
AFIPS
CONFERENCE
PROCEEDI NGS

VOLUME 28

. 1966
SPRING JOINT

COMPUTER
CONFERENCE

AFIPS
CONFERENCE
PROCEEDINGS

VOLUME· 28

1966
SPRI NG JOI NT

COMPUTER
CONFERENCE

The id~as and opllllons expressed herein are solely those of the
authors and are not necessarily representative of or endorsed by the
1966 Spring Joint Computer Conference Committee or the American
Federation of Information Processing Societies.

Library of Congress Catalog Card Number 55-44701
Spartan Books, Div. of

Books, Inc.
1250 Connecticut Avenue, N. W.

Washington, D. C.

© 1966 by the American Federation of Information Processing Societies,
211 E. 43rd St., New York, N. Y. 10017. All rights reserved. This book,
or parts thereof, may not be reproduced in any form without permission of
the publishers.

Sole distributors in Great Britain, the British
Commonwealth, and the Continent of Europe:

Macmillan Co., Ltd.
4 Little Essex Street

London W.C. 2

CONTENTS

COHERENT OPTICAL INFORMATION PROCESSING

Computer Application of Electro-Optics

Basic Theory of Partial Coherence

The Role of Coherent Optical Systems in Data Processing

Requirements for Hologram Construction

Application of Coherent Optical Transducers to Optical Real-Time
Information Processing

TIME-SHARING

Time-Sharing with IBM System/360: Model 67

w. J. POPPELBAUM

GEORGE B. PARRENT, JR.

LOUIS J. CUTRONA

E. N. LEITH
J. UPATNIEKS

DEAN B. ANDERSON

C. T. GIBSON

A Data Management System for Time-Shared File Processing Using a Cross-Index

17

25

43

53

61

File and Self-Defining Entries E. W. FRANKS 79

An Analysis of Time-Sharing Computer Systems U sing Markov Models J. L. SMITH 87

An Optimization Model for Time-Sharing DENNIS W. FIFE 97

iii

IV CONTENTS

SIMULATION AND MODEL-BUILDING

A Digital System for On-Line Studies of Dynamical Systems

Simulation of Logical Decision Networks of Time-Delay Elements by Means
of a General-Purpose Digital Computer

Simulation of a Multiprocessor Computer System

T. C. BARTEE
J. B. LEWIS

Y. N. CHANG
O. M. GEORGE

J. H. KATZ

105

113

127

Markovian Models and Numerical Analysis of Computer System Behavior V. L. WALLACE 141

SMPS-A Tool Box for Military Communications Staffs

RICHARD S. ROSENBERG

KATHE JACOBY
DIANA FACKENTHAL

ARNO CASSEL

149

Digital Simulation of Large Scale Systems ROBERT V. JACOBSON 159

DSL/90- A Digital Simulation Program for Continuous System Modeling W. M. SYN 165

PROCESSING LARGE FILES

Techniques for Replacing Characters that are Garbled on Input

ADAM-A Generalized Data Management System

The Engineer-Scientist and an Information Retrieval System

WAVEFORM PROCESSING

Effects of Quantization Noise in Digital Filters

A Real-Time Computing System for LASA

R. N. LINEBARGER

GARY CARLSON

THOMAS B. CONNORS

C. ALLEN MERRITT
PAUL J. NELSON

BERNARD GOLD
CHARLES M. RADER

H. W. BRISCOE
P. L. FLECK

High-Speed Convolution and Correlation THOMAS G. STOCKHAM, JR.

189

193

205

213

221

229

CONTENTS v

PROGRAMMING LANGUAGES

A Computer Program to Translate Machine Language into Fortran WILLIAM A. SASSAMAN 235

Techniques and Advantages of Using the Formal Compiler Writing System RENATO ITURRIAGA
FSL to Implement a Formula Algol Compiler THOMAS A. STANDISH 241

RUDOLPH A. KRUTAR

A Proposal for a Computer Compiler

BUSINESS APPLICATIONS

A Business-Oriented Time-Sharing System

"Never-Fail" Audio Response System

Application of Computer-Based Retrieval Concepts to a Marketing
Information Dissemination System

JACKSON C. EARLEY

GERNOT METZE
SUNDARAM SESHU

G. F. DUFFY
W. D. TIMBERLAKE

BRUCE DALE

JAMES J. GATTO

CURRENT DEVELOPMENTS IN PERIPHERAL HARDWARE

A New Look in Peripheral Equipment Design Approach

A Serial Reader- Punch with Novel Concepts

The IBM 2560 Multi-Function Card Machine

EARL MASTERSON

DAVID W. BERNARD
FRANK A. DIGILIO

FRANK V. THIEMANN
RONALD F. BORELLI

CHESTER E. SPURRIER

253

265

277

285

297

307

315

A New Development in the Transmission, Storage and Conversion of Digital R. P. BURR 323
Data JOHN J. RHEINHOLD

IBM 2321 Data Cell Drive

Roy K. ANDRES

ALAN F. SHUGART
Y ANG-HU TANG

335

vi CONTENTS

ANALOG/HYBRID TECHNIQUES

Hybrid Simulation of a Helicopter

A Time-Shared Hybrid Simulation Facility

Hybrid Simulation of a Free Piston Engine

Hybrid Analog/Digital Techniques for Signal Processing Applications

Hybrid Simulation of a Reacting Distillation Column

Transient Neutron Distribution Solutions by Compressed and Real-Time
Computer Complexes

W. J. KENNEALLY

E. E. L. MITCHELL

I. HAY

G. BOLTON

R. BELLUARDO

R. GOCHT

G. PAQUETTE

R. E. GAGNE

E. J. WRIGHT

THOMAS G. HAGAN

ROBERT TREIBER

R. RUSZKY

E .. E. L. MITCHELL

J. E. GODTS

347

355

365

379

389

401

COMPUTER TECHNIQUES IN PATTERN RECOGNITION

Pattern Recognition Studies in the Biomedical Sciences

A Chess Mating Combinations Program

Multidimensional Correlation Lattices as an Aid to Three-Dimensional
Pattern Recognition

A Pattern Recognition Technique and its Application to High-Resolution
Imagery

ROBERT S. LEDLEY 411
JOHN JACOBSEN

MARILYN BELSON

JAMES B. WILSON

LOUIS ROTOLO

THOMAS GOLAB

GEORGE W. BAYLOR

HERBERT A. SIMON

SAMUEL J. PENNY

JAMES H. BURKHARD

R. D. JOSEPH

S. S. VIGLIONE

431

449

457

COMPUTER APPLICATION OF ELECTRO-OPTICS

W. J. Poppelbaum
Department of Computer Science, University of Illinois

1. INTRODUCTION

The first few years of existence of electro-optics
as a separate field have brought to light a wealth of
novel ideas and has warmed up a host of old ones
as well. It turns out that at this time there are two
large classes of ideas which have relatively little
overlap: the first class encompasses the development
of time-honored techniques into practical low-cost
designs; the second class contains the more futuristic
devices using laser amplification, laser logic, laser
source deflection, °etc}-4 Unluckily the latter ideas
have not yet reached that stage of development
where they can compete with more classical designs
as far as cost is concerned. Since the author has
devoted a previous papers to them, it might be use­
ful to examine all those areas where patient develop­
ment has produced reasonably low-cost designs that
have proved themselves in practice or are about to
do so.

The profusion of devices makes it mandatory to
reduce the length of the list of subjects still further
by eliminating arbitrarily the large field of tech­
niques aiming at adaptive systems 6 or making use
of non dissected forms of the incoming information.7

This field is amongst the most exciting but, because
of its links with biology, should perhaps be left
to a separate di~cussion.

The ordering principle for the topics will be their
occurrence in a highly symbolic system according to
Fig. 1. It might astonish you to see storage and dis­
play in one functional block: the reason is that the

majority of storage systems automatically give dis­
play and vice versa. It will also become apparent
that there is a preponderance of subjects in this
storage and display area and that further subdi­
vision according to the method of access (electron
beam, light beam, and static) is convenient. For
simplicity's sake, areas, subdivisions and subjects
are indicated on the figure.

2. INTERFACE LOGIC

The great contribution of electro-optics (or more
precisely its all-optical branch) to information proc­
essing is probably the development of methods
giving Fourier Transforms by optical means (see
2.1). Once this Fourier Transform is obtained, it
is natural to operate in the frequency plane by ap­
propriate masks in order to eliminate high- or low­
frequency components or more generally to elimi­
nate noise of given frequency distribution by
matched filters. Such operations can be done by
purely electronic means using matrix arrays of
modulated elements (see 2.3). T.hese techniques are
usually applied to continuous input information
(e.g., photographs), but there is no reason why the
same methods should not be applied to discon­
tinuous patterns of dots, leading to parallel proc­
essing of up to 106 bits of information.

Other developments in the area of interface logic
are based upon the availability of glass fibers and
the performance of OR and AND functions be­
tween the input medium and bundles of such fibers.

2 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

HYBRID D-A I
PROCESSOR 1IIII~1---------"1 I

INTERFACE --. -- SCANNER IN
(LIGHT) LOGIC (LIGHT)

• FOURIER TRANSFORM OPTICS

ASSOCIATIVE FIBER SCANNER

PHASE MODULATION MATRIX

• VIDICON.
FLYING SPOT C.R.T.

ULTRASONIC DEFLECTOR

ARDENNE TUBE

(ELECTRICAL SIGNAL)

I ~

(ELECTRICAL
SIGNAL)

STORE

AND

DISPLAY

•
- ~OUT

(LIGHT)

MEMOTRON / VIDICON

OSCILLATING CLOUD

PHOTOCHROMIC

ELECTROLUMINESCENT

KERR EFFECT

DIFFRACTION GRATING

SCANISTOR PARAMOSAIC

Figure I. Practical electro-optical devices.

Encoding and decoding devices are particular ex­
amples of the~e techniques as is the associative fiber
,scanner described below (see 2.2).

2.1 Fourier Transform Optics

The idea of using lenses to obtain the Fourier
Transform of a planar density pattern has been
discussed at length by its protagonists Leith,8

Cutrona,9 Parrent 10 and others. High-precision
optics and strong coherent sources have made such
a system highly practical and it is now entirely pos­
sible to process up to 106 bits of positional infor­
mation in parallel, e.g., by spatial filtering (see
below).

The fundamental principle of the (one-dimen­
sional) optical Fourier Transform is shown in Fig.
2. The planes-or better, lin,es-of interest are the
left and right focal planes: the left-hand one con­
tains the object, the right-hand one what we shall
here call the image even zf it is not the image of the
object in the conjugate sense., Let P be a point in the
image plane which is w below the optical axis: its
illumination or amplitude is determined by the
brightness and the phase of all beams coming from
the object. Because P is in a focal plane, these

beams are all parallel on the left side of the lens and
form an angle of wlfwith the optical axis, wheref
is the focal length. The beam issuing from the sec­
tion between x and x + dx contributes an ampli-

tude a(x) dx cos 2A~ where s is the path delay with

respect to some reference point-here chosen to be
the intersection of the object plane with the optical
axis. Geometry shows that s is a linear function of
x: this is the crux of the matter. Assumption of an
object and image of infinite extension and a change
of notation (i.e., replacing cos by the real part of an
exponential with an imaginary exponent) lead to the
realization that the total amplitude in P (called il­
lumination) is simply the real part of the Fourier
Transform of a(x). Of course it is well known that
measuring devices-including our eye-actually see
the intensity, i.e., the square of the amplitude. This
leads to certain difficulties in practical systems, none
of which, however, cannot be overcome.

2.2 Associative Fiber Scanner

The use of GaAs lamps and photodiodes together
with fiber light conductors offers some rather in­
teresting possibilities. As an example, consider the

COMPUTER APPLICATION OF ELECTRO-OPTICS 3

------~.. 44~---- "I
I
I
I

COHERENT LIGHT

~

Ao

dx

x

REFERENCE
PHASE

ALL
PARALLEL!

OBJECT (INFINITE) LENS

I
I
I
I
I
I

P

IMAGE (INFINITE)

LET a (x) = TRANSMISSIVITY IN x, THEN

+00 + 00 +00

p=f a(x)dx COS 27rS =fa(X) COS(27rW) dx = R!a(X)eiWXXdX= TOTAL ILLUMINATION IN
_00 Ao -00 .Aof _00

'-----,.-----'

call Wx

Figure 2. Fourier Transform optics (one··dimensional).

arrangement in Fig. 3. It is assumed that we have a
film frame containing an m· n matrix of dark and
light spots as well as the m . n matrix of the negative

(i.e., the digit-wise complement). We want to build
a device which can decide in one operation whether
a given key word (XI ••• Xi • •• xn) is among the m
words (aAI ... aM . .. a>.n) (X = 1 ... m) in the frame,
and if so, in what position.

The principle is to inject into the fibers going into
the first digits the signal XI via lamp L I , etc., so that
digits aAI are illuminated by Xi. Similarly the digits
aM on the negative are illuminated by Xi. If we now
collect-by a second set of fibers-the outputs of
each row of photocells, the left-hand cell # X will
receive a signal V,aAixj while the corresponding
right-hand cell will receive ViaMxi. If we check the
cells by pairs via OR circuits, only that OR circuit
for which both inputs are 0 will correspond to
aAi = Xi: its position gives the X we search for. If
no such OR circuit exists, the key word is not con­
tained in the frame.

The system described above has been realized at
the Department of Computer Science of the Uni-

versity of Illinois II in slightly modified form. It is
presently being converted in such a fashion that the
key word does not necessarily contain all the digits:
provision is then made to read ou't the remaining
digits upon coincidence. It will also be possible to
change the key word (and the digits involved) as a
function of the last word read out. This obviously
will lead to a Turing-machine-like behavior of the
system.

2.3 Phase Modulation Matrix

One of the astonishing photolithographic feats of
recent times is Anderson's 12 production of varactor
diodes having overall dimensions of the order of 10
microns. By suitable doping and reverse biasing, it
is possible to make the depletion region behave like
an optical transmission line, i.e., to use the regions
of high carrier density as mirrors at a distance of a
few thousand angstroms. It is not too hard to con­
vince oneself that light going through the plane of
the junction will suffer a phase change <I> determined
by the thickness d of the depletion layer where d is

4 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

r- ,
o IF WORD IN FRAME

(POS. OF OR GIVES ~)

1 OTHERWISE

PRINCIPLE: Va).i 'Xi = 0 and Vci>.i ·Xl = 0 means au = Xi for all i !
i l

Figure 3. Associative fiber scanner.

approximately given by the Early-formula d =

V3V frfO/2aq, q being the charge of one electron
and a the gradient of the donor density minus that
of the acceptor density. Figure 4 contains the ex­
pression <I> as a function of d.

Instead of using the diodes as transmission op­
tical phase shifters, it is also possible to expose one

surface of the depletion layer by a transparent sub­
strate and to shine the light into the device from the
side. Such reflective optical phase shifters lend
themselves more naturally to two-dimensional ar­
rays, although it is not impossible to use transmis­
sion shifters in a matrix. A possible use of revlerse
biased diodes as storage elements makes such phase

COMPUTER APPLICATION OF ELECTRO-OPTICS 5

COHERENT LIGHT

~

E = EOe iWoT

x

INPUT PLANE
(POSITIONAL)

l • LENGTH OF DIODES

FOURIER TRANSFORM

LENS I

€, • DIELECTRIC CONSTANT OF DlOOES

d • d(V) • THICKNESS OF DEPlETION LAYER

INVERSE FOURI ER TRANSFORM

WX

ARRAY
OF DIODES

FOURIER PLANE
(FREQUENCY)

~(Wx) = A (wx)e i4><wx)

LENS 2

""(). woL j € _ (21TC)2 1
't' Wx :I: C r Wo (2d)2

I
X

OUTPUT PLANE
(POSITIONAL)

Figure 4. Phase modulation matrix used as a spatial filter.

modulation matrices especially attractive, since it is
not necessary to connect a given diode to the input
control voltage at all times: a charging mechanism
using a scanner would be adequate.

Figure 4 shows a possible application of a phase
modulation matrix in the Fourier Transform Plane:
this is a form of spatial filtering. In the example
the frequency-analyzed version of the input infor­
mation in the Wx -plane is subjected to phase delays
in the array of diodes, the control voltage V(wx)

being an impressed function of Wx ' If A (wx) is the
amplitude in the wx-plane, spatial filtering will pro­
duce A '(wx) = A(wx)ei~("'x) and a reconstitution by
means of an inverse Fourier Transform will lead to
a filtered version of the input information. It is pos­
sible to convert the phase modulation into ampli­
tude modulation by mixing the output with a ref­
erence phase as is done in holography. 13

3. SCANNERS

The purpose of scanners is to convert incoming
parallel pictorial information into serial information
for subsequent transmission or processing: they are
serializers. At the same time, using persistence of
phosphors, the human eye, etc., they can be used to
reconstitute the parallel information: they are also
staticizers.

The scanning mechanism is .. usually an appro­
priately deflected beam of electrons or a beam of
light. Neglecting the well-known examples of elec­
tron beam deflecting in flying spot analyzers (for
slides) or vidicons (in which the optical information
is converted to a charge distribution by a photo­
cathode) ·our discussion will be limited to practical
low-cost light deflectors. These are presently of the·
ultrasonic (see 3.1) and the KDP-CRT Type (see
3.2) if one neglects unfashionable mechanical de­
vices like vibrating mirror g"alvanometers and rotat­
ing mirrors. This unluckily temporarily leaves out
such exciting developments as those proposed by
Pole 14 and Fleisher .1S

A recent technique, using the Scanistor, is also in
a stage where practical applications can be con­
sidered. This device· is essentially static in nature
and the scanning is done by applying appropriate
voltages to the photosensitive element to be inter­
rogated (see 3.3).

3.1 Ultrasonic Deflector

One of the most efficient systems for deflecting
light through several degrees with an optical path
inside the device of a few centimeters is the ultra­
sonic deflector shown schematically in Fig. 5. Here
a quartz transducer injects an acoustical wave into

6 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

~

\
CRITICAL

ZONE

NARROW INCIDENT
LIGHT BEAM
(COHERENCE NOT REQ'O)

~--MATCHED ABSORBER

SCANNING BEAM

HIGH DENSITY

LOW DENSITY

ACOUSTICAL
WAVE IN A LIQUID

QUARTZ TRANSDLUCER

Figure 5. Ultrasonic deflector (Scophony system).

a compressible liquid at a frequency corresponding
to the desired scanning action. The wave travels
across a critical zone in which a (coherent or non­
coherent) light beam is deflected in "Fata Morgana
fashion" by the variable densities (and the ensuing
varying index of refraction) generated by the wave.
Upon reaching the far side of the device a matched
absorber eliminates acoustical reflection and stand­
ing waves.

This system has been successfully used by Reich
at Lockheed in the design of a photochromic semi­
random access memory.16 The liquid used was
simply water and the operating frequency one mega­
cycle, the source being a laser providing a beam nar­
row with respect to the acoustical wavelength. The
beauty of the system is that two-dimensional scan­
ning is possible by using a cell containing two
acoustical waves traveling at right angles to each

other. It is perhaps interesting to note that a quarter
of a century ago the Scophony Television receivers
in England used precisely the same method of light
deflection!

3.2 Ardenne Tube

Another device saved from oblivion by Pole of
IBM is the Ardenne Tube 17 shown in Fig. 6. In­
vented in 1934 for the German Postoffice~ for fac­
simile transmission, it is essentially a CRT with a
special faceplate: a KDP crystal between two e:lec­
trodes, one reflecting and the other transparent.
When an electron beam hits the reflecting dectrode,
the negative charge (together with the induced posi­
tive charge in the transparent electrode) produc,es a
strong electric field in the KD P. Due to the Eleetric
Kerr Effect there will be a phase difference between
ordinary and extraordinary components of light,

COMPUTER APPLICATION OF ELECTRO-OPTICS 7

TRANSPARENT FRONT ELECTRODE

DEFLECTION
TAGE

REFLECTING BACK ELECTRODE

THE ELECTRIC FIELD, CAUSED IN THE KDP BY
THE CHARGE DEPOSITED BY THE ELECTRON BEAM.,
PRODUCES A PHASE DIFFERENCE BETWEEN THE
TWO COMPONENTS. THESE GO THROUGH THE CRYSTAL
TWICE AND ARE REFLECTED BY THE BACK ELECTRODE.

i
FACEPLATE

REFLECTED LIGHT WITH
PHASED DIFFERENCE BETWEEN
ORDINARY AND EXTRAORDINARY
COMPONENTS.

)

Figure 6. Ardenne tube.

this difference being proportional to the field. Light
from a linearly polarized source in front of the face­
plate traverses the crystal twice (being reflected by
the back electrode) and finally goes through an
analyzer. If the analyzer is appropriately po­
sitioned, it is possible to make the high field por­
tions of the KDP "light up," the rest of the face­
plate remaining dark. Clearly the position of the
"light source" is solely controlled by the electron
beam: we have a method for positioning a high
luminosity source of light by controlling a CRT.
Similar designs have been investigated by Pulvari 18

and Lindberg 19 of Motorola.

3.3 Scanistor

The basic idea of Horton's Scanistor 20 is to ac­
cess an array of light-sensitive elements connected
between a bus and a set of linearly increasing return
voltages by applying to the bus an appropriate time­
dependent voltage. The selection of any given ele­
ment is actually performed by making the voltage
across it nearly zero: the reason that this succeeds
is that a back-to-back diode pair has always a big
resistance as long as one or the other diode is
strongly reverse biased. Zero total drop across the
pair, however, puts both diodes into a region of
relatively low impedance. If light is now received
by one of the diodes (which therefore must be not
only a diode but a photo diode) it starts acting like
a current source, the source intensity being approxi­
mately proportional to the incoming light intensity.

Figure 7 shows an array of diode pairs illumi­
nated by a step-function light distribution. The bus
is used to sweep through the gamut of return volt­
ages, i.e., e(t) goes from 0 to some voltage Eo within
some scanning period T. For the first two diode
pairs nothing happens, even when e(t) reaches 0
and Eo/ n. The third pair, however, suddenly passes
a current through the upper bus as e(t) reaches
2Eo/n. Similarly the fourth pair produces a current
through the bus as e(t) reaches 3Eo/n, etc. By using
a transformer, each current increment produced
during the sweep gives an output pulse to v(t), the
height being roughly proportional to the light in­
tensity on the pair being accessed. It is easy to see
that an appropriate integration (or even a running
together of widened v(t) pulses) produces an enve­
lope which imitates the light intensity after mapping
position into time: this is precisely what a scanner
has to do.

lt is important to note that the voltage divider
chain between Eo and ground can be built into the
diode array. Semi-integrated forms of the circuit
have had as many as 200 diode pairs per inch and
have performed very satisfactorily. One of the main
attractions is the very low power requirements of
the device.

4. STORAGE AND DISPLAY

Storage devices must typically accept an optical
input or the corresponding electric input in the form

8 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

LIGHT
INTENSITY

PHOTODIODES

BLOCKING DIODES

III
o ~

n
2Eo
n

3Eo
n

4Eo
n

n DIODE PAIRS ------....

EACH DIODE PAl R

GIVES OFF A PULSE

PROVIDED IT IS

I. ILLUMINATED
2. HAS PRACTICALLY NO

VOLTAGE ACROSS IT

~------------------------------------~.T

~~ ________________________________ ~"T
T

Figure 7. Scanistor principle.

of a time sequence of electrical 'signals generated by
the electronic scanning of the picture. On demand
they must repeat this time sequence after an arbi­
trarily long period. Excepting core storage of a
digitized version of the time sequence (which will
have to be quantized for this effect by subdividing
scanning lines into a sequence of points!), it is inter­
esting to note that all presently used devices per-

form the storage on a continuous or discontinuous
matrix. It is this latter fact which makes such
storage devices good candidates for display.

The continuous storage matrix may be as trivial
as an old-fashioned memotron (i.e., a CRT with a
flood-gun which, by selective secondary emission on
the screen, keeps bright positions bright and dark
positions dark) coupled to a vidicon to examine: the

COMPUTER APPLICATION OF ELECTRO-OPTICS 9

stored information. It can be made more sophisti­
cated by essentially uniting all elements into a
"Tonotron" (Hughes) or Scan Convertor, even if, at
present, readout for both is somewhat destructive.
It can finally take on the slightly esoteric form of an
Oscillating Cloud Tube in which the information is
a planar electron-density distribution being bounced
back and forth between suitable electrodes (see 4.1).
In all these versions the access is provided by an
electron beam. It is quite possible to obtain storage
on a continuous matrix using a light beam for ac­
cess. A practical system developed by Lockheed
uses a photochromic emulsion for storage and an
ultrasonic scanner. A version with a mechanical
scanner was designed by NCR. The most elegant
continuous light-accessed array is, however, the
electroluminescent panel (see 4.2) in which a CdS­
film is used to store the information and an overlay
of electroluminescent material as a light emitter
controlled by the CdS-film.

Discontinuous storage matrices using light beams
for. access are presently of the thin magnetic film
type: here spots are magnetized by a coincident
current system in an underlying grid of wires. The
state of magnetization can be read out by observing
the angle through which the plane of polarization is
rotated by the magnetic Faraday effect, using a
plane-polarized scanning beam. Such work has led

OPTICAL INFORMATION PHOTOCATHODE ELECTRON CLOUD

.. ,,------ ORTHICON SECTION -------....

(AXIAL ELECTRIC AND MAGNETIC FIELD)

to angles of rotation of several degrees but is yet
unpublished. Another, now well-developed, tech­
nique is based on the existence of striated domains
and their observation by a diffraction grating effect
(see 4.3).

There is, finally, a static storage and display de­
sign which is a sort of two-dimensional analog of
the Scanistor. In this "Paramosaic" system a curve
can be written into a matrix by making its grid­
points equipotential and storing this fact on appro­
priate elements (see 4.4).

4.1 Oscillating Cloud Tube

In the Oscillating Cloud Tube 21 designed by Berg
and Smith of Imperial College and shown in Fig. 8
we have three distinct sections. To the left is an
orthicon-like structure in which the electrons given
off by a photocathode are accelerated by a weak
axial electric field to a rather low velocity. The
identity of electron bunches originating from var­
ious parts of the photocathode is preserved by ap­
plying a strong axial magnetic field. The cloud now
enters the storage section and is trapped between
gate 1 and gate 2, the electric field applied via V sin
w t bouncing them back and forth. When informa­
tion is required from the store, gate 2 is opened as
the cloud approaches it. The selected electrons are
then accelerated into section 3 (iconoscope) which

GATE I GATE 2 CHARGED MOSAIC

Vsinwr

""---STORAGE SECTION -----. ~ ICONOSCOFiE SECTION---
(OSCILLATING CLOUD) (SCANNER)

Figure 8. Oscillating cloud storage tube.

10 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

contains an intermediate mosaic in which the
charges are stored for subsequent scanning by an
electron beam.

The present resolution is in the vicinity of 100
lines. It seems entirely possible to store a sequence
of distinct electron clouds, each corresponding to
one frame of the input information. Selection of
the appropriate cloud is then operated by timing
the exit through gate 2. The access time to any in­
formation in the store is of the order of 200 nano­
seconds.

4.2 Electroluminescent Storage

Electroluminescent Panels are ideal display de­
vices although they still have a somewhat low light
output. Recently panels have been made 22 which
incorporate storage facilities.

Figure 9 shows the principles of operation. On
the left is shown a pn diode reverse biassed by - E
applied to the p-region. Without light, the potential
barrier Lll/; across the junction is relatively high, its
value being approximately given by

Lll/; = kT In np + E
q n;

I. n NORMAL

where nand p are the electron and hole densities
and nj a constant. Let us now shine a light onto the
n-region, generating hole-electron pairs. Some sup­
plementary electrons neutralize a part of the donors
and consequently lower the value of n (assuming
space charge neutrality!). The formula above, al­
though strictly valid only for equilibrium, shows
that this amounts to a decrease of Lll/; and therefore
a stronger current flow. Other supplementary elc!c­
trons are trapped: their slow release after the light
disappears continues to neutralize donors, i.e., the
current will remain strong. It is assumed that the
current itself replenishes the traps, so that the low­
impedance state of the diode is indefinitely con­
served once light has struck it. Only the removal of
E and the emptying of all traps (in darknt;!ss) will
bring the diode back to its high-impedance state.

The storage and display combination is obtained
by essentially putting a continuous sheet of pn
diodes on top of an electroluminescent substant:;e.
Practically the diode action occurs in the barrier
between a transparent electrode and an underlying
CdS-film. An opaque layer separates the CdS-film
and the electroluminescent material and a voltage is
applied across the whole sandwich. In those spots

TRANSPARENT
ELECTRODES

-r
THE pn JUNCTION p

2.

3.

I S REVERSE BIASSED.

--.L ojI

!:::, ojI I BIG BARRIER

LIGHT? n DECREASED 1
(DONORS NEUTRALIZED BY

,....-_---..---....;.--+-,/GENERATED ELECTRONS)

-E~ P I nl rn I LIGHT GENERATES PAIRS AND
~ Wflil THE ELECTRONS NEUTRALIZE

SOME DONORS.

n DECREASED
(DONORS NEUTRALIZED BY
ITRAPPED ELECTRONS)

BIG l fJj P II' n
-E ~ II

L...-_---II--_--'

--iw I SMALL BAR~ER
•

60/= R In ~ +E
q nL

OTHER ELECTRONS FILL TRAPS.

WHEN THE LIGHT DISAPPEARS,
TRAPPED ELECTRONS
NEUTRALIZE THE DONORS.

LIGHT

==>

p n

V

....J
~

ffi
~
I-

~
~
w
z
:E

d
a::
l­
t)
W
....J
W

LIGHT
~

PRINCIPLE: THOSE PORTIONS OF THE CdS
WHICH WERE I LLUMINATED HAVE
PERMANENTLY ACQUIRED A LOW RESISTANCE.
MOST OF V IS THEREFORE PERMANENTLY
APPLIED TO THE ELECTROLUMINESCENT
MATERIAL IN THESE SPOTS.

Figure 9. Electroluminescent storage.

COMPUTER APPLICATION OF ELECTRO·OPTICS 11

where the series diode has been locked into its low
impedance state by incident light, we shall have light
emission from the highly polarized electrolumi­
nescent layer.

4.3 Diffraction Grating Display

Fuller of LFE 23 has produced a combined storage
and readout system in which a thin magnetic film is
magnetized in spots by a coincident current arrange­
ment as shown in Fig. 10. The composition of the
magnetic film is such that for one direction of
magnetization the domains are long and narrow, the
width of each being of the order of that of the wave­
length of visible light and constant from one to the
next.

A Bitter Solution (essentially iron filings in a suit­
able viscous liquid) is held between two transparent
covers adjoining the magnetic film. As soon as the
right magnetization occurs, the Bitter Solution will
show a bunching effect and will take on the aspect

-d-
STRIATED MAGNETIZATION

of a periodic structure having all the properties of
a diffraction grating. Incident light will therefore
be diffracted into an observer's eye in the correctly
magnetized spots, giving direct optical readout of
the state of magnetization. The memory action
obviously stems from the retention of this state even
after the selecting currents have been taken away.
Certain difficulties with diffused light and higher
order diffractions can be attenuated by covering the
device with a supplementary plate, producing total
reflection for all but the desired direction of output
light.

4.4 Paramosaic

A principle similar to that used in the Scanistor
(but extended to two dimensions) was used at the
Department of Computer Science of the University
of Illinois 24 to produce storage and display in a
matrix of wires with suitable elements thrown across

DIFFRACTED LIGHT OCCURS IF I

nAo = d (sin a + sinf3)

LIQUID

BITTER SOLUTION (IRON FILINGS)
UNIFORM DENSITY

THIN FILM

RANDOM MAGNETIZATION

Figure to. Diffraction grating display.

12 PROCEEDINGS-SPRING JOINT COMPUTER CONfERENCE, 1966

each grid-point (see Fig. II). The practicality of
such a "Paramosaic" hinges upon the cost of each
display element. The one shown in the figure only
gives temporary storage due to the inertia of the
lamp and the actual model (32 x 32) used a more
sophisticated design, consisting of a sensitive com­
parator and a flip-flop with readout via a tungsten
light: if the grid-points were within 0.2v of each
other, the light would come on permanently.

The interesting property of: the system is that any
single-valued function y = f(x) can be displayed by
giving a minimum amount of information, namely
the voltage distribution u(x) = kf(x) on the verti­
cal wires. Making v(y) = ky for the horizontal
wires, only points with y = f(x) (or nearly) will
light up. Transmitting a sequence of "profiles"
u(x) can display line drawings with arbitrary com-

Y

3
u (y)= ky

2

a
10-_____ U (y)

Y- PROFILE
(NORMALIZED TO BE LINEAR) u(x)

DISPLAY ELEMENT:

plications and there is a considerable bandwidth re­
duction when the profiles are sent as time sequences.

5. GRAPHICAL PROCESSING AND
COMPUTERS

Graphical processors always involve input and
output devices of the type described above.
Usually, however, the scanner is followed by a
digitizer, and a general-purpose computer is used
for processing and storage. The author feels that in
graphical processing, many interesting operations
can be performed at high speed and low cost by
appealing to the latest designs in analog circuitry
and by using storage principles of the kind discussed
in Section 4. The reasoning is simply that the best
scanners give resolutions of the order of 1000 lines

MATRIX OF WIRES

I I I u(x)=kf(x) I

I

u(3)=u(3)

= -0- ~~--------~------~------~---- X 023
X - PROFILE

(CHOSEN TO GIVE CURVE TO BE DISPLAYED)

Figure 11. Paramosaic.

COMPUTER APPLICATION OF ELECTRO-OPTICS 13

(106 bits per frame after quantization) and that as
long as the machine interacts with a human a frame
rate of a few frames per second is adequate: the
data rate inside the processor is then of the order
of a few megacycles per second.

The Department of Computer Science at the Uni­
versity of Illinois is presently engaged in proving

these views in a system according to Fig. 12 used in
automating the constructions of Euclidian geom­
etry. In this Artrix System 25 use is made of hybrid
digital-analog circuits with 0.3% precision from DC
to 2 megacycles, the signal swings being from - 10v
to + 10v. The three stores (PERMANENT, PAD
and ACCUMULATOR) are all formed on memo-

- ~

(r a b)4-JOYSTICK

• ~ ~

CIRCLE
GENERATOR DISPLAY

---.. (~~\J
... ADDRESS ...

j-l GEN . -
..., ...,

TRANSF. TRIAL 1 256

IpOINTER]

DISPLAY
"

IINDICATOR I ~J , PERMANENT X h ?-
~

STORE .- COUNTER 4 - \ I

LINE (POINTS) \ ,
\ I

GENERATOR ~ .~
\ I
\ I

...--
IERASEfij

\ ' II
4
1\

DISPLAY
1\

I
I \

LJ I \
I \

I \

INTERSECTION PAD . Y I I

f-- --¢ b--
FINDER (TEMPORARY) -- COUNTER COMMUT.

• 4l ..
lERASER]

DISPLAY
H

IINDICATOR·I _1
, t - ACCUMULATOR

,t ..
(DWGS.)

CLOCK
- --

Figure 12. The Artrix system.

14 PROCEEDINGS---SPRING JOINT COMPUTER CONFERENCE, 1966

tron-vidicon pairs with a 300-line resolution: their
contents are simultaneously sent to a display moni­
tor which is also used for light-pen writing. A digi­
tal system positions all beams in synchronism and
permits the transmission of digitized coordinates to
the processing boxes (CIRCLE GENERATOR,
LINE GENERATOR and INTERSECTION
FINDER), thus obviating the storage of analog
signals: the digital versions, after being converted,
feed the analog processors.

Erasure is obtained by selective transfer of in­
formation from the permanent store or the accumu­
lator to the PAD: the portions not to be transferred
are pointed at with a large aperture "ERASER"
light-pen. The "POINTER" light-pen is used to set
the initial construction points into the permanent
store: it has a small aperture. The "INDICATOR"
light-pen has again a large aperture and generates
a gating signal which allows the system to look up
the exact value of coordinates in the permanent
store. The two fundamental operations are the
automatic drawing of straight lines through two
points and the construction of circles with a given
center (a,b) and a given radius r.

ACKNOWLEDGMENTS

The author is indebted to Harold Fleisher and
Robert Pole of IBM, Charles Koester of American
Optical, Dean Anderson of Autonetics, Louis Cut­
rona of Conductron Corporation, Harrison Fuller
of LFE and James Tippett of NSA for helpful dis­
cussions and suggestions.

REFERENCES

l. C. J. Koester, "Some Properties of Fiber Op­
tics and Lasers," Optical Processing of Information,
Pollock, Koester and Tippett,. eds., Spartan Books,
Baltimore, 1963, Part B.

2. W. F .. Kosonocky, "Laser Digital Devices,"
Optical and Electro-Optical Information Processing,
J. Tippett et aI, eds., MIT Press, Cambridge, Mass.,
1965.

3. C. J. Koester and C. H. Swope, "Some Laser
Effects Potentially Useful in Optical Logic Func­
tions," ibid.

4. G. J. Lasher and A. B. Fowler, "Mutually
Quenched Injection Lasers as Bistable Devices,"
IBM Journal of Research and Development, Sept.
1964.

5. W. J. Poppelbaum, "Electro-Optical Infor-

mation Processing," Proceedings of the IFIP Cong­
ress, 1965.

6. R. E. J. Moddes and L. O. Gilstrap, "Re­
search on Optical Modulation and Learning
Automata," Optical and Electro-Optical Information
Processing, J. Tippett et aI, eds., MIT Press, Cam­
bridge, Mass., 1965.

7. J. C. Bliss and H. D. Crane, "Relat.ive Nlo­
tion and Nonlinear Photocells in Optical Image
Processing," ibid.

8. E. N. Leith, L. J. Porcello and L. T. Cutrona,
"Coherent Optical Data Processing Techniques,"
Proceedings of the NEC, 1959.

9. L. T. Cutrona, "Recent Developments in
Coherent Optical Technology," Optical and Electro­
Optical Information Processing, J. Tippett et aI, eels.,
MIT Press, Cambridge, Mass., 1965.

10. G. Parrent, "Relation Between Bandwidth
and Spatial Coherence in Experiments Involving
Dispersion," Journal of the Optical Society, vol. 55,
no. 9 (1965).

11. W. J. Poppelbaum et aI, "Film Sicanner,"
Quarterly Technical Progress Report of the Depart­
ment of Computer Science, University of Illinois,
July-Sept. 1965.

12. D. B. Anderson, "Application of Semicon­
ductor Technology to Coherent Optical Transducers
and Spatial Filters," Optical and Electro-Optical
Information Processing, J. Tippett et aI., eels., MIT
Press, Cambridge, Mass., 1965.

13. G. W. Stroke, "Theoretical and Experimental
Foundations of Optical Holography," ibid.

14. R. V. Pole et aI, "Laser Deflection and Scan­
ning by Internally Lifting Degeneracy of M ultimode
Cavities," ibid.

15. H. Fleisher et aI, "An Optically Accessed
Memory Using the Lippman Process for Informa­
tion Storage," ibid.

16. A. Reich and G. H. Dorion, "Photochromic,
High-Speed, Large Capacity, Semirandom Access
Memory," ibid.

17. M. Von Ardenne, Tabellen der Elektronen­
physik, Ionenphysik und Uebermikroskopie, Deut­
scher Verlag der Wissenschaften, 1956, vol. 1, p.
202.

18. C. F. Pulvari, letter in Electronics, Feb. 28,
1964.

19. E. Lindberg, "Solid Crystal Modulates Light
Beam," Electronics, Dec. 20, 1963, p. 58.

20. J. W. Horton, R. V. Mazza and H. Dym,
"The Scanistor-A Solid-State Image Scanner,"
Proceedings of the IEEE, Dec. 1964, p. 1513 ..

COMPUTER APPLICATION OF ELECTRO·OPTICS 15

2l. A. D. Berg and R. Smith, "An Electron Im­
age Information Store," AGARD Symposium on
Opto-Electronics, Paris, 1965.

22. N. H. Lehrer and R. D. Ketchpel, "Thin
Film Conductive Memory Effects Applicable to
Electron Devices," Optical and Electro-Optical In­
formation Processing, J. Tippett et aI, eds., MIT
Press, Cambridge, Mass., 1965.

23. H. W. Fuller and R. J. Spain, "A Thin Mag­
netic Film for Wall Panel Display," ibid.

24. W. J. Poppelbaum et aI, "Paramatrix Sys­
tern," Technical Progress Report of the Department
of Computer Science, University of Illinois, June
1964.

25. --, "The Artrix System," ibid, July-Sept.
1965.

BASIC THEORY OF PARTIAL COHERENCE

George B. Parrent, Jr.
Technical Operations Research

Burlington, Massachusetts

INTRODUCTION

The structure for a fundamental treatment of
image formation problems already exists in the
formalism of modern coherence theory as intro­
duced by Wolf.l An adequate introduction to the
subject is provided by Born and Wolf,2 (Chap. 10),
and a detailed description of most of the results of
the theory to date may be found in Beran and
Parrent.3 Therefore it will not be necessary to re­
view the subject extensively here. Rather, we shall
limit ourselves to a statement of the pertinent defini­
tions and a summary of the treatment of the imag­
ing problem in coherence theory.

BASIC DEFINITIONS

Mutual Coherence Function

The basic entity in the theory of partial coherence
is the mutual coherence function, r I2 (T), which may
be defined by

r I2 (T) == (~h~2,T) = <V(~ht) V*(~2,t + T» (1)

Here the underscore denotes position vector, the
asterisk a complex conjugate, and the sharp brack­
ets indicate a long time average, * i.e.,

1 IT <J> == lim -2 Jdt
T-oo T -T

(2)

* Equation (2) is equivalent to the definition introduced by
Wolf, though in a slightly different form.

17

In (1) V is the analytic signal associated with the
optical disturbance, which we assume to be a single
Cartesian component of the electric field vector. In
terms of the mutual coherence function, the com­
plex degree of coherence, 1'12 (T) is defined as

(3)

It should be noted that the complex degree of co­
herence, like the mutual coherence function, is a
function of seven variables, six position coordinates,
and the time-delay coordinate T. The physical sig­
nificance of these parameters is illustrated by the
example discussed below. The treatment of prob­
lems involving partially coherent light involves the
solution of the two wave equations:

(s = 1,2) (4)

where V; denotes the Laplacian operator in the co­
ordinates of the point Xs' A typical problem in­
volves determining the mutual coherence in the
source or object plane, solving (4) to obtain the
mutual coherence on a later surface, such as the
image plane, and then recovering the intensity, I, in
the plane of interest from the relation

(5)

Equation (5) follows directly from the definition of

!8 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

the mutual coherence function and the properties of
the analytic signal.

For a large class of problems the theory outlined
in the preceding paragraph may be greatly simpli­
fied. These problems are characterized by the quasi­
monochromatic approximations, which are stated
as

{ ~; L\: :< I T I}
where D.v is the spectral width. Of these two con­
straints, the second is obviously the more signifi­
cant. White light may often be treated as quasi­
monochromatic if the path differences, CiT I, in­
volved in the experiment are suitably small. In
those circumstances for which the approximations
above are applicable, the mutual coherence func­
tion may be replaced by the mutual intensity func­
tion, r(~I'-~2)'

r (x 1 , ~ 2) == r 12 = r (KI , ~2 , 0) (6)

The complex degree of coherence reduces to
1"12(0) == 1"12 and the wave equations (4) reduce to
the two Helmholtz equations

(s 1,2) (7)

where Is:. is the wave number.

Coherent and Incoherent Fields

Equations (1) through (7) provide the basis of the
theory of partial coherence as introduced by Wolf.
To apply this theory to the imaging problem arid
recover the familiar limiting forms, several the~rems
due to Parrent are required. Principal among these
are:

1. A field is coherent if and only if the
mutual intensity function describing it
can be factored in the form

where

V2UC~1) + k 2 U(Kd = 0

2. An incoherent field ~annot exist in free
space; however, an incoherent source
consistent with this· result may be de­
fined.

(8)

(For the proof of these theorems and their exten­
sions to polychromatic fields the reader is referred
to Beran and Parrent.J

) Of particular significance
for the problem of image evaluation is the second

of these theorems. We shall reserve a discussion of
the significance of the incoherent limit for a later
point (a comprehensive treatment may be found in
Beran and Parrent,3 Chaps. 2 and 3).

The van Cittert-Zernike Theorem

An additional theorem is required before attack­
ing the treatment of the image formation probl{~m.
The van Cittert-Zernike theorem may be stated as
follows:

The mutual intensity of the illumination
derived from a distant incoherent source
may be expressed in the form

2 ... i

r(XI, X2) = J 1(~)eXR f'(~I-~2) d~ (9)

Here I is the intensity distribution across the source,
and R is the distance from the source plane to the
observation plane. If the source is pl.aced- in the
focal plane of a lens and the coherence of the
emergent beam examined, it is found to follow the
same law with the R replaced by the focallengthf

THE IMAGING PROBLEM

We may now direct our attention to the formula­
tion of the general imaging problem. As will be­
come clear in the following discussion, a basic de­
scription of image formation (at least as far as the
lenses are concerned) already exists in coherence
theory and, in fact, may be found in Refs. 2 and 3.
This theory has not however been appli<;:d to the
significant problems of image evaluation. Indt!ed,
the theory has been applied to very few problems.
In the next section the basic theory is outlined and
those pertinent problems that have been solved are
reviewed and discussed.

Review of Image Theory

In coherence theory an object is described by its
mutual intensity* (or mutual coherence) distribu­
tion rather than its intensity distribution. Thus the
object described by rO(~l' ~2) and the relationship
between object and image,-ri(~h.x2)' is developed
by solving the two Helmholtz equations (7) subject
to the appropriate boundary conditions. The gen-

*Our discussion in this section will be limited to quasi·
monochromatic radiation. This serves to introduce the con(:epts,
and at the same time keeps the development tractable:.

BASIC THEORY OF PARTIAL COHERENCE 19

eral solution is (see Ref. 3, Chaps. 7 and 8):

C(XI,-X2) = J J rO(~I' ~2)K(~1 - ~I)
·K*(~2 - ~2)d~ld~2 (10)

Here K denotes the amplitude impulse response of
the lens; i.e., denoting the complex transmission of
the aperture by A (g), we may write

(
f3) 2-.:i a·fJ

K(~) = K AI = J A(g)e >./-- det (II)

The two familiar limits may be recovered from (10)
by using the theorems of the previous section. Thus,
in the coherent limit, r l2 = VI Vf, and (10) reduces
to

CC~I' K2) = J VO(~I)K(~I - ~dd~1
. J V6' (~2)K* C~2 - ~2)d~2 (12)

From (12) and theorem I ("Coherent and Inco­
herent Fields," above), it is clear that the image of
a coherently illuminated object is coherent. A some­
what more surprising result (and certainly more in­
teresting in the image evaluation problem) is ob­
tained in the incoherent limit. Thus, we may take*
r l2 = 1(~1)O(~I - 6) to describe the object. The
general image~Eq. (10), then reduces to

C(~I'~2) = J 1(~)K(~1 - ~)K*(:K2 - ~)d~ (13)

From (13) it is clear that the image mutual intensity
is no longer of the same form as the object mutual
intensity; i.e., the image of an incoherent object is
not incoherent but is partially coherent. This result
will be seen to have rather far-reaching implications
in the problems of image formation.

For most applications, the primary exposing radi­
ation may be safely taken as incoherent. For ex­
ample, sunlight is coherent only over a distance of
approximately 1/20 mm. Thus, even a reconnais­
sance system which resolved an inch on the ground
could probably be safely described by the incoherent
limit of Eq. (10). In this case, the intensity in the
image can be obtained by setting ~I = ~2 In (13);
thus

!i(~) = J 10 (f) 1 K(~ - ~) 12 d~ (14)

Equation (14) will be recognized as the familiar
incoherent imaging equation. The difficulty arises,
of course, when the scale of the mutual coherence
function becomes comparable with the resolution of
the optical instrument. (This point will be discussed

* Actually this form for the incoherent limit is only an approxi­
mation and must be used with care. However, it is sumciently
precise to illustrate the present problem.

at length in a later section.) While this condition is
not likely to arise in the original taking system in
the near future, it becomes serious in viewing and
analyzing equipment such as microscopes, en­
largers, and microdensitometers at the present state
of the art. If one envisions improvements in taking
equipment of a factor of two or more, it will become
even more serious. This point will become clear as
we analyze transilluminated objects.

While (10) represents the general solution to the
partially coherent imaging problem, a more useful
form for application to spatial filtering is obtained
by considering the object to be a transparency that
is transilluminated. This is, of course, the case in
almost all viewing of reconnaissance imagery, ~nd
certainly in all uses of microscopes and microdensi­
tometers in image evaluation. To describe this class
of problems, it is necessary to describe the object in
terms of its complex transmission t(~). For trans­
illuminated objects Eq. (10) may be expressed as

ri(~I'~2) = J JrO(~I'~2)t(~I)t*(~2)
·K(~I - ~1)K*(~2 - ~2)d~ld~2 (15)

In most cases, one is interested in the intensity of
the image, which may De obtained from (15) by set­
ting ~I = ,!2. Thus,

li(~) = J J ro(~], ~2)t(~dt*(~2)K(~ - {d
·K*(~ - ~2)d~ld~2 (16)

In (15) and (16) rO(~I' 6) must be interpreted as the
coherence of the illumInation incident on the trans­
parency. The illumination in most cases of practical
interest will be derived from a primary incoherent
source. In this case rO(~I' ~2) takes a special form­
(because of the van Cittert-Zernike theorem):

(17)

That is, it becomes a function of coordinate differ­
ences only. Under these circumstances (16) be­
comes

lie,!) = J J rO(~1 - ~2)t(~1)t*(~2)K(~ - ~)
·K*(~ - ~2)dgldg2 (18)

From (18) it is clear that for transilluminated ob­
jects the transition from object intensity 1 t(~) 12 to
image intensity is nonlinear. The significa-nce of
this conclusion is that the customary image evalua­
tion techniques and criteria are not, in general, ap­
plicable to such systems. For example, knowing
how such a system images sine waves or edges does
not permit us to describe how it images other ob­
jects. Furthermore, the same optical system could

20 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

be expected to yield different results if the coher­
ence of the illumination varied. At high resolutions
a small variation in the scale of the coherence func­
tion can produce dramatic; changes in the image.
This may account, in part, for the difficulty encoun­
tered in intercalibrating instruments in different
laboratories, or in the cross-checking of microdensi­
tometers that have essentially equivalent optical
components but produce different results in edge
trace analysis.

Since systems of this type are inherently non­
linear, it is impossible to characterize them by a
transfer function. This point is easily established by
taking the Fourier transform of both sides of (18).
Thus,

i~) = J i({})7*(~_ - Q){J r[~ - (~ + ~)]
K(~ - ~)K*(~)dqJdf1 (19)

In (19) the inner integral is characteristic of the in­
strumentonly, while the factors t({3) and t* (Il - (3)
are determined solely from the object spectrum.
However, (19) is not in the form of "object spectrum
times transfer function equals image spectrum." The
inner integral has been referred to as a generalized
transfer function, but that nomenclature is rather
misleading since the function is not used as a trans­
fer function at all. A better terminology is the more
cumbersome one introduced by Wolf, the "trans­
mission cross coefficient," which emphasizes that it
is a function of two frequencies.

