration scheme, which may or may not
be centralized.

Dynamic Storage Allocation. Data in DSL/90 is
stored in a single vector including current values of
structure variables and table values for function
generators, integration history, error bounds,
STORAG variables, etc. The storage is allocated
dynamically (i.e., at execution time) according to
what portions of the simulator are used and how
many integrators, tables, and structure variables are
in the simulation model. Standard DSL/90 blocks
are loaded only if used.

APPLICATIONS

Having illustrated operational features of the
DSL/90 digital simulation program, we will now
draw upon the previous introduction to show how
DSL/90 has been flexibly applied to simulation
problems. Three specific simulations will be con-
sidered: 1) a biomedical block notation problem
involving a respiratory servomechanism; 2) a proc-
ess analysis problem involving the simulation of
heat transfer dynamics of a recirculating furnace
used in the glass industry; and 3) the simulation of
the flight dynamics of a portion of the SATURN V
booster rocket.

DSL/90 provides special programming features
such as different integration methods, sorting,
special blocks, etc., which make it attractive to the
user for continuous system simulation. Several of
these features will be illustrated in the examples to
follow.

Application No. 1— Respiratory Servo Simulation

This problem involves evaluating the response of
a proposed model for respiratory control of CO,

DSL/90—A DIGITAL SIMULATION PROGRAM 175

partial pressure in the venous and arterial blood
streams of a human. De Fares et al performed the
original study on an analog computer and repre-
sented the basic CO, control mechanism in respi-
ration by the three-compartment model shown in
Fig. 9. Using the original study as a guide, this first
example will illustrate the ease of handling conven-
tional analog simulation problems using DSL/90.

INSPIRED)
AR
o
B)
. | CO2
| ' I
LOCAL €0, LUNG LJ}‘L L UMPED BODY
" co. RECEPTOR rissue| - (2] T |TISSoE co
2 [CO2 CO2 138V 2
NONLINEAR

DIFFUSION
PATH FOR CO2

Figure 9. CO; control model.

The CO, control system operates as follows: The
alveolar tissue in the lung serves as an exit sink for
CO,; production and possesses both CO, capacity
and conductance characteristics. In a similar man-
ner, body tissue can be considered as having an
equivalent CO, capacitance and conductance. CO,
produced by the body is partially stored in the local
body tissue, raising the local body tissue partial
pressure of CO,. The CO, produced is simulta-
neously diffused through the tissue and picked up by
the blood stream (venous path). The CO, is then
carried to the lung and subsequently diffused to the
alveolar tissue, raising its CO, partial pressure. Si-
multaneously, CO, is produced in the region of a
receptor (CO; detector) in the medulla. This CO, is
similarly diffused and carried to the alveolar tissue
through the venous blood stream. It can be shown
that the basic controlled variable in this system
model is the partial pressure of CO, in the receptor
tissue located in the medulla.

If CO,-enriched air is also brought into the lungs,
it simultaneously affects the CO, diffusion and
buildup in the alveolar lung tissue. De Fares et al
have shown that the partial pressure of CO, in the
receptor can serve as an effective mechanism for
controlling diffusion of CO, from the receptor and
from inspired air. In this study, the CO, partial
pressures of mixed venous blood flow and body
tissue will be assumed equal. Similarly, the CO,
partial pressures of arterial blood flow and alveolar
lung tissue will be assumed equal. ’

By introducing disturbances in the CO, content of
inspired air, the dynamics of such a control model
may be studied. The objective of this model is to
hold constant the partial pressure of the CO, in the
receptor by controlling the diffusion conductance of
CO, from the receptor area and of the inspired gas
to the alveolar lung tissue. Thus, the CO, partial
pressures of alveolar tissue and local body tissue will
respond dynamically to changes in CO, content of
the inspired air.

Network Model. Because of the dynamic analogies
existing between the gas dynamics of the CO, dif-
fusion model above and conventional circuit dy-
namics, it is convenient to represent the biological
model by an equivalent circuit model. Figure 10
shows three capacitors tied together with variable
nonlinear conductances, which represent the dif-
fusion characteristics of the separate tissue/blood
interface. The capacitors represent local tissue CO,

T

BODY TISSUE

Ics Icu

COz2 RECEPTOR LUNG

Figure 10. Equivalent network model.

capacity, and the voltages become the respective
CO,; partial pressures. The voltage source E repre-
sents the partial pressure of CO;-enriched inspired
air and is defined by the following relation:

E = Fi(B-47)
Fi = % CO;content in inspired air

where B = atmospheric pressure in mm Hg.

Table 3 lists the electrical network parameters
and variables together with their physiological
equivalents.

Digital-Analog Simulation. As a first example of
DSL/90 application flexibility, conventional analog

176 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Table 3. Electrical and Physiological Equivalents, Application No. 1

Elec. Physiological
Symbol Quantity *Units
1 Cbz conductance-air to lung tissue Liters (gas)/min/mm Hg (gas)
G, COZ conductance-body tissue to lung Liters (COZ)/min/mm Hg (COZ)
3 CO2 conductance-receptor to lung Liters (COZ)/min/mm Hg (COZ)
Cl Capacity of lung tissue Liters (gas)/mm Hg (gas)
CZ Capacity of body tissue Liters (COZ)/mm Hg (COZ)
C3 Capacity of receptor tissue Liters (COZ)/mm Hg (COZ)
Vl COZ partial pressure of lung tissue mm Hg (COZ)
VZ COZ partial pressure of body tissue mm Hg (COZ)
V3 COZ partial pressure of receptor tissue mm Hg (COZ)
E Partial pressure of CO2 in inspired air mm Hg (COZ)
14 Bady COZ production Liters (COZ)/min
15 Raceptor CO, production Liters (COZ)/min
I CO2 diffusion from inspired air to lung Liters (gas)/min
tissue
I, CQ, diffusion from body tissue to lung Liters (COZ)/min
tissue
I3 CO, diffusion from receptor tissue to Liters (COZ)/m'm
lung tissue

*Units are liters BTPS, m.m. Hg, minutes

block notation will be used to program the simula-
tion. Figure 11 represents a DSL/90 digital-analog
simulation block diagram of the network model
shown in Fig. 10. Since DSL/90 operations are in
floating-point arithmetic, no problem scaling is re-
quired and the parameters may be entered directly
in terms of their conductances are given by the fol-
lowing relations:

G, =¥ *Vy—- 0,
G, =y,*V, - 0,
Gs=y3*V; - 03

where ¢ is proportional to the slope of the experi-
mentally determined steady-state cardiac output
versus CO, partial pressure curves—liters (CO;)/
min/mm?Hg (CO,); and O = initial value of G,
liters (CO;)/min/mm Hg (COj).

Using data from respiratory experiments, the fol-
lowing parameters and initial values hold for the
simulation: :

V,(0) = 40.0 C, = 0.00344
V,(0) = 45.0 C, =0.17

V;(0) = 45.0 C,; = 00008
¢, = 0.0038 6, =0.1648

123 = 0.0025 0, = 0.0625
Vs = 0.0002 0; = 0.0007
| = 0.25 Is = 0.001

- The DSL/90 statements which describe this sim-
ulator follow.

TITLE RESPIRATION SERVO PROBLEM = ANALOG MODE SOLUTION 6-1-65 RUN 1

EIN=E%{14=STEP(TDELAY))
ADR2=EIN-V1
Gi=PSI1%V3-THETAL
11=G1*ADR2
Vi=INTGRL(V1ICs(I1+12+13)/C1)
ADR4=V2=V]
G2=PS12%V2~THETA2
12=G2#ADR4
V2=INTOGRLIV2ICy(14-12)/C2)
ADR7=V3-V1]
G3=PSI13%V3=~THETA3
13sG3*ADR7

V3= INTGRLIV3IC»(I5=-13}/C3)

Connection
Statements

PARAM C1=04003449 C25Ua1T7» C320.0008se00
P511=040038» PS122040025» PS1320400002s00s Porameters
THETA1=041648 THETA230U.0625, THETA3= UeUQUT, Ee2leéd) ongcy
CONST 1404255 [5=0.00G1» TDELAY=2U.C
INCON V11C=4040, V2IC=4540s V3IC=45,0

CONTRL FINTIM=36.0s DELT=0,05 Run
RELERR V1=04001 Control
INTEG MILNE

PRINT 0u1s Vis V2» V3» Gls G2» G3» Ils I2v I3

PREPAR 0405y V1s V2» V3s» Gls G2» G3» Ils 12y I3

GRAPH 640s 440s TIMEs V1s V2y V3 Print and
LABEL PAR PRESS 3,0 PRCNT CO2 RUN 1 6-1-65 Plot Output

GRAPH 640s 440> TIME» Gls G2s G3

LAGEL CONDUCTANCE 3.U PRCNT CO2 RUN 1 6-1-65
GRAPH 600+ 4e0s TIMEs Il 124 I3

LABEL CO2 DIFFUSION 3.0 PRCNT €02 RUN 1 6-1-65

END
sTOP

DSL/90—A DIGITAL SIMULATION PROGRAM 177

V3(0)

Figure 11. Digital-analog simulator block diagram.

Figures 12 and 13 show nonretouched DSL/90
plots of CO, partial pressures and tissue conduc-
tances. Inhaled air containing 3% CO, was assumed
for 20 minutes followed by a 20-minute span of
normal room air with no CO, content,

During the first 20 minutes, the receptor tissue
(medulla), body tissue, and aveolar lung tissue all
take up CO,. The second 20-minute span shows the
nonlinear response during purging of body CO,.

LEGEND
vi
----- V2
................ b
3_ N
@ 2
° =)
2| %
® ©
< <
m N
> >
[8
-] -]
Hooel . .

Figure 12. Par press 3.0% CO; run 1, 6-1-65.

Figure 14 shows part of the results printout and
input data format.

After the initial runs were completed, a change in
the G; conductance characteristic was suggested by
medical research personnel. Instead of a linear re-
lationship between G, and receptor CO, partial
pressure, a smoothwise increasing empirical func-
tion as shown in Fig. 15 was substituted. To do

LEGEND
......... 61
............................ K
" 63
B © :
T B =9
©
2 -
~] -~
v &
o [=}
= =1
S S
-3 ~
& 3
.m N
o 2]
~ vl
8] 2
- T —
8. 16, 32, 40. 48

2.
TIME

Figure 13. Conductance 3.0% CO;run 1, 6-1-65.

178 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

DS5L/90 SIMULATION DATA ##x
TITLE RESPIRATORY SERVO PROBLEM ~ NETWORK MODE SOLUTION 6-1-65 RUN &
PARAM C1=0s00344s C2xUelTy C3=Ue0UUBrese
PS112040038, PS122040u25, PSI320e00002s00s
THETAlzuelb48s THETAZ=ueub25s THETASZ= VevuuTs ExZleé
CONST 14=0e25s 15x0¢0UYs TDELAY22C4C
INCON V11C24040s V21C*6540s V3ICx45a0
CONTRL FINTIM=3640s DELT=UsU5
RELERR V104001
INTEG MILNE
PRINT Oels V1s V2s V3s Gly G2» G3
PREPAR 0405s V1s V2s V3» Gl» G2 G3
GRAPH Geus 4e0Os TIMEs V1s V2s V3
LABE(. PAR PRESS 340 PRCNT CO2 RUN 4 6-1-65
GRAPH 6404 440Uy TIMEs Gl» G2» G3
LAEEL CONDUCTANCE 3s0 PRCNT CO2 RUN 4 6-1-65
FND

+ Figure 14a. DSL/90 simulation data.

this, it was necessary to redefine the G3 conductance
characteristic as the output of an arbitrary function
generator block as follows:

G3 = AFGEN (F3, V3)

where the G, characteristic is given in a sequence of
X and F(X) values.

AFGEN F3 = 0.0, .0002, 48., .0002, 49., .00021, ...
50., .00023, 51., .00027, 52., .00031,
53., .00035,... 54., .00039, 55.,
.00043, 56., .000465, 57., .00048, ...
58.,.00049, .59., .000495, 60., .0005,
80., .0005

In addition to the analog model approach shown
here, two other methods were programmed in DSL/
90 involving the network equations directly and

T14E Vi v2 v3 61 G2 63
0. 4.00%0F 01 4.5000€ Ol 4.5000F Ol 6.2000F-03 5.00006-02 2.00005-04
10.000%-02 4.1937F 01 4.5036F Ol 4.5030F 01 6.31475-03 5.0089E-02 2.0060E-04
2.0005-01 4.2319F 01 4.5097F 01 4.5082F 01 6.5132E-03 5.0242E-02 2.0165E-04
1.000E-01 4.2369F 01 4.5162F Ol 4.5128F Ol 6.7232E-03 5.0404E-02 2.0275£-04
4.000E-01 &4.2346E 01 4.5225E 01 4.5192E Ol 6.9284E-03 5.0562E-02 2.0383E-04
5.000E-01 %.2359F 01 4.5786E 01 4.52445 01 7.1262E-03 5.07146-02 2.04875-04
A.ONNE=NT 4.2350E 01 4.5344F 01 4.5294E 01 7T.3168E-03 5,08616-02 2.05885-04
7.000E-71 4.2340E Ol 4.5401E Ol 4.5342E 01 7.5003E-03 5.1002E-02 2.0684E-04
SLD00E-N1 4.2331F 01 4.5455F 01 &4.5389E 01 7.567695-03 5.11375-02 2.07776-04
9.0006-01 4.232% 01 4.5507F 01 4.5433F 01 7.8468E-03 5.12676-02 2.0867E-04
10.0006-01 4.23155 01 4.5557F 01 4.5476E Ol 8.0103E-03 5.13926-02 2.0953£-04
1.100F 00 4.2309% 01 4.5605F 01 4.5518F 01 R.1676E-03 5.15136-02 2.10356F-04
1.200E 00 4.2391F 01 4.5651S 01 4.5558F Ol 8.3189F-02 5.1628E-02 2.11156-04
1.300F 00 4.22958 N1 4.5695E 01 4.55G6F 01 8.66445-03 6§.17395-02 2.11S26-04
1.400F 00 4.2289E 01 4.5733F 01 4.5633F 01 8.6043E-03 5.1846E-02 2.12655-04
1.5005 09 4.2294F 01 4.5779E Q1 4.56A6RF 01 R.7389F-03 5.19406-02 2.133566-04
1.6006 00 4.22795 01 4.5819F 01 4.5702F Ol B8.8684E~03 §,20475-02 2.14045—Cé
1.700F 00 4.2274F 01 4.58575 01 4.5735F 01 8.9928F=03 5.21425-02 2.1470F-04
1.8008 00 4.227CF A1 4.5893E 01 4.5766E 01 0.11256-03 5.22335-02 2.1533C-064
1.900F CO 4.22565€ 01 4.5G2AF 01 4.5797F Ol 9.22765-03 5.2321E-02 2.1593F-04
2.000F 00 4.2252F 01 4.5962F 01 4.5826F 01 9.3382E-03 5.24055-02 2.16525-04
- “~ 4.2258E 01 4.5QG4F 0] 4,87 CiRF-03 5.,2486E-02 :

TRE N1 4.6025E O

5.25563E-02

v

3.50N0E N1
2,510 O}
3.520E 01
3.530F 01
3.540% 01
3,550 01
3.5860F 01
2.570% 01
3,.5805 21
2,590FE N1
2,4600F 0]

DSL/90 SIMULATION

e s L L e
4,0023%
4.0023%
4.,0020%
4,0022¢
4,.N025%
4.0022%
4,0020%
AL, 002 0%
4,007
4,0023%

TIME =

LedL9E Uy
91 4.5019E 01 Hh.c.

. +e9023E 01 4.5C19E 01 6.2715FE-u.
01 %.S023E 01 4.5019€E 01 6.2

D1 4.5023E 01 4.50192€ 01 6.2714F-03
N1 4A.5023E 01 4.5017E 01 6.2714€-03
01 4.5023E 01 4.5019E 01 6.2714%-03
01 4.5023F 01 4.5019F N1 6.2713E-03
01 4.5023F 01 4.5019€ 01 6.2713E-03

6.2713%-03
6.2713E-03
6.27126-03
6.2712E-03

01 4.50235 N1 4.°0198 Q1
Nl 44,5023 01 4.5019% 01
01 4.5023E 0l 4.5019F 01
Nl 4.%022E 01 4,9019% 01

13.892 SECONDS

Figure 14b. Respiratory servo problem—network mode solution.

XA
5.0057E-02
5.0057E-02
5.0057%-02
5.0057€-02
5.0057E£-02
5.00576£-02
5.0057€£-02
5.0057€E~-02
5.0057E£-02
5.0057E-02

2.1708E-0
2.7

U BBE-0s
2.0038E-04
2.0038E-04
2.0028E-04
2.0028E-04
2.0038E-04
2.00382-04
2.0038F-04
2.003RE-04
2.0038E-04
2.0037£-04
2.0037£-04

DSL/90—A DIGITAL SIMULATION PROGRAM

v F3
0.0 | .0002
6.0 48 |.0002
49 |.00021
50 |.00023
51 |.00027
52 |.0003I
53 | .00035
54 |.00039
55 |.00043
56 | 000465
1.0} 57 | .00048
L 58 |.00049
C s e A R
80 | .0005

Figure 15. Gj3conductance characteristic.

fundamental compartment models. This last ap-
proach has proven particularly attractive since the
biomedical user can directly program his own simu-
lation problem without learning an artifax tool such
as analog computer notation, network analysis, or
FORTRAN programming. These techniques result
in a major reduction in the user time required from
initial problem coding to achieving final results. In
addition, complete printouts and digital plots are
available for each problem run, considerably simpli-
fying the simulation documentation problem.

Application No. 2—Glass Tank
Recirculating Furnace

This second example involves the analysis of the
heat transfer dynamics of a recirculating furnace
used for preheating combustion air on a glass tank.
The problem illustrates the ease of using generalized
block notation in DSL/90 for performing contin-
uous system simulations. In this case, the example
was drawn from the industrial process control field.
The technique, however, is broadly applicable to
any continuous system analysis problem.

As shown in Fig. 16, air is forced through a large
preheating chamber, called a checker, filled with
bricks cross-stacked to allow passage of the air
around the brick surface, thereby preheating the
cold air from the brick. The preheated air is then
mixed with fuel, fired, and the resultant flame front
melts the glass material in the tank. The hot com-
bustion gases are forced through another checker,
heating up the cold brick, and finally forced out the
stack. After a period of time, usually about 15
minutes, the flow direction valve is reversed so that
the cold checker that had been heated by the hot
gases now becomes the preheating checker for the
cold incoming air. Similarly, the previous hot
checker that had been cooled by the cold input air
now receives hot combustion gases which heat it up

coLD CHECKER\

179

STACK [T T T T 1
. GLASS
=, u TANK
FAN ,
[T 1T T 1
REVERSING _
VALVE HOT CHECKER-" GLASS
CHANNEL:
GLASS
TANK
—= REVERSING
VALVE HOT
OPERATOR) CHECKER
_‘
7SS 7/ 7/ 7 V4

-Figure 16. Schematic diagram—reversing furnace.

again. The object of the simulation is to study the
heat transfer dynamics of the recirculation furnace
during the heating and cooling cycles induced by

air flow reversals.

The first step was to divide each checker chamber
into three blocks, as shown in Fig. 17, effectively
breaking a continuously distributed system into a

HOT (?r';:?(s coLD
CHECKER CHECKER
FUEL
/WT
Teas3 |- Tcome ——TTaRika
TeRrIKS _‘ Tel}s4
[y \
T(;Lsa TBRIKS
TerIK2 Teass
3 i
|
Toasi TBRIKS
TBR{K I TsTack Tc;?ss
I]
\\'TAlR ‘/
77 / VAV Va4 VA4

Figure 17. Reversing furnace—end view.

180 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

sequence of lumped-parameter segments. The non-
linear heat transfer relationships for each block are
given by Egs. 1 and 2.

d P2V ,4Tgas = 04F \Tin— a4F 1 Tgas

dt
+ hA; (Terick — Tgas)
+ K [(Tprick + 460)*
— (Toas + 460)°] H

i MopTprick = hA 2 (Tnmcx - TAMB)

dt
— hA (Tericxk — Toas)
— K [(Terick + 460)*

— (Toas + 460)*] @)
Teyc
TeRICK
CHECKER
BLOCK
Tin Teas
Teic
Figure 18. Checker block.
where o, = specific heat of the gas,
og = specific heat of the brick,
14 = volume of the checker,
M = mass of the checker,
P = gas density,
F, = gas flow,
A, = heat-transfer surface area of brick,
h = conductive heat-transfer coefficient,
K = radiation heat-transfer coefficient,
Tgrick = checker brick temperature,
Tsas = checker gas temperature, and
T = input gas temperature to checker.

These differential equations were programmed in
FORTRAN and used to define the characteristics of
a checker-block, shown in Fig. 18.

The following assumptions and approximations
hold for Egs. 1 and 2.

Assumptions

1. Heat transfer by radiation and convection.

2. Temperature of checker is a function of time
and space (1-dimensional).

3. Checker temperature is uniform in any plane
perpendicular to flow.

4. Gas temperature is uniform in any plane per-
pendicular to flow.

5. Brick thermal conductivity is infinite.

Approximation

1. Distributed temperature in each checker is rep-
resented by a lumped parameter system of three
stages.

The generalized block of Fig. 18 has one input,
the entering gas temperature, and two outputs, the
exiting gas temperature and the internal brick
temperature. Once the block has been programmed
and checked out, the user can connect any number
of these together to represent the system by simply
using the DSL/90 statement:

TGAS, TBRIK = CHEKR(TGIC, TBIC, TIN),

where TGAS = outputgas temperature of checker,
TBRIK = internal brick temperature of
checker,
TGIC = initial gas temperature,
TBIC = initial brick temperature, and
TIN = input gas temperature.

Figure 19 shows the block model of one complete

checker. Three checker blocks have been used
/GAS FLOW
CHECKER -~ -
BLOCK
Tie Tee T3e
C | Te Cz |Tz8 Cs | Tag
[}
T
TaIR_ s, | S; Sg |acOMB
AlR HOT
GAS

Figure 19. Block model of checker gas flow.

together with three switching blocks that reverse
the flow direction through the blocks.

Now if this block model is used as a model of
each checker, the DSL/90 statements which repre-
sent this system can easily be written by the user

DSL/90—A DIGITAL SIMULATION PROGRAM 181

in terms of the basic checker blocks as follows:
% see STRUCTURE STATEMENTS

* vee CHECKER SWITCHES

CilN= (TRIGRITAIRYTGAS2)
(TRIGR*TGAS19TGAS3)
(TRIGR»TGAS2»TCOMB)
SW{TRIGR*TCOMB+TGASS)
INSW(TRIGR»TGASL»TGAS6)
C6iNmINSWITRIGR»TGAS5»TAIR)
TRIGR=-0+5+STEP (TREVRS)

% eea HOT CHECKER BLOCKS
TGAS1sTEBRIK1=CHEKRITOLIICTBIICHCLINY
TGAS2+THRIK2=CHEKR(TG21Cy TB21C+C2IN)
TGAS3»TERIKIRCHEKR(TG3IC,TB31CC3IN)

see COLD CHECKER BLOCKS
TGAS4 s TSRIK4=CHEKR(TG4IC» TB4IC,C4IN)
TGAS5» TBRIK58CHEKRITGS IC» TBSICHCSINY
TGAS6» TERIKE=CHEKR(TGOIC, TBEICHCHINY

¥ eee DATA

PARAM F12120000es SIGMAA=Oe24s SIGMAB=0e249 eee

TAIR=360er TCOMB=2800ss TAMB=120es see
M=100000es Al=15000+4 A22300es see
Kxb4e5E=06s H=10e» V=5000es wsee
TREVRS=®15,

INCON TG1IC=850es TG2IC=1300ey TG3I1C=1800as oee
TB1IC=1600es TB2IC=2000Ues TB3IC=250U0s oo
TG4I1C=2300es TG51C#19000s TGEICH1500U0s oo
T841C=1300es TB51C=1000es TBOIC=TO0.

PRINT Oels TGAS1s TGAS2» TGAS3» TGAS4» TGASSe TGAS6» ees
TBRIK1s» TBRIK2» TBRIK3s TBRIK4s TBRIKSe TBRIK6» TRIGRs ClIN

CONTRL FINTIM=30.» DELT=0401
gsi::ﬁ 2:3?-“IS€S$;MééAigasgsk%g:;K;BRXKG'TGASI' TGAS4s TBRIK1e TBRIK&4
LABEL 3RD CHECKER BLOCK TEMPS RUN &
CRoEl et tiEckeR Block Temps RUN
&Top
Note that the parameter and variable names are
almost direct symbolic equivalents of the physical
notation used for describing the furnace.
Figures 20 and 21 show the actual plotted results
of temperature variations at the outlets of the hot
and cold checkers for a 15-minute flow reversal
cycle. Advantages of this approach in addition to
those already mentioned in example no. 1 include
the ability to expand the simulation easily to include
control system blocks and other system dynamics
without disturbing the existing furnace simulation.
This feature has proven particularly powerful in
analyzing complex industrial processes.

Application No. 3— Saturn V Booster Rocket

Vehicle Description. This study applies digital simu-
lation to the flight dynamics analysis of a large space
vehicle booster. The problem illustrates the use of
DSL/90 algebraic notation statements. In this
study, the system example was drawn from the aero-
space industry, but the use of DSL/90 algebraic
notation can be applied to a broad range of prob-
lems including parts of the previous two examples.
The vehicle used in this study was the SATURN
V launch vehicle for the APOLLO lunar mission.
As shown in Fig. 22, the vehicle configuration con-
sists of three booster stages and the APOLLO
spacecraft. The overall length is 360 feet and, fully
fueled, the vehicle weighs approximately 6 million
pounds. The first, or S-IZ, stage is powered by five

LEGEND

QH s.w

« (]

o [~}

2, &

] ~

1 g

B| 2

R -

R S

~ -]

e :) B s & »
X — . X X

Figure 20. Third checker block temperatures, run 5.
LEGEND

<

5

5

Eo

Tl

X

&

-

®

2.

e

w w ¥ Ll T T L 1
5 10 15, 2. 2. %

Figure 21. Sixth checker block temperatures, run 5.

F-1 engines, each of which provides a thrust of 1.5
million pounds. The four outboard engines are
swiveled and provide for thrust vector control
during powered flight. The SATURN V vehicle has
an independent inertial navigation and guidance
system from that in the APOLLO spacecraft in
addition to a control computer and required sen-
Sors.

Trajectory. This simulation is concerned with the
analysis of flight dynamics from launch through
first-stage burnout. The booster-stage flight profile
is shown in Fig. 22 and consists of a gravity turn for
150 seconds with separation occurring at approxi-
mately 60,000 meters altitude and a 2350-m/sec
velocity. The rigid body equations of motion that
were simulated form a perturbation set with respect
to a reference frame moving along the nominal tra-
jectory as shown in Fig. 23,

Axes X, X, X; form an orthogonal set, with X,
aligned along the nominal velocity vector and axes
X, X, lying in the nominal boost plane. The fuel
sloshing dynamics of the first stage propellants were

182 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966
25
APOLLO SPACECRAFT
20
S-IVB orpITAL)
. INJECTION T
o S-IV B STAGE
x
o sl 1
1
uj D
E (=]
s S-11 STAGE
=
W)
S o} |
=
5
< S-IC STAGE
5 =
L
129
——max. q
1 1 1
0 250 500 750 1000
TIME (SECONDS)

Figure 22. SATURN V configuration and flight profile (from Ref. 5).

Nominol velocity

A¢

Vehicle center line —7

Actual locu'ion\

Nominal Iocoﬁon/

Nominal 1rnjoctary\

.\Lounch point
Figure 23. Reference frame axes (from Ref. 6).

included as well as the dynamic effects of elastic
bending along the booster longitudinal axis. The
attitude control system was also included in the
simulation, together with the dynamics of the gim-
balled thrust VECTOR control system and hydrau-
lic actuators for the engines, as shown in Fig. 24.

Since the defining equations of vehicle motion are
far too complex for the purposes of this paper, the
reader is referred to the basic documentation for the
complete problem description. To illustrate the
features of DSL/90, only a small portion of the
larger problem will be treated—the pitch axis con-
trol system. Figure 25 is an expanded description
of the control system filters, together with actuator
and engine dynamics. The command signal filter
block processes the pitch command signal from the
control computer prior to applying it to the engine
gimbal hydraulic actuators.

In order to investigate booster flight dynamics, a
primary wind disturbance was applied to the vehicle
during the first stage of powered flight as shown in
Fig. 26. Horizontal wind loading was assumed,
with varying azimuth angles for wind heading.

Referring to Fig. 25, the transfer functions for
the command signal filter and engine dynamics can
be expended in Laplace notation to yield the equiva-
lent linear operational equations:

S?85 = K\ 851" + K,8 85 + K% (€))

DSL/90—A DIGITAL SIMULATION PROGRAM 183

A
T T /] Bcr———“——————-—j
| "2 .lyvprauLic ENGINE | B2
FILTER| | | ACTUATOR [—>1 o NaMIcs
| [l—' DYNAMICS |
| I
—_ 1 - — —— _ __ _]
I
r—————
| RATE GYRO _] I
. — ¢ P
DYNAMICS r —|
I | |
' DATA ADAPTER INERTIAL I VEHICLE DYNAMICS |
L —{ REFERENCE | INCLUDING LONGITUDINAL
| computer [svsrem BENDING & FUEL
| | SLOSHING
- — 1 b—_—_—___ 1

. . ’f
Xo+d,+,"

T

WIND LOAD
DISTURBANCE

)’(2 NOMINAL PITCH RATE - DEG/SEC
432 PERTUBATION IN RIGID BODY PITCH RATE-DEG/SEC

¢fR PITCH RATE DUE TO VEHICLE FLEXING MEASURED AT
THE RATE GYRO STATION - DEG/SEC

¢, PERTUBATION IN PITCH ATTITUDE - DEGREES

¢fP ATTITUDE DUE TO VEHICLE FLEXING MEASURED AT
THE STABLE PLATFORM STATION -DEG/SEC

BF|" B, PITCH ATTITUDE COMMAND, UNFILTERED

BS B PITCH ATTITUDE COMMAND, FILTERED

B, ENGINE GIMBAL ANGLE (PITCH AXIS)-DEGREES

Figure 24. Simulation signal flow diagram (from Ref. 5).

and
828, = (KB — KuB2)S + (KuBs ~ Kxupa)
+ (Ksobs ~ Kisbs) & @

where S is the conventional Laplace operator.
From Fig. 24, the expression for the unfiltered
pitch command signal 84 | * becomes:

B51* = = [ao(ds + ¢27) + ai(X + 62 + 6] (5)

Equations (3) through (5) can be directly pro-
grammed as DSL /90 statements as follows:

* PITCH ATTITUDE CONTROL SECTION
BET2CU = — (AO*(PH12 + PH12FP)
+A1*(CHI2D + PH12D
+PH2DFR))
BET2CD = INTGRL(B2CDO, K 1*BET2CU
+K2*BET2CD + K3*BET2C)

184 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

COMMAND ACTUATOR
SIGNAL & ENGINE
FILTER DYNAMICS
ae|! Ky K252+ K3qS +K 36
2 :
2 SP+KpS +K3 | BF | 834Ky S%+Ks3S +Kys B,

Figure 25. Pitch axes control system.

BET2C = INTGRL(BET2CO, BET2CD)
BET2DD = K32*BET2CD - K31*BET2D
+K34*BET2C...
— K33*BET2 + INTGRL(IC53,
K36*BET2C — K35*BET2)
BET2D = INTGRL(BET2DO, BET2DD)
BET2 =INTGRL(BET20, BET2D)

For the complete simulation, over 400 DSL/90
statements were required, not including the function
generators and data statements. Both block and
algebraic notation were used for describing the
simulation configuration. The above small portion
of problem coding is an excellent example of the
ease of using both algebraic and block statements
in DSL/90. Note the use of symbolic names for
variable and data names which closely resemble the
actual names. This feature has proven particularly
helpful for large simulations.

.20 -

WIND VELOCITY
NOMINAL VEHICLE VELOCITY

The SATURN V flight dynamics were simulated
for the first 120 seconds of powered flight. Figures
27, 28 and 29 show resultant DSL/90 plots for three
of the system variables being studied.

The SATURN YV simulation demonstrated several
important features of digital simulation. First, a
complex nonlinear aerospace problem could be
successfully solved in DSL/90 by engineers rela-
tively unskilled in programming. Second, many
problems require both algebraic and block notation.
The ability of DSL/90 to handle both of these re-
quirements was amply proved. Third, problem
solutions could be obtained quickly with a minimum
of setup time. The original programming required
approximately 16 hours of an engineer’s time for
problem setup. Each run of 120 seconds flight time
required approximately 25 minutes of IBM 7094
computer time. In addition to the above features,
DSL/90 allowed the user to model his problem in
segments, checking out portions of the simulated
vehicle independently, and then to hook these sec-
tions together. As an example, the trajectory equa-
tions form one section of the simulation, pro-
grammed in algebraic notation, of which the control
system is another independent part programmed in
block notation.

44— 75 m/s

TIME (SECONDS)

Figure 26. Primary wind disturbance (from Ref. 5).

DSL/90—A DIGITAL SIMULATION PROGRAM 185

(-]
'D‘-
ZJ—
N
(a
.|
[a n
x
T T T T T T T 1
2. 4, 8. 10. 12. 14, 16.
TTIME (X10!)
Figure 27. Pitch axis angular acceleration.
cj_
<
"-1
(124
>
v Y T T T —T T 1
2. 4. 8. 1 10. 12. 14. 16.
TTIME (X10!')
Figure 28. Velocity along X3 axis.
CONCLUSIONS language, clarity and completeness of both print and

Within IBM, DSL/90 has been used extensively
in many different application areas including circuit
design, mechanical dynamics, process analysis and
control, servo design, aerospace flight simulation
and biomedical modeling. Simplicity of the input

plot output, and the ease with which data is handled
are some of the features which have made DSL/90
attractive to an increasing number of problem
solvers from both camps—analog and digital. In
DSL /90 workshops, it was observed that engineers
with hardly any analog or digital computer ex-

186 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

‘.

2.

K

XBET2

g T T T
2. 4.

8. 10
TTIME (X10!)

T L Y Y 1
. 12. 14. 16.

Figure 29. Engine gimbal angle for pitch axis.

perience successfully “programmed” in DSL/90 at
the end of the first two-hour session. With this
quick “shot” of confidence and further experience,
many have proceeded to more difficult problems
using the more advanced features of the language.

The examples shown indicate only a few of the
broad range of problem areas to which DSL/90 can
be applied. In addition to the above examples,
DSL/90 has successfully simulated the process
dynamics and control system responses for a paper
machine dryer section control system. In this study,
actual process noise gathered at the plant site was
introduced into the simulation through the MAIN
routine. Several nonlinear process and control ele-
ments were successfully modeled using the external
block features of DSL/90, including nonlinear
process controllers and scanning moisture gauges.
DSL/90 was recently used for the simulation of an
ammonia reaction process involving two-point
boundary value matching. In this case, severe simu-
lation problems were created by the fact that the
system had two regions of time response, each
governed by different differential equations and in-
terfacing through initial values. Both the features
of the “MAIN” program and the ability to intro-
duce logical functions into the DSL/90 block struc-
ture were extensively employed.

Many of these simulation areas previously han-
dled with analog techniques have long been troubled
with problems of component reliability, accuracy,

repeatability, and a lack of flexibility in modeling
basic dynamic components and phenomena. In
some respects, the trend toward digital simulation
methods is a result of seeking answers to these
problems. Some of the advantages of digital simu-
lation as observed in the above application studies
can be listed as follows:

Problem accuracy control.

Elimination of problem scaling.

Simulation run repeatability.

Reliable digital simulation elements.

Significantly reduced problem prepara-

tion time and simulation checkout time.

Simple problem coding. The majority

of detailed circuit knowledge for analog

programming is unnecessary.