With these general reservations in mind, we may
direct our attention to the development of the sys­
tem analysis for spatial filtering systems.

SYSTEM ANALYSIS

In this section the relationships between "object"
and "image" for three cases of imaging with co­
herent radiation are derived. Denoting by ZI and Z2,

respectively, the object and image distances, we de­
fine these cases as follows:

l.~+~=~
ZI Z2 /

2. ZI = Z2 = /
3. ZI = 0, Z2 = f

Condition (1) produces an image in the ordinary
sense only if the object is: in the near field of the
lens. Condition (2) yields an "image" which is the
Fourier transform of the object, and condition (3)
yields a Fourier transform multiplied by a quadratic
phase term.

v v
z, /1

0(.

Figure 1. Coordinate system.

The geometry is illustrated in Fig. 1, in which ~ is
the coordinate in object space, a is the coordinate in
the aperture plane, and x is the coordinate image
space. Assuming paraxial optics and ignoring
obliquity factors, we may express the rdation be­
tween object and "image" as follows (Beran and
Parrent,3 Chaps. 3 and 7):

fi(XI, X2) = J J J J rO(~I' ~2)R(al)R*(a2)

Here R (a) describes the transmission of the aperture
and all integrals are infinite. The term a~2 /2/ is, of
course, the saggital approximation and the r's re­
main from the Green's function.

Assuming coherent quasi-monochromatic radia­
tion, we find that

rO(~1,6) = UO(~I)U~(~2) (21)

and the image becomes

r i(XI,X2) = Ui(XI)U1(X2) (22)

where

ik ~U.a)- ~ +r(a.x)]
Ui(x) = J J Uo(~)R(a)e 2/ d~da

(23)

I
· f d K (~ - a)4 . gnonng terms 0 or er we may wnte

Z3

(~ _ a)2
r(~, a) = ZI + (24)

2z1
and

(25)

Hence, omitting constant phase terms we may re­
write (23) as

[~ (~+ ~ _ ~) + L+ ~ a(X ~ ~)] . J R(a)e ik 2 z, z. / 2z, 2z. - ;;- z:

·dad~ (26)

BASIC THEORY OF PARTIAL COHERENCE 21

Case (1): I

/
Under these conditions (26) becomes

o [r aE x' ax]
U;(X) = J Uo(~) J R(a)e'k 2z,- z,-+ 2z. - z.- da d~ (27)

Consider first the integral

;k[r - 2aEl ;ka'

J Uo(~)e 2z, d~ = e -zz,- U(a) (28)

Here
;k(E-a)'

U(a) = J Uo(~)e-2Z'-d~ (29)

Equations (28) and (29) are obtained by simply
completing the square in the exponent. We may
now write (27) as

Uj(x) = J R(a) U(a)e;kG:.- ::- ;:,J da (30)

Or completing the square again we have

Ok .[Z' Z~]
I X ~+~

U;(x) e 2z, J R(a) U(a)e da (31)

;kx'z, ;k(a+ ;;-xr
e 2Jz. J R(a) U(a)e 2z, da (32)

If the lens is unapodized and unaberrated, (32) be-
comes

ikx'z, fa
U;(x) = e 2Jz. -a U(a)e

;k(a+z;x)"

2z1 de¥. (33)

Under the condition

(34)

i.e., object in near field of lens, the limits -a to a
(the aperture size) may be regarded as infinite and
(33) may be evaluated by the inversion theorem for
Fresnel transforms, giving

V,(x) - elk"g«,,<,) Vo (:: x) (35)

that is, an image mUltiplied by a quadratic phase
term.

Case (2): Zl = Z2 = /
Under these conditions, (26) reduces to

;k(a' + E' +x' - 2a(x + E)l

Ui(x) = J J Uo(~)R(a)e 2J da d~ (36)

Completing the square on the exponent in (36) gives

f _lkEx I.a Ik(a-(x+E»)'

U;(x) = Uo(~)e E-J e 2J da d~
-a

(37)

Here an ideal lens is assumed again. Provided a, x,
and ~ and the condition

a2 » 2/
k

is met, the inner integral yields a constant C and
(37) becomes'

;kEx

U;(x) = C J Uo(~)e -V d~ (38)
or

(39)

i.e., a Fourier transform with no quadratic phase
term.

Case (3): Z 1 = 0 Z 2 = /

Under these conditions we have immediately
from Eq. (20)

ikx' ikax

U;(x) = e 2T J Uo(a)R(a)e -21 da (40)
or

(41)

Spatial filtering systems are properly constructed
around the configuration characteristics of case 2.
That is, this setup is used to display the Fourier
transform of the input transparency. A second
transparency is placed in the Fourier transform
plane to modify the spectrum. Then the process is
repeated and the "filtered" image is displayed in the
final Fourier transform plane.

In each spatial filtering experiment the coherence
conditions should be adjusted in accordance with
the foregoing analysis in order to be sure that the
approximations of the theory have been satisfied
and at the same time to minimize the degrading
effects associated with coherent imaging. These
effects arise primarily from the fact that such sys­
tems are nonlinear in intensity. Some examples of
these effects are shown below.

EXPERIMENTAL EXAMPLE OF
COHERENCE EFFECTS

A simple experiment that illustrates the effects of
the spatial and temporal coherence is to form two­
beam interference fringes by division of a wavefront.
Figure 2 shows the result of such an experiment.
Figure 2a shows high-contrast fringes formed with a
He-Ne gas laser illuminating a pair of small circular

22 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

a b

c d

Figure 2. Effect of coherence length. A and B-with gas lasers; C and D-with mercury arc.

apertures~ The envelope function is the diffraction
pattern of the single aperture. In Fig. 2b, a piece of
plane optical quality glass 0.5 mm thick was intro­
duced in front of one of the apertures only, to add
an extra optical path. Again illuminating with the
He-Ne gas laser, we observe no difference in the
fringe contrast. However, when the experiment is
repeated with a coherent field produced by a
mercury arc lamp without the glass plate, high­
contrast fringes are again seen (Fig. 2c), but with
the glass in place, the fringes disappear (Fig. 2d).
The slight scale change between the two pairs of
illustrations results from the different wavelengths
(6328 A for He-Ne and 5461 A for the Hg green

line). This illustration shows that the coherence
length of the mercury arc radiation is quite small.
Both fields were spatially coherent but the coherence
lengths were quite different. Introducing fine
ground glass across the pair of pinholes resullts in
the intensity distribution of Fig. 3. The c!xtra paths
introduced by the ground glass did not exceed the
coherence length; hence, high-contrast fringes are
seen over the whole field. A discussion of these
types of speckle patterns in terms of their auto­
correlation function and their power-sp,ectral den­
sity are to be found in a paper by Goldfischer.4 An
attempt to build a coherent projection printer is re­
ported by Milinowski,5 in which a rotating pi(~ce of

BASIC THEORY OF PARTIAL COHERENCE 23

Figure 3. Two-beam interference with diffusing plate.

ground glass is used to remove some of the co­
herence effects.

REFLECTED LIGHT

The different speckle patterns formed when co­
herent light is reflected from a rough surface have
been commented upon a number of times and per­
haps form the most objectionable feature of co­
herent imaging by reflected light (as opposed to
transmitted light discussed in the last section).
Figure 4 shows a standard bar target that has been
printed on a matte photographic paper and then

a

Figure4. Photograph in reflected coherent light.

rephotographed in reflected coherent light. The
edge-ringing effects are masked by the speckle pat­
terns. The speckling is produced by the interference
between the scattered light and is determined by
the coherence length of the incident radiation. Fig­
ure 5a is a photograph of a portion of a cement­
block wall illuminated by a mercury arc so that the
light is spatially coherent. In Figure 5a the same
portion of the wall is illuminated by a gas laser; the
speckling completely obscures any structure of the
wall. Both beams had approximately the same
spatial coherence, but the gas laser has a consider­
able longer coherence length.

b
Figure 5. Effect of coherence length. A-spatially coherent only; B--spatially and temporally coherent.

24 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

REFERENCES

1. E. Wolf, Proc. Roy. Soc., vol. (A) 230, p. 246
(1954).

2. M. Born and E. Wolf, Principles of Optics, 2nd
ed., Pergamon Press, New York, 1964.

3. M. Beran and G. B. Parrent, Theory of Partial
Coherence, Prentice-Hall, Englewood Cliffs, N.J.,
1963.

4. L. I. Goldfischer, J. Opt. Soc. Am". vol. 55,·
p. 247 (1965).

5. A. S. Milinowski, ibid, vol. 54, p. 1406 (1964).

THE ROLE OF COHERENT OPTICAL SYSTEMS IN
DA T A PROCESSING

L. J. Cutrona
Conductron Corporation

Ann Arbor, Michigan

INTRODUCTION

This paper describes a number of signal process­
ing techniques in which coherent optical techniques
play an important role. The techniques are power­
ful and of great versatility.

Examples of both two-dimensional and multi­
channel one-dimensional signal operations are de­
scribed. Of particular importance is the fact that
the most general linear operation can be mechanized
optically. Further examples show how antenna pat­
terns can be simulated optically.

A configuration useful for achieving fine resolu­
tion in radar by the generation of a synthetic
antenna is described.

Finally, the use of several optical configurations
for communication purposes are discussed.

FUNDAMENTAL PRINCIPLES

Much of the capability of optical configurations
arises from the ease with which certain one-dimen­
sional and two-dimensional spectral analyses are
made. I-4 Two basic configurations appear re­
peatedly. These configurations are

1. A configuration using a spherical lens
which produces two-dimensional dif-
fraction, and .

2. A configuration consisting of a spheri­
callens in conjunction with a cylindri-

25

callens which produces a mUltiplicity of
one-dimensional diffraction patterns.

The basic configuration for obtaining two­
dimensional diffraction patterns is shown in Fig. 1.

In this figure S represents a source of light, LI
represents a collimating lens, PI represents the input
plane in which a transparency is placed, and lens L2
is the spherical lens which is the essential element
for producing a two-dimensional diffraction pattern.
Plane P2 is the plane in which the two-dimensional
spectrum (of the transparency in plane PI) is ex­
hibited.

In order that the distribution of light in plane P2
be the two-dimensional spectrum analysis of the
density distribution of the transparency in plane PI,
it is necessary that planes PI and P2 be spaced a
focal length on either side of lens L2. If f(x,y) rep­
resents the amplitude of light emerging from plane
PI, then the distribution of light amplitude in plane
P2 is given by Eq. (1):

F(a, (J) = J J f(x,y)ejk(ax+ py) dx dy (1) ,

In Eq. (1), the amplitude of the light in plane P2

Figure 1. Configuration for two-dimensional spectrum
analysis.

26 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

is given by F(a, (3). Here k represents the wave
number of the light while a and (3 represent the
direction cosines of the diffracted beam with re­
spect to the x and y axes.

The configuration of Fig. 1 can be converted to
a multichannel one-dimensional diffraction equip­
ment by the addition of a cylindrical lens to the
configuration of Fig. 1. The cylindrical lens is
placed between planes PI and P2 to give the con­
figuration shown in Fig. 2.

In this case the distribution of light in plane P2

is given by Eq. (2). It will be noted that this expres­
sion indicates distribution of light corresponding to
a multichannel spectrum analysis. The parameter y
is an index referring to a given channel. The other
parameters have been previously defined.

F(a,y) = J !(x,y)e jkax dx (2)

Figures 1 and 2 will be seen to appear in a num­
ber of configurations in the following sections. A
photograph of equipment using the configuration of
Fig. 2 is shown in Fig. 3.

LINEAR OPERATIONS

Signal processing operations include a large num­
ber of linear operations. Among these operations
are spectrum analysis, filtering, auto-correlation,
cross-correlation, etc. Each of these operations,
including (a) the most general linear operation on a

Figure 2. Configuration for one-dimensional multichannel
diffraction.

function of a single continuous variable, and (b) the
most general linear operations on vectors, can be
mechanized optically.

Spectrum Analysis

The configuration of Figs. 1 and 2 are those essen­
tial for two-dimensional spectrum analysis or multi­
channel one-dimensional spectrum analysis. The
operation of these configurations formed the con­
tent of the above section.

Filtering

It is often desirable to perform filtering opera­
tions upon recorded signals. In such cases, it is
usually required to view the signals corresponding
to these altered spectra. To achieve this alteration
of the spectrum and viewing of the result, it is neces­
sary to modify the optical configurations shown in
Figs. 1 and 2 to those shown in Figs. 4 and 5,
respectively.

The configurations in Figs. 4 and 5 permit opera­
tions on the spectra by filtering operations in plane
P2 • A number of filtering operations are possible:

In the simplest case, one can achieve bandpass
and bandstop filtering in plane P2 • A bandpass is
achieved by having a transparent region at the ap­
propriate location in plane P2 • A bandstop is
achieved by locating an opaque spot at the appro­
priate position in plane P2.

A more complicated filtering operation can be
achieved by placing in plane P2 a transparency hav­
ing a density varying as a function of position. This
corresponds to a filter which changes. the rdative
magnitudes of the spectral components.

A different filter is one in which phase variations
are desired. Difficulties in making filt.ers of this
kind arise from the short wavelengths of light.

Figure 3. Equipment for one-dimensional multichannel spectrum analysis.

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 27

Figure 4. Configuration fortwo-dimensional spectrum analysis
and filtering.

Figure 5. Configuration for one-dimensional multichannel
spectrum analysis and filtering.

In the most general case, a filter is desired in
which both the magnitude and the phase shift of the
spectra can be varied. In this case one can place
two transparencies in contact in plane P2 ; one of
the transparencies has a varying density while the
other has a varying thickness or phase shift. This
permits the most general filtering operation to be
performed optically.

Information theory indicates a number of cases
in which a desirable signal operation is that of pass­
ing a signal through a matched filter. In general the
matched filter will require a variation of both mag­
nitude and phase, hence the general filter consisting
of variable magnitude and phase is required.

A scheme for achieving the equivalent of a com­
plex filter (magnitude and phase shift both variable)
makes use of a technique recently demonstrated by
Leith and Upatnieks,5 and Vander Lugt.6

In this case a recording is made in which both
phase and magnitude are preserved but in which
this information can be recovered from a trans­
parency having density variations only.

Auto-Correlation and Cross-Correlation

Important linear operations are those of auto­
correlation and cross-correlation. These functions
will be considered together since the equipment
needed to mechanize the operations is identical. In
performing a cross-correlation the operations per­
formed are those indicated by Eq. (3) while an auto­
correlation is given by Eq. (4).

c,ojg(xo) co: J f(x)g(x - xo) dx (3)

c,ojixo) = J f(x)f(x - xo) dx (4)

It will be noted from Eqs. (3) and (4) that to
mechanize these operations, techniques are needed

for performing multiplication, translation, and inte­
gration. A configuration capable of performing a
multiplicity of one-dimensional auto-correlations or
cross-correlations is given in Fig. 6. In this figure
the source and collimating lens to the left of the
plane PI causes a plane coherent wave to be incident
on the transparency f(x,y).

The optics between planes PI and P2 causes the
multichannel spectrum analysis of f(x, y) to appear
in the plane P2 • The optics between planes P2 and P3

perform a second multichannel spectrum analysis of
the signals in plane P2 • Thus, incident upon P3 is
the function f(x,y). If one looks through plane P3

toward the source, the distribution of light will be
the product f(x,y) g(x,y).

Let the holder which contains the function f(x,y)
have provision for transporting this transparency
along the x axes. If this displacement is through a
distance xo, then the distribution of light in plane P3

lookIng toward the source will be the product
f(x, y) g(x - Xo, y).

The combination of spherical and cylindrical
optics between planes P3 and P4 cause a multi­
channel spectrum analysis of the light distribution
emerging from plane P3 • Hence, the distribution of
light in plane P4 is described by Eq. (5).

c,o(xo,y; O() = J f(x,y)g(x - xo,y)e jocz dx(5)

where 0(:= 27r"/A sin ().
It will be noted that Eq. (5) resembles Eq. (3)

except that a multiplicity of operations is performed
(one for each value of y) and that the factor e jocx

appears as a factor in the integrand. In Eq. (5),
0(= ° corresponds to the light in a slit parallel to
the y axis. If only the light in this slit is recorded,
the exponential factor in Eq. (5) assumes the value
unity. In this case, Eq. (5) becomes identical with
Eq. (3) except for its multichannel feature. This
result is written as Eq. (6):

c,o(xo,y,O) = c,ojg(x,y) (6)

As the plane P3 is transported,at a given position in
plane P4 , there will appear an amplitude of light
corresponding to the value of the cross-correlation
function for that value of the displacement Xo. This
auto-correlation function can be recorded by trans­
porting a film past the slit. The configuration in
Fig. 6 is, thus, capable of performing a mUltiplicity
of sim ultaneous correlations.

To perform an auto-correlation using the con­
figuration of Fig. 6 one uses a second copy of f(x,y)
in plane P3 •

28 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

f(x I Y) .< Xo I Y ,0)

00
Sliit

P,4

Figure 6. Cross-correlator configuration.

In the mechanization shown as Fig. 6 a relatively
complicated optical arrangement was shown to
image plane P l onto plane P3' It is necessary to use
this configuration in order to remove errors arising
from bias levels used in recording the signals in
planes Pl and P3 •

Auto-correlations and cross-correlations are im­
portant operations and there are many instances for
which information theory indicates these as opti­
mum signal detection and/or parameter estimation
operations. It will be noted that the configuration
of Fig. 6 performs a multiplicity of such auto­
correlations or cross-correlations simultaneously.
There is no difficulty in recording onto film a den­
sity of 50 cycles per mm.Hence 35mm film can be
used in configuration of Fig. 7 to perform simul­
taneously more than 1000 simultaneous auto-cor­
relations or cross-correlations. Equipments having
the configuration of Fig. 6 are commercially avail-

Figure 7.

able. A photograph of such a device is shown as
Fig. 7.

General Linear Operation

The most general linear operation [0] on a func­
tion f(t) to produce an output g(t) can be written
in the form given by Eq. (7):

g(t) = O[f(t)] = j h(T, t)j(T) dT (7)

In this equation, the nature of the operation to be
performed determines the kernel function h(T, t).
The fact that Eq. (7) represents a general llinear
operation is discussed in texts dealing with func­
tional analysis.7 Pertinent discussion has also been
given in pI~blications by L. A. Zadeh.s

In order to mechanize the operation givtm by
Eq. (8), the configuration shown in Fig. 8 may be
used.

g(t) = jh(T,t)f(T) dT (8)

Cross-correIa tor .

Slit

---1--00
g'~~ t)

Figure 8. General linear operation configuration.

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 29

If one looks toward the left, the light amplitudes
in the plane containing f(T) contains the product of
h(T, t) with f(T).

Between the transparency f(T) and the output slit
in which get) is found, is a pair of lenses, one of
which is spherical, the other of which is cylindrical.
This configuration performs the function of causing
the line-by-line spectral analysis of the light in the
f(T) plane to be displayed in the output plane. The
distribution of light in the output plane is described
by Eq. (9). It will be noted that Eq. (9) is a some­
what more general operation than that described by
Eq. (8), and that it describes a two-dimensional dis­
tribution of light in the output plane.

I(t,w) = !h(T,t)f(T)e-jWTdT (9)

It will be further noted that Eq. (9) becomes iden­
tical with Eq. (8) if w is set equal to O. Thus, per­
forming a linear operation expressed as Eq. (8) is
accomplished simply by observing the light which is
present in the central slit in the output plane.

Thus, performing a general linear operation op­
tically requires the configuration shown in Fig. 8

together with the ability to record on two trans­
parencies the functions h (T, t), which represents the
operation to be performed, and the function f(T),
which represents the function upon which the opera­
tion is performed. The result of the operation is
present in a centrally located slit in the output
plane of the equipment.

It is known that, if a number of linear operations
are performed in tandem, one can represent the tan­
dem sequence of operations by a single equivalent
operation. Hence, Eq. (8) represents not only a
single operation but a sequence of linear operations,
if such is desired.

Matrix Multiplication

Eq. (8) and Fig. 8 are pertinent when a general
linear operation or a function of one variable is to
be performed. It is useful, however, to consider the
case in which a linear operation is to be performed
in a space of a finite number of dimensions. In this
case each input and output quantity of interest will
be a vector (n-tuple) and the linear operation will
be that of matrix mUltiplication. If J!I and J-2 repre-

/ ~Co/lI ... t."LH'

/-.. ,./Antenna Master Transparency

/ . ~ Transform Objective

/' ./ For Field Pattern

/ /~n'.','n. L ...

~Master
/ Transparency

Image

Figure 9. Microwave antenna simulator at optical frequency.

30 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

sent two vectors and if M represents a matrix one
may write

J'2 = MJIi (10)

to indicate that J'2 is derived by a linear operation
on JIl.

In Eq. (10) JIl and J'2 are vectors (column ma­
trices whereas M is a k by n matrix. These matrices
may be of the form given by'Eqs. (11) and (12).

(11)

(12)

The operation indicated by Eq. (10) can be per­
formed by the optical configuration shown in Fig. 8.
In this case, the transparency h(r + t) is replaced
by a rectangular array representing the matrix M,
and f(r) is replaced by JIl. The output slit now
contains the values of Jt2 instead of g(t).

Thus, the configuration of Fig. 8 makes possible
the general linear operation for t, a continuous vari­
able, as well as for discrete variables.

ANTENNA PATTERN SIMULATION

The far field pattern of an antenna can be com­
puted from its illumination function f(x,y) by the
use of the relation

F(a,{3) = J J f(x,y)e-jk(ax+{JY)dxdy (13)
over

aperture

In this equation a and (3 are direction cosines of the
beam, F(a,{3) is the far field pattern, and k is de­
fined by

27r
k =­

A
(14)

Figure 10. Antenna simulation-Illumination Plane.

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 31

This quantity is the wave number and A represents
the wavelength used. If Eq. (13) is compared with
Eq. (1) it will be seen to have the same form. Thus,
the optical configuration shown in Fig. 9 can be
used to display the far field pattern of an antenna.9

In this case, a transparency containing the aperture
function f(x,y) is placed in plane PI and the far
field pattern is observed in plane P2•

In some cases, the far field pattern found in plane
P2 may be too small. It is desirable in this case to
use another lens to magnify the image found in
plane P2 • Such a configuration is shown in Fig. 9
where an enlarged image of the field in plane P2 is
displayed in plane P3•

In fIg. 9, one finds that an image of plane PI
occurs between lenses L3 and plane P3 at plane P4 •

Thus, between planes P4 and P3 one has an oppor­
tunity to observe the pattern as it emerges from the

. illumination function through the near field until at
plane P3 the far field pattern is obtained. With this

. configuration, studies of the relationship between
near field and far field can be made. In addition, by

inserting perturbations into the regions between
plane P4 and P3, for example, by simulating a non­
homogeneous medium, it is possible to observe the
effects of perturbations on the far field pattern.

A series of photographs showing the far field de­
veloping from the illumination function for an array
antenna9 is shown in Figs. 10-15. This set of photo­
graphs is the optical simulation of an antenna array
being built by J. P. Wild in Australia. The array
consists of 96 parabolas arranged on a circle about
IYz miles ·in diameter. Each parabola has a diam­
eter of 45 feet. The frequency of operation is 80
megacycles.

Assuming that the far field pattern begins at a
distance 2D2/ A the far field pattern begins approxi­
mately 2400 miles from earth. This poses real prob­
lems for measurement of the far field pattern. The
configuration of Fig. 9, however, enables one to
obtain not only the far field pattern shown in Figs .
14 and 15 but also views of the near field pattern.

Thus, antenna simulation is another ,demonstra­
tion of the versatility of optical equipments.

Figure II. Antenna simulation-near field.

32 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 12. Antenna simulation-near field.

SYNTHETIC ANTENNA GENERATION

One of the most successful and important appli­
cations of optical data processing has been that of
synthetic antenna generation in airborne radar ap­
plications. Here, a sequence of signals collected as
an airborne radar is translated along a straight line
is used to achieve the effect of a long linear array.
The term synthetic antenna derives from the fact
that signal processing generates the long linear
array.

The fundamental idea can best be grasped by con­
sideration of Fig. 16. For the physical antenna
array shown in Fig. 16a, the individual transmitting
and receiving elements are dipoles. While each di­
pole has a broad radiation pattern, the assemblage
of dipoles is made to produce a narrow antenna
beam by making the electrical lengths of the in­
dividual transmission lines such that signals arriving

in phase at the dipoles are added in phase at the
main transmission line to the radar. Since trans­
mission and reception at each of the: dipoles is
simultaneous, this fixed adjustment of phases serves
to maintain the desired beam pattern.

Figure 16b depicts the generation of the synthetic
array. In this case the individual elements IDf the
array, as indicated by the x's, do not exist simul­
taneously. Starting with the position at the extreme
left, a radar pulse is transmitted and tht~ return sig­
nals recorded. A short time later the aircraft has
carried the side-looking antenna to the second posi­
tion where another pulse "is transmitted and the re­
ceived signals recorded. In this way a signal is re­
corded for each of the positions of the" synthetic
array. To achieve the effect of a linear array such
as Fig. 16a, the return signals must contain phase
information which is preserved in tht~ recording.
Then by appropriate data processing it should be

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 33

Figure 13. Antenna simulation-near field.

possible to retrieve the stored data and combine it
in proper phase to synthesize the desired effect of a
narrow-beamed antenna.

It was evident that the radar would have to have
excellent transmitter frequency stability and a stable
frequency reference for use in comparing the_ phase
of the return signals with the phase of the trans­
mitted pUlses. The method of signal storage (re­
cording) had to preserve the range information so
that the data processing could be accomplished
separately for each element of radar range.

The well-known formula for antenna beamwidth
showed that, at least in theory, the synthetic-antenna'
concept had a great potential for fine angular reso­
lution. The half-power beam width {3 of the physical
side-looking antenna (Fig. 17) is

{3 = k ~ radians
D

(15)

in which

A is the wavelength of the radar,
D is the length of the physical aperture, and
k is the illumination factor (greater than unity).

The distance across the antenna beam for a radar
range r is {3r, which represents the amount of data
that can be collected between half-power points for
this range. If this amount of data is processed at
each range, this would represent a synthetic antenna
length

Ls = {3r feet (16)

if~" is expressed in feet. The phase information ob­
tained for each of the element positions of the syn­
thesized antenna is based on the round-trip distance
between the side-looking antenna and echoing ob­
jects; for the physical array the phase depends on
the one-way path length. As a consequence of this
difference, the phase difference between elements

34 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 14. Antenna simulation-far field.

of equally spaced elements of a synthetic array is
twice that of a physical array with the same spacing;
a synthetic antenna has half the beamwidth of a
physical antenna of a given length. That is,

{3s = k, i~~ radians (17)

in which k, is the illumination function for the syn­
thetic-sized antenna. Using Eq. (15) this can be ex­
pressed in terms of the size of the physical antenna
and radar range as

{3 k, D d·
S = k 2r ra lans (18)

This indicates that the synth,etic beamwidth {3s is not
only independent of freque'ncy, but also decreases
with radar range.

To obtain a measure of resolution, the usual as­
sumption was made that targets could be resolved
in angle if they were separated by one antenna

beamwidth. For the beamwidth {3s of the: synthetic
antenna, the distance across the beam at any radar
range r is

k, D
~x = {3sr k -- 2 feet (19)

if the length of the physical antenna aperture D is
expressed in feet.

In theory, then, the resolution in tht! azimuth
direction for a synthetic antenna radar is indep,end­
ent of range, independent of radar frequency, and
smaller than the physical length of the aetual side­
looking antenna carried by the aircraft. This as­
sumes the generation of a synthetic antenna of a
length equal to the distance across the radar beam
at each radar range.

In the analysis represented by Eqs. (15)-(19), the
generation of a focused synthetic antenna was im­
plicitly assumed. If unfocused synthetic antennas
are generated, one obtains a resolution given by
Eq. (21).

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 35

Figure 15. Antenna simulation-far field (longer exposure).

TISTIT
Transmission Lin.
To Radar

(a)

xxxxxxxxxxxxxxx ~

L Position at Which Pulse is Transmitted
and Received Signals Recorded

(b)

Figure 16. (a) Physical array of dipoles. (b) Synthetic array
generation.

It is useful to compare the azimuth resolution
capabilities of conventional radars, unfocused syn­
thetic antenna radars, and focused synthetic an­
tenna radars. The theoretical results are given by
Eqs. (20), (21), and (22). These results are plotted
as Fig. 18.

1. The conventional technique: In this
technique azimuth resolution depends
upon the width of the radiated beam.

2. The unfocused synthetic antennb tech­
nique: In this case the synthetic an-

tenna length is made as long as the un­
focused technique permits.

3. The focused synthetic antenna technique:
In this case the synthetic antenna length
is made equal to the linear width of the
radiated beam at each range.

As is shown in the sections which follow, the
linear transverse resolution for the conventional case

Figure 17. Synthetic antenna geometry.

36 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

1000

500

200

£ 100 - 50 c
0

4= 20 :)

0 10 lit
~
~ 5

Curve c(focussed case)"

2

Figure 18. Aximuth resolution for three cases: (a)
conventional; (b) unfocused; (c) focused.

is given by
I . AR Reso utlOnconv = D (20)

For the unfocused case, the resolution is given by

Resolutionunf= ~ -V>;R (21)

whereas for the focused case, the resolution is given
by

Resolutionfoc = ~ (22)

In the above expressions A is the wavelength of the
radar signal transmitted, D is the horizontal aper­
ture of the antenna, and R is the radar range.

Figure 18 is a plot of the resolution for each of
these cases as a function of radar range. This plot is
for an antenna aperture of 5 ft and a wavelength of·
0.1 ft.

One of the most successful applications of co­
herent optical data processlng is the conversion of
raw data obtained from a synthetic antenna type
radar system into a fine-resolution radar map. Syn­
thetic aperture radars may· well become the most
important of the ground-mapping types of radars,
since they have a resolution potential at long ranges
which is considerably greater than that of other
types of mapping radars. Coherent optical process­
ing is eminently well suited to the processing tasks
which arise in such radar systems.

The azimuth or angular resolution of a conven­
tional radar is limited by the width of the physical
radar beam, which is given by AID, where A is the
wavelength and D is the antenna width. Because
radar wavelengths are several orders of magnitude
larger than optical wavelengths, very large values
of D must be used if radars are to achieve angular
resolutions comparable with those of photorecon­
naissance systems. If one wishes to hav(! fine (lin­
ear) azimuth resolution at long ranges, the required
antenna length will be of the order of hundreds or
thousands of feet; obviously, such an antenna could
not be carried by an aircraft.

The synthetic antenna technique lO
-

12 offers a way
around this impasse: the aircraft carries. a small,
side-looking antenna, producing a beam that is rela­
tively wide in the azimuth direction, which scans the
terrain by virtue of the aircraft motion. The an­
tenna is carried by the aircraft to a sequence of
positions which can be treated as if they were: the
positions occupied by the individual elements of a
linear antenna array. At each position, the antenna
radiates a pulse, then receives and ston~s the re­
flected signal. These stored data are then processed
in a manner analogous to the coherent weighted
summation carried out ina large linear array. The
processed radar signals bear a quantitative simi­
larity to those which would be obtained if a large
antenna were used; in particular, the resolution and
the signal-to-noise ratio are greatly improved by the
signal processing.

Array-type antennas add, or integrate, the returns
received on each of the array elements. The syn­
thetic antenna falls into the array category. One
can readily generate synthetic apertures which are
so long that they will only realize their full gain and
azimuth-resolution capabilities if they are focused
at the range at which the radar is operating. The
focusing operation represents a phase adjustment of
the signal received on each array so that, in the sum­
mation process, the contributions from all array
elements are combined in phase.

The Radar Signal

An aircraft carries an antenna which illuminates
a ground-swath parallel to the flight path; the radar
beam is oriented in azimuth roughly normal to the
direction of flight; at range R, the azimuth lineal
beamwidth /3R" is much larger than the desired
azimuth resolution at that range. Finally, the radar
is coherent, that is, the receiver has availablle a

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 37

reference signai from which the transmitted signal
was derived.

Synthetic antenna radars derive range informa­
tion through pulsing, and derive fine azimuth reso­
lution by processing Doppler-shifted radar returns
which lie in a spectral band which is adequately
sampled by the pulse rate of the radar. For our pur­
poses, we may neglect this intermediate sampling
process and consider only the reconstructed azimuth
histories which are easily derived from the samples.
We will assume that the entire radar receiver and
processor behave as a linear system; we can then
investigate the response of the radar to a single point
target, and by superposition extend the results to
apply to realistic reflective complexes ..

Examples of radar imagery obtained by th~ use of

synthetic antenna techniques are shown in Figs. 19
and 20.

The radar data is recorded onto film as an inter­
mediate step. This film, called a signal history film,
is then used in an optical configuration such as that
shown in Fig. 21.

In this figure, the conical lens is the primary ele­
ment responsible for focusing, while the combina­
tion of cylindrical and spherical lenses causes the
device to become multichannel so that the separate
range intervals remain resolved.

COMMUNICATIONS APPLICATIONS

The essential components of a communications
system are shown in Fig. 22. In such a system the

Figure 19. Fine resolution radar image, Washington, D.C.

38 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 20. Fine resolution radar image, southeastern Michigan.

Figure 21. Optical processor using a conical lens.

source generates the Information which is eventually
delivered to the destination. The source may be any
of a number of items. It may be oral as in voice
communication; it may be a: picture as in TV trans­
mission; it may be a series of digits if digital data is
transmitted; it may be an· analog voltage.

The output of the source is sent to a coder. It is
the object of the coder to perform such operations
on the output of the source as will adapt these sig­
nals to the transmission channel. Often a trans­
ducer of some type is included in the coder such as a
microphone in the case of oral sounds, a TV camera
for scenes, so that the information is converted into
electrical form., Additional operations arc! also per­
formed. The most common of these is to impress
the information onto some electromagnetic carrier.
Many types of modulation exist, such as amplitude
modulation, frequency modulation, and a number
of pulse modulations.

These operations are primarily for the purpose of
adapting the signal to the channel. However, in
more sophisticated communications syst1ems addi­
tional coding is employed for a variety of purposes.
For example, such additional coding may be used

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 39

,.----- ----1
I

----, r---
I I I

I
I
L

Source r-- Cod.r ~ Chann.1 1 _D._cod_.r---'H _D_.,_tin_atio_n .-11 ~
I I

I
• R.c.i v.r .J '----------

I .~ I Transmitter __ ..J
--~---

Noise

Figure 22. Essential components of a communications system.

for the purpose of signal-to-noise improvement,
error correction, etc.

The output of the coder is fed to the communi­
cations channel. Two general types of channels are
employed, in one case a wire system connects the
transmitter to the receiver; in the other case (radio
transmission) an electromagnetic wave is launched
by way of a transmitting antenna and a receiving
antenna associated with the receiver abstracts from
this electromagnetic energy. A wide range of fre­
quencies is available for either wire transmission or
radio transmission. Recently, this spectrum has
been extended to include visual frequencies so that
modulation of light sources such as lasers may now
be considered.

In either wire transmission or radio transmission,
noise is added to the signals. Often, this is additive

Logic
Elements

Alphabet

noise. However, multiplicative noise and multipath
transmission are operations (generally undesirable)
which may also be performed on signals as they pass
through the channel.

The signals from the channel become the input to
a receiver. It is the function of the receiver to detect
the signal and to convert it into a form suitable for
acceptance by the destination. If coding for signal­
to-noise improvement C1r error correction have also
been included in the coder, the operations necessary
to achieve these improvements are also performed
by the decoder.

Not shown in Figure 22 but sometimes used and
necessary are a number of administrative equip­
ments. These equipments perform such functions
as automatic testing, automatic switching to a
standby unit in case of failure, etc.

CODER

'--_ _...--- TV Channel

Time 8ase
Generator nL...-.---_---In _____ rL

Figure 23. Optical coding.

40 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

;-Collimator

;-Ultrasonic Cell

Cylindrical Condenser J

Primary Objective

Figure 24. Optical decoding.

Block diagrams of optical coders and decoders'
are shown in Figs. 23 and' 24. In these figures it is
assumed that an alphabet (set of symbols) and rules
for their selection have been previously determined
using information theoretic considerations.

CONCLUDING REMARKS

In this paper optical computing and optical signal
processing have been applied to a number of prob­
lems. The list of problemsjs by no means complete.

Optical signal processing must be considered as
an extremely powerful and versatile technique.

ACKNOWLEDGMENTS

The author gratefully acknowledges the contribu­
tions of many of his co~leagues and former col­
leagues to the content of this paper.

REFERENCES

l. L. J. Cutrona, E. N. Leith and L. J. Porcello,
"Filtering Operations Using Coherent Optics," Pro­
ceedings of the National Electronics Conference, vol.
15,1959. '

2. --, "Coherent Optical Data Processing,"
IRE WESCON Convention Record, Part 4, 1959,
pp. 141-153, and IRE Transactions on Automatic
Control, vol. AC-4, no. 2, pp. 137-149 (1959).

3. --, "Data Processing by Optical Tech­
niques," Proceedings of the Third National Con­
vention on Military Electronics, 1959.

4. L. J. Cutrona et. aI, "Optical Data Processing
and Filtering Systems," IRE Transactions on Infor­
mation Theory, June 1960, pp. 386-400.

5. E. N. Leith and J. Upatnieks, "Wavc!front
Reconstruction with Continuous Tone Objects," J.
of the Optical Society of America, vol. 53., no. 12, pp.
1377-1381 (Dec. 1963).

6. B. A. Vander Lugt, "Signal Detection for
Complex Spatial Filtering," IEEE Transactions on
Information Theory, vol. IT-10, no. 2, lPP. 139-145
(Apr. 1964).

7. B. Friedman, Principles and Techniques of Ap­
plied Mathematics, John Wiley and Sons, New
York,1956.

8. L. A. Zadeh, "A General Theory of Linear
Signal Transmission Systems," J. of Franklin Insti­
tute, vol. 253, pp. 293-312 (Jan.-June 1952).

9. A. L. Ingalls, "Optical Simulation of l\1icro­
wave Antennas," IEEE Professional Technical

ROLE OF COHERENT OPTICAL SYSTEMS IN DATA PROCESSING 41

Group on Antennas and Propagation International
Symposium Program and Digest, Sept. 1964, pp.
203-208.

10. L. J. Cutrona et aI, "A High Resolution
Radar Combat-Surveillance System," IRE Transac­
tions on Military Electronics, Apr. 1961, pp. 127-
131.

11. L. J. Cutrona and G. O. Hall, "A Compari­
son of Techniques for Achieving Fine Azimuth
Resolution," IRE Transactions on Military Elec­
tronics, vol. MIL-6, no. 2, pp. 119-121 (Apr. 1962).

12. L. J. Cutrona et aI, "On The Application of
Modern Optical Techniques to Radar Data Process­
ing," presented at 9th Symposium of AGARD
Avionics Panel on Opto-Electronic Components
and Devices, Paris, Sept. 1965.

BIBLIOG RAPHY

Born, M., and E. Wolf, Principles of Optics, Per­
gamon Press, New York, 1959.

Cheatham, T. P., Jr., and A. Kohlenberg, "Analysis
and Synthesis of Optical Processes," Boston
University Physics Research Laboratories
Technical Note 84, Part I (Mar. 1952).

--, "Optical Filters-Their Equivalence to and
Differences from Electrical Networks," IRE
National Convention Record, 1964, pp. 6-12.

Conductron Corporation Final Technical Report,
"Coherent Light Investigation," Conductron

No. D-5210-503-T246, Contract AF33(615)-
2738 (Dec. 1965).

Cutrona, L. J., "Optical Computing Techniques,"
IEEE Spectrum, Oct. 1964, pp. 101-108.

--, "Recent Developments in Coherent Op­
tical Technology," Optical and Electro-Optical
Information Processing, MIT Press, Cambridge,
Mass., 1965.

Elias, P., "Optics and Communication Theory," J.
of the Optical Society of America, vol. 43, pp.
229-232 (Apr. 1953).

--, D. Grey and D. Robinson, "Fourier Treat­
ment of Optical Processes," ibid, vol 42, pp.
127-134 (Feb. 1952).

O'Neill, E., "The Analysis and Synthesis of Linear
Coherent and Incoherent Optical Systems,"
Boston University Physics Research Labora­
tories Technical Note No. 122 (Sept. 1955).

--, "Selected Topics in Optics and Communica­
tion Theory," ibid, no. 133 (Oct. 1957).

--, "Spatial Filtering in Optics," IRE Transac­
tions on Information Theory, vol. IT-2, pp.
56-65 (June 1956).

Rhodes, J., "Analysis and Synthesis of Optical
Images," American Journal of Physics, vol. 21,
pp. 337-343 (Jan. 1953).

Woodward, P. M., Probability and Information
Theory, with Applications to Radar, Pergamon
Press, New York, 1960.

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION

E. N. Leith, A. Kozma and J. Upatnieks
Institute of Science and Technology

The University of Michigan, Ann Arbor, Michigan

INTRODUCTION

Holography has in the last two years undergone a
tremendous resurgence. The laser has contributed
immeasurably to this, through the remarkable co­
herence of its light, which permits previously per­
formed experiments to be carried out with relative
ease, and in addition allows the performance of
experiments which were hitherto hardly conceivable.
Old experiments have been repeated with vastly im­
proved results, and the new interest has given rise
to new ideas with exciting promise.

This paper has a twofold purpose: first, to discuss
the techniques for making good holograms and to
describe how various factors degrade the process;
second, to describe other forms of holography, in
which phase is preserved by methods other than
through phase modulation of an interferometrically
produced grating.

ANALYSIS OF SOME STABILITY
REQUIREMENTS

Ideal conditions for biographic recording include,
among other items, completely stationary compo­
nents, monochromaticity of the source, optical flat­
ness of the recording surface. and linearity of the
recording process, Failure to achieve these con­
ditions causes in general some degradation of the
hologram image.

43

Vibrations

Vibration .of the reference beam mirror, the ob­
ject, or the recording plate results in image degrada­
tion that, subject to a few rather plausible con­
straints, can be readily analyzed.

A hologram is made of the moving point P (Fig.
1). Let the mean position of the point lie at a dis­
tance Zo from the hologram. Also, let the motion be
resolved into two components, one along the line
from object to recording plate, and the other normal
to this direction. For simplicity, consider each of
the motions separately.

The former case was. treated by Powell and Stet-

~----------ZO----------~~I

Figur.e 1. Hologram for a point object vibrating axially.

44 PROCEEDINGS~SPRING JOINT COMPUTER CONFERENCE, 1966 .

son 1 for the case of sinusoidal motion. We treat this
case more generally by assuming a random motion
with a prescribed probability density function for
Zm, the deviation of the object point from its mean
position.

The hologram of the moving point is a photo­
graphic'record of the time-averaged light intensity
exposing the recording plate, or, to the usual first­
order approximation,

I TI" 27r{X2 ~I E(x) = 0 e,ax + kexp -i T ~ + Zo + z'",(t1 2dt

(1)

Here Z'", = Kz m , where K is :a scaling factor related
to the relative amplitude of vibration (K = 0 for
negligible motion of the poiht), eiax is the reference
wave, and k is a constant. The virtual image term is

I T . ~ 7r X2 27r ~ kexp -I ax + - + - KZm(t) dt
o A Zo + KZm A

KT .(7r 2 27r) = exp -I \ax + >: ZoX + T Zo

1 IT [27r (X2)] .T 0 exp - i T K 1 - Zo Zm dt (2)

Assuming that the random process Zm is ergodic,
the integral becomes .

(3)

where M zm is the characteristic function of Zm evalu­

ated at 27r K(l - x:). Since x is usually much less
A Zo .

h 27r
t an zo, the argument of M zm can be taken as - K.

,A
The reconstructed image is thus attenuated by the
factor Mzm; M zm (0) = 1 and M zm (v) < M zm (0) for
all v. Thus, M zm is always an attenuating factor. In
the case of a sinusoidal motion, the attenuating fac­
tor is a zero order Bessel function J 0 • Since J 0 is
oscillatory rather than monotonic, fringes (repre­
senting contours of constant vibrational amplitude)
form ~n the reconstructed image.

If the probability density function is Gaussian,
the characteristic function similarly is Gaussian; the
attenuation factor is monotone decreasing and
therefore no fringes are produced on the recon­
structed image, only an attenuation proportional to
K.

A similar analysis for a random motion Xm in the
lateral direction results in a time-averaging factor

~ IT exp [- i ~ (x~ - 2Xm X)] dt (4)
T 0 AZo

Let the vibration be sinusoidal; Xm = A cos (j"m t .
The integral becomes

1 [. 27rA 2] - exp -1--
T 4AZo

iT exp {-i ~:. [~2

COs 2 wmi - AXCOSwml]}dl

(5)

A Bessel function expansion, after negle:ct of var­
ious small term~, leads to the hologram signal term

being multiplied by Jo(27rAX). This is similar to the
AZo

case for axial vibration, except that the presence of
the variable x within the argument is a complication
which no longer make~s this factor merely attenua­
tive.

Another interpretation is applicable, howe:ver.
The diffraction field of the point source, as formed
at the hologram plate, has the phase distribution

exp - i(>.:. x? The spatial frequency. of the dif­

fracted field is

(6)

Substitution into the Bessel function argument
yields

(7)

The lateral motion thus has, approximately, tht:~ ef­
fect of a low pass filter which degrades the resolu­
tion of the hologram and also reduces the angular
field over which the reconstructed image can be
observed. Note that the filter operates on lthe object
spectrum before its modulation onto the spatial
carrier a.

Finally, consider the effect of lateral motion of
the recording plate. In this case, a time-averaging
factor

1 IT . 7r [2 (2 Azoa) -"Id - exp -1- Xm - X - -- Xm t
T 0 AZo 7r..l

(8)

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION 45

is produced. An analysis similar to the one just
given for the case of sinusoidal lateral vibration of
the object shows that the proc~ss acts, as in the
previous case, like a low pass filter except that this
filter acts on the signal after its modulation onto a
spatial carrier; the attenuation is thus more severe.

The Propagation Medium

The propagation medium in general is indiffer­
ent to whether the imagery is holographic oJ.: con­
ventional; an important exception must be noted,
however. If the medium is time-invariant and is
available for the reconstruction process, then the
medium serves, in the reconstruction process, as a
compensator for the errors introduced in the holo-'
gram-making process. Thereby, high-quality imag­
ery is supported in a medium which otherwise is
incapable of supporting good imagery. This is ac­
com plished by using the real image term in the
reconstruction process: the real image term is con­
jugate to the original object; thus, phase irregulari­
ties are canceled when the real image term of the
hologram is formed through the irregular medium.

This process has been demonstrated experi­
mentally in two instances. In the first, a lens with
severe spherical aberration was part of the medium,2
in the second, several pieces of ground glass were
inserted between object and hologram.3 In each
case, imagery was produced in which the deleterious
effects of the medium were eliminated.

Coherence Requirements

The basic coherence requirements of the source
can be stated quite simply, although the coherence
problem when examined in depth becomes indeed
abstruse and could itself well be the subject of a
paper. For example, holograms can be made in
completely incoherent light, as proposed originally
by Mertz and Young, and discussed more recently
by others.

In the case of a transparency, the object can be
assumed to have no depth, and the coherency re­
quirement is determined solely by the number of
fringes required across the hologram, which is, in
fact, just twice the number of resolution elements
required across the object transparency. Indeed,
techniques exist whereby holographic signals can be
modulated onto diffraction grating images, and the
source need not have the coherence required to pro­
duce such a raster of fringes. The minimum co­
herence length is that n~eded to produce the re-

required dispersion of the object signal. For
example, if. a resolution cell on the object trans­
parency is dispersed into a Fresnel zone plate image
for impulse response having M fringes, coherence
necessary for producing only M fringes is needed.
The space-spatial bandwidth product of the signal
(the spatial analog of the time-bandwidth or TW
product) is M. Thus, the required coherence is re­
lated to the TW product of the system impulse
response.

For the case of three-dimensional objects, the
situation is more severe, since superimposed on the
previous requirements is the requirement that the
coherence length encompass the object depth. For
an object of depth L, the second requirement is
).2
~ ~ L, where ~). is the wavelength spread of the

source.4 If the source has spectrum S(w), the re­
construction will have implanted on it, in the form
of intensity variations as a function of depth. the
autocorrelation function of the spectrum. This sug­
gests the use of holographic methods for interfero­
metric spectroscopy. Alternatively, proper selection
of S(w) offers a basis for giving precise information
about the depth dimension of the object. For ex­
ample, in the case of a two-frequency source, fringes
that approximately represent the contours of con­
stant depth are present in the reconstructed object.

FILM TRANSFER CHARACTERISTICS

In holography, photographic film plays the role
of both a square-law detector and a spatial storage
device or recorder. In an ideal recording, the inten­
sity of the sum of two spatially modulated coherent
waves is recorded so that a linear relation is ob­
tained between the intensity and the specular ampli­
tude transmission of the resulting recording. On
subsequent readout using a coherent interrogating
beam, the original incident wave amplitudes can be
faithfully recreated from the stored data.

It is well known that if one uses photographic
film in the linear region of the D-Iog E curve, a two­
step recording process with a gamma product of two
gives a linear relation.5 However, the efficiency of
this type of recording, in terms of the brightness of
the reconstruction, is low and the process is difficult
to accomplish with good fidelity at high spatial
frequencies.

A more straightforward practice is to use a one­
step process with exposure versus amplitude trans-

46 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

mission as the photographic transfer curve, where
exposure is the product of the light intensity and
the time of exposure. The amplitude transmission
is defined as

Ta = (~)Y2
10

(9)

where I' is the light intensity transmitted by the
recording while 10 is the total intensity of the co­
herent interrogating beam. Here we assume that
the amplitude transmission is a real function which
requires that the thickness variations of the film be
negligible or that the film be immersed in an index
matching fluid during readout.

Figure 2 shows the exposure-transmittance (E-Ta)
curve for a high-constrast film used in wavefront

1.0

. s -c
0
U)
U) ·s .6
U) bias point
c
0
~ -
Q) .4
-0
:J

== Q.

E .2
0 -
0
I-

o+-~--~--~~--~~~~--~~--~~

o 200 600 1000 1400 ISOO 2200

E (exposure)

Figure 2. Log exposure vs density curve. Kodak 649 plate,
exposed with HeNe laser light (6328), developed in
D19 for 12 minutes at 68~F.

reconstruction while Fig. 3 shows the D-Iog E curve
for the same film. One observes from these figures
that there is a considerable region on the E- Ta curve
over which approximate linearity is achieved. Also,
this linear region does not coincide with the linear
region of the D-Iog E curve, but corresponds with
the toe and the lower part of the linear region of the
D-Iog E curve.