7. Easy performance by the digital com-
puter of some operations which at best
are only approximated by analog com-
puters.

8. Effortless provision of positive docu-

mentation of simulation configuration

and parameter values.

AW =

o

To date, digital simulation techniques have shown
themselves easy to learn, efficient to operate, accu-
rate, and extremely flexible. They provide the
engineer with an easy and quick method of digitally
simulating complex systems, familiar block notation
concepts, and the power of digital computation

DSL/90—A DIGITAL SIMULATION PROGRAM 187

methods. The result represents a significant new
simulation tool for engineering analysis and design.

ACKNOWLEDGMENTS

To our co-worker in this project, Mr. D. G.
Wyman, we gratefully acknowledge his excellent
contributions in both programming and concepts.
We have benefited greatly from the many valuable
suggestions of members of the computation labora-
tory, Systems Development Division, IBM, San
Jose. Special thanks are due to Mr.-A. H. Hoffman
whose contributions to the exploratory program
PLIANT paved the way for DSL/90.

The contributions of J. G. DeFares, P. E. Cowley,
and F. Crane to the three application examples are
particularly acknowledged. |

BIBLIOGRAPHY

1. Brennan, R. D., and R. N. Linebarger, “A
Survey of Digital Simulation: Digital-Analog Simu-
lator Programs,” Simulation, vol. 3, no. 6, pp. 23-36
(Dec. 1964).

2. , “A Survey of Digital Simulation: Part
II—More Digital Analog Simulator Programs,”
ibid (to be published).

3. Dahlin, E. B,, and R. N. Linebarger, “Digital
Simulation Applied to Paper Machine Dryer Stud-
ies,” Proceedings, Instrument Society of America,
6th International Pulp and Paper Instrumentation
Symposium, Green Bay, Wisconsin, May 4-8, 1965.

4. DeFares, J. G., H. Hara, and E. M. Billing-
hurst, “The Stability of the Respiratory Servo-
mechanism: An Analog Computer Study,” Progress
in Biocybernetics, Elsevier Publishing Company,
New York, 1964, vol. 1.

5. Gunderson, R. W, and G. H. Hardy, “Piloted
Guidance and Control of the SATURN V Launch
Vehicle,” Proceedings, IFAC Symposium on the
Peaceful Uses of Space, Stavenger, Norway, June
1965. '

6. Hardy, G. H,, J. V. West and R. W. Gunder-
son, “Evaluation of Pilot’s Ability to Stabilize a
Flexible Launch Vehicle During First Stage Boost,”
Technical Note D-2807, National Aeronautics and
Space Administration, Washington, D. C. (May
1965).

7. Shah, M. J., C. James and J. M. Duffin, “Sim-
ulation of an Ammonia Synthesis Reactor,” 1966
Conference Proceedings, International Federation of
Automatic Control, London.

8. Wegstein, J., “Accelerating Convergence of
Iterative Processes,”” National Bureau of Standards,
Washington, D. C. '

TECHNIQUES FOR REPLACING CHARACTERS THAT ARE
GARBLED ON INPUT

Gary Carlson
Computer Research Center, Brigham Young University
Provo, Utah

With the rapid increase in the availability of mass
storage, we now find that there is an increasing need
for massive data input, This input is requiring in-
creasingly large volumes of data conversion to ma-
chine language. As this load expands, we find that
we must pay more and more attention to the rigor-
ous control of errors on data creation. This study
reports the results of a computer technique. to re-
duce errors of input data,

The standard techniques of key stroke and verify,
or double punch and compare, are often prohibi-
tively expensive for very large file conversion. Any-
one faced with the problem of large file conversion
must consider the possibility of using optical scan-
ning equipment. We are concerned with a poten-
tially very large file that is in nonmachine language
and should be converted. We sought a better way
to convert and then correct, or proofread, or verify
the data. By a “better way” we mean that we
sought a technique that would give acceptable ac-
curacy at a cost less than other techniques of con-
version.

Any human involvement in the proofreading or
verifying phase has a relatively high cost and still a
moderate error. We wondered if we could use the
computer to reduce the errors on input data.

The basic nature of our records is genealogical,
that is our records contain names of people, dates,
‘and places. For the conversion to machine lan-
guage of the millions of records that we are con-

_cerned with, we are considering the possibility of

189

using optical scanning equipment on the existing,
typewritten, multi-font documents. However, most
scanning equipment still seems to have some 2 to
5% character error rate, Fortunately, this equip-
ment can usually indicate confusion on a given char-
acter which is not decisively read. In other words,
the scanning equipment can say that it recognizes
the first, third, and fourth characters but got con-
fused on the second character. The errors of am-
biguity offer the possibility of direct computer cor-
rection.

The problem then is, given that a character is
garbled, can we effectively replace the character.
Later on, we hope to work on places or place
names, and even dates. But to begin our study, we
started on the materials available and of most in-
terest—English names. Specifically, then, the object
of the study is to determine if we can replace gar-
bled characters in names.

The basic plan was to develop the empirical fre-
quency of occurrence of sets of characters in names
and use these statistics to replace a missing char-
acter. I am happy to report that we have developed
such techniques—and in most cases a garbled char-
acter can be replaced with better than 909, accuracy.

The basic technique was to develop programs to
compile the required statistics, and then other pro-
grams to replace the character in question. All pro-
grams are written in COBOL, and have been run on
the IBM 7040 tape system.

The frequency of occurrence of trigrams (that is, a

190 'PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

string of three sequential characters) was first devel-
oped for a sample of 73,000 christening records
from English parishes.

Trigrams were used as the most parsimonious so-
lution. Single-character probabilities were tried
and gave very poor replacement. Two-character
strings also gave poor results. In some cases it
may be necessary to consider four-character strings.
Trigrams give generally good results with reason-
able processing times,

We worked first with all names, that is, given and
surnames combined, over 300,000 names. Ap-
proximately 789 correct character replacements
were achieved with this set of data. We then de-
veloped separate trigrams for male given names,
female given names, and then for surnames. This
refinement greatly improved the accuracy of re-
placement.

Additional information was obtained and used. -

This includes the location within the name of the
first character of the trigram, e.g., the trigram MAR
from the name MARY has a position of 1. The
trigram ARY from MARY has a position of 2. A
final refinement that proved very useful was an
indication of the trigram being at the END or NOT
END of a name. The trigram ARY from MARY
is an END trigram.

We separated the data into two halves, using the
first half to develop the probabilities and basic data,
and then tested the procedures against the first
half and then against the second half. Our tech-
niques systematically delete the characters one at a
time in each name and then replace the character
using the trigram statistics. The basis for the choice
to replace the missing character was the character
from the trigrams that had the highest probability
of occurrence. The percentage of correct replace-
ments is the measure of success. For example see
Table 1.

Here we see that the distribution of trigrams for
the first three characters MA? clearly show MAR
as the most probable. In this particular case, if the
trigram is shifted to cover the next character posi-
tion, A?Y, it is again seen that ARY is by far the
most probable. By combining these two, the choice
for the missing character is the letter “R.” The
highly probable ARY trigram is also an END tri-
gram, indicating that the name is now complete.

The second example of MA?GARET uses the
first MA? as well as the two shown. In this case, the
probabilities do not appear to be quite as striking,
but nevertheless are clearly decisive to select “R”
as the missing character. In fact, in this particular

Table 1.
Example—MA?Y
MA? ATY
3rd Position Frequency 2nd Position Frequency

Trigram of Occurrence Trigram of Occurrence
MAB 5 ABY 1
MA G 5 — —
MAL 5 ALY 4

— AMY 46

MAR NE* 8316 A RY End 6,466

MAR End 5 A RY NE* 20
MA S 22 — —
MAT 12 — —
MA U 2 — —
MAW 1 — —
MAY 4 — —

Example—MAIGARET

A?G 1GA
2nd Position Frequency 1st Position Frequency
Trigram of Occurrence Trigram of Occurrence
AGG 6 — —

— — I1GA 59
ANG 2 — —
ARG 802 R GA 616
AUG 1 — —

*NE means the trigram was not at the end of the name.

case, “R” is the only possible character when all
three trigrams are considered. For example, start-
ing with the first trigram set, there are several pos-
sibilities:

MAG — AGG
MAR — ARG
MAU — AUG

When the third trigram set is introduced, only
MAR — ARG and RGA remain. This means that
MARGA must be the sequence of letters that was
seen by the scanner.

The combined, or joint probability is similar to a
precoordinated index, where only those items con-
taining a complete set of AND logical relations are
accepted. Such a technique will make some mis-
takes for rare sequences of letters.

What results have been achieved? Let us first ex-
amine in detail the first character position of the
male given, female given, and surname (Table 2).
Here we see that position 1 or the first character of
names is, of course, the hardest one to replace cor-
rectly since there is only a blank preceding the char-
acter in question. At best, a trigram arrangement
uses information based only on the two characters

TECHNIQUES FOR REPLACING CHARACTERS THAT ARE GARBLED ON INPUT 191

Table 2.
Position 1
Tape 1 Tape 2
Total Total
Processed 9 Processed %

Male given name 51,629 94.24 51,629 94,23
Female given name 32,730 83.05 32,730 83.05
Surname 73,684 42.24 (not yet available)

following the first character. In Table 2, the num-
bers mean that there were 51,629 male given names
used on tape 1 to develop the basic frequencies of
occurrence. Then, using these as probabilities, we
correctly replaced 94.24%; of the first characters that
were deleted in male given names. We then used the
same probabilities and the same COBOL routine to
process the second set of names, which were not
used to develop the basic frequencies of occurrence,
and came up with the almost identical percentage
correct replacement. These numbers ar¢ not a typ-
ing error, these just happened in this particular po-
sition to come out identical for both tape 1 (used to
develop the probabilities) and tape 2 (the new data)
for each set of male and female given names. So
you can see that we were developing the trigrams
here on 51,629 names on the male, 32,730 names
for the female, and 73,684 surnames. We are proc-
essing a large batch of names, developing the fre-
quency of occurrence of trigrams, then using this as
a basis to predict the character that is missing in
subsequent data.

As we move away from the first character posi-
tion into the body of the name, it is possible to use
three trigrams as is shown in Table 1 to make the
computer estimate of what the character should be.
. As the processing moves further into the name, we
find better results, and then taper off to a less strik-
ing correction possibility at the end of the name. It
should be noted that in addition to recording the
trigram frequency, we recorded a separate condi-
tion within each category of male, female, and sur-
name that indicates whether the trigram was an end
or non-end trigram. The overall results are given
in Table 3.

This table indicates that we often get better than
989 correct replacement of the garbled character.
The specific effect on error reduction is impressive.
If a scanner gives a 5% character error rate, the
trigram replacement technique can correct approxi-
mately 959 of these read errors. The remaining
error is thus 59 of the original 5%, or 0.25%, over-
all. Such a low error rate is a fond hope of the very
best verification procedures.

Table 3. Percent Correct Character Replacement

Male Given Female Given Surname

Position of
Character Tgpe | Tape 1 Tape 1 Tape 2 Tape 1

1 94.24 94.23 83.05 83.05 42.24
2 99.56 99.45 99.29 99.18 73.23
3 99.33 99.14 99.74 99.56 74.15
4 99.45 99.25 99.14 97.99 72.66
5 99.58 99.32 98.51 98.19 79.85
6 99.11 98.94 95.63 95.32 81.05
7 98.06 97.88 98.84 98.60 84.06
8 99.03 98.28 98.97 98.82 87.99
9 99.39 98.16 98.96 98.89 89.74
10 99.54 98.16 86.56 83.07 92.12
11 100.00 99.46 100.00 88.88 92.21
12 — — 100.00 87.50 96.77
13 — — e — 99.00
14 — — —_ — 100.00
15 —_ — — — 100.00

Preliminary results on given names from a com-
pletely different set of data of English Parish reg-
isters gives 96.6%, correct character replacement.
This result indicates that the techniques are con-
sistent for comparable data. Such results imply that
modern names can also be ‘“corrected” if we de-
velop a new set of probabilities for modern names.

What are the implications of this study? We find
that there are at least three implications. One, a
technique like this may, indeed, reduce the cost of
verifying the mass of data input coming from scan-
ners. Two, techniques like this may also reduce the
cost of verifying massive data conversion coming
from conventional data input devices like key-
boards, remote terminals, etc. Three, techniques
like this may be effective in other areas of linguistic
manipulation, such as newspaper proofreading, or
may even be developed to locate the error and then
make the correction.

What does this mean for the future, and what
future research do we see that should follow from
the work done to date? Some future research is in-
dicated:

1. We should try to replace the characters in
another data base using our existing trigram fre-
quencies. Preliminary work on modern American
given names, using the English name probabilities,
indicates a 30 to 509 correct character replacement,
about 20 to 309 wrong replacement, and no re-
placement indicated in the remaining 30 to 409%.
This last result came as a surprise, but seems to be
holding. The implication is that if a different data
base is used on a set of data, the present procedures
give no basis for a decision in a large number of

192 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

cases. This no-decision is not as good as a correct
decision, but is also decidedly better than a wrong
replacement. Work is continuing to explore the
ramifications of homogeneity of trigram develop-
ment data and garbled data to be corrected.

2. We must experiment with other than trigrams,
especially for the first and'last part of names or
words. For example, we may have to go to a four-
gram or more at the end of words or names. This
work is currently in process also.

3. We need to try another body of words, other
than English names. This might be newspaper or
magazine material to see if the technique could be
applicable there. This is yet to be done.

4. Techniques must be undertaken to speed up
the processing on the computer. These routines
are fairly fast now, but with a tape system there is
an excessive amount of sorting,

5. There are other techniques that seem to be in-
dicated from the data analysis. It is not clear that
you should always take the most probable char-
acter as your choice. In fact, it may be that if the
distribution of choices is a rectangular distribution,
some heuristic type choice mechanism may give bet-
ter overall results than a straight maximum prob-
ability choice. We have begun work on this, but
the results are not yet conclusive.

6. Definite procedures should be developed to lo-
cate probable errors of character sequence. These
routines could be of value where scanning equip-
ment was not used, and thus the location of the
error is not immediately obvious. This is yet to be
done.

It appears that this kind of analysis can be of
interest in reducing the cost of massive data con-
version.

ADAM—A GENERALIZED DATA MANAGEMENT SYSTEM*

Thomas L. Connors
The MITRE Corporation, Bedford, Massachusetts

INTRODUCTION

ADAM is a computer program system built by
The MITRE Corporation for use in the MITRE/
ESD Systems Design Laboratory as a tool to aid
the design and evaluation of data management
systems. ADAM operates on the IBM 7030
(STRETCH) computer and has been operational
since early 1965.

Primarily, ADAM is a tool with which a system
designer can simulate alternative proposed designs
for his data management system. When ADAM is
run, the computer and its associated displays, type-
writers, and other peripheral equipment become an
operating mock-up of the proposed system, with
simulated or real users working on-line with the
model. System designers may test, evaluate, change,
and retest the model without the usual reprogram-
ming costs associated with changing a design al-
ready embodied in a large computer program. The
revised system models actually operate in real time.

A secondary purpose is to provide a test-bed in
which techniques of large-system design and pro-
gramming can be implemented, compared, and
evaluated. To this end, partial models and new pro-
grams may be added to the ADAM framework and
tests run on them.

This paper describes some of the things ADAM
can do, mentions some of the problems to which it
has been applied, and conclusions reached, and

*The material contained in this article has been approved for
public dissemination under Contract AF19(628)-5165.

193

gives a few of the internal details of its operation.
It is intended as a description of one of the operat-
ing resources of a laboratory devoted to experi-
mentation in the design of information systems and
as the germ of a concept for a way to build large
systems.

FUNCTIONS

To accomplish its purpose, ADAM incorporates
generalized facilities for performing those functions
which characterize data management systems:

1. File generation and maintenance.

2. Translation and processing of queries
and file processing messages.

3. On-line and off-line input and output.

4. Report generation and formatting.

5. Compilation and execution of sub-
routines.

6. Dynamic allocation of computer re-
sources.

These facilities are generalized in that the programs
of ADAM operate independently of the form,
format, or size of the data, of the input message
language, and of the report formats required.
Specifications of the particular characteristics of a
model reside in the data-base files or dictionaries
along with the problem-data itself. Thus, the defini-
tions of the data-base structure, message-languages,
output-formats and problem-specific processes be-
come data, subject to modification and update with
system procedures.

194 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

The user of ADAM specifies his data-base struc-
ture—how the data is to be organized, named and
interrelated—in file generation statements. He opts
either to use available ADAM message languages
and report formats or to specify his own. He pro-
grams whatever subroutines are required to accom-
plish complex or time-consuming calculations not
suitable for specification in message languages. He
adds this material to the generalized foundation
which is the ADAM system, and is then ready to
exercise and evaluate his medel. To change his
model, he need change only those components he
has specified; these are only a small part of all the
material of which the model is composed. This
generalization of common functions is the essence
of ADAM and leads to:

o Its versatility—its ability to accept speci-
fications for many different data-man-
agement systems.

e Its changeability—the ability to change
data structure, report formats, etc., with-
out reprogramming, in a short time and
in many cases on-line.

e The wide range of its capabilities—
input/output which includes on-line re-
mote inputs is one example; file process-
ing which includes complex data index-
ing is another.

DESCRIPTION

The following material is a general description of
ADAM —its operation, data structures, file process-
ing, and provisions for user subroutines and format
descriptions. A system as large as ADAM defies
description in full detail-—many capabilities (such
as remote operation) can be only mentioned, others
not treated at all; however a summary of ADAM
capabilities appears below.

Operation

The operating ADAM system accepts messages
from and sends output to on-line input/output
devices, such as typewriters and display consoles,
or operates with either off-lin¢ input, off-line output,
or both. Messages may query the data contained in
ADAM: add, -change, or delete data; or cause the
operation of ADAM or user programs.

All data in ADAM are contained in files; crea-
tion, maintenance, processing, and querying the
files are major functions of the system. In addition
to files of problem data, the system keeps files of

subroutines (both problem-specific subroutines and
the subroutines which constitute ADAM itself),
language specifications, format specifications, and
various other special-purpose files. Data for reports
are initially made up as an output file, to be format-
ted before actual output.

The file structure and data formats are elaborately
described by a set of dictionaries cum directories
called by the ADAM term rolls. As a dictionary,
a roll stores alphanumeric names of files, entries in
files, data items, routines, formats, and so forth. As
a directory, a roll stores the dynamically changing
information which describes: the current physical
location in the computer, the format, and the size
of elements of the system—files, entries, data items,
etc.

ADAM message processing is shown in Figs. 1
and 2. As each message is received, the system is
interrupted to determine its priority, to determine
the language in which it is written, and to stack the
message.

Major message processing programs are the

‘Translator, Processor and Output Generator.

When a message is unstacked, the Translator (with
reference to the appropriate language specification
from the Language File and to the rolls) translates
the message into a list of things to be done, called
a process table. The Processor executes the steps
specified in the process table interpretively, access-
ing or modifying the data base and operating any
routines specified. If output is produced, it is always
in the form of a file. The Output Generator per-
forms any formatting required on the data from this
file, as described by a format from the format file,
then delivers the output to be stacked, pending
availability of an output device. When processing
of one message is finished, the next is unstacked.
(With “time-sharing” so much in the vogue, it

........ [ROLLS

FILES

- DATA

- SUBROUTINES .

= LANGUAGE DESCRIPTIONS
~ FORMAT DESCRIPTIONS

. LANGUAGE SUBROUTINES FORMAT
+ DESCRIPTION DATA DESCRIPTION

OUTPUT
GENERATOR

TRANSLATOR PROCESSOR

INPUT MESSAGE TRANSLATED OUTPUT FORMATTED

MESSAGE FILE OUTPUT

Figure 1. Basic execution cycle.

ADAM—A GENERALIZED DATA MANAGEMENT SYSTEM

|
: :
INPUT ' EXECUTE

. ouTtpuy

T
OUTPUT

QUEUVE QUEUE
4 N—
T
! \
! [
! 1
! |
} i
—_—f . - oUTRUT
INPUT BASIC
'n";,l:&s SCHEDULER EXECUTION SCHEQULER ‘———Dbgtxgg;
/ 4| CYCLE : —0
' |
Figure 2. Input—Execute—Output.

cannot be ignored in the description of an on-line
system. ADAM is an asynchronous system, but it
does not swap tasks in and out of memory. Inputs
come in at any time and are stacked, and outputs
go out as fast as the equipment will take them. Both
input and output are asynchronous with the basic
execution cycle which, when it begins a task, runs
the task to completion except for interruptions to
receive inputs and send out outputs.)

File Structure

A file is organized as a series of entries, each of
which has an identical structure, i.e., all entries in
the file are characterized by the same properties.
The actual data is stored as property values; the
collection of property values for a single object con-
stitutes an entry in the file. The entries of a file may
contain substructures called repeating groups which
are collections of associated sets of properties, with
repeated associated sets of property values. A re-

I'N_AIN\—El Wfﬁ]ﬁfﬂ\ ORI(ELlNS

195

peating group may contain repeating groups, and
any repeating group may have an arbitrary number
of repetitions of sets of its property values.

Figure 3 shows the structure of a file of commer-
cial airline flights organized as a file, with destina-
tion as entries. It illustrates an entry for Boston, a
set of properties which characterize all entries, and
the repeating groups “‘origins,” ‘fares,” and
“flights.”

Property values, the actual data, are stored in
various ways, depending on the declared property
type. Property types presently available are:

1. Numeric, signed integer, stored as
binary number in a field long enough to
contain its declared size.

2. Numeric, floating point, stored as float-
ing-point number.

3. Roll-valued, stored as the internal code
for a name or other alphanumeric, with
the actual characters stored in a roll.
Alphanumerics in rolls may be multi-
word and arbitrarily long; their codes
are automatically assigned by ADAM
and are fixed-length.

4. Raw, stored as a string of bits of arbi-
trary length. The length of a value for a
raw property may vary from one entry
to another, and may change dynami-
cally. Raw-type properties are used to
store variable length, nonnumeric data,
such as alphabetic text.

T I T
[NAME| [TIME ZONE] FARES

|
FLIGHTS

=2
I:IT I T]
CLASS] [COST|[NAME] [DEPARTS] [ARRIVES| [NR OF STOPS]

Boston EDT 1.25 Worcester EDT F
M
Yarmouth ADT F
Y
Chicago CST 3.00

-- and so forth --

6.55 MO-180 0920 0944 0
5.00 MO-182 1252 1316 0

NE-792 2015 2126 1
31.00 TC-461 1235 1255 0
23,00

Figure 3. Destination file structure.

196 PRQCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

5. Repeating group, stored as the repeated
values of the properties in the group.
Storage is used only for those repeti-
tions of groups which exist (e.g., if. there
is no defined tourist-class fare from
Worcester to Boston, no space is left for
it). The number of repetitions of a
group may vary from entry to entry and
from time to time during the operation
of the system.

As a consequence of the variability of the size of
raw properties and the number of repetitions of re-
peating groups, entries in the same file may differ
in length. The variability in entry size is dynamic—
entries and entry size may be changed during
ADAM operation without rewriting or recopying
the whole file.

Each file has one roll-yalued property whose
values name entries. Data may be retrieved ran-
domly by direct access to a specified entry through
the roll which contains entry names. This roll also
contains the current location in the entry relative
to the beginning of the file. (Another roll contains
the current location in the computer of each file.)
Alternatively, all entries in the file may be accessed
serially. Within an entry, access to a specific repeti-
tion of a repeating group is always serial; the entry
is selected and each repetition of the group exam-
ined until the required one is located.

Rolls

A roll is organized as a series of elements. Each
element consists of one or more external names
associated with a single numeric code used as the
internal name. The several names associated with
the same code are considered synonyms of one
another. Thus, the roll in which values for a prop-
erty ‘“city”” were described might have both
BOSTON and BOS equivalent to the same internal
code, say the integer 5. All external references
could then use either term; internally, 5 would be
the unique name for Boston.

In addition to the names and code, a roll element
may contain subsidiary values which describe the
thing named by the element. For example, if
BOSTON were the name of one of the entries in the
Destination file, its roll element (and those of the
names of all other entries) would contain subsidiary
values which gave the relative location in the file
of the entry data.

Each file has associated with it, but physically
separate, an object roll which describes entries and

their names; and a property roll which describes
properties and their names and includes as sub-
sidiary values the type, field-size, location within
an entry, and other characteristics of the property.

Rolls are usually accessed implicitly and need not
be handled by a user. A user may, however, specify
in which rolls his roll-valued properties are to be
defined, thereby providing a context for evaluating
names—names and internal codes are unique only
within the same roll. A user who wanted AST (the
airline code for the city Astoria, Oregon) dis-
tinguished from AST (Atlantic Standard Time)
would define the names in different rolls. This is
one way the system can perform validity checks on
data entered. ‘

File Processing

ADAM is fundamentally a file processing system.
Because of its adaptability and the option available
to include user-programmed machine-language sub-
routines, one could say that ADAM can do any-
thing any other program on the IBM 7030 can do.
However, the interesting capabilities are those for
which specific provision is made, without any pro-
gramming required. The examples below are pre-
sented in a file processing language developed to
help check-out ADAM itself. Although the lan-
guage has been found useful enough to be applied
directly to models so far constructed in ADAM,
language design is not a goal of the ADAM project
and the capabilities exemplified are more important
here than the form in which they are stated.

Messages may be queries about individual objects
and data items as in the first example of Fig. 4,
in which the object Boston is accessed directly and
the groups Origins and Flights scanned serially to
find Flight AA123. Messages may change file data,
as in the second example, in which the Destination
file is accessed serially and changed under the con-
dition “time zone equals EST.” The third example
shows the message for the generation of a report, in
which the output file which is produced is formatted
according to the specifications in the (previously
prepared) format F23, and the resulting output
titled.

In Fig. 5, a calculation to determine which are
“short flights” is complicated by the possibility
that a flight may begin just before midnight and end
at an earlier time, producing a negative flight time.
The next example shows a cross-file reference, with
a decision made about what to print based on values
of population from those entries in the City file
which correspond to origin names in the Destina-

ADAM—A GENERALIZED DATA MANAGEMENT SYSTEM 197

FOR DESTINATION BOSTON.IF FLIGHT NAME EQ AA123,TYPE FLIGHT NAME,DEPARTURE TIME,ARRIVAL TIME.

FOR DESTINATION. IF TIME ZONE EQ EST, CHANGE TIME ZONE TO EDT.

FOR DESTINATION BOSTON, PRINT FORMAT F23 TITLE 'FLIGHTS TO BOSTON' ORIGIN NAME,FLIGHT NAME,

Figure 4. File Processing Messages.

FOR DESTINATION., FOR FLIGHT. IF ARRIVAL TIME - DEPARTURE TIME LS 6¢ AND GR~6(¢) CHANGE FLIGHT NOTE TO SHORT FLIGHT

OR ELSE CHANGE FLIGHT NOTE TO LONG FLIGHT, PRINT FLIGHT NAME, FLIGHT NOTE.

FOR DESTINATION BOSTON. FOR ORIGIN. IF CITY (ORIGIN NAME) POPULATION LS 1¢@@@, DISPLAY ORIGIN NAME,

"POPULATION' OF ORIGIN=CITY(ORIGIN NAME) POPULATION, FLIGHTS.

FOR DESTINATION. IF FARE CLASS EQ FIRST,

SAVE ORIGIN, 'OVERNIGHT COST' OF ORIGIN = 2 * FARE COST + CITY (ORIGIN NAME) AVERAGE HOTEL COST.

NAME TRIPFILE.

Figure 5. Mole File Processing Messages.

tion file. The destination entry “Boston” is accessed
directly, and. the group origins serially. For each
origin, a direct access is made to the City file entry
with the corresponding name.

Finally, the last example shows the creation of a
new property, “overnight cost,” which did not exist
in either of the files from which the data for it was
taken, and shows an example of an output file
being saved and named instead of being deleted
immediately after output. The new file—Tripfile—
is a standard ADAM file, subject to any future
processing desired.

A more detailed examination of the access tech-
niques and operations used in the creation of the
Tripfile is given in Table 1.

These examples show only some of the file proc-
essing capabilities of ADAM—a list of these and
other capabilities is given below. They show that
an on-line interpretive language with a powerful
system behind it can handle a wide range of proc-
essing tasks. But the range of capability required
to perform the many other file processing tasks
conceivable or already implemented in various
systems is even wider than this. Extensions of
ADAM intended but not yet implemented include
file access and read protection, more extensive text
handling, and more on-line interaction with a user,
among many others.

Table 1
Structure Name Access Operation
file Destination Serial —fetch from
file Tripfile Serial -create
(output file) -store into
group Fare Serial —fetch from
—compare property
“Class”
—input property value
“Cost” to arithmetic
group Origin Serial —copy from input file to
output file
property Overnight - —create
cost —store into with data
from Destination and
City files
file City Direct, -input property value
indexed “Average Hotel Cost”
by Ori- to arithmetic
gin Name
in Desti-
nation
file

File Generation

File generation tasks in ADAM are treated in the
same way as those specified by any other message
inputs—a message which describes the file and the
data which go into it is translated and processed

198 PROCEEDiNGS—SPRING JOINT COMPUTER CONFERENCE, 1966

through the same procedure by which queries and
other tasks are treated. The generation of files from
data contained within files already in the system
was described above, and involves saving and nam-
ing the output file produced by a query or report
request. Generation of files from bulk data on cards
or tape is specified in a different operator language
than queries or other messages. As with the lan-
guage of the examples above, the language presently
available in ADAM for checkout has been used in
applications thus far, in preference to specifying
another file generation language.

Specifications for file generation include direc-
tions for reading-in data from cards or tape as well
as a structural description of the resulting file. An
example is given in Appendix B. The data may in-
clude fields out of order and variable-length fields,
and separate fields may be subjected to user-sup-
plied or system standard conversion subroutines on
the way in.

Messages and Languages

A designer modeling his system in ADAM has the
choice of using a language already prepared and
inserted in the ADAM language file (such as the
language used in examples thus far) or preparing a
language specification of his own. (The preparation
of new languages is not treated here for lack of
space. Suffice it to say that the ADAM translator
is a syntax-directed translator of a type found in
many compilers and that a new language is prepared
by constructing a syntax-diagram and inserting it
into the ADAM “language” file.) Regardless of the
language(s) used, messages may be inserted on-line
or off-line on cards.

During ADAM on-line operation, a user has
available a language change capability through the
ADAM string-substitution facility, by which he
may define the meanings of certain input words.
Words defined by string substitutions are replaced
by their defined equivalents before an input message
is translated. String-substitution definitions may
specify that parameters (comprising the words fol-
lowing a use of the defined word) be inserted. Thus,
for example:

LET NONSTOP MEAN (IF NR OF STOPS EQ
?). and

LET SKED MEAN (FOR DESTINATION/2/./3/
TYPE ORIGIN/1/FLIGHTS) USING RE-
INSERT.

define substitutions, and the message

SKED BOSTON CHICAGO NONSTOP.

would be transformed to

FOR DESTINATION CHICAGO.IF NR OF
STOPS EQ ¢, TYPE ORIGIN BOSTON
FLIGHTS. :

before translation.

Problem-Specific Calculations

In order to handle problems which are not easily
or efficiently stated in an on-line message language,
ADAM includes a capability for incorporating sub-
routines specifically coded for a model. An ADAM
compiler, called DAMSEL, compiles routines for
inclusion in the routine file. Although the DAM-
SEL compiler constitutes the primary means for
writing user-specific subroutines, other compilers
may be used. In particular, a set of routines called
COMFORT (COMpatible FORTran routines)
adjusts the output of specially prepared FORTRAN
compilations to be compatible with ADAM.

DAMSEL itself allows the usual complement of
arithmetic-assignment, conditional, and subroutine-
call statements, and includes a macro facility for
extending the DAMSEL language. In addition, it
provides statements specifically designed to create,
augment, modify and retrieve from ADAM data
structures. File-manipulation statements refer di-
rectly to files by name, or use names which the sub-
routine receives as input parameters from other
routines or from a message input. In either case,
statements in the subroutine are independent of the
format of data referred to; data descriptions are re-
trieved from the rolls when a subroutine is compiled
or executed. :

A routine in the system is called by a message
such as

DO OPTIMAL (DESTINATION,BOSTON,
ORIGIN,CHICAGO)
or within a message as a function
FOR DESTINATION.IF TIMECALC(CHI-
CAGO)GR 9, ...
(in which OPTIMAL and TIMECALC are hy-
pothetical user-coded routines).

Output Formatting

Output formatting in ADAM is the process of re-
arranging the data from an ADAM file into an
order appropriate for output, translating names
from their internal coded form to alphanumeric,
and sending the resulting messages to an output
scheduling program for actual output. The entire
process is directed by a format specification, or for-
mat, from the ADAM format file.

ADAM—A GENERALIZED DATA MANAGEMENT SYSTEM 199

Formats are typically prepared off-line with a for-
matting macro written for the purpose. A format
specification describes margins; spacing; pagination;
file data; titles; and, for display devices, vectors and
points. The formatting program adjusts the output
as required to conform to the physical characteris-
tics of the device to which the output is directed,
without any necessary specification on the part of
the user (who may, however, control the format on
the basis of device, if he desires).

SUMMARY OF CAPABILITIES

ADAM, as an on-line system, provides for multi-
ple consoles used simultaneously, remote operation,
cathode-ray tube output both character and picto-
rial, and light-pen, push-button, typewriter, and
teletype input. As a file-handling system, ADAM
incorporates most of the features found in the more
advanced file handling systems available today.

The file structure allows variable-size data fields,
nested groups of sublevel fields, dynamically vari-
able file and entry size, and both dictionary and
cross-file indexing. File data may be integer, float-
ing-point, alphanumeric, or coded.

File generation may be from card or tape input,
from data in existing files, or from data entered on-
line. Bulk file generation provides for fixed- or var-
iable-field input data, optional validity checks on in-
coming data, and the provision to define and use
special conversion subroutines on data before it is
stored in the newly generated file. On-line file cre-
ation may restructure existing files or extract data
from subsets or arithmetic combinations of data in
existing files. Files generated on-line may include
newly defined fields.

File processing includes querying on logical or
arithmetic criteria applied to any data items or com-
binations of data items, data updates or changes,
operation of general or special-purpose subroutines,
file sorting, and output. Subroutines may be pro-
grammed in FORTRAN or in DAMSEL, an
ADAM compatible compiler.

Output formatting provides for formats prepared
off-line and selected and performed on-line, titles,
routing to other terminals, and pictorial, as well as
symbolic, outputs.

Language variability includes, in addition to the
provision for defining a completely new file proc-
essing language, provision for on-line definition of
synonyms (for file names, field names, etc.) and for
on-line definition of special-purpose words to be
used at selected input terminals.

EXPERIENCE

Experience with ADAM since it became opera-
tional early in 1965 included five diverse applica-
tions:

1. A system for scheduling resource use and ac-
tivities aboard a manned satellite. The model uses
elaborate display formats of file data to present po-
tential schedules to analysts.

2. A subsystem for the command and control of
tactical forces through the use of an airborne sensor
to locate friendly units. The application is a hybrid
of real-time sensor inputs (which become frequent
and voluminous file updates) and file retrieval re-
quests inserted on-line by operators.

3. A study of a personnel and organization sub-
system devised by the System Development Corpor-
ation. This application involved the manipulation
of file structures accomplished with query language
inputs instead of programs.

4. A system of inventory management which in-
volves a large data base, processing of items from
several files at the same time with cross-file indexing,
and reporting in formats appropriate to condensed
output.

5. A man-job-match model in which personnel
qualifications for defined jobs were assessed and
tentative personnel assignments made. This model
used push-button and light-pen inputs to select pa-
rameters for user-prepared subroutines which per-
formed the specialized qualification and assignment
algorithms.

CONCLUSION

From experience with building ADAM and ap-
plying it to a wide range of problems, a qualitative
assessment of some of its principles can be made.
No quantitative studies have been made yet.

Generality is possible. The fact that ADAM was
built and applied to the diverse applications de-
scribed previously shows that a general-purpose
file-handling system can be made to work.

Generality is expensive in computer time and
space. The ADAM system serves its intended pur-

pose, as a design verification tool, but is hardly the

way an operational system would be built. ADAM
comprises 90,000 instructions, representing a range
of capability unlikely to be required in any single
application. During ADAM operation, the effi-
ciency of the programs is reduced somewhat by
their generality, but the cost is considered accept-

200 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

able for ADAM purposes (in:a laboratory environ-
ment) in the light of the capabilities offered.

Generality saves implementation time. If a gen-
eralized data management system is already avail-
able, the time to implement a defined problem is
considerably shortened, since functions required
for problem solution already exist. In one case, a
partial model of a subsystem to display pictorial
information on satellite positions as viewed from a
ground station was implemented concurrently in
ADAM and a FORTRAN program. With the
query handling and display capabilities already
available in ADAM, but required as new programs
in FORTRAN, the job took nine times as long to
implement in FORTRAN,

ADAM, then, is a system which provides a
modeling capability of general utility as a design
tool. But, more importantly, ADAM represents a
concept of generality, of potential application to
large operational systems, and of demonstrated use-
fulness.

Appendix A

IMPLEMENTATION

ADAM accomplishes its functions through a
variety of well-known programming techniques,
most of which have been used individually but
which are not usually combined in a single system.
The five major principles observed in the design of
ADAM are:

1. Keep as much of the model specification as
possible in data, not in program—exemplified by
the use of files to contain formats and language
specifications, routines, and other components of
the system being modeled.

2. Make programs insensitive to change in the
size and format of data—generally, through the dic-
tionaries and other mechanisms which make the
ADAM system and models within it self-descriptive,
and therefore able to vary dynamically.

3. Make the system contain itself as data—for
example, all ADAM routines are in a routine file
and ADAM files and dictionaries are just like user
files and dictionaries.

4. Allow for handling exceptional cases and for
expansion by including in all specifications the op-
tion ““do a subroutine’’—for example, in addition to
the usual description of an input data field, an op-
tion for the person specifying file generation is ““do a

subroutine here,” (presumably a special conversion
he wrote) and similarly a format-specification writer
can specify that an arbitrary subroutine carn be exe-
cuted in the middle of the formatting process.

5. Allocate compiler resources (memory) only as
needed—through dynamic allocation programs.

Environment

Some of the specifications of the computer on
which ADAM runs are given in Table 2. Primary
storage is approximately 65,000 64-bit registers of
core; secondary bulk storage is 4 million 64-bit
words of disk; input/output channels are provided
for on-line terminals including typewriters, display
consoles, teletypes, and printers.

Table 2. Configuration of the IBM 7030
in The MITRE/ESD Systems Design Laboratory

WORD: 64 Bits = 8 characters
CORE: 65K Words-520K characters
Addressable by bit
Access time 2 microseconds
4 million words = 32 million characters
Rotation time 33 milliseconds
Transfer time 4 microseconds
1/0: 16 Channels
3 Channels for 12 tapes
1 Channel for 6 display-typewriter
consoles
1 Channel for 6 printers
7 Channels for teletype or phone lines
4 Channels for printer, punch, reader,
operator console

DISK:

Jobs run on the computer operate under control
of an operating and monitor system called MCP.
ADAM is no exception; as far as MCP is concerned
the entire ADAM system is a single-user program,
The MITRE version of MCP time-shares back-
ground and foreground problem programs, which
are operated completely independently of one an-
other. Thus, in addition to being a multiple-user
system itself, ADAM operates in an environment
in which it shares the computer with other jobs
(which may be independent copies of ADAM sys-
tems).

System Control

The system control philosophy of ADAM is to
accept input messages as they arrive, recognize
them, and place them according to a priority scheme

ADAM—A GENERALIZED DATA MANAGEMENT SYSTEM 201

in a job queue. ADAM will recognize any input
language whose recognition rules are given to the
system. When processing of a single message is
completed, the top of the job queue is examined and
the appropriate routine is called (problem program,
translator, etc.). When processing of a message is
started, it runs to completion, being interrupted
only for recognition and stacking of input messages,
or to initiate output.

Requests for output are handled immediately if
the channel and peripheral gear are available; other-
wise, they are queued up and sent out when pos-
sible. All system routines (input/output handling,
job scheduling, memory allocation, etc.) are sub-
routines and may call each other as needed.

Allocation

In ADAM, computer resources are allocated to
the task at hand as the need arises during the proc-
essing of a message. Separate allocation programs
handle the allocation of secondary storage, core
storage assigned to data storage, and core storage
assigned to routines and tables. Second-level alloca-
tion programs use these programs to allocate space
for files, rolls, and an ADAM artifice for working
storage called a stream.

Disk Allocation

The disk allocation algorithm operates by linking
together pages of disk, into regions with the link
table kept in core. The disk allocator program also
handles all disk-to-core and core-to-disk transfers,
relieving other programs of the responsibility for
following the links and making all disk allocations
appear to be contiguous. The linking procedure
allows the size and location of allocations to change
at almost any time. From time to time, the system
performs a wholesale reallocation of disk to make
regions contiguous—they can subsequently be read
with fewer disk accesses per region.

Core Allocation

The two separate core allocators (programs and
data) use opposite ends of memory; data is allocated
from one end and programs from the other, so that
the dividing line can move and the ratio of memory-
for-program to memory-for-data adjusts dynami-
célly as the situation requires (Fig. 6).

For routine storage, the unit of allocation is the
routine or table, with its size fixed at compile-time,
Routines and tables are relocated when loaded into
core from the routine file and may contain relo-

WORDS
ad
ROUTINES
TABLES
DURING MESSAGE
PROCESSING,
APPROXIMATELY
25,000 WORDS
(= 200,000 CHARACTERS)
ARE AVAILABLE FOR FILES
PROBLEM ROUTINES
AND DATA ROLLS
STREAMS
AREAS
50,688
IBM 7030
UTILITY
SYSTEM
65,536

Figure 6. Dynamic core memory allocation.

catable addresses within themselves. Once loaded, a
routine does not move in core. Each routine and
table is accessed through a program allocation
table, created and maintained dynamically by the
program allocator.

Data allocations on the other hand may move in
core at almost any time. The unit of allocation is
512 words, the disk-arc size, to facilitate transfers
from disk to core and back. A single allocation al-
ways remains contiguous so that it may be continu-
ously addressed and indexed. An instruction in the
7030 repertoire: “transmit (any number of sequen-
tial) words from one core location to another” al-
lows the data allocator to dynamically change the
size of an allocation and to move as much as neces-
sary of the remaining contents of memory to keep
data allocations contiguous. Data allocations are
addressed through index registers which are updated
by the allocator whenever data moves.

Stream Allocation

A stream is a combined allocation of several
levels (presently core and disk) of storage, used as
a single-level continuously addressable store.
Streams are used as temporary storage for, for ex-
ample, input and output queues. As it is made up of
data-core areas and disk regions, it is allocated in
units of 512 computer words, but the Stream Allo-
cator makes it appear to a using routine as a con-

202 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

tinuous series of up to 2'® single registers. The por-
tions of a stream in core at any time are called
blocks; a stream may have an arbitrary number of
core blocks attached at any time. The fundamental
operation on a stream is ‘‘locate an address’ which
causes the allocator to insure that the desired ad-
dress is in a core block. The core blocks thus oper-
ate as separate movable windows through which a
routine may look at registers in the stream. Any
number of independent core blocks may be attached
to a stream at the same time, or none may be at-
tached, in which case the stream is entirely on disk
until core blocks are later attached.

The allocator assigns disk space only for those
pages of a stream which contain registers into which
data have been stored.

File Allocation

File allocation involves assigning data core to in-
dividual entries from files, to lists of entries in ar-
bitrary order, or to an entire file. The allocation
program assigns core space by an algorithm based
on the size of the material requested (obtain from
the rolls) and the amount of available core. A file
allocation is always at least as big as the file entry

being accessed, so that machine indexing can be
used without interruption for input/output. The
allocator automatically transfers file data from disk
to core and core to disk as required.

File Structure in Storage

In main storage, all data for a file are contiguous.
Figure 7 shows the appearance of file data in mem-
ory. A file may be discontinuous in secondary (disk)
storage, but the allocator handles all discontinuities
without requiring notice by any other program.
Disk discontinuities may occur when the size of an
entry or a file is changed during ADAM operation.

Every entry of every ADAM file contains a set of
standard properties which describe the entry and
thereby provide for dynamic variability. One of the
standard properties is “current size of this entry.”
Each entry is stored in four parts: the standard
properties, fixed-length properties, variable-length
properties, and an area between fixed and variable
parts available for expansion by addition of new
material, either fixed or variable. When this area
is used up, more is added here. Standard properties
describe the sizes of the various parts.

All repeating group data appears in the variable

ONCE-PER-FILE
PROPERTIES
ATLANTA
————— STANDARD - //’l POINTS TO ORIGINS I\
DATA - -
———————I // —_ - TM/\N\M,‘W
BOSTON - /A TW 388 |--—| —--
FIXED-LENGTH L7 ™™ 142 |——o| —==
DATA ’
7/ T <
7
\\)
\ /s UA 188 [-=--[--~
\ EX:é\galON d AA 232|---|---
CHICAGO \.\ e AA 434] ——o| - ==
\ | N ﬁ/
AN CHICAGO [csT
AN VARIABLE [~~~ _ POINTS TO FLIGHTS
_| LENGTH DATA ~< CINCINNATI | EST
\ ~- \
PR ~~ _\ POINTS TO FLIGHTS
A FILE AN ENTRY A REPEATING GROUP

Figure 7. File data in storage.

ADAM—A GENERALIZED DATA MANAGEMENT SYSTEM

GENERATE FILE,DESTINATION,CARDS.BEGIN OBJECT.

ROLLVALUED,

ROLLVALUED,
DECIMAL,

BEGIN
GROUP,

ROLLVALUED,

ROLLVALUED,

BEGIN
GROUP,

ROLLVALUED,

DECIMAL,

END
GROUP,

BEGIN
GROUP,

ROLLVALUED,

INTEGER,

INTEGER,

INTEGER,

END
GROUP,

END
GROUP,

END OBJECT.

OBJECT NAME
(c1tY),

TIME ZONE,

TAX1
(TAXI FARE),

ORIGIN
(ORIGINS),

TIME ZONE,
FARES,

NAME
(CLASS),

COST
(FARE) ,

FARES,

FLIGHTS
(FLIGHT),

NAME

DEPARTS
(DEPARTURE TIME),

ARRIVES
(ARRIVAL TIME),

NR OF STOPS,

FLIGHTS.

ORIGINS.

Figure 8.

LENGTH VARIABLE.
SCAN TO NON ' °'.

LENGTH 3 COL.

SPACE TO NEXT CARD.
SPACE 25 COL.
LENGTH 5 COL.

TERMINATED BY '-'.
SPACE TO NEXT CARD.

LENGTH VARIABLE
SCAN TO NON ' °.

LENGTH 3 COL.

TERMINATED BY '--',
SPACE TO NEXT CARD.

SPACE 12 COL.
LENGTH 2 COL.

SPACE 12 COL.
LENGTH 6 COL.

TERMINATED BY '---'
SPACE TO NEXT CARD.

SPACE 25 COL.
LENGTH 5 COL.

SPACE BACKWARD 25 COL.

LENGTH 5 COL.

SPACE 4 COL.
LENGTH 5 COL.

SPACE 21 COL.
LENGTH 1 COL.

SPACE TO NEXT CARD.

ALPHA, USE OBJECT ROLL.

ALPHA,USE ROLL TIMES.

NUMERIC.4 DIGITS.

BEGIN REPETITION
ALPHA. USE OBJECT ROLL

OF CITY FILE,
ALPHA,USE ROLL TIMES.

BEGIN REPETITION

ALPHA.USE NEW ROLL
CLASSES.

NUMERIC.5 DIGITS.
END REPETITION.

ALPHA.USE OBJECT ROLL
OF FLIGHT FILE.

NUMERIC. 4 DIGITS.

NUMERIC.4 DIGITS.

NUMERIC.1 DIGIT.
END REPETITION.

END REPETITION.

Message to generate destination file.

203

part of an entry, to allow for variable numbers of
repetitions in different entries. Groups are con-
ceptually structured as entries, with a fixed and
variable part, but physically they differ from entries
in that all their data are not necessarily contiguous.

Variable data, including repeating groups, are
accessed by pointers within the fixed-data section
of the entry or group to which they belong. Prop-
erty descriptions reside within the property roll for
a file, rather than in the file itself.

Appendix B
AN EXAMPLE OF FILE GENERATION

A message to generate the Destination file is
shown in Fig. 8. . In this file generation language,
spacing is not significant, so the message was spaced
out for readability. The first column gives, for each
property, the property type; the second column, the
property name with synonyms enclosed in paren-
theses. The next column contains directions for
reading input, in this case from cards. Variable
length fields and fields out of order are handled
here. The last column gives the type of conversion
(e.g., ALPHA, NUMERIC, or the name of a user-
supplied conversion subroutine) to be applied to the
input data as it is read in.

THE ENGINEER-SCIENTIST AND AN INFORMATION RETRIEVAL SYSTEM

C. Allen Merritt and Paul J. Nelson
IBM Technical Information Retrieval Center
International Business Machines Corporation

Yorktown Heights, New York

INTRODUCTION

During the last few years a veritable explosion of
study, effort and accomplishment by business,
government, and university organizations has taken
place in the realm of information retrieval and dis-
semination. Theoretical problems have been ex-
plored, new equipment and techniques-have been

developed, and a number of successful operating

systems have been implemented.

This paper will look at the impact of such infor-
mation retrieval systems or centers upon their most
important clientele—the engineer-scientist or the
technical professional. Who are these people? Let
us define them as professionals, working in a scien-
tific or engineering discipline, and very likely in a
research and development environment. Most of
them share some basic information problems. They
recognize that the rapid expansion of knowledge
and data in their technical fields is taxing their time
and memory capacity to the limit. There are in-
creasing pressures on them for more interdisci-
plinary knowledge. Technical obsolescence is a real
problem, for they live in a fast-moving environment
where today’s research idea can be tomorrow’s
hardware.

As a result of these problems and pressures, the
engineer—scientist, sceptical at first, has been drawn
toward a new source of help—the machine-oriented
information retrieval and dissemination system,
backed by the technical library.

To illustrate this new relationship between the
technical professional and the information retrieval
system, we will examine the philosophy and me-
chanics of the IBM Technical Information Retrieval
Center. This particular system represents an inte-
grated approach to the storage, announcement, dis-
semination, and retrieval of technical information.
It combines the best features of both machine proc-
essing and human information skills, and is appli-
cable to a wide range of data bases and system
activities.

PHILOSOPHY AND APPROACH

The IBM Technical Information Retrieval Center
(ITIRC), located in Yorktown Heights, New York,
was established to serve the IBM scientists and
engineers in all their laboratory locations. A wide

~ diversity of occupations are involved, ranging from

205

physicist to circuit designer to programmer. ITIRC
exists to supply the right information to the right
person in the shortest possible time and at the least
possible cost. This is no small undertaking when
you consider the size of the company, the number
of locations, and the tremendous range of interests
in research, development, manufacturing, and sales.
Add this complexity to the general information
problems described earlier and the need for an in-
formation retrieval center becomes urgent.
Regardless of need, however, an information
retrieval system cannot be established until man-

206 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

agement recognizes its value and is willing to set
aside funds and manpower for its operation. Fur-
ther, this funding must cover a period long enough
to permit a valid judgment about the value of the
services rendered. How this valid judgment can be
arrived at will be discussed later.

Along with management and the staff of the in-
formation center, the individual engineer-scientist
has certain responsibilities to the system. First, he
must supply the system with a complete and accu-
rate description of his occupation and related in-
formation needs. Second, as his assignments or
interests change, he must be alert in notifying the
system about the changes. Finally, the information
center looks to him for feedback—is he receiving
pertinent material, is he missing significant infor-
mation, is he getting prompt service? The system
has built-in techniques for making this feedback
easier, but it still takes initiative on the part of the
customer to supply complete.and pertinent data,

In parallel with the user’s responsibilities, the staff
of ITIRC accepts similar ones. We are committed
to translate his interests into the retrieval and dis-
semination programs accurately and fully, to act
promptly on his sugge.tions and complaints, and to
follow up with him personally whenever significant
questions arise.

The ITIRC also has commitments to manage-
ment. Like every operation in a large business, we
must frequently justify our existence, measure our
services in tangible terms, and demonstrate growth
and improvement in many ways. This, too, is not
an easy task because information retrieval deals so
often with intangible results—but it must be done.

THE SCOPE OF THE SYSTEM

Dissemination

What we call the Current Information Selection
program is one of the keystones of ITIRC activities.
The engineer-scientist customer submits a textual
description of his information needs and job re-
sponsibilities. This goes to an information retrieval
specialist who is thoroughly familiar with the so-
phisticated machine-searching techniques that are
used, as well as with the types of documents that are
entering the system. He analyzes the user’s specifi-
cations and constructs an accurate profile for entry
into the system. If necessary, he goes back to the
customer and obtains more detail or clarification.

Once the profile is checked out and operating, it
is compared several times a month with all of the

current documents being processed into the infor-
mation center. Whenever the text of a document
abstract matches the profile, a printed abstract is
generated automatically and sent to the customer.
He screens each notification and takes appropriate
action—by telling the Center how relevant the
document is, by reviewing it on microfilm, or by
requesting a personal copy if he needs it.

Retrieval

Retrospective searching is another important
function of ITIRC. All current document input is
added to a set of master searching tapes, a file that
now includes abstracts of over 125,000 documents.
Search questions come in from customers through-
out IBM, often through the local IBM libraries.
They are directed to the appropriate IR specialist,
depending on which of the several classes of docu-
ments need to be searched. The specialist analyzes
the request and formulates one or more machine
search questions, using the various logical tools at
his disposal, as well as his broad knowledge of the
data base to be searched. The output of abstracts
that answer the question is reviewed by the specialist
and sent to the customer. He may be satisfied with
the answers, or request a deeper or narrower search,
or ask for another search on a related topic that has
been brought to light. In the latter case, the process
is repeated.

Retrospective searching is normally scheduled to
yield answers within 48 hours. However, an emer-
gency question can be processed almost immedi-
ately. Also, to handle urgent requests from distant
locations, the Center maintains two satellites at
laboratories in San Jose, California, -and LaGaude,
France. These have the search programs and dupli-
cate sets of the master search tapes that are updated
monthly.

Announcement

Supplementing the Current Information Selection
program already described, ITIRC publishes
monthly three series of announcement bulletins.
These cover all current documents processed in the
three major data bases—IBM reports, IBM Inven-
tion Disclosure material, and selected external (non-
IBM) documents and journal articles. These bul-
letins are made available to all IBM libraries, report
centers, and publishing groups. They are also dis-
tributed to selected individuals who have expressed
a need for reviewing all current literature in the
system.

THE ENGINEER-SCIENTIST AND AN INFORMATION RETRIEVAL SYSTEM ’ 207

The bulletins contain abstracts of documents in
order of accession, including titles, authors, sources,
detailed abstracts, and descriptive index terms as-
signed by the IR specialists. Each issue also con-
tains a category index that offers the reader a quick
way to scan the contents selectively. This section
lists each document title under one or more of 23
broad subject headings, with easy cross-reference
by page number back to the abstracts. A second
manual searching aid is an alphabetical subject in-
dex based on the descriptive terms assigned to each
document. Each entry includes title, accession num-
ber, and page reference. Both indexes and abstracts
can also direct the reader to a location on microfilm
where the complete text of most documents is avail-
able for viewing,

Supplementing the general-purpose bulletins are
indexes designed for library and reference use. For
the same documents we publish monthly alpha-
betical author indexes, indexes of the original
source numbers, and sequential listings of the ac-
cession numbers—all with complete titles. Any of
these machine-produced indexes can be cumulated
quarterly or as required. And, with the same ma-
chine programs, various special classes of docu-
ments can be pulled out and indexed.

A specialized type of announcement medium is a
monthly compilation of all the current research and
development projects in the company; we call this
an automated project file. Updated regularly, it
contains descriptions of the projects and budget,
manpower, and planning information. It is dis-
tributed to a controlled listing of management
people as an information and control vehicle.

Microfilm and Hard Copy

To make the complete text of input documents
as widely available as possible, ITIRC is operating
a comprehensive microfilming program. Currently
we are putting on film all the invention disclosure
material, almost all the IBM reports, and as much
of the external material as copyright and distribu-
tion restrictions will permit.

The medium used is 100-foot reels of 16mm
microfilm, with a capacity of about 2300 frames per
reel. Depending on the equipment available, these
are distributed in reel form or packaged in special
cartridges. Most IBM library locations have com-
plete files of film going back several years and now
covering over 24,000 documents.

Thus, for complete copies of documents pro-
cessed by ITIRC, the system customer has two al-

ternatives. He can request them from his nearest
IBM library, which has many current documents on
hand or can order them if needed. Or he can go to
a nearby microfilm reader to scan them. Some lo-
cations have reader-printers, in which case the user
can make selective copies of pages or short docu-
ments.

Admittedly, the problem of supplying hard copy
to many customers is a constant challenge. How-
ever, the Current Information Selection program
helps the situation by preselecting a relatively small
percentage of the total documents for the user. All
of the major system output—machine listings and
publications—offers complete bibliographical data
and detailed abstracts. This gives the customer a
chance to do his own screening without having to
order documents blindly. By the time he decides he
wants a personal copy of an item, he is reasonably
sure of its value. The screening process built into
the system, combined with microfilm accessibility,
tends to control the amount of hard copy requested
and to assure its worth when requested.

THE DATA BASE OF THE SYSTEM

One of the major goals of ITIRC is to cover the
pertinent scientific and technical literature, both
inside and outside IBM, as completely as possible.
Obviously we had to start with what we considered
the most important types of data and expand from
there. The following are the major classes of input
documents now being processed.

1. IBM Research and Engineering Project
Files, mentioned earlier, are the official re-
porting medium for all R&D activities
within the Corporation.

2. IBM reports include formal technical
reports, laboratory and testing reports,
informal published memos, IBM papers
cleared for external use, patents issued to
IBM personnel, reference and operating
manuals, and a variety of miscellaneous
documents.

3. IBM Invention Disclosures are novel
ideas submitted as Inventions to solve spe-
cific problems. The most promising are
selected to be filed for patent.

4. Non-IBM reports are selected docu-
ments of interest to IBM engineers and
scientists. Typical examples are Defense
Documentation Center reports, university
reports, and technical journal articles.

208 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

5. IBM Suggestions. Like many other
large companies, IBM has a suggestion
system that over the years has amassed a
large number of suggestion reports cover-
ing proposed changes in products or pro-
cedures. These have béen placed on a sep-
arate set of search tapes in a structured
format. When the numerous new sugges-
tions are received theyiare matched against
the data file to see whether similar ideas
have been submitted /in the past. If no
match occurs, the suggestion is investi-
gated further by the Suggestion Depart-
ment to see whether it should be accepted
and an award made for it.

As new technologies develop and new kinds of
publications and reports appear, the ITIRC staff is
constantly evaluating them and expanding the data
base of the system.

THE SEARCH LOGIC OF THE SYSTEM

One of the most important factors in the ITIRC
system is the computer logic used for searching
(both retrospective searching and current dissemi-
nation). It is a flexible technique for searching a
normal text data base (in this case, the text of the
abstract). It is not a simple technique to use, but an
experienced IR specialist can achieve a high degree
of precision with it.

A fundamental point is inherent in the words
“normal text.” Since the data base contains the
language of the original document (and author),
we can phrase search questions or user profiles in
the same kind of normal English or accepted tech-
nical language. We use not just single words but
phrases and adjacent or associated words. We scan
not only the abstract but the title, author, source
information, and index terms associated with a doc-
ument. With this in mind, let us look at the specific
types of logic available.

Single Word Logic
Single words can be searched for individually.

a) RETRIEVAL
Families of single words can be searched with an
OR technique, to cover variations in spelling, syno-
nyms, and the like. '
b) RETRIEVAL or RETRIEVING or
SEARCHING or SEARCH or SEARCHES
We can use AND logic to 'search for combinations
of associated single words; where two or more of

the words must be present in the abstract to satisfy
the request.
¢) INFORMATION and RETRIEVAL
We can use OR logic within the AND logic groups.
d) INFORMATION or DOCUMENTS or
DATA or LITERATURE)
and
(RETRIEVAL or RETRIEVING or
SEARCHING or SEARCH or SEARCHES)
And we can expand a broad, simple AND group to
make it much more narrow and specific.
e) (INFORMATION or DOCUMENTS or
DATA or LITERATURE)
and
(RETRIEVAL or RETRIEVING or
SEARCHING or SEARCH or SEARCHES)
and
(MEDICAL or MEDICINE or BIOMED-
ICAL)

In the examples, a) and b) are very broad questions
which would probably not be used to search a large
file. Example c¢) is more specific, but would prob-
ably miss some of the documents that would be
picked up by d). And e), which requires a match
from each of three groups, is even more precise.

Adjacent Word Logic

This is a powerful tool for searching the normal
text of abstracts. Two normally related words may
by their contextual positioning have entirely
changed meanings. To avoid such “false drops,”
we can search for them as adjacent words in a speci-
fied sequence.

a) INFORMATION RETRIEVAL
The above question would not match on RE-
TRIEVAL OF INFORMATION or any other
contextual arrangement. Within these adjacent
word groups, we can make allowances for spelling
and synonyms by means of OR logic.
b) (INFORMATION or LITERATURE) (RE-
TRIEVAL or SEARCHING or SEARCH)
This would match on INFORMATION RE-
TRIEVAL or LITERATURE SEARCHING, etc.
Also, we can look for related groups of adjacent
words by lumping them together as a single OR
family.
c¢) INFORMATION RETRIEVAL
or
SELECTIVE DISSEMINATION
We can again use the AND technique to make a
question more precise. One adjacent word group
can be ANDed with another, or a single word.

THE ENGINEER-SCIENTIST AND AN INFORMATION RETRIEVAL SYSTEM 209

d) INFORMATION (RETRIEVAL or
SEARCHING or SEARCH)
and
MEDICAL (LITERATURE or DOCU-
MENTS or DATA)
e) INFORMATION (RETRIEVAL or
SEARCHING or SEARCH)
and
MEDICINE

The adjacent word technique is particularly useful
when we are searching for specific phrases that we
know are likely to occur in pertinent documents. It
makes it easy to look for ‘“‘operations research,”
“numerical control,” “time sharing,” and the like.

The Match Criterion

This is simply a numerical designation of the
number of matches required for the computer to
register that a document answers a given question or
satisfies a user’s profile. Either a single word or a
complete logical group (OR, AND, or adjacent
word group) is considered as one logical unit. Rais-
ing this criterion beyond a match of one is a helpful
device when a question involves two distinctly- dif-
ferent subject areas that we are trying to find in
combination. For example, if we wanted docu-
ments about information retrieval and dissemina-
tion only when they related to medicine and medical
literature, we could raise the match criterion to two
and phrase the question as follows:

INFORMATION (RETRIEVAL or

SEARCHING or SEARCH) one

: or loglcgl

SELECTIVE DISSEMINATION unit
and

MEDICAL (LITERATURE one

or DOCUMENTS) lonion]

or ogica

MEDICINE or BIOMEDICAL unit
Both logical units would have to be found in the
document to satisfy the criterion of two.

NOT Logic (Negative)

If a user is interested in certain aspects of a given
subject area but wishes to eliminate or bypass por-
tions of it, we can instruct the computer to ignore
the documents matched if they contain specified
words or phrases. For example:

INFORMATION (RETRIEVAL or RETRIEV-

ING or SEARCH or SEARCHING)

not SDI ,

not SELECTIVE DISSEMINATION

Absolute YES Logic (Imperative)

If a user wants to see all abstracts that contain a
specified word or phrase or name, regardless of the
rest of the document’s content, this can be achieved
by appropriate coding. The specified imperative
will override all other logic, including the match
criterion and NOT logic. If the NOT example just
given also contained MEDICINE as an imperative,
an answer would be printed out even if the abstract
contained both MEDICINE and SDI. This tech-
nique is very useful for extremely specific words that
we know will identify documents pertinent to the
user’s interests.

The examples used to describe the search logic
were necessarily brief and simple. Figures 1 to 3
give a more complete illustration, They show how
the original information supplied by the customer is
converted into a working profile by the IR specialist,
and how the profile actually matches against current
input documents.

HOW DO WE EVALUATE
SYSTEM PERFORMANCE?

Measuring the results obtained from a system like
ITIRC is a challenge that increases as the system
grows, the data base broadens, and the number of
users expands. It cannot be done on a hit-or-miss
policy of voluntary feedback, although spontaneous
reports from users are very helpful. We have
worked out more formal techniques.

Each set of answers to a retrospective search re-
quest is sent out with a simple return card. The
customer is asked to check off the following:

—The following items were not specific
answers to my question.

—The following were not listed as answers
but I believe should have been.

"I am responsible for development and marketing of Information
Retrieval applications across all industry lines. This includes feasibility
studies of techniques of automatic indexing, abstracting; optical character
recognition, type composition and editing; language translation, syntactic
analysis; query languages; file organization, image storage 9nd retrieval;
transmission of images; copyright problems; dissemination of information, as

well as mechanization of library operations."

(User also primarily interested in external sources)

Figure 1. The original information supplied to the IR
specialist by a user on his data sheet.

210 PROCEEDINGS—SPRING JOINT

OCR ISR SDI MEDLARS

Nogatives
not 1BM CONFIDENTIAL

Adjocent Words

{INFORMATION or DOCUMENT or DATA or TEXT or IMAGE)

followed by (STORAGE or STORING or RETRIEVAL or RETRIEVING
or $ELECTION ar SELECTING or SEARCHING or
SEARCH or SEARCHES or SELECTED or ABSTRACTING
or DISSEMINATION or DISSEMINATING or QUERIES
or QUERY)

SELECTIVE DISSEMINATION

(AUTOMATIC or AUTO or AUTOMATED)

followed by (ABSTRACTS or ABSTRACTING or COMPOSING
ar COMPOSITION or INDEX or INDEXING or
ABSTRACT or ABSTRACTED or INDEXES or EDIT or
EDITING or EDITED or TRANSLATION or TRANSLATING
or CLASSIFYING or CLASSIFICATION)

TYPE fallowed by (COMPOSITION or EDITING)

(LANGUAGE or LANGUAGES)followed by (TRANSLATION or
TRANSLATING or TRANSLATED)

QUERY followad by (LANGUAGE or LANGUAGES)

COMPUTER CONFERENCE, 1966

(OPTICAL or CHARACTER or PATTERN) followed by (RECOG NITION
or RECOGNIZING or SENSING or READER or READERS)
(SYNTACTIC or SYNTACTICAL} followed by (ANALYSIS or
ANALYZING)
GRAPHIC DATA PROCESSING
(FILE or FILES) followed by (ORGANIZATION or ORGANIZING}
{IMAGE or IMAGES) followed by (TRANSMITTING or TRANSMISSION
or TRANSMITTAL) .
LIBRARY or LIBRARIES) followed by (MECHANIZING or MECHANIZATION
or AUTOMATION)

Match Criterion set at one -~ thus no imperatives necessary .

Figure 2. The completed profile created by the IR specialist from the information on the

original data sheet.

—The answer report proved satisfactory
to my question.
—Other comments.

If the response is negative or if the search seems to
be incomplete, the IR specialist concerned promptly
goes back to the requester, by phone or letter, and
offers further assistance. For example, he may run a
revised search, based on added data supplied by the
‘user.

Records are kept of the number of searches, the
processing time, the user’s reaction to the answers,
and whether any further action was required.

Since the Current Information Selection program
deals with over a thousand users on a recurring
basis, a mechanized feedback system was in order.
Accompanying each printed abstract sent to a
customer is a matching Port-A-Punch response
card. When he reviews the abstract, he simply
punches out the appropriate box and returns the
card. He has a choice of the following reactions to
a document:

1. Abstract of interest, document not
needed.

2. Send copy of document.

3. Abstract of interest, have seen docu-
ment before.

4. Abstract not relevant to my profile.

5. Comments—written below. (Change of
address, change to profile, etc.)

The Port-A-Punch cards, into which the program
has already punched user, document, and date

identification, come back to ITIRC for processing.
Document requests and comments are sorted out
for immediate action. Then periodically the ac-
cumulated cards are run against a statistical pro-
gram.

The statistical program supplies a complete
analysis of the returns, for each individual user and
for all users, with separate reports for each of the
major data bases:

1. Total notifications sent out.

2. Number and percentage of response
cards returned.

3. Number and percentage of interest
(with a breakdown into each of the
three responses listed above).

4. Number and percentage not relevant.

In addition, the program gives us several special
listings:
5. Users who received no notifications in
the current period.
6. Any users who failed to return their re-
sponse cards within a specified period.
7. A list of users whose ““not relevant” re-
sponse exceeded a predetermined per-
centage.

With the help of these statistics, the IR specialist
can quickly identify any customers who do not seem
to be getting satisfactory results from the system.
He can then review the profiles and if necessary
make personal contact with the users to revise or

THE ENGINEER-SCIENTIST AND AN INFORMATION RETRIEVAL SYSTEM 211

AD-608747, LINGUISTIC TRANSFORMATIONAL ANALYS1S. OCTOBER 1964
pbC

THORNF, JP LYONSs J
INDIANA UNIVFRSITY

AD-608747 RADC-TDR=-64-200
CONTR AF-30(602)-2951

THE CONTRACT WAS CONCERNED WITH THE FEASIBILITY AND UTILITY OF
A KERNELIZATION PROCEDURE FOR PURPOSES OF {ITRFORMATION RETRIEVAD. THE
LEADING SECTION DISCUSSES, IN GENERAL» THE PROBLEMS INVOLVED IN THE
KERNELIZATION OF COMPLEX.- ENGLISH SENTENCES. THE REMAINDER 1S IN THE
FORM OF APPENDICES. APPENDIX I CONTAINS A DETAILED REPORT OF THE
KERNEL IZATION PROCEDURE, APPENDIX 11 REPORTS ON A SERIES OF
EXPERIMENTS, TO DETERMINE TO WHAT EXTENT INFORMATION WAS PRESERVED IN
KERNELIZED VERSIONS OF SENTENCES. APPENDIX IFI REPORTS ON A FREQUENCY
COUNT OF THE TRANSFORMATIONS EXHIBITED BY A STRETCH OF RUNNING TEXT.
FINALLY» APPENDIX IV CONTAINS A LIST OF TRANSFORMATIONAL RULES WHICH
HAVE ACTUALLY BEEN WRITTENs, WITH REFERENCES TO SIGNIFICANT PUBLISHED
(AND SOME UNPUBLISHED) MATERIALs 119P.

23-MISCELLANECUS LANGUAGE

NFORMA RETRTEVALY SYNTAX

DOCUMENTATION
0
GRAMMARS

65 00403-MF0O01

Figure 3a. A typical document match against the profile. This
document matched on INFORMATION RE-
TRIEVAL. Note that there is also a relationship
between SYNTACTIC ANALYSIS in the profile
and LINGUISTIC ANALYSIS in the document.

AD-608404+ DESCRIPTORS AND COMPUTER CODES USED IN NAVAL ORDNANCE
LABORATORY LIBRARY RETRIEVAL PROGRAMe DECEMBER 1964+
ndC

LIBERMAN, E UesSe NAVAL ORDNANCE LABORATORY

AD-608404 NOLTR-64-20

THE DESCRIPTOR AND COMPUTER CODES ARE LISTED SEPARATELY BY
SUBJECTs EQUIPMENT DESIGNATIONS (INCLUDING ACRONYMS» TRADE NAMES,
CODE NAMESs ETCs) AND CORPORATE AUTHORSs PERSONAL NAMES»s AND
GEOGRAPHIC PLACE NAMES. THESE DESCRIPTORS HAVE BEEN DEVELOPED OVER A
FOUR YEAR PERIODs THEY PROVIDE A SUBJECT APPROACH TO TECHNICAL
REPORTS LITERATURE FOR USE WITH IBM 7090 COMPUTER. THESE DESCRIPTORS
CONFORM TO THE AREAS OF LABORATORY INTEREST IN RESEARCHs DEVELOPMENT,
TEST» AND EVALUATION IN ORDNANCE AND RELATED FIELDS. 228Pe

23-MISCELLANEOUS DESCRIPTORS CODES
INFORMAT ION RETRIEVAL] LIBRARIES

658 00412-MFO01

Figure 3b. A typical document match against the profile. The.

match here also occurred on INFORMATION
RETRIEVAL. In addition there is a close con-
nection between LIBRARY AUTOMATION in
the profile and LIBRARY RETRIEVAL in the
document.