From these observations it is clear that the D­
log E curve is of little interest in wavefront recon­
struction. Generally, a film which is optimally
recorded for wavefront reconstruction will be un­
derexposed by conventional standards. Also, it is
apparent that attempts to achieve a specific "y of

3.6

3.2

2.8

2.4

2.0
>-
l-e;; 1.6
z
~ 1.2

.8

.4 bios point

04---------~----------~----~~---
200 400 1000 1800 2600

LOG EXPOSURE

Figure 3. Exposure vs amplitude transmission curve. Kodak
649F plate, exposed with HeNe laser lRght (6328),
developed in D19 for 12 minutes at 68°F.

the D-Iog E curve is of interest only as a means of
relating conventional sensitometry to this appllica­
tion .

The linearity of the E- Ta curve mentioned above
is the same type of inverse linearity achileved with
a vacuum tube, that is, linearity about an operating
bias point. This poses no problem since the inten­
sity functions of interest contain a bias term which
can be scaled to coincide with the operating point of
the E- Ta curve. That the linearity is inv,erse is ·of
little consequence for the type of wavefront relcon­
struction considered here since the spatial fluctu­
ations of the intensity are modulated by a spatial
carrier frequency. The net effect is that the fluctu­
ating part of the recorded signal is changed in phase
by 1800 and in the readout the amplitude of the
recovered signal is similarly reversed in phase.
However, the recovered signal is ultimatdy sensed
by an energy detector such as the eye or a photocell
and the 1800 phase change cannot be detected.

The reference wave Uo and the signall waVie U
combine at the recording surface to produce the
intensity

1 = 1 Uo + U 12 (10)

Letting Uo = keiaX, and U = ae- i"" we have

1 = k 2 + a 2 + kacos(ax + cP) (11)

The exposure time is chosen so that the product of
the constant part of Eq. (11) and the tim'e is equal
to Eo, the operating bias point on the T(Ji-E curve.
The amplitude transmission of the film is then made
up of a constant part, To, and a spatially fluctuating

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION 47

part g(x,y) and is given by

Ta(x,y) = To + g(x,y) (12)

If k is large compared to a(x,y) then the exposure
will be confined to the linear portion of the Ta-E
curve and the transmission Ta is

Ta(x,y) = To - (jt{a 2 (x,y)

+ 2ka(x,y)cos[ax + ¢(x,y)]} (13)

where t is the time exposure and (j is the slope of the
Ta-E curve at the operating bias point Eo. Thus,
we have achieved a linear transfer in the sense de­
scribed above.

Effects of Film Resolution

To study the effects of the film resolution we as­
sume that the amplitude of the reference wave is
sufficiently larger than the signal so that we achieve
a linear transfer. Under this condition, k is large
compared to a(x,y), a2 (x,y) is small compared to
2ka(x,y), and Eq. (13) can be rewritten as

Ta(x,y) = To - {jt{2ka(x,y)cos[ax + ¢(x,y)]} (14)

Since we are assuming linearity, we can take into
account the film resolution by assigning an impulse
response to the film and treating the film as a device
in a linear system. The ideal transmission of the
film, Ta , is modified by the response of the film and
the result is given by

Ta(x,y)* H(x,y) (15)

where H(x, y) is the appropriately defined impulse
response of the film and * denotes the convolution
operation.

The physical effect of the frequency transfer char­
acteristics of the film is most easily illustrated by
considering film resolution as it affects Fraunhofer
diffraction holograms. In this type of hologram the
complex wave U is the Fourier transform or the
Fraunhofer diffraction pattern of the object. Thus,
a(x,y)e-//fI(x,y) = o [a(u,v)] where a(u,v) is the object
which is to be stored as a hologram and later re­
constructed. The reconstruction, in this case, is
performed by placing the photographic record in a
collimated beam of coherent light and, with a lens,
taking the Fourier transform of the -record. The
result, the light amplitude distribution at the back
focal plane of the lens, is given by

R(u,v) = Ofra(x,y)* H(x,y») (16)

Using (14) this can also be written as

R(u, v) = cfJ {[To - Kei[aX+I/I(x,y»)

- Ke-/[ax+I/I(x,y»)]* H(x,y») (17)

where K = 2{jtk.
Performing the Fourier transform operation we

obtain

R(u,v) = Too(u,v) -, Ka(u - a,v)H(u,v)

- Ka(-u-a, -v)H(u, v) (18)

The_ second and the third terms of this expression
are usual images, displaced by ± a, from the lens
axis, which one expects; however, the images are at­
tenuated by the modulation transfer function of the
film.

This situation is quite different from the usual
effect of the film transfer function, which is to cause
a loss of resolution through attenuation of the
higher spatial frequency components. Here, the
resolution is unaltered by the transfer function
curve; instead, the image is attenuated by an
amount proportional to its angular displacement
from the reference beam, axis. This effect, of the
film transfer function, is to cause a narrowing of
the field over which the reconstruction can be
viewed.

Effects of Nonlinear Recording

In order to increase the brightness of the recon­
struction it is desirable to make the amplitude k, of
the reference beam about the same magnitude as
the amplitude of the signal, a(x,y). However, if this
is done, the recording is no longer linear. The effect
of this nonlinear recording can be analyzed by us­
ing the characteristic function technique for han­
dling nonlinear circuits.6 Let the input to the non­
linearity be E 1 (x,y), the original exposure, E(x,y),
with the bias removed. Then the output from the
nonlinearity is some nonlinear function of this input
given by -g(x,y). Then by expressing -g(x,y) as
an inverse Fourier transform we have

-g(x,y) = G[E1(x,y)]

= _1 100

G(w)eiIllE,(X'Y)dw (19)
211"-00

where G is the Fourier transform of the nonlinear­
ity, G, and E 1(x) = ta 2(x,y) + 2tka(x,y) cos [ax +
¢(x)]. After substituting E1 in Eq. (19) we have

..-g(x,y) =

48 PROqEEDINGS-SPRING JOINT COMPUTER CONFERENCE,1966

Expanding part of the expopential term using the
Jacobi-Anger formula 7 we have

'"
-g(x,y) = L Hj[a(x,y)]cosj[ax + ~(x,y)] (21)

j=O

where

Hj[a(x,y)] = 2E~ (i)j [",'" G(w)ei[/a"j"'Jj [2tkaw]dw

(22)

and where Jj is the Bessel function and EO = 1, E j =

2 (j = 1,2, ...). The resulting transmission of the
record is

T.(x,Y) = To - {Ho[a(x,Yl]

+ t; H j [a(x,y)] cosj [ax + 4>(X,Y)]} (23)

Some general observations can be made about the
recording process from Eqs. (13) and (23). For j =
1, we have preserved the phase of the original signal
while distorting the amplitude. If the spatial carrier
frequency is large compared' with the spatial band­
width of the signal, the various terms in the series
(23) will not contain overlapping spatial frequencies
even though the amplitude distortion tends to widen
the bandwidth of each term. In cases where a(x,y)
is a slowly varying function or a constant, most of
the information is contained in the phase part and
the nonlinearity is of no importance.

As an example, consider the case where the ob­
ject consists of many randomly distributed points
of amplitude am and with random phase Om. For
simplicity, we take these points along a line parallel
to the hologram so that we can reduce the problem
to one-dimensional notation. The total amplitude,
due to the points at the hologram plane is

a(x)e-i~(X) = L amei[A(x-~m)2+l/mj (24)
m

Here we have approximated the phase of each point
at the hologram plane by a quadratic phase term.
Then

a(x) = [L a~ + 2:E a",a.cos [A (x - 13m)'

. _ mA (x _ 13.~;· + Om _ 0.]] 1/' (25)

where m = 1,2, ... , N - 1 and n = (m + 1), ... , N
in the second sum. We can also write

L am sin [A (x - f3m)2 + Om]
m

~(x) = tan- 1
---------- (26)
L amcos[A (x - f3m)2 + Om]

m

The intensity at the hologram using a plane ref­
erence wave, keiaX, is given by

I(x) = k 2 + a2(x) + 2ka(x)cos[ax + ~(x)] (27)

where

cos [ax + ~(x) 1

L ·amsin(ax + [A (x - f3m)2 + Om])
m

(28)
a(x)

Suppose _we take for the Ta -E curve of the film
a hard-limiter.fhis is an extreme case since film is
never this nonlinear; however, this nonlinearity can
be handled simply and it illustrates the eifeets.* For

a hard-limiter!ff '(w) = ~L where L deJfines the
IW

transmission limits of the film. Then substituting -- . .
for G (w) In (22) we have for H j

E L 100 ei[/a"j",
Hj[a(x)] = _l_ (i)l-l. -- Jl [2tkac.c)]dw{29)

1r _00 w

If we expand the integrand using a power-·series ex­
pansion we have for Ifj

EL ~ (;)I'+l-I[ta2]1£
Hj[a(x)] = _J_ ~

1r Jl.=o p.!

. I:,',wl'-iJl[2tkaw] dw (30)

We assume that ta 2 is small enough when com­
pared to 2tka so that only the first two terms of the
power-series expansion need be used. We also as­
sume that the carrier frequency, a, is sufficiently
high that the coefficients Hl , for j = 0 and j :> 1,
can be dropped since the spatial frequencies will not
overlap with the terms HI. Then the coefficient of
interest HI (that coefficient associated with the: re­
constructed images) is

Hda(x)
2L

(31)

Then, the part of the recording needed for re(;on­
structing the points is

2L
T~(x) = - cos [ax + ~(x)] (32)

1r

* Strictly speaking the hard-limiter or any other odd sym­
metric limiter cannot be a true model for the film since film
does not have odd symmetry about the bias point. However,
the even contributions from the film nonlinearity are usually
much smaller than the odd ones. Other models which can be
used are the error function limiter (see A. Kozma, "Photo­
graphic Recording of Spatially Modulated Coherent Light,"
J. Opt. Soc. Am. (in press) or a 11th law device 6).

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION 49

or, using (25) and (28) we can write

2L
I: am sin (ax + [A (x - f3m)2 + Om])

m
T~(x) = (33)

II: a~ + 2 I: [amancos [A (x - f3m)2 - A (x - f3n)2 + Om - Onll] 1/2
m m,n

Since sin a = -cos(a + 7r/2) we see that the
numerator of Eq. (33) is the correct transmission
function needed to accurately reconstruct the
points. If the amplitudes of the points are all of
about the same magnitude (the object is of mod­
erate dynamic range), then the first sum of the de­
nominator is significantly larger than the double
sum. To see why this is true we can write the de­
nominator of (33) as

The second term in the brackets is a large sum of
sinusoids with small amplitude and random phase.
In the limit as the number of points considered be­
come large this term will go as the square root of

2am an h' .
--2- w lch IS« 1. In this case, the denominator
'1; am

reduces to approximately a constant and the object
points are reconstructed without distortion.

If one of the points, say aI, in the object is very
much greater than the other points combined then
this is not the case. In this case the denominator
can be expanded as

A straightforward but tedious calculation shows
that, in this case, the weaker object points will be
suppressed relative to the point with amplitude a 1

and that false points will appear'in the reconstructed
image.

OTHER FORMS OF HOLOGRAPHY

The holographic process, ever since its invention
by Gabor, has been beset with the problem of elim­
inating the twin image that arises because of incom­
plete recording of the phase relations in the wave
fi~ld. The off-axis reference or spatial carrier
method has proved an effective solution to the prob­
lem. With this method now convincingly demon­
strated,. we turn our attention to alternative meth-

ods. There are indeed various other possible
approaches, several of which we will proceed to
describe. All the ones described here involve lens
systems and most involve various forms of spatial
filtering.

The twin image term arises from the attempt to
record a complex function using a phase-discard-

ing method. The traditional objects used in
holography have generally been transparencies,
which normally are real functions; however, the
Fresnel diffraction patterns are complex. The gen­
eration of a complex function from a real one is
explained by considering that the space between the
object and hologram planes treats the signal as an
all-pass dispersive filter; the phase relations in the
signal are thereby altered.

Accordingly, we might consider producing holo-

(34)

grams through a process having a real impulse re­
sponse, which would therefore retain the real nature
of the original signal. Figure 4 shows such a holo­
gram-producing system. The signal (a transpar­
ency) is introduced at PI, and is imaged at PJ • A
spatial filter having the property F(w) = F*(-w)

~ 0 ~ 0 ~
Figure 4. Optical system for generalized holograms.

50 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

is placed at P 2; this ensures a real signal at P 3 .

The signal is thus recorded with completeness with­
out the need for a carrier-frequency reference beam
or other phase-preserving technique. We record
linearly in amplitude, producing

Uo + U = Uo + s* f (35)

where f is the impulse response of the spatial filter
F, and s is the signal transparency, which is con­
verted into the function U =, s* f.

In the reconstruction process, we image the holo­
gram signal through a second spatial filter with
impulse response g(x), or transfer function G(w).
We require that, to within a ~onstant,

SFG = S (36)

or

F(w)G(w) = 1 (37)

For convenience, we can let F and G be pure phase
filters,

thus we require

or

F(w) = e i4J ,(IIII)

G(w) = e;4J·(IIII)

(38)

(39)

(40)

(41)

It is often convenient to use the same filter both
for making the hologram and reconstructing it.
Two cases arise: The signal may be passed through
the filter in the same manner in both cases, or the
signal (or the filter) may be reversed. In the former
case, we require for reconstruction that

I FI 2 = (42)

from which we obtain

(43)

where E(W) is a function that assumes the value 0 or
1 and satisfies the condition E(- w) = - E(W).

Alternatively, if the reconstruction is to be made
with the filter of the signal reversed, the reconstruc­
tion condition becomes

F(w)F(-w) = 1 (44)

or sincef(w) = F*(-w), we have

F(w)F*(w) = I F 12 = 1 (45)

from which we derive

F(w) = e i4J (IIII) (46)

with

cjJ(-w) = -cjJ(w) (47)

Thus, if we want a filter that produces a re~al output
when the input is real, and if we want the: function
1/ F to be the filter reverse F(-w), and if the filter
is to be purely phase, then we require the phase fac­
tor to be antisymmetric, cjJ(-w) = cjJ(w). An ex­
ample of this case is a lens, one half of which is con­
cave and the other convex, as shown in Fig. 5. To a

I I
Figure 5. The antisymmetricallens used in an optictll system for

generalized holograms.

first-order approximation, we have F(w) = e IK",2 for
w > 0, and F(w) = e _IK1III2 for w > O. Thus we may
write

(48)

Clearly, the fabrication of such a lens is not prac­
ticable, since both halves must be matched to within
a fraction of a fringe. One might consider using a
symmetrical Fresnel zone plate; it obviously satisfies
the condition F (w) = F * (- w). U nfortunatehy, it
fails to satisfy the requirement I F I = constant.
There is a feasible solution, however. '''ith a car­
rier-frequency method used in making holograms,
we may substitute for the required function e tJ(1l1li1 '"

its real function equivalent 1 + cos (aw + K I Ull I w);
the first-order diffracted wave of this func:tion, writ­
ten on a transparency, yields the desired filter func­
tion. A straightforward analysis shows that the re­
quired function can be produced, for a cylindrical
Fresnel zone plate (focal power in one-dimension
only) by removing a portion from the center of the
zone plate and joining the two outer portions.

Another method of producing a rea.l function
diffraction pattern involves the use of two identical
objects, positioned so that their summation pro­
duces a diffraction pattern with constant phase (Le.,

REQUIREMENTS FOR HOLOGRAM CONSTRUCTION 51

the diffraction pattern is real). A well-known
method of accomplishing this is to use a lens, which
takes the Fourier transform of the object. By mak­
ing the signal symmetrical, its Fourier transform
will be real. Placing a strong point source on axis
in the object plane then causes the Fourier trans­
form to be positive as well, and thus recordable
without the loss of phase. This technique is similar
to methods used in crystal analyses by X-ray dif~
fraction. A positive real Fresnel diffraction pattern
can be generated by displacing the object trans­
parencies in the axial dimension, but maintaining
symmetry about the point source which supplies the
bias.

REFERENCES

1. R. Powell and K. Stetson, J. Opt. Soc. Am.,
vol. 55, p. 1593 (1965).

2. E. Leith, J. Upatnieks, and A. Vander Lugt,
ibid, p. 595.

3. -- and --, SPIE Journal, vol. 4, p. 3
(1965).

4. M. Born and E. Wolf, Principles of Optics,
Pergamon Press, Bath, England, 1959.

5. D. Gabor, Nature, vol. 161, p. 777 (1948);
Proc. Roy. Soc. (London), vol. A197, p. 454 (1949);
ibid, vol. B64, p. 449 (1951).

6. W. B. Davenport and W. L. Root, An Intro­
duction to the Theory of Random Signals and Noise,
McGraw-Hill, New York, 1958, Chap. 13.

7. W. Magus and F. Oberhettinger, Functions of
Mathematical Physics, Chelsea, New York, 1949,
p.I8.

BIBLIOGRAPHY

Baez, A. V., J. Opt. Soc. Am., vol. 42, p. 756 (1952).
Duffieux, P. M., L'Integrale de Fourier et ses Appli­

cation a l'Optique, chez l'Auteur, Universite
de Besancon, Besan~on, France (1946).

EI-Sum, H. M. A., "Reconstructed Wavefront Mi­
croscopy," PhD thesis, Stanford University,
Nov. 1952 (available from University Micro­

EI-Sum, H. M. A., and A. V. Baez, Phys. Rev., vol.
99, p. 624 (1955).

Haine, M. E., and J. Dyson, Nature, vol. 166, p. 315
(1950).

Haine, M. E., and T.Mulvey, J. Opt. Soc. Am., vol.
42, p. 763 (1952).

Kirkpatrick, P., and H. M. A. EI-Sum, ibid, vol. 46,
p. 825 (1956).

Leith, E., and J. Upatnieks, ibid, voL 53, p. 1377
(1963); vol. 54, p. 1295 (1964).

Lohmann, A., Opt. Acta (Paris), vol. 3, p. 19 (1956).
Rogers, G. L., Proc. Roy. Soc. (Edinburgh) vol.

A63, p. 193 and p. 313 (1952); vol. A64, p. 209
(1956).

Papers presented at Washington Conference on
Electron Microscopy, National Bureau of
Standards, Nov. 1951.

APPLICA TION OF COHERENT OPTICAL TRANSDUCERS TO OPTICAL
REAL-TIME INFORMATION PROCESSING*

Dean B. Anderson
Autonetics, A Division of North American Aviation, Inc.

Anaheim, Ca-'ifornia

INTRODUCTION

Interest in optical information processing stems
from the never-ending effort to increase data han­
dling capacity and to improve the interface with
human senses. The manipulation of two-dimen­
sional data in an image format and processing in a
parallel organized integral transform distinguishes
the optical analog computer from its counterpart­
the electronic digital computer processing one­
dimensional data in a sequential manner.' The
optical analog computer is admirably suited to per­
forming linear operations such as matrix products,
Fourier transform integration, and related correla­
tions and convolutions. The photographic plate is
usually employed as the input, memory, control
function, and output to demonstrate optical infor­
mation processing concepts.

The high' signal sensitivity, large data storage,
and wide spatial bandwidth are the attractive char­
acteristics of a photographic emulsion. However,
the time required to develop the latent image to
obtain access to data is both dismally slow and
cumbersome in comparison to electronic means.
The chemical amplification encumbrance has led to
consideration of thermoplastic and ultrasonic delay
line recording as an alternative with the attendant
compromise of serial data input. If optical analog
computers are to compete with the developing elec-

*Work supported in part by the Office of Naval Research

53

tronic art, it is essential that the access time to
current data be reducetl to a small fraction of a sec­
ond without compromise of data capacity. Further­
more, as real-time optical processing is achieved, a
requirement for an optical adaptive capability will
also arise.

Optical information processing systems require
the functions of amplification, modulation, and de­
tection to be performed throughout the signal spa­
tial field. These functions can be effectively syn­
thesized by an array of coherent optical transducers
extending across the signal spatial field provided
that the spacing between the individual transducers
and their size are comparable to the radiation wave­
length. A quasi-microwave approach to coherent
infrared transducers and their· arrays using micro­
photolithographic techniques is delineated.

OPTICAL OPERATIONS

The application of communication theory to phy­
sical optics has provided the foundations of optical
information processing.2,3 The basic image trans­
formation operation is illustrated in Fig. 1. The
spatial signal is usually introduced at the object
plane by coherent plane wave illumination of a
photographic transparency. The resulting diffrac­
tion pattern in the Fraunhofer region is the Fourier
transform of the spatial signal. The use of a lens,
(focal length F) permits the scaling of the Fraun-

S4 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

~F
F'~

'II

y

DISTRIBUTION
(OBJECT)
PLANE 1

APERTURE
(LENS)
PLANE 2

FREQUENCY
(IMAGE)
PLANE 3

Figure I. Basic image transformation operation.

hofer diffraction region to a more convenient loca­
tion at the focus of the lens. The Fourier transform
of the spatial signal is formed in the lens image
plane as a spatial frequency spectrum. For some
applications, this spectral analysis is the desired
output.

If various shaped aperture stops or blocks are
inserted into the frequency plane, it follows that the
output signal distribution from a second transform
lens system will be altered by the filter impulse re­
sponse. In fact, a lens acts as a low-pass filter.
Matched filter enhancement of the signal-to-noise
ratio can be demonstrated by inserting the complex
conjugate of the signal transform into the frequency
plane. The realization of a' complex-valued spatial
function in a photographic transparency is ex­
tremely difficult due to the required phase response.

An interferometric approach has been introduced
to record complex functions on photographic
plates.4

•5 The addition of a reference wavefront
as a carrier to the spatial signal produces in a photo­
graphic plate one component resembling a diffrac­
tion grating. The grating frequency is proportional

to the angular separation between signal and
reference beams. An interferometric recorded spa­
tial filter of the symbol t is shown in Fig. 2.

The operations of convolution and correlation
can be realized by further compounding the system
with additional image transformations. The results

Figure 2. Interferometric spatial filter.

COHERENT OPTICAL TRANSDUCERS TO OPTICAL REAL-TIME INFORMATION PROCESSING 55

from use of the spatial filter, Fig. 2, for pattern
recognition is shown in Fig. 3. The diffraction grat­
ing in the spatial filter has provided a convenient
means to separate, by orders, the various compo­
nents of the matched filter process. Using the sym­
bol t as the input, three components are observed
in the output: 1) the input convolved with the filter
impulse response, 2) a crude image reconstruction,
and 3) the input cross-correlation with the filter
conjugate impulse response-indicative of recog­
nition.

Gabor's6 holography has been rekindled anew
with introduction of interoferometric methods be­
cause of the vivid three-dimension reconstruction of
the scene with parallax.7 A hologram is a spatial
filter for a particular scene when coupled with the
transform in a human eye. The hologram, when
illuminated by a delta-function distribution (point
source), which has a uniform spectrum, allows pas­
sage of only those spatial frequencies which will
form the reconstructed wavefront and thus the de­
sired image. For optical pattern recognition, the
holography process is inverted so that the unknown
object serving as a source illuminates a spatial filter
producing a single point image (correlation point).
Figure 3 also shows the symbol reconstruction using
the spatia] filter in Fig. 2 as a hologram. Both the
real and virtual images of the symbol are apparent.

Figure 3. Spatial filter operations.

Current optical pattern recognition techniques re­
quire a rigorous matching of the spatial filter and
the input. Factors such as position, scale factor,
orientation aspect, and inversion severely com­
promise the recognition fidelity. Some problems
can be solved by restricting the list of symbols to a
particular style.

Consider the problems of recognition and track­
ing of hurricanes in cloud patterns recorded by
satellites. Pattern characteristics peculiar to the
hurricane spiral and invariant with observation con­
ditions are obviously obscured by noise. Therefore,
during the learning phase it will be necessary to
assemble a large catalog of spatial filters from suc­
cessive cross-correlations of known hurricane spec­
tra. From the catalog of spatial filters, a charac­
teristic set are selected and the decision criteria
established. The correlation of unknown cloud
patterns with the stored filters provides a basis of
comparison in the recognition process. Of the
utmost importance is the optimization of the recog­
nition process by including an adaptive feature; that
is, a measurement of the correlation point amplitude
ratio with respect to the side lobe skirt level and
distribution to alter the filters within the classifica­
tion set. This means that techniques must be devel­
oped to alter the spatial filters dynamically so that
they can change their functional properties with
time in accordance with new data.

SPATIAL MODULATOR

The requirements of a spatial modulator to dy-
, namically implement optical spatial filters are briefly
outlined. A spatial modulator is schematically
illustrated as an array in Fig. 4. The functions of
amplification, modulation, and detection must be
performed throughout the aperture in a linear
fashion with respect to the control signal, while the
quantized elements of the array must operate inde­
pendently without crosstalk. A spatial modulator
may operate in either a transmission or reflection
mode and may alter either the amplitude or phase
characteristic.

Factors which influence the quantization of the
spatial modulator into an array are available from
antenna theory. Some of these are:

1. The half period factor (T) of the highest
spatial frequency component must be
greater than the array period which
must be greater than one-half the wave­
length. (T12 > S > A/2)

56 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

/

~IIII

~I

Figure 4. Spatial modulator.

2. The array factor giving rise to a grating
10 be period must exceed the angular
diameter of the lens :(see Fig. 1) for an
unambiguous operation. (Xis ~ DI F)

3. The beamwidth of a single element
must exceed the angular diameter of the
lens to be included .within the integra­
tion" (2Xld ~ DI F)

4. Random phase and amplitude errors
should be minimized to preserve the dy­
namic range in the optical system.

A wide variety of bulk interaction phenomena
exist to alter the optical properties of materials by
application of electric and magnetic fields or by
mechanical stress. Most of these interaction phe­
nomena are weak -even in high fields. It is also
difficult to induce from the. outside the spatial per­
turbations. Therefore, a bulk spatial modulator
without quantization and with a ·significant spatial
bandwidth is impractical. However, heteroepitaxial
semiconductor, ferroelectric and ferromagnetic8 ma­
terials imbedded with conductor arrays are a
promising approach.

Current integrated circuit technology provides an
approach to quantize the array. Moss9 has analyzed
various methods of modulating infrared radiation
using semiconductor materials which will respond
rapidly. A quasi-microwave approach using semi­
conductor diode junctions which may be assembled
into arrays for modulation and amplification will
be discussed in the following sections. The deple-

tion layer in diodes is conSIdered as an optical
transmission line where its length is controlled by
the applied voltage. Current integrated circuit te:ch­
no logy is now becoming interconnection-limi1ted.
The interconnection limitation also prevails in an
optical spatial modulator. However, t.here are
several means to circumvent the problem. A variety
of photoeffects occur in semiconductor material and
junctions when the illumination radiation wave­
length is shorter than the band edge. Of particular
interest here is the photovoltaic effect in a junctilon.
The electron-hole pair created by absorption near
the junction is separated by the interna!l fieldl at
the junction and thus alters the optical properties
of the depletion layer for radiation longer than the
band edge. Through this process, it should be pos­
sible to control the optical spatial modulator diode
array by illumination of the array with a second
beam containing the spatial control signal. A simi­
lar control of a parametric amplifier array is also
possible through pump excitation. The photo­
detector array art is currently well establilshed and
need not be discussed.

PASSIVE INFRARED WAVEGUIDE

Implementation of an optical spatial transducer
requires interconnection by a waveguide which
preserves the state of polarization and mode! of
propagation" Optical dielectric waveguidles of cir­
cular and planar cross section have been demon­
strated and reported in the literature.1

0-12 Control of
a specific mode of propagation is best accomplished
in transmission line with dimensions comparablle to
the wavelength. The binding of the electromagnetic
field to the dielectric structure depends upon the
relative index of refraction of the transmission
medium being greater than the surrounding en­
vironment. An active and a passive infrared wave­
guide structure is illustrated in Fig. 5. The rec­
tangular dielectric image line supported on a
reflecting surface is ideally suited for coupling and
integration with optically active devices such as
semiconductor junctions.13

As an example of dielectric image line waveguide,
Fig. 6 shows a "rat race" hybrid junction fOlrmed
photolithographically. The dielectric is thermally
grown silicon dioxide on a highly doped, poliished
silicon substrate. The dielectric cross section is
0.6 x 2.0 microns and thus is useful in the near
infrared region.

The results of an experiment demonstrating the
propagation of a single, lowest-order mode through

COHERENT OPTICAL TRANSDUCERS TO OPTICAL REAL-TIME INFORMATION PROCESSING 57

b-DEPLE'l'ION LA YER

DIELECTRIC IMAGE LINE DEPLETION LA YERW A VEG UIDE

Figure 5. Passive and active infrared waveguide structures.

a dielectric image line waveguide are shown in
Fig. 7. A cleaved cross section of dielectric image
line (0.3 x 1.2 micron cross section) and substrate
was used for the photomicrographs. A Lloyd's
mirror l4 demonstration of interference fringes from
the image line waveguide substrate is shown in the
upper figure. The black region is the silicon sub­
strate. The visibility of the fringes immediately
adjacent to the substrate surface disappears because
the light source is polychromatic and temporally

Figure 6. Dielectric image line waveguide- "rat race"
hybrid junction.

incoherent. The presence of the waveguide is clearly
apparent. The discontinuity in the fringes immedi­
ately adjacent to the substrate is due to the reflection
from the outer surface of the dielectric image line
waveguide. Note the subdued interferenc~ normal
to the substrate resembling a Fraunhofer pattern.
This is due to reflection from the dielectric image
line waveguide at greater depth. The Lloyd's mirror
illumination has been removed and repla~ed by a
laser beam focus"ed on the dielectric image wave­
guide in the lower figure. The transmission of a
single mode through the waveguide is apparent. The
circular radiation distribution is due to the dipolar
field and the offset is due to the image phenomena.
The substrate surface in the lower figure is indi­
cated by some scattering at the focused input
coupling.

ACTIVE INFRARED WAVEGUIDE

The depletion layer in a reverse-biased semicon­
ductor junction diode will also guide optical
waves. 15

-
19 The free carriers in both nand p give

rise to a solid state plasma having a slightly reduced
index of refraction which confines light propagation
in the depletion layer. In the back-biased planar
diode, the thickness of the depletion layer sand­
wiched between nand p regions is controlled by the
applied bias field and may be comparable to infra­
red wavelengths. A depletion layer waveguide is a
useful active device because it provides an electronic
means to control an optical wave phase velocity.

58 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 7. Results of Lloyd's mirror experiment showing
transmission through dielectric image line wave­
guide.

Obviously, a depletion layer used as a dielectric
waveguide or resonator must be used in the spectral
region where it is transparent. Most semiconduc­
tors are opaque in the visible region but are trans­
parent in an adjacent infrared region. The intrinsic
absorption is due to excitation of electrons across

the forbidden energy gap. Lattice absorption and
Reststrahlen bands exist in the far infrared region.
The intervening region is comparatively transparent
except for impurity and free carrier absorption. The
differential index of refraction between the various
layers in a depletion layer is comparativdy small
(10-2 to 10-4

) so that a wave field is weaklly bound
to the junction. Careful attention must be given to
the selection of doping elements, their concentra­
tion and gradient, and the host lattice defects be­
cause fields surrounding the junction will cause ab­
sorption, diffraction, and scattering losses.

The work of Nelson and Reinhartl° is illustrated
in Fig. 8 which shows the transmission through a
GaP diode junction. Although their work exploited
the linear electro-optic effect for modulation, this
photograph vividly illustrates the changing dimen­
sions of the depletion layer waveguide as a function
of the applied bias field.

ELECTRICAL

GALLIUM PHOSPHIDE
DIODE

Figure 8. Transmission through GaP diode junction deple-
tion layer waveguide. (By permission of Bell
Telephone Laboratories. See Ref. 20.)

There are various other mechanisms to control
the phase velocity in a depletion layer waveguide
besides that of geometry. One is the electro-optic
effect as above which leads to birefringenice in the
index of refraction. Another is the change of the
index of refraction below the band edge of a semi­
conductor due to the dispersion associated with the

COHERENT OPTICAL TRANSDUCERS TO OPTICAL REAL-TIME INFORMATION PROCESSING 59

Franz-Keldysh effect. The Franz-Kelkysh effect is a
shift of the band edge to a longer wavelength be­
cause of the application of an intense electric field.
The various considerations which enter into the use
of depletion layer waveguide as an active optical
circuit element suggest a 111-V semiconductor mate­
rial and a wavelength just short of the band edge.

A depletion layer boundary may also be used in
the reflection mode as a movable mirror. A photo
field effect transistor shown in the photomicrograph
of Fig. 9 has been 4sed for a demonstration experi­
ment. An alloy gate contact and an etched channel

Figure 9. Photo field effect transistor.

were formed in the silicon slice between source and
drain. The use of a preferential etch, the alloy
junction technique, and oriented silicon has led to a
high degree of parallelism between the etched chan­
nel surface and the depletion layer boundary. The
pinch-off characteristic curve is indicative of the
optical quality in the boundary planes and shows
that the depletion layer can be driven into planar
contact with the channel surface. Experiments
show that the position of the reflected beam from
the etched channel front surface and the depletion
layer is controllable by the applied gate bias.
Illumination of the channel also provided a control
of the beam position.

PARAMETRIC INTERACTION

To provide optical amplification and a means to
control an operation by an optical logic "field, the

characteristics and feasibility of infrared parametric
interactions are discussed. Parametric interactions
involve the mixing of one or more signal frequencies
with an intense source called a "pump" producing
sum and difference combinations. The Manley and
Rowe2l energy relations show that there are two
basic amplification mechanisms distinguished by the
manner that the signal and pump frequencies are
allowed to combine. Further discussion will be
restricted to the difference combinatioh which
creates an effective negative absorption and results
in a signal spectrum inversion.

Parametric interactions depend upon a reactive
nonlinear phenomena. The nonlinear capacity of a
varactor diode is due to the change of the deple­
tion layer thickness. In the infrared region the
carrier inertia prevents a similar response; however,
the index of refraction of some materials have a
nonlinear behavior in intense light. The polariza­
tion nonlinear susceptibility of 111-V semiconductor
compounds is several orders of magnitude larger
than the piezoelectric crystals which have been used
for optical parametric amplification.

Recently, positive gain has been realized in dif­
ference frequency parametric interactions by Wang
and Racette22 using NH4H2P04 and by Giordmaine
and MiHer23 using LiNb03. They used a Q-spoiled
solid state laser to pump a nonlinear cyrstal under
index matching to efficiently produce a second
harmonic. After filtering and collimating the beam,
the harmonic was applied as a pump to a second
nonlinear crystal to obtain quasi-degenerate opera­
tion. Birefringence in the crystal was used to bal­
ance the index of refraction dispersion to obtain
matched phase velocities in their traveling wave
circuit.

A quasi-microwave approach24 which differs sig­
nificantly from the above investigations using piezo­
electric crystals is currently under way. A planar
section of depletion layer waveguide is used as a
multimode resonator tuned to the signal idler and
pump frequencies. The dimensions have been
selected sufficiently small to prevent other undesir­
able resonances. The requirements for index match­
ing in a traveling wave structure are removed by
the use of low-order modes within the resonator
wherein the fields and geometry defining the bound­
ary conditions establish resonances which are alge­
braically related to the pump frequency. Within
the constraints of known material technology, the
available power and emission lines from continuous
wave gas lasers, and for an acceptably high non­
linear susceptibility, gallium arsenide is preferred

60 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

for diode fabrication. The current state of micro­
photolithography extends the quasi-microwave ap­
proach into the one-micron region and thus matches
with gallium arsenide. Signal coupling to the
amplifier will be provided by image line dielectric
waveguide. An optical circulator is desirable to
separate the input and output ports and provide a
degree of stability. The development of heteroepi­
taxial ferrite and the associated photolithography
completes the requirements so that a circulator may
be integrated with the optical parametric amplifier.

CONCLUSION

It is hoped that a future report will verify that the
quasi-microwave approach to optical information
processing is feasible by demonstration of opera­
tion. At this point in the development, interest may
be kindled for the extension into adaptive image
processing by an array where spatial logic is
achieved optically.

ACKNOWLEDGMENTS

Although the conclusions are those of the autho~.,
he is indebted to many colleagues at the Autonetics
Research Center. In particular, sincere appreciation
is due to Mr. R. R. August for the many stimulating
discussions of optical semiconductor technology, to
Dr. W. T. Cathey and Mr. J. E. Rau for use of the
spatial filters, and to Mr. D. Medellin for the
photomicrography.

REFERENCES

1. J. T. Tippett et aI, eds., Optical and Electro­
Optical Information Processing, MIT Press, Cam­
bridge, Mass., 1965.

2. E. L. O'Neill, "Spatial Filtering in Optics,"
IRE Trans. Inform., T., IT-2, p. 56 (1956).

3. L. J. Cutrona et aI, "Optical Data Processing
and Filtering Systems," ibid, IT -6, p. 386 (1960).

4. A. Vander Lugt, "Signal Detection by Com­
plex Spatial Filtering," ibid, IT-I0, p. 139 (1964).

5. E. N. Leith and J. Upatnieks, "Reconstructed
Wavefronts and Communication Theory," J. Opt.
Soc. Am., vol. 52, no. 10, p. 1123 (1963).

6. D. Gabor, "Microscopy by Reconstructed
Wave-Fronts," Proc. Roy. Soc. (London) Ser. A,
vol. 197, p. 454 (1949).

7. E. N. Leith and J. Upatnieks, "Wavefront
Reconstruction with Continuous-Tone Objects,"
J. Opt. Soc. Am., vol. 53, no. 12, p. 1377 (1963).

8. G. R. Pulliam et aI, "Epitaxial Ferrite Mem-

ory Planes," 1965 NAECON, Dayton, Ohio, pp.
241-245 (1965).

9. T. S. Moss, "Methods of Modulating Infra­
red Beams," Infrared Physics, vol. 2, p. 129 (1962).

10. E. Snitzer, "Cylindrical Dielectric Waveguide
Modes," J. Opt. Soc. Am., vol. 51, p. 491 (1961).

11. N. S. Kapany and J. J. Burke, "Dielectric
Waveguides at Optical Frequencies," solid/state/
design, vol. 3, p. 35 (1962).

12. J. Kane and H. Osterberg, "Optical Charac­
teristics of Planar Guided Modes," J. Opt. Soc.
Am., vol. 54, p. 347 (1964).

13. D. B. Anderson and R. R. August, "Applica­
tions of Microphotolithography to Millimeter and
Infrared Devices," Proc. IEEE, vol. 54, (Apr. 1966).

14. M. Born and E. Wolf, Principles of Optics,
Pergamon Press, New York, 1959, p. 261.

15. A. Yariv and R. C. C. Leite, "Dielectric­
Waveguide Mode of Light Propagation in p-n Junc­
tions," Appl. Phys. Letters, vol. 2, p. 55 (1963).

16. W. L. Bond et aI, "Observation of the Dielec­
tric Waveguide Mode of Light Propagation in p-n
Junctions," ibid, p. 57.

17. A. Ashkin and M. Gershenzon, "Reflection
and Guiding of Light on p-n Junctions," J. Appl.
Phys., vol. 34, p. 2116 (1963).

18. R. C. C. Leite and A. Yariv, "On Mode
Confinement in p-n Junctions," Proc. IEEE, vol.
51, p. 1035 (1963).

19. W. W. Anderson, "Mode Confinement and
Gain in Junction Lasers," IEEE Journal of Quantum
Electronics, vol. QE-l, no. 6, p. 228 (1965).

20. D. F. Nelson and F. K. Reinhart, "Light
Modulation by the Electro-Optic Effect in Reverse­
Biased GaP p-n Junctions," Appl. Phys. Letters, vol.
5, no. 7, p. 148 (1964).

21. J. M. Manley and H. E. Rowe, "Some Gen­
eral Properties of Nonlinear Elements-Part I
General Energy Relations," Proc. IRE, vol. 44, p.
9041 (1956).

22. C. C. Wang and G. W. Racette, "Measure­
ment of Parametric Gain Accompanying Optical
Difference Frequency Generation," Appl. Phys.
Letters, vol. 6, no. 8, p. 169 (1965).

23. J. A. Giordmaine and R. C. Miller, "Tunable
Coherent Parametric Oscillation in LiNb03 at
Optical Frequencies," Phys. Rev. Letters, vol. 14,
no. 24, p. 973 (1965).

24. D. B. Anderson, "Application of Semicon­
ductor Technology to Coherent Optical Transducers
and Spatial Filters," Optical and Electro-Optical
Information Processing, J. Tippett et aI, eds., MIT
Press, Cambridge, Mass., 1965, pp. 221-234.

TIME-SHARING IN THE IBM SYSTEM/360:
MODEL 67

Charles T. Gibson
International Business Machines Corporation

Cambridge, Massachusetts

INTRODUCTION

The basic architecture of the IBM System/360
makes it well suited to processing in a multipro­
gramming and multiprocessing environment. The
Model 67 extends this basic architecture to provide
the additional capabilities of an advanced time­
sharing system.

The Model 67 incorporates .multiprogramming,
multiprocessing, and multiaccess capabilities. Mul­
tiaccess allows several users at remote consoles to
communicate directly with the system and to present
a number of applications ranging from conversa­
tional compiling to desk calculator functions. M ul­
tiprogramming is defined as the ability to have
several active programs reside in core simultan­
eously. As soon as one job is finishe ... d, or is held up
by an I/O request, or has depleted its time allow­
ance, the next task can begin immediately.

The dynamic relocation feature built into the
hardware facilitates multiprogramming; peripheral
operations will now be just like any other tasks in
the memory. Even without the multiaccess capa­
bility, multiprogramming provides much more
efficient utilization of the computer's resources than
in a stacked job operation. For the first time, a
central processing unit is a resource that can be
allocated. With multiaccessing, where some of the
jobs in core belong to remote terminals, the multi­
programming capability is further enhanced as this

61

enables the rapid switching between jobs, or "'time­
slicing. "

The Model 67 enables each processor of a multi­
processor system to operate as a single processor
with its own I/O subsystem, or, jointlY with other
processors in a symmetric multiprocessing config­
uration.

To achieve time-sharing and multiprogramming;
certain modifications to the product line were made.
It is the object of this paper to discuss a typical
configuration of equipment and how it will be used.
Certain areas where the programming systems relate
to the hardware will also be discussed.

CONFIGURATION

Bus Structure

A sample configuration is shown in Fig. 1. The
most significant part of the equipment is the shared
memories. Each memory module has four "tails,"
or buses, with one tail connected to each CPU and
one to each channel controller. A system having
two processors and two channel controllers has four
buses. Each memory module of 262,144 bytes of
750 nanosecond storage is independent and three
memory accesses can occur simultaneously. Con­
flicts that occur among the several buses connected
to each storage unit are resolved at the storage unit.
This conflict resolution adds 150 nanoseconds to

62 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

2365
PROCESSOR

STORA6E
262, 144 BYTES

2067
CENTRAL

PROCESSING
UNIT

2848
CHANN.EL CONTROLLER

HI6~8l~EED 2860-3
MULTIPLEXOR SELECTOR

CHANNEL CHANNEL

2365
PROCESSOR

STORA6E
262, 144 BYTES

2067
CENTRAL

PROCESSIN6
UNIT

Figure 1. Configuration of typical Model 67.

2365
PROCESSOR
STORA6E

262, 144 BYTES

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 63

storage access time. Channel controller requests for
storage cycles are given priority over processor re­
quests. No longer is the CPU tied to a particular
memory in the classical configuration. Now, both
channels may be loading two memories simultan­
eously at the maximum data rates, and there will be
no interference with the CPU's if they operate from
the third module. Likewise, a CPU and channel
could associate with one module in the classical
simplex method. Besides permitting higher data
rates to and from core, and with less interference,
the Module 67 frees the processors from the usual
role of working on a single job until it is done. One
CPU can work on a job in one core until it requires
a routine from .the disk, for example. While the
data transfer is being made, that CPU could process
another job in another module.

Common Routines

With shared storage, both CPU's could access the
same compiler and monitor and could utilize the
same job queues. In order for more than one CPU
to use the same copy of a routine, the routine must
be in reenterable coding. That is, there are no ad­
dress modification or common storage locations
that would be affected by a second program which
happened to start the routine before the first ended
it. In fact, one job, partly through a routine, might
be interrupted to return after other jobs in the same
CPU had passed through. Reentrancy, therefore,
is a requirement of multiprogramming as well as
multiprocessing.

A parallel reenterable routine is one which can be
executed simultaneously by more than one task. In
Time-Sharing System/360 there is only one copy of
the supervisor in core regardless of the number of
CPU's attached. All of the supervisor is in reenter­
able coding; some of it parallel reenterable.

In many cases, however, it is impossible or un­
desirable to have more than one task at a time in a
routine; for example, one that sets or detects bits in
a common table. These routines are consequently
written in a serially reenterable fashion.

To aid in this, a new instruction, Test and Set, is
implemented. Its operation uses the left-most bit of
the specified byte to set the condition code. Simul­
taneously, the byte is set to all ones before another
access to the same storage is permitted. Test and Set
allows a second processor to check whether the first
has started a serially reenterable routine. In this
way, the first processor job can finish with the rou­
tine before allowing its further use. Also, Test and

Set is a means of breaking ties between two CPU's
which become available for a new task at the same
moment.

Signaling

For communications through common storage ele­
ments, a processor must be alerted when a message
has been prepared for it by another processor. The
extended direct-control feature and external inter­
rupt lines of the Model 67 perform this function.

Associated with the direct-control instructions is
an interface at which eight signals are made avail­
able. A signal from one processor is connected to
one of the external interruption lines of another
processor. By means of the Read Direct or Write
Direct instructions, the program in one processor
causes an external interruption in another processor.

If a CPU recognizes a hardware error as indicated
by a machine check interrupt, it alerts another CPU
by the direct-control feature and causes a malfunc­
tion alert interrupt. The troubled CPU then goes
into the wait state while the second begins the re­
covery procedure.

Channel Controller

It is difficult to break away from traditional
thinking of a memory-CPU channel system config­
uration. With multiple tails on the memory and
independent channels, the CPU's really behave as
pumps, with one or more processing units working
on many jobs located in multiple memories. The
2846 Channel Controller is essentially the same bus
control unit as in the CPU. It enables the 2860
Selector and 2870 High Speed Multiplexor Channels
to communicate directly with the memories without
interfering with the CPU's bus control units. Chan­
nels are addressed by, and can return their interrup­
tions to, either CPU, providing a flexible and gen­
eralorganization. I/0 terminations, therefore, are
not unique to a CPU, but may cause an interruption
in whatever CPU, by masking, is conditioned to
accept them.

The 2870 High Speed Multiplexor has the ability
to handle up to eight control units and 192 devices
on the basic interface, which can operate in the mul­
tiplexor or burst modes. Up to four medium speed
interfaces, which can address up to 16 devices, are
available on the 2870. These selector subchannels
only operate in the burst mode.

The basic interface can handle an aggregate rate
of 110k bytes per second with no selector subchan-

64 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Table 1. 2870 Data Rates in kbps *
Basic

Interface

110
88
66
44
30

1st

180
180
180
180

Selector Subchannel
2d 3d

180
180
180

180
180

* kbps = Thousand bytes per second.

4th

100

nels attached. Lower data rates can be sustained
with the subchannels as shown in Table 1.

Dual Data Paths

Dual data paths have been provided to enable the
memories to reach any I/O device by at least two
paths. Partly for reasons of reliability, the dual
paths also provide flexibility in pathfinding in case
one control unit is busy. All of the I/O control
units have two tails, one to each I/O control ele­
ment, which are under program control. This al­
lows each channel controller to reach each I/O
device, and via any control unit in the case of pooled
devices. The 2973-2 Disk Switch, for example, al­
lows any two 2311 Disk Storage Units to operate
simultaneously through the two 2841 Storage Con­
trol Units. Because of the' twin tails on the 2841s,
each Channel Controller can have as many as two
2311 disks operating through it simultaneously.

Similarly, any four of the sixteen 90KC 2400 tape
units may be operating with any combination of
channels. The 2973 switch and two-tailed control
units are unique to time-sharing configurations.

Pathfinding

With more than one possible logical route from
memory to a device, a pathfinding routine is neces­
sary. The pathfinding routine will locate the first
available logical route in which the channel and
control unit are neither busy nor unavailable. In
Fig. 1, for example, there fire eight possible paths
for data to get to memory from a tape unit.

The routine is serially reenterable. The supervisor
enters the pathfinder by giv,ing it a symbolic device
address. From a Symbolic, Address table, the low
order bits of the actual I/0 address, called the de­
vice address, are immediately available.

The Symbolic Address table points to a Device
Group table where all possible device paths for a
group consisting of similar devices in a common
pool are given.

The pathfinding routine, knowing from tlhe device
path which channel and control unit are: needed,
'checks the corresponding Channel and Control Unit
tables for their availability.

In the System/360, a selector channel is busy if
any device is operational on it. On the multiplexor
channel, however, the data rates of each operational
subchannel must be examined so that the total mul­
tiplexing data capability will not be exceedl:!d by the
addition of another device. Consequently, the mul­
tiplexor channel is not busy until the total "weights"
of all devices attached exceeds 110kc. The
"weights" of devices connected to the basic inter­
face are their data rates and come from the Device
Group table; the weights for any 90kc magnetic
tapes on the selector subchannels are 1l5kc; for
180kc tapes the weights are 22kc.

If the channel or the control unit is busy, the path
is abandoned. If all the possible paths are busy, the
pathfinding routine returns with the appropriate
"busy" or "not available" bit set. A reve:rse path­
finding mechanism also exists to clear the busy bits
for the device, control unit and channel when an
operation is completed. The tables are created at
system generation time and can be modific!d by the
partitioning routines.

Error Recovery Procedures

When a machine error is determined by CPU
hardware, a machine check interrupt occurs in the
CPU and this same signal is broadcast to all other
CPU's in the system, which receive such indications
as malfunction (external) interrupts.

The original CPU will be put in wait state with in­
terrupts masked, thus preventing it from disrupting
the total system. One of the other CPU's in the
system accepts the associated malfunction alert;, the
others going into the wait state. It is the function of
the active CPU via the "recovery nucleus'" to iden­
tify the failing unit in order to remove it from the
active system. Each CPU has a recovery nucleus in
a different memory module.

When a less disastrous fault occurs in the system,
such as failure to read a record correctly from a
storage device, the time-sharing monitor will invoke
a standard retry routine. If this retry routine fails to
read the record correctly, it will report this informa­
tion to the time-sharing supervisor. The supervisor
will log this information and will then call for a sys­
tem error analysis program, which will dec:ide which
units are to be eliminated from the resource table
in the supervisor.

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 65

The decision as to which unit or units to drop
from the resource table is made by examining the
recorded error environment information, then de­
termining the partitioning which would· have the
least impact on system performance. For example,
when a .fault occurs in a unit which has two data
paths, the system error analysis program will ana­
lyze the fault to determine if one of the data paths
or the unit itself should be eliminated from the re­
source table. The program will not eliminate an
operational unit from a resource table if there is at
least one data path to that unit.