AD-608574. 15 [AUTOMATIC CLASSTFICATION]A REASONABLE APPLICATION OF
STATISTICAL ANALYSTS OF TEXT. AUGUST 1964,
noC

DOYLE, B SYSTEM DEVELOPMENT CORPe

AD-608874

THE CRUCIAL QUESTION OF THE QUALITY OF AUTOMATIC CLASSIFICATION
IS TREATED AT CONSIDERABLE LENGTH, AND EMPIRICAL DATA ARE [NTRODUCED
TO SUPPORT THE HYPOTHESIS THAT CLASSIFICATION QUALITY INPROVES AS
MORE INFORMATION ABOUT EACH DOCUMENT IS USED FOR INPUT TO THE
CLASSIFICATION PROGRAM. SIX NON JUDGMENTAL CRITERIA ARE USED IN
TESTING THE HYPOTHESIS FOR 100 KEYWORD LISTS (EACH LIST REPRESENTING
A DOCUMENT?) FOR A SERIES OF COMPUTER RUNS IN WHICH THE NUMBER OF
WORDS PER DOCUMENT 1S INCREASED PROGRESSIVELY FROM 12 TO 36. FOUR OF
THE SIX CRITERIA INDICATE THE HYPOTHESIS HOLDSs AND TWO POINT TO NO
EFFECTe PREVIOUS WORK OF THIS KIND HAS BEEN CONFINED TO THE RANGE OF
ONE THROUGH EIGHT WORDS PER DOCUMENTe FINALLYs THE FUTURE OF
AUTOMATIC CLASSIFICATION AND SOME OF THE PRACTICAL PROBLEMS TO BE
FACED ARE OUTLINEDe 34P,

23-MISCELLANEOUS
CLASSTFYING INDEXTNG FILE DOCUMENTATION
COMPUTERS

658 00420-MF001

Figure 3c. A typical document match against the profile. The
match is on both INFORMATION RETRIEVAL
and AUTOMATIC CLASSIFICATION.

update their profiles. Thereafter he can monitor
program results to make sure that the revisions are
producing the desired effect.

The overall statistics offer a good yardstick for
measuring system performance. Such figures as
number of notifications sent out, percentage re-
turned, current relevance percentage, and quantity
of documents requested are all pertinent to evaluat-
ing how well the system is operating.

HOW HAS THE SYSTEM PERFORMED
TO DATE?

Growth

1. The data base described now includes abstracts
of 125,000 documents, with current additions at the
rate of approximately 10,000 per year.

2. The number of IBM users of the system is in-
creasing steadily. From the pilot group of 500
professionals participating in Current Information
Selection early in 1965, we have expanded to 1700
users. The rate of retrospective searching activity
is now up to about 300 searches per month at York-
town and 100 searches at La Gaude, France, and is
increasing.

3. The satellite operation in La Gaude, France, is
now offering full service to World Trade Corpora-
tion personnel in Europe, supplying both retro-
spective searching and Current Information Selec-
tion to more than 400 customers all over Europe.

User Response Statistics

After a statistical analysis of over 100,000 CIS
response cards, we found that the overall proportion
of relevance was 79.1% of the returns. This figure
was 77%, in the first 6 months, and increased to over
809 in the third quarter. Much of the improvement
was due to the rewriting or revising of the initial
profiles.

Operating Results

1. As expected, the first several months of actual
operating experience showed us numerous avenues
of improvement, since this was the first effort to
correlate user profiles with a natural text searching
program. The group had prior experience in writing
retrospective search questions. However, we found
a noticeable difference in practical strategy between
searching a large data base with a few questions and
searching a relatively small data base with over a
thousand questions (profiles). When we set up the
European satellite in September with this experience
in back of us, we found that most of the earlier

212 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

start-up problems virtually disappeared. The initial
statistical results from Europe were very similar to
our current domestic figures.

2. Overall, between 12 and 139 of the CIS re-
turns were requests for copies of the complete docu-
ments. A much higher percentage of requests (15
to 20%) came from the Data Processing Division
and World Trade personnel who were scattered in
small locations without direct IBM library facilities.
For our largest single group of users in a major
IBM complex with library facilities, this figure
dropped to about 10%;.

3. Only about 5% of the total responses were
“Relevant, but have already seen the document.”
This can be viewed as an encouraging comment on
the timeliness of the announcements, as well as the
nonavailability of some documents from any other
source.

4. The highest percentage of relevance was re-
turned for the data base containing IBM internal
documents (technical reports and the like), which
was to be expected.

The Importance of Personal Contacts

Even though we are talking about a highly
mechanized dissemination system with 1500 custo-
mers, we have found that the ‘“‘personal touch” is
extremely important. With a small staff serving so
many, it is obviously not possible to talk directly to
every user every month. However, the personal
conversations and letters that we do have time for
have paid dividends in terms of customer satisfac-
tion and participation.

The quarterly statistical run selects and prints out
a ‘“‘trouble-shooting” list. On it are all the users
who during the quarter (a) had a high percentage of
irrelevant notifications, (b) received none at all, or
(c) returned none of their response cards. With this
list, the information retrieval specialists look at the
operating profiles and often are able to adjust them.
If not, they go directly to the users, by telephone
if possible. The ensuing discussions usually pin-
point the trouble—a profile needs changing, a user

did not realize the function of the response cards,
etc.

On a daily basis, all response cards are screened
and thcse with “Comments’ punched are sorted out
for immediate handling. Some of these request
profile changes, or ask questions about the abstracts
they have received. Again, the information retrieval
specialist checks out the current profile and goes
back to the user to make necessary revisions.

The net result of this personal contact is to im-
prove the caliber of the profiles, particularly the
problem cases. Each call also has the effect of assur-
ing the user that he is not merely a number in an
impersonal computer system. He knows that he can
get help to change his profile as needed, that his
responses to the system are being monitored by a
group of specialists, and that if he has complaints
or suggestions they will be acted upon.

CONCLUSIONS

What is ITIRC accomplishing now, and what are
the future possibilities? First, it is in full operation,
serving many hundreds of users throughout the
Corporation. Second, the data base is a broad one,
now covering the most critical areas and capable of
unlimited future expansion. Third, a single manipu-
lation of input data produces output tailored for a
variety of needs—dissemination, announcement,
searching, and microfilm. Fourth, the normal text-
searching logic that we have developed is an effec-
tive technique today—and will be readily adaptable
to future developments that can put the entire text
of a document into a computer automatically.

Up to now, our efforts have been concentrated on
operating a practical system to meet the immediate
needs of the IBM engineer—scientist. However, we
have not lost sight of the future. Both within and
outside IBM, the field of information retrieval will
continue to require constant study, research, and
development. For these activities, one of the best
environments may well be within the framework of
a live operating system.

EFFECTS OF QUANTIZATION NOISE IN DIGITAL FILTERS

Bernard Gold and Charles M. Rader
Lincoln Laboratory,* Massachusetts Institute of Technology
Lexington, Massachusetts

GENERAL EXPRESSIONS FOR
QUANTIZATION NOISE

If a discrete time linear system, hereafter called a
digital filter, is programmed on a digital computer
or realized with digital elements, computational
errors due to finite word length are unavoidable.
These errors may be subdivided into three classes,
namely, the error caused by discretization of the
system parameters, the error caused by analog to
digital conversion of the input analog signal, and
the error caused by roundoff of the results which are
needed in further computations. The first type of
error results in a fixed deviation in system param-
eters and is akin to a slightly wrong value of (say)
an inductance in an analog filter. We shall not treat
this problem here; it has been treated in some detail
by Kaiser.! The other two sources of error are more
complicated but if reasonable simplifying assump-
tions are made they can be treated by the techniques
of linear system noise theory.? It is our aim to set up
a model of a digital filter which includes these two
latter sources of error and, through analysis of the
model, to relate the desired system performance to
the required length of computer registers.

Both analog to digital conversion and roundoff
may be considered as noise introducing processes,
very similar in nature. In each case a quantity
known to great precision is expressed with consider-

*Qperated with support from the U.S. Air Force.

213

ably less precision. If the digitized or rounded
quantity is allowed to occupy the nearest of a large
number of levels whose smallest separation is E,,
then, provided that the original quantity is large
compared to Eg and is reasonably well behaved, the
effect of the quantization or rounding may be
treated as additive random noise. Bennett® has
shown that such additive noise is nearly white, with
mean squared value of E}/12. Furthermore the
noise is reasonably assumed to be independent from
sample to sample, and roundoff noises occurring
due to different multiplications should be inde-
pendent. It is possible to show pathological ex-
amples which disprove each of these assumptions,
but they are reasonable for the great majority of
cases. Ultimately our results must rest on experi-
mental verification, of course.

Since the noise of A-D conversion is assumed
independent of the noise created by roundoff, we
can compute the output of any filter due to either
excitation alone, or due to the signal alone, and
combine them to get the true filter output (of course
the noise terms are known only statistically); there-
fore, we will begin by finding an expression for the
mean squared output of an arbitrary filter excited
by a single noise source. Let the filter function be
H(z2); it is understood that H(z) is the transfer func-
tion between the output of the filter and the node
where noise is injected; H(z) may thus be different
from the transfer function between the filter’s
normal input and output. Let us thus consider the

214 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

f(nT)
EE—

e(nT)

—p H(2)

Figure 1. Random noise applied to a filter.

situation of Fig. 1, where a given noise sequence
e(nT) is applied to H(z), resulting in an output
noise sequence f(nT).

We can conveniently examine this model using
the convolution sum. Thus,

f(nT) = 2 h(mT)e(nT — mT) (1)
m=0

where h(mT) is the inverse z transform of H(z).
The input noise e(nT) is presumed to be zero for
m < 0 and the system is initially at rest. Squaring
Eq. (1) yields

n

£y =2 1}:’0 h(mT)h(IT)

m=0
x e(nT — mT)e(nT — IT))
Now, if e(nT) is a random variable with zero
mean and variance o2, and recalling our assumption

that e(nT) is independent from sample to sample,
the statistical mean of Eq. (2) reduces to

ELf0T)] = oF 2, h*(mT) ©)

For a system for which the right side of (3) con-
verges, the steady state mean squared value of f(nT)
can be obtained by letting n approach infinity. For
this case, a formula which is usually more con-
venient can be obtained in terms of the system func-
tion H(z). Noting the definition.

H(z) = Z_O h(mT)z =" @)

of the z transform, we can form the product H(z)
H (%)z" and, by performing a closed contour inte-
gration in the z plane witl}in the region of conver-
gence of both H(z) and Hkl

) arrive at the identity

- 1 1\ _
thz(mr) - Ew—jggﬂ(z)y(?)z idz (5)

Either the right- or left-hand side of (5) may be
used to evaluate the steady state mean squared value
of f(nT).

EXAMPLE—FIRST ORDER SYSTEM

As an example, consider the first order system of
Fig. 2. Let the analog-digital conversion noise
e (nT) have variance ¢} and the roundoff noise
e2(nT) have variance ¢3. The system function H(z)
of Fig. 2 is given by 1/(1 — Kz™') and h(mT) =
K™. The output y(nT) can be expressed as the sum
of a signal term yo(nT), caused by x(nT), and a
noise term f(nT), whose mean squared value can be
written, from (3), as

E[f4(nT)] = (¢% + o3) Z% (K™? (6)

from which the steady state value can be instantly
written as

o2 = lim E(f*(nT)) = L+ 9D

T Q)

The implications of Eq. (7) are tricky. The mean
squared value of the noise clearly increases as K ap-
proaches unity. The maximum gain of the filter also
increases (the gain of the system of Fig. 2 at dc is
(1/(1 — K)). For this filter with low frequency
input the signal power to noise power ratio (S%/N?)
is proportional to (1 + K)/(1 — K) which ap-
proaches infinity as the pole of the filter approaches
the unit circle. This is a general result. However,
with a finite word length, the input signal must be
kept small enough that it does not cause overflow

e, (nT) ez(nT)
y(nT)
+ ———
x(nT)
K

Figure 2. Noise mode for first order system.

EFFECTS OF QUANTIZATION NOISE IN DIGITAL FILTERS 215

in the computation. Thus, the obtainable signal-
to-noise ratio decreases as K approaches unity.
Clearly, each case deserves its own considerations,
as the signal-to-noise ratio in the filter depends very
much on the actual conditions of the use of the
filter.

Finally, we comment that the cases K = 0, K =
1, in Eq. (7) are unique because ¢, becomes zero
since no multiplications are performed.

EFFECT OF DIFFERENT REALIZATIONS
OF THE SAME FILTER

There are a variety of ways of programming a
second order digital filter (or in general a filter with
more than two singularities). Suppose a particular
system function H (z) is desired. If quantization is
ignored, then only the relative speed and memory
requirements of the different methods are of interest
in deciding which way to use. However, Kaiser’s
work shows that the truncation of system constants
affects different realizations differently, and may in
fact lead to instability in some realizations. The
noise effects described here also yield different re-
sults for different programming configurations. The
point is illustrated through the examination of the
two systems of Fig. 3. Fig. 3a represents a noisy
programmed realization of the difference equation:

y(nT) = 2rcos bTy(nT — T) — r’y(nT — 2T)
+ x(nT) — rcos bTx(nT — T) (8)
and Fig. 3b represents the pair of simultaneous dif-
ference equations:
w(nT) = x(nT) + 2rcos bT w(nT — T)
— r2w(nT - 2T) 9)
y(nT) = w(nT) — rcosbT w(nT — T)
Both systems have the transfer function

1 — rcosbTz™!
1 — 2rcosbTz ™! + r?z2

H(z) =

By examination of the poles and zeros of H(z) in
Fig. 4, we see that our network behaves as a reson-
ator tuned to the radian center frequency b for the
sampling interval T.

In Figs. 3a and 3b, X (nT) represents the noise-
less input to the filter, e, (nT) represents the noise
due to A-D conversion of the input, and e,(nT)
represents the noise added by rounding. The
roundoff noise can be caused either by a single
roundoff after all products are summed, or by the
sum of the roundoff error due to each of the multi-

e|(nT) -rcos bT

y(nT)

2r cos bT
-r

<Tle
—J]
Figure 3a. Noise model for second order system—direct
realization.
e (nT)
|
e, (nT)
x(nT) w(nT)
{ + l > + y(nT)
2r cos bT T
=rcosbT
X

Figure 3b. Noise model for second order system—canonical
realization.

plications. It is simpler to program the latter, but
more noise is created. Note that, while in the
realization of Fig. 3b the noise terms e,(n7T) and
€,(nT) are injected into the filter at the same place
as the input X (nT) and thus see the same transfer

. function H(z), in Fig. 3a the noise term e,(nT) is

injected in a different part of the filter and sees a
different transfer function:

H\(2) = :

1 — 2rcos bTz™' + r?z?

(10)

Thus we can expect that the noise due to e,(nT)

will be different for the filters of Figs. 3a and 3b.
Considering first the realization of Fig. 3a, we

can, after some manipulation, obtain the result,

02 = otu,(r,bT) + o} u,(r,bT) 8

216 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

z-PLANE

rcos bT

Figure 4. Pole zero representation of Egs. (8) or (9).

where o2 and ¢3 are the variances of ¢,(nT) and

e,(nT), and with

_1+r2x 1
T 1 =27 41 - 2rfcos2bT

U

and

b [__risin?bT(1 + r?)]
- r‘ + 1 — 2rcos 2bT
More insight can be obtained into these results
by letting r = 1 — ¢ and allowing ¢ to be quite
small, of the order of 0.05 or less. Then (11) re-
duces to the simple form

0_2 _ 1_ 0_2 + U% (12)
" 4e | ' sin?bT

Carrying through a similar computation for the
realization of Fig. 3b yields

on = (o1 + o)y (r.bT) (13)
which can also be reduced, for small values of ¢, to
o2 = o [0} + 03] (14)

4e

Several important facts can be deduced from Eqgs.
(12) and (14). First, the so-called “‘straightforward”
realization of Fig. 3a leads to increased noise for
low resonance frequencies whereas the ‘“‘canonic”
realization of Fig. 3b does not. Physically, this re-
sult can be explained by noting that, in the straight-
forward realization, the noise ‘“‘passes through” only

the poles of the filter, so that at low frequencies,
the complex conjugate poles interact to form a low
pass filter. In the “canonic” realization the noise
is also filtered by a zero which is close to dc and thus
the output noise is of a band-pass nature and less
total energy is able to pass through the filter.
Second, we note that Egs. (13) and (14) have the
same functional dependence on pole positions,
namely, that the mean squared output noise is in-
versely proportional to the distance from the pole
to the unit circle and therefore directly proportional
to the gain of the filter. »

From these results one can, for example, estimate
the word length needed for a simulation requiring
many filters. One such system is a vocoder synthe-
sizer shown in Fig. 5. Typically, a vocoder syn-

SPECTRAL
COEFFICIENTS

PITCH NOISE
PULSES

——
SYNTHESIZED

FROM
DEMULTIPLEX SPEECH

EXCITATION PROCESSING :CONVENTIOHAL SYNTHESIS

VOCODER SYNTHESIZER

Figure 5. Vocoder synthesizer.

thesizer will contain about 100 resonators. Assum-
ing that the noise from each resonator is additive to
the noise from all other resonators and picking an
effective average e of 0.01, we arrive at a total noise
output of about 7 or 8 bits. It is clear that word
lengths of at least 20 bits are needed to avoid audi-
ble noise outputs superimposed on the vocoder
generated synthetic speech..

EXPERIMENTAL VERIFICATION FOR
FIRST AND SECOND ORDER FILTERS

The results of the preceding computations were
experimentally verified by programming various
realizations of first and second order difference
equations on the TX-2 digital computer. To per-
form a measurement of output noise for a given
digital filter, the computations were performed with
rounded arithmetic using a 36-bit word, and simul-
taneously, using rounded arithmetic with a shorter
word and exactly the same input. The outputs of

EFFECTS OF QUANTIZATION NOISE IN DIGITAL FILTERS 217

the two filters were subtracted, squared, integrated
and divided by the number of iterations of the
equation. The inputs to the filters were random
noise or sampled sinusoids. The filters were pro-
grammed using the PATSI* compiler, and the var-
ious waveforms of interést, including the mean
squared output noise, were displayed during the
computation. The measurement was taken when
the mean squared output noise seemed to reach a
steady value, or in the case of the very high gain
filters, when the patience of the observer was ex-
hausted. As we shall see below, the necessary ob-
servation time for confidence in such a measurement
is highly dependent on the gain of the filter.

Figure 6 shows the predicted and measured out-
put noises for some one-pole filters, as Eq. (7), with
o2 = 0. The horizontal axis is the pole position and
the vertical axis is the mean squared output noise
normalized to ¢%. Table 1 gives the predicted versus
measured output noises for several two-pole filters
(no real zeros) with various pole positions, along
with the measurement error. All of the results seem
to confirm the theory.

It is advisable to determine, on a statistical basis,
the measurement time required before the variance
of such statistical observations is sufficiently small.
Thus, consider a random variable g defined as

n

g =— > finl) (15)
n 0

m=

where f(nT) is an output noise signal as indicated in
Fig. 1 due to a set of mutually independent input
noise samples e(nT).

Assuming f(nT) to have zero mean, we can im-
mediately perceive that the mean value of the meas-
urement ¢ is given by

Elq] = o} (16)
10
°" x = 29 BITS, RANDOM
8- NOISE INPUT
7. © = 28 BITS, RANDOM
NOISE INPUT
6 o =29 BITS, SINE
WAVE INPUT
5._
4b—
[77]
=
a
0 3
@
2.—
| | | |

174 172 3/4 1
POLE POSITION

Figure 6. Predicted vs measured quantization noise for first
order system.

Table 1. Two-Pole Filter Noise Measurement

Mean Squared Output Noise Error Pole
Predicted Measured % Positions
204 203 0.49%, S+ .5
289 297 2.77 S+ .707)
508 520 2.36 S =778
1011 1058 4.65 5 = .56)
2824 2880 1.98 875 + .3325
5553 5933 6.40 90625 + .235j
5553 5503 0.90 90625 + .235j
11014 11450 3.96 921875 + .169j
11014 11079 0.59 921875 + .169j
3306 ‘ 3740 13.12 T5 & .654)
1.60 5 = .654j

3306 3359

218 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

where o7is the variance of the (stationary) random
variable f(nT). Now assuming that f(nT) is a set of
stationary Gaussian variables with correlation co-
efficient p(#T), then it can be shown that®

E[f2mT)f*(IT)] = o} + 2R*(mT — IT) (17)

where R? is defined as the covariance between
f(mT)and f(UT). From Egs. (16) and (17), we ar-
rive at the expression for the variance of g,

o2 = E[q?] - E*[q]

_ 712_2 Z”: z":m(mT- ITYy (18)

m=04£=0__

I

This can be evaluated for first order system of
Fig. 2. For that case R(mT — IT) = K3™-1 and,
for large n, Eq. (18) reduces to

oo Ao
7 n(l - K?)?

where o2 is the variance of the input e(nT) as in Fig.
1. Of major interest in determining the time needed
to perform the measurement is the ratio of the
standard deviation to the mean of ¢g. Using an argu-
ment similar to the one that leads to Eq. (7) we can
for the first order system relate o2 to o7 by the for-
mula ¢} = ¢2/(1 — K?), which combined with Egs.
(19) and (16) yields

Elgl _ (1 - K)vn

g, 2

(19)

(20)

Thus, for example, if K* = 0.99, we need 10%
terms in the measurement of Eq. (15) in order to
reduce the standard deviation of the measurement
to 29 of the mean of the measurement. Assuming
that an iteration could be done in 100 usec, 10*
seconds would be required for such accuracy.

NOISE CONSIDERATIONS IN
PROGRAMMING ITERATIVE SINE
WAVE GENERATORS

One must be especially attentive to noise con-
siderations in the programming of iterative sine
wave generators. Various efficient routines exist to
compute the sine or cosine of a random argument
rapidly, but for instances where the argument is
nT for successive integers n, the most efficient way
to generate sinusoidal functions is by the use of
iterative difference equations. These are, of course,
digital filters with poles directly on the unit circle,
inputs equal to zero, and initial conditions which

specify the magnitude and phase of the output.
Since the poles of the filter are directly on the unit
circle, the noise, according to Eq. (12) or (14) be-
comes infinite. This is indeed the situation.* The
saving feature is the gradual increase of the noise
term, so that if one runs the program for a limited
time, or periodically resets the initial conditions,
catastrophe can be avoided. To study this problem
theoretically, consider the simultaneous difference
equations

y(nT + T) = cos bT y (nT)
+ sin bT x(nT)

x(nT + T) = — sinbT y(nT)
+ cos bTx(nT)/

with initial conditions x(0) = 1, y(0) = 0. The
““circuit” is shown in Fig. 7.

02y

—» y(nT+T)

» x (nT+T)

Figure 7. Iterative sine and cosine generator.

The z transform X (z) of one output x(nT) can be
written

X(z) =

22 — zcosbT + zE,(z) — cos:bTE,(z) — sinbTE,(z)
22 —2zcos bT + 1

(22)

We see that the first two terms of the numerator
correspond to the signal and the remaining terms to
the noise, E;(z) and E,(z) being respectively the z

*Various nonlinearities can be introduced to keep the noise
finite. This is adequate for many applications since the selectivity
of the filter can be relied on to keep the output spectrally pure
even if the phase of the output is unpredictable.

EFFECTS OF QUANTIZATION NOISE IN DIGITAL FILTERS 219

transforms of the added noises e,(nT) and e,(nT),
both introduced by roundoff error.

Defining:
- bT
_ 7l Z — COs
hi(nT) {z2 — 2zcos bT + 1 23)
" —sin bT
h(nT) = Z {22 — 2zcos bT + 1}

where Z ~! is the inverse z transform, we can from
Eq. (3) write the total noise as

E(f2(nT)) =0} D h3(nT)
m=0 4
+ o D h3(nT)

m=0

Solving Eq. (23) explicitly and letting ¢} = 03 =
2

f—zg we arrive at the result

E(f*(nT)) = 115_28{20 cos(nbT — bT)

E}

=LPNe)
12'1(5)

+ sin?(nbT — bT)} =
Notice that is was impossible to use Eq. (5), since
the result obtained would be infinite and thus no
time-dependent result could be formulated. Equa-
tion (25) tells us that the noise increases linearly
with the number of iterations of the difference equa-
tions. For example, after 10° iterations, the noise
is about 10 bits. Assuming that one iteration is
performed in 100 usec, several minutes could cer-
tainly pass, even in an 18-bit machine, before the
generated sine and cosine waves begin to look noisy.
Another program for generating a cosine wave is
expressed by the iteration

y(nT + 2T) = 2¢cos bT y(nT + T) — y(nT) (26)

with initial conditions y(0) = 1, y(T) = cosbT.
Noise analysis of Eq. (26) leads to a functional de-
pendence of the mean squared noise, of the form
—sin’: 5T thus appreciably greater quantities of noise
are generated at low frequencies, and fewer itera-
tions are available before the program becomes
unusable.

The comparison of Egs. (21) and (26) was per-
formed qualitatively on TX-2 by programming
identical sine wave generators using both methods.
For all frequencies, the method of Eq. (21) pro-
duced sinusoids of more nearly constant amplitude
than the method of Eq. (26), but this difference in
behavior was negligible for frequencies greater than
one fourth of the sampling frequency, and, using
36-bit arithmetic, the distortions were almost unob-
servable for these frequencies. For low frequencies
(of the order of one thousandth of the sampling
rate) the method of Eq. (26) was completely unus-
able, with the generated sine wave being terribly
distorted in the first period.

REFERENCES

1. J. F. Kaiser, “Some Practical Considerations
in the Realization of Linear Digital Filter,” 3rd
Allerton Conference (Oct. 20-22, 1965).

2. J. B. Knowles and R. Edwards, “Effect of a
Finite-Word-Length Computer in a Sampled-Data
Feedback System,” Proc. IEEE, vol. 112, no. 6,
(June 1965).

3. W. R. Bennett, “Spectra of Quantized Sig-
nals,” Bell System Technical Journal, vol. 27, pp.
446-472 (July 1948),

4. C. M. Rader, “Speech Compression Simula-
tion Compiler,” J. Acoust. Soc. Am. (A), June 1965.

5. J. L. Lawson and G. E. Uhlenbeck, Threshold

‘Signals, MIT Rad. Lab. Series 24, McGraw-Hill,

New York, 1950.

A REAL-TIME COMPUTING SYSTEM FOR LASA

H. W. Briscoe and P. L. Fleck

Lincoln Laboratory,* Massachusetts Institute of Technology
Lexington, Massachusetts

PHYSICAL DESCRIPTION OF LASA

The Large Aperture Seismic Array (LASA) con-
sists of 525 vertical motion seismometers installed in
an area of approximately 10,000 square miles in
eastern Montana. Each seismometer is located at
the bottom of a 200-foot borehole to reduce noise
generated by wind, traffic, and livestock. The seis-
mometers are grouped in clusters (subarrays) of 25
seismometers each, and the 21 subarrays are ar-
ranged in a series of successively inscribed squares
(see Fig. 1) to produce a logarithmic density taper.

The data from each subarray of 25 seismometers
are collected in a buried vault at the center of the
cluster where they are low-pass filtered to avoid
aliasing and are digitized at 20 samples per second.
The frequency passband of the seismometers, well-
head amplifiers, and low-pass filters is approxi-
mately 0.5 to 5 cycles pér second. Figure 2 shows
the inside of one of the buried vaults including the
rack of equipment for filtering, multiplexing, and
digitizing the signals and a second rack containing
digital phone-line modulating equipment used to
transmit the digital data over open wire and micro-
wave links to the LASA Data Center (LDC) in
Billings, Montana.

The Data Center, shown in Fig. 3, contains gen-
eral purpose and special purpose digital processing
equipment which is used for recording and process-

*QOperated with the support of the U.S. Advanced Research
Projects Agency.

221

ing data from the entire array. The data is recorded
on standard l4-inch 7-channel digital tape in a
format that is compatible with most commercially
available processing equipment. The data rate is
such that a full 2500-foot reel of tape is written every
6 minutes. In order to reduce the array output to
a manageable level, it is imperative that some on-
line processing be done. Since significant seismic
events appear at the array as discreet bursts of
energy lasting from one minute to several hours
spread throughout the day, this on-line data reduc-
tion for LASA consists of selecting those sections of
recordings which contain data from interesting
seismic locations. Thus, the on-line processing, part
of which takes place in the same general-purpose
processor that is used for formatting and recording
the digital tapes, consists of 1) predetection process-
ing to improve the signal-to-noise ratio for detec-
tion, 2) detection of teleseismic events, 3) source
location of detected events, and 4) testing various
remote components in the system. Events occurring
within preselected regions are then further processed
off-line either on-site or at remote processing cen-
ters. In this paper, we will be primarily concerned
with the first two steps in the on-line processing;
predetection processing and detection.

PREDETECTION PROCESSING TECHNIQUES

Predetection processing uses the LASA as a wide-
band phased array antenna to improve the signal-

222 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 1.

to-noise ratio for detection of small teleseismic
events. In a conventional phased array, this is
accomplished by appropriately delaying (phasing)
and adding the signals from each element in the
array. The phasing delay is adjusted so that the
signals add coherently and the noises add inco-
herently. Delaying the data from the elements of
the array is equivalent to pointing a conventional
antenna in a certain geometric difection in space.
Since seismic noise tends to come from discrete
sources with discrete velocities, the processing can
be further improved; strong noise sources can be
suppressed by selecting gains or amplitude weights
(the antenna “‘taper”), which place nulls of the an-
tenna sidelobe pattern in the proper direction. Thus
the noise does not add with random phase but with
a controlled anti-phase. If the noise is allowed to

add with random phase, the antenna gain in signal-
to-noise ratio should be approximately the square
root of the number of elements, but this gain may
be much greater if the strong sources of organized
noise can be specifically rejected.

Since the LASA is designed to receive wideband
signal energy (the passband includes more than an
octave) and since many seismic noise sources emit
energy over much narrower bands in frequency,
additional signal-to-noise gain can be obtained by
optimum frequency filtering. In fact, one of the
most powerful techniques for combining data from
the elements of a seismic array involves employing
a different set of amplitude weights (a different
taper) at each of several frequencies in order to opti-
mize the use of sidelobe nulls at each frequency.
Varying the amplitude gain on a single element as

A REAL-TIME COMPUTING SYSTEM FOR LASA 223

Figure 2.

a function of frequency is the same as filtering the
data from that element. It has been shown that the
optimum design for combining data from the ele-
ments of an array of seismometers consists of apply-
ing a different filter and time delay to data from

each element and-adding the resulting data from all
the elements. Most other linear processing tech-
niques are degenerate forms of this “filter, delay
and sum” processing. For the detection of seismic
signals it is often advantageous to further filter the
data through a narrow bandpass filter. On-line
processing for the LASA involves the use of both
convolution and recursive digital filtering and will
be described in more detail in a later section of this

paper.
ON-LINE PROCESSING FOR THE LASA

We now turn our attention to the specific imple-
mentation of the processing concepts described
above. The functions to be performed by the on-
line processing facility are:

Read data into memory.

Write data onto magnetic tape.
Form 10 beams.

Make eight event detectors.
Locate source of events.

Test components in the system.
Output data for monitoring.

NoUnRA L=

First, all the data is read into core memory of the
general-purpose computer. That is, every sampling

‘interval (50 msec), each seismometer waveform is

digitized, multiplexed, and transmitted to the core
memory.

Second, all this data is written onto magnetic
tape. Each record on tape contains two samples
from each sensor (100 msec of data).

Third, approximately 10 processed outputs are

Figure 3.

224 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

formed. Five of these are formed using the delay-
and-sum method to steer the entire array to monitor
five predetermined locations. The other five are
formed using the more powerful filter-and-sum
method on up to 25 channels to produce five over-
lapping beams to monitor the entire region of the
world from approximately 20° distance to 100° dis-
tance. All these beams have a pr~detection signal-
to-noise ratio improvement wh._h allows detection
of weaker events in the areas being monitored.

Fourth, several independent event detectors are
connected to selected channels from widely sepa-
rated sensors or beam outputs. The event detectors
output the GMT time of any event occurring in
their input waveforms.

Fifth, the outputs from event detectors connected
to widely separated sensors are put into a source
location program which determines where the event
originated. On the basis of the location of detected
events, a decision to save or reuse the tapes is made.

Sixth, the general-purpose computer periodically
tests each component in the system and types out

its status so that maintenance teams can be dis-
patched to repair faults as they occur.

Seventh, the computer provides several on-line
analog outputs for monitoring the system perform-
ance.

Figure 4 shows the equipment configuration used
to accomplish these tasks on-line. The two general-
purpose computers are identical machines. Each
machine has a 16,384 eighteen-bit word memory
with a 1.75 microsecond cycle time. The tape units
shared by the two machines are standard seven-
track IBM compatible drives operating at 75 inches
per second with character density of 800 characters
per inch. The special-purpose processor (usually
referred to as the “Multi-Channel Filter” or MCF)
is designed to perform filter-and-sum processing
with 25 input channels and up to five processed out-
put channels. The data displays indicated in the
diagram provide the on-line monitoring of the sys-
tem.

Now we shall discuss in more detail how these
points are accomplished. The real-time program-

EXECUTIVE PROGRAM
ON-LINE
PDP-7 No. 1| FAULT ! EVENT EVENT
MONITORING F%ique P??%L?JATM DETECTION RPEFS(?GRRDA':AG SELECTION |
PROGRAM | ppocram PROGRAM PROGRAM
A 4
MAGNETIC TAPE
DATA DISPLAY UNITS SHARED BY
_/é UNITS { 2 PDP-7 COMPUTERS
4 . ,
PHONE LINE , ‘
INTERFACE
EQUIPMENT)

y \

SPECIAL PURPOSE
PREDETECTION
PROCESSOR

-~

!

INTER-COMPUTER
O COMMUNICATIONS

(1) BACKUP FOR PRIMARY ON-LINE FUNCTIONS
PDP-7 No. 2| {(2) OFF-LINE UTILITY OPERATIONS -
(3) FUTURE ON-LINE SLOWED DOWN TIME PROCESSING

Figure 4.

A REAL-TIME COMPUTING SYSTEM FOR LASA 225

ming system is timed by an interrupt pulse which
occurs every 50 msec whenever a new set of data
samples is ready to be read into the memory. At
this time the program starts a block transfer which
automatically reads the data into 651 consecutive
locations. When the next data ready interrupt
comes, the computer reads the data into the next
651 consecutive locations and starts another block
transfer which writes out onto magnetic tape the
data stored from the start of the first block to the
end of the second block. The data rates of the input
and output are just right so both these data transfers
interleave without running into each other.

While the data are being transferred into core and
onto tape, the main program is processing the data.
All the processing is subject to the following con-
straints: It must operate on each data sample as it
comes in; the total time for all the processing must
be less than 50 msec; and everything must fit into
the remaining memory not used for input/output
buffering.

The first waveform processing we do is to form
five delay-and-sum beams. This is shown in Fig. §
where the h(t)’s represent simple delay lines. A
teleseism from an interesting area of the world can
take up to 15 seconds to propagate across the array
so the simple minded method of putting 15-second
delay lines (300 locations) for each data channel
would take all the remaining core memory. Instead,
the delay for each particular channel is used as an
index to tell into which sum box each data sample
is to be added. This way only 300 locations are
used for each beam, and each data sample is only
used once. This program takes 5 msec (about 3000
cycles) and occupies about 2400 locations in core.

The other five processed outputs are formed by
filter-and-summing in the MCF special purpose

f,(h——=' b, (D)

t,(1) o——>1 (1)

f5(o——>1 (1)

f{t) o——>! b, (1)

Figure 5.

computer. Figure 5 also shows this processing, but
here the h(t)’s represent linear filters. Each output is’
formed by passing each of the 25 input channels
through a different filter and summing the filtered
waveforms. The 25 input channels for the MCF can
come directly from a single subarray of seismom-
eters via the phone-line interface, or from the gen-
eral-purpose computer which can form clusters of
widely separated seismometers. The MCF inter-
rupts the program in the central computer each time
an output sample is ready. The interrupt answer-
ing program accepts the sample, stores it in core
memory, and clears the interrupt.

The actual operations of this special-purpose
computer are:

25 718

fo= 20 20 hijfus
j=11i=0

the output at time n,
the ith most recent data input from the
Jjth channel, and

h;; = the impulse response for the jth channel.

Each filter is a 78-point convolutional filter. That
is, the last 78 data samples from each input are
stored in memory and every sampling interval (50
msec) there are 78 multiplications between these
data and 78 prestored “filter constants” with the
accumulated sum of the product pairs being the out-
put sample of one filter. Then the 78 inputs are
pushed down with the new data sample being stored
at the head of the list and the 78th one dropped. All
this is repeated 25 x 5 or 125 times, making a total
of 9750 multiplications and 9875 additions. A trick
is used to get all these operations done in 50 msec.
The memory cycles that get the filter points are
standard read-restore cycles, but the cycles that get
the data points are read-save-restore-previous-data
sample, so that the “push down list”’ can be done in
essentially no extra time. Phasing delays can be in-
troduced by using filter response functions less than
78 points long and adding appropriate number of
zeros at the beginning and end of each response
function.

The next processing step consists of event detec-
tion on selected channels. Figure 6 shows a block
diagram of one event detector. First, the input
waveform is passed through a bandpass filter and
the output energy is measured. If this energy should
suddenly increase over what it had been, the detec-
tor decides there has just been an event and the cur-
rent GMT time is typed out, along with the channel
number that triggered the detector.

where f,

Jig

226 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

EVENT
IF
c
INPUT 3-POLE DIVIDER T2 THRESHOLD
o—e{ BAND PSS »| RECTIFIER FORMS
0.95—1.45 c-:- E NO El\éENT
c
LOW PASS 60-sec E ES THRESHOLD
» FILTER DELAY
v = 30sec D LINE

AUTOMATIC EVENT DETECTOR

Figure 6.

Each pole in the bandpass filter is of the recursive
type as opposed to the convolutional type described
earlier. This is shown in Fig. 7. To synthesize a
transfer function with two: complex conjugate poles
and a zero at the origin of the S plane (a RLC filter),
we use a recursion formula where the present value
of the filter output is a linear combination of the two
previous filter outputs and: the first difference of the
input waveform. The difference equation is shown
in the figure. This has the advantage of requiring
only 15 registers in memary for the constants per
pole, independent of the ringing time of the filter.

If we look again at Fig.| 6, we see that the event
detector uses three recursive filters in cascade in
order to provide very rapid attenuation of low fre-
quency microseismic noise energy. The three poles
are synchronously tuned to resonate at the same
frequency so that the shape of the filter makes an
approximate match to the spectrum of the energy of
a teleseism. This is done in order to maximize the
signal-to-noise ratio at point B.

The passband of the filter is 0.95 cps to 1.45 cps
because our investigations: of many weak teleseisms
showed this to be the frequency where the energy
lies for short-period vertical seismometers. This
passband is very effective in eliminating local events
which have energy at frequencies much higher than
this.

This filter output is then rectified so that the sig-
nal at point C is an approximation to the power of
the signal at point B. The waveform is rectified
instead of being squared for two reasons. First, it
takes less time to compute, and second the dynamic
range that the following blocks require is consider-
ably reduced.

Now, following the lower path, the signal is
passed through a low-pass filter whose time con-
stant is 30 seconds. This is long enough to smooth
the fluctuations caused by the seismic signal, yet
short enough so that it will accurately follow any
long-term variation in the noise power and system
calibration. Thus, at point D we have a slowly-
varying signal which is proportional to the back-
ground noise level in the input seismic signal. This
signal is then passed through a 60-second delay line
such that its output at E is simply the signal at D
delayed in time by one minute.

Now, the signal at C, which is proportional to the
energy in the frequency band 0.95 to 1.45 cps is
divided by the average background noise energy in
the same frequency band one minute earlier. We
say there is an event if this ratio exceeds a given
threshold; otherwise there is no event. The reason
for the 60-second delay line becomes clear if you
consider what would happen if it weren’t there and a
slowly emerging event should come in. Both the
signals at C and E would rise together and their
ratio would stay constant. Clearly, putting a delay
line in circumvents this problem.

If the threshold is set too low, the event detector
will have a high false alarm rate—that is, it will be
constantly triggering on every little noise pulse that
comes along. On the other hand, if the threshold is
set too high, only very strong events will trigger the
event detector. We have varied the threshold and
empirically decided to make it 5.82. With this value
and pure gaussian noise as an input, seven false
alarms are registered per day on the average. Ac-
tually, however, the seismic signals we use are not
gaussian noise, but have many small local man-

A REAL-TIME COMPUTING SYSTEM FOR LASA 227

C
|
o—}

x(t) R

| -at
y, = (2e * cos bt)yK'_1 - (e

—e e
Ol

? cos bt

w
o
*—H
S-PLANE
b
y(t) b———> O
X
-2at :
)yK—Z + (XK— XK—1)
e Z-PLANE
Y
UNIT
CIRCLE

ONE-POLE FILTER

Figure 7.

made events in them; so in practice, the false alarm
rate with a threshold of 5.82 is about four per hour.
Using eight independent event detectors, the pro-
gram takes 10 msec and occupies 1300 registers in
core.

The main disadvantage of this event detector is
that it cannot discriminate between a strong local
event or a noise burst in the data line or a teleseism.
Anything that has sufficient energy around 114 cps
will trigger this event detector. We have found that
for our data about one event in 10 is a genuine
teleseism, the other nine being local events of one
sort or another. We get around this by having more
than one event detector connected to seismometers

separated by several kilometers. Then, whenever
several event detectors trigger within several seconds
of each other, we say a teleseism has been received.
The small local events are too weak to register on
several event detectors, or else take a longer time
due to their lower horizontal velocity. This screen-
ing effectively reduces the false alarm rate from 909
to about one per day.

When a teleseism has been detected, the program
examines the relative arrival times at the various
sensors and, since these determine the origin of the
teleseism, the program looks to see if this location
is in an area that it has been told is interesting. If it
is, the program tells the operators to save the rele-

228 PROCEEDINGS —SPRING JOINT COMPUTER CONFERENCE, 1966

vant data which has been recorded on magnetic
tape. Thus, the tape recorders have been acting as
mass buffer storage for the data.

In order to save the data that has teleseisms that
are too weak to be detected by the automatic event
detector, one points a beam at the selected area and
puts an event detector on its output, and if this
single event detector triggers, the data is saved.

In conclusion, we have described a system with a
real-time program directing the overall operation—
from routine testing to selecting the data for further
off-line processing. These operations are done on
the basis of real-time waveform processing. With-
out automating these tasks, the Large Aperture
Seismic Array would be quite impractical to operate
because of its large size, both in data which accumu-
lates and remote transducers which periodically fail.

HIGH-SPEED CONVOLUTION AND CORRELATION*

Thomas G. Stockham, Jr.
Massachusetts Institute of Technology, Project MAC
Cambridge, Massachusetts

INTRODUCTION

Cooley and Tukey' have disclosed a procedure
for synthesizing and analyzing Fourier series for dis-
crete periodic complex functions.t For functions of
period N, where N is a power of 2, computation
times are proportional to N log, N as expressed in
Eq. (0). ‘

T, = k. N10g2 N (0)

where k. is the constant of proportionality. For
one realization for the IBM 7094, k., has been
measured at 60 usec. Normally the times required
are proportional to N2 For N = 1000 speed-up
factors in the order of 50 have been realized! Eq.
‘(1b) synthesizes the Fourier series in question. The
complex Fourier coefficients are given by the analy-
sis equation, Eq. (1a).

N-1 .
Fk) = 2, fG)w™

(1a)
j=0
1 N-1

SO = 5 2y Flow™ (1b)

where w = ¢*/", the principal Nth root of unity.
The functions f and F are said to form a discrete

*Work reported herein was supported (in part) by Project
MAC, an M.L.T. research program sponsored by the Advanced
Research Projects Agency, Department of Defense, under Office
of Naval Research Contract Number Nonr-4102(01).

+To be able to use this procedure the period must be a highly
composite number.

229

periodic complex transform pair. Both functions

are of period N since
F(k) = F(k +¢N) (2a)
and

SU) =f(+ cN)

TRANSFORM PRODUCTS

(2b)

Consider two functions g and 4 and their trans-
forms G and H. Let G and H be multiplied to form
the function C according to Eq. (3),

C(k) = G(k) x H(k) 3)
and consider the inverse transform c(j). c¢(j) is
given by Eq. (4)

R
) = & 20 EDRG = D)
J=0
e
- 2 hgl - D)
J=0

as a sum of lagged products where the lags are per-
formed circularly. Those values that are shifted
from one end of the summation interval are circu-
lated into the other.

The time required to compute c¢(j) from either
form of Eq. (4) is proportional to N2. If one com-
putes the transforms of g and A, performs the multi-
plication of Eq. (3), and then computes the inverse

230 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

transform of C, one requires a time given by Eq. (5)
7'circ =3 kcl NlOgZ N + kmN
= kcirc N(10g2 N + F') (5)

where kg = 3k, p = kp/kge, and k,, N is the time
required to compute Eq. (3). Of course this assumes
N is a power of 2. Similar savings would be possible
provided N is a highly compaosite number.

APERIODIC CONVOLUTION

The circular lagged product discussed above can
be alternately regarded as a ¢onvolution of periodic
functions of equal period. Through suitable modifi-
cation a periodic convolution can be used to com-
pute an aperiodic convolution when each aperiodic
function has zero value everywhere outside some
single finite aperture.

Let the functions be called d(j) and s(j). Let the
larger finite aperture contain M discrete points and
let the smaller contain N discrete points. The result
of convolving these functions can be obtained from
the result of circularly convolving suitable aug-
mented functions. Let these augmented functions
be periodic of period L, where L is the smallest
power of 2 greater than or equal to M + N. Let
them be called da(j) and sa(j) respectively, and
be formed as indicated by Eq. (6).

fa() =fG +jo) 0<j< M-
=0 M<j<L-1 (6)
= fa(j + nL) otherwise

where j, symbolizes the first point in the aperture of
the function in question. The intervals of zero
values permit the two functions to be totally non-
overlapped for at least one lagged product even
though the lag is a circular one. Thus, while the re-
sult is itself a periodic function, each period is an
exact replica of the desired aperiodic result.

The time required to compute this result is given
in Eq. (7).

Taper = kcirc L(logZL + ”’) (7)

where M + N < L < 2(M + N). For this case,
while L must be adjusted to a power of 2 so that the
high-speed Fourier transform can be applied, no re-
strictions are placed upon the values of either M
or N.

SECTIONING

Let us assume that M is the aperture of d(j) and
N is that of s(j). In situations where M is con-

siderably larger than N, the procedure may be
further streamlined by sectioning d(j) into pieces
each of which contains P discrete points where
P + N = L, apower of 2. We require K sections
where

K = least integer > M /P (8)

Let the ith section of d(jj) be called d;(j). Each sec-
tion is convolved aperiodically with s(j) according
to the discussion of the previous section, through
the periodic convolution of the augmented sections,
da;(j) and sa(}).

Each result section, 7,(j), has length L = P + N
and must be additively overlapped with its neigh-
bors to form the composite result r(j) which will
be of length

KP+N>M+ N (9a)

If r,(j) is regarded as an aperiodic-function with
zero value for arguments outside the range 0 < j
< L — 1, these overlapped additions may be ex-
pressed as

K-1
rG)= 2. r(j—iP) j=01,...KP + N — 1

- (9b)

Each overlap margin has width N and there are
K — 1 of them.

The time required for this aperiodic sectioned
convolution is given in Eq. (10).

Tseet = k(P + N)logy(P + N)

+ 2Kk, (P + N)log,(P + N)

+ Kk (P + N)

koK + 1) (P + N)logy(P + N)

+ Kkox(P + N)

k(2K + 1) (P + N)[logs(P + N) + p']
(10

where u' = kg /2k,. Kk.x(P + N) is the time re-
quired to complete auxiliary processes. These
processes involve the multiplications of Eq. (3), the
formation of the augmented sections da,(j), and the
formation of »(j) from the result sections ;(j). For
the author’s realization in which core memory was
used for the secondary storage of input and output
data, p’ was measured to be 1.5, which gives
kawx = 3k, = 300 usec. If slower forms of auxiliary
storage were employed, this figure would be en-
larged slightly. :

For a specific pair of values M and N, P should
be chosen to minimize 7. Since P + N must be a

U

HIGH-SPEED CONVOLUTION AND CORRELATION 231

power of 2, it is a simple matter to evaluate Eq. (10)
for a few values of P that are compatible with this
constraint and select the optimum choice. The size
of available memory will place an additional con-
straint on how large P + N may be allowed to be-
come. Memory allocation considerations degrade
the benefits of these methods when N becomes too
large. In extreme cases one is forced to split the
kernel, s(j), into packets, each of which is con-
sidered separately. The results corresponding to all
packets are then added together after each has been
shifted by a suitable number of packet widths. For
the author’s realization N must be limited to occupy
about 1§ of the memory not used for the program or
for the secondary storage of input/output data. For
larger N, packets would be required.

COMBINATION OF SECTIONS IN PAIRS

If both functions to be convolved are real instead
of complex, further time savings over Eq. (10) can
be made by combining adjacent even and odd sub-
scripted sections da;(j) into - complex composites.
Let even subscripted da,(j) be used as real parts and
odd subscripted da; ., ,(j) be used as imaginary parts.
Such a complex composite can then be transformed
through the application of Egs. (1a), (3), and (1b)
to produce a complex composite result section. The
desired even and odd subscripted result sections
ri(j) and r;, () are respectively the real and imag-
inary parts of that complex result section.

This device reduces the time required to perform
the convolution by approximately a factor of 2.
More precisely it modifies K by changing Eq. (8) to

- K = leastinteger > M /2P (11)

For very large numbers of sections, K, Eq. (10)
can be simplified to a form involving M explicitly

instead of implicitly through K. That form is given
in Eq. (12)

Tha = ka M((P + N)/P)[log2 (P + N) + p'} (12)

Since it makes no sense to choose P < N, for simple
estimates of an approximate computation time we
can write

Trast = ch:M[lngN + ﬂ" + 1] (13)

EMPIRICAL TIMES

The process for combined-sectioned-aperiodic
convolution of real functions described above was
implemented in the MAD language on the IBM
7094 Computer. Comparisons were made with a
MAD language realization of a standard sum of
lagged products for N = 16, 24, 32, 48, 64, 96, 128,
192, and 256. In each case M was selected to cause
Eq. (11) to be fulfilled with the equal sign. This step
favors the fast method by avoiding edge effects.
However, P was not selected according to the op-
timization method described above (under *Section-
ing Convolution”), but rather by selecting L as
large as possible under the constraint.

InL > P/N (14)

This choice can favor the standard method.

Table 1 compares for various N the actual com-
putation times required in seconds as well as times
in milliseconds per unit lag. Values of M, K, and L
are also given.

Relative speed factors are shown in Table 2.

ACCURACY

The accuracy of the computational procedure
described above is expected to be as good or better

Table 1. Comparative Convolution Times for Various N

N 16 24 32 48 64 96 128 192 256
M 192 208 384 416 768 832 1536 1664 3584
K 2 1 2 1 2 1 2 1 1
L 64 128 128 256 256 512 512 1024 2048
Time in seconds
Tyandara 02 031 08 125 3.0 50 12 20 48
Trast 03 04 06 08 13 18 30 38 8.0
Time in milliseconds per unit lag
Toandara/y 1.0 14 20 3.0 39 6.0 7.8 12.0 133
Ttastym 1519 15 19 16 21 19 22 22

232 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Table 2. Speed Factors for Various N

N 16 24 32 48 64 96

128 192 256 512 1024 2048 4096

Speedfactor 2 2 4 1.5 23 28 40 52 6 13* 24* 44* 80*

*Estimated values.

than that obtainable by summing products. Specific
investigations of the accuracy of the program used
to accumulate the data of Tables 1 and 2 are in
process at the time of this writing. The above ex-
pectations are fostered by accuracy measurements
made for floating-point data on the Cooley-Tukey
procedure and a standard Fourier procedure. Since
the standard Fourier procedure computes summed
products, its accuracy characteristics are similar to
those of a standard convalution which also com-
putes summed products. Cases involving functions
of period 64 and 256 were measured and it was dis-
covered that two Cooley-Tukey transforms in cas-
cade produced respectively as much, and half as
much, error as a single standard Fourier transform.
This data implies that the procedures disclosed here
may yield more accurate results than standard
methods with increasing relative accuracy for
larger N. ‘

APPLICATIONS

Today the major applications for the computa-
tion of lagged products are: digital signal processing
and spectral analysis.

Digital signal processing, or digital filtering as it
is sometimes called, is often accomplished through
the use of suitable difference equation techniques.
For difference equations characterized by only a few
parameters, computations may be performed in
times short compared to those required for a stand-
ard lagged product or the method described here.
However, in some cases, the desired filter char-
acteristics are too complex to permit realization by
a sufficiently simple difference equation. The most
notable cases are those requiring high frequency
selectivity coupled with short-duration impulse
response and those in which the impulse response is
found through physical measurements. In these
situations it is desirable to. employ the techniques
described here either alone or cascaded with dif-
ference equation filters. :

The standard methods for performing spectral
analysis? involves the computation of lagged prod-
ucts of the form

N—j-1

F(j) = JZ x(D)y(J +Jj) (15)

which, in turn, after weighting by so-called spectral
windows are Fourier transformed into power spec-
trum estimates. Speed advantages can be gained
when Eq. (15) is evaluated in a manner similar to
that outlined above (under ‘“Aperiodic Convolu-
tion”) except that in this case L is only required to
exceed N + Q where Q is the number of lags to be
considered. This relaxed requirement on L is pos-
sible because it is not necessary to avoid the effect
of performing the lags circularly for all L lags but
rather for only Q of them. An additional constraint
is that Q be larger than a multiple of log, L. The
usual practice is to evaluate Eq. (15) for a number of
lags equal to a substantial fraction of N. Since the
typical situation involves values of N. in the hun-
dreds and thousands, the associated savings may be
appreciable for this application.

Digital spatial filtering is becoming an increas-
ingly important subject.** The principles discussed
here are easily extended to the computation of
lagged products across two or more dimensions.
Time savings depend on the total number of data
points contained within the entire data space in
question, and they depend on this number in a
manner similar to that characterizing the one-
dimension case.

ACKNOWLEDGMENTS

The author is indebted to Charles M. Rader of
the MIT Lincoln Laboratory for his ideas concern-
ing the Cooley-Tukey algorithm and to Alan V.
Oppenheim of the Electrical Engineering Depart-
ment, MIT, for suggesting that high-speed convolu-
tions might be realized through the utilization of
that algorithm. During the preparation of this work
the author became aware of the related independent
efforts of Howard D. Helms, Bell Telephone Lab-
oratories, and Gordon Sande, Jr., Princeton Uni-
versity.

REFERENCES

1. J. W. Cooley and J. W. Tukey, “An Algorithm
for the Machine Calculation of Complex Fourier
Series,” Mathematics of Computation, vol. 19, no.
90, pp. 297-301, (Apr. 1965).

HIGH-SPEED CONVOLUTION AND CORRELATION 233

2. R. B. Blackman and J. W. Tukey, The Meas-
urement of Power Spectra, Dover Publications, New
York, 1959; also Bell System Technical Journal,
Jan. and Mar. 1958.

3. T. S. Huang and O. J. Tretiak, ‘“Research in
Picture Processing,” Optical and Electro-Optical

Information Processing, J. Tippett et al, eds., MIT
Press, Cambridge, Mass., 1965, Chap. 3.

4. T. S. Huang, “PCM Picture Transmission,”
IEEE Spectrum, vol. 2, no. 12, pp. 57-63 (Dec.
1965).

A COMPUTER PROGRAM TO TRANSLATE
MACHINE LANGUAGE INTO FORTRAN

William A. Sassaman
TRW Systems, Inc.
Redondo Beach, California

This paper describes a computer program which
translates machine language into FORTRAN. The
program was developed at TRW, Inc., to aid in the
conversion process from our existing equipment to a
third generation computer., The translator was
written to be a real help to people personally in-
volved in conversion, and is intended to be an op-
erational program rather than a pure research
project.

As the title of this paper indicates, the output-

language is FORTRAN. Since the translator de-
sign is not very dependent upon output language,
this appears to be arbitrary, FORTRAN was
chosen since it is a standard. It is well defined and
runs on both our second and third generation com-
puters. It has deficiencies but they are known. It
was desired to go to a problem-oriented language
to increase future human productivity and therefore
machine language output was not encouraged. In
addition, compiler writers expand considerable ef-
fort to obtain efficient machine language codes and
duplicating this effort appears a waste. Anyone who
really wants machine language can get it as a by-
product of the FORTRAN compilation and hand-
massage it to any degree of perfection he desires.
If the problem is so complex that no FORTRAN
translation is possible, then a completely human
effort appears in order.

The input is symbolic assembly language for the
IBM 7000 series computer operating under a pri-

235

vately developed execution supervisor. The sym-
bolic media was chosen over the binary machine
language since the symbolic cards make it easier to
distinguish between the various types of data, allow
macro identification and contain otherwise useful
information. Since continuity of usage is expected
between the original and translated versions of the
program, it appears highly desirable to maintain
much of the symbolic notation.

In my original thinking of the translational proc-
ess, I was impressed with the concept that actual
translation was, in general, a clerical process rather
than an inventive one. That is, the programmer fol-
lowing the assembly listing figures out from it (and
any documentation) what the original programmer
was doing and codes this in the appropriate lan-
guage for the new machine. Although often it is
necessary to have a knowledge of the problem being
solved, much of the time the translating program-
mer operates as a clerical symbol manipulator. It
is true that the rules for the symbol manipulation
are complex, but the task is basically clerical and
therefore subject to automation. In the translator
I have tried to assign these simple clerical tasks to
the machine and allow the human more time to per-
form in the areas where he can contribute the most.

From a technical viewpoint, it is probably im-
possible to write a program which will translate all
of one computer program into a similarly efficient
program for a second computer. However, as with

236 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

many mathematical processes, it is feasible to ap-
proach the solution as a limit, such that a maximum
automated transfer of source programs may be ef-
fected with minimal cost and human intervention.
The task of writing a translation program has as its
major obstacles the definition of the rules for trans-
lation. It would seem unlikely that anyone could a
priori define all the rules. Therefore a learning ap-
proach has been defined to allow the development
of the model as experience is gained in translation.

1 did not try to design for a 100% translation.

Input/output, functions, subroutines, standard-
ized routines, etc., need not be translated. Further
the conversion effort is not by nature one that may
be completely automated. During the process of
converting a program, decisions are made as to the
plan of attack during conversion, i.e., the human
programmer, who has cognizance of the physical
problem being solved and the capabilities and short-
comings of the program, decides which areas are to
be rewritten, which areas are to be deleted, which
areas will be replaced by system subroutines or
standardized routines, and finally the remainder is
to be translated (or transliterated if you wish). It
is rather apparent that these decisions are probably
not the sort to be made by the computer. Further,
the rewriting or regrouping of computations must
also be performed by humans. The remaining area,
translation, is a potential area for automation. Of
course, I try to do a good job in that which is trans-
lated; however, the law of diminishing returns dic-
tates that the translational rules limit one to about
909, of the code.

Further, I concluded that the source machine lan-
guage program contains a great deal of information
and the translator, retrieving and organizing this
information could perform a very valuable service

“in documentation as well as aiding the conversion
effort.

The translator during translation attempts to op-
erate as the human does. The programmer in trans-
lation recognizes in coding not only the individual
instructions but also, and more specifically, prob-
lem-oriented functions, which may be one or more
machine language instructions. It is the purpose of
the translator then to recognize these functions with
their terminals as well as to gather and organize the
program information pertaining to the translational
rules. The functions are gathered into statements
as appropriate before output.

Many of these functions are easily recognizable in
the machine language code. . A simple example of
machine language instructions which are easily

recognizable as functions are arithmetic codes.
These may easily be built up into larger statements.
One of these arithmetic statements consists of a
string of functions appropriately connected. The
translator inserts a right parenthesis prior to each
multiplication or division, and a left parenthesis
following each square root or other function. A
similar left or right parenthesis must be entered at
the start of the statement. The statement is nor-
mally terminated by a store instruction. The ad-
dress of this store instruction is obviously the left
side of the FORTRAN statement and followed by
an equal sign. The method of translating addresses
illustrates the buildup of rules for translation. Con-
sider the coding:

1) CLA A

2) AXT 10,4
3) D FAD A +1
4) FDP B,4

5.) STQ C + 10,4
6.) TIX D,4,1

The first A is obviously translated as A. Since A =
A (1), A + 1 must be translated as A (2). Instruc-
tions three through six are translated as a DO loop
using the dummy variable ND X 4. Since it is
subject to index register modification and has no ad-
ditive address, the B is assumed to be a vector run-
ning backwards in storage and is translated as a for-
ward running FORTRAN array B (ND X 4). The
C is assumed to be forward running and is trans-
lated as C (ND X 4 + 10 — 10), where the tens
cancel out leaving C (10). Obviously the D is trans-
lated as a FORTRAN numeric statement number.
Functions may be more complex and require more
complex rules for translation. A good example of
these are the programmer tricks of using instruc-
tions for something the manufacturer never in-
tended; for the IBM 7000 series, a PXD 0, 0 will
clear the accumulator; a LRS of zero will impose
the sign of the accumulator into the MQ, etc. Such
translation is analogous to the handling of idioms
and slang in human language outside of a word for
word grammatical translation.

The last bit of philosophy in the design of the
translator is the target. The programs to be con-
verted are engineering applications involving alge-
braic algorithms. These algorithms are easily de-
fined and form the basis of the translator rule set.

As a result of these thoughts, the translator was
designed to intimately interface with and operate
under the supervision of the human user. The
human describes the rules for the particular pro-

A COMPUTER PROGRAM TO TRANSLATE MACHINE LANGUAGE INTO FORTRAN 237

gram involved via control cards, defines areas to be
translated and criteria for recognition of areas of
coding to be translated as FORTRAN subroutines.
Operating with these rules and the basic set, the
computer then performs any initial translation.
This initial attempt normally tells the user what
tasks cannot be handled in FORTRAN, indicates
the need for additional rules such that the translator
will give a better translation. The deck is then re-
submitted to the computer. The human examines
the computer output and either edits it to achieve
the desired code or redefines the rules or control
cards and translates over again. This learning proc-
ess and human interface dictates the need for a
system to afford maximum convenience and ease of
communication to the user. Although this would
appear to be an ideal on-line application, the sched-
ule, hardware and manpower available dictated the
utilization of a typical centralized large-scale com-
puter.

OPERATION

The translator’s functions are to retrieve informa-
tion from the source deck, organize this informa-
tion, merge it with other data, apply the rules for
translation and provide interfaces with the human
during the process. This is not done on-line, al-
though the nature of the problem indicates an on-
line solution might enhance the process. In order

to accomplish these functions, the translator is de- -

signed in six separate (and recoverable) phases.
The main task of each of these phases is:

Phase 1 Separate the program into log-
ical groups.

Phase II -~ Handle parameters — data
types, dimensions, COM-
MON, initial values.

Phase II1 Core map of symbol alloca-
tion and overlay.
Phase IV Translation of macros.

Phase V Translation into FORTRAN,
routine by routine.
Phase VI Editing and merging,

Although these are the main functions, the phases
have additional tasks because of convenience of
execution. In order to explain the process, I will go
through it phase by phase, explaining what is done
and where the information comes from.

Phase I is the initial phase whose primary task is
to divide the program into logical groups of man-

ageable size. The input to the translator is the
source symbolic card deck, or a tape containing the
card images. The input is read, basically a card at a
time, and broken into the following categories.

e Arcas to be treated as FORTRAN sub-
routines (tape)

e Data and parameters (tape)

e Symbolic equivalence (core/cards)

e Macro skeletons (tape)

In order to make these distinctions, the translator
must know the algorithms for separation. The
BEGIN pseudo operation is recognized as the start
of a routine and the terminus of a previous routine.
Origin and transfer cards are assumed to signal the
end of a routine. Decimal, octal and Hollerith data
are presumed to be in the data domain unless they
appear to be in a routine and do not have a sym-
bolic location assigned to them. The programmer
is allowed to enter control cards in the data stream
to allow the programmer to label name COMMON
in the output stream. Each card included in a sub-
routine area is assigned a FORTRAN location
number.

In order to build up an initial table of floating
point (real) symbols, the address of each floating
point instruction is saved as well as the address of a
loading instruction immediately before it or a stor-
ing instruction immediately following it. Each sym-
bolic name is saved, in sequence, with all origin,
intermediate transfer cards and the final end card.
The address of the first intermediate transfer card
(if none, the address of the end card) is saved as the
point at which computation will be initiated.

Phase II is designed to handle data and param-
eters. The list of floating point symbols generated in
Phase I is organized and checked for redundancy.
The translator then reads the data and parameter
tape and compares the parameter symbolic name to
the built up symbol table equivalences. The symbol
is then checked to see whether it is an allowable
FORTRAN symbol (alphanumeric, initiated, by a
letter), what the type is, and what the dimension is.
The translator tries to define a new symbolic refer-
ence for illegal symbols, expands the symbol table of
equivalences and builds up a table of real and
integer symbols not conforming to the FORTRAN
rules, Every attempt is made to keep the original
symbol as it is assumed to be mnemonic. From the
contents of the data card. image, a data statement is
generated if initial values are assigned to the pa-
rameter. The name and dimension are included in
the name COMMON block as assigned by the

238 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

translator or the programmer if he has such input
information. Upon termination of a name COM-
MON block, the card images are saved on an inter-
mediate tape with the images of the type statements.

Upon processing all data cards, the translator
calls the computation, using the address of the end
card (or first intermediate transfer card). A listing is
then made of all parameters with their original
symbolic name, the corrected name, if any, and the
comments from the data card.

Phase III (storage allocation core map and over-
lay structure). The program reads the tape con-
taining the above information, compares it to the
equivalence table and breaks: it ino n strings. These
strings are then printed in n columns with origins
matched on the vertical scale.

Phase IV (macro translation). Macros are cur-
rently translated as functions, if they can be, or are
ignored. Details of translation are similar to the
translation of subroutines.

Phase V (translation into FORTRAN subrou-
tines). This is what most people consider the heart
of translation. The card images of the area to be
converted are read into core from the tape storage.
Each card is assigned a sequential external formula
number. Those which are not used will be sup-
pressed at output time. An initial pass is made to
find the address of all transfer instructions and to
save the concomitant FORTRAN numeric loca-
tion. Locations which are transfers, or transferred
to, are appropriately flagged. New numeric loca-
tions are assigned for undefined transfer addresses.
Special flags are set for the addresses of TIX instruc-
tions, TXI and TXH (under:certain circumstances
index loading instructions, address modification,
etc.).

The actual translation is now begun. The transla-
tor is broken into two alternate paths here: the first
being a search for instructions or functions that
initialize a statement (a statement being merely a
string of appropriately connected functions); the
second being a search for functions that sustain or
terminate a statement. In general, the translator
scans the coding until it recognizes the start of a
statement; then it switches to the terminal branch
where it builds up the function into a statement
until some terminating condition is reached. If on
the initial scan, a sustaining type instruction were
encountered, the translator initiates an appropriate
function to start things off and transfers to the
terminal branch. Similarly if in the terminal branch
the translator finds an initiating statement, it sup-

plies a terminal function to complete the statement.

being processed, tries to search out particular pro-
grammer tricks since something ‘different” is hap-
pening, and then transfers to the initial branch.
Loading, storing and transfer instructions, and in-
structions which are transferred to, are samples of
what are considered to start or end a statement.
CALL type instruction (TSX) are considered to
start or end a previous statement and start a new
one unless the translator can determine that they are
replaceable by a built-in arithmetic function or
other functions, in which case the function is in-
cluded in the statement being processed and the
translator continues on the terminal branch. Ar-
bitrarily terminated or initiated statements are
stored in or picked up from “dummy” accumulator,
MQ, registers, etc.

The translator on either branch attempts to
search out TIX loops, where a register is counted
down from # to 1 or TXI loops where a register is
incremented from O to n and translates as DO
loops nested to a level of 7; if all 7 index registers
are used and the index registers are not saved in-
ternally. A DO statement is inserted just prior to
initiation of the loop. The loop is terminated by a
dummy CONTINUE. The pseudo symbol NDXA
is used to represent index register A. The algo-
rithm for conversion of parameter addresses while
in a TIX loop deducts the initial value of the index
register from any associated address. Note there is
a difference in the assignment of vectors in ma-
chine language programs and FORTRAN, each
considering the other backward. The algorithm
attempts to cover the difference.

As previously mentioned, the easiest instructions
to translate are the arithmetic instructions where
each operation and address is added to the right-
hand end of the statement being generated. For
multiplication and division a pair of parentheses
must be added, one at each end before the operator
and operand are saved. For functions, a similar
pair of parentheses must be added except of course,
the functions appear on the left, before the initial
parenthesis. A storing type instruction adds an
equal sign on the left and the address of the operand
to the left of that. Translated output statements
are built up in a table, word by word, until a
terminating condition is reached. The statement is
compacted by reducing spurious blanks, continua-
tion numbers are assigned if more than one card
image is required; and the images are written on a
blocked output tape with an alter number for each
card image. If it has been referenced, the FOR-
TRAN numeric location is also written out on the

A COMPUTER PROGRAM TO TRANSLATE MACHINE LANGUAGE INTO FORTRAN 239

first card image. At this point an almost side by side
listing of the original coding and the translated
code are printed for the user.

By actually scanning, instruction by instruction,
while the whole subroutine is in core, the translator
can look for particular sequences of coding which
represent a special case. Much of the detail coding
to effect these rules is lengthy and tends to be repeti-
tive so that many subroutines are used in the areas
of duplication. The coding of the translator is all
very straightforward, and often tedious.

Phase VI allows the user to edit the translator
output from the previous phases which consisted of
an almost side by side listing of the original and
translated coding. Also used is the tape which con-
tains all of the previous translation including the
alter numbers. It is the purpose of Phase VI to al-
low the editing of this tape by use of the alter num-
bers and to produce a new tape and/or a new listing
and/or a punched card deck. The editing is per-
formed by a series of control cards which allow the
user to add or delete cards from the tape or to juggle
large blocks from one place on the tape to another,
without actually shuffling through the cards.

To maximize usefulness, the output tape may be
fed into the FORTRAN compiler at this time with-
out the submittal of a separate run or punching
the cards.

USER INPUTS

The recipe for elephant stew traditionally starts
with ““clean one freshly killed elephant.” Similarly
the user’s input starts with the program to be trans-
lated. This may be in the form of symbolic source
cards or blocked card images on a tape. In gen-
eral, the areas for which translation is not desired
are deleted from the deck. This deck is preceded
by a control card that tells the translator whether
this is a SMASHT, SCAT or IBMAP deck and

whether cards or tape is expected. A number of
EQU cards may be input by the user to assign
names to illegal symbols, rather than accept the
translator’s naming. REAL and FIXED define
the type of data these operations refer to when the
translator has insufficient information to arrive at
the appropriate conclusion. Control cards define
the subroutines of function calling sequences for
translating the TSX address. The rules for separa-
tion of areas into subroutines may be defined either
by special coding in the translator or insertion of
dummy control cards. Special algorithms for
translational rules are coded into the translator at
this time. The run is now ready for submittal.