Messages will be sent to the operator when a data
path is eliminated from the resource table, but no
maintenance action will be taken until either all data
paths to the unit are out or until the customer en­
gineer and operator decide that maintenance is re­
quired. At this time, the customer engineer will call
for the diagnostic monitor and begin the diagnostic
procedures. If a CPU or memory element fails, a
warning message is broadcast to all active terminal
users who might be affected.

Remote Access

The Time-Sharing System will support the IBM
1052, 2741 and 2260 Display as remote terminal
devices. The terminals may be connected locally as
operator consoles, or remotely as user terminals.
The 2702 Transmission Control. and 2848 Display
Control accept data, serially by bit, and the transfer
to memory is made one byte at a time. The 2701
Data Adapter Unit is the general interface enabling
remote on-line attachment of IBM Model 20s,
Model 30s, other computers, data sources, and plot­
ters. The interface can be a serial-by-bit communi­
cations adapter or the parallel data adapter. The
latter is an interface which can accept data up to
1,200,000 bytes per second and up to 48 bits at a
time.

DYNAMIC RELOCATION

M uitiprogramming

While the typical scientific computing installation
may have many large production programs in its
work load, it will have many more programs which
are small compared to the hardwa·re resources. The
maximal claims made by such programs do not in­
clude all of the I/O units or all of the core storage.
Moreover, these claims are indeed maximal in that
they include space in the storage for instructions,

intermediate results, and initial and final values
which are highly dependent on the precise data set
used in a particular execution of the program. The
claims include channels and I/O units, the use of
which is also highly dependent on the data set.
Some recent measurements indicate that for many
programs a storage area two or three times as large
as necessary is claimed.

Multiprogramming is a processing mode in which
a control program attempts to honor the hardware
claims of several distinct programs simultaneously.
The object is to keep the CPU busy executing prob­
lem program instructions rather than allow it to re­
main idle during I/O operations which may arise in
a problem program or in a control program which is
removing one problem program from the machine
and bringing in another. The goal is to increase
throughput.

A further refinement in multiprogramming comes
. from the observation that many machine runs con­
sist of a compilation and an execution or an as­
sembly and an execution. In a multiprogramming
system, one would therefore discover many copies
of the compiler, assembler, I/O routines, and pro­
grams from a math library existing in core storage
at the same time. Consequently, the notion of
common, reenterable programs arise.

A crude picture of time-sharing shows a control
program which, during these moments of idleness
with respect to one console, outputs all of the op­
tional storage, inputs a previously outputted store
image for a second console, and then permits the
execution of a transaction for that console. There
is a cost in this operating mode in terms of time
used for the exchange of core images in order to
respond to console requests. In fact, the larger and
more complex the program, the more useful on-line
debugging can be, and the greater the cost of ex­
changing problem programs. This cost is an espe­
cially painful burden since the debugging process
is often such that no more information is required
for a console transaction for a large program than
would be required for debugging a small program.

What is needed in view of the application is a
system technique which encourages the transaction
aspect of time-sharing for debugging purposes, a
technique for elimination of redundant copies of
popular functions, and a facility for dynamic core
allocation. An ability on the part of the control
program to put a problem program in ready status
without honoring the complete storage claims and
without the necessity of altering the addressing
structure of the program is of great value. Properly

66 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

arranged, it permits effective multiprogramming
and multiprocessing.

This ability can be obtained through the notion of
a logical store and the high-speed monitoring of
addresses used by problem programs, and the con­
version of these logical addresses into other physical
addresses. Virtual storage is defined as the entire
storage which can be reached by the logical address­
ing scheme. Thus, with 24 bits, there are 224

, or
16,777,216 byte locations in virtual memory. With
the 32-bit relocation option, 232 or 4,294,967,296
bytes are addressable in virtual memory. However,
in either case, the physical storage in the sample
configuration would be only 786,432 bytes. The
dynamic relocation scheme described here is the
method by which the virtual storage is mapped into
the physical storage.

Dynamic relocation is achieved by treating the
addresses supplied by the program as logical ad­
dresses, or relative addresses. A logical address is
identical to a physical address when the relocation
feature is not operative. When relocation is em­
ployed, the logical address is that address known by
the program. The physical address is the address
(after any relocation) presented to memory for a
reference. The logical addresses are translated by
means of a relocation table to physical addresses
when storage is addressed.

The relocation function provides the ability to
interrupt a program and record it on external media
such as a file or drum and at a later time to return
the program to main storage at different storage
locations without disturbing the execution of the
pi ogram except for the time element involved. The
locations at which a program and its data are stored
are assigned by the relocation table and occur in
4096-byte blocks. These blocks need not be con­
tiguous even though they may be addressed by a
contiguous set of logical addresses. The physical
fragmentation of programs is thus not apparent to
the programmer.

Relocation Operation

Space-sharing is facilitated by breaking user pro­
grams into segments and sectioning these segments
into pages. By breaking programs up into pages,
physical memory may be allocated in page incre­
ments. Only those active pages are brought into
physical core storage.

The Model 67 CPU may operate in either the re­
location or nonrelocation mode. With the 32-bit
option, the CPU may also run in either the 24- or

32-bit mode. The modes are specified by bilts 4 and
5 of the extended mode Program Status Word
(XPSW) as follows:

Bit 4

o
o

Bit 5
o
I
1
o

Modes

No relocation, 24-bit address
Relocation, 24-bit address
Relocation, 32-bit address
Data exception

The function of the Program Status Word is lex­
plained below (under "Other Features"'). All
normal instructions are relocated when bit 5 is set.
Addresses of control words and data in I/0 opera­
tions, however, are not relocated. Addresses glen­
erated by the CPU or channels for inte:rruptilon
purposes, such, as timer, CSW, and PSW addresses,
are not relocated. The standard, 24-bit rdocatilon
scheme is described in this section.

All logical addresses are formed using full 32-·bit
arithmetic. The sum of the 32-bit base register
specified in an instru.,ction as R 1, the 32-bit index
register specified as XI, and the 12-bit byte addn!ss,
or displacement, less the 8 high order bits forms
the 24-bit logical address. The logical address is
broken into three sections of 4, 8, and 12 bits spc!ci­
fying the "segment" number, the "page" number,
and the byte, or "line" number, respectively. Figure
2 shows this breakdown.

10
SEGMENT PAGE
NUMBER NUMBER

11112

BYTE
NUMBER

Figure 2. Logical address.

There are 4096 bytes per page, where a page: of
programs resides in a block of core storage. With 8
bits for the page number, there are 256 possible
pages per segment. Each segment (1 ,048,576-byte
address space) can contain a program. It can con­
tain a data set. It can also be a million-byte area of
working space. If the segment number is ignored,
each such program, data set, or space begins at
address zero. In the 24-bit scheme, several routines
will be packed in the same segment.

The relocation scheme operates essentially as fol­
lows. Each task in the system requires for its op<!ra­
tion one segment table and a page table for each
segment used. These tables are developed by the
monitor as the task is created and as new segment
and page requirements are made by the task. As re-

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 67

quired pages are fetched into physical core, the
monitor enters in the page table the physical loca­
tion of the logical page. During program execution,
the hardware automatically does a table look-up on
each address as it is referenced by the user and the
physical address is chosen for each logical address
reference. If the user references a location in a page
that is not in physical core, an automatic interrupt
occurs to the monitor, which then sets up a page
turning routine to fetch the missing page. The
monitor then gives the CPU to the next user in the
queue. The waiting program is held in the wait
status until its required page has been fetched and
assigned somewhere in physical core. It is then re­
turned to the queue of active users and takes its
turn vying for CPU time. All of this is transparent
to the user. To him, the memory is as many as 16
segments of as many as 1,048,576 bytes each.

Let us look at the relocation scheme in more de­
tail. There is a 32-bit Table Register, program
addressable, shown in Fig. 3. Bits 0-7 of the Table

10

SEGMENT
TABLE
LENGTH
NO. ENTRIES
=(L+I)x
16

SEGMENT TABLE
ORIGIN (BYTES)

Figure 3. Table Register.

00000

Register specify the length of the segment table, and
bits 8-31 specify its origin. The segment table must
be located at an address which is a multiple of 64,
and thus bits 26 to 31 of the Table Register must be
zero. If any bits 26 to 31 are one, a specification
exception occurs (program interruption with bit
21 set). Bits 0-3 of the logical address are added
to bits 26-29 of the Table Register. The resulting
24-bit address (TRs-31) points to a unique 4-byte
entry in the segment table.

The number of entries in the segment table is 16
times the number formed by the sum of the Table
Register, bits 0-7, and one. Thus, the minimum
length, with bits 0-7 zero, is 16 entries. These bits
0-7, with 4 appended low order virtual bits of one,
are compared with the segment number. If the seg­
ment number is greater, a relocation exception is
recognized (program interruption with bit 16 set).
Obviously, in the 24-bit relocation scheme, the
logical address cannot specify more than 16 entries,

LOGICAL ADDRESS r--------- - 0
I ~~~---
I
I

10 b :--1 1111
I 1
1 1
1-

L..IO ___ ~'--__ -r-__ --L~~~ TABLE REGISTER
I

SEGMENT I SEGMENT TABLE ORIGIN
TABLE 1 1
'LENGTH' I

! .
10 291 PHYSICAL ADDRESS OF
L..-________ L.-J SEGMENT TABLE ENTRY

00

Figure 4. Segment table entry.

the minimum size; a greater-than compare can never
result; and this check is academic.

Each 4-byte entry in the segment table is similar
to the Table Register. Bits 8-31 specify the origin
of a page table, while bits 0-7 give its length. Each
page table is originated at an address which is a
multiple of 16 so that bit 31 of the segment table
entry must be zero. If bit 31 is one, a relocation
exception is recognized.

The page number, bits 4-11 of the logical address,
is added to the page table origin, bits 23-30 of the
segment table entry, to give the unique page table
entry. Each entry consists of two bytes. As with
the Table Register, a relocation exception occurs if
the page number is greater than the page table
length. The minimum page table has bits 0-7 zero,
corresponding to one entry, which translates ad­
dresses in the range 0-4095. The maximum page
table has 256 entries, one for each page in the seg­
ment.

PAGE NUMBER

LOGICAL ADDRESS
I I
I I
I I
I I
I 1
1 + 1
1 1

10 71 221 301 SEGMENT TABLE ENTRY

PAGE : I 0
TABLE I PAGE TABLE ORIGIN
LENGTH I

! 1
I
I
1

10 221 PHYSICAL ADDRESS Of

0 PAGE TABLE ENTRY

Figure 5. Page table entry.

68 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

o
PAG~ ADDRESS i AVAIL­

I ABILITY
I
I
I
I

PAGE TABLE ENTRY

12 23 LOGICAL ADDRESS
--~-----r----~

BYTE ADDRESS

_______ ~ _____ ...;,2....J3 PHYSICAL ADDRESS

Figure 6. Physical address.

The 2-byte page table entry consists of 12 bits
specifying the high order 12 bits of the physical
address. The low order 12 bits of the address are
the same as the corresponding part of the logical
address. There is no relocation within the page,
consequently. Bit 12 of the page table entry is the
availability bit. When zero, the respective program
page is in core and the entry may be used for reloca­
tion. When a one, the address may not be relocated
because the desired page is not in core, and must be
brought in under monitor control. Therefore, a
protection exception (bit 19) is recognized and the
instruction is sl,lppressed.

If the instruction uses variable length fields, a
look-ahead operation is performed first to see if the
storage page boundary will be crossed and, if so,
whether the new page is available. If the next page
is used but unavailable, execution is suppressed.

Bits 13 to 15 of the page table entry are undefined
and must be zero. When a relocation exception
occurs, no storage reference. is made. The logical
address that would have been translated is recorded

LOGICAL ADDRESS 10 314 "112 231

I
+

~USED
LOGICAL PHYSICAL -VAu'DITY

PAGE BLOCK
NUMBER NUMBER

ASSOCIATIVE
0 " 12 23 26 29 MEMORY

I • I ,
PHYSICAL ADDRESS 10 "1 12 231

Figure 7. Associative compare.

in the Relocation Exception Address Register. It
may be inspected there by the new Store Multiple
Control instruction.

Implementation

Although the dynamic relocation is pt::rformed
entirely by hardware, one can see that two memory
accesses would be required for each rellocation.
Each operand would require three memory accesses
instead of one thereby greatly degrading per­
formance. Therefore, the implementation of 1the
Model 67 dynamic relocation has been modified.

A high-speed associative memory in locall store: is
located in each IBM 2067 CPU. It contains 8
registers, each 30 bits wide. When an address is to
be translated, the logical· segment and page ad­
dresses are compared to bits 0-11 of each entry in
the associative memory, in parallel. If there is an
equality, bits 12-23 become directly the page ad­
dress; the physical address and the relocation is
completed without memory access. The use of the
associative memory adds only 150 nanoseconds to
the cycle time for each relocation.

Bit 25 in each association memory entry tdls
whether that entry refers to a page that is in core.
If a zero, the corresponding page is not in core,
the entry is invalid, and it is not used in comparison.

All bits in position 25 are reset upon a change in
the Table Register since all the entries would be
invalid. Bit 24 is set to one as each entry is used
in relocation. When that bit vector is all ones, they
are reset and the cycle repeats itself. When no com­
parison is found, the relocation hardware must look
through the segment and page tables to find 1the
physical page address. The new page table entry is
then put into the associative memory. The new
entry will leave bit 24 set to one. It will displace
in the associative memory the next entry from the
last one used whose "use" bit (24) is zero. By this
algorithm, the least used entries are replaced and the
ass?ciative memory holds the most frequently ref­
erenced page numbers to avoid the table look-·up
procedure.

A ninth associative register is a relocated instruc­
tion counter which is updated along with the in­
struction address bits of the Program Statu.s Word.
Therefore, there is both a logical and a relocated
instruction counter. Upon a successful branch or
crossing of a page boundary, the new logical address
is relocated and the relocated instruction counter is
updated by hardware.

Figure 8 is an overall picture of how thl! reloca­
tion works.

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67

j----- ----+Q+----- ---:

I ,--- -~ - - - - -r--.....,--L..-~.....II'---~ __ --___,
! I, 0 3 4 11112 241 LOG1CAL ADDRESS

Segment Page 1 Byte J
! I TABLE REGISTER • T J

I 10 7ra Segment Table 25126 3'1 I
1 Length Origin IlL I- -- -- - - ----,

000000 }'

I
I

I

~------------~~~,+ I

SEGMENT TABLE
I
I
I
1

69

o 7 a
" ASSOCIATIVE MEMORY

----~--~--------~~~
Length Page Table Origin

PAGE TABLES -
o

Block

I

I
I

~,

... 1'+ ... ,

o II 12

Logical Page Physical
Block I

I
I
I

RELOCATED Instruction Counter

I
I

r-----I-------J
I
I
I
I
I

~r+ u Q LOGICAL COMPARE

@ LOGICAL ADDITION

A = AVAILABLE BIT
1
0) 12 231 PHYSICAL ADDRESS
~ ____ BI_oc_k ______ I~I _____ B~yte ________ ~'1

U = USED BIT
DYNAMIC ADDRESS TRANSLATION

Figure 8. Relocation address translation.

An instruction Load Real Address has been
added which inserts into a general register the
dynamically translated address of the operand. This
enables the supervisor to check the translation
tables and find what a physical address is for a cor­
responding logical address.

We now have a scheme by which we can use all
16,777,216 bytes of virtual storage. Our logical
addresses can cover the entire range from 0 to 224_ 1
without regard to the amount of physical storage.
The mapping from logical store to physical ad­
dresses is done by hardware, with supervisor calls

70 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

needed only to call into core storage a page of
coding from external storage.

Virtual Memory

Although a programmer can address byte 224_ 1,
he will not be able to make use of the entire physical
storage. There is a permanently resident supervisor
which is not in a user's virtual memory and is not
relocated. It runs in the System/360 supervisor
state and so it can execute input/output and other
privileged instructions. A user can only get to those
pages in physical core that are in his virtual mem­
ory. All tables are managed by the supervisor. A
user's Table Register points to a Segment Table
whose entries in turn point to the Page Tables which
define valid program pages and thus define accept­
able addresses. Another user's virtual memory is
made available simply by changing the Table
Register. Virtual memory can therefore be defined
as a set of relocation tables. Paging, I/0 and in­
terrupt handling are done by the supervisor which is
protected from user programs because it is not in
any user's virtual memory. Between the problem
programs and the resident supervisor, there is an
intermediate level of privileged service programs, as

HOW CALLS
WORK IN A
BEGIN I/O RE -
OPERATION ENTER-
EXAMPLE ABLE? STATE

? PROBLEM

SVC
SUPERVISOR
CALL
INSTRUCTION

Fig. 9 shows. The figure also shows that the service
programs are protected from errant problem pro­
grams by being in the supervisor state.

This is dynamic, hardware-aided address reloca­
tion. It has created a new concept of virtual storage,
in which the user need not worry about the limits of
physical storage nor about where his program really
is in core. With relocation, users share common
reentrant coded subroutines to avoid redundant
copies. Complete storage claims of programs are
honored only when needed, greatly redu1cing (:ore
requirements. True multiprogramming with sev,eral
programs sharing core is possible for the 1irst time,
and this is the heart of the Model 67.

OTHER FEATURES

Extended Program Status Word

The Program Status Word (PSW) is a 64-bit pro­
gram-addressable word that contains all the! detailed
CPU and program status information necessary to
describe the present £ondition of the machine. It
includes bits to mask off I/O and program inter­
rupts, bits that can be sensed following a logical
operation (cc), the program protection key and the

USER1S
VIRTUAL RE- PROTEC:TION
MEMORY? LOCATED? PAGED? B~' ---

YES YES YES NONE

YES SUPERVISOR YES YES YES PROTEC:T KEY

lOCAL
MACRO

NOT IN VIRTUAL
NO SUPERVISOR NO NO NO MEMORY

SIO
PRIVILEGED
INSTRUCTION

HARDWARE MICRO-
PROGRAM READ -·ONLY

Figure 9. Protection levels.

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 71

STANDARD PROGRAM STATUS WORD (PSW)

SYSTEM
SYSTEM
MASK

0

0 31~S
OOOOJ 24/32
BIT

ELO-
JION

R
CA

7

17

PRO­
TECT
KEY AMWP

II IS

" 15

PRO- AMWP ILC

INTERRUPTION
CODE

191 231

PRO-

31

31

TECT CC GRAM 00000000
KEY MASK

-EXTERNAL INTERRUPT MASK
-I/O MASK t ALL CHANNELS

'-- RELOCATION

PRO-
ILC GRAM
CC MASK INSTRUCTION ADDRESS

3S1 39 63

39 63

32 BIT INSTRUCTION ADDRESS
ADDRESS
EXTENSION

EXTENDED PROGRAM STATUS WORD (XPSW)

Figure 10. Program status word format.

instruction counter. Upon receiving an enabled
interrupt, a new PSW is automatically loaded while
the old PSW is stored in a unique core location,
thereby immediately entering an error routine with
a different machine status. The five types of inter­
rupts are I/O, machine-check, program exception,
supervisor call, and external signal and each type
causes a unique PSW to be loaded.

The Model 67 makes use of an Extended Pro­
gram Status Word (XPSW) which has some ex­
panded functions, while other functions are left
in various control registers. The normal and ex­
tended PSW are shown in Fig. 10.

The native mode of the Model 67 is that of any
other System/360. After power-on, there is no re­
location and a standard PSW format is used so that
it is compatible with System/360. However, the
Load Multiple Control instruction can load bit 8 of
control register 6 to make use of the Extended Pro­
gram Status Word. When using the XPSW, the
interruption codes are placed in core locations 14
through 23.

Fetch Protection

To achieve effective System/360 time-sharing, it
is necessary to provide for confidential files, which
are available only to privileged users. Accounting
data, password information and personnel files are
examples of restricted files. There is also the need
for protection of one task against an errant prob­
lem program. Consequently, a read protect feature
has been incorporated in the Model 67 by adding a
fifth, fetch-protect bit to the 4-bit storage key.

There is a 4-bit key associated with every 204.8-
byte block in System/360. A problem program is
allowed to write into that block only if the key
matches the current key in the Program Status
Word. An exception occurs if there is no match.
The block is likewise protected against I/0 data
by the requirement of a similar matching key in the
Channel Address Word. On the Model 67, if the
fifth bit is a one, the corresponding 2048-byte block
is fetch (read) protected as well whenever it is read
protected. Fetch protect without write protect is
neither possible nor desirable. The privileged in­
structions Set and Insert Storage Key now transmit
seven instead of four bits to and from the storage
key.

The fetch and write protection features are used
to keep a problem program from service routines in
its virtual memory, as Fig. 9 shows.

There are two other means of protection in the
Model 67. One is the limitation of a problem pro­
gram to addresses within its virtual memory, as de­
fined by its set of page tables. Attempts to transfer,
read, or write outside of one's virtual memory re­
sults in a relocation exception.

There is also the supervisor state in System/360
which restricts non privileged programs to certain
instructions. This effectively protects the super­
visor against unintentional or intentional memory
accesses that are out-of-bounds.

Rolling out of a user's page at the end of his time
slice is necessary if the memory space is needed for
another task. However, if nothing has been written
into that page, there is no need to swap it out be-

72 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

'STORAGE
PROTECT

KEY

2048-BYTE BLOCK

(112 PAGE)

Figure II. Fetch protect.

cause a valid, up-to-date copy of the page already
exists on the paging device. Two extra bits on the
Model 67 have been added to the standard System/
360 protect key, one to indicate if the corresponding
2048-byte block has been referenced, and one to
indicate if the block has been written in. These are
tested by the Insert Storage 'Key instruction to de­
termine if paging is necessary.

Figure 11 shows the fetch protect and reference
bits.

Control Registers

A set of up to 16 control registers is provided on
the Model 67 to implement various features and to
allow for the increased number of memories and
channels that a CPU may address. Each may be as
long as 32 bits. Some registers may be used to
sense positions of switches and are not actually
"hard" registers. The control registers may be
loaded (where possible) and stored using the two
new instructions, Load Multiple Control and Store
Multiple Control. A list of the control registers
is given in Table 2.

When using the Extended PSW, the I/O channel
masks are used from control registers 4 and 5, and
are controlled by XPSW bit 6.

Extended I/O Addressing

Each CPU can now address and mask up to 28
channels. The channel address is designated by bits
19-23, instead of 21-23, of the logical address in
addition to the remainder of the address in bits 24
to 31. The condition code 3 is set in the PSW if a
nonoperational channel is addressed. Figure 12
shows the bit structure of an I/O device address as
used by the Start I/0 instruction.

~119 __ 2~ol ____ 2~31 ____ 2~71 __ ,~
CHAN­
NEL
CON­
TROll­
ER

Timer

CHAN­
NEL

CONTROL
UNIT

DEVICE

Figure 12. I/0 address format

Each CPU contains an interval timer, which per­
mits necessary time-accounting functions to be per­
formed in addition to the above mentioned program
monitoring. The timer has a counting interval of 13
microseconds, corresponding to a frequency of 19.2
kc. Counting takes place in bit 31 of the timer loca­
tion, storage location 80. Actual implementation
includes the use of an internal register to reduce
storage interference to the level of the standard 60-
cycle timer. Location address 80 is monitored to
assure an updated timer content whenever this loca­
tion is referenced.

Prefix

Each CPU uses absolute core locations 01-127 for
PSW's, channel address words, channel status
words, timer residence and initial program loading.
Were these locations common, they would be shared
by several CPU's and interference between CPU's
would result. Therefore, to provide each CPU with
separate assigned storage, a quantity called a pn::fix
is used to relocate dynamically the first 4096 storage
locations. In multiprocessor operation each CPU is
normally assigned a unique prefix and hence the
sharing of these preferred locations is avoided. Al­
ternate prefixes are provided for each CPU in case
of malfunction. The identity of the CPU executing
a program may be determined at any moment by
the setting apart of one of the addresses in the range
0-4095 as the address of an identifying locat.ion, and
then loading an identification in each corresponding
physical location.

The prefix area also contains the recovery nu­
cleus, machine check information and temporary
register storage when a base register is unavailable.

Each CPU has a prefix area in a different memory
module for reasons of reliability.

Part it ioning

A Time-Sharing System which is designed for
availability may have enough redundant major

Control
Register

No.

0
2

4,5

6

8,9

fO

11

12,13

TIME-SHARING IN. THE IBM SYSTEM/360: MODEL 67

Bits
0-31
0-23
0-63

0-3
8

24-31
0-63

0-31

0-15

16-31

Table 2. Control Register Functions

Function
Dynamic relocation Table Register.
Relocation Exception Address Register'.
Extended PSW .I/O ch~nnel mask for channels 0-31; un-

assigned mask bits.
Machine check mask extensions for channel controller 0-3.
Extendeq control mode.
External interrupt masking.
Status of core storage partitioning switches. One byte /

memory module; one bit/tail. A one indicates that con­
nection is established.

Core storage address assignment. 4 bits/each memory
module, containing bits 11 to 14 of the assigned core
storage address.

Status of channel controller partitioning switches. 4 bits/
each controller; I-bit/tail. A one indicates that a con­
nection is established.

Channel address assignment (as viewed from the CPU
executing the STMC instruction), 4 bits/CPU. A field
containing 1111 indicates that for the particular CPU all
channel controllers are assigned their prewired addresses
(i.e., channels 0-7,8-15,16--23,24-31). A field contain­
ing 3 zeros and a one indicates that, for the particular
CPU, only the channel controller corresponding to the
bit position which is a one is addressable, and its chan­
nel addresses are 0-6. No other bit combinations are
possible in these 4-bit fields.

States of control-unit partitioning switches, with at least 2
bit positions assigned to each control unit. A one indi­
cates that connection is established.

14 24-27 States of direct control partitioning switches, one bit for
each CPU. A one indicates that the direct control inter­
face of the corresponding CPU is connected to the other
CPU's.

28-31 States of prefix deactivation switches, one bit for each
CPU. Zero indicates that the prefix of the correspond­
ing CPU is deactivated.

73

systems components so that it is possible to divide
or partition the system. Partitioning can be
achieved without any additional hardware by rely­
ing on the programs in each system to refer only to
those components which have been assigned to their
use. However, often a more absolute means of par­
titioning may be required, such as when un debugged
supervisors and real-time experiments might other­
wise penetrate subsystem boundaries. This is done
by physically partitioning the Model 67 by means of
switches at a separate unit, the 2167 Partitioning

Console, which allow any combination of memory
modules, CPU's, channel controllers, I/O control
units and I/O devices to be connected to the same
system. Figure 13 shows the partitioning switches
in the sample configuration.

The addresses of the memory units can be indi­
vidually set under switch control for partitioning.
In multiprocessing, the addressing for any particular
byte is the same for either CPU, and the modules
are addressed contiguously. In partitioning, the
addresses of each module may be set to a multiple of

74 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

2365
PROCESSOR

STORA6E
262,144 BYTES

2067
CENTRAL

PROCESSING
UNIT

2365
PROCESSOR

STORAGE
262,144 BYTES

2067
CENTRAL

PROCESSING
UNIT

2365
PROCESSOR

STORAGE
262,144 BYTES

Figure 13. Configuration of typical Model 67 with partitioning switches.

28;;o--l
DISPLAY ~

TIME-SHARING IN THE IBM SYSTEM/360': MODEL 67 75

the array size. Thus, with three memory modules,
one partitioned CPU might have memory addresses
0..,..256k while the other CPU has 0-512k. This is
referred to as floating memory addressing. An in­
valid address indication results if an unavailable
memory unit is addressed.

In a partitioned mode, the floating channel ad­
dress switch determines which CPU's may initiate
commands on which controller. Bits in control
register 11 reflect the setting of the channel address
switch. In a multiprocessing mode using the Ex­
tended PSW, any CPU can address any device on
any channel and the floating channel address switch
is ignored. If a path is disabled, a command to that
channel causes condition code 3 in the PSW to be
set, indicating the channel is not operational. The
CPU-memory, channel-memory, and CPU-channel
control lines can thus be severed for partitioning.

The 4 x 16 IBM 2816 Tape Switch normally con­
nects any of the pool of 16 drives to any tape control
unit at program speeds. To partition, a plugboard
enables each tape unit to be excluded from or con­
nected to each control unit. Tape drives can thus be
connected to separate channels, or shared on a
channel. The IBM 2973-2 Disk Switch works sim­
ilarly. The status of the partitioning switches may
be sensed by means of the Store Multiple Control
instruction. It is, therefore, possible for the two
CPU systems to operate as two single processors,
as independent processors sharing common storage
and I/O units, or as a single multiprocessor system.

Reconfiguration can be achieved dynamically by
means of privileged operator commands. The DE­
TACH command will logically separate the speci­
fied unit from the system without disruption of
services. If an I/O device is specified, activity on the
unit is allowed simply to cease to achieve logical
partitioning. If a memory unit is specified, the user
data is allowed to be paged out without reassigning
the core blocks. When the user areas are free, any
remaining supervisor pages are moved to a remain­
ing storage element. Any prefix area in the memory
is reassigned to another memory element. When
activity has "dried up" on the requested unit, a
request is made for the operator to set the switch to
partition off the unit. When the action is completed,
the program will test the switch setting by checking:
the bits in Control Register 8, 9, 12 or 13. The
supervisor then sets the appropriate bits in the path ..
finding device table to indicate unavailability and
confirms physical partitioning by a message to the
operator. The DETACH command therefore al-

lows off-line operation by requiring TSS to grace­
fully withdraw from the affected units. An AT­
TACH command reverses the above procedure.

When the system is to be reconfigured, a PAR­
TITION command can be given to logically parti­
tion the system according to one of several cata­
loged configurations. Again, after activity has
"dried up," the supervisor first asks the operator to
set the partitioning switches, then tests the switches
and acknowledges physical partitioning.

TIMING

Memory Cycle Time

The basic storage cycle of the Model 67 is 750
n,anoseconds. One double word of 8 bytes can be
fetched every 750 nsec, interleaved with another 8-
byte word 375 nsec after the first provided the
double words have addresses which are .alternately
even and odd multiples of 8.

If repeated accesses were made to a byte within a
group whose first byte has an address which is an
odd multiple of 8 bytes, and then to one whose
group has an address as an even 8 bytes, the mem­
ory cycle time would be 375 nsec. Furthermore,
System/360 instructions are 2-', 4-, and 6-bytes long,
with most being 4 bytes. Therefore, many pairs of
consecutive instructions will occur in one 8-byte
double word so that the second instruction will be
available "free" with no access time. Therefore,
memory accesses for operands will occur at an aver­
age rate of between 375 and 750 nsec.

The delay caused by priority determination of the
four tails at each memory is 150 nanoseconds. This
delay only occurs if consecutive accesses are not
made from the same CPU or channel controller.
There is no delay caused by priority determination
where consecutive accesses are made from the same
CPU or channel, such as with continuous instruc­
tion fetches by one CPU.

If the relocation action is active, relocation re­
quires another 150 nsec if the address is found in the
associative memory; 2100 if not. Since the basic
CPU cycle rate is 200 nsec, the CPU clock is ac­
tually stopped for 150 nsec ("stuttered") to allow
for the associative compare. The clock is blocked
for 2.1 microseconds if no valid associative compare
occurs while the page table entry is fetched and
loaded into one of the associative registers. Since
the instruction counter is kept in relocated form, a
relocation delay occurs only during a branch in-

76 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

struction or when the instruction counter crosses a
page boundary, Input/output accesses are also not
relocated, so that the 150 nsec relocation delay ap­
plies only to memory accesses for data.

The maximum memory cycle time would there­
fore be 750 + 150 + 150 or 1050 nsec, assuming
no interleaving, assuming a different CPU requests
service each time, and assuming the only accesses
are for operands. The effective cycle rate is con­
siderably less than 1050 nsee and depends on the
instructions used, the location of data and other
program dependent factors.

Figure 14 shows the floor plan for the two-CPU
four-memory configuration. Because some memory

MEMORY
MODULE

Figure 14. Floor plan of typical Model 67.

modules are physically more distant from some
CPU's, the signal travel time is increased, and
memory access time is degraded. For the above
system, the following table shows the additional
memory times in nanoseconds due to table length.

From:

CPU A

CPU B

To Memory Module:
1 234

o 0 50 100

100 50 0 0

Because this is a symmetric multiprocessing system
with one copy of the supervisor in core, no attempt
is made to optimize its location in a "midway"
memory module. Therefore, the cable delay for
memory fetches may be considered roughly an

, average of these figures, or.38 nsec for a 4-memory
system.

To achieve a single average overall memory access
figure would be difficult because of the assumptions
about the program that must be made. For pur­
poses of discussion, including average cable length
delay, including priority and relocation delay for
operands and taking advantage of some interleaving
of instructions a conservative figure of 800 nsec will
be used.

Data Rates

The data paths between CPU's, memories, Chan­
nel Controllers and channels are eight by ties wide.
Between the channel and I/O control units, the path
is one byte wide. Parity is on the byte level. The
data rates and bandwidths for the devices and chan­
nels are shown in Table 3 for the configured system.
The CPU in a typical program makes 540 storage
references in a 1000-microsecond intervall. This
means a data rate of 540,000 double words per
second, or 4,320,000 bytes per second.

A conservative memory access time for a three­
memory module Model 67 system, as shown in Fig.
1, is 800 nsec. Since the four storage bus systems
are independent, all three storage units may be
executing storage cycles concurrently, thus resulting
in an effective storage data rate of three double
words per 800 nsec., or 30,000,000 bytes/second.
The table assumes concurrent use of all three stor­
age units and shows that the memories are being
accessed at an average rate of 36% of their capacity.
To be sure, if both CPU's and all I/O activity refer
to the same unit, the bandwidth is exceeded and
CPU operation is delayed. However, in no case will
the I/O activity be restricted by the channel or
memory bandwidths.

A simulation run was made with only one proc­
essor executing the instruction mix and without any
cable or priority determination delay. This run was
used as the base run. Next, a model assumiing four
memory modules and two CPU's was simulated.
All memories in the model have an equal chance of
being selected regardless of the device making the
request or the number of other devices contending
for the storage unit at that time. A random amount
of interleaving is assumed, and an instruction mix
which uses 42% of the available memory cycles was
assumed. Cable and priority delays are included.
The following table giving the simulation results 4Df
the model relative to the simplex Model 67 as a
function of the I/O data rate shows the expected
system degradation. Degradation is defined as the
expected increase in job run time.

I/0 Rate

\ 0 megabytes
1.6
3.2

System
Degradation

8.8%
9.7

10.8

The data rate of 1.6 megabytes, is about average
for the configured system with the drum and disks

TIME-SHARING IN THE IBM SYSTEM/360: MODEL 67 77

Table 3. Date Rates and Bandwidths

Data Source

Max. Data Rate
(system as configured

in Fig. 1)
Max. Data Rate

(bandwidths)

2301 Drum(4 x 106 bytes cap.)
2314 Disk .storage (207 x 106

bytes cap.)

1200 kbps* 1300 kbps*

2311 Disk storage (7.3 x 106

bytes cap.)

Total, 2860 Selector channels

Four 2402 tapes (90kc)
Basic 2870 MPX activity

312

156

1678

360
10

Total, 2870 HS MPX channel 370

Total, 2846 channel controller

CPU A, average access
CPU B, average access

Average CPU activity

Total memory access

*Thousl;lnd bytes per second.

4320
4320

2048

8640

10,688

1300

1300

3900

640
110

-t

30,000

t2846 data rate capacity exceeds requirements for this configur­
ation. Exact rate to be determined.

in operation. Nevertheless, the additional degrada­
tion of 0.9% in job run time is small. The overall
9.7% includes the priority and relocation delays and
is the penalty to be paid for the advantages in the
flexibility of shared memories and throughput in­
crease with multiprogramming.

GROWTH

The configuration shown, although typical, is by
no means the only one possible. System/360 Model
67 was planned with growth and flexibility in mind~
As experience is gained with the time-sharing sys­
tem, better systems balances may be obtained as a
function of the type of applications."" For example,
an increase in memory size may very well be the pri­
mary requirement to achieve higher throughput in
a certain installation.

The minimum time-sharing system consists of one
processor, one memory and three channels. The in­
dependent memory modules of 256k bytes each may
be increased to eight. Each module may have up to
eight tails for eight independent bus systems. The
total on-line directly addressable 750-nanosecond
storage thus becomes 2,097,152 bytes. The system
may grow from one to four CPU's.

The system may expand to include four IBM 2846

Channel Controllers. Each controller may have up
to six selector channels, four high-speed multiplex
subchannels, and 192 low-speed subchannels, as
long as the maximum allowable data rates listed
above (under "Other Features") are not exceeded.

Each selector channel may have up to eight con­
trol units and 256 I/O devices. Thus, the I/O ca­
pacity of the Model 67 is almost unlimited. Pre­
sumably with the maximum number of devices,
control units, channels, and channel controllers, the
total number of I/O devices that may be connected
to a multiprocessor Model 67 is 7168.

The Model 67, when operating in the nonrelocate
mode, is completely compatible with the rest of Sys­
tem/360. In fact, a simplex Model 67 operates
identically as a Model 65 when running in the non­
relocate mode. Therefore, Operating System/360
can run on a complete or partitioned Model 67. The
Time-Sharing System/360 will have a monitor, con­
veq;ation FORTRAN and assembler, PL/l,
COBOL and sort-merge. The TSS monitor will
support as terminals the standard IBM 1050 and
2741 "Selectric" typewriters, as well as 2250 and
2260 display units. Eventually remote digital and
analog devices will be tied in and will operate with
the Model 67 in a time-shared, data-logging mode.
It is expected that conservatively at least 100 termi-

78 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

nals can be active at one time in a two processor
system such as described here.

In one installation, it is planned that about 50%
of the work will be conventional batch processing
and will be run as "background" to the time-shar­
ing. The on-line card readers, card punches, print­
ers and plotters will be used with all the background
jobs, and those terminal-oriented jobs which require
them. The Time-Sharing System will support a
SPOOL operation.

It is expected that both CPU s will be used for the
time-sharing mode of operation during prime hours.
At other times, the second CPU will be partitioned
and used exclusively for batched jobs under Oper­
ating System/360 or else with real-time experiments.

With dynamic relocation, independent memories,
a new bus system and dual data paths, the Model
67 provides a revolutionary method of operation.
The hardware, when first delivered in April 1966,
will be IBM's most advanced commercially avail­
able data processing system. The Time-Sharing
System/360 programming system, when available
later, will allow the Model 67 to fully realize its
potential.

ACKNOWLEDGMENTS

The author wishes to recognize the original log­
ical and systems design work on the Model 67 and
on Time-Sharing System/360 done by Dr. A.
Blaauw, Dr. E. Bertram, Mr. H. A. Kinsllow and
many others of IBM's System Development Di­
vision.

BIBLIOGRAPHY

Comfort, W. T., "A Computing System Design
for User Service," Proc. FlCC 1965, Spartan Books,
Washington, D.C., 1965.

"IBM System/360 Principles of Operation," IBM
Document, Form A22-6821-1.

"IBM System/360 Model 67 Time-Sharilng Sys­
tem Technical Summary," IBM Document, Aug.
1965.

"Time-Sharing System/360 Development Work­
book," IBM Internal Document.

"System/360 Model 67 Time-Sharing System Pre­
liminary Technical Summary," IBM Document,
Form C20-1647-0.

A DATA MANAGEMENT SYSTEM FOR TIME-SHARED
FILE PROCESSING USING A CROSS-INDEX FILE

AND SELF-DEFINING ENTRIES

E. W. Franks
System Development Corporation

Santa Monica, California

INTRODUCTION

The Time-Shared Data Management System
(TDMS), under development at System Develop­
ment Corporation (SDC) for use in its Research and
Technology Laboratory, is intended to provide the
users of the SDC Time-Sharing System with a
powerful set of tools for the manipulation of large
volumes of formatted, that is, not free text data.
The functions to be provided include the description
of data, the storage of files or data bases into the
computer environment, the retrieval of the data
either in response to human query or under program
control for processing by other programs of the
system, and the maintenance of data already loaded.

TDMS is for the use of subscribers to the Re­
search and Technology Laboratory's facility; many
of these users are not professional programmers.
This imposes the requirement that the system be
controlled by a nonprogrammer-user-oriented lan­
guage. The data management function for which
TDMS is the instrument is by no means the sole
function of the computer system in the laboratory.
Furthermore, it operates on a time-shared basis with
the other functions performed by the computer and
may therefore be used simultaneously by several
users. This aspect of the environment imposes a
requirement to provide responses acceptable to on­
line users of the time-sharing system in circum-

79

stances where. there may be many users and where
the volume of data from which responses are re­
quired is very large. The organization of the data is
designed to optimize on-line retrieval of this kind
where the criteria for selecting data from the file
are not known in advance. The two aspects of
TDMS emphasized in this paper are the user-orien­
tation features and the file organization scheme.

STRUCTU'RE OF TDMS

TDMS is designed to operate under the control of
a Time··Sharing executive program using IBM S/360
computers. One feature of the system is that it will
be easy to adapt the system to various models of the
IBM S/360 computers. Although the system will at
first be designed for model 65 IBM S/360 com­
puters, as advances are made to the computers, the
system can be adapted to increasingly sophisticated
versions, such as the proposed model 67. Com­
munication with the programs is by means of the
TDMS language, which is a reactive, or dialogue,
type of language, whose rules of use are always
available to the user on request to the program.

The control program of TDMS can be contacted
through the time-sharing system by any user from
either remote or local stations. The control pro­
gram of TDM·S will enter a dialogue with the user.
After the control program has communicated the

80 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

user's requirements to the time-sharing executive
and to the computer console operators, as appro­
priate, the user will be granted access to various
functions of the system without having to be aware
of the program structure of TOMS. From the user's
point of view, he is dealing only with the program
he called through the time-sharing system, although,
in fact, in the course of performing data manage­
ment operations, he may have used and communi­
cated with as many as half a dozen different pro­
grams.

In addition to the control program, TOMS in­
cludes a data description translator, a data load
program, an on-line query and update program, a
report-generator program, and a maintenance pro­
gram which, in addition to performing batched up­
dating, permits the user to create a subset of a file,
to merge files and to restructure files including the
computation or generation of new data elements.
Space and time limitations preclude presentation of
a more detailed description of the programs in­
corporated in TOMS. However, to describe the
user orientation features and file organization
scheme, it is necessary to first say something about
the underlying philosophy of data upon which
TOMS is based.

CONCEPT OF THE ENTRY

A TOMS data file or data base, as it is often
called, is a collection of information sets or entries.
Each entry contains information about one object.
The object itself need not be named, but may be
understood from the description provided by the
name in the data base itself. . Thus, a data base de­
scribing the personnel in a corporation might have
one entry for each employee, and yet, within that
entry, it would never be necessary to state ex­
plicitly "this is the description of a person." The
kinds of data collections encountered in Command
Control problems and other management problems
are seldom as straightforward as the example just
given. Each entry in a data base describes an ob­
ject, but the objects are not all of the same kind.
For example, a resources file may contain entries
dealing with factories and other entries dealing with
training schools. It is essential, in such circum­
stances, for each entry to identify the object which
it describes. What TOMS allows, in fact, is the
accomodation of more than one logically consistent
file in the same file structure. This makes the cross­
coordination of different kinds of data much easier

and more efficient in an on-line environm~;!nt than
would be the case if separate files had tOi be run
together and matched.

The logical structure of the TOMS entry is a col­
lection of predefined elements or descriptors. Each
entry will have a subset of these elements appro­
priate to the object being described. For c!xample,
the entry describing factories would have an ele­
ment "GROSS PRODUCT IN THOUSANDS OF
DOLLARS," but would not have the elemc;!nt
"AVERAGE SIZE OF GRADUATING CLASS
OVER LAST 10 YEARS." The reverse would be
true of an entry describing a training schooL

The TOMS data base is not organized into slOrt
hierarchies such as CO UNTY within ST ATE within
COUNTRY. Provision is made, however, to ac­
comodate naturally occurring hierarchies in the
data. For example, in a data base defining tactical
military organization, an entry might exist for a
group. The Group Headquarters, names of staff
officers, mission, and so forth, would pertain to the
whole group. Each company of the group, hOlw­
ever, might be in a different location, and each
might have a specific subordinate mission. One
possibility of handling this situation woulld be to
establish separate entries for each company, each
containing an element labeled "GROUP TO
WHICH ASSIGNED." But, because TOMS is a
general system, there would be no special magic in
that particular label which would enable the systc;!m
to know that these entries were really part of the
group description. To ensure retrieval of the whole
set, the retriever would have to know of the C;!x­
istence of this element and to use it as part of the
retrieval key expression. To solve this problem,
TOMS permits the automatic association of data
connected by a natural hierarchical relationship
through the device called a repeating group. A re­
peating group is, in effect, a set of subentries whilch
are part of an entry. Thus, the elements in an entry
which belong to one of its subordinate repeating
groups may have several values within that entry,
but only one value within each of the subentries.
The flexibility of this device is such that, on the OIne
hand, it will accomodate a simple multivalue ele­
ment like "PROFESSIONAL ASSOCIATION
MEMBERSHIP"; on the other hand, an order-of­
battle file with only three basic entries, ARMY,
NAVY and AIR FORCE, would contain all the
subordinate organizations appearing as repeating
groups within the three basic entries. As this state­
ment implies, repeating groups may thc;!mselves
contain repeating groups to any level of nesting.

DATA MANAGEMENT SYSTEM FOR TIME-SHARED FILE PROCESSING 81

DESCRIPTION OF DATA

The best way to understand how data is de­
scribed is to take a hypothetical example. and show
the process being performed. Let us imagine that
our hypothetical user is a mail-order merchant who
handles a variety of merchandise. Let us suppose
he has access to TDMS and the SDC Time-Sharing
System through a teletype machine in his office. Let
us further suppose that he is so committed to using
a system that he does all of his paper work on that
one teletype.

His first task is to describe his data to the system.
He contacts the TDMS control through the Time­
Sharing Executive. He may request a list of the
functions available, but, in this case, we assume that
he knows that the function he wants is called DE­
FINE. The DEFINE program then asks him to
name his data base. He responds by typing in

COMPANY OPERATIONS

From now on he is able to refer to the descriptions
he will supply and to the collected data itself by this
name.

The data our merchant is about to describe will
exist in two forms: outside the computer system, the
data will exist as data input; inside the system the
data will exist as the stored file. The following
conventions exist for input data. The data input to
TDMS always exists as card images on tape, or as
input entered by teletype, but the scheme is the same
in either case. Each data element is preceded by an
identifying number field, and the set of elements and
repeating groups constituting one set or entry is
terminated by a special symbol selected by the user.
The sequence of the elements is immaterial except
that the elements in a repeating group must all be
listed before the elements of the next repeating
group or nonrepeating element. Thus, after receiv­
ing the name of the data base, th«.. DEFINE pro­
gram asks the user for the terminating symbo~. In
this case, let us say that the user chooses the term
ALL. When the data is loaded, the system will
know that whenever the term ALL is encountered in
the input, and the term is not preceded by an
identifying number, the last of the data for a par­
ticular entry has been received.

The user now proceeds to name the variou~ ele­
ments of data he will be dealing with. He may re­
quest the system to spell out the rules for the
description process, and, if he is uncertain of his
typing skill, he may request the ECHO function,
under which the program types back what he has

input, giving him a chance to make corrections to
what he has just typed before proceeding.

The elements of data are listed one at a time on
the teletype. First the identifying number which
will appear on the input is given. Then the name of
the data element is stated. Following the name is
the specification of the data type in one of the fol­
lowing three possible types:

NAME
INTEGER
DECIMAL

(alphanumeric character string)

The names of repeating groups, or subentries, are
given in the same way-first the identifying number,
then the name of the repeating group, then the term
REPEATING GROUP (abbreviated as RG). Data
elements within a repeating group are specified like
other data elements, except that, following the data
type specification, the name of the repeating group
to which the element belongs appears. Thus the
order in which elements are described does not
matter. Finally, as an option, input legality check
information may be inserted. This information may
be a list of acceptable values, one or more ranges
of values for numeric data, or a data format de­
scription. A list of some of the data input elements
entered by the hypothetical merchant is shown in
Example 1, below.

Example 1

ENTRY TYPE (NAME) VALUES
CUSTOMER PRODUCT

2 CUSTOMER NAME (NAME)
3 CUSTOMER CATEGORY (NAME)

VALUES ACCOUNT PROSPECT
4 ACCOUNTSYMBOL~AME) FORMAT

L999
5 PRODUCT (NAME)
6 ACCOUNT HISTORY (RG)'

61 DATE OF ORDER (NA}fE IN
ACCOUNT HISTORY) FORMAT
09[/]99[/]99

62 AMOUNT OF ORDER (DECIMAL IN
ACCOUNT HISTORY)

63 BILL OF MATERIAL (RG IN
ACCOUNT HISTORY

631 MERCHANDISE (NAME IN BILL OF
MATERIAL)

632 QUANTITY (INTEGER IN BILL OF
MATERIAL)

633 UNIT PRICE (DECIMAL IN BILL OF
MATERIAL)

634 ACTION (NAME IN BILL OF

82 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

MATERIAL) VALUES SHIPPED
BACK/ORDER

635 SUBTOTAL (DECIMAL IN BILL OF
MATERIAL)

636 STOCK CODE (NAME IN BILL OF
MATERIAL) FORMAT LL999

7 ADDRESS (NAME)
8 CURRENT STATUS (NAME) VALUES

PAID OPEN
9 BALANCE (DECIMAL)

10 CODE (NAME) FORMAT LL999
11 WAREHOUSE (NAME)
12 UNITS ON HAND (INTEGER)
l3 UNITS ON ORDER (RG)

131 NUMBER ORDERED (INTEGER IN
UNITS ON ORDER)

l32 SOURCE (NAME IN UNITS ON
ORDER)

l33 ORDER NUMBER (NAME IN UNITS
ON ORDER) FORMAT 009LLL

l34 COST (DECIMAL IN UNITS ON
ORDER)

The list is, of course, by no means the complete
set of elements which would be required for the
hypothetical operation. It is sufficient, however, to
illustrate the features of the descriptive language.

The data base contains two types of entries­
customer entries and product entries-so that bill­
ing and mailing operations and inventory control
operations can be performed from the same file.
The first element described, ENTRY TYPE, speci­
fies which kind of data is included in a particular
entry. Only two values are possible for this item of
data, namely CUSTOMER and PRODUCT, and
these values are listed, following the word VALUES
for checking the legality of input. Input Element 2,
identified as input by a field containing the num­
ber "2" preceding the data value, occurs only if the
entry is the customer-type entry. The third element,
also applicable only to the customer-type entry,
shows a distinction between actual customers (value
ACCOUNT) and hoped-for customers (value
PROSPECT). The PROSPECT entries would be
entered for mailings or in response to queries. Al­
though no such elements are shown in the example,
data about correspondence, brochure mailings, and
areas of interest would probably be included in such
entries.

Element 5, PRODUCT, is the first element de­
scribed which would be applicable to the inventory
type of entry. The next element in this category
does not occur until Element 10, the product code.