Upon return of the run, the data previously fur-
nished may be modified and the appropriate proc-
esses repeated or the user may desire to continue
into the editing phase and obtain an output deck.

SAMPLE TRANSLATION

Translation is such a complex function that no
all-encompassing sample is feasible in such a short
period of time.

CONCLUSION AND SUMMARY

The translator described here is not a perfect tool
—it does not translate everything nor is everything
it translates perfect. It does not handle dynamic
programming, i.e., where coding is actually charged,
nor does it handle indirect addressing. Patently it
does not translate into FORTRAN those things
FORTRAN cannot do. Complex and double pre-
cision arithmetic are not attempted. It is designed
to relieve the programmer of much of the clerical
task of translation and to allow the user input into
the translational process and absolute control of the
final output. For those applications we have used it
for, it has performed rapidly and effectively.

TECHNIQUES AND ADVANTAGES OF USING
THE FORMAL COMPILER WRITING SYSTEM FSL
TO IMPLEMENT A FORMULA ALGOL COMPILER*

Renato Iturriaga, Thomas A. Standish, Rudolph A. Krutar
and Jackson C. Earley
Carnegie Institute of Technology
Pittsburgh, Pennsylvania

INTRODUCTION

Implementing a compiler, as everybody knows, is
not an easy task. There have appeared in the past
few years a number of compiler writing systems.'
One of these is Feldman’s “Formal Semantic Lan-
guage” (FSL).** In Feldman’s thesis the assertion
is made that FSL is potentially a powerful compiler
writing system. The Formula Algol compiler® is a
large, nontrivial compiler incorporating several new
language features, and the use of FSL to implement
it constitutes the first significant test of the power
of FSL. We find Feldman’s assertion is justified,
and the ideas he set forth in theory have been found
to be successful in practice.

Some of the more important advantages of FSL
that we have found are as follows.

First, the amount of time and programming effort
required to implement a compiler such as the
Formula Algol compiler is reasonably small (on the
order of a man-year).

*The research reported here was supported by the Advanced
Research Projects Agency of the Department of Defense under
Contract SD-146 to the Carnegie Institute of Technology.
R. Iturriaga is partially supported by the National University of
Mexico and the Instituto Nacional de la Investigacion Cientifica.
T. A. Standish is a National Science Foundation graduate
fellow.

241

Second, because FSL is a high-level language in-
corporating certain power of expression, the task of
describing compiling processes is sufficiently man-
ageable and easy that experimental flexibility is
achieved. By this we mean that we were able to
experiment with a variety of organizations of parts
of the compiler in order to select those with desired
properties. In particular, we were able to experi-
ment with the syntax of Formula Algol without
appreciably changing its semantics. We could also
change its semantics without appreciably changing
the syntax. Thus we were able to use FSL as a tool
to improve the source language and at the same time
to improve its implementation by finding the best
compilation techniques. In contrast to the case of a
hand coded compiler, we were not forced to make
any organizational commitments which were of pro-
hibitive expense to change. This is the essential
reason underlying the property of flexibility, and
flexibility makes FSL a good tool for a program-
ming language designer.

A third feature of using FSL to write a compiler
is that it is a rare counterexample to the familiar
tradeoff between efficiency and generality. The use
of the Floyd-Evans production language™® permits
one to write an efficient syntax analyzer with
sophisticated error recovery, and a compiler written
in FSL not only is reasonably efficient but if written

242 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

properly can produce efficient object code. For ex-
ample, the Formula Algol compiler produces for
some classes of expressions more efficient code than
the current handwritten Algol compiler in use at
Carnegie Tech.

A fourth feature of FSL is that it is a language
sufficiently general to allow several of the better-
known useful compiling techniques to be expressed
and utilized. For example, THUNKS® were used to
implement parameter calls in procedures, dope
vectors'® were used to implement array storage and
accessing, and the use of symbol table techniques
was made easy by the fact that tables are primitive
in the language. The reason for this generality is
that FSL contains a powerful set of primitives that
permit a user to express a large variety of compiling
mechanisms directly by combination of these primi-
tives. This feature also permitted us to invent sev-
eral new variations on known compiling techniques
which were well adapted to the problem at hand.

A fifth property for which, at present, we can
produce no real evidence attesting to its usefulness,
is that a compiler written in FSL is given a formal
description. This means that in contrast to hand-
written compilers we are provided with a framework
in which we can begin to approach the problems of
proving that compilers recognize given source lan-
guages correctly or that they compile correct code.
In the case of handwritten compilers these questions
are unthinkable. As an example of the kind of ap-
proach that can be made once a formal description
is given we cite a doctoral thesis by Evans," in
which certain properties of the production language
are proven.

‘Finally, the activity of implementing Formula
Algol had a feedback effect on the design and im-
plementation of FSL itself.!? Modifications were
made easy by the fact that FSL is in effect compiled
in itself and thus possesses the same organization as
the compilers it produces. For example, an accumu-
lator symbol was introduced as a variable to allow
the user to deal formally with the use of the accumu-
lator. This represents a small change in the original
philosophy of FSL, which was designed with ma-
chine independence in mind. It is, however, a small
change with far-reaching consequences.

With the exception of the property of the useful-
ness of formal descriptions of compilers, we will
present later in this paper concrete evidence sup-
porting each of the claims we have made in this
introduction. Our first task, however, is to explain
briefly the operation of the compiler writing system.

A BRIEF EXPLANATION OF
THE COMPILER WRITING SYSTEM

The compiler writing system uses two formal
languages to describe a compiler. First, a syntax
analyzer for the source language is written as a pro-
gram in the production language. This program is
processed by a translator called the production
loader producing as output a set of driving tables
which are stored for later use. Second, a collection
of semantic routines is defined by writing a program
in the formal semantic language. Another translator
called the semantic loader then translates this collec-
tion of routines into a set of tables and a block of
code, which code is compiled for use as a part of the
compiler itself. This output is also intermediate and
is stored for later use.

The compiler itself (Fig. 1) is another program
which reads in both the syntax tables and the
semantic tables and code, and by using these trans-
lates a source language program into an object pro-
gram. For the sake of efficiency a preliminary
lexical transformation is performed on source lan-
guage text as it is read in by a routine called the
subscan. This routine recognizes the primary units
of the language which are operators, reserved
words, identifiers, and constants. These primary
units of the source language are not fixed by the
system but are declared in the production language.
The subscan is a closed routine called by statements
in the production language. Each time it is called it
returns with the next primary unit in the source
language string. As each identifier is recognized by
the subscan its print name is stored in a table unless
it has been entered previously, and an integer rep-
resenting its relative address in the table of print
names is transmitted. This integer functions from
that time on as the internal name of the identifier.
Abbreviations of reserved words and of operators
are transmitted directly, and constants which are
too long to transmit directly are saved in a table
and their locations are transmitted instead.

The fundamental mechanism in the compiler is a
push-down stack of ordered pairs (a, 8) where a is.
a primitive syntax unit and where 8 holds semantic
information and is called the *“description of a.”
Syntactic analysis of the source language proceeds
by a sequence of manipulations of this stack. The
production language is used to define these manipu-
lations and it consists of a sequence of productions
of the following form:

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 243

(SOURC! LANGUAGE INPUTY ’

PROCESSED BY w“c“">
PRODUCTIONS DEFINING PRODUCTION SYNTAX
SYNTAX ANALYZER OF TABLES
SOURCE | ANGU OADER THIS BOX 1S
L
e - THE COMPILER.
COMPILER
" EXECUTIVE
SEMANTIC
PROCESSED BY
SEMANTIC ROUTINES TABLES
SEMANTIC AND
WRITTEN IN FSL DEFINING
SEMANTICS OF COMPILED
LOADER cobt
SOURCE LANGUAGE
FOR
COMPILE
TIME
ROUTINES
Gu:cr PROGRAM INPUT)
EXECUTION OF - \o:ucr CODE OUTPUT)
OBJECT PROGRAM
LOADED BEFORE
‘ OBJECT PROGRAM
(onucr PROGRAM ourpur) 1S EXECUTED
RUN TIME

ROUTINES FOR
SOURCE LANGUAGE

Figure 1.

L5 L4 L3 L2 L1 | - R3 R2 R1
| ACTION *LINK

LABEL

where the appearance of everything except L1 and
the two vertical bars is optional. Each production
tests for the presence of a particular configuration
among the topmost syntactic units in the stack by
attempting to match the pattern given by L5 L4 L3
L2 L1 against them. If a match is found and if
— R3 R2 RI1 occurs in the production then the
configuration matching L5 L4 L3 L2 L1 is trans-
formed into the configuration represented by R3
R2 R1. Then the ACTION is executed. If — R3
R2 R1 is absent and a match is found then the
ACTION is executed and no transformation is per-
formed. The only three actions we will discuss in

Flow of systems.

this paper are the actions EXEC, SUBR, and RE-
TURN. The actions SUBR and RETURN will be
explained later. The action EXEC N, with param-
eter N, is a call to the semantic routine numbered N.
This semantic routine may, among other things,
alter the descriptions of the syntactic units involved
in the stack transformation described by the pro-
duction, For example, the description of an identi-
fier may consist of the address of the run time loca-
tion assigned to the variable that identifier repre-
sents. The description may also bear type bits tell-
ing the type of the variable (e.g., real, integer,
formula). After the action is executed the link is
examined to see if it is prefixed by a *. If it is then
the subscan is called and the next primary syntactic
unit in the source language string is recognized and

244 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

placed on top of the stack. ' Then control passes to
the production whose label is given by the link. If
a * does not precede the link then subscan is not
called and control changes as in the previous case.
In the event that the pattern L5 L4 L3 L2 L1 did
not match the configuration of syntactic units at the
top of the stack control passes to the next produc-
tion in sequence. Also if the link is blank the action
on the next line is executed and this process repeats
until a nonblank link is found.

A sequence of productions may be organized into,

a closed subroutine by use of the actions SUBR and
RETURN. The first production in such a sequence
must be labeled and its label, say L, is the name of
the closed subroutine. To call the closed subroutine
starting at label L we execute the action SUBR L.
When we wish to return from the subroutine we
execute the action RETURN and control returns to
the link of the production that called the subroutine
originally. The control mechanism contains a push-
down stack permitting recursive calls on the closed
subroutines.

The general structure of the syntax analyzer for
Formula Algol is as follows. The major units of the
source language, such as statements and expres-
sions, correspond directly to subroutines in the pro-
duction language, which subroutines analyze the
given major units. For exaniple, there is a produc-
tion subroutine called the “statement scanner,”
which is called every time a statement is expected in
the source language. There is also a production
subroutine called the “‘expression scanner,” which
processes expressions of all types and which is called
every time an expression is expected in the source
language. The statement scanner may call the ex-
pression scanner and, in fact, corresponding to the
occurrence in the source language of statements
which contain other statements as parts, the state-
ment scanner may call itself. The flow of control
through the syntax analyzer is governed by the
structure of the source language program being
analyzed. It is roughly true that the structure of
such large production subroutines as the statement
scanner and the expression scanner is the following.
Upon entrance to the subroutine the first few char-
acters of an expected source language construction
are subjected to a sequence of tests which separate
the various possible classes of constructions that
may be encountered into cases. Corresponding to
each case a transfer is made to a part of the routine
which treats that case specially. This basic scheme
of organization was first introduced by Evans in the
writing of the Carnegie Tech' Algol compiler® and

the structure of the syntax analyzer for the Formula
Algol compiler is basically an extension of it.

Because the flow of control in the syntax analyzer
is directed by the constructions encountered in the
source language it will be possible to use the follow-
ing technique to explain various mechanisms found
in the compiler, We will focus our attention on a
critical subset of productions responsible for proc-
essing a given type of construction. This critical sub-
system will always be embedded in a larger context
but since the flow of control will never involve that
context we may isolate the critical subsystem for
study. This subsystem will involve calls on a set of
semantic routines, and these semantic routines will
be solely responsible for the compilation corre-
sponding to the constructions which the critical sub-
system processes.

An explanation of the primitives in the formal
semantic language is given in Refs. 4 and 5. A com-
plete summary of those primitives is not given in
this paper, but the subset of primitives used below
are accompanied by explanations in order to make
the treatment self-contained.

A DETAILED EXAMPLE

Let us consider an example of the compilation of
the assignment statement X <— A + B x C;. As
we begin to process this statement control in the
productions will be transferred to the statement
scanner at label S1 where at entrance to the scanner
the first character X has been recognized by the
subscan and has been stacked as a syntactic unit I
on top of the push-down stack. Furthermore, sub-
scan sets the description of I to be the integer which
is the relative address of its print name, The critical
productions in the statement scanner which treat
this case are as follows:

S1 I | | *S2
S2 I <~ | — E <<« | EXEC 9 *El
I S | EXEC 91 *S1

The first production at S1 matches all statements
which start with an identifier, and control is trans-
ferred to S2 after scanning the next character. At S2
a discrimination is performed on the second char-
acter and in the case of assignment statements the
initial identifier I is changed to an E and control is
transferred to EXEC 9 where a look-up in the sym-
bol table is performed using the integer in the

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 245

description of I. This causes the retrieval of the
location of the variable X which was assigned pre-
viously and stored in the symbol table while process-
ing the declaration of X. It is conceivable that X
was not declared and thus not stored in the symbol
table. The table look-up procedure sets a signal in
the event that it fails to locate an object during a
table look-up and a test on this signal enables us to
write a semantic error exit corresponding to the
case where a variable is used but not declared in a
source language program. Upon finding the entry
corresponding to X in the symbol table the run time
location of X, and its type (real, formula, etc.) are
retrieved and the description of E in the stack is set
to contain the run-time address, the type bits, and
a bit to denote that the location rather than the
value of X is desired. This description will be car-
ried along as the associate of E until code is com-
piled to perform the assignment. Thus the FSL
code for EXEC 9 looks as follows:

9 | MARKIJUMP [FINDJ;
SIGNAL —
RIGHT2 < KEY + MODEO
+ TYPE + RELOC:
FAULTY § |

“FIND”
KEY « SYMBOL[LEFT2 , §$, ,] ;
TYPE < SYMBOL[0 , , $,] ;
RELOC < SYMBOL [0, , , §] :
JUMP[< FIND > |

Upon entrance to EXEC 9 weé execute a mark
transfer to a closed subroutine called FIND which
performs the symbol table look-up using the integer
given in the description in the LEFT 2 entry (same
as L2 position defined above) in the push-down
stack. LEFT2 is a variable whose value is this
description. It is used in the statement KEY
< SYMBOL [LEFT2, $, ,] to locate the entry
in the symbol table named SYMBOL which begins
with the integer given by the value of LEFT2. Each
line in the symbol table is of the form [integer, loca-
tion, type, relocation base]. The relative position of
the dollar sign $ among the commas indicates which
of the entries in the located line we wish to extract.
Hence the statement KEY < SYMBOL [LEFT2,
$, ,]extracts the location assigned to the variable
whose internal integer is the value of LEFT2, and
assigns this location to be the value of the variable
KEY. If a zero occurs in place of LEFT2, as in the
statement TYPE <— SYMBOL [0, , $,], the
extraction defined uses the line previously selected

saving the cost of an additional identical look-up.
Thus for our example the routine FIND simply
sets the KEY to the location of X, TYPE to the type
of X, and RELOC to the relocation base of X (the
relocation base is used to implement recursion and
is too complicated to explain here). The statement
JUMP| < FIND >]is a return to a mark transfer
call. Returning now to the consideration of EXEC 9
we assume we have executed a mark transfer to
FIND and have returned with either the signal set
false to denote that the table look-up was a failure,
or the signal set true and the variables KEY, TYPE,
and RELOC set with the extracted values. The
statement SIGNAL — RIGHT2 <~ KEY
+ MODEO 4+ TYPE + RELOC : FAULT 98§ is
equivalent to the Algol statement if SIGNAL
= TRUE then RIGHT2 <« KEY v MODEO
v TYPE v RELOC else PRINT (‘SEMANTIC
FAULT 9’) where MODEQ is a variable containing
a bit denoting that a location rather than a value
will be used. Executing this statement causes the
logical union of the values of the variables to be
stored as the description of the element in the R2
position of the stack in the event that the signal
was true, and it causes a semantic fault to be printed
otherwise.

At this point in the consideration of our example,
control is returned from EXEC 9 back to the pro-
duction that called it. This in turn causes another
character to be scanned and control to be trans-
ferred to E1 which is the beginning of the expression
scanner. The expression scanner contains two main
parts, one starting at E1 which expects an operand,
as would be the case, for instance, at the beginning
of an expression, and the other starting at E2 which
expects an operator or separator. Thus upon trans-
ferring control to E1 we will find the following set
of productions:

El I | — E | EXEC7 *E2
E2 <OP> | | SUBRCOM *El
At El the first production matches and control is
transferred to EXEC 7 with the syntax units in the
stack looking like E <«— E|. EXEC 7 is roughly the
same as EXEC 9 the main difference being that the
description of the E in the RIGHT 1 position is set
to contain a bit denoting that the value rather than
the location of the variable is desired. So far
X <« A has been scanned and converted to E «— E,
We now scan the operator + and transfer control to
E2 in the productions. The expression <OP>
stands for a class of binary operators including the

246 PROCEEDINGS——SPRING JOINT COMPUTER CONFERENCE, 1966

ROUTINE FOR COMPILATION EXEC 119 e L]

com Lt { W38 +3 E NG E <8a> | = E <86> | EXEC 100
1 <CUN> | | w36 EXEC 120 coM

*2 3 ' ! H36 +4 E] E <8a> § = E <865 EXEC 100
+3 * | | H34 EXEC 121 eoM

4 NG* | W32 +5 E L] E <86> | » E <86y EXEC 187
+5 . t | W30 EXEC 122 coM

+6 / | ' W30 H28 E + E <86> |+ € <86y | EXEC 100
7 + | 1 W28 EXEC 123 a0M

8 - | 1 H28 +1 E - E <86> | = E <8G> | EXEC 100

+9 <RE> | { H26

+10 - | t W24 EXEC 124 cOoM

11 - | | We2 H30 3 . E <SG |~ E <86y | EXEC 100
+12 v | | w20 EXEC 12% eoM

+13 cLSO | I AL 1 E 4 E <8G> | E <SG> | EXEC 1010
14 <PN> | | H19 EXEC 126 oM

+15 <«0T> | ' H16 H32 NG* E <S6> | = E <86> | EXEC 107
H16 E « E <S@> 1 = <8G> | EXEC 112 RET EXEC 127 coM

*1 E - E <SG> (= ‘E <86y | EXEC 112 H34 E . E <SG6> | = E <86> | EXEC 100 .

EXEC 113 coM EXEC 128 coM

+2 INSE E It E <SG> | =+ <86> | EXEC 43 RET H36 SIGN £ <SG> t « E <8G> | EXEC 107
+3 ALTE E To E <S6> | » <8G> EXEC 42 RET EXEC 129 coM

+4 (e 4 E <8G> | = ts <8G> | EXEC 197 +1 ENTI E <S6> | =+ E <8G> EXEC 107
EXEC 2n7 RET EXEC 130 oM

+5 . E <S6> t = <86> 1 EXEC 194 +2 ARCT E <8G6> | =+ E <865 1 EXEC 107
EXEC 207 RET EXEC 131 coM

46 E 1S. NoT E <s@> | = <8G> | EXEC 108 RET +3 SORT E <8G> | = E <8G6> | EXEC 107
+7 E IS ALSO E <S6> | = <8Gy | EXEC 109 RET - EXEC 132 eO0M

+8 E 1s € <SG> | = <86> i EXEC 174 RET 4 ExP E <SG> 1 - E <8Gy | EXEC 107
H19 E INST E <8G> | = :E <8G> 1 EXEC a5 roM - EXEC 133 LL]

HAL E CLSO E <86 | = E <8G> ¢ EXEC 77 £0M +*5 LN E <8G> 1 « E <8G> | EXEC 107
+1 CLSO E <S6> | = ‘E <§G6x | EYEC a0 com EXEC 134 ¢OM

H20 E v E <8G> 1 {E <86> | EXEC 10% 5 oS E <8G> | = E <8G> | EXEC 107
. ! EXEC 114 coM i EXEC 135 €oM

H22 E - E <SG> | » E <8G> EXEC 108 +7 SIN E <SG> | = £ <8G> | EXEC 107
EXEC 118 eoM EXEC 136 eoM

H24 - E <SG> | =+ :E <86> | EXEC 116 eoM +8 ABS E <5G> 1 =« E <§6> | EXEC 107
H26 E < 3 <8a> | = E <86> | EXEC 100 EXEC 137 coM

EXEC 117 coM +9 . E <8G> 1 E <86> 1 . EXEC 107
1 € > E <86> | E <86> | EXEC 100 EXEC 138 4:L]
: EXEC 118 caM H38 E L E <86> 1 » . E <8G> | EXEC 87 coM

*2 E NLOE <S6> | E <86y | EXEC 100 LAt <56> | | RETURN
Figure 2. Subroutine COM.

plus sign so the production at E2 matches the + sign
on top of the stack and control is transferred to the
production subroutine labeled COM. This sub-
routine is given in Fig. 2. Notice that the expression
<SG > in the LEFTI1 position matches any arbi-
trary character.

Subroutine COM is equipped with an operator
precedence comparison mechanism for sorting on
the hierarchies of operators so that, for example,
in the expression A + B x C, code is compiled to
perform the multiplication first -and the addition
second even though tke order in which these opera-
tors are encountered in the syntax stack is the re-
verse. As we enter subroutine COM, production
COM +7 matches and a transfer to H28 occurs.
Nothing matches from H28 until the end, so control
returns to the expression scanner which recognizes
the next two characters and:returns to subroutine
COM with E«~— E + Ex | in the syntax stack.
Then production COM +35 matches the stack, con-
trol passes to production H30, nothing matches
until the end of subroutine COM, control returns
to the expression scanner, two more characters are
recognized, and a final transfer is made back to sub-

routine COM. At this point the configuration of the
syntax stack is

E«E+ E x E;|

Here the expression < OT > matches the semicolon
on top of the stack at production COM+15 and
control passes to production H16. The first produc-
tion to match the stack is production H30. This
leads to the first instance of object code compilation
in the processing of the statement. All previous
actions up until this point have consisted of post-
ponements. The compilation is accomplished by
transfers to EXEC 100 and to EXEC 125 which
compile code to multiply B and C. In the case of
arithmetic operands CLA B is constructed. In the
MPY C
case of formula operands, code is produced to con-
struct when executed the formula tree X
B C
The semantic routines used to accomplish this test
the types of the operands, which types have been
stored in the descriptions assigned by EXEC’s 7 and
9, and they compile the appropriate code. At the
completion of this compilation the syntax stack is

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 247

altered to look like E<— E + E;| because the
terminal ExE has been replaced by a single E as
is seen by inspecting production H30. The semantic
routines also set the description of the topmost
(rightmost) E to contain the type of the expression
and the fact that the code compiled leaves the value
of the expression in the run-time accumulator. Con-
trol now passes back to the beginning of subroutine
COM for another iteration of the process. Sub-
routine COM will be seen to reenter itself iteratively
until the entire expression is consumed, until code
for it has been compiled, and until its external rep-
resentation in the syntax stack has been replaced by
E in the case of pure expressions and nothing in the
case of assignment statements. We are now at the
point where the syntax-stack looks like E «— E
+ E:| and where we have reentered COM. On this
pass production COM + 15 matches and passes con-
trol to H16 where successive productions fail to
match the syntax stack until production H28, at
which point E + E is compiled by EXEC 100 and
EXEC 123. The compile-time routines responsible
for producing code detect the fact that code has
been compiled leaving the value of the second
operand in the run-time accumulator. Thus the
code compiled is ADD A. Again the semantic
routines analyze the types of LEFT2 and LEFT4
to determine whether code should be compiled to
add numerical expressions or to add formula ex-
pressions. After compiling ADD A the stack con-
figuration is changed to E <— E;| and control
passes back to the beginning of subroutine COM.
On this final trip through subroutine COM pro-
duction H16 constructs code to perform the assign-
ment of LEFT2 to LEFT4 and subroutine COM is
exited with only the semicolon remaining in the
syntax stack, the assignment statement having been
consumed entirely. In the case of expressions,
rather than assignment statements, an E is left upon
exit in the RIGHT2 position with its semantic
description set to contain its type and the fact that
it resides in the run-time accumulator.

The strategy of subroutine COM comes from a
well-known compiling technique for which no claim
to originality is made. Both Floyd and Evans have
used similar techniques in their Algol compilers.

FLEXIBILITY OF THE SYNTAX ANALYZER

We will now present examples showing how we
can experiment with, extend, redesign or improve
the syntax of the source language.

Suppose we want to add a new type of binary
logical operator NOR (equivalent to the Pierce
operator familiar to logicians and electrical en-
gineers) and suppose we choose to denote it by the
pair of characters ~ V in the source language. Let’s

.agree that in the expression ~AAB ~v C

v. D the NOR operator binds less tightly than
~,A, and v so that fully parenthesized the ex-
pression looks like ((. (~A)AB) = v
(C vD)). We need to do four things to add this
operator to the source language: 1) we declare the
character pair ~ v to be a primary syntactic unit
for subscan; 2) we expand the definition of the class
of operators < OP > to include ~ v so that the pro-
duction labeled E2 (above) will detect the presence
of this new operator and will pass control to sub-
routine COM. The last two steps are additions to
subroutine COM itself: 3) we insert the production

~ V] | HNOR

after production COM+12 (cf. Fig. 2); and finally
4) we insert the production

HNOR 'E ~Vv E<SG> | —E <SG>

| EXECK COM

after production HA1+1 (cf. Fig. 2). Here EXEC
K must compile code for Boolean expressions using
the NOR operator and it looks as follows:

K | TEST[LEFT4, BOOLEAN] A TEST[LEFT2,
BOOLEAN] — CODE (RIGHT2 « ~
(LEFT4 v LEFT2)): FAULTK |

This is our first example of the use of the code
brackets CODE (. . .) An expression con-
tained in code brackets describes code to be gen-
erated and inserted into the object program. The
test commands test the descriptions in the LEFT4
and LEFT?2 positions to see if they contain bits de-
noting the type BOOLEAN.

From this example we see that we can 1) add op-
erators and choose their hierarchies at will, 2)
change the hierarchy of an operator without chang-
ing the operator itself, 3) by redefining an EXEC
routine, change the meaning of an operator without
changing its syntax, and 4) delete operators at will.
This exemplifies the kind of experimental flexibility
available to users of the FSL system.,

The organization of the compiler is such that
other kinds of additions, deletions and alterations
may be performed in the syntax analyzer with ease.
For example we may add a new type of variable by
adding its declarator to various lists, by inserting a

248 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

production in the production subroutine that
processes declarations, and by inserting tests and
consequent compiling actions;in the semantic rou-
tines which are called corresponding to expressions
and statements using the new type of variable. It is
also easy to add new types of statements to the state-
ment scanner and to add new types of expressions
to the expression scanner. The implementation of
the list processing part of the Formula Algol lan-
guage demonstrated to us the ease with which it was
possible to extend the compiler. Unfortunately,
space precludes an adequate description of this ex-
tension.

As a last example of a notational change we con-
sider the evolution of the notation for formula
patterns F INST P as defined!in the first Formula
Algol paper.”” F INST P is a Boolean primary
which tests whether the formula F is an instance of
the formula pattern P. Later this notation was
changed to F = = P and an additional type of test
was added of the form F >> P to test whether F con-
tains a subexpression which is an instance of P. In
the case of changing INST to = = one merely had
to substitute == for INST in the productions.
When >> was added it was possible with a minor
correction to share the productions for == to
process ». This correction consisted essentially of
substituting a class symbol fepresenting the set

= =, >} for occurrences of == in certain produc-
tions. The semantic routines associated with these
productions were also altered to compile different
code for the two different cases.

FLEXIBILITY OF THE
SEMANTIC ROUTINES

Having treated some examples of the flexibility of
the syntax analyzer we now turn our attention to
corresponding properties of the semantic routines.
The following example is intended to demonstrate
the kind of experimentation that can be done with
the compiling processes in order to improve both
the compile-time efficiency and the parsimony of the
formal description of the compiler. The example
deals with a type discrimination problem en-
countered in the compilation of expressions involv-
ing unary and binary operators; For instance, when
code is generated for A + B, the types of A and
B must be checked.

REAL + REAL is wé}l defined, the op-
erands are already com-
plete, and the result is of

type REAL.

REAL + BOOLEAN is an illegal construction.

FORMULA + REAL is well defined, but the
right-hand operand must
be made into a formula
data term using a cell
from linked list memory
before a formula repre-
senting the sum can be
constructed, and the result
is of type FORMULA.

We shall describe two methods of implementing this
type discrimination (which is the function of EXEC
100). The first is the most recent obsolete method
and the second is its successor.

In the former method the set of operators was
partitioned into a small number of equivalence
classes. Two of these are the arithmetic operators
+, —, X, =, >,...and the Boolean operators
V, A, ~, For arithmetic operators, EXEC
100 checks the types of the operands for compati-
bility and sets a switch (MACHINE) to 2 if either
operand is of type FORMULA, and to 1 if both
operands are arithmetic. In the following version
of EXEC 100, X7 is an address extractor. ‘

100 | TEST[LEFT4, BOOLEAN} v TEST
[LEFT2, BOOLEAN] — FAULT 100:
RIGHT2 < RIGHT2 A X7;

TEST{LEFT4, FORMULA] v TEST
[LEFT2, FORMULA] — MACHINE
~ TEST[LEFT4, FORMULA]

— CODE(CONSTRUCT FORMULA
[LEFT4))$;
~ TEST[LEFT2, FORMULA]
— CODE (CONSTRUCT FOR-
- MULA[LEFT2))$
MACHINE < 1 ;
TEST[LEFT2, REAL)] v TEST[LEFT4,
REAL] — SET[RIGHT2, REAL]:
SET[RIGHT2, INTEGER]$ § $

As more operators and data types are added to a
language this method becomes complex and ineffi-
cient both with regard to the space required to ex-
press the sequence of tests and the average time
required to execute such a sequence. Therefore we
have invented a successor to the above method.

The successor is described as follows. It is based
on a single four-column table (DISCR) which may
be preloaded. The first entry in a row of this table
is a coded word which has three fields:

[TYPEl, OPERATOR, TYPE2]

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 249

Any combination of two types and an operator may
be described in a single word. Unary operators
have one of the two types fixed. The second entry
indicates a compile time routine to be executed
which makes the operands compatible. The third
entry points to a compile time routine which
actually compiles code for the expression. The final
entry is the type of the result. DISCR may be
initialized as follows:

REAL + REAL none ADD REAL
REAL + INTEGER none ADD REAL
FORMULA + REAL CONS2 FADD FORMULA

FORMULA vBOOLEAN CONS2 OR FORMULA
NONE ~ BOOLEAN none NOT BOOLEAN

When the syntax stack matches any production of
the form
E <OP> E <SG> | — E <SG >
| EXEC 189 COM

then the following code is executed:

189
l COMB « (LEFT4 xL12 + LEFT 3)

x L6 + LEFT2;

R < DISCR[COMB, $,,];

~ SIGNAL — FAULT 189 :

FINAL < DISCR([0, , $, 1;

TYPE < DISCR[O0,,, $];

R = 0 - MARKJUMP [R]S$;
JUMP[FINAL]S |

Here L12 and L6 are shift constants, and LEFT3
contains a small but unique integer representing the
operator.

In some cases we may experiment with the organi-
zation of compile-time processes to improve the
quality of the object code produced, by which is
meant we can reorganize some processes so that
they produce less code which is more efficient. A
small example of this is as follows. Certain patches
of object code may be defined as nonexecutable
because the flow of control may not enter them
directly. For example, control must bypass a pro-
cedure declaration which may be entered only
through a procedure call. If there are several ad-
jacent procedure declarations then one may jump
around each of them in turn or, preferably, one may
jump around all of them simultaneously. The latter
scheme is preferable because the object code re-
quires less machine space, it runs slightly faster,
and it looks less complex to the programmer trying
to debug the system. The actual scheme for com-
piling these jumps has changed several times be-
cause we were able to try one method, tear it out,
and try another both in the same day.

ORGANIZATIONAL EFFICIENCY
IN THE COMPILER

When planning the structure of a compiler written
in FSL we can take advantage of an organizational
principle commonplace in programming, which
states that when performing a class of operations
which have certain common processing require-
ments we should, if possible, make a division of
labor allowing the common processing requirements
to be treated by a single shared routine. It is easy
to apply this principle when writing EXEC routines
since we can write a single EXEC routine perform-
ing labor common to several different compilation
processes and we can share it in conjunction with

~other EXEC’s to perform each separate process re-

quired. An example of this is EXEC 100 which is
shared in the compilation of arithmetic expressions
as is seen by looking at subroutine COM (Fig. 2).
Another example is EXEC 160 which does every-
thing common to procedures and blocks.
Production subroutines may also be shared. It
may occur that certain syntactic constructs are used
in different places in the source language with dif-
ferent semantics. For example, a list of identifiers
can be used as a variable list in a declaration, as an
array name’ list, as a formal parameter list, as a
value list and as a specifier list. The productions
in the syntax analyzer are written so that all identi-
fier lists, no matter the context in which they occur,
are processed by a common subroutine of the form:

ID I|— | EXEC 190 * AID
<SG> | — | ERROR 190 AID

AID , | — | * ID
<SG> | — | RETURN

As is seen, this production subroutine transfers
control to EXEC 190 with the integer corresponding
to the identifier on top of the stack. It does this
for every identifier in the identifier list. In each of
the different contexts of an identifier list it is neces-
sary to process the identifier list in a different
manner. To accomplish this, EXEC 190 is made
into a variable capable of containing transfers to
other EXEC’s. For example, when, in FSL, the
statement XEQ 190 <—— XEQ 2 is encountered, it
means the next time EXEC 190 is called, EXEC 2
will be executed. This will cause an identifier list
to be processed as a variable list by the semantics.
Similarly the statement XEQ 190 «— XEQ 3 will

_cause EXEC 190 to call EXEC 3 thus allowing an

identifier list to be processed as a list of array names.
By this mechanism one can treat the same syntactic

250

construct differentially in the semantics on the basis
of context. :

The addition of the XEQ construct to FSL is an
example of the effect of feedback from the process
of implementing Formula Algol on the design of
FSL.

FORMULA MANIPULATION

It was decided to represent formulas inside the
computer as trees or list structures birilt from cells
taken from an available space list in a standard
linked list memory. To add formula manipulation
to the source language formula variables were intro-
duced. In most cases the syntax already existing
for numerical Algol was shared for formula manipu-
lation. While no changes in the productions were
necessary for this shared syntax, tests had to be
added to the semantic routines to discriminate be-
tween numerical and formula compiling operations.
For the new constructions added to the source lan-
guage such as EVAL, = =,> >, and the extraction
operator in patterns, additions were made to the
productions and semantic routines were defined for
them. Because most actions involving formulas are
either interpretive at run time or involve manipula-
tions which cannot be compiled into the object code
as macros due to the size of the code involved, a set
of run-time routines were constructed in machine
code. These run-time actions constitute, more or
less, a basic order code for formula manipulation.
In effect, the compiler produces code for two ma-
chines, one an interpreter accomplishing formula
manipulation and the other the hardware accom-
plishing numerical manipulation. For example, we
saw (Fig. 2) that in subroutine COM EXEC 100 and
EXEC 123 are called in sequence when we compile
code to add two operands together, E + E. As we
have seen previously EXEC 100 checks the types of
the operands and sets a switch (MACHINE) speci-
fying the machine for which we are to compile code.
The structure of EXEC 123 is as follows:

123 | MACHINE = 1 — CODE (RIGHT2
< LEFT2 + LEFT4):
CODE (X1 < LEFT2; RO <« '+
ACC < LEFT4;
MARKJUMP[CONSTRUCT
FORMULA]; RIGHT2<ACC)
$ | :

Here the routine CONSTRUCTFORMULA is a
basic operation of the formula manipulation ma-
chine which expects a right operand in X1, a left

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

operand in the accumulator, and an operator in RO.
Using cells from the list of available space it con-
structs a tree structure representing the sum of the
operands and leaves the address of the head of this
tree structure in the run-time accumulator.

The reader can now see how we could implement
complex arithmetic by defining yet a third machine,
which performs complex operations, and by extend-
ing the compiler by the same process used to accom-
plish the formula manipulation extension.

LIST PROCESSING

We will consider one example of list processing to
try to convey some of the flavor of the mechanisms
involved. Consider the statement INSERT [A, B,
C] (AFTER LAST, BEFORE FIRST T) OF 8.
Here we assume that S contains a list (represented
by a chain inside the computer). For the sake of
specificity let S contain the list [V, T, V, V] where
V and T have been declared of type SYMBOL.
After the insertion statement is performed the list
is to look like|[V,A,B,C,T,V,V,A,B,C]. Ina
manner similar to that for formula manipulation a
list processing machine is defined with an order code
represented by a set of run-time routines. The com-
piler compiles a sequence of list processing instruc-
tions chosen from this order code corresponding to
each list processing statement. Basic to the opera-
tion of the list processing machine is a push-down
stack extant at run time called the chain accumula-
tor. Most of the run-time list processing operations
consist of manipulations on chains stored in the
chain accumulator. The code produced by the com-
piler corresponding to the statement INSERT
[A, B, C] (AFTER LAST, BEFORE FIRST T)
OF S is a sequence of list processing operations
whose mnemonics are as follows:

Instruction Comment
STACK A (on top of the chain ac-
cumulator)
STACK B (on top of the chain ac-
cumulator)

CONCATENATE (the top two chains in the
chain accumulator)
(on top of the chain ac-
cumulator)
CONCATENATE (the top two chains)
GO TO 0
p: CLA symbol to denote last
FIND POSITION (this routine locates the
last element of the chain

STACK C

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 251

on top of the chain ac-
cumulator and stacks a
pointer to this element on
top of the chain accumula-
tor)

PERMUTE (we change the order of

the elements in the chain
accumulator so that the
pointer is moved into the
third position)

CLA T :

FIND POSITION (locate the position of the
MINUS ONE cell in the chain on top of
the chain accumulator
which occurs directly be-
fore the first occurrence of
T in that chain; stack a
pointer to that position on
top of the chain accumu-
lator)
PERMUTE (as before, change the
order of the elements in
the chain accumulator so

that the pointer is moved:

into the third position)
(this routine performs in-
sertions using information
saved ‘in the chain ac-
cumulator)

PERFORM
INSERTIONS

GO TO x
6: STACK S (on top of chain accumu-
lator)
(replace S with the chain

that occurs as its contents)

TAKE
CONTENTS
GO TO p

xX: .. .
Let us now trace the effect of the execution of this
code on the chain accumulator. We will adopt the
symbolism that | ¢ represents the state of the chain
accumulator before we start to execute the code. As
we enter the code we build up the list [A, B, C] and
stack it on top of the chain accumulator. This pro-
ceeds in the following steps. First we stack A on top
of | ¢ producing A | . Then we stack B on top of
this producing B| A | ¢. Then we concatenate the
top two chains on the chain accumulator producing
A N B | ¢, where (M has been used as a symbol for
the concatenation of chains. Next we stack C pro-
ducing C | A N B | ¢, and then we concatenate
again producing A N B N C | ¢. At this point the
construction of the chain [A, B, C] is complete and
control transfers to location 6 in the code where
we stack S producingS | A N\ B N C | ¢ and take

its contents producing VA TNVNV|ANB
M C | ¢. Control now returns to p where we com-
pute and stack a pointer to the last element of the
contents of S giving* 0\| VATNVNY | A

M B N C | ¢. This pointer is moved to the third
position in the chain accumulator producing
Vmevm\U_AmBnC.lyl(p. A sec-
ond pointer is now computed and stacked. It points
to the position before the first T in the chain on top
of the chain accumulator o_I_JV NTNV
N \{(I ANBNC |'/0 | ¢. This pointer is also
moved into the third position in the stack giving
VYOATAVAVIANBNC|olole. We
could continue in this fashion computing and stack-
ing as many pointers as we wish, each pointer cor-
responding to a place where an insertion is to be
performed. We now transfer control to a routine
which actually performs the insertions. This routine
pops the chain VN T N V N V from the top of
the chain accumulator and inserts a copy of the
chain A M B M C after the position given by each
pointer in the chain accumulator looping until all
pointers in the chain accumulator are exhausted.
The state of the chain accumulator after the execu-
tion of this statement is | ¢. Control in the code
now passes to X where the execution of the program
continues. The reason for the existence of transfers
in the code sample given is because the order of
recognition of syntactic constructions in the inser-
tion statement in the source language is the reverse
of the order in which we utilize these constructions
in the computation expressed by the code. Spe-
cifically we must stack S and compute its contents
before we compute any pointers locating positions
in the contents where insertions are to be per-
formed. However, the constructions telling us
where to make insertions are encountered in the
source language before we encounter the expression
telling us the object on which the insertions are to
be performed. Floating addresses are used in the
compiler to implement such reversals.

Since the semantics of the source language de-
mands that all insertions be performed simul-
taneously we are forced to compute all locations
where insertions are to be made before performing
any insertions.

CONCLUSIONS

In this paper we have outlined the broad organi-
zation of the Formula Algol compiler. We have
also presented examples exhibiting various proper-

252 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

ties of the FSL compiler writing system. We have
not described completely or, in some cases at all, the
implementations of declarations, switches, arrays,
for statements, recursive procedures, block admin-
istration, formula manipulation or list processing.
For a complete and detailed treatment of these the
reader is referred to another; paper by the authors,
“The Implementation of Fotmula Algol in FSL.”"
The subject matter was chosen to reveal what we
feel to be interesting techniques involving the use
of a formal compiler writing system. '

ACKNOWLEDGMENTS |

The authors are deeply indebted to Professor
Alan J. Perlis who guided and inspired our effort.
Many of the creative and ofiginal ideas presented
are his. However, we alone remain responsible for
errors of style or content.

REFERENCES

1. R. Brooker and D. Morris, “A General
- Translation Program for Phrase Structure Lan-
guages,” Journal ACM, vol. 9, p. 1 (1962).

2. J. C. Reynolds, “Cogent—A Compiler and

Generalized Translator,” Applied Mathematics
Division, Argonne National Laboratory, internal
paper. _ :
3. R. Bolduc, T. E. Cheatham and A. Dean,
“Preliminary Description of the Translator Gen-
erator System-1,” Computer Associates, Inc. (Apr.
1964).

4. J. A. Feldman, “A Formal Semantics for
Computer Languages,” doctoral dissertation, Car-
negie Institute of Technology (1964).

5. , “A Formal Semantics for Computer
Languages and its Application in a Compiler-
Compiler,” Communications of the ACM, vol. 9,
p- 3 (Jan. 1966).

6. A. J. Perlis, R. Iturriaga and T. Standish,
“A Preliminary Sketch of Formula Algol,” Car-
negie Institute of Technology (July 1965).

7. R. W. Floyd, “A Descriptive Language for
Symbol Manipulation,” Journal ACM, vol. 8, p.
579 (1961).

8. A. Evans, “An Algol 60 Compiler,” Annual
Review in Automatic Programming, vol. 4, Pergamon
Press.

9. P. Z. Ingerman, “THUNKS,” Communica-
tions of the ACM, vol. 4, p. 55 (Jan. 1961).

10. K. Sattley, ““Allocation of Storage for Arrays
in ALGOL 60,” Communications of the ACM, vol.
4, p. 60 (Jan. 1961).

11. A. Evans, “Syntax Analysis by a Production
Language,” doctoral dissertation, Carnegie Institute
of Technology (1965).

12. R. Krutar, FSL II, Carnegie Institute of
Technology, Computation Center, internal publica-
tion.

13. A.J. Perlis and R. Iturriaga, “An Extension
to ALGOL for Manipulating Formulae,” Com-
munications of the ACM, vol. 7, p. 127 (Feb. 1964).

14. R. Iturriaga et al, “Implementation of
Formula Algol in FSL,” Carnegie Institute of Tech-
nology, Computation Center (Oct. 1965).

A PROPOSAL FOR A COMPUTER COMPILER*

Gernot Metze and Sundaram Seshu
Coordinated Science Laboratory and Department of Electrical Engineering
University of lllinois

INTRODUCTION

In recent years digital computers have been ap-
plied, with great success, to the automation of an
increasing variety of tasks in the design of digital
systems, from the printing of wiring tables and the
drawing of logical diagrams to the optimization, ac-
cording to certain criteria, of the layout of com-
ponents and wiring, and even the actual computer-
controlled production of subassemblies such as
printed circuit boards or integrated circuits. Sim-
ilarly, the design of circuits, especially those involv-
ing nonlinear elements, has been made easier by
computer programs (e.g., which perform tolerance
analyses). On the system level, the use of digital
computers has been limited to tasks which are
equally mechanical, such as programs which check
for violations of fan-in, fan-out, and cascading
rules.

More recently, languages have been developed
which permit the simulation of a proposed system
on an existing digital computer. Alternative system
designs can be evaluated not only on the basis of
performance statistics produced by the simulator,
e.g., timing and utilization of machine com-
ponents, but also by permitting the execution of
programs written in the instruction language of the
system being simulated.’

*Supported in part by the National Science Foundation
under Grant GR-32 and in part by the Joint Services Elec-
tronics Program under contract number DA 28 043 AMC
00073 (E).

253

The system designer, however, needs a language
which is powerful enough to permit the description
of the macroscopic structure of the system inde-
pendent of the microscopic structure of its com-
ponents. While the description of the system in this
language may also be used for simulation purposes,
the primary objective is the description of the re-
lationships between system components in such a
way that a compiler program can supply the de-
tailed structure of the components, guided by cer-
tain design and optimization criteria which are
stated explicitly or built into the program. Thus,
the program should be a true compiler, and the sys-
tem design language should permit a description of
the system on a higher level than the languages
proposed by Proctor,? Schlaeppi,’ and Schorr.*

The linguistic aspects of a system design lan-
guage, while interesting, have not been considered
here, except that the language was developed in
close analogy to the programming language FOR-
TRAN, reflecting the feeling that computer pro-
gramming and computer design are related fields.
In particular, concepts such as modularity (sub-
routine structure), interfaces (subroutine argument
linkages), parallel operations (multiprogramming),
flow diagrams, etc., pervade both philosophies.

Just as FORTRAN translates arithmetic state-
ments written in near-human language into a com-
puter program, the computer compiler will translate
a system description, given essentially in the near-
human language of the programmer’s manual, into
a description of the hardware, e.g., ANDs, ORs,

254 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

NOTs, and FLIPFLOPs, and their interconnec-
tions. .

GENERAL DESCRIPTION OF THE
COMPILER i

In comparison to manual:approaches, the design
of a digital system by compiler methods can be
expected to be much faster and much cheaper,
making it possible to examine (either externally or
within the compiler itself) many alternative designs
and select the one that is best according to some
criterion. In particular, one could automatically ex-
amine the design for such features as speed, cost, or
maintainability. If the input language is sufficiently
powerful, the effect of adding special features such
as buffered input/output, look-ahead controls, etc.,
can be examined with a minimum of changes to the
specifications. Perhaps most important is the pros-
pect that one good system designer can design the
entire system, leading to a more uniform and more
balanced result. :

It is convenient to break the computer compiler
program into two parts: a' hardware-independent
system compiler which reads the input language and
produces an intermediate language output, similar
to the assembly language output of most compilers,
and a hardware-dependent. logic compiler which
reads the intermediate language and produces a de-
tailed machine description in terms of the basic
building blocks specified.

The system compiler incorporates several stand-
ard assembler features, such:as ‘“macro,” ‘“‘repeat,”
and “library,” as well as the facility of interspersing
intermediate language statements if desired. The
intermediate language output is a microinstruction
string for each subprogram (subcontrol), optimized
according to a specified measure. Although the sys-
tem compiler is otherwise hardware-independent,
this measure may involve hardware cost. The
microinstruction string output of the system com-
piler includes a specification of the time-hierarchy
and is thus equivalent to a flow chart.

The intermediate language may also be used to
drive a simulator program which permits experi-
mental programming in the instruction language of
the proposed system. ‘

The specitication and the development of the
logic compiler is fairly straightforward concep-
tually. The Boolean minimizations required intro-
duce bookkeeping problems but no other diffi-
culties. The logic compiler is not discussed any
further in this preliminary report.

The concept of a library subroutine enters the
discussion of a computer compiler in two distinct
ways. The conventional notion is similar to that of
a subcontrol (e.g. arithmetic control, I/O control),
but in addition open subroutines (“built-in func-
tions” in FORTRAN terminology) may be used,
such as algorithms for arithmetic operations. How-
ever, one could now have several algorithms which
are equivalent in their final answers, say for divi-
sion in two’s complement representation, and ask
the compiler to choose the algorithm which fits best
with the rest of the design. Thus one may want to
call for any subroutine from a class of subroutines
which is identified by a class name. With a suffi-
ciently rich library one could conceive of “‘dime a
dozen”’ designs that one could choose from.

The proposed compiler is also a good research
tool. Since designs can be produced simply, one
could produce examples rapidly to study new design
ideas. Finally, the concepts generated here might
well suggest procedures for the synthesis of rion-
computer systems thus providing a formal basis for
“systems engineering.”

THE INPUT LANGUAGE

The description of a digital system involves two
aspects: the global description, and the subcontrol
(subprogram) description. The subdivision of the
system into subcontrols is similar to the subdivision
of a program into subprograms, and must be done
by the system designer. (Thus we implicitly seek
modular designs.) However, in contrast to con-
ventional programming, subcontrols may operate in
parallel, i.e., simultaneously, thus giving rise to the
need of a global description of the system. Counter-
parts to these concepts will become necessary when
multiprogramming compilers are written.

Global Description

The global description carries the special identi-
fier

MACHINE xxxx
followed by the following types of global headers:

1. Definitions of global constants by the opera-
tion SYN (see register declarations below) which
define word length, memory size, etc.

2. Declaration of subcontrols which may operate
in parallel.

3. Information necessary for optimization, such
as cost, time and other measures.

A PROPOSAL FOR A COMPUTER COMPILER 255

There are no program statements in the global
description.

Subcontrol Description

Each subcontrol description has an identifier and

the necessary header statements followed by the
instruction statements, i.e., the program, which
describe the subcontrol:

1. The identifier is a statement of the type
SUBCONTROL ARITH

where ARITH is a name chosen by the designer.
(The subroutine linkage mechanism is further dis-
cussed under Subroutine CALLSs below.)

2. Register Declarations are analogous to DI-
MENSION and COMMON statements in FOR-
TRAN except that we follow the machine language
convention and demand that even single bit regis-
ters be declared. There are five statement types in
this category:

a) REGISTER A(L) defines a register A of L bits
where L is an integer or a previously defined symbol.
Individual bits in the register are referred to by sub-
scripts which normally range from O to (L — 1).
Other ranges of consecutive subscripts must be
specified explicitly, as for example in

REGISTER A(-1,...,L — 2).

b) SYN (F,N) assigns the value N, which must be
a positive integer, to the symbol F, which may then
be used in register definitions and subscripts.

c¢) CONNECT (EAQ(-1,...,38)) = ES.A
©,...,19). Q(1,...,19) permits the concatenation
of registers. The registers on the right must have
been previously defined but need not be full regis-
ters. In the example above, Q(0) is not part of the
extended AQ register.

d) EQUIV (FNCTN(,...,9) = IR(,...,13))
labels (a part of) a register by another name and is
thus the inverse of CONNECT.

e¢) INTERFACE (ARITH) M,A,Q defines regis-
ters M, A, Q as interface registers in common be-
tween the current control and the subcontrol
ARITH. The INTERFACE statement is similar
to the FORTRAN COMMON statement but differs
from it in two respects. First, several subcontrols
in a machine may be operating simulataneously,
which is not the case in present programs. Since the
compiler would normally try to use existing registers
for temporary storage, it must be aware of the inter-
face registers which may be used by parallel con-
trols. Secondly, for the convenience of the logic

compiler as well as for readability, the alternate
control with which the register is shared should be
identified. Interface registers must be dimensioned
by REGISTER, CONNECT, or EQUIV state-
ments, and must be referred to by the same names,
in each of the subcontrols which share them. How-
ever, the order in which they are listed in the IN-
TERFACE statement is not important.

3. Instruction Decoding. The assignment of bit
configurations for the various instructions is.-a task
that is best left to the logic compiler. We therefore
allow the design engineer to use mnemonics for in-
structions. There are two types of instructions
involved. First we have the instructions that are to
be decoded and obeyed by the current subcontrol.

‘Second there are instructions to be given to other

subcontrols (for example, main control may request
a memory subcontrol to read or write a word). In
the first case, we need to decode and jump to the
appropriate control sequence. In the second case,
we need only set up a configuration of bits in an
appropriate register. In both cases, the function is
undefined. We must, however, specify (to the logic
compiler) the bits that are to be used to define the
function.

a) The format of the decode and jump statement
is
DECODE (IR(0,...,9))

HLT, LLS, LRS, JMP, JAN, ...

where IR(0,...,9) is (part of) a previously defined
register and HLT, LLS, etc., are mnemonics which
must appear as location field symbols in the main
program. The DECODE statement is itself part of
the main program since it serves as a multi-way
branch, analogous to a computed GO TO.

b) The format of a translation (or decoder) state-
ment is

UNDF (IR(O,...,9)) RM, WM, RMW

Here IR is a previously defined register and RM,
WM and RMW are instructions to be passed on to
other subcontrols. The system compiler generates a
decoder for each such UNDF statément. FEach
decoder is defined in detail by the logic compiler.
UNDF is a header statement.

The mnemonics on the right of the parentheses
in both statements must be single-valued Boolean
functions of the bits that are enclosed within the
parentheses. For example, consider the execution of
the instruction REPLACE ADD MEMORY, which
replaces the contents of the memory cell by the sum
of the previous contents and the contents of the

256 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

accumulator. We need to: set up first a READ
MEMORY (RM) instruction and then a WRITE
MEMORY (WM) instruction in the instruction
register.of the memory subcontrol. If FN is the
function part of the main instruction register, we
cannot write ‘

UNDF (FN), RM, WM

for RM and WM are not single-valued functions of
FN alone. Some control flip-flop is also involved
and must therefore be defined as

REGISTER CN (1)
UNDF (FN, CN) RM, WM

The symbols that are used on the right must appear
exactly once in the DECODE statement of another
subcontrol to permit correlation by the logic com-
piler.

4. Program Statements, which may contain a
label, include the following types:

a) Register Transfers. The gating of information
from a register A to a register B is specified by

B = A.

The symbol on the right must either be a register
or an undefined function. Partial register transfers
are indicated by subscripting. Gating is assumed
to be parallel. '

b) Branch Statements.

i) DECODE, the counterpart to a com-
puted GO TO, has been discussed in
the preceding section. :

i) An unconditional branch is indicated
by simply writing the symbol (with-
out the words GO:TO).

iii) A conditional branch is indicated by

IF (A(O) = 1) JMP

where the true exit is the statement
labeled JMP, the false exit the next
statement. The condition must be
based on a single bit being 0 or 1.

iv) The WAIT statement is similar to the
IF statement, except that the true exit
is the next statement, and the false
exit is the WAIT statement itself, e.g.,

WAIT (RQ = 1)

permits the subcontrol to go on to the
next statement only after RQ has
been set to 1.

¢) SET and CLEAR permit individual bits, or
entire registers, to be set to 1, or cleared to 0. Sub-
scripts are allowed.

d) SUBROUTINE INSERTIONS are accom-
plished by writing the name of the subroutine, with
the argument list in parentheses. Both library sub-
routines and programmer-defined subroutines are
treated as macros. Subroutines may be called by
their class name if the choice of the particular sub-
routine is to be left to the compiler.

e) Subcontrols call other subcontrols through the
statement CALL. Since subcontrols may be parallel
or sequential (see the following section), and one
would like to be free to define them either way by
means of global headers, we provide three formats
for the CALL statement:

CALLS SUB(RQ)
CALLP SUB(RQ)
CALL SUB(RQ)

By convention the argument in parentheses (RQ) is
the name of the request flag. The terminals S and P
designate the CALL as sequential or parallel and
override the global definition. In the simple CALL,
the global definition prevails. In each case a string
of statements which load interface registers follows
the CALL statement, terminated by an ENDC. |
Consider the following example of a main control to
core control CALL (Store Accumulator instruc-
tion):

CALL CORE (MCRQ)
MCAR = ADDR
M=A

MCIR = WM

ENDC '

If the memory control is defined as sequential in the

. global headers the compiler produces the micro-

instruction string

GATE MCAR = ADDR
GATEM = A
DECODER 2 = WM
CONNECT DECODER 2 to MCIR
SET MCRQ
WAIT (MCRQ = 0)
If on the other hand the global definition states that

the memory control operates in parallel with main
control, the following microinstruction string

A PROPOSAL FOR A COMPUTER COMPILER 257

results:
WAIT (MCRQ = 0)
GATE MCAR = ADDR
GATEM = A
DECODER 2 = WM
CONNECT DECODER 2 to MCIR
SET MCRQ

"5. The Slash Notation. One of the most common
operations in a computer is to read a word from
memory into a register or store a word from a regis-
ter into memory. Therefore we invent a special
shorthand notation for this purpose. The notation
/REG/ refers to the memory location whose ad-
dress is in register REG. Thus

IR = /P/

states that the word whose address is in the program
counter P is to be read and loaded into the instruc-
tion register IR. Similarly

JADDR/ = A

states that the contents of A are to be stored in the
memory location whose address is in register
ADDR,

Naturally the compiler must be given the inter-
pretations of the two statements by means of macro
definitions. This macro is given the special name
MEMORY. Since the memory address and buffer
registers are unique to the calling program, this
memory definition must be part of the calling pro-
gram. Alternatively it may also be defined in detail
in the global headers as a macro with a local macro
MEMORY (calling the global one) defining the
interface registers.

PARALLEL AND SEQUENTIAL
SUBCONTROLS

As remarked earlier, a subcontrol is similar to a
subprogram. Thus one intuitively expects to use
some type of LINK JUMP (or RETURN JUMP).
Since a subcontrol may be called from several places
(in the same or different controls) it appears in-
tuitively necessary to store the calling address in
some register. - If such a procedure were followed,
the subcontrol would have to interpret the contents
of this register and return to the calling point. The
FORTRAN analog is the ASSIGNED GO TO.
This technique is aesthetically unappealing since the
subcontrol has to know-the various points from

which it can be called—an impractical procedure
for library routines. Also the notion of a parallel
subcontrol has no exact analog in subroutines. An
interrupt subroutine comes close but a more exact
analogy is the communication between two com-
puters. In both of these cases, thé standard com-
munication technique is the use of flags rather than
LINK JUMPs.

. Thus parallel subcontrols must be initiated into
action by means of a flag flip-flop and must simi-
larly indicate the completion of the action by a flag
flip-flop. - There appears to be no reason why these
two flip-flops could not be the same. We label it
the REQUEST flip-flop. By convention the CALL
sets the REQUEST and the subcontrol clears it
when it is through.

One would like to be able to write library sub-
routines (subcontrols) with the parallel/sequential
consideration. The executive program (or in our
case, the global headers) should decide whether the
subcontrol is to be used as a parallel or a sequential
subcontrol. The REQUEST convention permits
one to achieve this objective.

There is one further distinction between parallel
and sequential usage which must be mentioned. If a
parallel subcontrol can be called from two (or more)
other subcontrols then it should have two (or more)
sets of interface registers and request flip-flops. If
RQI1, RQ2,... are the different request flip-flops,
then a subroutine can serve a fixed hierarchy of
requests by the statement

WAIT (RQ1 + RQ2 + .-+ = 1)

where + denotes the Boolean OR. Similarly, a

- scanning procedure can be arranged by using a

string of IF statements. In order to make it pos-
sible to write library subroutines independent of the
number of requests, a simple extension of the
INDEFINITE REPEAT feature of macro com-
pilers may be used, with the necessary information
carried in the library call. o

In a sequential subcontrol multiplicity of inter-
face registers is not necessary. It may be used
without harm, of course.

We may finally note one distinction between
intercomputer communication and parallel sub-
controls. If two computers are tied together, either
computer may request action by the other (and con-
flicts are somehow resolved). In our case, however,
the standard hierarchical structure of programming
must be observed. If subcontrol A can call on sub-

258 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

control B, subcontrol B may not call on subcon-
trol A. Thus the problem is simpler.

TIME AND CONTROL HIERARCHIES

We have implicitly noted that there are two no-
tions of hierarchy among subcontrols. The dif-
ferent subcontrols form a partially ordered set under
the relation of extended CALL. As in conven-
tional programming we insist that this relation
define a true partial ordering. Beyond this fact,
however, we are not too concerned with this logical
hierarchy.

A second partial ordering, which is not ab initio
a partial ordering but may be converted into one, is
by time of operation. If two subcontrols may oper-
ate at the same time they are at the same level in this
partial ordering independent of the logical hier-
archy. They are parallel subcontrols in our earlier
terminology. Consider for example a main control,
a buffered input/output subcontrol and a memory
subcontrol. Since 1/0 is buffered, it may operate at
the same time as main control. Since the I/0 sub-
control may call on memory subcontrol, the
memory subcontrol may operate at the same time as
main control. Thus the logical hierarchy is that
shown at the left in Fig. 1, while the time hierarchy
is the one shown at the right.

D
@‘ @@ @ @&
CD

Figure 1. Hierarchy of subcontrols (Hasse diagrams): Logical
(left); Time (right).

(Formally, “‘parallel” is a binary relation which
we extend by transitivity. The partial ordering rela-
tion in the time diagram is “not parallel, and below
in logical ordering.”)

THE LIBRARY

The library material for the compiler should con-
tain two classes of programs: subroutines and sub-
controls. A subroutine is an “open’ subroutine or
a macro. Algorithms for arithmetic operations,
incrementors, etc., come under this category. These
algorithms are divided into. types and are called by
type names; the detailed choice is left to the com-

piler. Subcontrols are complete subprograms but
are processed according to macro conventions, that
is, they are stored in source language with dummy
dimensions and dummy register names. They may
contain such macro features as ‘“‘indefinite repeat,”
“If True,” “If False,” etc. An example of the li-
brary call for such a library subcontrol is

ARITH LIB AC5(A, Q, OV, N)

where ACS5 is the identifier of the library routine,
ARITH is the name assigned in the machine, A, Q
and OV are registers and N is the dimension (de-
fined in global headers).

It is sometimes necessary to label the “next state-
ment while using the indefinite repeat directive. An
example is a ‘“‘scanner” which services requests in
sequence. For this purpose we introduce the
CONTINUE statement. An example follows:

SUBROUTINE CORE (RQ, M1, MAD, MI, C1, AL, WL)
REGISTER MAR (AL), MBR (WL)
IRP (RQ, M1, MAD, ML, Cl)
REGISTER RQ(1), M(WL), MAD(AL), MI(1)
STH 1F (RQ = 0) Cl

DECODE (MI) RD, WR

RD MAR = MAD
«CORERD
M1 = MBR
. CLEAR RQ
c1
WR MAR = MAD
MBR = M1
CLEAR RQ
+COREWR
c1 CONTINUE

If there are three controls which wish to use this
memory control in parallel, one may use the library
call

LIB CORE ((RQI, M1, MA1, MI1,),
(RQ2, M2, MA2, MI2,),
(RQ3, M3, MA3, MI3,), AL, WL)

In the subroutine, .CORERD and .COREWR are
library subroutines which set up the signals for
reading and writing core memory. We note that CI
is a repeated argument which has not been specified
in the library call. Hence it becomes a created
symbol, a different symbol for each repetition. On
the other hand, STM is not an argument. Hence
this symbol is assigned to the first occurrence. The
repetition IRP uses simultaneous substitutions for
all arguments. (This is the simple extension referred
to earlier.) The CONTINUE statement is not

A PROPOSAL FOR A COMPUTER COMPILER 259

translated; its label is assigned to the ‘“next” micro-
instruction.

It is easily verified that the “IF, CONTINUE”
arrangement in the subroutine is in fact a scanner.

THE MICROLANGUAGE (OUTPUT
LANGUAGE OF THE SYSTEM
COMPILER)

The output of the system compiler is a preamble
followed by a string of microinstructions. The pre-
amble contains the information necessary for the
logic compiler. Wherever possible, one would like
to perform microoperations in parallel. For this
purpose the system compiler will associate an
ordered-pair level index with each microinstruction
and specify in the WAIT field the ordered pair
indices of the microsteps which must be previously
completed. Thus the output becomes a description
‘of the flow diagram.

The microlanguage is permissible in the source
program as well (without the ordered-pair indices,
of course). In fact, arithmetic algorithms have to
be written in microlanguage. In the source program
a switch to the microlanguage is initiated by

— MICRO
and terminated by
— COMPILE.

All arithmetic operations in the microlanguage
are Boolean. The conventions are

A+B A OR B

(—-A) NOT A (outer parentheses essential)
A *B A AND B

A(+)B A EXCLUSIVE OR B

Other operations can be added later. Subscripts
are allowed, and the RANGE of symbolic sub-
scripts may be specified.

An equality sign denotes a definition. If the vari-
able on the left is a flip-flop, the quantity on the
right decides whether the flip-flop is set (1) or
cleared (0). Otherwise the equation is taken as a
signal definition (decoder output for example).

Other microoperations (all self-explanatory) are:

GATE RA = RB

IF (BIT = 1 (or 0)) LABEL
OFF GATE

STOP

balll S e

SAMPLE DESIGN OF A SMALL
DIGITAL SYSTEM

In order to demonstrate the versatility and power
of the input language, we present here the system
design of a small digital computer with a sequential
arithmetic subcontrol and a parallel input/output
subcontrol which handles one-word transfers to and
from memory.

The card format is essentially that of FORTRAN,
A detailed discussion of the example will be found
in the following section. The register layout and
data paths are shown in Fig. 2.

M
lov A
Q
AIR_|ACTR
A
R

MAIN S—S———S——{ ARITH “

M__]
[MLIR]MIAD / \ MCIR [MCAD|

PA

MI N MC
RO / Ra
/\\ //\

10 S——S§ S CORE
IC
RQ
ICIR | ICAD
Data from ——>1 IOBFR
ext. devices

Figure 2. System layout and data paths in the sample computer.

MACHINE CSLIAC
* GLOBAL HEADERS

SYN (WL,20), (DWL,39), (AL,10), (FL,10), (AAL,5), (AFL,3),

(10FL,1), (CFL,l)
LENGTHS OF REGISTERS ARE DEFINED AS FOLLOWS:
WL = SINGLE WORD, DWL = DOUBLE WORD, AL = ADDRESS, FL = FUNCTION,

AAL = ARITHMETIC ADDRESS, AFL = ARITHMETIC FUNCTION,

* % * %

TOFL = INPUT/OUTPUT FUNCTION, CFL = CORE MEMORY FUNCTION

PARALLEL (MAIN, 10), (MAIN, CORE), (10, CORE)

* MEMORY READ DEFINITION

MACRO MEMRD (X,Y,AD,DT,IR,RQ)

X IS SOURCE RECISTER FOR MEMORY ADDRESS, Y IS DESTINATION REGISTER FOR
CONTENTS (OPERAND OR INSTRUCTION), AD IS INTERFACE ADDRESS REGISTER,

DT IS INTERFACE DATA (OPERAND OR INSTRUCTION) REGISTER, IR IS INTERFACE

MEMORY INSTRUCTION REGISTER, RQ IS RRQUEST FLAG.

% * %

NAME OF MEMORY CONTROL IS CORE.