The legality check for this element is a format check.
The L's stand for letters and the nines for numbt:rs.
Thus value AAOI0 would be a legal product code
and value A33 would. not. An additional example
of format control is shown in Element 61, where the
slashes in the data are enclosed in square brack4~ts,
indicating that these exact characters must occ:ur.
The example shows several repeating groups. The
first of these, ACCOUNT HISTORY, occurs in
customer-type entries. The user has chosen to
number the inputs for the repeating group 6 as 61,
62, etc. This is an example of a user-devised conven­
tion, and is not required by TDMS. The repeating
group, ACCOUNT HISTORY, itself contains a
repeating group, occurring for each order recorded;
this repeating group is BILL OF MATERIAL. The
third repeating group is Element 13, UNITS ON
ORDER, which relates to the inventory type of
entry.

The list given is merely the description of the data
given to TDMS. It is not the data itself. To clarify
'the significance of the description, two examples of
input data are given below, one for a customer and
one for stock.

Example 2

Input Data for a Customer- Type Entry

1) CUSTOMER 2) JOHN Q JONES
3) ACCOUNT

4) J021 6)
61) 5/21/64 62) 205.63 63)
631) TABLECLOTH 632) 17

633) 5.40 634)
SHIPPED

635) 91.80 636) TC301 63)
631) PLACE SETTINGS 632) 3

633) 37.81 634)
SHIPPED

635) 1l3.43 636) SV002
7) 2000 LOND ELIUS ST LOS

ANGELES CALIFORNIA
8) OPEN
9) 105.00

Example 3

Input Data for a Product-Type Entry

1) PRODUCT
2) TIKI FIGURES

10) TKOOO 11) ZELZAH 12)
205 13)

l31) 50 l32) PORYNESHA KK
YOKOHAMA

l33) 127PKK 134) 410.00

DATA MANAGEMENT SYSTEM FOR TIME-SHARED FILE PROCESSING 83

When the user has finished entering his descrip­
tion, he may have it presented to him for checking.
He may add, delete, or change a description already
made at any time by calling the REDEFINE func­
tion. He needs to know very little about the opera­
tion of the program or about computers. Tech­
nically, he need only know that data may be numeric
or nonnumeric. The logic of the organization is the
logic of the data itself as it appears to him. Once
the data is described in these user-oriented terms, he
may load the data into the TD MS system at any
time by calling the LOAD program. The LOAD
program expects inputs which agree with the de­
scription given. Discrepancies are logged, and the
user may have them logged on-line for immediate
correction. Once the data is entered, it may be
called by name, and again the user does not need to
know how it is stored or accessed. He may perform
spot queries for fact retrieval. He may describe
formats of output and call a report generator to
make up bills or bookkeeping summaries. In the
example given, the inventory is presented as it
would appear if listed by product within a ware­
house. He may want to obtain summaries by

,product, regardless of warehouse location, or he
may want a summary of all products by warehouse.
He is not restricted by the organization implicit in
the way he has chosen to define his data. This free­
dom results from the way the data is actually or­
ganized in the computer.

TDMS DATA BASE STRUCTURE

The data structure created by TD MS when the
input data is loaded is designed to optimize retrieval
in an on-line environment if it is assumed that the
user has no prior knowledge about what data is
most likely to be r~trieved or what criteria will be
used to select data for retrieval. It is also assumed
that retrieval will be requested from the file on the
basis of some Boolean expressions given in terms of
data elements and values. Such Boolean expressions
define a subset of the data base, namely, those en­
tries in the data base for which the Boolean expres­
sion is true. Frequently, however, instead of re­
quiring the entire contents of this data subset only
certain values from the qualifying will be needed.
Thus, the selection path is entered with a combina­
tion of element names and values associated with
them. This defines a list of entries which meet the
criteria. The retrieval path is then entered with a
list of entries and a list of element names for which
values are required from these entries. The data

base organization is designed to optimize both the
selection of qualifying entries and the retrieval of
the specified element values.

From the data user's point of view, the data base
appears to be a collection of values to which he may
wish to refer. These values have two sets of associa­
tions. In the first place each value is part of the total
description of one of the objects in the data base.
In the second place each value is both a value for a
specified element and a member of the set of all
values for that element. The TDMS organization
of the data base reflects both types of value associa­
tion, the element set and the object set.

The actual values are stored according to the ele­
ment set relationship. That is, for each element
there is a block of storage for the unique values
O,ccurring for that element. Each value is stored
only once, regardless of how many entries of the
input data may contain it. Associated with these
lists of unique values are two other groups of lists.
The first of these has the function of ordering the
raw value list algebraically, or in the case of sym­
bolic values, alphabetically. The items on the value
list are stored in a random arrangement; the value
list orders the values in the sequence in which they
appear in the input. The ordering list is generated
to speed up search by permitting the use of binary
search techniques. The second group of lists asso­
ciated with the blocks of values is the entry group.
For each entry there is a list of the elements which
were found in the entry and a reference to the place
in the value list for that element where ihe specific
value for that entry may be found. This part of the
organization is represented schematically in Fig. 1.

For the purposes of selection, the ordering lists,
in addition to pointing to values in the value list,
also point to occurrence lists. The occurrence lists
are lists of entries in which each value of each ele­
ment occurs. Thus, in order to make a selection on
the basis of a Boolean expression, the ordering list
is searched for values which meet the various cri­
teria. When a matching value is found, a list of
entries containing this value is obtained. The vari­
ous lists obtained for different parts of the Boolean
expression are merged, using AND or OR logic; the
result is a final list which represents a subset of the
data base that meets the criteria for selection. This
list of entries is then used in combination with the
names of the elements to be retrieved to obtain the
values of these elements from the appropriate value
lists.

The entire retrieval process becomes clearer if we
take an example. Let us imagine that our mail-

84 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

Entries Value lists Ordering Lists

Element 1

r-":"'-'-l--._--f
Element 1

Figure I.

order merchant wishes to obtain a list of the cus­
tomers who currently owe him money--an accounts
receivable list. He might do this through the
TOMS QUERY program with the following re­
quest:

PRINT CUSTOMER NAME, BALANCE
WHERE CURRENT STATUS EQUALS OPEN

The subset of the data base to be selected is the set
of entries which have the value OPEN for the ele­
ment called CURRENT STATUS. Through the
Data Definition Table the program converts the
name CURRENT STATUS to the address of its
ordering list. This list is accessed, and is found to
have only two entries, one for the value PAID and
one for the value OPEN. The value OPEN points
to a list of the entries which have the value for
CURRENT 8T ATUS. Then entry references are
converted to entry list addresses by means of a
directory table. The qualifying entries are accessed,
and, for each one, the pointers to the value lists for
the elements CUSTOMER NAME and BALANCE
are followed, and the values are recovered and
printed.

The query in the above example is a simple and
straightforward one, not involving AND and OR
logic, and not concerned with the complexities of
nested repeating groups. It does serve, however, to
introduce the entire data base structJ,.lre as created
by TOMS when the data is loaded. Figure 2 shows
this structure schematically.

Element Ir----l Element 2

.------iElement i

Ordering Value Value Value Orde";ng

r4-_--t-_

L

_

i

•

t

_

i

-1+-1 u .. , U .. , " .. , }Q
Occurrence

lists

~J
~J

I.:::-----LJ

Figure 2.

The route is from definition table to ordering liist.
The ordering list permits an efficient examination
of the value list for qualifying values. For ea.ch
qualifying value there is an occurrence list. The
occurrence list points to the data base entry whc!re
the value occurs. Each entry, in turn, points to the
value lists for all the elements present in it. The
occurrence list actually points indirectly to the entry
via a directory of entry addresses. In cases where a
value occurs only once for a given element, the or­
dering list bypasses the occurrence list and points
immediately to the directory to save storage space.

So far little has been said about the directory
table, which, in its simplest form, simply lists t.he
address of each entry in the sequence in which the
entries were loaded. In cases where repeating
groups are involved, however, the directory assumes
greater importance, since it is here that the hi'er­
archical restrictions imposed by repeating groups
are observed. This concept is best expla.ined by
means of an example. Again using the merchandis­
ing data base, let us imagine that the user wishes to
obtain a list of customers who have ordered sardines
in quantities of 100 cans or more as part of an order
totaling $100 or more. In this case, "sardines" is a
potential value for the element MERCHANDISE
and "100 cans or more" represents a potential
value for the element QUANTITY. Both dements
occur in the repeating group BILL OF MATE­
RIAL. Both must occur in the same group. In
other words a value of 100 for QUANTITY is not
sufficient to qualify the entry unless it is directly as-

DATA MANAGEMENT SYSTEM FOR TIME-SHARED FILE PROCESSING 85

sociated with the value SARDINES for the element
MERCHANDISE. Furthermore, the co-occur­
rence of these two values does not qualify the entry
unless the total order of which the sardines are a
part equals or exceeds $100. It is necessary then to
find entries in which one of the values for
AMOUNT OF ORDER in the repeating group
ACCOUNT HISTORY is equal to or greater than
100 at the same time as the values for MERCHAN­
DISE and QUANTITY in the BILL OF MATE­
RIAL for that particular order meet the criteria
respectively of "sardines" and "equal to or greater
than" 100.

This complex matching problem is solved by
carrying an entry for each repeating group, as well
as for each data base entry proper in the directory
table. In the case of directory entries for repeating
groups, instead of an entry address there is a
reference to the directory entry for the next higher
level in the hierarchy. In this way it is possible to
determine whether values for two elements of the
same repeating group (in the example SARDINES
and 100 or more cans) actually occur together. If
they do, the references from their respective occur­
rence tables will be the same. Then, by following
the pointer from this directory entry to the next
higher level, namely to the particular order in AC­
COUNT HISTORY to which it belongs, it is pos­
sible to see whether or not the total order was equal
to or greater than 100 dollars. The entry containing
this information will qualify if an entry number in
the directory for an occurrence of AMOUNT OF
ORDER greater than 'or equal to 100 dollars is the
same as the next higher entry pointed to by the di­
rectory entry meeting the MERCHANDISE and
QUANTITY criteria.

The fact that the elements dealt with are parts of
repeating groups is determined by the selection pro­
gram from the definition table, as is the relative
level in the hierarchy of each repeat;ing group. In
summary, the following is the path followed in re­
sponse to a request phrased

PRINT CUSTOMER NAME WHERE
AMOUNT OF ORDER GQ

100 AND MERCHANDISE EQUALS
SARDINES

AND QUANTITY GQ 100

The program determines that the selection criteria
elements are members of repeating groups. Starting
at the highest level where the element appears, it
accumulates a list of entry numbers in the directory
table, for which AMOUNT OF ORDER qualifies.

It then accumulates a list of entries for MER­
CHANDISE equal to SARDINES and a list of
entries for QUANTITY greater than or equal to
100. These last two lists are ANDed together to
eliminate entries with insufficient sardines and en­
tries with a sufficient quantity but the wrong mer­
chandise. The resulting intersection list is then con­
verted to the next higher level by substituting the
"up" pointers from the directory. The converted
list i~ then ANDed with the AMOUNT OF OR­
DER list to produce a list of fully qualifying entries.
This is not, however, the final step, since the
AMOUNT OF ORDER list contains entries for a
repeating group, ACCOUNT HISTORY. This
must be converted to actual entry references again
by substituting the "up" links, which now results
in a list of basic entries. These ehtries are retrieved,
and the output values, in this case, CUSTOMER
NAME, are retrieved and printed exactly as in the
first simple example.

BACKGROUND

The data handling techniques of TDMS have
evolved over several years of research and experi­
ment conducted at SDC, and the new system bene­
fits from experience gained elsewhere. In particular,
the idea of the cross-reference file was developed
and tested in an experimental data management
system called LUCID, and was refined and ex­
panded in TSS-LUCID (Time-Sharing LUCID)
which is currently in operation at SDC on the IBM
ANFSjQ32 computer under the Time-Sharing Sys­
tem. The cross-reference file is that part of the data
structure which consists of the value lists, the order­
ing lists and the entry directory table. The concept,
and indeed, the name of the repeating group is de­
rived from the ADAM system of the MITRE Cor­
poration. The inadequacy of LUCID in dealing
with the natural hierarchies occurring in data
prompted this borrowing. What is entirely new in
TDMS is the entry structure which has been termed
the "self-defining entry." In LUCID the entry
association is determined solely from storage jux­
taposition. The values are tightly packed in the
entries. The values also occur in the value list, thus
duplicating storage requirements. Furthermore,
much additional storage space is required to ac­
commodate bits of storage assigned to data elements
not actually present. In the case of multiple value
elements with assigned bit locations, this arrange­
ment requires a great deal of space for empty data

86 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

base storage. Most important, however, in motivat­
ing the development of the .new structure, are time
considerations. In a general system the locations of
packed data elements are known to the program
through parameter tables. An average of more than
100 machine instructions required to convert such
parameters to an actual retrieval, and, in iterative
operations, the process is likely to be very slow.
TDMS does away with packing parameters so that
everything is standardized, and in all probability,
the number of instructions required to move a data
element is always fewer than ten.

OTHER OPERATIONS

The heart of TDMS has been described in some
detail. The data description language has been pre­
sented to give some idea of the essential simplicity
of the approach to the system and, thus, of its suita­
bility for non programmer users. The operation of
retrieval has been explained with some examples of
the on-line query language being used as illustra­
tions. The retrieval mechanism is the same through­
out the system, whether it is triggered by an on-line
query or by the execution of a report-generator
function. What has not been covered is the arith­
metic capability of the system. The extent of this
capability is illustrated by the following query which
shows that the system accepts arithmetic expressions
involving elements of data both as output specifica­
tions and as selection criteria.

PRINT SUM OF HOURS WORDS
* HOURLY WAGE

WHERE 1966 - BIRTHDATE
GR21

To optimize operations such as the above without
sacrificing efficiency in cases of simple retrieval., the
value lists for numeric elements contain both the
symbolic form of the values originally input as well
as binary representations of them in either integ(~r of
floating point format. In this way the original value
can be retrieved and printed without going through
a conversion routine, and arithmetic and magnitude
comparisons can be made in the binary mode.

CONCLUSIONS

TDMS is a generalized system which makes no
a priori assumptions about the way in which the
data will be used. In caseS where this is known, the
data can be converted to the more conventional hi­
erarchical format by the maintenance program so
that the efficiency of specific usages can be maxi­
mized. Nevertheless, the basically general approach
is sound. The life expectancy of a special-purpose
data management program is short, and in terms of
cost effectiveness, likely to be very poor. Our ex­
perience has been that the collectors and users of
data approach their problems initially with a some­
what vague and largely intuitive notion of the llses
to which a data base will be put. It is only as they
begin to use the data that its full utility becomes ap­
parent. TDMS is an attempt to give users a facility
which does not preclude the easy and ifl(~xpensive

evolution of data management procedures, and
which, at the same time, is remarkably efficient as
generalized programs go. It is designed for the non­
programmer user. We do not like to say it is for
the unsophisticated user, because the mon~ sophis­
ticated he is in the terms of his own data and his
own problems, the better TDMS will serve him.

AN ANALYSIS OF TIME-SHARING COMPUTER SYSTEMS
USING MARKOV MODELS*

J. L. Smith
Systems Engineering Laboratory, The University of Michigan

Ann Arbor, Michigan

INTRODUCTION

The development of RQA 1 (Recursive Queue
Analyzer), a program for the numerical solution of
the stationary distribution of large scale Markov
processes, has made possible the accurate analysis
of large stochastic systems with modest computa­
tional costs. In particular, time-shared computer
systems with their random program and user char­
acteristics are examples of systems which can be
modeled as multidimensional Markov queueing
processes and analyzed' by the method. Having
obtained a solution for the limiting state proba­
bilities of the model using RQA, one can readily
derive many time average performance and usage
characteristics. Thus a useful tool is available to
provide guides in the design and modification of
such systems and to forecast user response and sys­
tem capacity in terms of the number of users and
the operating statistics.

In current time-sharing systems the major prob­
lem is the sharing of high-speed memory. Economic
considerations have limited the availability of high­
speed memory from which user programs can be
executed. Hence large capacity slower access time
memories have been added to these systems in a
manner which allows most efficient use oLthe high­
speed memory. 2 In effect there may be many levels

*This work was supported by Rome Air Development Center
under Contract No. AF-30(602)-3553.

87

of memory with capacity and access time increasing
as we go down the levels, and there will be continual
transfer of information between these levels. Thus
queues arise not only for the use of the central
processor but also for the use of high-level memory
and data channels. In practice only a certain num­
ber of user programs can be allowed to occupy the
highest levels of memory without serious reduction
in some performance criteria. Useful models depict
the important queueing phenomena in this regard.

We now proceed to describe the process of model­
ing a time-sharing system and illustrate some results
for a particular system.

DESCRIPTION OF A TIME­
SHARING SYSTEM

Figure 1 shows a block diagram of the major
hardware components of a time-sharing system
which is representative of current designs using a
single central processor. There are three types of
memory, the high-speed core memory and memory
modules A and B which represent two lower levels
of memory with increasingly larger capacity and
slower access times. A number of remote com­
munication consoles and the necessary data chan­
nels for the interconnection of all components
complete the hardware.

The high-speed core memory would be operated
on a paging or segment and paging scheme3

,4 to
allow maximum benefit from the use of common

88 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

CENTRAL
PROCESSING

UNIT

CORE
rO MEMORY

KJ
I/O

CO CONTROL
I

NSOLES

l
I

La
MEMORY

A

MEMORY
B

Figure 1. Block diagram of a time-sharing computer system.

routines and mUltiprogramming. Part of the core
would be devoted to an executive program and com­
munication tables and the remainder to use pro­
grams.

Memory module B represents a very large­
capacity file store {for example several disc memory
units) wherein each user of the system is assigned
a storage area solely for his own use. Files of source
decks and binary decks and data files are stored
here. When a user is operating at a console he will
activate some of these files and they will be trans­
ferred under executive program control to allotted
pages of the core memory for; processing. They will
then be subject to swapping procedures between
core memory and module A as described below.

During each user's session at a console he will
use his own files, many system programs, and in­
formation generated at the console. For efficient
memory sharing it is desirable that only the current
working section of each user's program be resident

in core and that other sections be readily available
to enter core on a swapping or overlay operation.
Memory module A (typically consisting of high­
speed drum units) acts as a core store overflow
medium to contain such currently active files and
system programs. As many working sections as
possible should remain in core in order to take
advantage of averaging their demands on system
processors. When the system is serving a large
number of users one would expect frequent changes
in the working section currently executing in the
CPU, and continual traffic of pages or segments
between memory module A and the core store.

DEVELOPMENT OF A QUEUEING MODEL
OF THE TIME-SHARING SYSTEM

We will now derive a queueing model of the time­
sharing system described, indicating assumptions
involved and some further details of the! system
operation necessary to complete the model.

The executive program will include a scheduling
algorithm for allotting user programs use of the
CPU and other system processors. When a user
program is assigned the use of the CPU w(~ assume
that it executes for a random length of time which
is short compared with the average time an operator
takes to interact with the system. Scheduling
algorithms may induce short execution phases by
penalizing long programs and assigning execution
time limits. Also the following three types of events
will cause random execution phase lengths.

1. Transfer of control in a users program
is required to a segment or page which
is not residing in core and thus pages
must be swapped or overlaid from
module A before execution can begin or
continue.

2. Console output has been generated and
the users program is ineligible to exe­
cute until some further information or
command is supplied by the user.

3. A user file or program previously un­
used at the current session has been
called by the user program and must be
loaded from module B before execution
can continue. Alternatively the user has
elected to store a file.

Thus the program of a user currently operating
at a console will always have associated with it one
or more of the following phases of system operation:

TIME-SHARING COMPUTER SYSTEMS USING MARKOV MODELS 89

1. CPU execution.
2. Segment or page swap (or overlay) from

module A.
3. Operator response.
4. File transfer to or from module B.
5. Queueing for phases 1, 2, or 3.

Programs may also queue for information transfer
in the console data channels, but the significant
operations are the thinking and response generation
by the user and these may occur simultaneously
when each user has his own console.

The queueing model shown in Fig. 2 is based on
these five phases of operation. The service opera­
tions corresponding to phases 1 through 4 are de­
picted by blocks containing a parameter (1/ J.l h 1/ J.l2,

1/ J.l3, or 1/ J.l4) which is the mean execution time in
that phase. Wherever queues may form this is indi­
cated by a circle containing the value of the maxi­
mum possible queue length. It is assumed that there
are N consoles in use at all times. The maximum
queue lengths for swapping and file transfer opera­
tions have been designated N, and N2 respectively.
There is also a limit on n, the sum of the entries in
these two queues (n < N), and this limit is the maxi­
mum number of user programs which can concur­
rently have pages of core memory assigned to them.
If the system reaches the state in which both these
I/O queues are full, then there is no user program
in core memory eligible to execute. Likewise it is
implied that a maximum of N, + N2 programs in
the queue for CPU execution can have sections
resident in core memory.

Once a program completes a CPU execution
phase it is assumed that it always generates a

USER

N CHANNELS

FILE
TRANSFER

Figure 2. Queueing model of the time-sharing system.

request for one or more of the operation phases
2, 3, and 4; that is it does not simply remain in core
to await rescheduling in the CPU. This assumption
should be accurate when the system is operating
near its maximum capacity of users, for then com­
petition for the use of the high-speed core will result
in reassignment of the core space used by programs
which complete or are interrupted by the scheduler.
Further, under these conditions a program waiting
for a user response would almost certainly lose its
core memory assignment; therefore it is assumed
that any completion of a CPU execution phase
which results in user activity also results in a swap­
ping operation to reassign the pages of core memory
involved. Thus we denote the probabilities with
which a user program generates requests on com­
pletion of phase 1 for phase 2, phases 2 and 3, and
and phase 4 by p, q and r respectively (p + q + r = 1).
These probabilities would be functions of the pro­
gram statistics and the system operating rules.

it is assumed that each CPU execution phase in­
volves some executive program execution for sched­
uling, monitoring interrupts, setting up I/O opera­
tions, etc.

ANALYSIS AND INTERPRETATION OF
THE MATHEMATICAL MODEL

It is emphasized that the only property of a
mathematical model required for its solution by
RQA is that it be a Markov process consisting of
a closed class of states. There is an upper limit im­
posed on the number of states of the model in ac­
cordance with storage restrictions of current compu­
tational facilities. For details of the RQA program
and the theory underlying this approach to stochas­
tic system analysis, the paper given by V. L. Wallace
and R. S. Rosenberg at another session of this con­
ference should be consulted.

The results which can be obtained from analysis
of the model described using RQA are of the follow­
ing nature. Assuming or given statistics on the
programs, user responses and data transfers, we can
examine relationships such as the response received
by each user versus the number of users, or the
change in this response which can be obtained by
controlling the usage statistics or increasing proces­
sor capacity. To analyze the model we must first
develop a state description (for example n, pro­
grams awaiting CPU execution, n2 programs await­
ing operator response, n3 programs awaiting page
transfers and n4 programs awaiting file transfers,
so that the four variables nh n2, n3, n4 describe the

90 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

state of the system). RQA uses a transition intensity
matrix to solve for the stationary probabilities of
the system existing in any state. The allowable state
transitions of the model are determined by the sys­
tem constraints and the transition intensities are a
function of the model parameter values. There is
some restriction on the probability distributions of
the model describing the random execution times.
These must be of a particular class of distributions
satisfying the Markov property and so are based on
the exponential distribution (although some excep­
tions can be made5

). A considerable range of dis­
tributions derived from the exponential distribution
exist with properties useful for modeling real sys­
tems. In general it is the mean values of these dis­
tributions (e g., 1/ Jll) which appear in the transition
intensity matrix, although for the derived distribu­
tions more than one parameter is necessary.6

The parameters of the model must be related in
a simple manner to measurable system characteris­
tics. A meaningful subdivision of user operation at
a console has been defined as a user interaction.7

This is the act of a user requesting and receiving
service from the system and involves the user think­
ing, generating an input, waiting for system re­
sponse and observing the output. It has been pro­
posed that the number of interactions during a
console session is a good measure of the amount of
useful work accomplished by a user. In the model a
new interaction begins each time a user program
enters phase 3 at some console. Thus the following
characteristics defined in terms of the model param­
eters are useful in describing the system:

P
-+
q

r

q

Mean CPU execution time (plus
executive overhead) for a user pro­
gram per user interaction.

Mean number of swapping or over­
lay operations per user program
per user interaction. *
Mean number of user file trans­
fers per user program per user
interaction.

Other characteristics can be equated to individual
model parameters.

Some measures of performance and system usage
readily calculated from the vector of stationary
probabilities are essential for interpretation of this
solution. Two parameters which measure different

*This characteristic should show considerable dependence on
the number of pages of core storage allotted to a user program.

aspects of the system response to a user are now
defined.

1. User busy fraction: The average frac­
tion of each interaction period that a
user is busy, that is, making a response.

The absolute value of this parameter depends on
the relative mean values of the user program pro­
cessor times and the individual user's mental and
physical response times. However it probably repre­
sents the average user's subjective evaluation of 1the
system.

2. User program response: The average
fraction of the total time a user pro­
gram is eligible to use system processors
(CPU and data channels) that it does
actually use them.

This parameter js a measure of the overall queueing
delays experienced by user programs. If there wlere
only one system user, this parameter value would
be 1.

A measure of the total useful system output IS

given by

or

3(a). Program throughput: The rate of
completion of user programs.

3(b). Interaction rate: The rate of comple-
tion of user interactions.

Finally, parameters indicating the fraction of time
various processors of the system are in use identify
capacity limitations.

A PARTICULAR APPLICATION

We now discuss the use of several variations of
the model proposed above ("Development of a
Queueing Model") for the analysis of a small spe­
cial-purpose time-sharing system.

The system corresponds to Fig. 1, and the ac­
companying description with the Tollowing restric­
tions. Memory modules A and B are the one unit
(a disc file) using the same data channel. The corc~ is
not operated on a paging scheme but it is segmented
on a coarse scale with hardware protection betwc~en
segments. Segments are assigned to individual user
programs and during execution these programs
generate, under executive control, I/O operations
with the disc file. These operations consist of the
transfer of fixed-size blocks of information and they
can be considered equivalent to page swaps in the
general model. There is only a small number of

TIME-SHARING COMPUTER SYSTEMS USING MARKOV MODELS 91

users so that in general each user program can be
assigned a segment of core memory which is not
reassigned during most of his interaction periods.
Most user programs will be executed repeatedly to
perform information storage and retrieval or com­
mand and control functions. These programs will
be loaded from the disc file as required.

The loading of a new user program in this system
corresponds to a file transfer in the general system.
Additional tables to be transferred in the loading
operation increase the time of use of the disc data
channel to an average of approximately two seconds
for the total loading operation. Fixed-size blocks
of information transferred in the swapping or over­
lay operations instigated by a user program have an
average transfer time of 150 milliseconds. As the
same data channel is in use for loading new pro­
grams and swapping operations the executive I/0
scheduling algorithm must resolve conflicts by pri­
ority. Two possible alternatives for the algorithm,
priority to loading operations and preemptive pri­
ority to swapping operations, were incorporated in
different models and their effect is illustrated in the
results.

The phases of program execution previously de­
fined have the same meaning in these models once
we equate file transfers to the loading of a new user
program. In each model we assumed that the dis­
tributions for the execution times in phases 1 2
and 3 were negative exponential with appropriat;
means. These assumptions give a degree of sim­
plicity to the models; however there is evidence7•8

that this type of distribution is to be found in prac­
tice. Two distributions with identical means were
used in different models to describe the execution
time for phase 4 (program loading). These were the
exponential and the second order Erlang. The
Erlang distribution has smaller variance than the
exponential and also gives very small probability of
short loading times. These characteristics were con­
sidered representative in describing the program
loading time for this system.

We now discuss the results from three queueing
models which correspond to Fig. 2 with the follow­
ing qualifications:

Modell: Exponential distribution for program
loading time, priority to program load­
ing operations for use of the disc file data
channel.

Model 2: Erlang distribution for program loading
time, priority to program loading opera­
tions for use of the disc file data channel.

Model 3: Erlang distribution for program loading
time, preemptive priority to swapping
operations for use of the disc file data
channel.

We will not discuss the state descriptions necessary
to incorporate these details in the mathematical
models.

RESULTS

Because of the essentially unchanging class of
user programs in this application it is convenient
to use the performance parameters given above
("Analysis and Interpretation of the Mathematical
Model") and defined on a per program basis. These
parameters are plotted in Figs. 3-7 as functions of
the number of users. All times have been normal­
ized to the mean transfer time involved in phase 2.
The system characteristics are defined below in
terms of the model parameters:

""2
1

""3
1

""4
!L
r

N

Mean CPU execution time (plus execu­
tive overhead) for a user program.

Mean block transfer time between disc
file and core memory.

Mean user response time.

Mean user program loading time.

Mean number of user interactions per
user program.

Mean number of block transfers per
user program.

Number of users.

Most of the results given are for model 3. Fig­
ure 7 and Table 1 include results from models 1
and 2 for comparison. All the general inferences
made from the model 3 results could also be made
from the results of the other models.

Figure 3 shows how performance is limited as
user programs generate increasing numbers of block
swapping operations. For these curves the mean

user program execution time is short (_1_ = 1),
,.,,\r

and hence the CPU is idle most of the time. When
each user program makes only light use of the disc

channel (~ ~ 5). we see that the user busy fraction

stays high for at least three users. Nevertheless the
user programs experience significant queueing de-

92 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

en
00::
ZW 0.8
~~
w::E
(!)~
~o::
en~
::>0..

::Ew
wen
I-Z

~~
en en

w
0::

0 I-
w::E::>
N~c:L
:::;0::::J:
~(!)(!)
:EO::>
0::0:: 0
00..0::
Z ~

° 5

4

3

2

user program. response
operator busy fraction
probability that disc channel is in use

(I) p/r ': 5
(2.) p/r ': 10
(3) p/r ': 20

(a)

(b)

Figure 3. System performance parameters from model 3 for
• I/Ill r = I, 1/1l2 = I, 1/1l3 = 20, I/1l4 = 15,

q/,. = 5.

lays (note user program response) since the increase
in the number of users causes the disc channel use
to rise noticeably.

When disc channel usage increases to p / r = 20,
the disc channel becomes saturated. With five users
it is in use 95% of the time, and the user busy
fraction drops from 0.73 for one user to 0.46 for
five users. The task program response curve indi­
cates the queueing delays ir.. the disc channel.

The program throughout is plotted in Fig. 3b
showing that for p/r = 5 and five users, programs
are completed at 4.7 times the rate when there is
only one user. The reason is that the dominant
factor in program completion rate is the user re­
sponse time and users can respond in parallel. How­
ever for pi r = 20, the program throughput is only
3.7 for five users; here queueing in the disc channel
is causing significant delays and the user response
time is no longer the dominant factor in the comple­
tion rate.

For the program statistics assumed in Fig. 3 the
CPU was not in use more than 5% of the time. In
Fig. 5 a contrasting set of statistics has belen chosen
in which the CPU capacity is now the performance
limit. User response time does not solely determine
the completion rate even when there is only a single
user of the system. Queueing delays for use of the
CPU become significant as soon as there! is more
than one user. Performance is fairly inse:nsitiv,e to
the range of disc channel usage chosen. Owing to
the saturation of the CPU, the program throughput
increases very little for more than three users, and
for five users the user busy fraction has been halved.
Note that the program throughput is slightly higher
for p/r = 20 than for p/r = 5. The higher fre­
quency of swapping operations for user programs
increases the number of phases of CPU execution
per program but reduces the average duration of
each phase. The net result is to reduce queweing
delays and thus improve the program throughput.

user prooram response
- - - -- user busy frac1ion
- - - - - user busy fraction (dynam'lc curve)
_. - probability that disc chanl'11el is in use

1.0 -----------------,

en
00::
ZW
~~
w::E
(!)~
~o::
en~
::>0..
::E wO.5
wen
I-Z
enO
>-0..
en en

w
0::

I-0
w::E::>
N~o..
:::;0::::J:
<I:(!)(!)
:!O::>
0::0:: 0
00..0::
Z ~

° 5

4

3

2

Figure 4.

2 3
N

4

(a)

(b)

5

System performance parameters for model 3 for
I/Illr = 25, I/1l2 = 1, I/1l3 = 20, I/1l4 = 15,
q/r = 5.

TIME-SHARING COMPUTER SYSTEMS USING MARKOV MODELS 93

In the discussion so far we have assumed that an
increase in the number of users does not affect the
number of swapping operations for each user pro­
gram. However if the amount of core storage allo­
cated to each user program is reduced as more users
are allowed to use the system, the mean number of
block transfers per user program p/r must,increase.
We can therefore treat the curves plotted for fixed
values of p/r as static performance parameters, and
to obtain the true performance parameters we must
use a dynamic operating characteristic which gives
p/r as a function of N. An example is shown in
Fig. 4 where a dynamic curve for user busy fraction
is plotted assuming the relationship between p/r
and N given by the following table:

N 1 3 4 5

p/r 5 10 20 40
The result is a much more rapid degrading in per­
formance with increasing N.

The aspects discussed have concerned the varia­
tion in system processor use and the resultant per-

--- user program response
- - -- - operator busy fraction
-- - probability that c.p.u. is in use
1.0..--------------:::1

I':-~- (a)
V)

00:: 0.8 <~~-(l) p/r =5 ZW
«~
w:E (2) p/r = 10
C)« (3) p/r = 20 «0:: 0.6
00«
::::>a.

:EW
WOO z
000

0.4
~a.
0000

UJ
0::

0.2

5
0
w:E::::> 4 (b) N«a.
:J0:::I:
«C)C) 3 3 :EO::::>
0::0:: 0 I oa.o:: 2
Z ~

II 2 3 4 5
N

Figure 5. System performance parameter from model
3 for I/J.l.lr = 75, I/J.l.2 = I, I/J.l.3 = 20,
I/J.l.4 = 15, q/r = 5.

formance obtained by each user with different
program statistics and a range in the number of
users. It is apparent that the user response time
in each iteration is a key factor in determining how
many ~onsoles can be serviced by this type of sys­
tem. The user responses envisaged for this system
are elementary so that the curves of Figs. 3, 4, and 5
correspond to rapid responses. If slower response
times were expected the performance parameters for
the same number of users would be considerably
changed. This is illustrated by the curves of Fig. 6
where the mean response time is 2.5 times that for
the other figures.

In Fig. 7 the same performance parameters are
plotted as a function of the number of users for two
sets of statistics. Two curves for each parameter are
given corresponding to models 2 and 3. The curves

user prooram response
user busy fraction
probability that c.p.u. IS in use
probability that disc channel
is in use

1.0~--r--_r----r------'

0.8

0.6 -

0.4 -

0.2 -
(I) I/fLlr=25
(2)1/fLl r = 75

(a)

(b)

Figure 6. System performance parameters from model 3 for
I/J.l.2 = 1, I/J.l.3 = 50, 1/J.l.4 = 15, q/r = 5, p/r =
20.

94 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

~ (0) (b)
lLI 1.0 ~-------------...., .-------------....
l&J
:E
«
0:: :.
llJ
(J)

z
0
Q.
(J)
llJ
0::

0
z
«
lLI
(!)
«
en
::>

:E
LaJ
CI)

>-en

0.8

0.6

0.4

0.2

2 :3
N

p/r=5

4 51

user program response
- - - - - user busy fraction

p/r = 20

---- probability that C.p.u. is in use
-_. -- probability that disc channel is in use

5

Figure 7. System performance parameters from models 2 and 3 for 1/ J.t I r = 25, 1/ J.t2 = 1, 1/ J.t3 = 20, 1/ J.t4 = 15, q / r = 5.

Table

1
- = 25,

1
- = 20, 15, !L = 5

J.llr J.l3 J.l4 r

Prob. CPU User Busy Probe Disc Channel is in Use

p/r N is in Use Fraction Program Loading Swapping

Modell Model 2 Modell Model 2 Modell Model 2 Modell Modd2

5 1 .172 .172 .689 .689 .103 .103 .035 .035
5 3 .447 .450 .597 .600 .264 .268 .089 .090
5 5 .626 .633 .502 .507 .370 .377 .125 .127

10 1 .167 .167 .667 .667 .100 .100 .067 .067
10 3 .423 .425 .565 .568 .251 .254 .169 .170
10 5 .584 .589 .468 .472 .346 .351 .234 .23.5

20 1 .156 .156 .625 .625 .094 .094 .125 .12.5
20 3 .387 .388 .515 .517 .228 .231 .310 .311
20 5 .522 .524 .416 .418 .308 .311 .418 .419

TIME-SHARING COMPUTER SYSTEMS USING MARKOV MODELS 95

show that the I/O strategy of model 3 (preemptive
priority to block swapping operations) gives better
performance for larger N. One would expect a sig­
nificant advantage to be given by this strategy when­
ever there is frequent use of the disc channel.

In Table 1 performance parameters derived from
models 1 and 2 with the same statistics are plotted.
The loading process has been modeled by an ex­
ponential distribution in model 1 and by a second
order Erlang distribution in model 2. For equal
mean values of these distributions it is seen that the
maximum difference in performance parameter
values is approximately 1 %. This indicates a good
degree of insensitivity of these performance param­
eters to loading time statistics other than the mean
value.

CONCLUSION

An example has been given of the use of Markov
models in the analysis of computer systems. With
sufficient statistics available on the user and pro­
gram characteristics, useful predictions on the sys­
tem performance and capacity could be made. The
curve for the dynamic operator busy fraction in
Fig. 4 illustrates the limitations involved in multi­
programming and the segmenting of programs. The
nonlinear increase in the amount of page swapping,
as the number of pages of core memory assigned
to a program is reduced, is not unrealistic. As the
effect on system performance is so marked it is sug­
gested that considerable care will have to be taken
in assigning a suitable working area of core to each
user program.

The general model proposed for the time-sharing
system of Fig. 1 involves approximations and as­
sumptions on the operation of such a system and the
probability of the service times. Experience to date
has indicated that, provided one is only interested
in mean value performance, liberal approximation

and lumping of processing functions may be made
in the modeling without changing the significant
results. However it is possible to develop a more
detailed and accurate mathematical model than that
of Fig. 2 which is still solvable by RQA. Significant
points which could be included are the interruption
of user programs at discrete time intervals, specific
representation of the executive program execution,
and the use of multiple processors.

This modeling technique presents a useful and
economic alternative to constructing general simu­
lation models in the analysis of time-sharing com­
puter systems.

REFERENCES

1. V. L. Wallace and R. S. Rosenberg, "Markov
Models for Numerical Analysis of Computer Sys­
tem Behavior," this volume.

2. T. Kilburn. et aI, "One-Level Storage System,"
IRE Trans. on Electronic Computers, Apr. 1962.

3. J. B. Dennis, "Segmentation and the Design of
Multiprogrammed Computer Systems," J. ACM,
vol. 12, no. 4 (Oct. 1965).

4. B. W. Arden et aI, "Program and Addressing
Structure in a Time Sharing Environment," to be
published.

5. P. M. Morse, Queues, Inventories and Main­
tenance, Wiley, New York, 1958.

6. A. L. Scherr, "An Analysis of Time Shared
Computer Systems," Doctoral Thesis, Department
of Electrical Engineering, MIT, June 1965.

7. E. G. Coffman and R. C. Wood, "Interarrival
Statistics for TSS," System Development Corpora­
tion Document SP-2161 (Aug. 1965).

8. D. W. Fife and J. L. Smith, "Transmission
Capacity of Disc Storage Systems with Concurrent
Arm Positioning," IEEE Trans. on Electronic Com­
puters, vol. EC-14, no. 4 (Aug. 1965).

AN OPTIMIZATION MODEL FOR TIME-SHARING *

Dennis W. Fife
Massachusetts Institute of Technology

Cambridge, Massachusetts

INTRODUCTION

The proper design of scheduling processes for
time-shared computers has provoked much dis­
cussion. One of the factors promoting discussion
is the great variety of scheduling procedures which
one can feasibly program, and which will operate
with adequate efficiency. There is wide latitude for
conjecturing possibly improved procedures. More­
over, the performance requirements of time-sharing
demand more sophisticated schemes than one can
analyze with simple queueing theory, yet it is not
feasible to experiment with many alternative pro­
cedures in operational systems and produce quan­
titative evidence of their relative merits.

The scheduling techniques in use today are of two
major types: round-robin procedures and multiple
priority level procedures. A round-robin process 1,2

treats the queue of users uniformly, giving each
program a "slice" of execution time and then swap­
ping it for another. This conforms to one intuitive
notion of time-sharing, inasmuch as each user may
obtain an equal share of computer time on a short,;.
term basis. Multiple priority schemes3 allow the
choice of a job for execution to be determined by

*This paper is based upon research performed at the Systems
Engineering Laboratory of the University of Michigan and sub­
mitted as a Ph.D dissertation in electrical engineering. The
author is grateful for financial support from the U.S. Air
Force Rome Air Development Center and the National Science
Foundation. Assistance in publication was also provided by
Project MAC at MIT.

97

its initial priority and the amount of execution time
it has received. Compared to the round-robin, the
priority procedure has greater flexibility inherent in
the choice of initial priority assignments and the
maximum execution time allocated to jobs of each
priority level. By a proper simplification, a multiple
priority scheme becomes a round-robin procedure.

The pioneers of the time-sharing field have experi­
mentally found successful versions of the above pro­
cedures for their particular systems. But the future
development of on-line computer systems will un­
doubtedly benefit from attempts to establish general
quantitative properties of scheduling schemes, in­
cluding ones which are not necessarily in current
use. A good approach to take for this objective is
to model the queueing situation resulting from a
proposed scheduling procedure. Even more de­
sirable however is an optimization technique which
will allow one to model a class of scheduling pro­
cedures, and which will systematically synthesize
an optimum procedure according to some specified
criterion. The importance of Markov stochastic
models in queueing theory suggests that the theory
of Markov sequential decision processes4--6 will pro­
vide the desired optimization model.

This paper describes some results produced by
this type of model for a time-shared computer with
four remote consoles and three queue levels for
user jobs. Swapping and program loading time are
included, and a rather general execution time dis­
tribution is treated. The optimal system has been
computed for two distinctly different performance

98 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

measures, both related to response time. Although,
a wide class of procedures is admissible, the optimal
systems have much the same structure as those used
in contemporary systems.

THE SYSTEM

The model concerns a hypothetical time-sharing
system typical of those currently in <?peration,
illustrated in Fig. 1. The mass memory is a large
capacity magnetic drum, and we assume its revolu­
tion time to be 50 msec. The main core memory
contains the Executive Control Program (ECP) for
the system and a memory area allocated to the user
program being executed. No multiprogramming is
involved, so only one user program resides in core
at any time. The user area is also taken to be of
modest size, say 8000 words, allowing a user core
image to be stored in one drum field. Thus swap­
ping of two user programs can be accomplished in
100 msec minimum. In order to also accomodate
ECP scheduling overhead we extend the swapping
time to 150 msec.

The real time clock provides an interrupt every
50 msec, equal to the drum revolution time. In
order to measure the passage of an arbitrary time
interval, a timekeeping function is part of the ECP,
and this activity occurs in response to every clock
interrupt. A clock interrupt may also initiate the
scheduling operation, as shown in Fig. 2. Because
of this, the scheduling process involves discrete time

Remote
Console 1

~ Telephone Lines

•

• • Communication •
• Interface

...
• •

""

•

Remote ...
Console 4

.

steps, with a scheduling action possible occurring at
any 50-msec step.

Two important conventions will be imposed on
system operation. A user console may only have
one command in process at any time. Also, every
command must be initiated from a user console,
thereby excluding one job from initiating another.
As a result, the system may have at most four user
jobs in process. The completion of any command
marks the beginning of a user reaction time, after
which another command arrives from the console.

One can conceive at this point of a very genc~ral
scheduling procedure in which each decision re­
quires a dual choice:

1. Selection of a job from queue to be
executed.

2. Selection of a maximum time intt~rval

for execution of the job before return­
ing it to queue.

The decision at any time could be based upon a
variety of data, such as the accomplished execution
time of jobs in queue, the size of job programs,
the originating consoles, and the time at the deci­
sion point. We will only investigate a ';'contc~xt­

free" case, in which jobs in queue are distinguish­
able only on the basis of the execution time each has
already received and their time of arrival. More­
over, in keeping with the simplicity of existing
systems, the allowable execution time intervals: in
(2) above will be restricted to three values in such a

Main Central .
Memory

...
Processor

. ~ ~

Clock Interrupt

, ,
Mass

Memory Clock

Figure 1. Equipment organization.

AN OPTIMIZATION MODEL FOR TIME-SHARING 99

Type of
Interrupt or Exit

Command Enter in
---p

Input Interpret Queue
-"" the p

Character * Character ... Move to

User Data User Buffer

Clock Interrupt .~ Advance

~ No

Job?
Elapsed

Up?
Time

Exit Yes Yes
Return

from

Currently Program to - . _ ..
Terminate Executing Data Request*'

Program Error
Job Execution
at Schedule a

Next Clock .. Load Next Successful ...
-- Interrupt User Program

Completion f Buffer Full

Program Move

to Output ..
Output* Buffer Buffer Not Full

*Typewriter
Input-Output

Figure 2. Executive control functions.

N.w
arrivals

Head - of -I i ne .election

Return to end - of - line

Completed
jobs depart

Completed
jobs

Completed
jobs

Figure 3. Multiple queue structure of the system.

way as to establish three queues as shown in Fig. 3.
In this scheme only one job is executed at a time.

This structure is very similar to that in multiple
priority procedures. But additional flexibility comes

about because we may choose to serve a job from
any queue that is occupied. There is no restriction
on the choice, such as a priority ranking would
impose. The choice can depend upon the number
of jobs in each queue and will of course be in­
fluenced by the specified values for the maximum
execution intervals, e2, e3 - e2, and q. The model
allows us to determine the optimum choice relative
to a specified measure of performance, and to in­
vestigate optimal values of e2, e3, and q.

MEASURES OF PERFORMANCE

The quality of performance which users observe
for a time-sharing system depends upon many
factors. Reliability and ease of communication via­
suitable high-level languages are important ex­
amples of such factors. A queueing and scheduling
study, however, emphasizes queueing delay as a
performance factor. In doing so, one should recog­
nize that the population of users generally consists
of "interactive" and "background" users, where the
distinction is loosely established by the average

100 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

amount of processor time per request. It seems
clear that interactive users are usually more sensitive
to delay, and constitute the more significant portion
of the user population for a well-developed time­
sharing system. Thus, without implying scorn for
the performance requirements of background users,
we will concentrate on the response time per­
formance for interactive users.

Two quantitative measures of response time per­
formance are of interest here. For the first we con­
sider the system performance over any period of
time to be measured by the sum of the intervals for
all user jobs in that period. An improvement of
response time performance can be achieved by seek­
ing a scheduling procedure wh:ch minimizes this
sum. Recognizing that job arrivals and completions
are random, and taking an arbitrarily long period
of time this optimization criterion becomes equiv­
alent to minimizing the average number of user jobs
in process at any instant of time.

The second optimization criterion arises from the
realiiation that the minimum response time to any
command is its execution time, and a user who re­
quests a long computation must, by his own choice,
be satisfied with a correspondingly long response
time. Thus, for example, 0.5 sec additional delay
on ajob taking a minimum of 3 sec to do should not
be as degrading to performance as the same addi­
tional delay on a 10-msec job. This reasoning sug­
gests measuring system performance by a weighted
sum of the :response times for all jobs over some
time period, where the weight applied to the re­
sponse time of a job depends upon its execution

1.0

4D
E
~ 0.8
4D
en
c
o
Q.

: 0.6 .. -o -
~ 0.4 ..
4D
Q. -~ 0.2
'iI
~

O~ ____ L-____ L-____ ~ ____ ~ ____ ~~~

o 2 3 4 5 6
Execution time in seconds

Figure 4. Weighting function for the second optimization
criterion.

time. Figure 4 depicts one weighting function which
we have used to explore this case. Note that the
first ment~oned measure of performance corre­
sponds to a unit weight for any value of execution
time. The second optimization criterion therefore
amounts to minimizing the average total weighted
response time to user commands in any long time
period of system operation. Table 1 summarizes the
two criteria.

Table 1. Optimization Criteria

No. Statement

Minimize average total response time for all
user commands in a period of system
operation.

2 Minimize average total response time for all
user commands, each weighted :according
to Fig. 4,over a period of system oper­
ation.

MODELING

As one should anticipate, modeling of the tiime­
shared system as a Markov sequential decision
process depends upon certain idealizations. Among
these is the assumption that the user reacltion time,
lu, and the execution time per command, Ie, are
independent random variables. These time: intervals
are the human time and the central processor tilme,
respectively, in a man-machine interaction. The
probability distributions treated are the following:

Probability of lu ~ T = 1 - e- T/ Tu (1)

where Tu is the mean value of lu, an~

Probability of Ie ~ T = 1 - 'Yle-p,T - 'Y2e-p·T (2)

where J.i.l and J.i.2 are positive, and 1'1 and 1'2 are
probabilities with unit sum. The mean lexecultion
time is Te = l' I/J.i. 1 + 'Yl/1.L2' Equation (2) is called
a hyperexponential distribution (Ref. 7, p. 19), and
its use stems from some observations of execution
time on the batch-processing operation of the Com­
puting Center at the University of Michigan.s In
Fig. 5 some points are given from these ba1tch­
processing observations, as well as two curves de­
rived from Eq. (2) by different choices of the param­
eters. One sees that the observations could be fitted
fairly well by a suitable member of the family rep­
resented by Eq. (2). We will concentrate on curves
1 and 2 of Fig. 5 as representative members of this
family.

AN OPTIMIZATION MODEL FOR TIME-SHARING 101

1.0

I- 0.8
VI

_til

:0
o
.0
o
a':

Figure 5.

2
TITe

~----- 0

o Observation from
U. of M. Batch

Procenino
System

3

Execution time distributions.

Both distributions (1) and (2) above seem reason­
able, but there is little data available to irrefutably
justify them. Our batch-processing observations
certainly provide some evidence supporting the
general shape of the distribution for execution time.
Also, there has been some statistical data from the
MIT system 9 which indicates these idealizations are
good approximations, as are the particular system
parameter values we will use (see Table 2).

In addition we take constant values for both the
swapping time, s, and the set-up time, S. The latter
is the CPU time spent in initial relocation and link­
ing of subroutines for a command. The ECP over­
.head occurring between successive scheduling deci­
sions is neglected.