CALL CORE (RQ)

AD = X

IR = ROY

ENDC

1FF (Y = DD)

Y=

ENDM

MEMORY WRITE DEFINITION, SAME ARGUMENT LIST
MACRO MEMWR(X,Y,AD,DT,IR,RQ)

CALL CORE (RQ)

260

*

AD =X
IR = WCM
IFF (Y = DT)
Ty

ENDC

ENDH,

END

CONTROL MAIN

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

REGISTER IR(WL), P(AL), RUNSW(1); CN(1),

H(WL), A(WL), Q(WL), ACTR(AAL), AIR(AFL); ARQ(1), OV(1),

MIAD(AL), MUIR(TOFL), MIRQ(1),

MCAD(AL) , MCIR(CFL), MCRQ(1)

INTERFACE(ARITH) M, A, Q, ACTR, AIR, ARQ, OV

INTERPACE (I0) MIAD, MIIR, MIRQ

INTERFACE (CORE) M, MCAD, MCIR, MCRQ

DEFINE RIGHTMOST AL BITS OF INSTRUCTION AS ADDRESS PART

EQUIV (ADDR = IR(WL-AL,...,WL-1))

DEFINE LEFTMOST FL BITS OF INSTRUCTION AS FUNCTION PART

EQUIV (FNCTN = IR(D,...,FL-1))
ARITHMETIC FUNCTIONS

UNDF (FNCTN) ALLS, ALRS, AADD, ASUB, AMUF, ADVF

1/0 FUNCTIONS

UNDF (FNCTN) IORD, IOWR
CORE. FUKCTIONS

UNDF (FNCTN, CN) RCM, WCM
SLASH NOTATION DEFINITION
MEMORY Y = /X/
MEMRD(X, ¥, MCAD, 4, MCIR , MCRQ)
ENDH

MEMORY /X/ = ¥
MEMWR(X,Y ,MCAD, M, MCIR, MCRQ)
ENDM

MAIN PROGRAM

EXIT INCR (P,P,AL)

BEGIN IR = /P/

XEQ

HTR

RS

JMP

LDA

STA

LoQ

STQ

SAD

e

CLEAR CN

DECODE (FNCTN) HTR, LLS, LRS, JMP, JAN, LDA, BTA, LDQ, STQ, SAD,

1 L3P, JOV, ADD, SUB, MUF, DVF, INP, OUT, J10

WAIT (RUNSW = 1)
M

CALL ARITH (ARQ)
AIR = ALLS

ACTR = ADDR (AL-AAL,...,AL-1)

FETCH NEXT INSTR

HALT TRANSFER

LONG (ARITH) LEFT SHIFT

ACTR USES RIGHTMOST AAL BITS CF ADDRESS

ENDC

EXIT

CALL ARITH (ARQ)
AIR = ALRS

ACTR = ADDR (AL-AAL,...,AL-1)
ENDG

EXIT

P = ADDR

BEGIN

IF (A(0) = 0) EXIT
e

A = /ADDR/

EXIT

/ADDR/ = A
EXIT
Q = /ADDR/
EXIT
/ADDR/ = Q
EXIT
M = /ADDR/

LONG (ARITH) RIGHT SHIFT

JUMP (UNCONDITIONAL)
JUMP ON A NEGATIVE

LOAD ACCUMJLATOR

STORE ACCUMULATOR
LOAD Q
STORE Q

SUBSTITUTE ADDRESS

M(WL-AL, ...,WL-1) = A(WL-AL,...,WL-1)

SET N

/ADDR/ = M

EXIT

JINGR (P, P, AL)
¥ = /ADDR/

LINK JUMP

WIF

VR

ouT

ALLS

amr

Amvr

EXIT

M(WL-AL,...,WL=1) = P

SET N

/ADDR/ = M

PLANT CONTENTS OF P IN RIGHTMOST AL BITS OF MEMORY WORD
LINCR (ADDR, P, AL)

BEGIN

IF (oV = 0) EXIT JUMP ON OVERFLOW
CLEAR OV

e

CALL ARITH (ARQ) ADD

AIR = AADD

M = /ADDR/

ENDC

EXIT

CALL ARLTH (ARQY SUBTRACT

AIR = ASUB

M= /ADDR/

ENDC

EXIT

CALL ARITH (ARQ) MULTIPLY A BY M (PRAC)

ATR = AMUP

M= JADDR/

ENDC

EXIT

CALL ARITH (ARQY DIVIDE (FRAC) AQ/M

AIR = ADVP

M = [ADIR/

ENDC

EXIT

CALL I0(MIRQ) INPUT VIA 10

MIIR = 10RD

MIAD = ADDR

ENDC

EXIT

CALL TO(MIRQ) OUTPUT VIA 10

MIIR = TOWR

MIAD = ADDR

EXIT

IF (MIRQ = 0) EXIT JUMP IF IO BUSY

e

END

SUBCONTROL ARITI

REGISTER M(WL), A(WL), Q(WL), ACTR(AAL), AIR(AFL),
ARQ(1), OV(1), ES(1)

INTERFACE (MAIN) M, A, Q, ACTR, AIR, ARQ, OV

CONNECT (EAQ(-1,...,DWL-1) = ES.A.Q(1,...,HL-1))
EQIV (AQ = EAQ(Q,...,DWL-1))

WALT (ARQ ~ 1)

DECODE (AIR) ALLS, ALRS, AADD, ASUB, AMUF, ADVF
IF (ACTR = 0) EXIT

\DECR (ACTR, ACTR, AAL)

EAQ(-1,...,DWL-2) = EAQ(0,...,DWL-1)

EAQ (DWL-1) = O

ALLS

IF (ACTR = 0) EXIT

.DECR (ACTR, ACTR, AAL)

EAQ(L, ..., DWL-1) = EAQ(D,...,DHL-2)

LPAVES POSITIONS O AND ES UNTOUCHED
ALRS

.ADDZ (A,M,A,0V,WL)

fats

SUB2 (A,M,A,OV,WI)

T

JMUR2 (A,M,AQ,OV,WL)

EXIT

NVF (AQ,H,Q,4,0V,WL)

IORD IOBFRRD (IOBFR)

A PROPOSAL FOR A COMPUTER COMPILER 261

SUBCONTROL 10

REGISTER IOBFR (WL),
1 MIAD (AL), MIIR(CFL), MIRQ(l),
2 TCAD(AL), ICIR(CFL), ICRQ(1)

ICRQ IS REQUEST FROM 10 TO CORE, MIRQ IS REQUEST FROM MAIN TO 10

INTERFACE *(MATN) MIAD, MIIR, MIRQ
INTERFACE (CORE) IOBFR, ICAD, ICIR, ICRQ
UNDF (ICIR) IRC, IWC

WAIT (MIRQ = 1)

DECODE (MIIR), IORD, IOWR

CALLS CORE (ICRQ)
ICAD = MIAD

ICIR = 1WC

ENDC

CLEAR MIRQ

START

IOWR CALLS CORE (ICRQ)

START

WCH

RCY

ICAD = MIAD

ICIR = IRC

ENDC

CLEAR MIRQ

.1OBFRWR (1OBFR) GATES FROM BUFFER TO EXT. DEVICE
START

END
SUBCONTROL CORE

REGISTER MBR(WL) , MAR(AL),
1 " M(WL), MCAD(AL), MCIR(CFL) , MGRQ(1),
2 I0BFR(WL), ICAD(AL), ICIR(CFL), ICRQ(1)
INTERFACE (MATM), M, MCAD, HCIR, MCRQ
INTERFACE (10), T0BFR, ICAD, ICIR, ICRQ
WAIT (MCRQ + ICRQ = 1)
IF(ICRQ = 1) 10D
DECODE (MCIR) ROM, WCH
DECODE (ICIR) RCI, WCI
MAR = MCAD
+CORERD
M = MBR
CLEAR MCRQ
START
MAR = MCAD
MBR = M
CLEAR MCRQ
. COREWR
START
MAR = ICAD
.CORERD
I0BFR = MBR
CLEAR ICRQ
START
MAR = ICAD
MBR = IOBFR
COREWR
CLEAR ICRQ
START
END
SUBROUTINE ,RIPLADD (X,Y,Z,0FL,WL), CLASS ,ADD2
X = AUGEND, Y = ADDEND, Z = SUM, OFL = OVERFLOW FLAG
RADIX COMPLEMENT ADDITION WITH RIPPLE CARRY
REGISTER X(WL) , Y(WL), Z(WL), OFL(1), SX(1), SZ(1)
IFT (X = 2)
REGISTER TR(WL)
IFF (X = 2)
EQIV (TX = 2)
-- MICRO
(W) = 0
DL-1) = 1
RANGE I = 0, WL-1
C(I-1) = XDM*YD*DID) + (X(D+V(DI*C(T)
D(I-1) = CXMI*(-YMI*C(D) + ((-X(D) + (-Y(D))I*D(T)
VAIT (C(-1) + D(-1) = 1)

GATES INTO BUFFER FROM EXT. DEVICE

ASSERT (C = (-D))

8(I) = X(I) (#) Y(I) (H C(D)
GATE TX = 8

Vs = C(0) () C(-1)

GATE OFL = OVS

IFT (X = 2)

GATE X = TX

== COMPTLE

END

DISCUSSION OF THE EXAMPLE

The purpose of the global header subprogram
with the identifier “MACHINE” is to provide maxi-
mum flexibility in the system design. One can
change word length or memory size simply by
changing one synonym. One can change from buf-
fered 1/0 to sequential I/0 by removing one state-
ment. One can change from one type of memory to
another by changing macros MEMRD and
MEMWR. We note incidentally the convention
ENDM as macro termination and the use of macros
within macros. ‘

The statements IFF and IFT mean “IF FALSE”
and “IF TRUE” and cause conditional compilation
of the next statement (MAP convention). All sub-
routines whose ndmes start with a period are as-
sumed to be library subroutines (or classes of them).
The subroutines used have the following interpreta-
tions:

INCR (SOURCE, DESTINATION,
LENGTH): DESTINATION =
SOURCE + 1

.DECR (SOURCE, DESTINATION,
LENGTH): DESTINATION =
SOURCE - 1

.ADD2 (OPERAND 1, OPERAND 2,
DESTINATION, OVERFLOW,

WORD LENGTH): 2’s complement
addition.

.SUB2, .MUF2, .NDVF2 have the same
arguments as .ADD2 and refer to 2’s
complement subtraction, multiplica-
tion and non-restoring division.

JOBFRRD AND .IOBFRWR are subroutines
to activate external 1/0 devices to read into and
write out of the IO buffer register, respectively.
Similarly .CORERD and .COREWR generate sig-
nals to read from and write into the core memory.

Since we have adopted the IPLV execution con-
vention for GO TO, certain statement tags are not
admissible. These are: DECODE, CALL, MACRO,
ENDC, ENDM, IF, IFF, IFT, IRP, END, WAIT,
CLEAR, SET, REGISTER, INTERFACE,
PARALLEL, etc.

262 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

Special Points to be Noted

Main Control: ACTR is:a counter register for
arithmetic control. RUNSW'is a flip-flop controlled
by console switches. When it is off (RNSW = 0),
the instruction HTR stops the main control. How-
ever, the I/0 and memory controls may continue to
run. In SAD and LJP we could have used a
read/modify /write procedure if the memory control
had such capability. For example, if RMW is the
appropriate core memory instruction, the appropri-
ate string for SAD is:

CALL CORE (MCRQ)

M=A

MCAD = ADDR
MIR = RMW
ENDC

One would define such a string by a macro in the
global description.

Note that register M appears in the interface
between MAIN and ARITH, as well as in the inter-
face between MAIN and CORE. This is permissible
in this case since MAIN calls ARITH sequentially.

Arithmetic Control: We should note the forma-
tion of the long EAQ register by the use of CON-
NECT. The sign bit of Q is excluded in this long
register and the sign bit of ‘A is extended by one
bit (ES). :

10 Control: We note the use of CALLS when
subcontrol CORE is called. In the global definition,
I0 and CORE have been defined as parallel as they
could operate at the same time. However, when
CORE is called by 10, we have to wait for the
CORE control to finish. In reading from an IO
device, we have to signal MAIN that the word has
been written into memory; in writing to an IO
device, we need the word from memory to write.
Thus in both cases a WAIT: (ICRQ = 0) is neces-
sary after the initiation of a memory request. If a
simple CALL were used, the ENDC would have to
be followed by such a wait, whereupon the first
WAIT (ICRQ = 0) produced by the compiler be-
comes redundant. (Incidentally, in such a case the
JIOBFRRD must be inside the CALL string.) We
also note that the IO/CORE interface register
IOBFR is being used also as IO/EXTERNAL
DEVICE interface. While the compiler itself will
never use an interface register between parallel con-
trols for any other purpose, the programmer may
choose to do so. The compiler will bring this fact
to the attention of the programmer but will not
label it as an error.

Core Control: We note that the initial wait string
assigns a higher priority to 10 than to main control.
If a scanner type of arrangement is desired we
should replace the first two statements by

START IF (ICRQ = 1) IOD
STRTI IF (MCRQ = 0) START

and return to STRT1 instead of START after RCI
and WCI. Clearly one could, by additional IF
statements, permit more complicated scanning pro-
cedures (such as a 2:1 priority for IO over MAIN).
Also we could have saved some writing through the
use of IRP. _

Library Subroutine Usage: An example of a
library subrbutine is shown under .RIPLADD. The
subroutine belongs to the class .ADD2 and is called
by that class name in the subcontrol ARITH. The
class definition is contained in a table within the
library directory. We note a new statement
ASSERT. This statement is an assertion known to
the programmer but difficult to detect by program.
The assertion is passed on to the logic compiler for
its use.

CONCLUSION

The purpose of this paper was to present a pro-
posal for a computer compiler system of programs.
As of the time of writing this paper, the system of
programs is not available and hence no experimen-
tal data can be provided. The example given estab-
lishes the following facts:

1. The input language is simple and ver-
satile.

2. The input language is complete. That
is, one can describe any existing com-
puter unambiguously in this language.

3. The language is translatable. That is,
there appear to be no conceptual rea-
sons why the input cannot be algorith-
mically translated to produce optimized
hardware designs. '

The basic concept proposed here is not entirely
new. Similar work has been reported earlier by
Proctor? and Schorr.* The present paper differs
from the earlier proposals in several respects. First
the philosophy is different. The basis of each deci-
sion has been user convenience rather than linguistic
structure. In fact we have chosen to disregard the
linguistic aspects. By the same token, the user is not
required to specify any more information than he
absolutely has to. For example, no registers that
are not directly referred to in the input need be

A PROPOSAL FOR A COMPUTER COMPILER 263

defined. MACRO, SUBROUTINE, LIBRARY
and conditional compilations are new features (an
elementary MACRO was used by Schlaeppi®). The
use of global headers and the notion of parallel/
sequential CALLSs to subcontrols introduces a flexi-
bility that was not previously available.

The compiler (when completed) will optimize
more extensively than is humanly possible, main-
taining the modularity specified in the input. Thus
the system compiler will attempt to merge micro-
instruction strings both between instructions (of the
object machine) and within an instruction, inserting
conditional branch statements where necessary. The
hardware compiler will attempt as much Boolean
minimization as practical. The assignment of bit
configurations to instructions and the combination
of different decoders (within one subcontrol) are
places where substantial gains are expected.

One last distinction which is conceptually trivial,
but to us important, is that our designs will be
asynchronous. It is our claim that asynchronous

computers are faster and more reliable in addition
to being more maintainable. Design difficulty,
which has in the past been the main disadvantage,
is eliminated by the computer compiler.

REFERENCES

1. M. S. Zucker, “LOCS: An EDP Machine
Logic and Control Simulator,” IEEE Trans. on
Electronic Computers, vol. EC-14, pp. 403-416
(June 1965).

2. R. M. Proctor, “A Logic Design Translator
Experiment Demonstrating Relationships of Lan-
guage to Systems and Logic Design,” ibid, vol.
EC-13, pp. 422-430 (Aug. 1964).

3. H. P. Schiaeppi, “A Formal Language for De-
scribing Machine Logic, Timing and Sequencing
(LOTIS),” ibid, pp. 439-448 (Aug. 1964).

4. H. Schorr, “Computer Aided Digital System
Design and Analysis Using a Register Transfer
Language,” ibid, pp. 730-737 (Dec. 1964).

A BUSINESS-ORIENTED TIME-SHARING SYSTEM

G. F. Duftfy and W. D, Timberlake
International Business Machines Corporation
Systems Development Division, Poughkeepsie, New York

INTRODUCTION

The purpose of this project was twofold. First,
to gain systems and operating experience with a
remote terminal, time-sharing system. This would
help to define the needs of future time-sharing ap-
plications. Second, to achieve productive use of
time-sharing in some of IBM’s current operations.

In general, man attempts to solve complex prob-
lems in a step-by-step manner, basing his next step
on the results of the preceding step. Problem solvers
have continually sought tools to aid them in their
tasks. Several decades ago most of these tools (slide
rules, calculators, etc.) were under direct control of
their users (see Fig. 1). Because turnaround time
was not excessive the problem solver could essen-
tially devote his entire energies to the situation at
hand in real-time. Unfortunately these tools were
not powerful enough.

The computer emerged as an extremely powerful
tool; however, it was too fast and expensive to be
used efficiently by one individual in a real-time
mode. Thus, the jobs had to be processed sequen-
tially by the computer. Turnaround time increased
and the problem solvers had to time-share their
efforts among several tasks. This tends to be an
inefficient use of human talents. This inefficiency, in
part, has led to the current interest in time-sharing
—whereby the computer serves multiple users
simultaneously.

The early development in time-sharing was ori-

265

ented to the scientific, rather than the business user.
This was due, in part, to a lack of knowledge and
consequently a lack of interest by potential business
users. In spite of this, the Systems and Procedures
Department was interested in fostering the use of
time-sharing by business users.

In 1962, we learned of the Administrative Ter-
minal System that was being developed by IBM’s
Advanced Systems Development Division, San
Jose, California. Since this system seemed suitable
for our use we started making plans to install ATS
in the IBM Systems Development Division Labora-
tory in Poughkeepsie.

Two approaches were possible: select one major
application area or select different application areas.
Although the former alternative would have been
easier to implement the latter course of action was
chosen for the following reasons. More experience
would be gained. Initial acceptance would tend to
be enhanced by a more modest beginning in each
area. The system application could be easily ex-
panded at a later time by the addition of more ter-
minals. Finally, failure of a given application would
not significantly impact the entire system.

The task of selecting different application areas,
and justifying the system was simplified because we
were able to obtain three prototype terminals for ex-
perimentation and demonstration. The benefit of
having something tangible to show to potential
users of time-sharing cannot be overemphasized.

266

PERIOD BEFORE
LARGE-SCALE
PROCESSORS

UNIT RECORD
EQUIPMENT

B

CLOSE CONTROL

CALCULATOR LOW RATE OF HIGH RATE OF
TPUT OUTPUT

'(——>

™\

«==> SLIDE RULE

]

MANUAL
PROCESSING

QUEUEING
PROBLEM

Figure 1.

SYSTEM DESCRIPTION

ATS is a real-time, multiprogrammed, time-
shared, remote terminal system that can be run on
either a 1440 or 1460 IBM: computer (see Fig. 2).
The hardware consists of a processing unit, disk
storage, multiplexor channels, typewriter terminals,
magnetic tape drives, card reader and punch, and
on-line printer(s).

The system permits many operators to simul-
taneously perform different data processing tasks.
These tasks include data (or text) entry, immediate
correction, storage, retrieval, updating, formatting,
and transmission.

At entry time a backspace-correction feature can
be used to ensure that error-free data is retained in
storage. This is done by backspacing over incorrect
keystrokes and re-keying the correct strokes. Data
can be updated by using add, replace, and delete
functions. Text can be formatted at output time
into various specified formats. (This paper was pre-
pared with the help of ATS.) Figure 3 is an example
of text as it was entered into ATS, and as it was
subsequently formatted and printed.

Data can be transmitted or recorded on various
output devices. These include the originating ter-
minal (or any other terminal on the system that

DIRECT CONTROL

PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE,

PERIOD OF
BATCH- PROCESSING
(LARGE-SCALE PROCESSORS)

|
|
I
I
|
l LARGE COMPUTER
I
|
I

LIAISON:
SYSTEMS AND
PROGRAMMIN G OUTPUT

APPLICATION AREA

'l

1966

REAL-TIME ENVIRONMENT
PLUS
BATCH-PROCESSING

LARGE OR
‘ SMALL COMPUTER

I

| MAXIMUM CONTROL

I HIGH RATE OF % \71\
I

|

I

APPLICATION AREA
REMOTE. TERMINALS
ON-LINE

I
|
I
l
|
I
!
I
l
|
l

Man-machine relationship.

provides a message transmission capability), on-line
printer, on-line card punch, or magnetic tape. The
on-line printer may be standard or supplemented
with the upper and lower case print feature. The
data recorded on magnetic tape can be used for
further processing (off-line in regard to ATS), off-
line printing (standard or with upper and lower
case characters), or off-line card punching. (See
Fig. 4.)

Input media into the system come primarily from
the remote terminals, but punched cards or mag-
netic tape can also be used.

The software consists of a core resident control
program and various disk resident service programs.
In addition to accepting data from, or transmitting
data to, one or all terminals, the control program
maintains lists of work in progress, calls the service
programs into core as necessary, and handles all
disk I/O operations.

Core storage is used for various lists and tables
used by the control program and also as core buffer
areas for terminals. Core storage allocation consists
of 5900 positions for control program and system
subroutines, 2700 positions for active service pro-
grams, 1400 positions for tables and lists, and up to
6000 buffer positions (see Fig. 5).

As an option, some portion of upper memory

A BUSINESS-ORIENTED TIME SHARING SYSTEM 267
;
PLANS AND SYSTEMS AND CHQ - MGMT,
CONTROLS - POK (1) PERSONNEL (1) PROCEDURES (1) SYSTEMS (1)
PLANS LIBRARY CONTROL (1} W
AND
CONTROLS
NETWORK g
/ 3 LIBRARY
NETWORK
LIBRARY = 701 (1) BLDG
1448
% TRANSMISSION CONTROL UNIT %
' J
ENGINEERING SPECS (3)
ENGINEERING
A TI‘I IOV o1
saanmae oeves 'III L

1460 (@

16K

cPy /

)\
(D
1402-2 N
CD - RD- PUNCH
DISK DRIVES
1403 -3
PRINTER

Figure 2. Configuration of the system.

can be used to contain an active peripheral pro-
gram. Thus ATS can perform an additional task:
that of providing a peripheral operation (e.g., tape-
to-printer or card-to-tape) concurrent with terminal
activity.

Data flows from a terminal into core blocks (100

characters long) that are dynamically assigned at
the time of need. When the core block is filled it is
written onto disk “working storage” and the core
block is released for further assignment. Working
storage is defined as that portion of disk containing
documents currently being prepared or updated. A

268

'"PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

TEXT AS ENTE&ED INTO ATS

uc
TNCONTROLLED 'MODE ~——(A)

SYSTEM DESCRIPTION
a
AUTOMATIC MODE

ATS is a real-time, multiprogrammed, time-shared, remote
minal system that can be run on either a 1440 or 1460 IBM

computer (see Figure 2).

The hardware consists of a processing unit, disk drives, multiplexor
channels, typewriter terminals, magnetic tape drives, card reader
nd punch, and, on-line printer(s).

The system permits many opérators to simultaneously perform
different test processing tasks. \(:>

These tasks include data (or text) entry, immediate correction,
storage, retrieval, updating, formatting, and transmission.

n
NEXT NUMBER =- 10

|
test text<-<:)

The system permits many operators to simultaneously perform
different text processing tasks.,

|

TEXT AS CORRECTED, FORMATTED AND PRINTED

SYSTEM DESCRIPTION

ATS is a real-time, multiprogrammed, time-shared,
remote terminal system that can be run on either a 1440 or
1460 IBM computer (see Figure 2). The hardware consists of
a processing unit, disk drives, multiplexor channels,
typewriter terminals, magnetic tape drives, card reader and
punch, and on-line printer(s).

The system permits many operators to simultaneously
perform different text processing tasks. These tasks
include data (or text) entry, immediate correction, storage,
retrieval, updating, formatting, and transmission.

KEY

A= The "uc" request will center text automatically.

Double carrier return established "end of unit.

Tabbing of units established indented paragraphs.

Indicates automatic data correction while entering.

Error in unit 8 corrected, and unit automatically outputted.

moOQw
[I |

Figure 3.

A BUSINESS-ORIENTED TIME SHARING SYSTEM

r—-- - —--— =
| TAPE OUTPUT FOR |
LARGE - SCALE
PROCESSING |
| OR |
TAPE INPUT TO ATS
L e — |
' NORMAL OUTPUT |
| STANDARD PRINTER |
| OR CARD PUNCH |
! |
2741 R g]
R i APPLICATION | UPPER-LOWER CASE PRINT-0UT |
INAL "

PROGRAMS | HIGH-SPEED PRINTER |
1460 WORKING | |
\\ TRANI:P:IBSSION CENTRAL < TORAGE |

~7| CONTROL UNIT PROCESSOR [€ >
7 (CORE STORAGE) |
e S\ Foo oo s
INPUT AND OUTPUT ARCHIVE TAPE FILE |
I
L

4
CARD TO DISK
AND
DISK TO CARD

Figure 4. Administrative terminal system—Work-flow ‘schematic.

document in this part of storage is essentially pri-
vate to a given terminal.

In contrast, a document in ‘“permanent storage”
can be copied into private working storage by any
terminal operator who has the requisite identifying
information. Thus a document can be created in
working storage from any terminal, stored in per-
manent storage from the same terminal, and later
copied from permanent storage into the working
storage of any terminal.

The operation of the terminal is relatively simple.
Many commands are designated by as few as two
keystrokes. A list of the common ‘ATS functions
follow:

e Clear working storage.
working storage.
e Delete stored document.

This erases

o Erase line(s) of data from working stor-
age.

e Erase characters in current line of data
in working storage.

e Retrieve document from permanent
storage.

e Retrieve a previous line of data from
working storage.

e Insert a line into working storage.

e Substitute one phrase with another.

o Move line(s) from one portion of work-
ing storage to another.

@ Print working storage. (This command
can take several forms. The printing can
be performed on either a printer or a ter-
minal. It can be formatted or unfor-
matted.)

270 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1966

O WRNKXARRRKRARRRR AR RRANAARR AR A RRA AL

» *
* *
* *
* Control Program and *
* System Subroutines *
* »*
* *
* *
* *
* *
5'900 (2222222222220 R R R RRRRR2 2]
* *
* Overlay Area- *
* Service Programs *
* *
* *
8'600 ISE 222 RE2 S22 2R R ARt Rl 2]
* System tables and lists *
* *
10’000 (2222222232222 22 2222222222222 22222 2]
* *
* *
* *
*]100-Character blocks *
* of buffer *
* *
(22222222222t 22
* *
* Peripheral Overlay Area *
* *
16'000 (2228222222222 222 R 222 2]

Figure 5. Core storage allocation.

e Store a document.

e Transfer a document to/from magnetic
tape or cards.

e Receive a message sent from another ter-
minal.

e Transmit a message to another terminal.

In addition to the common functions, some pro-
visions available for automatic formatting are:

e Page length specification.

e Page width specification.

e Right margin justification.

e Automatic page numbering.

e Line centering.

e Line skipping.

e Heading/footing. (Automatically gener-
ated at top/bottom of each page.)

e Page skipping.

e Keep specified portion of text together
on a page.

APPROACH TO SYSTEM IMPLEMENTATION

The events leading to actual system implementa-
tion include the following.

Original Proposal

As a result of ““hands-on experience” gained from
the initial 3 terminals, which were demonstrated to

more than 25 different areas, we proposed installa-
tion of 17 terminals within 11 application areas.

In order to minimize cost, ATS was to share a
1460 computer, which was originally intended for
peripheral printing only. Consequently, the initial
proposal estimated .a cost and time savings that
would more than cover the cost of the purchased
equipment.

In retrospect, the decision to install ATS in many
areas, rather than one large one, appears to have
been sound. Each application presented new prob-
lems, new benefits, and ideas for future system ex-
perimentation.

The proposal was accepted by management and
the equipment order was placed. See overall ATS
schedule (Fig. 6).

Planning and Training

As shown on the ATS schedule (Fig. 6) it was
necessary to start in-depth systems analysis approx-
imately four months prior to installation of the 1460
ATS. The three original terminals were tied to a
“borrowed” computer and were used as much as
possible during this initial analysis.

The objectives derived from the first analysis in-
cluded:

e Train terminal operators in those areas
receiving terminals.

e Define goals for each ATS application.

e Write procedures and design forms for
jobs to be done after installation of the
system.

e Train computer operators to operate an
ATS system.

e Determine storage allocations for each
terminal.

After installation of the 17-terminal 1460 Ad-
ministrative Terminal System, the feasibility phase
of the systems analysis began. A target date of
three months for concluding feasibility studies was
set. Questions to be answered included:

e What type of applications are best suited
to ATS?

e Which jobs could ATS best perform with
respect to reduced turnaround time, cost
savings, and manpower savings?

o What human factors must be considered
in operating in a real-time environment?

e What additional procedures are needed
to operate a real-time system?

e What is the future potential of ATS in
the areas studied?

A BUSINESS-ORIENTED TIME SHARING SYSTEM

271

1965
J

1966
F M J

A M J J

INSTALLATION OF
3 TERMINALS

3-TERMINAL OPERATION
DEMONSTRATIONS

TRIAL APPLICATIONS

SYSTEMS ANALYSIS FOR
|1 APPLICATIONS

OPERATOR TRAINING
PROCEDURES, ETC.

W/3 TERMINALS

—

PROPOSAL GENERATION
AND APPROVAL
FOR FULL SYSTEM

ORDER PLACED FOR
18 - TERMINAL SYSTEM

EQUIPMENT INSTALLATION
AND TEST

FEASIBILITY STUDIES
W/TOTAL SYSTEM &
11 APPLICATION AREAS

EVALUATION REPORT OF
THE SYSTEM

PLANNING STARTED FOR
SYSTEM EXPANSION

—

Figure 6. ATS implementation schedule.

e How much off-line effort will be gener-
ated from ATS activity?

e Which direction should ATS expansion
take relative to system configuration,
programming subroutines, hard-copy vs
displays, etc.?

After installation of the equipment, the feasibility
studies began, and a “Users Conference” was held
to review ground rules and operating procedures.

Coordination

An important aspect of system implementation
was the type of coordination and control required
to operate a remote terminal system. Close com-
munication was essential among the following areas:

ATS computer operators,
and off-line equipment op-
erators

terminal

Computer Center:

Customer Engineering: customer engi-

neers, and system
tomer engineers
maintenance of lines be-
tween terminals and Com-
puter Center

17-terminal operators, and
operating management in
each area

cus-

Telephone Company:

Application Areas:

Systems & Procedures: systems man for each

operating area

Computer operators had to become accustomed
to dealing with many customers via the terminal
and telephone. They also had to learn that operat-
ing in a time-shared environment does not permit
arbitrary manual intervention, such as pushing the
stop button without advance warning. Requests for
on-line or off-line processing had to be clearly de-

fined by the terminal operator so that each request

could be satisfied. The computer operator also had
to act as a clearing agent for all customer engineer

272 PROCEEDINGS-—SPRING JOINT COMPUTER CONFERENCE, 1966

calls. Terminal operators and their managers had
to adjust to the condition of being on-line with a
computer. The insulation previously provided by
the systems analyst and/or programmer was con-
siderably reduced.

A Terminal Operator’s Guide was written to de-
fine all personal contacts involved, and ‘“what-to-
do” in various situations, such as requesting off-line
processing of ATS documents, asking for ATS time
after prime shift, etc.

Communication breakdowns were frequent dur-
ing the first months of operation, but by the end of
the feasibility phase communications between the
various areas was no longer a problem. It was then
that the applications people recognized that (from a
user viewpoint) real-time systems afford better com-
munications and control than was possible under
the batch-processing mode of operation.

TYPICAL APPLICATIONS OF ATS

A summary of the speciﬁc areas selected, the
tasks performed, and the benefits derived by each
user of ATS is discussed in this section.

Engineering Design Services

This area is responsible for the release, and status
control, of Engineering Changes (E/C’s). In addi-
tion to preparing tabular-type data on E/C’s, this
group prepares Installation Instructions for each
release. The use of ATS has decreased turnaround
time between receipt of paperwork and drawings
from the Engineer, and the release of formal Engi-
neering Changes.

Task Performed
Weekly status reports (on System /360 E/C’s).
E/C status histories.
Design automation cycle time reports.
Systems installation instructions.
Benefits Derived Using ATS
Reduced turnaround time for review of E/C’s,
and provided faster release of formal
chdnges.
Reduced time to update documents and re-
ports.
Eliminated keypunching, card-handling, and
1401 processing.
Produced cost and manpower savings.
Potential Uses of ATS
Maintain development machine structure, and

switch to production records after release.
(P/N’s, Qty, Descrip., where used, etc.)

Engineering Proposals

Requests for price quotes (RPQ) from IBM cus-
tomers presents two problems. The RPQ workload
is high at irregular times, and the requested due
dates usually allow the minimum time for preparing
a proposal. ATS has allowed the Engineering
groups to manipulate stored text into the unicue
form required for each RPQ proposal. After mak-
ing minor changes to the standard text, and insert-
ing special information requested by a particular
customer, a finished manuscript can be obtained.

Task Performed
Prepare “‘Boilerplate” proposal—standard sec-
tions stored for easy retrieval and revision.
Prepare “Unique” proposals—generate unique
portions of text, and bring in standard sec-
tions as required. The standard portion of
each proposal represents about 75% of total
text.
Benefits Derived Using ATS
Reduced typing and editing—only changed
portion of standard text requiring editing, or
retyping.
Increased accuracy of proposal data.
Reduced turnaround time for proposal re-
sponse to customer, because of the rapid
method of updating and editing existing

copy.
Provides camera-ready output.

Library Services

This application involves converting library con-
trol processes to a real-time situation. In addition,
the feasibility of a library network is being explored
for the purpose of centralizing the common library
functions of several facilities. Two terminals are
now being used for this purpose.

Task Performed
Book order processing—after data is entered,
the book order is printed on the terminal,
the total order list is updated, and a status
report output is generated.
Book. holdings—master file by shelflist,- title
and author.
Benefits Derived Using ATS
Eliminated keypunching, card-handling, etc.
Permitted rapid access to central files.

A BUSINESS-ORIENTED TIME SHARING SYSTEM 273

Reduced turnaround time on processing orders
and answering inquiries.

Produced cost and manpower savings.

Proved feasible for use in larger-scale library
networks. '

Potential Uses of ATS

Library announcements.

Subscription control (e.g., periodicals).

Library procedures.

Cataloging and subject index.

Book circulation cards.

Plans and Controls and Documentation Controls

The Plans and Controls (P&C) area is responsible
for project planning, control processes to measure
plans vs performance, and for issuing of status re-
ports.

Because of the shared responsibility for systems
design at various IBM laboratories, and the exis-
tence of an overall P& C manager at divisional head-
quarters, the feasibility of an ATS network for com-
mon P&C needs is being explored.

The Documentation Control area is responsible
for the distribution and status of Engineering Speci-
fications. The status of specifications, i.e., approval
or disapproval, is maintained through ATS.

Task Performed
Prepare engineering specifications.
Prepare functional and performance specifica-
tion status reports.
Perform keypunch simulation (project plan up-
~ date).
Establish communication network for:
SDD Laboratory—IBM Poughkeepsie
SDD Laboratory—IBM Kingston
SDD HQ—IBM Harrison
Prepare “‘hot” exception reports (e.g., systems
status).
Prepare ‘*hot” manpower status reports.
Benefits Derived Using ATS
Established central files that are easily re-
trievable in hard-copy form.
Maintained control files on a real-time basis.
Provided rapid communication of critical re-
ports to SDD HQ.
Proved feasibility of larger SDD communica-
tion network for facility control functions.
Resulted in a high degree of accuracy.

Minimized turnaround time between final up-

date and transmittal of reports and specifi-
cations, - :

Reduced manpower and cost for the prepara-
tion of control documents and specifications.

Divisional and Corporate HQ— Procedures and
Planning

Task Performed
Preparation of, and file maintenance on:
Procedures
Procedures Distribution Lists
Organization Directory
Document Index
Card-Image Input for Off-line Processing
General Memoranda
Benefits Derived Using ATS
Provided rapid access to stored data.
Minimized turnaround time to update and out-
put new files.
Elimination of keypunch, card-handling, etc.
Reduced typing and editing.
Increased accuracy.
Potential Uses of ATS
Systems and procedures programming.
Legal department documentation.
Corporate policy revisions.
Contract preparation.

CONCLUSIONS

This section discusses the problems encountered
in implementing a time-sharing system, an overall
summary of significant benefits experienced by ATS
users, most promising applications of ATS, and
summary o:'accomplishments.

. Problems Encountered in Implementing ATS

A list of the common problems encountered in
implementing ATS follows:

1. Human factors, habit patterns, etc., have to be
considered with respect to both operation of the
terminal and designing new procedures.

2. It was found that storage requirements ex-
ceeded available storage. A larger disk file is
planned to increase each terminal’s storage alloca-
tion to at least one million characters.

3. Systems analysis of terminal applications has
to be very flexible, in order to permit changing of
existing procedures and formats.

4. Close coordination and control is required,
especially during the first several months, between
the critical areas involved in system implementa-
tion, i.e., Computer Center personnel, customer

274 PROCEEDINGS —SPRING JOINT COMPUTER CONFERENCE, 1966

engineers, operating managers, terminal operators
and systems analysts.

5. The selection and training of terminal opera-
tors requires special techniques. Efficient terminal
operation for most applications is facilitated by a
combination of secretarial skills and a logical
thought process.

6. While reductions in turnaround time can be
readily defined, a better means is required to define
cost and manpower savings. This is because these
savings usually overlap service-type departments.

Summary of Significant ATS Benefits

The following is a list of benefits experienced by
one or more of the various ATS users:

1. Proved to be a flexible means of entering text,
tabular and card-image data into the system, with
minimum time required to maintain up-to-date files.

2. Provided real-time access to updated files.

3. Provided the ability to establish common func-
tion networks for constructing central files from
various sources, and also allowing rapid communi-
cation of critical memoranda.

4. Reduced turnaround time between keyboard
entry and desired output.

5. Provided a flexible means of obtaining output
data, i.e., on-line or off-line.

6. Provided the ability to capture data in ma-
chine readable form for large-scale processing.

7. Eliminated transcribing, keypunching, card-
handling and card-to-tape operations.

8. Increased accuracy of text or tabular data,
- since unchanged portions are not subject to retyping
errors.

9. Reduced editing time.

10. Cost savings as a result of reducing repetitive
operations as well as reducing intermediate steps
(e.g., control points, delivery, distribution).

Most Promising Type Applications of ATS

The most successful applications of ATS are those
that take advantage of the greatest number of the
following ingredients, especially when overlapping
the three categories listed:

1. Need for capabilities such as:
a) File maintenance on a ‘“‘real-time”
basis, at frequent intervals.
b) Information retrieval on a ‘“real-time”
basis.

¢) Hard-copy requirement, either on-line
or off-line.

d) Minimum turnaround, entry-to-output.

e) Card-image preparation for batch
processing (keypunch simulation).

2. Network of common function terminals.
a) Access to central files from various fa-
cilities.
b) Rapid hard-copy communication be-
tween facilities.
¢) Merging of various facility files for ac-
cess or processing.

3. Bonus items.
a) Form letters and normal correspon-
dence.
b) Frequently changing lists, tables, man-
power charts, etc.

Summary of Accomplishments

Six months of operating experience proved ATS
to be feasible in 8 of the 11 application areas. Some
terminals have been reassigned with increased em-
phasis on proved production applications.

Although ATS ca