Based upon these assumptions and the physical
properties of the system one can proceed to formu­
late a Markov model and derive the data needed
for the optimization algorithm devised by Howard5

and Jewell.6 Such data includes probabilities on the
command arrivals and the job completion during an
execution pass, and the mean time durations be­
tween successive scheduling decisions. Also in-

. volved are quantities which measure the per­
formance during an execution pass as determined
by the optimization criterion of interest. A full
discussion of the formulation of the model and how
the necessary data are derived is beyond the scope
of this paper. The interested reader should consult
the references and the full report from which this
paper is drawn. lO

OPTIMAL SCHEDULING

The alternative choices of the queue to be served
for each combination of numbers of jobs in the
queues give rise to well over one billion different

. scheduling procedures for this system. Included in
this number are the first-come, first-served pro­
cedure (FCFS), and the six priority procedures
possible with this system. Among the latter, our
results point especially to the "1-3-2 Priority,"
which assigns priorities 1, 3, and 2 to Queue 1,
Queue 2, and Queue 3, respectively. (Priority 1 is
top priority.) The optimization computation de­
termines an optimal procedure from the admissible
set for a given set of values of the system parameters
listed in Table 2. The computation is fast enough,
however, so that we have economically obtained
solutions and general conclusions for the range of
parameter values shown. These may hold for even
wider variation of the parameters.

Table 2. System Parameters

Appropriate
Symbol Definition Values

Tu Mean user reaction time 20-30 sec
Te Mean execution time per 1-4 sec

interaction
s Swap time 150 msec
S Setup time for relocation 1 sec or less

and subroutine linking
e2, Execution time alloca- Arbitrary,

e3 - e2, tions subject to
and q modeling

limitations

To begin the discussion, consider the first optimi­
zation criterion. The execution time distribution
shown in Fig. 5 as curve 1, although not as ap­
propriate as curve 2 perhaps, produces a rather
interesting result. The optimal procedure is first­
come, first-served for all parameter values. This
makes sense intuitively, for FCFS avoids swapping
time. Moreover, with this execution time distribu­
tion FCFS is always processing a job having min­
imum mean execution time to completion.

For the execution time distribution given by curve
2, one must consider both the optimal procedure
and the optimal values for e2, e3, and q. The min­
imum value of e3 permitted by the Markov model is
1.5 Te, and any larger value gives poorer per­
formance. A smaller value of e3 is therefore likely
to further improve performance. Subject to this
limitation, optimization of the model indicates that
the optimum procedure is 1-3-2 Priority and
optimal values of e2 and q are Te and one clock
interval (50 msec), respectively. This holds for

102 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Table 3. Average Total Queue for
Optimal Scheduling with Criterion 1

Optimal Aver.
Tu Te S e2 e3 q Policy Queue

\Seconds Priority:
30 4 0 0.6 6 0.05 1-3-2 0.8l31
30 4 0 3.5 6 0.05 1-3-2 0.6691
30 4 0 4.0 6 0.05 1-3-2 0.6671
30 4 0 4.25 6 0.05 1-3-2 0.6690
30 4 0 4.0 6 0.50 1-3-2 0.6725
20 1 1 0.50 1.5 0.05 1-3-2 0.4893
20 1 1 1.0 1.5 0.05 1-3-2 0.4853
20 1 1 1.45 1.5 0.05 1-3-2 0.4862
20 1 5 1.0 1.5 0.05 FCFS 1.402

values of S not exceeding Te. Table 3 gives the com­
puted average total queue of jobs for typical cases.
The minimum queue occurs for the optimal values
of e2 and q.

Now consider the second optimization criterion.
The minimum value of e3 permitted by the model is
the larger of 1.5 Te and 4 sec, the latter arising from
a need to have constant weight for jobs taking
longer execution than e3 (see Fig. 4). Although this
limitation has some effect, it is still surprising that
the optimal system is much the same as for the first
criterion. Moreover, the optimal system is the same
for both execution time distributions (I) and (2) of
Fig. 5, in contrast to the case of the first criterion.
Table 4 shows typical values of the computed per­
formance measure over a one-unit (50-msec) time
interval.

Table 4. Average Unit Time Performance Measure
for Optimal Scheduling with Criterion 2

seconds
30 4 0 2
30 4 0 3
30 4 0 4
30 4 0 3
30 1 1 0.50
30 1 1 1.5
30 1 1 2.0
30 1 1 1.0

Optimal
e3 q Policy

Priority:
6 0.05 1-3-2
6 0.05 1-3-2
6 0.05 1-3-2
6 0.50 1-3-2
4 0.05 1-2-3
4 0.05 1-3-2
4 0.05 1-3-2
4 0.50 1-2-3

Aver.
Unit Time

Performance

0.0806
0.0782
0.0788
0.0821
0.1592
0.15~
0.15 5
0.1599

Several important points emerge from the optimi.
zation of the model. The optimal system is sub­
stantially insensitive to the precise values of the
system parameters. This makes it feasible to apply

the results of the model to a physical system, where
parameters are not known exactly and may change
gradually. The fact that all optimal procedures are
priority procedures is noteworthy both in regard to
simplicity of implementation and the current prac­
tice in time-shared systems. The emphasis upon a
minimum execution time allocation for the third
queue indicates a need for very rapid preemption of
low priority jobs. This is a contribution, for ap­
parently no existing system allows preemption
except after a significant delay.

This study leads us to suggest a scheduling pro­
cedure which should produce somewhat better per­
formance than those considered here. The system
would have two priority levels, with new jobs enlter­
ing the first priority queue. A first priority job
would preempt a lower priority job one clock inter­
val after the former's arrival, and would then rec:eive
execution for a maximum time equal to Tn the
mean execution time of the population. After this it
would be relegated to second priority. The lower
queue would be served round-robin with an execu­
tion quantum much larger than Te.

COMPARISON OF PROCEDURES

A much better picture of the performance of the
optimal system can be obtained from the mean
response time of a command, given the execution
time required. Table 5 describes the optimal system
and three other scheduling policies used in existing
systems. The round-robin procedure is ~~ssentially
a 2-1-3 Priority system, which places new arrivals at
the head of the round-robin queue. FigufC!s 6 and 7

Table 5. Scheduling Policies for Comparison

Policy Type e2 e3 q

Fig. 6 Cases:
Priority: seconds

Round-
Robin 2-1-3 6.01 6.0

Priority A 1-2-3 2.0 6.01 8.0
Priority B 1-2-3 2.0 6.01 2.0
Optimum 1-3-2 4.0 6.0 0.05
Fig. 7 Cases:
Round-

Robin 2-1-3 1.5 1.5
Priority A 1-2-3 0.5 1.5 2.0
Priority B 1-2-3 0.5 1.5 0.5
Optimum 1-3-2 1.0 1.5 0.05

AN OPTIMIZATION MODEL FOR TIME-SHARING 103

22

20

18
U
Q)
en
I 16

Q)

E
:;:
Q) 14
en
c:
0
Q.
en 12 ~

'0
c: 10 0
:;:
.E
0

8 Q)
Q.
)(

LaJ

6

4

2

0
0

Figure 6.

u
CD
(/)

I

5.

CD 4.

:E
CD
(/)

g 3.
a.
(/)

f
'0 2 .
c
o
:g
U
~ I.
)(

w

o

2
Required

:3 4

'(50.5 sec.)

(48.7 sec.)

(49.0 sec.)
(52.8 sec.)

!
Expectation of response
time for jobs over
6 sec. duration

5 6
execution time - sec.

Response time vs execution time for distribution
(2), Tu = 20 sec, Te = 4 sec, S = O.

i 12.2 sec)

(12.1 sec.)
U2.9 sec.)

(12.1 sec.)

,/
Expectation of response
time for jobs over
1.5 sec. duration

Required execution time-sec.

Figure 7. Response time vs execution time for distribution
(2), Tu = 20 sec, Te = 1 sec, S = 1 sec.

compare the mean response time for these policies.
One can see that the optimal system achieves a
smaller response time for trivial computations at a

cost of larger response time for jobs requiring exe­
cution time Te or greater. The other policies ex­
perience a large jump in response time at an execu­
tion time of 1.5 Te , so this aspect of the optimal
system should not be disturbing.

CONCLUSIONS

The optimization approach we have used is quite
new for systems with queues, and the practical re­
sults one can obtain commend it for future studies.

The time-shared computer system we have
modeled is quite typical of existing systems. Three
noteworthy conclusions relative to time-sharing
practice have been found. To begin, it makes no
substantial difference under the performance meas­
ure we have treated whether or not one gives extra
importance ·to the response time of trivial compu­
tations. The optimal system, subject to the limita­
tions of the model, is a multiple priority scheme
and is reasonably insensitive. to the values of the
system parameters. There is a need for more rapid
preemption of lower priority jobs than presently
used in operational systems.

Our results suggest a two-priority scheme where
new arrivals are given first priority and are relegated
to second priority after receiving the mean execution
time. A new arrival should preempt a lower priority
job as soon as possible. There is a need to study
multiple Pl \ority schemes with more levels, and with
greater flexibility in execution time allocations than
we have treated.

REFERENCES

1. S. Boilen et aI, "A Time-Sharing Debugging
System for a Small Computer," Proc. SJCC, 1963,
pp.51-57.

2. J. Schwartz et aI, "A General Purpose Time­
Sharing System," ibid, 1964, pp. 397-411.

3.F. Corbat6 et aI, "An Experimental Time­
Sharing System," ibid, 1962, pp. 335-334.

4. R. Howard, Dynamic Programming and
Markov Chains, MIT Press, Cambridge, Mass.,
1960.

). --, "Semi-Markovian Control System,"
Tech. Report No.3, Contract Nonr-1841 (87),
Operations Research Center, MIT, Cambridge,
Mass.

6. W. S. Jewell, "Markov-Renewal Program-

104 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

ming," Operations Research, vo1. 11, 938-971
(1963).

7. P. M. Morse, Queues, Inventories and Main­
tenance, Wiley and Sons, New York, 1958.

8. E. Walter and V. Wallace, "Further Analysis
of a Computing Center Environment," Systems
Engineering Laboratory Tech. Report, University
of Michigan, Ann Arbor, to be published.

9. A. L. Scherr, "An Analysis of Time-Shared
Computer Systems," Project MAC.-TR-18, lMIT,
Cambridge, Mass (June 1965).

10. D. W. Fife, "The Optimal Control of Queues,
with Application to Computer Systems," Cooley
Electronics Laboratory Tech. Report No. 170, Uni­
versity of Michigan, Ann Arbor (Nov. 1965).

A DIGITAL SYSTEM FOR ON-LINE STUDIES OF
DYNAMICAL SYSTEMS

T. C. Bartee
Harvard University,

Cambridge, Massachusetts
and

J. B. Lewis
Lincoln Laboratory, * Massachusetts Institute of Technology

Lexington, Massachusetts

INTRODUCTION

The study of dynamical systems with the aid of
analog and digital computers has developed rapidly
in the past two decades. Increased interest in sys­
tems described by differential equations which are
nonlinear or have time-varying coefficients, has re­
sulted in more reliance on techniques requiring
on-line computation. Usually less is known a priori
of how the solutions will develop or what param­
eter values or initial conditions should be used. The
recent trend to using hybrid computers (combina­
tions of digital and analog equipment) has been
motivated by the desire to study complex dynamical
systems with computer configurations which are
designed with particular classes of problems in
mind. Extensive use· of display, plotting, and print­
ing equipment as well as elaborate consoles attest
the on-line capability of such computers.

Designing a computer for the on-line study of
dynamical systems involves many factors, but
among others, speed, accuracy, cost, and user
convenience are particularly important. The system
described here has emphasized user convenience so

*Operated with support from the U.S. Air Force.

105

that experimental or "trial and error" computa­
tional methods are encouraged. An accuracy of
0.1% to 0.01% was considered adequate, and the
speed (as measured by ability to solve problems in
real tim(~) is roughly equal to the fastest commercial
digital computers. Although many modern analog
computers are considerably faster in solving systems
of ordinary differential equations, and much greater
accuracy can be obtained on digital computers, this
compromise still allows the study of many problems
of great interest. The system is a laboratory experi­
mental model rather than a production prototype,
and the cost was kept low by using many com­
ponents which were on hand. The added cost to the
large time-shared system, of which it is a part, was
relatively small.

The basic computer configuration is similar to
many hybrid computers in that it includes a general­
purpose digital computer and a special-purpose
computer which is largely a collection of integrators.
Most frequently, the special-purpose computer in
a hybrid is a high-speed analog computer that meets
the need for real-time simulation. In the system
discussed here, the special-purpose computer is a
high-speed digital differential analyzer (DDA)­
a collection of digital summers which approximate

106 PROCEEDINGS-SPRING JOINT COMPUTER· CONFERENCE, 1966

integration. (See Ref. 7 also.) One great con­
venience to the user results from the fact that the
interconnection of the integrators is specified as part
of the 86-bit words that describe the integrators.
Thus, a patch board is not needed, and as a result,
it is possible to write programs for a general­
purpose computer to set up the DDA. It is the
combination of hardware, which allows rapid,
program-controlled changes in interconnection, and
software, which translates a problem statement into
interconnection information, that makes this system
quite attractive. High-speed operation is important
in reducing reaction time, and flexible controls that
allow start/stop, display, sampling, and repetition
are other notable features.

The interconnection of the small general-purpose
digital computer, the LINe, and the DDA is de­
scribed in the next section. The setup of the DDA
is done by transferring information from the LINe
core memory to the DDA core memory. The in­
formation in the LINe core memory is obtained by
transfer from a large time-shared computer in which
a mapping and scaling program operates. At pres­
ent, interconnection to the Project MAe computer
over a teletype line has been made, and connection
to the Lincoln Laboratory IBM 360 System will be
completed soon. The mapping and scaling can be
done manually for simple problems and the results
inserted directly into the LINe core memory. The
operation of the system is described in a later sec­
tion; an important feature is the special combination
of LINe and DDA which the user may operate in
an experimental fashion with less concern for the
usual high charges for time on a large central
processor. The large processor is used only when it
is necessary to map or scale.

A HIGH-SPEED DIGITAL DIFFERENTIAL
ANALYZER

Basic DDA Algorithms and Other Features

The design of early DDA's was centered about
the use of magnetic drums, these being memory
devices of reasonable cost with a serial operation
which was especially attractive in the processing of a
set of DDA integrators. The development of core
memories of modest price with cycle times in the
I-microsecond region provides the designer with the
possibility of making a DDA with a much higher
speed and at quite reasonable costs.

A DDA in which a core memory is used requires
a structure different from the usual one. In addi-

tion, when one desires to connect a general-purpose
machine in a reasonable way, and in particular, to
organize the DDA so that the general-purpose
machine easily can load (or change) the intercon­
nections of the integrators, the starting and intl;::r­
mediate values in the integrators, the scale factors,
and so forth, a different organization becomes
attractive. Each word in the memory stores the in­
formation concerning a single integrator, and all
operations for updating an integrator are pe:rformed
using parallel arithmetic.

Before proceeding with the organization of the
machine, let us briefly examine the integrator algo­
rithm and number system selected. These date back
to MADDIDA, and (to the best of our knowledge)
were the work of I. S. Reed. Each integrator in the
system consists of a single word in the core memory.
Variables in the system are represented by 24 binary
bits including sign. The number system used is a
2's complement system with sign bit comple:ment(!d.
For 4-bit numbers, the number representatiion is as
shown below:

1111 +7
1110 +6
1101 +5
1100 = +4
1011 +3
1010 = +2
1001 = +1
1000 = 0

0111 = -1
0110 = -2
0101 -3
0100 -4
0011 -5
0010 -6
0001 -7
0000 = -8

Each integrator realizes the relation

dz = Cydx (1)

where C is a constant, dz an "output increment,"
and dx an "input increment," and y the integrand.

The definite integral of the above relation is

z(x) = z(xo) + C jX y('Y) dx(1') (2)
xo

This definite integral is approximated by a sum.
The interval ('Yo, 'Y) is divided into n subintervals of
length A'Y so that i"k = 'Yo + kA'Y, and we choose
Xo = x('Yo) and x = x(i"). Therefore,

n

z(x) = z(xo) + C L: Y('Yk) AX('Yk) + ~n
k .. !

where

and

A DIGITAL SYSTEM FOR ON-LINE STUDIES OF DYNAMICAL SYSTEMS 107

and En is an approximation error. Finally, letting
Y(I'k) Llx(I'd = ~z(I'k), the result is

n

z(x) = z(xo) + C L ~z(I'k) + En (3)
k=!

where fn is again an error term.
This mathematical representation shows that the

DDA performs incremental computations rather
than full-word operations, and the approximation
to integration is usually called rectangular integra­
tion. As shown below, the computations are fixed­
point, so that scaling is very important. Finally, it
should be noted that the DDA solves initial-value
problems.

Let us now consider a part of an integrator regis­
ter. An integrator register can be looked upon as a
"black box" with two inputs, dx and dy, an output
dz, and a stored value y, such that relation (1) above
is approximated.

In this machine there are 256 integrators which
are sequentially updated. Each integrator is in
reality a word in the core memory consisting of
24-bit R-register and a 24-bit Y-register, plus in­
formation as to which outputs from the other inte­
grators comprise the dy and dx inputs to the inte­
grator. There is also other information in each,
word, and this is discussed in the following section.
Figure 1 is a block diagram of an integrator.

a. Symbol for a Single Integrator

DX~DZ
L-To;'

b. Operations In a Single Integrator

Figure 1. Block diagram of DDA integrator.

The Y-register part of each word contains values
of the variable y. Provision is made so that the
Y-register can be added to or subtracted from the
R-register, and this is controlled by the dx input,
which is a one-bit input that we call ~X ..

The overflow or carry from the most significant
bit of R (each time Y is added to R) is called ~Z,
and it has value + 1 if an overflow of R occurs and
- 1 if no overflow occurs.

The dy input is actually a sum of the outputs (or
~Z's) from up to 16 other integrators. We call this
sum ~ Y and the particular ~Z's which are added
together to form ~ Yare selected in a manner which
is descri bed later.

The LlZ's from each integrator are stored in a
circular shift register of 256 flip-flops. Each position
in the shift register corresponds to an address in
the memory .. The integrators are processed or up­
dated starting with the integrator at address 1 in the
memory proceeding through the integrators until all
those that are being used have been updated; then
the integrator at location 1 is again updated fol­
lowed by the others. The core memory is a split­
cycle memory requiring 0.75J.,Lsec fpr each half-cycle
so that it takes 1.5J.,Lsec to update a single integrator.
A problem with 16 integrators would then require
24J.,Lsec for a single iteration or updating of all
integrators.

During each updating of an integrator the follow­
ing operations occur (see Figs. 1 and 2):

1. The ~Z's in the shift register, the sum
of which comprise the ~ Y for the inte-

Clock Pulses: I
(4Mc) 0

Read/Write:

Transfers:

Operations: I I
~Y8el

~ith Cycle----+

I I I I I I I I I I I I I I
3 450 1 2 3 • 5 0 I 234

MBR
.....
W

I

R

W Q
-) -)

Q MBR

Y+AY Rover

-+ ~
y ~Z

Figure 2. Timing for processing the Ith integrator. The Ll Y"
bits for the Ith integrator are stored in the (I - 1)th
word.

108 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

grator being updated, are selected and
added together and stored in five flip­
flops.

2. The AX input is selected from the AZ
shift register and stored in a flip-flop.

3. The value of AY is added to the current
value of Y.

4. The new value of Y is multiplied by AX
and this is added to R. The value of the
overflow from R is then stored in the
appropriate location in the AZ shift
register.

Proof that this algorithm will yield a system in
which the integrators approximate the relation given
earlier may be found in Ref. l. Other DDA's are
described in Refs. 2, 3,4, and 8.

A servo mode of operation for the integrators
also is included, in which, instead of using the over­
flow from R as the value to be placed in the AZ
shift register, the sign of y is placed in AZ each
time. This makes it possible to obtain an increment
which approximates a sum of increments. A bit in
each integrator word tells the control whether servo
mode or conventional mode is to be used with a
particular integrator.

It is also possible to invert or· complement the
AZ output from a given integrator. A bit in each
integrator word tells whether or not the overflow
from R (or sign of Y in the servo mode) is to be
complemented before being stored in the AZ shift
register.

Description of Machine Organization

The basic difference between this DDA and
others which have been constructed to date is that
each integrator carries with it information as to
which of the other integrators comprise the AY and
AX inputs. Also, complete information is provided
as to whether it is to be us·ed as an integrator or in
the servo mode, whether or not it should be sam­
pled, and so forth. As a result, each word in the
core memory contains 86 bits.

Figure 3 shows a simplified block diagram of the
DDA. Each time an integrator is to be updated,
it is selected and read into the memory buffer regis­
ter, which is a part of the memory. The integrator
word is then transferred into the W register. The
parts of each 86-bit word are as follows:

1. R is the remainder, or running sum, as ex­
plained previously; 24 bits are used for R.

2. Y contains the current value of the variable y

INDEX

~
~"'E"'ORY AODR"~S

CONTROL COUNTI:RS
881TS

- ---

Figure 3. Block diagram of DDA.

as explained in the previous section; 24 bits are used
for Y.

3. AXs contains 9 binary bits, 8 of these are used
to select the value of AX from the 256-bit tJ,Z regis­
ter, or an independent increment, AT, is selected
by the 9th bit.

4. A Ys contains 18 bits. This part of the register
is used to select the A Y-inputs to be added to Y.
The selection can be made in three ways, and 2 bits
of t~e register tell which way A Ys is to be uSI~d. The
possibilities are:

a) AYs may be used as a linear mask:; in
which case, the 16 selection bits of d Ys

are simply placed over the AZ register
with the 8th bit on the AZ from the c:ur­
rent integrator. If a given bit in AYs is
aI, the corresponding AZ is selected to
be added into A Y; if the bit is a 0, the
corresponding AZ is not added into
AY.

b) The first 8 of the selection bits of L~ Ys

can be used to select a single AZ to be
added to Y. Anyone of the 256 AZ's
can be selected in this manner.

c) The first 8 selection bits of A Ys can be
used to select a AZ and the second
8 bits to select another AZ, so that .1 Y
will be the sum of these two selected
AZ's.

5. D consists of two bits and tells the display
equipment whether or not the current value of Y is

A DIGITAL SYSTEM FOR ON-LINE STUDIES OF DYNAMICAL SYSTEMS 109

to be displayed on the oscilloscope; and if it is to be
displayed, whether it should be used to deflect along
the X or Y axis of the scope.

6. E is a I-bit register that tells whether or not
the Y-value of the integrator should be given to the
LINe computer for examination. The frequency at
which the integrators are to be examined by the
LINe computer is loaded into the DDA as the
number of iterations to be performed between each
examination. Only those registers which have 1 's
in their E-position will have their Y-values trans­
ferred to the LINe computer. At this time, the
system also can change values in the Y-registers.
This enables the user to introduce step functions or
other functions and also to check on current pro­
grams, record data, or display it when required.

7. S contains 5 bits and is used to give the scale
factor that determines the length of the Y and R
registers for the integrator. S determines which
carry or overflow from the added stages is examined
to form IlZ for a given integrator.

8. M consists of two mode bits. One bit indicates
whether the integrator is to operate in normal or
servo mode. The second indicates that the program­
mer wishes to stop the DDA if C(Y) = O.

9. IlZsign is a bit which indicates whether the IlZ
output is to be complemented.

The use of Il Y", as a linear selector permits up to
16 IlZ inputs to a single integrator i, but these
must be within the interval (i - 7, i + 8). A study of
the problem of interconnecting integrators with
this capability revealed that while most problems
could be mapped by adding "dummy" integrators,
it made the actual number of integrators in use in
some cases unreasonably large. The addition of an
optional selection mode allowing either one or two
IlZ's from among any of the 256 integrators allevi­
ated this problem and greatly increased the apparent
capacity of the DDA.

In setting up a problem, the LINe computer must
give the DDA certain information in addition to
that in the integrator. For instance, the number of
integrators to be used is first entered into DDA
circuitry. The machine is constructed so that the
number of integrators processed is determined by
this number. Integrators are processed in sequence,
and one can use 16, 32, 48, ... , or 256 integrators
in a problem. Thus for small problems only 16 inte­
grators are processed each cycle of the machine,
requiring only 24JLsec. HoWeVer'qor a IOO-integra­
tor problem, 112 integrators wo ld be processed
each cycle and a single updating ould require 168

JLsec. Any unused integrators in these groups are
processed, but no harm results except a slight loss in
speed of operation. The LINe also loads a counter
with the number of iterations or passes through the
integrators which are to be made. The DDA will
then stop after having performed the required num­
ber of iterations. Finally, the LINe loads the num­
ber of iterations between samples into the DDA.
The sampling rate is determined by this. If the
LINe loads the number N into the DDA, after each
N iterations the DDA will pause on each integrator
having a I in the E bit and transfer the contents
(Y-register) of this integrator to the LINe. The
LINe program examines each of the selected inte­
grators in turn, and the value in each of the integra­
tors also may be changed.

In order to use the memory efficiently, a split­
cycle memory is used, and the integrators are not
processed in a direct line. When the word associ­
ated with an integrator is called, and the memory
delivers the word, there is not enough time to pro­
cess the integrator and write the results back into
the memory without a delay. We therefore process
integrator i while writing the word for i-I into
memory and reading i + I from memory. This is
possible since an extra buffer, the Q-register, is in­
cluded in addition to the W-register and the mem­
ory buffer register (MBR). Three transfers are in­
volved: MBR to W, W to Q, and Q to MBR.
Figure 2 illustrates the timing of the combined pro­
cessing of i, the writing of i-I, and the reading of
i + 1 during a I.5-JLsec cycle.

A cause for interruption of the processing of the
integrators is the overflow of a Y-register. The
contents of a given Y-register can exceed the capac­
ity of the (scaled) register in either a positive or a
negative direction, and each Y-register is checked
before and after the Il Y is added to see if overflow
has occurred. If this happens, the DDA transfers
this information to the LINe.

Finally, a stop on a zero crossing, (i.e., C(Y) = 0)
can be programmed so that some decision capabil­
ity is included. This allows the user to stop the
DDA when certain dependent variables reach
selected values.

METHOD OF USING THE SYSTEM

The basic input to the system that the user must
supply is very much like the usual format used in
the study of ordinary differential equations. The
user must have his equation in first-order normal

110 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

form. After calling the mapping program, he first
enters his equations. For example, if the original
equation is

let
ij- qq - sin q = 0

sin q

q2 cos q

q3 = q

and dq) = cos q dq

dq2 = -sin q dq

dq3 = dq = ijdt

(4)

q4 = q dq4 = dij = ijdt (S)

and the required form is then

dq) = q2dq3

dq2 = -q)dq3

dq3 = q4dt

dq4 = q3q4dt + q) dt

This information is types as

DQ1 = Q2*DQ3

DQ2 = -Q1 *DQ3

DQ3 Q4*DT

DQ4 = Q3*Q4*DT + Q1 *DT

(6)

(7)

and the mapping program then generates a map.
Although a number of arbitrary rules are used in
the mapping, test problems and recent experience
indicate that the program generates maps which are
almost as efficient as those done manually in very
simple problems. In complex cases, maps that
would be quite time-consuming if done manually
are generated in several seconds.5

The interconnection table that is generated by the
mapping program is next used as an input to the
scaling program. The user also must supply an
estimate of the maximum magnitude of each vari­
able, i.e., I qj I max, i = 1, 2,... This information
is then used to compute an optimal set of scale fac­
tors using a linear programming routine which
maximizes the sum of the number of bits used in all
the Y-registers.6 Finally, fO, a variable in the scaling
program that relates problem time to machine time,
must be specified within limits set by the scaling
program.

The mapping and scaling are illustrated in Fig. 4
and Tables 1 and 2. Since the user generally does
not need this information, it is saved in the large
computer system and supplied only on special re­
quest. Figure 4 is a map of Eqs. (6), and Table 1
is the corresponding interconnection table. Table 2
is a table of scale factors tha, illustrates the inter­
action of scaling variables; the time scale and maxi­
mum values were chosen arbitrarily.

Figure 4. Map.

Upon completion of mapping and scaling, the
initial contents of R (set to zero), dXs , d Ys , kf,
dZsign, and S have been specified. The remaining
inputs required of the user are the initial values
qj(O), the number of iterations to be run, the sam­
pling period, and an indication of what variables
are to be displayed and sampled. The transfer of
this binary information to the LINe is initiated,
and after completion, the run on the DDA is madle.

Table 1. Interconnection Table

Int. No. DX-Input DY-Inputs

1 4
2 4
3 0
4 0
S 4

NOTE: 0 indicates a DT input.

Table 2. Scaling Table

Int.
No. n l' a f

1 1* -12 1 -11
2 1* -12 1 -11
3 1* -1St 6 -9t
4 3* -1St 3 -12
S 3* -12 3 -9t

*Obtained from user estimates as in b) below.
tDetermine DT scale relative to problem time.
tThese must be equal.

NOTES:

2
1
1

3,S
4

()

-11
-11
-11
-9
-12

a) "'fj, OJ, Ej are scales on dXj, dYj, dz j , e.g., dX, = 2'Y j dxj.

v

12
12
17
12
IS

b) aj ~ l1j where 21 Yj 1 max ~ 27Jj > 1 Yj 1 max, and qj is Yj
in the example.

c) Vj = aj - OJ and 23 ~ Vj ~ 4.
d) aj + "'fj = Ej.
e) Sj = Vj + 1, Le., the S-bits of Integrator i.

A DIGITAL SY$TEM FOR ON-LINE STUDIES OF DYNAMICAL SYSTEMS 111

Repeated runs may be made and ~w variables may
be sampled or displayed by maki g changes at the
LINC keyboard. If parameters i the differential
equations are changed, rescaling may be required,
and the scaling program is then called again on the
time-shared computer. The same is necessary if
overflow occurs because of wrong estimates on
the I q; I max.

It is of interest to estimate some typical operating
times. After input typing is completed, the reaction
times are between several minutes and several sec­
onds depending on the accessibility of the time­
shared system programs. The loading and running
time on the DDA is at most about 20 seconds for
215 iterations of 256 integrators. The time for re­
peated runs depends largely on the time required
for the user to enter new information at the LINC
keyboard.

SUMMARY

The design of a system for on-line studies of
dynamical systems has been described, and the
details of operation of the high-speed DDA have
been given. Two applications of the system which
are showing its usefulness are

1. Spectral analyses of radar data in which
a number of frequencies, spectral win­
dows, smoothing times, and range gates
were examined. On-line techniques en­
able the user to search for combinations
of interest rather quickly. The LINC/­
DDA combination can generate 30
spectral lines, compute a periodogram,
and display the results in about 20 sec­
onds.

2. Trajectory generation in simulation
studies where the effect of changing
parameters in an estimation algorithm
are of interest. A set of 3-degree-of­
freedom equations that includes at­
mospheric drag variations and gravita­
tional variations requires 55 integrators.
One run (i.e., one trajectory) requires
5 seconds in this case.

A subject requiring further study on the system is
error analysis. Error prediction for equations that
are integrated by incremental arithmetic operations
is extremely difficult, but it is believed that more

experience will provide some insight. Very little
theoretical work has been done, and the combina­
tion of nonlinear equations, incremental methods,
and quantization makes the prospect of estimating
useful error bounds discouraging.. It also may be
noted that the sequential processing of the integra­
tors introduces an ordering problem in the mapping
program, and the effect of a given ordering scheme
on computational errors is again difficult to predict.

Nevertheless, the system is proving very useful
in problems where on-line searching and experi­
mentation lead to more complete understanding of
certain physical problems. The combination of
general and special-purpose digital computers is
of great value for studying complex dynamical
systems.

ACKNOWLEDGMENTS

The authors wish to thank Dr. H. K. Knudsen
for his valuable work on the mapping and scaling
programs, and Mr. R: A. Carroll for his work in the
planning and construction of the DDA.

REFERENCES

1. T. C. Bartee, I. Lebow and I. Reed, Theory
and Design of Digital Machines, McGraw-Hill, 1962,
pp. 252-269.

2. G. F. Forbes, Digital Differential Analyzers,
G. F. Forbes, Sylman, Calif., 4th ed., 1957.

3. M. Palevsky, "The Design of the Bendix Digi­
tal Differential Analyzer," Proc. IRE, vol. 41, no.
10, pp. 1352-1356 (Oct. 1953).

4. J. M. Mitchell et aI, "The TRICE-A High
Speed Incremental Computer," IRE Nat. Conv.
Record, Part 4, pp. 206-216 (1958).

5. H. K. Knudsen, "A Program for Automatic
Mapping of Differential Equations on a DDA"
(to appear).

6. H. K. Knudsen, "The Scaling of Digital Dif­
ferential Analyzers," IEEE Transactions G-EC,
EC-14, no. 4, pp. 583-589 (Aug. 1965).

7. O. A. Reichardt, M. W. Hoyt, W. T. Lee,
"The Parallel Digital Differential Analyzer and Its
Application as Hybrid Computing System Ele­
ment," Simulation 4, n.z., pp. 104-113 (Feb. 1965).

8. M. W. Goldman "Design of a High Speed
DDA," Proc. FJCC, pp. 929-949 (1965).

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME"·DELA Y
ELEMENTS BY MEANS OF A GENERJ\L·PURPOSE DIGITAL COMPUTER

Y. N. Chang and O. M. George
North American Aviation, Space and Information Systems Division

Downey, California

INTRODUCTION

For the purpose of this paper, a logical decision
network is defined as a system whose elements can
be in either of only two states, TRUE or FALSE.
Therefore the operation of the system can be de­
scribed by a set of simultaneous Boolean equations
which are functions of time. These states must be
defined specifically for each of the elements of the
system, and in particular might represent yes and
no, on and off, energize and de-energize a coil,
"make" and "break" of a relay contact, presence
and absence of voltage at a node, open and close a
mechanical valve, etc.

Digital switching networks, relay control systems,
production and manpower scheduling, and the
transportation problem are examples of logic sys­
tems. In logic systems like the last two examples,
the digital program is used to solve the problem. In
the first two examples, where hardware is involved,
simulation on a general-purpose digital computer is
used to verify the time-sequential operation of the
system before money and time have been spent in
building it. A simulation should also permit one to
vary the time delays in order to set tolerances for
design specifications. A third application would be
a study of the effects on the system of malfunctions
of any elements. Finally, if one has simulated the
checkout of various subsystems, it should be pos­
sible to simulate a combined system without recod­
ing the Boolean equations. All of this can be done

113

with the IBM 7094 program described herein. In
addition, the time-sequential states of all the ele­
ments are plotted on the S-C 4020 in the form of an
n-channel recorder chart.

The art of simulation involves building a mathe­
matical model which represents the system. Bool­
ean algebra is the natural mathematics for a logic
system; however, Boolean algebra does not incor­
porate time per se. The authors propose and il­
lustrate an extension of standard notation so that
time relationships between cause and effect can be
expressed explicitly in the Boolean equations that
are written to describe the logical operation of a
system.

MECHANIZATION OF A LOGICAL SYSTEM

Input and Dependent Elements
Any physical device (e.g., relay coil, switch, light,

squib, or hydraulic valve) which has only two pos­
sible states is defined as a "logical element." A
logical element can also be abstract (e.g., the set or
reset action of a motor switch, the grounding of a
buss, the short circuiting of a battery, or the pres­
ence of voltage at a node)~ Letter T is used to rep­
resent the "true" state (i.e., on, closed, energized,
shorted, etc.) of an element, and the letter F repre­
sents the opposite "false" state. A device which has
more than two states must be resolved" into n logical
elements. For example, an n-position rotary-type
stepping switch must be programmed as n logical

114 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

elements where each element is in state T only while
the switch makes contact at its position. In order
to simulate the operation of a system by means of
the digital computer program described in this
paper, each logical element must be identified by a
name of six or fewer legitimate alphameric char­
acters.

Input elements (e.g., hand-set switches, or radio­
command signals) are defined as those logical ele­
ments whose states are independent of the states of
other elements. The states of input elements are as­
signed from time to time during the simulation by
the entry of data.

A dependent element is defined as a logical ele­
ment whose state is determined by solving a Bool­
ean equation which expresses the state as a function
of time-delay variables and/or the states of input
elements.

Time-Delay Variables

A time-delay variable is always related to a logi­
cal element and, therefore, is identified by the same
name as its associated control element. For in­
stance, the coil of a relay (say dependent element
DEPEND) may control the operation of two time­
delay contacts. The states of these contacts would
then be time-delay variables in Boolean equations.
To indicate the source of control of the two con­
tacts, the name DEPEND would be used for each
appearance of the variables in the set of Boolean
equations for the logic system. The time-sequential
effect of the operation of each of the two contacts is
determined by their specific delays.

A special Boolean algebra notation is introduced
here to specify the time dependence of cause and
effect for a variable. Two types of time delay are
recognized. The a-delay is defined as the elapsed
time between a change of state from F to T of an
element and the resulting change from F to T of an
associated variable. The ,B-delay is defined sim­
ilarly for a change from T to F. These delays are
separated by a comma and written as a numerical
superscript on the name designating the variable
(e.g., va,p is written as DEPEND s,3). Each variable
may have a different set of a and ,B values even
though the variables are associated with the same
logical element (i.e., a relay may have several dif­
ferent time-delay contacts). The omission of a and
,B implies that the change of state of the variable oc­
curs instantaneously with that of the control ele­
ment (i.e., no time delay).

As an example of this extended Boolean algebra
notation, refer to the equations given below in the

section "Application of Program to a Simplified
System." In Eqs. (1-3) switches START and
STOP are input elements (manually controlled), and
we have a 2-contact relay, CONRLY, a.nd a 4-
contact device, TIMER, as dependent dements.
Equation (1) defines the state of dependent elem,ent
HORN as a function of three variables and relative
time. Time is explicitly included by means of the
a- and ,B-delays. The * represents the logical ope:ra­
tion AND, + represents OR, and the bar over the
third variable represents NOT. Note tha1t a time­
delay variable TIMER appears in all three equa­
tions but with different values of a. These three
terms (variables) represent three of the contacts of
the timing device, a dependent element whose state
is defined by Eq. (2).

The validity of the results of any simulation de­
pends on the accuracy with which the mathematical
model represents the physical system. The Boolc~an
program described in this paper is no exc(~ption to
the rule. The fundamental principles of modeling a
logic system are illustrated by the set of Boolc~an
equations (1-13). Since the illustrative control
system comprises only single-input electrical deviices
(relays and timers) connected in series-parallel
groups, one can write the Boolean equations more
or less by inspection once the schematic diagram,
Fig. 3, has been drawn. However, an explanation
of some of the details might be desirable.

The term (START + TIMER), in Eq. (2) for
the state of dependent element TIMER, r1epresemts
the fact that START is a momentary push button
which starts the timer immediately, but TIMER
continues in state T after the push button is re­
leased (i.e., after START changes from T to F).
The meaning of the time-delay variable TIMER~ 15,0

is that although dependent element TIMER
changed from F to T state, the effective state of this
term will not become F (i.e., complement of T)
until 15 seconds later as indicated by the a-delay. A
similar time-delay variable TIMER 5,0 appears in
Eq. (1). Therefore, the horn will start blowing
when the start push button is pressed, but it will
stop automatically 5 seconds later. The variable
TIMER 10,0 in Eq. (3) signifies that dependent de­
ment CONRL Y changes from F to T stat,e 10 sec­
onds after TIMER = T. Note that STOP is a
normally closed push button. The variable
CONRL Y in the term (CONRL Y + TIMER 10,0)

maintains the element in state T until push button
STOP is pressed, even though the timer stopped
automatically after running for 15 seconds.

A ,B-delay of zero is indicated for each time-de:lay

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 115

variable in Eqs. (1-3), which signifies that the
"drop-out" action of the contact is instantaneous.
For hardware, the delays are never zero but they
may be small compared to other time intervals in
the sequential operation of the system. Proper
simulation may necessitate entering a small value,
rather than zero, for such a delay. The behavior
of dependent elements HORN, CONRLY and
TIMER is independent of the value of fJ so the
use of fJ = 0 is satisfactory for the simulation de­
scribed in Eqs. (1-3). Conveyor A (Fig. 2) must not
.start until after conveyor B is in motion, and should
shut down automatically if conveyor B stops. These
requirements are expressed in Eq. (4) by the a- and
fJ-delays on the time-delay variable CNVB 5,3.

A simple illustrative control system was chosen so
that the use of a- and fJ-delays in a Boolean model
could be explained. Many control systems incor­
porate multiple-input devices such as motor
switches, latching relays, and flip-flops. The states
of such a device should be related to the inputs by
means of a Veitch diagram so that the Boolean
equation will give a correct state for all combina­
tions of the inputs. A discussion of these techniques
for modeling logic devices is presented in the Ap­
pendix.

FUNCTIONAL DESCRIPTION OF DIGITAL
COMPUTER PROGRAM

The functional organization of the complete
program is shown diagrammatically in Fig. 1. The
philosophy of the basic control program is similar
to that of an earlier program I written by the au­
thors in machine language for the IBM 704. In de­
tail, however, the current program differs consider­
ably because it has been coded for a seven-index­
register IBM 7094 for operation iD the FORTRAN
IV IBSYS/IBJOB system, and new features have·
been incorporated as a result of use of the original
program in the analysis of many control systems.2

Basic specifications for the current program were
1) efficient use of core and 2) maximum execution
speed so that logical systems of 2000 or more ele­
ments could be simulated economically. The Bool­
ean structure of the FO R TRAN IV source language
is not compatible with these specifications. Conse­
quently, the major part of the program is written
in the MAP symbolic language.

The Boolean equations which describe the logic
system are coded in MAP and assembled as a sub­
routine named BOOLEQ as illustrated in the fol­
lowing section and also in Fig. 4. The basic con-

CODEDJ BOOLEAN
EQUATIONS

I
MAP J ASSEMBL Y

1
BooLEQ I

SUBROUTI~

I

I
PRINT

SEQUENTIAL
DATA AND

DIAGNOSTICS

i-------------~;A-~;~--------------j

I I
I I

: ELEMENT CONTROL SEQUENTIAL l
I NAME TABLE CARDS INPUTS I
I I

l_____ ----------i---------1-----J

CONTROL
PROGRAM

I
SoC 4020 OPTIONAL
PLOT OF SEQUENTIAL
STATES PRINT OF

VS TIME STATE CHANGES

Figure 1. Functional diagram of Boolean simulator program.

o LOCKOUT STOP

PUSH BUTTON STATION

~
START

o STOP
L R
0' SELECTOR SW ITCH

0::::] HORN

Figure 2. A conveyor system.

trol program solves the equations, checks for
incompatible states, prints diagnostic comments,
and increments time automatically to simulate the
operation of the logic system. The desired sequence
is directed by 1) states of input elements entered as
data at any time, 2) the time delays (which may be

116 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

SYMBOLS

---: Selector Switch -{"}- Relay Coil or Device

-0--0- Start Button Normally Open ¥
~ Stop Button Normally Closed * Relay Contact Normally Open

Relay Contact Normally Closed

-L...
STARI)ooT---------tt-----f

STOP
Master Push Buttons

SELSW

CNVCLO SELSW
I
: Selector Switch

I ~,_W-___"II....I..<II'_"---___I
I

FlASHS

FLASHA3,3 CNVEO, °
'-----4...--'---.4-----II----f

TIMER

HORN

Control Relay
CONRLY

Conveyor A
CNVA

Conveyor B
CNVB

Crusher
CRUSH

Conveyor CLeft
CNVCL

Conveyor D
CNVD

Conveyor E
CNVE

Classifier
CLASS

Flashing Signal
FlASHA

Flashing Signal
FlASHB

Figure 3. Conveyor system schematic diagraw.

varied), and 3) malfunctions simulated by the entry
of special data at any time.

At the option of the user, the states of selected
elements are compared with' specifications (the ex­
pected states at that time entered as data) and the
results of the comparison are printed. If the specifi­
cations are met, the simulation continues. The user
may direct the program to continue if a specification
is not met; otherwise, it stops. Dependent elements
may be "disabled" to a T or F state at any time to
simulate the malfunction of a device. Subse­
quently, they may be "enabled" to simulate a repaIr
or replacement. The "enable" feature is also used
to initialize the state of a dependent variable. The
normal (X- and fj-delays are specified in the coding
of the equations in subroutine BOOLEQ but they
may be varied at any time by a special data entry.
At the end-simulation time, entered as initial data,
the program plots the states of all the elements on
the S-C 402'0 as a time-sequential recorder chart. At
the option of the user, a time-sequential tabulation
of all the changes of state will be printed. Provision
is made for entering a brief description of the system

which will be printed on the S-C 4020 plot to id4~n­
tify the results.

The simulated operation of the system starts at
time zero. The time is incremented variably, lthe
increment being determined at any time by the time
delays that are effective or by the entry of data or
specifications. This automatic fea~ure of the pro­
gram relieves the user of the responsibility of
analyzing the system and selecting the proper inc:re­
ment at each instant of time and ensures that the
simulation will run at the maximum speed compat­
ible with the delays and the inputs of data. At each
increment of time, the program determines the
stable state of each dependent element by a rep(~ti­
tive solution of the set of Boolean equations. The
transition states that appear during these solutions
may be used to detect critical and noncritical race
conditions as defined by Caldwell.3 A time-delay
subroutine applies the (X- and fj-delays of a variable
to the recorded time at which the associated control
element changes state and thus determines t.he effec­
tive state of the variable at each increment of time.
These delays permit the analysis of systems using
make before break, and break before make, types of
contacts.

Debugging routines print diagnostic comments
and stop the simulation for indeterminate or incom­
patible states, or the improper entry of input states
and specifications.

APPLICATION OF PROGRAM TO A
SIMPLIFIED SYSTEM

The example described below was chos4~n to il­
lustrate the procedures for using the control pro­
gram and to show the input data and the: printed
and plotted results of an analysis of a switching
network.

Description of the System

The physical arrangement of the system is shown
in Fig. 2. Conveyor A transports ore from a load­
ing area to the plant site. Conveyor B transfers
rough ore from conveyor A to the crusher. After
being crushed, the fine ore can be direct(~d either
through conveyors C and D to a storage: bin, or
through C and E to a classifier where the ore: is
separated according to size. Start and stop push
buttons and a selector switch, which selects one of
the two modes of operation, are provided at the
master station. A horn warns workers off the con­
veyors prior to their movement, and several emer­
gency lock-out push buttons and flashing lights

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS

UBMAP C(1"1VYR
- flilllLcllN (<JUATI(JNS FOR CCtliVEYOR SYSTEM SWITC~q\G ~~rh(JRK
- MAP ASSSMBlEO FOR USF WI fH FORTRUI IV DECt< IIl-030
,. 0. M. GEORGE, 41-200-)00, 4 JUf'o 1965
M<\K~ EQU 25 SPECIFY PR(JP!:R ;~lJMH ICAl VALUE
TA8lE '= (l!\jTRl Ttt8LL

US!:: TASLE ELEMENT-NAMES TARLE
!ISS 50 .. US T BE MUL T I PL E (IF 50

SET VARlA8LE DI"'r\SI(l"lS FUR ARRoSYS
eONTRL
USE
8SS 2-MAXN·l ELEMENT STAfES AND TIMES

flUFF<\ C(1N TRl 8UFFA
USE RUFF 1\ INPUT-OUTPUT PUFFfR SIlE,
BSS 3·MAXN BUT !IoCT lESS THAN 2 TIMES Tt<E MAX IMUM

NUMBER IlF 8COlEAI~ I"IPIJTS AT ANY TIME
USE
eQU TEMP DEFIfl.ES T AS ALTERNATE Svr-8CL F'JR TEMP.

10 ERASAeLE LOCAT IOtllS, TEI'P TO r(MP+9

FCLLCWING .'EQU' CARCS OEF INf THE
ELE"lENT-fl.AME UBLE, I.E. THE ASS ICNMF.NT OF
INTERNAL SEQIJEt-4T I AL CLEMEIo,T NUMIIERS.

SUH EQU C+l
STIJP F.IJU C+l
SELS" [UU C+3

FL4SH(l EQIJ C+23
SP.~~E EQU C+2"
~~(1flF.A E·;U C+.l;

!l(lOLEQ SAVE
STMT OF BJJL:IIN EOIJATlCI\ Nll. 1 FOil DEPENDENT EIoEI,1EM 'HOflN'

~m HIJ~N

CAL START LOAD LIlGICAL ACCUMULATOR WITH STATE olF 'START'
llRA TIMER LOGICAL 'OR' Ttl ACCUMULATOR
SLW TEMP SAVE' TEMPaRAIHLY

CUl THE DELAY SUBROUTINE FOR caNT~CL ELEMENT 'TIMER'
!lASIC U'HT r:OR UL D[LAYS IS OECISECOf'oDS

CALL !)fLAYITI"ER,~O,OI

COM
ARGt;"ENTS ARE (COfl.TROl ELEMENT,AlFA DELlIY,BETA lJELI\YI

LaGfC.L ' OJO
ANA TEMP
TRA SUTi:

• [lO(lLEAN EQUATION NO.
STR TIMER
CAL STI\,{l
O,{A T I MCP.
SLW T

LOGICAL' AND' TO ACCUMULATOR
Ell' OF ll(lOLEAfI. EQUATICN Ft;R ' .. aRN'

2 FOR 'TIIOER'

OPTlaNAL use aF T FOR TEMP
CALL DELAY C Tl MER ,150 ,0 I
COM

CCCC':C10
CCCCC02C
CCCCCc. .. O
cccceC50
CC(CvC5S
cecor.C6l
CCCOr.C61
CCtC"Cb2
CetCI.07C
CCCC~C1'
CtCeC01b
OCCOlle17
CCCCC018
C(OC-:C79
ecr.ceCRe·
CCCCOOlll
CCCCOOP2
OC000084
CCCCCCRS
OCCC'::O~b
OCCOCO~7
CCCtCOSR
OCCCOOfl9
85CC:;COl
85CC0002
8S()I)C003

IIS(CU023
85CCJC2"
85ceC025
eCCOC090
ccerCO'l5
Ctrefllce
ecc 01'1105
OC(0';110
CCCO')12(1
CCCCOUO
(CtC0140
eccor141
eceCIllse
ccr00155
cccce170
cceeC1AO
CCCOCI 'lO
CocOU2ce
C(COf-ll0
cccerno
eccCI.23(\
cccee2""
coceC25C
CCCCOHO

-------------------------- --- .. ---
• EQUHIllN .~(1. 13 roq FLASIiING LIGHT B

STR HASti8
IlLIJSTUTES caCFO 0,0 DELAYS FaR VA:lIABLt: f.ELAY FEATURE

CALL I)ELAY (C!lVE ,0 ,01
SlW T
CALL f)ELAYCFLASHA,10,30)
IINA C:jt-4l\lY

.'.~A
TRA
R~TU~N
E'IO

T
SJA T[
1\0~LlQ,l Etlle OF ALL MOLEA'" EQUAT I ClNS

Figure 4. Sample page from subroutine BOOLEQ.

cce01400
0(001401
OCOC1405
OC001410
OCC011015
OCC01410
OC001 0
OCOOl45C
ceOO! lobO
CCCO 15'111
~CC015'l9

117

are installed at various points for safety reasons.
The relay switching schematic diagram is shown in
Fig. 3. Equipments are interlocked with time­
delay relays so that no equipments can start until
the downstream equipments are in motion. These
same interlocks automatically stop the upstream
components of the system when a piece of equip­
ment fails. With the time delays and selector switch
position shown in Fig. 3, the sequence of major
events for a possible operation are given in Table 1.

indicate a logical AND, a + for inclusive OR, a -
for exclusive OR, and a bar over the name (or an
expression) to indicate NOT.

Procedures for Using the Control Program

1. Assign identifier names (6 or fewer legitimate
alphameric characters)to the input and dependent
elements (refer to Fig. 3). Prepare a descriptive list
of all the elements defining the T and F states for
each. For the conveyor system, F means off and T
means on, except for the selector switch where F
means left and T means right.

2. Write Boolean equations for the dependent
elements as illustrated in Eqs. (1-13). Use an * to

HORN (ST AR T + TIMER)
* TIMERs,o

TIMER (START + TIMER)
* TIMER 15

•
o

CONRL Y = 'STOP * (CONRL Y
+ TIMER IO•o)

CNVA = CONRLY * (CNVCR~·3
+ CNVCL5

•
3) * CNV ALO

* CNVBs.3

CNVB CONRLY * (CNVCR5•3

+ C~VCLS.3) * CNVBLO
* CRUSHs.3

CRUSH CONRLY * (CNVCR5•3

+ CNVCL5
•
3) * CRSHLO

CNVCR CONRL Y * CNVCLO
* SELSW * CNVD5

•
3

CNVCL CONRL Y * CNVCLO
* SELSW * CNVE5

•
3

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

118

Time
seconds

o

0.1

5

10

15

20
25

30

35

50

51

53

55

56

60

65

70

75
90

93
95

100
105

110
115
118

PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Table 1. A Simulated Operation of the Conveyor System

Input:

Input:

Resp:
Resp:
Resp:

Resp:
Resp:
Resp:
Resp:
Input:

Resp:
Resp:
Input:

Resp:
Resp:

Resp:
Resp:
Resp:
Resp:
Input:

Resp:
Resp:
Resp:
Resp:
Resp:
Resp:
Resp:
Input:

Inputs to, and/or Responses of, System

Press master push button (i.e., input STAR T = T).
Selector switch to the left (Le., = F) for classifier opera­
tion is standard initial state; do not enter an INPUT.

Set START = F to simulate release of momentary push
button.
Horn stops blowing.
Control relay CONRL Y energized and starts classifier.
Timer resets to 0, and conveyor E starts together with its
associated flashing signals (they flash alternately).
Conveyor C left drive starts.
Crusher starts.
Conveyor B starts.
Conveyor A starts. All selected equipments operating.
DISABLE conveyor E to off (= F) to simulate a mal­
function.
Flashing signals stop.
Conveyor C left drive stops.
Press safety lockout button (CNVELO = T). Set selector
switch to right (= T) for storage bin operation while con­
veyor E is being repaired.
Classifier stops; conveyor D starts.
Conveyors A and B and the crusher stop because the
selector switch was changed.
Conveyor C right drive starts.
Crusher restarts.
Conveyor B restarts.
Conveyor A restarts.
Reset lockout button (CNVELO = F), set selector switch
back to left (SELSW = F) and ENABLE conveyor E to
off (= F) to simulate restoration of classifier operation
after repair of conveyor E.
Conveyors D and C-right-drive stop; classifier starts.
Conveyors A and B and the crusher stop.
Conveyor E and associated flashing lights restart.
Conveyor C left drive starts.
Crusher starts.
Conveyor B starts.
Conveyor A starts.
Push master stop button (STOP = T). Stops entire
system.

120 End of simulation.

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 119

CNVD = CONRL Y * SELSW
* CNVDLO (9)

CNVE = CONRLY* SELSW
* CNVELO * CLASS5,3 (10)

CLASS = CONRLY *SELSW
* CLASLO (11)

FLASHA = CONRL Y * CNVEo,o
* FLASHB (12)

FLASHB = CONRL Y * CNVEo,o
* FLASHA3,3 (13)

Note tlftlt conveyor C has been assigned two names:
CNVCR for motion to the right, CNVCL for
motion to the left. Also note in Eqs. (12) and (13),
that the delays for variable CNVE have been spe­
cifically indicated aso,o. This was done so that the
Boolean equations contain nominal values which
can be varied at execution time, like all the other
delays, by the entry of special data. This feature
is illustrated by the printout in Fig. 6, which shows
that the {j-delay was changed to 10 deciseconds.

The term [CONRLY * (CNVCR 5,3 +
CNVCL5,3)] appears in each of Eqs. (4-6). The
code for subroutine BOOLEQ may be simplified
by assigning name NODEA (see Fig. 3) to a point
in the schematic diagram. Now we write

NODEA = CONRLY * (CNVCR5,3

+ CNVL5,3) (14)

so that Eqs. (4-6) can be simplified to

CNV A = NODEA * CNV ALO
* CNVB5,3 (4')

CNVB = NODEA * CNVBLO
* CRUSH5,3 (5')

CRUSH = NODEA * CRSHLO (6')

A further simplification can be made in the code for
subroutine BOOLEQ when one bas a string of terms
of the form

A *-B * C"* ...

By using DeMorgan's theorem, Eq. (11) could be
written

CLASS = CONRL Y * (SELSW + CLASLO)
(11 ')

so that instead of complementing each variable, we
OR the variables and complement the result.

3. Code the Boolean equations in the language of
the particular digital computer being used. For the
IBM 7094, a typical example follows for dependent
element HORN, i.e., Eq. (1):

Code

STR HORN
CALL DELAY

(TIMER,5,0)
COM

SLW TEMP
CAL TIMER

ORA START
ANA TEMP

TRA STATE

Comment

Start of instructions for the horn
Control element is timer, a­

delay is 5, {j:-delay is °
Complement the state

(i.e., NOT)
Save temporarily
Load the logical accumulator

with state of the timer
OR the state of start switch
AND the result saved from

DELAY
End of Boolean equation

4. Assemble the code to produce a MAP sub­
routine named BOOLEQ, that is compatible with,
and will be combined with, the machine-language
control program (see the sample in Fig. 4). The
Boolean equations need not be written or coded in
a particular order. If there is a stable set of states
at each instant of time, the repetitive solution pro­
cedure in the control program will terminate nor­
mally; otherwise, a diagnostic message is printed
and the simulation is aborted.

INPUTS TO PROGRAM AT
EXECUTION TIME

Figure 5 is a sample of the type of data sheets
that were prepared for a simulation of the operation
of the conveyor system. Note that a set of data
cards, terminated by an * in column 1, is prepared
for each data-read time. At t = 0, the element
name table, a special control card and one to six
title cards terminated by an * in column 1 must be
the first cards of the data deck. These cards are not
illustrated. Initial Boolean data are entered as
shown on card No.9. In addition, the basic criteria
for the simulation must be entered as shown on card
No. 10. An entry on this card gives the next time in
basic units (deciseconds in this case) at which data
can be read.

Note that element numbers, which are determined
by the order of element names in the name table,
are used in entering the T or F states of the element.
A special data-reading subroutine is used to facili­
tate the entry of Boolean data in the relatively free
form indicated on cards No.9 and 18. This sub­
routine also permits the intermixture of Boolean
and integer data cards; the type is indicated by a
designator in the first field of each card. Subsequent
to t = 0, it is only necessary to prepare cards for the
Boolean data to be read at each data-read time, and

120 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

DESCRIPTION DO· NOT KEY PUNCH

Figure 5. Sample of data sheets.

to designate NXTIME. The simulation is ter­
minated automatically' at time MAXT.

OUTPUT FROM EXECUTION
OF PROGRAM

For the example shown in Fig. 3 and Table 1,
input conditions were entered at times 0, 0.1, 50, 55,
90 and 1,18 seconds and specifications at various
times. Several incorrect specifications were entered
to illustrate the bad-specification printout. The data
and specifications printout is shown in Fig. 6. The
program can print a maximum of six lines of prob­
lem description (60 alphameric characters maximum
per line). Unused lines are left blank. Note in
Fig. 6 that a state was entered at time zero for input
variable START only. The program automatically
sets all the other states to F. No input element
should ever be set to F by data unless it has pre­
viously been set to T. Also, note that operation of
the spring-loaded master start button START was

simulated by a data entry at 0.1 second signifying
release of the button.

In addition to the data and specifications print­
out, the control program plots a complete time
history of the states of the elements on the S··C 4020
(see Fig. 8). A print subroutine is provided to
enable the engineer to obtain a selectiv4~ time­
sequential printout of the elements which c:hanged
state as illustrated in Fig. 7.

SUMMARY

The original program I has been used for the
analysis of many aerospace control systems2 and
this experience provided the basis for the n(!w pro­
gram described in the present paper. One result
was the development of a special data-reading sub­
routine to simplify the entry of Boolean data.
Another result was a simplification of the print<:d
output which eliminated the searching of records on
tape and shortened the execution time. The COln-

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 121

CH[C~OUT CF RL-C3C BUOLEA~ ANALYSIS PROGRAM WITh EQUATIONS
FOR CCNVEYor.: SYSTE'-1 SWITCHING NETWORK.

9ASIC LNIT OF TIME IS DECISECONOS

o. M. GFCRGE, 41-200-300, 4 JUN 19f5

*** TIME 0.0 SECCNDS'
MAX ELEME~T NO. = 25 MAX T[ME 1200 SCALE 10
CO~T(NUE = T P~IN~ T NEXT CASE ~ F SAVE STATE F RACE-CHECK INDICATOR F

INPUT VARIABLES E~TE~ED
ELEMENT STATE

1 T

VARIABLE DELAYS ENTE~ED
ELEMfNT CONTROL ALFA DELAY BETA DELAY

22 20 o 10

*** TIME 0.1 SECCNDS

INPUT VARIA~LES ENTERED
ELEMENT STATE

1 F

*** TIME 5.0 SECCNDS

SPECIFICATIONS ENTERED
ELEMENT

If>.
21
11

STATE
T
T
F

FOLLCWING SPECS ~OT MET
ELEMENT STATE

18 F
SINCE TIME (SECONDS

0.0
21 F 0.0

*** TIME 50.0 SECONDS

DEPENCENT ELEMENTS DISABLED
ELEMENT STATE

20 F

Figure 6. Sample printout of inputs and specifications.

veyor system simulation summarized in the plot
(Fig. 8) represents a two-minute operation of the
system; the IBM 7094 execution time was only eight
seconds. This increase in speed of execution was
also due to the programming of a greatest-increment
selection procedure which relieves the user of the
responsibility of analyzing the system and selecting
the proper increment at each instant of time. This
automatic feature also ensures that no critical event
will be missed as a result of making a time step that
exceeds any effective delay. An S-C 4020 plot of the
results was added which increases the accuracy and
speed of analysis of a logical system. In most cases,
this plot is sufficient and the maximum speed of
execution is obtained by not entering any specifica­
tions and by not requesting a printout of the results.

Normally, the production of a digital simulator
program involves two steps: creating the model, and
then writing the program. SIMSCRIPT4 is a gen­
eralized language that permits the model and simu­
lator program to be written in a terminology that is
more oriented to simulation than is the language of
FORTRAN. The SIMSCRIPT preprocessor pro­
duces a set of routines which can be compiled by
FORTRAN to produce machine-language decks for
a general-purpose digital computer. We recognize
the power of a generalized language for pro­
gramming simulations, but wish to point out that
for the class of problems (analysis and debugging
of control systems, the transportation problem, and
certain manpower and production scheduling prob­
lems) which can be solved by the special program

122 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

RESULTS CF BOOLEAN ANALYSIS

••• TIME 0.0 SECONDS
ELEMENT STATE ELEMENT STATE ELEMENT ST A TF. ELEMENT STATE ELEMENT ST'ATE
*START T HORN T TIMER T

•• * TIME 0.1 SECCNDS
ELEMENT STATE ELEMENT STATE elEMENT STATE ELE ... ENT STATE ELEMENT STATE
*STAR T F

••• TIME 5.0 SECCNDS
ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE

HORN F

. TIME 10.0 SECCNDS
ELEMENT STATE ELEMENT STATE elEMENT STATE ELEMENT STATE ELEMENT STATE

CCNRLY T CLASS T

**. TIME 15.0 SECCNDS
ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE

TIMER F CNVE T FlASHA T

*** TIME 18.0 SECONDS
ElEI'4ENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE

FLASHA F FLASHB T

••• TIME ?O.O SECCNDS
ELEMENT STATE ELEMENT STATE ELHIE"NT STATE ELEMENT STATE ELE'4ENT STATE

CNVCL T

•• * TIME 21.0 SECCNDS
ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE

FLASHA T FLASHB F

Figure 7. Sample printout of results of simulation.

described in this paper, only the model needs to be
programmed and debugged. The executive program
is invariant; it has already been written and checked
out for correct operation, simplicity of data entry,
appropriate diagnostic messages, and a concise pre­
sentation of the results of the simulation.

The program described in this paper has saved
thousands of dollars and man-hours by permitting
the checkout of a control-system design before time
and money are spent in building it. The program
has also been used for the analysis of "race" condi­
tions in relay circuits, single-point failures, and the
effects of malfunctions or proposed changes in
design.

Appendix

TECHNIQUES FOR MODELING
LOGIC DEVICES

A logic device is described conventionally by
stating the relationship of its outputs to the inputs.

In this paper, instead of relating the outputs directly
to the inputs, we establish an intermediate state for
the device, or so-called dependent element. The
outputs are then related to the dependent element
by time-delay variables. To relate the statles of the
element to the inputs, it is necessary to have a com­
plete logical description of the states, otherwise the
simulation may give incorrect states to the: element
for those input conditions which are not defined. A
good way to relate states to inputs is to use a Veitch
diagram except for single-input devices iin which
case the state-to-input relationships are slequential
(i.e., time-delay relationships) rather than (;ombina­
tional.3 The model of the element is simply the
Boolean equation for the Veitch diagram. The fol­
lowing examples illustrate this procedure.

Motor Switch

This device uses a motor to open or dosle a set of
contacts. There are two inputs, one for the set
action and the other for reset. Figun: 9 is a
schematic diagram of a motor switch in which it

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 123

CHECKOUT OF 8l-030 BOOLEAN ANALYSIS PROGRAM WITH EQUATIONS
BASIC UNIT OF TIME IS DECISECONDS

FOR CONYE~R SYSTEM SWITCHING NETWORK.

B

NODEA
SPARE
FLASH
FLASH
CLASS
CNYE
CNYO
CNYCL
CNYCR
CRUSH
CNVB
CNVA
CONRl
TIMER
HORN
CLASL
CNYEL
CNYOL
CNYCl
CRSHl
CNVBL
CNVAl
SELSW
STOP
START

A

Y

,..
,~ ...
0
0
0
0
0

05 1

O. M. GEORGE, 41-200-300, 4 JUN 1965

, I

I

22 3444 5 9 1111

TIME IN SECONDS

Figure 8. S-C 4020 plot of true states.

takes 10 milliseconds to open or close the contacts.
Let us label the components and actions by the fol­
lowing identifiers:

MTRSW
SNODE
RNODE
SET
RESET

the motor switch
input node for set
input node for reset
set action of motor
reset action of motor

The action of the motor can be written very simply
as follows:

SET = SNODE'" MTRSWo.01,O.Ol (15)

RESET = RNODE'" MTRSWo.01,O.0l (16)

The state of the motor switch, however, should first
be represented by a Veitch diagram

124 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

,---------------------------,
I

MTRSWa,1J :
I SNODE <>-------i--#-------{

INPUTS

MTRSW a ,6
RNODE 0-0 --;----11 t---------i

I

OUTPUT VARIABLE-o+o-MTRSWa,1J
I

COMPLEMENT VARIABLE~ MTRSW
a

,6

L __________________________ _

Figure 9. Motor switch.

SET

impossible F RESET

RESET T no change

so that all the possible states are included in the
Boolean equation that is written for dependent ele­
ment MTRSW. Note that one block of the diagram
is labeled "impossible" because of the interlocks
indicated in Eqs. (15) and (16). The Boolean equa­
tion for the motor switch can now be written from
the Veitch diagram and comprises two terms as
follows:

MTRSW = (SET * RESET)
+ (MTRSW * SET * RESET) (17)

The first term specifies the T state, and the second
defines "no change" (i.e., it is a memory term). It
is not necessary to have a term for the F state be­
cause it is implied by the nature of binary algebra.

Magnetic Latching Relay

In this device, two permanent magnets are used in
conjunction with a set coil and a reset coil. When
both coils are energized or de-energized simul­
taneously, there is no resultant force to move the
switch; it remains in its previous state. When only
one coil is energized, the relay is set or reset accord­
ingly. Figure 10 is a schematic diagram of a mag­
netic latching relay with 5 millisecond a- and fJ­
delays for the output variables. Let us identify th<!
components by the following names:

LATRLY the latching relay
SNODE input node for the set coil
RNODE input node for the reset coil
SET the set coil
RESET the reset coil

r---------------------------,
SET COIL

SNODE <>-------;.---------i

INPUTS

MAGNET
LATRLya,fj

0--

OUTPUT VARIABLES~

LATRLy a ,6

a AGNET

RNODE 0-0 ---:---------t~t-------:----i

I RESET COIL L __________________________ _

Figure 10. Magnetic latching relay.

The equations for the set and reset coils are

SET = SNODE

RESET = RNODE

(18)

(19)

The possible states of latching relay LA TRL Y may
be shown in the Veitch diagram

RESET

RESET

SET

no change

T

from which the Boolean equation

LA TRL Y = (SET * RESET)

F

no change

+ LA TRL Y * [(SET * RESET)
+ (SET * RESET)] (20)

may be written. This example is similar to that for
the motor switch, but it shows how an additional
item in the Veitch diagram affects the equation for
dependent element LA TRL Y. The output of the
device will appear as a time-delay variable
LATRL ya,fJ in the equations for other elements
of the system. In a particular case we might have
a = fJ = 0.005 seconds.

The latching relay is a frequently used component
coding of its representation in the Boolean equa­
tions for the system, one should code a subroutine
for such a device and merely call the subroutine
with specific arguments (i.e., element names) each
time that type of device is encountered. Figure 11
is the IBM 7094 code for a magnetic latching-relay
subroutine.

Three-Input Flip-Flop

The three inputs might be set, reset and clock rep­
resented by S, R, and K respectively in the following
diagram.

SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS

SIBMAP LATCH
- BASIC MAGNETIC LATCHING-RELAY SUBRBUTINE
• USE AS FBLLBWS
- STR RELAY
• CALL LATCH(RELAY,SET,RESET)
• TRA STATE
• A PARTICULAR CASE MIGHT BE
• STR LR234 BEGIN EQUATIBN FBR LATCHING RELAY
• CALL LATCH(LR234,LR234S,LR234R)
- TRA STATE END EQUATIBN FBR LATCH RELAY LR234

ENTRY LATCH
LATCH CAL. 4,4

ORA. 5,4
COM
SLW T
CAL. 4,4
ANA. 5,4
ORA T
ANA. 3,4
SLW T
CAL. 5,4
COM
ANA­
ORA
TRA
BSS
END

4,4
T
1,4
1

RETURN TB BBOLEAN EQUATIBNS
T

Figure 11. Magnetic latching-relay subroutine.

S t----- Q
FF

R --------~ r--------Q
~----_r--------~

K __________ ---J

D --------I
E -------I

125

OOCOOCOO
00('0(001
CCC00002
OOCOOC03
0000CC04
00COCC05
OCCOC006
0000C007
00CO(C08
OC(OC009
00000010
OOCOOOll
OCCOOC12
00(00013
00000014
OC(0~015.
00(00016
OOCOOOl1.
00000018
OOCOOCIQ
(,)OC00020
00000021
00(00C22
00000021-
00C00021t
00000025..
00(00026

The output Q may be defined by the Veitch diagram for which the Boolean equations are quite straight­
forward. For example

R

R

from which the Boolean equation for the clock­
controlled flip-flop is

Q = (K * S * R) + Q * [K * (R * S + R * S),
+ K] (21)

This type of flip-flop is used in digital logic design
where the set and reset signals Sand R might come
from gating logic such as

A --------I

B -------IJ....-_..J S

S (A * B) + C

R (0 + E) * H

(22)

(23)

The input signal K to the flip-flop might come from
a "one-shot" pulse generator M, a single input
device, where J is the input to device M which gen­
erates a pulse 0.5 msec wide.

J-------t M I-------K

M = J (24)
Then

K = J * M O
•
OOO5

, ° (25)

or a simpler expression is

K = J * JO
.
OOO5

, ° (26)

126 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

However, if the input K to the flip-flop comes from
a l-KC clock V,

p----t V t-----K

whose input is P, then

K = p * yO.0005.0.0005 (27)

for the signal K, and

y P * K (28)

for the l-KC clock.

REFERENCES

l. Y. N. Chang and O. M. George, "Use of
High-speed Digital Computers to Study Per­
formance of Complex Switching Networks In­
corporating Time Delays," AlEE Transactions, vol.
78, pt. I, pp. 982-987 (1960).

2. T. C. Preston and E. A. Estrine, "Spacecraft
Electrical System Analysis," IEEE Proceedings of
International Conference on Aerospace Electrotech­
nology, vol. AS2, no. 2, pp. 623-629 (1964).

3. S. H. Caldwell, Switching Circuits and Logical
Design, John Wiley and Sons, New York, 1958.

4. H. M. Markowitz, B. Hausner and H. W.
Karr, SIMSCRIPT, a Simulation Programming
Language, Prentice-Hall, New York, 1963.

SIMULATION OF A MULTIPROC[3S0R COMPUTER SYSTEM

Jesse H. Katz
International Business Machines Corporation, Scientific Center

Los Angeles, California

1. INTRODUCTION

Computer simulators have generally been con­
structed at one of two levels of detail: the instruc­
tion level or the bit-time (logic) level. Such simula­
tors have been produced for many years now and
their value is well established. By contrast, only
minor attention has been given to simulating com­
puter systems at a macroscopic level. One type of
macro-level simulator has been reported recently by
Hutchinson '; in his model the simulated system
consists of an entire computation center, with the
computer representing merely a component.

As computer systems grow increasingly complex
the macro-level modeling of such systems becomes
increasingly useful. By applying such a model one
can predict the performance of the system on a pre­
scribed job load, and/or evaluate the effect of var­
ious parameters on system performance.

In this paper we report on an experimental model
that is applicable to a class of multiprocessor oper­
ating systems including IBM's Direct-Couple Oper­
ating System (DCS). The model has enabled us to
evaluate the effect of selected hardware parameters,
software parameters and environmental parameters
on the performance of a DCS-type multiprocessor
operating system. The principal measures of system
performance produced by the model are statistics
on turnaround time, throughput, equipment utili­
zation, and job queues.

The paper is in eight sections. Section 2 discusses

127

the main features of the existing Direct-Couple
Operating System. Section 3 sketches the simulated
system treated by the model. Section 4 gives an
overview of the simulation system, which consists
of two computer programs-the Job Generator and
the Simulator. Section 5 discusses the Job Gener­
ator, an auxiliary program which generates the
properties of specific sets of jobs that are fed to the
Simulator. Section 6, the principal section of the
paper, discusses the Simulator itself. Section 7 dis­
cusses the analysis supporting the specification of
the Overhead Analy.zer, an important component of
the Simulator. And Section 8 summarizes the main
findings.

2. MAIN FEATURES OF THE DIRECT­
COUPLE OPERATING SYSTEM

A main purpose of the multiprocessor model is
to evaluate the Direct-Couple Operating System.
Thus DCS, as actually implemented, is of central
importance in the model. DCS is described in vary­
ing levels of detail in appropriate documents of the
IBM Systems Reference Library. 2-4 In this section
we discuss its main features. The section is offered
as background for subsequent sections of the paper.

The development of DeS is a natural result of
two major trends in computer development. One is
the trend towards multiprocessing computer sys-

128 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

l!.~ ~!x_ ~a~ y.!~c~s.!i21i. ~!t.:.~
• Performs executilln of DCS

program itself
• Services 709x I/O requests
• Selects jobs for 709x
• Provides for man/machine

communication

Channel A

IBM 1402 Card Read Punch
_____ ~nit.!. _____ -_ fo-

• Provide for punched
card I/O

• Provide for printed output

IBM 1014 Remote
___ .!n.s'!!~:'LU2i.! ___ - - fo-

• Provides additional
facilities for man/machine
communication

(l!.M_ ~~"-~a!.a y.!~c~s!.!'!¥J>r.s.!e!."
DC Channel • Performs job processing

• Requests I/O via 704x

L _____ -,
Channe,l B I

1-___ ...-,J!.lB""M-!.9Q4_~a~_C.!'~n~e.! _____ _

• Provides direct link from 1301
to 709x for transmitting 709x
programming systems

I
__ J!!~ .!.3.2 !....~i!k_S.!o.!~.:. __ _

• Provides for residence of
709x programming oystems

• Provideo intermediate otorage
for I/O

• Provide for tape I/O

Figure 1. DCS machine configuration.

terns. The other is the trend towards increasingly
automatic operating systems. Figure 1 shows the
general, machine configuration of DeS and the
principal functions of the various equipments.\

The main advantages of DeS are that 1) it mirti­
mizes the need for operator intervention (and gener­
ally overlaps such intervention with useful compu­
tation) and 2) it processes several jobs in parallel.
The parallel processing of jobs makes it possible
for the system to time-share its various equipments
to a greater extent than is realizable with serial
processing.

In genera], any given job which DeS processes
goes through three phases: a preprocessing phase,
a processing phase and a postprocessing phase.
Each phase consists of one or more stages. The
preprocessing phase consists, of the input and setup
stages; the processing phase consists of the execu­
tion stage; and the postprocessing phase consists of
the breakdown, punch, print and purge stages. An
additional stage, the utility stage, is not associated
with any of the three phases; it occurs in lieu of the
execution stage. The phases and stages, and their
principal functions, are shown in Figs. 2, 3 and 4.

With regard to modeling, three properties of DeS
stand out in importance.

1. Commutator Control. The main loop of the
Des control program consists of a comm utator,
i.e., a sequence of gates (or switches) which re­
linquishes,control to various parts of the DeS con-

I Preprocessing Phase ~

- - - - - - - .!n'po:! E~s..e - - - ._ - - - - '_]_
• Analyzes a job's control cards and

enters job in DCS
• Converts a job's input deck to "DeS"

format and stores on disk':'

- - - - - - - ~e.!u'p E~i..e - - - .- - - - - 'J--
• Selects available tape units
• Signal,S operator to mount tape unitl;
• If necessary, converts input tapes t.o

DCS format and store s on disk

Figure 2. DCS: preprocessing phase.

Prod,:s sing Phase

Figure 3.

I
I
I
L_

.Selects job irom queue for processing
• Transmits (part of) job's input file to

704x buffers
.Establishes 704x buffers to receive

job's output
• Transmits appropriate programming

system (DC-IBSYS) to 709x
.Transfers control to job via DC-IBSYS

_______ U.!i~tr E~s..e:' ___ -_-_-_-_-_g_
• Performs tape-to-print I tape -to-punch

and card-to-tape operations for records
in DCS format L-________________ __

DCS: processing phase.

I- ___ ~~a~~~'!. ~~~ ____ _
eIf necessary, deblocks

709x output (from DeS for­
mat) and transmi,ts to tape

e Rewinds tapes and returns
them to availability status

.If necessary, deblocks 709x
output for (simulated) 720
printing

Postprocessing Phase ...-_+-__ --1 • Punches output previously ,
r- - - - - - ~uE-<:..h l'~.s.e_ - - __]

Figure 4.

stored on disk

r- - - - - - ~rin.! ~t~.I~ - - - __]

I---.....f • Prints output previously
stored on disk

r- - - - - .!:'~ll.e_S.!a.B':.. - - - __]

• Purge s data pertaining to
job from 704x and disk L-__ -I

DCS: postprocessing phase.

SIMULA TION OF A MULTIPROCESSOR COMPUTER SYSTEM 129

trol program for only very short bursts of time. *
Therefore, in a strictly imitative model, the model
clock would advance in microscopic increments.
This renders a strictly imitative approach incom­
patible with a macro-level model.

2. Parallel Processing. The fact that DCS proc­
esses jobs in parallel means that the model must
view all jobs in the system concurrently. This re­
quirement has led to the system-state approach
described in Section 6.

3. Facility Sharing. For efficiency purposes cer­
tain facilities within a multiprocessor system are
generally shared by several jobs. An important
instance of facility-sharing in DCS is the sharing of
the disk by programs residing on the 709x and 704x.
Whenever programs on both computers make com­
petitive demands for the disk, one program is de­
layed while the other is serviced. Thus, the sharing
of facilities is a major contributor to overhead t
occurring in a multiprocessor system. The treat­
ment of overhead in the model is of basic impor­
tance and is handled by the Overhead Analyzer.

3. THE SIMULATED SYSTEM

The extent of the simulated system is indicated in
Fig.5.

An individual job may be submitted by a pro­
grammer at a remote station or a remote terminal;
it is at this point in time that simulation of the job
begins. Simulation of the job continues until the
time the job is returned to the originating station or
terminal. Thus, the model is able to give simulated
results on turnaround time. The gross events for a
job submitted at a station are the following:

• A messenger picks up the job at the sta­
tion and transmits it to keypunching
and/or "central in" of the computer sys­
tem.

• The Job is processed by the computer
system proper and stacked at "central
out" of the computer system.

• A messenger picks up the job at "central
out" and delivers it to the originating
station.

For a job submitted at a remote terminal, messenger
pickup service is not required; messenger delivery

*A multiprocessor control program is mechanized in this way
in order to (try to) keep the various equipments in the system
continually busy.

t Overhead, in a general sense, is defined as time not devoted
to the performance of directly useful work. Overhead is defined
in a numerical sense under "Updating the Matrix" in Section 6.

r' -------------:1
Remote I 0 0 0 1
Stations 1 • • • I L ______________ .J

Key Central
Punch In

Central
Out

r--- - ----------,

L _____________ J

Computer System Proper

Figure 5. Simulated system.

.----. o
o

•
•
•

o ___ .J
Remote

Terminals

service mayor may not be required, depending on
whether or not off-terminal output is generated.

An individual job is simulated at a more detailed
level during its passage through the computer sys­
tem proper. Here, a job is simulated at the "stage"
level. Thus, the model is able to give simulated
results on throughput time, i.e., time through the
computer system proper. Figure 5, Computer Sys­
tem Proper, shows the 12 stages included in the
model. In a typical case a job might be processed
by the following stages:

Card input stage-to read job's input onto disk;
Setup A stage-to mount an input tape for the job;
Setup B stage- to convert contents of input tape to

an internal processing format;
Execution stage-to perform job's main execution

(input from disk and output to disk);
Breakdown stage-to reconvert tape output and re­

lease tape;

130 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Punch stage--to punch output stored on disk; and
Print stage-to print output stored on disk.

The arrows shown in Fig. 5 indicate the preced­
ence relations among stages. This concept is an im­
portant one in connection with a multiprocessor
system and will be discussed in Section 6 (under
"Software Parameters").

4. OVERVIEW OF THE SIMULATION
SYSTEM

The multiprocessor simulation system (Fig. 6)
consists of two computer programs: the Job Gener­
ator and the Simulator.

The Job Generator is an auxiliary program which
generates the properties of jobs that are fed to the
Simulator. The program accepts as input the sta­
tistical properties of the user's job population. Its
output consists of parameters that characterize a set
of specific jobs; the set represents a sample drawn
from the user's population of jobs.

The Simulator accepts two general kinds of input:
1) the output produced by the Job Generator and 2)
user-supplied input. The latter includes parameters
that characterize the hardware system, the software
system, and the environment of the computer
system. Output from the Simulator consists of
various statistics that give measures of system per­
formance.

The Simulator consists of two parts: the Simula­
tor Proper and the Overhead Analyzer. The Over­
head Analyzer is subordinate to the Simulator
Proper and services the Simulator Proper on de­
mand. The Simulator Proper is virtually inde­
pendent of the computer system configuration, the
configuration-dependence being buried almost ex­
clusively in the Overhead Analyzer.

User-supplied Input:

5. THE JOB GENERATOR

An individual job fed to the Simulator is charac-
terized by 21 parameters:

1. Job identification number.
2. Time-of-arrival in system.
3. Station or terminal at which job ar-,

rives.
4. Job priority, e.g., 0,1,2, ... , with

"zero" the lowest priority.
5. Maximum time in execution stage, as

specified by programmer. *
6. Maximum number of lines of printed

output, as specified by programmer.
7. Maximum number of cards of punched

output, as specified by programmer.
8. Keypunching time.
9. Whether job enters computer system

via cards or tape.
10. Whether I/O is direct mode or com­

patibility mode. t
11. Rate of I/O calls during execution

stage.
12. Number of cards of input.
13. Number of characters of remote termi­

nal input.

·Parameters (5), (6) and (7) are programmer-specified cutoff
parameters.

t Two modes are available in DCS for data transmission be­
tween the 709x and 704x: direct and compatibility. Direct
mode I/O conventions take full advantage of DCS facilities
whereas compatibility mode I/O conventions do not; thus direct
mode transmission is faster. Jobs written in FORTRAN IV,
COBOL and MAP operate in the direct mode inasmuch as the
IBM 7090/7094 IBJOB Processor operates on DCS in the direct
mode. Other kinds of jobs written for the standard 709x Data
Processing System operate on DCS in the compatibility mode.

• simula tion control parameter s SIMULATOR

.hardware parameters r------------,
• software parameters

I I • environmental parameters I
-,

PART I:
I ~ Meas

r--- r---- J.. SIMULATOR PROPER I Sy
Statistical T I Perfo
Properties JOB Parameters for I ~ . I """-of User's Job GENERATOR Specific Set of Jobs

I I Population PART II:
I 1

-J ures of
stem =:e

I OVERHEAD ANALYZER I

I I
I
I I
L ___________ --'

Figure 6. Simulation system.

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 131

14. Base time* for setup A stage.
15. Base time for setup B stage.
16. Base time for execution stage.
·17. Base time for utility stage.
18. Base time for breakdown stage.
19. Number of cards of punched output.
20. Number of lines of printed output.
21. Number of characters of remote termi-

naloutput.

It is the function of the Job Generator to construct
sets of job parameters that reflect the actual jobs of
a particular user's installation. Thus, the input to
the Job Generator consists of statistics on the user's
job population. The input consists mostly of 1)
frequency distributions for individual job param­
eters and 2) data specifying correlations among
various parameters.

In order to help specify the generator an extensive
analysis was made of a full month's actual data of
a large aerospace company. The analysis included
the computation of frequency distributions, means
and standard deviations for all job variables, as well
as the computation of scatter diagrams and cor­
relation coefficients for various pairs of variables.
In addition, statistical significance tests were made
in order to insure that the data sample was suf­
ficiently reliable.

6. THE SIMULATOR

In this section we describe the Simulator itself.
The section consists of six parts. The first two dis­
cuss input and output of the Simulator respectively.
The third part discusses the basic approach of the
model, the system-state approach. Part four pre­
sents the model logic. The fifth part reviews some
basic concepts in Simscript, the language in which
the model is mechanized. And the final part de­
scribes the program organization of the Simulator.

Simulator Input

In addition to the sets of job parameters fed to the
Simulator (Section 5), four other classes of param­
eters are required: simulation control parameters,
hardware parameters, software parameters and en­
vironmental parameters.

Simulation Control Parameters. Parameters that
control simulation include 1) time simulation be-

*Base time for a multiprocessor stage is the processing time
for that stage under conditions of "no overhead" in the multi­
processor system. In general, actual processing time for a stage
is greater than base time due to the existence of overhead.

gins, 2) time observation begins,t 3) time simulation
ends, and 4) options governing simulation output.

Hardware Parameters. Hardware parameters in­
clude 1) number of read-punch units, 2) number and
types of printers, and 3) number of remote termi­
nals. Thus, hardware parameters serve to specify
an equipment configuration.

Software Parameters. Software parameters enable
us to study the effect of scheduling jobs within a
multiprocessor system under various scheduling
policies.

Fixed Versus Dynamic Stage Scheduling. One
such parameter is fundamental and specifies the
stage scheduling mode: fixed or dynamic. DeS,
as implemented, schedules job stages in a fixed
sequence, i.e., a given job has its stages executed in
an unvarying sequence each time it is run. It is
possible" however, for a multiprocessor control
progranl to schedule job stages dynamically, i.e., in
accordance with on-the-spot conditions within the
system. The idea of dynamic scheduling in connec­
tion with parallel processing of jobs has been sug­
gested by Leiner et al.6

With regard to dynamic scheduling the concept
of precedence relations is basic. In Fig. 5, if two
stages are connected by arrow (e.g., execution and
breakdown), then one stage (execution) must pre­
cede the other (breakdown). However, if two stages
are not connected by arrow (e.g., punch and print),
then the order in which the stages are executed is
immaterial. Under the dynamic scheduling option
the model observes the stage precedence relations
shown in Fig. 5, with the pool queue stage holding
the queue of jobs scheduled for the punch, print,
and remote terminal output stages.

Stage Queue Disciplines. Each stage in the simu­
lated computer system has a job queue associated
with it. For each job queue there is a queue disci­
pline which specifies the basis on which jobs in the
queue are ranked for service. The queue disciplines
to be invoked at various multiprocessor stages are
specified by means of a class of software parameters.

At the print stage, for instance, one might choose
to service jobs in the queue 1) on the basis of prior­
ity and time-of-arrival in the computer system; 2) on
the basis of priority, maximum number of lines of

tIn simulating a traffic system it is sometimes useful to con­
sider the simulation period as consisting of an initialization
period followed by an observation period. This enables the user
to suppress the gathering of statistics while the system is building
up into a more-or-Iess "steady state." The feature has been used~
for example, in the simulation of an automobile traffic network.

132 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

printed output, and time-of-arrival in the computer
system; or 3) on some other user-specified basis.
Each of these options is available by parameter,
with option (3) requiring user-supplied code in the
program.

Queue discipline options are also available at the
execution, punch, terminal input and pool queue
stages.

The implementation of queue discipline options
in the model raises a question in Simscript. In the
terminology of Simscript the problem of ranking
jobs in a queue becomes the following: How can
the entities belonging to a Simscript set be ranked
on the basis of n attributes, given that Simscript
provides machinery for rankipg on the basis of one
attribute only? A discussion of the problem is given
in the Appendix.

Cutoff Parameters. A final class of software
parameters specifies 1) the maximum time any job
can spend in the execution stage; 2) the maximum
number of lines of printed output for any job; and
3) the maximum number of cards of punched output
for any job. These installation-specified cutoff
parameters are used by the multiprocessor system
in the event the programmer himself does not
supply overriding cutoff parameters.

Environmental Parameters. Environmental param­
eters specify the environment within which the com­
puter system operates. These parameters include
the following: 1) the number of stations in the sys­
tem, 2) the messenger pickup and delivery schedules
at each station, and 3) the messenger transmission
times from (to) each station to (from) the computer
system.

Simulator Output

Simulator output reports are delivered at inter­
mediate points of simulation as specified by user
option and at the end of simulation. Each report
contains two types of statistics: updating and cumu­
lative. Updating statistics are those that are gath­
ered since the issuance of the previous output re­
port, while cumulative statistics are those that are
gathered since the beginning of observation.

Before describing the items of output on a report,
we define four kinds of statistics:

1. Throughput time for a job is defined as the time
it takes for the job to pass through the multi­
processor com puter system.

2. Turnaround time for a job is defined as the dif­
ference between the time the job is returned to a
station~nd the time the job· was submitted to the
station.

3. Each job is assigned a sequence number when
it enters the computer system. Similarly each job
is assigned a sequence number when it exits from
the computer system. The computer system service
displacement for a job is defined as the computer
system entrance number minus the computer syst1em
exit number. The absolute computer system service
displacement is defined as the absolute value of the
computer system service displacement.

4. Corresponding to (3), a· job is also assigned
sequence numbers when it enters the system at a
station and when it leaves the system. This gives
analogous definitions for system service displacement
and absolute system service displacement.

The definitions in (3) and (4) make it possible to
measure the extent to which the (computer) system
deviates from being a first-in, first-out service fa­
cility.

A simulator output report contains ten c:lasses of
statistics:

1. Overall performance of the system­
including the mean, high, low, range
and standard deviation for each of the
following: throughput time, turn­
around time, absolute computer sys­
tem service displacement, and absolute
system service displacement.

2. Job queues at stations.
3. Job queues at the various computer

system stages.
4. The activity/inactivity of the various

computer system stages.
5. Computer system stage performance,

including base time vs overhead time.
6. The activity/inactivity of computer

system equipments.
7. Throughput time by priority.
8. Turnaround time by priority.
9. Turnaround time by station.

10. The distribution of jobs within the sys­
tem.

Figures 7, 8, 9 and 10 illustrate selected sections
of output in more detail. Figure 7 illustrates job
queues at computer system stages. Figuw 8 illus­
trates computer system stage performance. Figure
9 illustrates activity/inactivity of computer syst1em
equipments. And Fig. 10 illustrates throughput
time by priority.

In addition to the aggregative statistics above,
detailed statistics are collected on each individual

. job processed by the Simulator.

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 133

SECTION 3. STAGE QUeUE S

SU8SFC T10N 3.1 UPDA TI NG

NO. OF JOIiS NO. OF JOBS HIGH NO. OF LOW NO. OF MEAN NO. OF
IN QUEUE IN QUEUE JOBS IN OUEUE JOBS I~ QUEUE JOBS IN QUEUE TI ME TI ME JOB-

ST4GE A T START OF AT END OF DURING DUlliNG DURI NG QUEUe QUEUE CkJEUE
REPORTI NG REPORTING REPORTING REPJRT I'4G REPORTING EMPTY NON- HOURS

PERIOO PERIOD PERIOD PER DO PERIOD EMPTY

(11 CARD INPUT 0 0 26 0 2.1911 2.1561 1.2439 11.1645
C 21 TAPE Il,iPUT 0 0 0 0 o. 4.0000 o. o.
C 31 TERM INAl INPUT 0 0 0 0 o. 4.0000 O. o.
141 SETUP A 0 0 1 0 o. 4.0000 o. o.
(51 SETUP B 0 0 0 0 o. 4.0000 o. o.
161 EXECUTION 0 26 32 0 8.9819 1.6216 2.3124 35.9216
11) UTILI TY 0 0 1 0 o. 4.0000 o. o.
181 AREAKOOWN 0 0 0 0 o. 4.0000 o. o.
191 POOL QUEUE 0 0 0 0 o. 4.0000 o. o.
(10) P UNC H 0 0 4 0 0.0541 3.9076 0.0924 0.'2188
C 11) PR INT 0 0 2 0 0.0434 3.8839 0.1161 0.1738
I 12) TERMINAl OUTPUT 0 0 0 0 o. 4.0000 o. o.

Figure 7. Job queues at computer system stages.

SECTION I). STAGE PERFORMANCE

SUASFC T ION 1).1 UPOA TI N:>

STAGE DC SYSTEM STAGE GROSS NET
STAGE 01 MEN- BASE OVERHEAD EXECUTION OVERHEAD MUL TI PRoceSSI NG MULTI PROCESSING

111 CAItO INPUT
C 21 TAP!, IfIIPUT
131 TERMINAL INPUT
141 SETUP A
f 51 SF.TUP R
161 FXFCUTIUN
(71 \JTIl ITY
(816REAKOr:JWN
f 101 PUNCH
Cll)PRINT
(12) TERMINAl OUTPuT

SION

1
1
1
1
1
1
1
1
1
3
1

SECTIO~ 6. EQUIPMENT ACTIVITY/INACTIVITY

SUBSECl ION 6.1 lIPOA TI NG

EOUIPMENT

709X DATA PROCESSING SYSTEM
704X OATA PRnCESSING SYSTEM
CARD READER 1
CARn PUNCH 1
PRINTER 1
PR INTFI< 2
PR INTFR :\
R FIoIOTE TERMINAL

TI ME TIME TIME FACTOR FAC TOR FACTOR

111 121 131- 141- 151- 161-
11hl21 1311111 C 31/SYS BUSY T IlIlSYS BUSY T

1.~059 0.0200 1.3259 1.0153 0.49 0.49
O. o. o. o. O. o.
O. O. o. o. O. O.
0.4178 O. 0.4178 1.0000 0.16 0.16
O. O. o. o. o. O.
2.5466 o. 2.5466 1.0000 0.95 0.95
0.0849 O. 0.0849 1.0000 0.03 0.03
O. o. o. o. o. O.
0.3067 0.0599 0.3666 1.1955 0.14 0.11
3.0251 0.3463 3.3714 1.1145 1.26 1.13
O. o. o. o. o. o.

Figure 8. Computer system stage performance.

DISTRIBUTION OF OBSERVATION TIME
BY EOU I PMENT BUSY/I Dl. E

Tl ME PEPCENTAGE
BUSY IDLE BUSY [OLE

2.5466 1.4534 63.7 36.3
2.6857 1.3l't3 67.1 32.9
1.3259 2.6741 33.1 66.9 \
0.3666 3.6334 9.2 90.8
1.6554 2.3446 41.4 58.6
1.2446 2.1554 31.1 6t1.9
O.47i4 3.5286 11.8 88.2
o. 4.0000 o. 100.0

HSTRIBUTION OF SYSTEM bUSY TIME
BY EQUIPMENT 8USY/IDLE

TIME PERCENT AGE
BUSY IDLE BUSY IDLE

2.5466 0.1391 94.8 5.2
2.6851 o. 100.0 o.
1.3259 1.3598 49.4 50.6
0.:\666 2.3191 13.7 86.3
1.6554 1.0303 61.6 38.4
1.2446 1.4411 46.3 53.7
0.4114 2.2143 17.6 tl2.4
o. l.6851 o. IDO.O

Figure 9. Activity /inactivity of computer system equipments.

SECTION 1. THROUGHPUT TIMF BY PRIORITY

PR lOR I TV

o
1

NUMBER OF JOB S

Bl
3

THROUGHPUT

MEAN HIGH

30.19 18.63
10.96 18.10

Figure 10. Throughput time by priority.

TIME (MINUTESI

LOW RANGE STANDARD
DEVIATION

0.55 18.08 21.52
3.13 15.51 6,.3~

134 PROCEEDINGS~SPRING JOINT COMPUTER CONFERENCE, 1966

The System-State Approach.

In simulating a multiprocessor system at a macro­
level we have rejected a strictly imitative approach
and have constructed a model based upon the sys­
tem-state approach. The basic concept in this ap­
proach is that the multiprocessor computer system
is consid~red to "change state" whenever any job in
the computer system completes any stage or when­
ever a new job enters the computer system. Each
such change of state is accompanied by an advance
in the model clock.

The system-state approach yields four important
benefits:

1. The model clock is advanced in the largest
possible incremen,ts, consistent with a faithful simu­
lation. Consequently, the resulting model is at an
appropriate level of abstraction and its running time
is relatively short.

2. The system-state approach is conceptually
straightforward whereas a strictly imitative ap­
proach would have been conceptually difficult. By
definition, a strictly imitative approach is one in
which the model logic resembles in very large meas­
ure the logic of the multiprocess or control program
itself. Hence, a strictly imitative approach leads to
model logic which tends to become as complex as
multiprocessor control program logic.

3. In order to characterize multiprocessor over­
head in the model, it suffices to measure actual

2 3 4

~
card tape ter- setup
input input minal A

row·vector
input

d = dimension X X X X

2 P = queue discipline X X X X

3 q = job queue X X X X

4 e = job execution X X X X

5 t = base time remaining X X X X

6 v = overhead accumulation X X X X

7 s = successor stages X X X X

overhead empirically, i.e., by observing the effects of
overhead in an actual multiprocessor system. This
kind of measurement has turned out to be feasible.
The kind of measurement required in support of a
strictly imitative model might not have been feasi­
ble. A strictly imitative model would have required
an extensive analysis and timing of the multiproces­
sor control program itself.

4. The model is relatively independent of the
computer system configuration being modeled. The
model can be viewed as consisting of two compo­
nents: a large-sized configuration-independent
component and a small-sized configuration-depend­
ent component. Since these components are prac­
tically distinct, the effect of making a change to the
computer system configuration can be determined
on the basis of making a corresponding change to
the appropriate part of the configuration-dc;~pend'ent
component of the model.

Model Logic

In the system-state approach the statt! of the
multiprocessor computer system is repres1ented by
a 7-by-12 matrix (Fig. 11). The 12 columns of the
matrix represent the 12 stages of the model. The
movement of a job through the computer system
is represented in the model by the movement of a
job from column-to-column of the matrix.

Not all elements of the matrix are relevant. Some
elements are never relevant; some are rele:vant for

5 6 7 8

setup execu- utility break-
B tion down

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

9 10

pool punch
queue

X X

D F

D F

0 X

0 X

0 X

D X

11

print

X

F

F

X

X

X

X

12

ter­
minal
output

X

F

F

X

X

X

D

Figure 11. System-state matrix.

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 135

fixed stage scheduling only; and some are relevant
for dynamic stage scheduling only.

The System-State Matrix. The system-state matrix
consists of seven 12-dimensional row vectors.

1. Dimension Vector. Let di denote the ith ele­
ment of the dimension vector d. The value di speci­
fies the number of jobs which the ith stage can
process concurrently. We have

d = (a, 1, c, 1, 1, 1, 1, 1,0, a, b, c)

where a = number of read-punch units, b = num­
ber of printers, and c = number of remote terminal
units. Note that d9 = ° since no job can be proc­
essed by the pool queue stage which is merely a
queue for punch, print, and remote terminal output
under dynamic stage scheduling.

2. Queue Discipline Vector. Let Pi denote the ith
element of the queue discipline vector p. The value
Pi is a code which specifies the queue discipline to be
invoked to rank the jobs in the queue belonging to
the ith stage.

A discussion of queue disciplines is given above
(under "Software Parameters").

3. Job Queue Vector. Let q; denote the ith ele­
ment ofthejob queue vector q.

For i =;tf 9, qi identifies the set of jobs waiting for
ith stage execution. Thus qi is a vector. The job
identification numbers constituting this vector are
ordered according to Pi' the queue discipline for ith
stage execution.

For i = 9, qi identifies the set of jobs waiting for
10th, 11th or 12th stage execution. Again qi is a
vector. This vector is relevant only in the case of
dynamic stage scheduling. The job identification
numbers constituting this vector are ordered accord­
ing to P9.

4. Job Execution Vector. Let ei denote the ith ele­
ment of the job execution vector e.

Then ei, i =;tf 9, is itself a vector whose jth element
is denoted ei,j' j = 1, ... , di . If ei,j > 0, then ei,j is
the identification number of the job being executed
in the j th position * of the ith stage. If e i,j = 0,
then no job is being executed in the jth position of
the ith stage.

The value e9 is null.

5. Base Time Remaining Vector. Let ti denote the
ith element of the base time remaining vector t.

Then t i , i =;tf 9, is itself a vector whose jth element
is denoted ti,j' The value ti,j specifies the base time

*The number of "positions" of the ith stage equals di.

remaining for the job in the jth position of the ith
stage.

The value t9 is null.

6. Overhead Accumulation Vector. Let Vi denote
the ith element of the overhead accumulation vector
v.

Then Vi, i =;tf 9, is itself a vector whose jth element
is denoted Vi,j' The value Vi,j specifies the overhead
time which has accumulated for the job in the jth
position of the ith stage.

The value V9 is null.

7. Successor Stages Vector. Let Si denote the ith
element of the successor stages vector s.

Then Si is itself a vector whose jth element is de­
noted Si,j' The value Si,j is in turn a vector that speci­
fies the successor stages for the job in the jth posi­
tion of the ith stage.

Updating the Matrix. The essential steps in updat­
ing the system-state matrix are the following:

1. Overhead Factor Vector. In accordance with
relevant properties of the system-state currently
existing, the subroutine called the Overhead Ana­
lyzer computes the overhead for each job being
processed. Relevant properties include 1) the par­
ticular stages that are active; 2) the number of jobs
that are active in each of those stages; and 3) the
input/output properties of active jobs. The over­
head factor for the job in the jth position of the
ith stage is designated fi,j ~ 1.

An example of an overhead factor is the follow­
ing: Assume "printer 2" has a maximum rate of
1100 lpm and assume that due to overhead existing
in the current system-state its actual rate is 1000
lpm. Thenfll,2 = 1.1.

The analysis supporting the specification of the
Overhead Analyzer is discussed in Section 7.

2. Potential Advancement of Model Clock. The
potential advancement in the model clock is

w = ~~n {ti,jfi,j}, ej,j > 0, j = 1, ... , d j, i

= 1, ... , 12

No job iIi the-system will complete its current stage
until this amount of time passes.

3. Actual Advancement of Model Clock. The
actual advancement in the model clock is

r = min {w,zl

where z is the amount of time remaining before the
next job enters the computer system.

136 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

4. The New Base Time Remaining Vector. Let

t(g) = (t~g») = «t~~»))
1 I.)

designate the value of the t vector following execu­
tion of the gth system-state. And let

e(g) = (e~g») = «e~~»))
1 I.)

designate the value of the e vector following execu­
tion of the gth system-state. Then the value of the t
vector following execution of the (g + 1)th system­
state is

where

(g+ I) {o, e~g~ = ° t. . = I.)

I., t~g.) _ ~, e~g.) > °
I.) fi.j I.)

5. The New Overhead Accumulation Vector. Let

v(g) = (v~g») = « v~~»))
1 I.J

designate the value of the v vector following execu­
tion of the gth system-state. Then the value of the
v vector following execution of the (g + 1)th sys­
tem-state is

where

6. Inter-Stage Movement of Jobs. Any job whose
stage is complete is moved from its current stage to
its new stage queue. As many jobs as possible are
moved from stage queues to stage execution.

Review of Simscript Concepts

The Simulator has been mechanized using the
Simscript language and hence is structured within
the general framework provi~ed by Simscript. The
reader is referred to Dimsqale and Markowitz 7

for a description of Simscript or to Markowitz
et al 8 for a complete reference manual on the lan­
guage. In this section we review by example the
basic Simscript concepts, namely, the concepts of
temporary entity, permanent entity, attribute, set,
exogenous event and endogenous event. Entities,
attributes and sets depict the status of the simulated
system, and events cause changes to the status.

An example of a type of temporary entity is job.
Each job fed to the Simulator is an entity; it is
temporary since in general the job is not present in
the system during the full course of simulation.

An example of a type of permanent entity is

printer. Each printer in the simulated computer
system is an entity; it is permanent since it exists in
the system for the full course of simulation.

Examples of attributes are "number of ,cards of
input" and "time printer busy"; the former is an
attribute of job while the latter is an attribute of
printer.

An example of a type of Simscript set is stage
queue. Each of the 12 stage queues is a set. The
members of each set are the jobs in the queue.

An exogenous event is an event caused by forces
outside the boundary of the simulated syst1em. An
example is the event ENTER, which marks the I~n­
trance of a job in the system.

An endogenous event is an event caused by pre­
ceding events within the boundary of the simulated
system. An example is the event DONE, which
marks the completion of a job on the computer.

Program Organization

The Simulator consists ,of two phases that are ex­
ecuted serially. Phase I performs the simulation and
writes output data on disk, and Phase II delivers the
output reports constructed from this data.

Data Description. The data description of the Simu­
lator is expressed by means of 2 types of temporary
entities and their attributes, 10 types of permanl~nt
entities and their attributes, and 6 types of SI~tS.

Temporary Entities. A temporary entity JOB
exists for each job in the simulated system. This
entity. is described by a total of 46 attributes. A
temporary entity BATCH exists for each batch of
jobs being carried 1) from station to keypunching
and/or "central in" and 2) from "central out" to
station. This entity is described by a total of thlree
attributes.

Permanent Entities. A permanent entity STAGE
(with 29 attributes) exists for each of the 12 stages
in the computer system. A permanent entity ST A­
TION (with 27 attributes) exists for each station in
the system. A permanent entity READ /l?UNCH
(with four attributes) exists for each read/punch
unit in the computer system. A permanent entity
PRINTER (with three attributes) exists for each
printer in the computer system. And a permanc!nt
entity PRIORITY (with 10 attributes) exists for
each job priority level.

In addition to the above, four more permanent
entities serve array-dimensioning functions.

Finally, the (implied) permanent entity SYSTEM
is described by a total of 94 attributes.

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 137

Sets. A set STATION QUEUE is owned by each
station in the system. A set KEYPUNCH QUEUE
is owned by the SYSTEM: A set STAGE QUEUE
is owned by each stage in the computer system. A
set EXECUTION QUEUE is owned by the SYS­
TEM. A set CENTRAL OUT QUEUE is owned
by each station in the system. And a set BATCH
QUEUE is owned by each batch of jobs in the sys­
tem.

The member entities of each of the above sets are
JOB's.

Program Logic. The logic of the Simulator is ex­
pressed by means of 2 exogenous event routines
and 10 endogenous event routines. For supporting
logic the event routines, in turn, call upon 28 sub­
routine subprograms, 3 function subprograms and
10 report subprograms.

Exogenous Event Routines. The routine GO per­
forms program initialization. This routine is the
first in the program to be executed and is executed
once only. The routine ENTER is executed each
time a job is entered in the simulated system.

Endogenous Event Routines. The routine LOOK
is executed at the beginning of the observation
period. This routine performs initialization for
statistics gathering. The routine STOP is executed
at the conclusion of the simulation period. This
routine terminates Phase I of the Simulator and
calls report-writing Phase II. The routine STAT is
executed each time a report is to be issued. This
routine generates output data for the report. The
routine TO is executed each time a messenger picks
up a batch of jobs at a station for transmittal to
keypunching and/or "central in" of tb,e computer
system. The routine KEY is executed each time a
batch of jobs arrives at keypunching. The routine
ON is executed whenever there arrives at the com­
puter system 1) a batch of jobs direct from a. sta­
tion; 2) an individual job via keypunching; or 3) an
individual job via a remote terminal. The routine
DONE is executed each time the computer system
completes processing of a job. The routine FROM
is executed each time a messenger picks up a batch
of jobs at "central out" for transmittal to a station.
The routine EXIT is executed each time a job exits
from the simulated system. And the routine STEP
is executed at the conclusion of each system-state.
This routine carries out the logic indicated under
"Model Logic" above.

7. ANALYSIS OF MULTIPROCESSOR
OVERHEAD

The specification of the Overhead Analyzer repre­
sented a major phase of the modeling process. The
specification was based on an intensive, empirical
analysis of the occurrence of overhead in an actual
multiprocessor system (DCS).

Modification to DeS Operating System

In order to measure actual DCS overhead, the
DCS Operating System was modified so that it pro­
duces a binary tape containing a sequence of "time­
stamps." The time-stamps are created during DCS
operation and stored in 460-word data buffers, just
like other output. The resulting time-stamp data
provides a profile of actual system-states and a pro­
file of individual jobs passing through the computer
system.

Prior to modifying DCS we consulted with DCS
experts on the question of what effect the collection
of time-stamp data would have on actual DCS op­
eration. Their judgment was that DCS operation
would be affected in only a negligible way and that
the act of observing DCS "from the inside" would
not affect significantly our observation results. *
This judgment was shown to be correct by an actual
experiment carried out following modification of
the system. The experiment consisted of running a
set of jobs twice-under standard DCS and under
modified DCS. The running times differed by 15
hundredths of 1 percent-specifically 3 seconds in
some 34 minutes.

Time-Stamp Data

Entries on the time-stamp tape are of three types:
state identifiers, events and I/O counts.

State Identifiers. Each occurrence of a change-of­
state in DCS causes a time-stamp entry identifying
the new system-state.

Events. Each occurrence of an event in DCS causes
an event time-stamp entry. An event time-stamp
consists of four components: 1) type of event, 2)
buffer saturation indicator, 3) job number identify­
ing the job associated with the event, and 4) time of
occurrence. The principal types of events time­
stamped are the following:

* An exception to this is the occurrence of buffer saturation;
the collection of time-stamps induces buffer saturation some­
what earlier than normal.

138 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

• Reading one card from the ith reader,
i = 1,2, ...

• Printing one line on the ith printer, i =

1,2, ...
• Punching one card on the ith punch

unit, i = 1,2, ...
• Typing one character.
• Reading one card image from tape.
• Beginning/ending of DCS purge stage.
• Beginning/ending of system load.
• Beginning/ending of library load.
• Beginning/ending of dump.

I/O Counts. Each occurrence of an end-of-system­
state on DCS causes seven time-stamp entries giving
counts of input/output activity that occurred
during the preceding system-state:

• Number of 709x reads.
• Number of 709x writes.
• Number of 709x non-data selects.
• Number of 709x input J?uffer loads.
• Number of 709x outpu~ buffer loads.
• Number of 704x input buffer loads.
• Number of 704x output buffer loads.

Analysis of Time-Stamp Data

Using routines that print and plot time-stamp
data and that compute overhead factors for speci­
fied system-states, we have been able to construct
appropriate statistical distributions for inclusion in
the Overhead Analyzer of the model.

Table 1 illustrates four sets of overhead factors
collected in 5-second intervals from a 7094/7044
installation. Each of the four columns represents
a cumulative frequency distribution. The meaning
of a typical entry in this table, e.g., entry 45 in col­
umn 2, is as follows: Consider the case where jobs
on the 7094 are in the compatibility mode and is­
sue I/O calls at a rate of less than 4-per-second, and
compute overhead factors for the 1100 line-per­
minute printer every 5 seconds. Then 45 percent of
these overhead factors are 1.04 or less.

8. SUMMARY

With the advent of multiprocessor computer sys­
tems the prediction of computer system perform­
ance on a prescribed job load has become a prob­
lem of considerable complexity. This paper has
described a model whose principal purpose is to
ease this problem. A second ,important purpose of
the model is to determine the effect of varying basic

Table 1. Illustrative Overhead Factors

Cumulative Percentage
Overhead Reader Printer (1100 lpm)

Factor Com patibility I Direct
<4 I/O

calls per > 10 I/O calls
sec per sec

(1) (2) (3) (4)

1.01 64 12 0 4
1.02 76 26 2 10
1.03 78 36 3 22
1.04 80 45 9 26
1.05 87 49 14 30
1.08 89 59 19 36
1.15 99+ 75 27 52
1.30 84 42 68
1.50 91 61 84
2.00 98 77 93
2.50 99+ 91 97
3.00 97 99+
3.50 99+

system parameters-hardware, software and en­
vironmental.

The model is at a macroscopic level, i.e., it at­
tempts a relatively high degree of abstraction of the
real system. This level of simulation has been made
possible in connection with a multiprocessor sys­
tem as a result of using the system-state approach,
the main idea in the model. With simulation at a
macro-level the running time of the program is at­
tractively short. For a sample of the runs com­
pleted to date the ratio of real time to simulatled
time is 195. That is, a typical 16-hour workload
can be simulated in less than 5 minutes. The 5
minutes here refers to 7094 time using a 7094/7044
Direct-Couple System to host the simulation.

Following are some representative questions to
which the model has helped provide answers:
• For a given equipment configuration and a speci- '

fied job load, what improvement in throughput
can be achieved using dynamic stage scheduling
rather than fixed stage scheduling?

• If all jobs submitted from Station 1 are assign1ed
priority level 9 (highest priority) rather than thc!ir
currently assigned priorities, what change will re­
sult in the mean throughput time (and high
throughput time) for jobs submitted from each of
the individual stations?

SIMULATION OF A MULTIPROCESSOR COMPUTER SYSTEM 139

• If a third printer is added to a given two-printer
equipment configuration, what change will result
in the mean number (and high number) of jobs in
the print stage queue? What change will result
in printer equipment utilization? Answer ques­
tions two ways-assuming third printer 600 lpm
and 1100 lpm.

• For a given equipment configuration and a speci­
fied job load, suppose the queue discipline for the
execution stage is changed from 1) priority and
time-of-arrival to 2) priority, maximum time in
execution stage, and time-of-arrival. What
change will result in the mean throughput time
(and high throughput time)? What change will
result in the mean (high) absolute computer sys­
tem service displacement?

• Suppose messenger service is improved by adding
one messenger and by making prescribed changes
in the messenger schedule. What change will re­
sult in the turnaround time at each station?

An indication of the level of effort of the multi­
processor simulation project is the amount of pro­
gramming involved. The Simulator itself consists of
some 2650 source cards in Simscript. The Job Gen­
erator consists of some 375 source cards, also in
Simscript. The modification to DCS consists of
some 650 source cards in MAP. And the routines
that analyze the time-stamp tape produced by the
modified DCS consist of some 2175 source cards,
in FORTRAN and Autocoder.

ACKNOWLEDGMENTS

I am grateful to R. A. Rock and L. A. Verret for
their collaboration on the multiprocessor simula­
tion project, to H. Jacobs for his consulting services
on the project, and to B. Dimsdale for his counsel
and encouragement.

Appendix

RANKING A SET ON n ATTRIBUTES

Simscript provides automatic machinery for rank­
ing the entities of a set on the basis of one attribute.
It is sometimes necessary, however, to rank the

entities of a set on the basis of n attributes. In such
a case one can employ a function that maps n at­
tribute values into a "'composite attribute value"
and rank the set on the basis of the composite
attribute.

Consider, for example, the following problem:
Let n equal the number of attributes on which

the ranking is to be based.
Let the ith attribute "outrank" in importance

the U + l)th attribute, i = 1, ... , n - 1.
Let Xi denote the value of the ith attribute; as­

sume Xi is positive integer-valued, with its maximum
mi; i.e., Xi = 1,2, ... , mi·

Then the n attribute values (Xl, ... , Xn) can be
mapped into an appropriate composite attribute
value by means of the function

n-l n

f(xl, ... ,Xn) = Zn + L Zi II mj
i-I j=i+l

where Zi = Xi if ith attribute is ranked "high" in
Simscript sense (i = 1, ... , n), and Zi = mi - Xi if
ith attribute is ranked "low" in Simscript sense.

REFERENCES

1. G. K. Hutchinson, "A Computer Center
Simulation Project," Comm. A CM, vol. 8, no. 9,
pp. 559-568 (1965).

2. IBM 7090/7040 Direct-Couple Operating Sys­
tem: Operator's Guide, IBM Systems Reference
Library, C28-6384.

3. --: Programmer's Guide, ibid, C28-6382.
4. --: System Programmer's Guide, ibid,

C28-6383.
5. J. H. Katz, "Simulation of a Traffic Network,"

Comm. ACM, vol. 6, no. 8, pp. 480-486 (1963).
6. A. L. Leiner et aI, "Organizing a Network of

Computers to Meet Deadlines," Proceedings of the
EJCC, 1957, pp. 115-128.

7. B. Dimsdale and H. M. Markowitz, "A De­
scription of the' Simscript Language," IBM Systems
Journal, vol. 3, no. 1, pp. 57-67 (1964).

8. H. M. Markowitz, B. Hausner and H. W.
Karr, Simscript: A Simulation Programming Lan­
guage, Prentice-Hall, Englewood Cliffs, N. J., 1963.

MARKOVIAN MODELS AND NUMERICAL ANALYSIS
OF COMPUTER SYSTEM BEHAVIOR*

Victor L. Wallace
Systems Engineering Laboratory

The University of Michigan, Ann Arbor, Michigan
and

Richard S. Rosenberg
Logic of Computers Group

The University of Michigan, Ann Arbor, Michigan

INTRODUCTION

The advent of multiple-access computing, the
increasing variety of processors in systems, and the
growing use of multiprocessing and multiprogram­
ming in computing systems has put many new bur­
dens on the computing system designer-planner­
programmer. The selection of suitable system
structure and programming structure, as well as the
selection of scheduling rules, requires a much more
detailed and precise understanding of the stochastic
behavior of system traffic than has been required in
the past. In short, the "architect" of system hard­
ware and software is finding a need for more and
more insight into the behavior of computers as net­
works of queues and processors.

As a rule, his chief tool for obtaining this insight
has been by the use of Monte Carlo simulations.
However, as the systems gain in complexity, and as
system design becomes more sensitive to the effects
of congestion, these simulations become either too
expensive or their estimations of probability too
imprecise to be viable as tools for exploring system
behavior in depth. Accuracy can be obtained only

*This work was sponsored by the Rome Air Development
Center, Rome, N.Y., under Contract No. AF 30(602)-3558.

141

at the expense of very large samples. Exploration
means even further calculation as parameter values
and structures are changed and solution repeated.
Even if everything has been done to reduce the sys­
tem to the simplest model having the desired
properties, the calculations are still likely to be
extensive (hence expensive).

In this paper we will discuss an approach to the
solution of computing system congestion which is
very often an attractive alternative to simulation
for a system designer or "architect." The approach
is based on the use of finite-state Markov chains
as models for the system, followed by a numerical
solution of a set of algebraic equations for the equi­
librium probabilities of those Markov chains. t
It will be shown that, through the use of an efficient
program for the accurate solution of large problems
of the above type, much less computation time is
needed than would be needed to simulate the same
system.

This technique also shows promise of providing a
procedure which is well suited to use on-line in a
man-machine interactive mode. In such a mode, a

tFollowing Churchman, 1 we note that since our procedure
does not involve "sampling" of the model, it is not a simulation
technique at all.

142 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

user of the procedure should be able to explore
systems freely, and without excessive delays, while
solutions to the problems he poses are prepared for
him. He should also receive precise, reproducible
answers which can be rationally compared with the
results of other analyses and other systems. The
procedure described here comes close to these goals
in many respects.

MARKOV CHAIN MODELS

It should first be pointed out that the mathe­
matical models known as Markov chains represent
a quite broad and useful class of stochastic models
for computer systems. Indeed, most models usually
represented by networks of queues and processes
can be approximated quite closely by some model
derived from a Markov chain. However, the usual
problem encountered in the use of these models is
one of size; the number of states in the chain repre­
senting the system can easily exceed all reasonable
bounds. By going to numerical methods, rather
than the analytical methods typical of queueing
theory, it is possible to deal with much larger
Markov chains and hence to make substantial use of
their generality.

Now, in the most common cases we regard the
system being modeled as an interconnection of
queues and processes,~ with a prescribed stochastic
flow of tasks among them. In this context, any
processing capability which can be occupied by at
most one task at a time can be considered a process.
Thus an arithmetic processor, a segment of memory,
a data channel, a stored program, a console, or even
an operator or user can be considered processes.
Also, in this context, a queue is any list or collection
of uncompleted tasks whose routes are stochasti­
cally indistinguishable. There will usually be an
integer variable associated with each queue or group
of processes:. e.g., the number of tasks waiting in
that queue, or the number of processes in that group
currently occupied by tasks. Also associated with
each process will be a random time variable repre­
senting the duration of time that a task will occupy
the process. At the end of that interval the values of
some of the integer variables will change, due to the
motion of the task from the process to its next
process. Many things can happen to this flow:
processes may be blocked by other processes, pre­
emptions may occur, priorities may be assigned.
Whatever happens it should be represented in the

tIn queueing theory, the term server would be more common.

model. However, in order to be solved it. must be
described in terms of a mathematical model which
is capable of solution.

As a practical matter, the most useful model for
the purpose is the Markov chain, which will be
described in the following sentences. For the sake
of generality, and in order not to lose the ability to
represent blocking, preemptions, priorities, and
other complications, this discussion is relatively
abstract and general.

The process of creating a Markovian model
whose characteristics approximate a given com­
puter system having any complexity in its rules of
behavior is, broadly speaking, a part of queU(~ing
theory, and a thorough presentation of that process
will not be attempted here. It suits our purposes
merely to indicate the nature of the Markovian
restrictions, and so to give assurance that: Markov
chains can be often applied as models. A paper by
Smith,2 appearing in another session of this con­
ference, presents a discussion of several such models
which represent aspects of a time-shared computer
system, along with conclusions derived from RQA-l
analysis. That paper will serve to illustrat(~ the next
remarks more concretely. Two previous applica­
tions of Markovian models and of RQA-l have also
been discussed elsewhere,3,4 and serve as good il­
lustrations.

Consider the state of a system to be described by
an n-component vector ~= {Xt.X2, •.. ,XnJ. Let
the components Xi be integer-valued and 0 ~
Xi ~ N i , where Ni is a known finite integer., for e:ach
i = 1,2, ... , n. Let the value of the state:!. at any
particular time t be represented by a random vari­
able ~, so that {~/' 0 ~ t < ooJ represent.s a con­
tinuous-time stochastic process. Since the value of
~, will vary with time by distinct jumps, the time
intervals between successive jumps can be desig­
nated by a sequence of random variables {Tt. 72, ... J.

V nder certain conditions, the process 2£, can be
represented by a Markov chain. Let

i = 1,2, ... (1)

and
to = (J+ (2)

so that the Ii' i = 1,2, ... , represent time values
immediately after occurrence of a jump. Then let
the following be true:

(1) For every pair of states (1, m) represent­
ing a jump from 1 to !!1 which is possi-

MARKOVIAN MODELS AND NUMERICAL ANALYSIS 143

ble (probability ~ 0), the sequence (TI'
T2, ••• J is a family of conditionally in­
dependent5 random variables: given
Xt· I = l,x t . = m.

(2) F~~ each ia~d each fixed pair of states
Q, m) in the above set

pr(Tj S T' I ~tj_1 = l,~tj = mJ
= 1 _ t:-"!..!!!.T'

where v.!. • .!!!. is a positive constant.

(3)

Under these circumstances ~t is a continuous-time
finite-state Markov chain.

If we interpret the state variables as represent­
ing values of queue lengths, numbers of occupied
processes of a particular type, etc., and if we inter­
pret the times tj as the times just after arrivals occur
or processes complete, then what this implies is that
the intervals of time between arrivals, and the inter­
vals of time during which a task occupies a process,
must be

1. Independent of all other inter-arrival or
occupancy times, and

2. Exponentially distributed random vari­
ables when the state at the beginning of
the interval, and the consequences of
ending the interval, are known.

However, since state variables may represent any
integer variable related to the system modeled, the
latter interpretation is sometimes unnecessarily re­
strictive. It should especially be noted that fre­
quently a model which is not Markovian in a par­
ticular defined state space will be Markovian if
several additional variables are added. One usually
attempts to choose as state variables Xj the smallest
set of variables for which ~t is Markovian.

The requirement that all processing intervals must
be exponentially distributed, in the sense of Eq. (3),
is often too severe a restriction. Fortunately, there
are several recourses available. First, there is a con­
siderable range of derived distributions which can
be constructed by appropriate interconnection of
"exponential" processes.6 In other words, a "non­
exponential" process can be replaced by several arti­
fica I exponential processes. The cost of this artifice
is the addition of more state variables, and thus an
increase in the complexity of the model. Figure 1
(adapted from a figure of Morse6

) shows several of
these derived distributions in order to illustrate
some of the variety of distributions available by
this means. If we represent, schematically, an ex­
ponential process by the symbol of Fig. 2, then the

Figure 1.

3

Distribution functions and density functions derived
from the exponential. The mean of each distribution
is 1/p,. (a) Exponential, parameter p,. (b) Special
second order Erlang, parameter p,. (c) Special fifth
order Erlang, parameter p,. (d) Hyperexponential,
second order P,I = p,/2, P,2 = 2p" al = a2 = 1/2.

Figure 2. Schematic representation of an exponential process
with mean service time 1/ p,.

Erlang and Hyperexponential processes can be
represented by Figs. 3 and 4 respectively.

Secondly, if only one of the processors does not
have an exponentially distributed processing inter­
val, the entire system can be transformed into a
related discrete-time Markov chain by a process
known as imbedding.7 Once the discrete-time
imbedded chain has been solved, one proceeds
(usually in a straightforward manner) to find the
related solution of the original process. One im­
portant class of proc.esses for which this approach

Figure 3. Schematic diagram modeling an nth order Erlang
process.

144 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Q,
fL --

Q
2 ... !-L2: - --

fLn

Figure 4. Schematic diagram of an nth order hyper-exponential
process.

is highly useful is the class of semi-Markov pro­
cesses.s

This survey of modeling techniques was neces­
sarily brief, and intended merely to indicate that a
great deal of flexibility in modeling is available if
one can treat either continuous-time or discrete­
time Markov chains which have a large number of
states. Again, for examples of the power of the
models Refs. 2, 3, and 4 are recommended. They
are, in fact, relatively simple models; many more
complex models can and have been treated ef­
fectively.

EQUILIBRIUM JOINT PROBABILITY
DISTRIBUTIONS

The prime objective of most analyses of queueing
systems is the evaluation of the equilibrium9 proba­
bilities of state. Since the state is described by the
vector {Xh X2, ... ,xn }, the probability distribution
of the state will be a multivariate distribution, and
the state probabilities will be joint probabilities for
the variables Xh X2,' •• ,Xn • Once these joint proba­
bilities are known many other probabilistic meas­
ures are readily established as marginal distribu­
tions, expectations, or simple functions of these.
Through-put rates, processor utilization efficiency,
expected waiting times, distributions of queue
lengths, distributions of the number of processe&
occupied, and probability of "busy signal" are but a
few of these which are readily computed from the
equilibrium probabilities of state.

In order to simplify what follows, we will refer to
the states without regard to their vector character.
In other words, we will refer to a state as a positive
integer i which is the result of a function i = iC~)

which assigns an integer value to each distinct vec­
tor state which occurs with a nonzero probability.
(Since each dimension of every.:! is finite, the se:t of
values of i will also be finite). The vector interpre­
tation is readily recovered after the calculation of
the "probability of state i" is completed. Appro­
priate marginal distributions, expectations., etc., can
thus still be computed. By this device, we can treat
the state as a finite integer, and the vector-vallued
Markov chain {:!t: 0 ~ t < oo} by a one-dimensional
continuous-time finite-state Markov chain {it: 10 ~
t < oo}. Correspondingly, if it is a discrete-time
vector-valued Markov chain {~k: k = 0,1, ... } which
must be solved, then it can be treated as a one­
dimensional discrete-time Markov chain.

THE RECURSIVE QUEUE ANALYZER

The Recursive Queue Analyzer,1O RQA-l, is a
computer program designed to evaluate the equi­
librium joint probability distributions of the state
variables in very large, finite Markovian quew~ing
systems. It has been designed to facilitate the
analysis of both discrete- and continuous-time
Markov chains having as many as 5000 states. The
primary design goal has been to provide a compu­
tation fast enough to encourage experimentation
with models in the study of system design. This has
been achieved through efficient use of available
(32K) high-speed storage in the computer (an IBM
7090), and through careful program design. The
program was written in the MAD language, with
selective use of the UMAP assembly language.

For a continuous-time Markov chain with a finite
state space, one can always write an equation for
the equilibrium probabilities in the form

JIQ = 0 (4)

where 7r is a vector whose ith element is the equi­
librium-probability that the system is in state i, and
Q is a matrix of constants called the transition in­
tensity matrix of the chain. Q is descriptive of the
system model.

For a discrete-time Markov chain with a finite
state space, one can equivalently write an equation
for the equilibrium probabilities in the form

1[A = 1I (5)

MARKOVIAN MODELS AND NUMERICAL ANALYSIS 145

where 7r has the same significance, and A is a matrix
of constants called the transition matrix of the
chain.

The RQA-l employs an iterative procedure to
determine the solution ~ to Eqs. (5) and (6). The
procedure is a straightforward power-iteration pro­
cedure,1I so that if J!.k is the kth iterate,

(6)

is the (k + 1)th iterate. The matrix G may be either
equal to the matrix ~Q + I, (~ a scalar), or the
matrix ~A + (l - ~)I, (~ a scalar), depending on
whether Eq. (4) or (5) is to be solved. The ~ and ~
are chosen so as to guarantee efficient convergence
to a solution of (4) or (5).

Clearly, a 5000 degree matrix when stored as a
two-index array requires 25,000,000 locations of
storage, which is unreasonable for a "fast" pro­
gram. However, both A and Q are generally sparse
matrices (have mostly zero-valued elements) and
will usually have a high degree of repetition of equal
element values. Hence a scheme of storage which
lists location information along with value informa­
tion is a necessary starting point. * The repetitive­
ness is partially a result of a "block structure"­
imposed on the matrices A or Q by a choice of a
well-behaved mapping function i(x), and partially a
result of the fact that the probabilities of transition
from a state 1 to a state m are often constant func­
tions of one or more of the coordinates of 1, at least
over some range of values. Both of these effects are
often imperfect, but still useful. . (If they were per­
fect, they would have to have been the result of a
process having independent projections, and the
matrices A or Q would be Kronecker sums of the
matrices of the projection processes.)

In the program a set of four vectors, together
called a transition table, are constructed which
implicitly define the matrix. Let us call them a, fJ,
'Y, and B and denote their ith elements by ai, fJi'
'Yi, and Bi respectively. The quadruple (ai' fJi' 'Yi, Bi)
specifies one or more elements of a matrix in the fol­
lowing manner:

The value of the element is ai and its matrix co­
ordinates are (fJi' 'Yi)' Due to the repetition usually
found in the matrices, the value ai may occur in
other locations of the matrix with coordinates
(fJi + ro, 'Yi + ro), where 0 is a constant (fixed

*The storage scheme below, and the procedure for carrying
out the iteration when using this storage scheme, were suggested
to the authors by Prof. R. V. Evans, of the Case Institute of
Technology (private correspondence).

thrO.ughout the transition table) and r takes values
0,1,2, ... ,(Bi - fJi)/O. In other words, the quadru­
ple (ai' fJj, 'Yi, Bi) specifies the occurrence in the ma­
trix of elements with value ai at coordinates (fJi' 'Yi),
(fJi + 0, 'Yi + 0), ... ,(Bi, 'Yi + (Bi - fJi»' Thus, the
quadruple (ai, fJi' 'Yi, Bi) might represent the matrix

'Yi

~
o

o 0 0 0
o 0 0 0

- 0 aiO 0
o 0 0 0

o

o

o

o

o 0 0 0
000 0
o aiO 0
o 0 0 0

o

o o

o o

0 0

o 0 0 0
o 0 0 0

0 o aiO 0
o 0 0 0

(7)

and the matrices represented by the other quadru­
ples can be considered to be added to it to form A,
or Q. If no repetition of the value ai occurs, the
value of Bi will be equal to the value of fJi'

. For this matrix storage scheme, it is possible to
carry out a vector-matrix product very efficiently.
Let 7ri denote the ith component of the kth iterate.
Then each iteration (Eq. (6» is carried out in the
following sequence:

1. The vector to contain J!.k+l is initially
zeroed.

2. Set i = 1, j = O.
3. Multiply ai by 7rfi+jo and accumulate

into 7rk~Vo.
4. Repeat step (3) for j = 1,2, ... , until

(fJi + j 0) is greater than Bi.
5. Resetj = 0, and repeat steps (3) and (4)

for i = 2,3, ... , until all quadruples
have been treated.

SPEED OF SOLUTION-A COMPARISON

For the simple power-iteration used in the RQA-l
program, the number of multiplications required
per iteration is equal to the number of nonzero
elements in the matrix (A or Q). This is exactly

146 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

equal to the number of distinct pairs of states (!, m)
which represent possible starting and ending values,
respectively, of a jump in the stochastic process
{:!tl (or {xd). Thus, if we average over alli the num­
ber of distinctly different values that can be reached
in a single step from 1, and represent that average
by the symbol E, then the number of multiplica­
tions per iteration is the product ES of the average
"activity" E, and the number of states S.

In order to compare the speed of solution of
RQA-I with that of simulation in a continuous­
time case, we will estimate the relative error 11 in
the computation of the equilibrium probability of
some event. Let this probability have value 7r, and
be the sum of any number of limiting state proba­
bilities. Let the absolute initial error, resulting from
the choice of the initial iterate, be Eo. Then, it has
been shown 10 that the convergence error of the
RQA-I algorithm after k iterations is usually

(8)

where 11' I is the nonzero eigenvalue of the matrix
Q having smallest modulus, v is the rate of occur­
rence of jumps averaged over all states, and it is

known that.W < I. Thus, the number of itera-
v

tions required to reduce the relative error to the
order 0(11) is

I = I log (11/110) I
log (I - 1 ~ 11

(9)

where 110 = EO/7r. Further, the number of multipli­
cations required is of the order of

M _ ES I log (11/110) I
- log ~ - 1 ~ 1)

(10)

Of course, other operations are also required, but
RQA-I holds the iteration time to about twice the
multiplication time, and all tasks other than itera­
tion and output do not significantly increase this
computation time.

These figures are consistent with experience on
the IBM 7090. Generally, for 100-state problems
such as that reported by Fife and Rosenberg,3 about
30 iterations per second were obtained, with com­
plete solutions (within 0.0001) in about two seconds.
For 1000-state problems, three iterations per second
is typical, with solution times on the order of
20 seconds.

In contrast, we now estimate the number of ran­
dom number generations required for simulation of
the same models. It will be assumed that the limit­
ing probability 7r is estimated by calculating the per­
centage of total time that the system is found to be
in the state i. Then the standard deviation s of the
estimate of 7r can be approximated by the expression

(11)

where T is the duration of the simulation (T is in the
time units of the system, as is also 1/1'). For the
absolute convergence error, 117r, to be within two
standard deviations of the estimate a duration of
simulation of

T = 8(1 - 7r)

7r 11' I 112
(12)

is required. The number of random numbers gen­
erated (assuming one per jump) would need to be

R = 8v(1 - 7r)

7r 11' I 112
(13)

It should be observed that the typical time to
generate a random number is much great.er than a
"multiply-time," and that present simulators often
take much more time for housekeeping than for
actual generation of the random numbers. Thus a
simple comparison of R with M is biased strongly
in favor of simulation. Nevertheless, we proceed to
make only a simple comparison. The ratio of R/ M
is approximated by

R 8(1 - 7r)

ES 7r112 I log (11/110) I
v log ~ - 41)

11' I
(14) - =

M

Typically b~ < < I, and the second factor is thus
v

approximately unity. Hence

(15)

Since the usual applications will be ones in which
7r is not close to unity, we can usually also neglect
the (1 - 7r) factor. The remaining function.,

8
(16)

which approximates R/ M, is plotted in Fig. 5 for
110 = I (a fairly conservative choice). This figure
graphically shows that the ratio R/ M incn~ases very

MARKOVIAN MODELS AND NUMERICAL ANALYSIS 147

100

8

I~ ____ ~ __ ~L-~ ______ ~~~_

10 100 1000
ES7T

10,000

Figure 5. Illustrating the computational merit of the numerical
. techniques.

rapidly as more accuracy (smaller 11) is required, and
decreases as the number of states, the activity E, or
7r are increased. Thus for small enough 11 the num­
ber of random number generations required in the
simulation can be very much larger than the number
of multiplications required in the iterative process.
This results from the fact that simulation error
(from Eq. (11» normally decreases as the square
root of simulation time, while iteration error (from
Eq. (9» decreases exponentially with the number
of iterations. Where repeatability and comparison
of results are important, errors of the order of 0.001
are not at all unreasonable. In such a case, even in
an extreme problem having S = 5000, E = 20, and
7r = 0.1, the iterative techniques will have an advan­
tage of two orders of magnitude over simulation.
Add to this the much greater housekeeping involved
in simulation, and the advantage is dramatic.

A comparison for the discrete-time Markov chain
solution would result in similar conclusions.

CONCLUSIONS

The purpose of the foregoing comparison was not
to issue a call for everyone to abandon simulation
for the analysis of computer systems. Rather, it was
intended to point up a potential which should not
be ignored. There are many difficulties incurred in
the use of a program like the RQA-l which need to
be overcome before it will be universally applied.
The process of modeling systems by Markov chains
is a relatively sophisticated one, and often requires
a great deal more "cleverness" than does a Monte
Carlo approach using G PSS or Simscript. Secondly,

the representation of the model in the form of a
matrix in the RQA format is. now a quite tedious
process. (A coupling of an RQA-like procedure
with a problem-oriented language can relieve this
difficulty, and is currently ·under study.) Thirdly,
although the Markovian models have much gen­
erality, there will always be problems which cannot
be so modeled, and hence must be simulated (unless
the expense is prohibitive).

On the other hand, even one order of magnitude
improvement in the time required to solve a system
congestion problem with precision can make a man­
machine interactive exploration of system configura­
tions by a system "architect" practical when it
might otherwise have been impractical. Also, with
the current provisions in RQA-l for defining the
transition matrices in literal form, so that param­
eters can ·be altered by a simple change of data at
execution time, it is possible to obtain extensive
sets of graphs describing functional relationships
accurately and economically, as was done in Refs.
2, 3, and 4. Using these features, all of Smith's
published results 2 required less than 4 minutes of
IBM 7090 computation.

REFERENCES

1. C. W. Churchman, "An Analysis of the Con­
cept of Simulation," Symposium on Simulation
Models: Methodology and Application to the Be­
havioral Sciences, A. C. Hoggatt and F. E. Balder­
ston, eds., South-Western Publishing Co., Cincin­
nati, 1963, pp. 1-12.

2. J. L. Smith, "An Analysis of Time-Sharing
Computer Systems Using Markov Models," this
volume.

3. D. W. Fife and R. S. Rosenberg, "Queueing
in a Memory-Shared Computer," Proc. of the 19th
Nat. Con! A.C.M., Philadelphia, 1964.

4. -- and J. L. Smith, "Transmission Ca­
pacity of Disk Storage Systems with Concurrent
Arm Positioning," IEEE Trans. on Electronic Com­
puters, vol. EC-14, no. 4, pp. 575-5~2, (Aug. 1965).

5. M. Loeve, Probability Theory, 3d ed., Van
Nostrand, 1962, pp. 351-353.

6. P. M. Morse, Queues Inventories and Main­
tenance, Wiley, 1958, Chap. 5.

7. D. G. Kendall, "Stochastic Processes Occur­
ring in the Theory of Queues and their Analysis by
the Method of Imbedded Markov Chains," Ann.
Math. Stat., vol. 24 (1953).

8. W. L. Smith, "Regenerative Stochastic Pro-

148 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

cesses," Proc. Roy. Soc. (London), Ser. A, vol. 232,
p. 6 (1955).

9. E. Parzen, Stochastic Processes, Holden-Day,
1962, pp. 247-253.

10. V. L. Wallace and R. S. Rosenberg, "RQA-l,

The recursive Queue Analyzer," Systems Engineer­
ing Laboratory Technical Report No.2, University
of Michigan, Ann Arbor.

11. J. Todd, Survey of Numerical Analysis,
McGraw-Hill, 1962, pp. 196-197.

SMPS-A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS

Kathe Jacoby, Diana Fackenthal and Arno Cassel
Franklin Institute Research Laboratories

Philadelphia, Pennsylvania

INTRODUCTION

Many papers oriented to the computer user deal
with programming languages. These languages may
be either flexible or oriented toward a particular
problem field, such as military information retrieval
or simulation; however, they are languages requir­
ing the user to learn vocabulary, grammar, punctua­
tion, and spelling to translate his problem into the
specific language. This is not easy and generally re­
quires considerable practice.

An officer on the communications staff of a mili­
tary headquarters does not have time to study a
language and learn how to express himself in it. In
addition, he does not have the experience of an in­
dustrial engineer who is accustomed to flow-chart­
ing the operations needed to accomplish a function.
Nevertheless, he needs to evaluate the effectiveness
of his present methods and procedures and level of
staffing under conditions which would occur when
the workload might suddenly change because of
world or local military or political events. He also
needs to be able to determine whether any changes
in methods, procedures, or staffing will improve the
total response of the system.

The prime criterion for evaluation of a com;"
munication system is message transit time. Within
this criterion are subcriteria to be chosen by the
headquarters involved, which may specify:

The maximum transit time for messages of
a specific class shall be less than T min­
utes.

149

The percentage of messages of a specific
class with transit time less than T minutes
shall be greater than P percent.

Transit time through a system depends on two
factors: processing time and waiting time. Process­
ing time can be determined without the use of
computers by observing the required time to per­
form specific tasks and by summing this time over
all the tasks to be performed on a specific message.
Waiting time is either batching or queuing time.
Batching time is the time an operator waits after
completing one task on a message before delivering
it to the next task or operator, so that the first op­
erator can continue performing the same task on a
number of messages; this time can be estimated.
Queuing time can be mathematically estimated
when only a few queuing points are involved.
However, when many dynamically interacting
queues must be considered, Monte Carlo simula­
tion techniques must be used to gather information
about the formation of queues and the delays
caused by queuing. This requires digital-computer
simulation.

The Franklin Institute Research Laboratories
(FIRL) has developed two tools for officers on the
communication staff of a military headquarters to
use for system evaluation; these tools were de­
veloped as part of a study for the Department of
the Army and the Defense Communications Agency
to improve message processing operations within a
headquarters. 1 One tool is a method called Auto-

150 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

matic Flow Process Analysis (AFP A) which allows
personnel without any flow-charting or system­
analysis experience to develop accurate flow charts
by carrying out a set of procedures.2 The second is
Simplified Message Processing Simulation (SMPS),
with which the same personnel can prepare a simu­
lation model and message samples by following a
set of simply stated procedures; SMPS does not
require personnel to learn any programming
language.

With SMPS, members of a military communica­
tions staff can evaluate a message-processing system
under dynamic conditions ,without requiring the
services of, personnel experienced in computer
technology or programming,. The SMPS toolbox
contains building blocks and a framework with
which a model of a message-processing system
can be built.

COMMUNICATIONS STAFF NEEDS

The communications staff at a military head­
quarters needs to be continually aware of the capa­
bilities and effectiveness of their current message­
processing systems, not only with respect to current
traffic but also with respect to crisis conditions
which may occur. Figure I' shows an overview of
the activities within a Message Communications
Terminal oflice (communications center and staff
message control) at a military headquarters. Within
the limits of military regulations and command

structure, this staff is able to suggest changes to
improve system operation. However, changes
should not be implemented unless there is assur­
ance that the total system operation will be im­
proved; therefore, methods for evaluation are re­
quired. Because of the differences in ne(~ds, n~gu­
lations, and traffic at different headquarters, only
the staff at the individual headquarters (rather than
a higher agency) can best evaluate its own syste:ms.
The likelihood that these operational staff persoll1nel
have programming background or inclination is
very small.

TOOL 1, AFPA

AFPA permits the non-system analyst to c:on­
struct an accurate flow chart of the operation of his
system. In the message-processing case for which
AFP A was designed, the message passes along the
flow of the chart through the tasks performed in
the boxes of the flow chart. A task is called an
event and specifies what personnel and equipment
are involved (such as a communications-<!enter re­
ceive operator or a Xerox machine), what is done
(such as tearing the message from the teletype'
monitor), and how long the event takes (such as 30
seconds).

TOOL 2, SMPS

Figure 2 shows a small fragment of a.n AFPA
flow chart. A detailed simulation including all of

I I

~J HQ

MESSAGE C(NIUHICATlOHS TERMINAl OFFICE

Figure 1. Overview of activities within a message communications terminal office.

SMPS-A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS. 151

CHAINS 005
125
245
365

CHAINS 065
185
305
425

D OPERATION

CJ TRANSPORTATION

o INSPECTION

205
325
445

Figure 2. Fragment of an AFPA flow chart.

the events on an entire AFPA flow chart, would
take many hours to construct; however, Simplified
Message-Processing Simulation permits the AFPA
events to be grouped into broader tasks which may
be matched directly to the SMPS building blocks.
Thus, a simulation model may be assembled quickly
and easily. The outlined area of Fig. 3 is the SMPS
simplification of the outlined portion of the AFPA
flow chart fragment shown in Fig. 2.

A technical report, "SMPS-Simplified Message­
Processi~g Simulation,") instructs the user how to
construct simplified flow charts from the AFP A
flow charts, how to fill out task-description work­
sheets from the simplified flow chart, and how to
match the SMPS building blocks to the tasks de­
fined.

When the SMPS building blocks are matched to
the tasks, the simulation model is essentially com-

plete. The SMPS report also describes how the
input messages for the simulation may be prepared
from a real traffic sample or from statistically gen­
erated messages.

What SMPS Is

SMPS is a language derived from the macro­
assembler capabilities of IBM's GPSS II. The
building blocks of SMPS include a set of GPSS
variables defined in terms of the parameters of a
G PSS transaction, a set of functions for the gen­
eration of G PSS parameters from a deck of cards
generated independently to describe a message sam­
ple, a few other G PSS system variables, and a set
of G PSS macro instructions. SMPS relies heavily
on the development of DMPS (Detailed Message­
Processing Simulation I) for the method of param­
eter construction and assignment.

152 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

K 005
TEAR OFF
MESSAGE FROM -TT RECEI VER ---.....,. ,

'" G J 010 H
SET FLASH DECISION: NON

SET
PRECEDENCE] PRECEDENCE FLASH OR NOT TO FIFO FLASH TO FIFO

1
B SECOND COpyO~5 F TRIM AND 11

~ AJLMI N I S IBA- : SPLICE 11 - 01 nON COPY -~ MESSAGE 105

1
E DECISION

ort ,.
IMMEDIATE
OR NOT

1
C ADMINIS- 065 D ADMINIS- 1?

TRATI VE .IRAI.I VE .-;:
P KOCESS I NG- - PROCm-ING- •
LOW PRIORITY 105 IMMEDIATE 10 , , ,

A
ROUTE TO

140

STAFF .
AGENCIES 185

Figure 3. Simplified flow chart fragment.

UseojSMPS
The simplified flow chart is derived from the

AFPA flow chart of chains of events, which is in
tree form. First, uninterrupted tasks are identified,
and identical chains of tasks: are merged. The first
worksheet describes personnel and equipment (Fig.
4). The second worksheet; describes the tasks in
the simplified flow charts in terms of personnel and
equipment required, next tasks to be performed
under what conditions, and processing time ex­
pected, either in numbers or' as a formula in terms
of message characteristics (Fig. 5). The next task
is the selection of SMPS b~ilding blocks. In the
simplest cases, a SMPS build~ng block matches each
task. However, if the task is complex or unusual,

it may be necessary to divide it into several simpler
tasks to find a match.

In the case of communications-terminal process­
ing for which SMPS was designed, the us:ual tasks
are decision-making, logging, routing, poking (tape
cutting), tape reproduction, omine encryption/ de­
cryption, inspection, transmission, filing, refere:nce
lookup, transportation or delivery betwe'en major
staff areas of a headquarters, typing, reproduction,
collation, distribution of copies, and additional
administrative functions.

The SMPS building blocks, called modules, are
divided into six categories. The first category
contains general-purpose modules which involve
queue number, personnel or equipment identifica-

SMPS-A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS 153

Pers onne 1 Associated Unique No. Equi pment Associated Unique No.
Code Code I denti ca 1 Code Coqe I denti ca 1

SMC Inclerk 2 1 Xerox 4 1

SMC Message .3 1 Multi 11th 5 2

Controller

Mult1l1th 5 - 1
Operator

~~
V

~

~

Figure 4. Worksheet 1, personnel and equipment.

tion, next module, and time factors; the time factors
are for processing or batching. The second cate­
gory contains decision modules for usual decisions.
The third category contains modules which repre­
sent transportation and contain facilities to record
transit times within the GPSS simulation and for ex­
ternal statistical analysis. The fourth category con­
tains a set of modules to permit delivery at regular
intervals. The fifth group contains the modules used
to control the flow of the three types of messages
into the model. The first type of message is the
sample concerning which transit times are to be
measured to evaluate system effectiveness; this is the
group which is specified on a card deck generated
independently of the model. The second type con-

cerns service and similar messages which are not
being directly evaluated but which occupy both
personnel and equipment within the communica­
tions facility; these are an integral part of the model.
The third type of message does not represent actual
traffic but is used to account for any other activi­
ties, such as breaks for personnel or downtime for
equipment, which would impede the processing of
significant message traffic by occupying personnel
or equipment and making them unavailable. The
sixth group contains flexible modules which allow
most unusual tasks to be performed without re­
quiring knowledge of GPSS.

Figure 6· contains the description of a few
modules.

154 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

--
I I Headquarters: Staff Agency:

Incomi nq I --A SMC I Outgoi n ~

Task Personnel and Process i ng Ti me Queue Output 10 Task Descripti on Equipment AFPA Event Sec.
Next Task Di sci - Batched

Code Needed pline

K Tear off message from TT Reoeiver SMC Inolerk 005 33 J FIFO No

J Deoision flash or not SMC Inolerk 010 1 GG it flash FIFO No
H if not flash

G Set queue disoipline to Preo FIFO - - 0 B None -
B Administrative prooessing flash message SMC Inolerk 015 ••• 105 41 A Preo No

FIFO

A Routing of Messages SMC Message Contro Her 140 ••• 185 109 Off ohart Preo No
FIFO

H Set queue disoipline to Preo FIFO - - 0 F None -
F Trim and splioe message SMC Inolerk 110 ••• 015 30 E Preo No

FIFO

E Deoision immediate or not SMC Inolerk 020 1 D if immediate Preo No
C if not FIFO

D Administrative prooessing immediate message SMC Inolerk 120 ••• 105 89 A Preo No

Xerox oopier FIFO

C Administrative prooessing low preoedenoe SMC Inolerk 065 ••• 105 24 A Preo Yes
message FIFO

Figure 5. Worksheet 2, task definition.

-~

Name No. of Module Description
Mean; ng of Variables

Variables 1 2 3 4 5 6 7 8

Al 5 ~ Queue Identity Next Time Time

One individ1,l.a.l or pieoe
No. of equip- Task Factor Factor

of equipment
ment or 1 2

takes a message from a numbered
personnel

queue and prooesses it for a time

speoified by two time faotors which

desoribe either a reotangular dis-

tribution of time or speoifies a
formula for time. The message is

then passed to the next task.

Bl 7 General Queue Identity Next Time Time Time Time

No. of equip- Task Factor Factor Faotor Faotor
Same as Al except two additional

ment or 1 2 3 4
time factors are available for

hatching dela,y.
personnel

B2 8 ~ Queue Identity Identity Next Time Time Time TimEr

No. of first of seoond Task FaotoI' Faotor Faotor Faotcrr
Same as Bl except that a.dd1 tional

equipment eqUipment 1 2 :3 -,
equipment or personnel is I'equlred.

or per- or per-

sonnel sonne 1

--~
/~

~
~-

Figure 6. Selection of available modules.

SMPS-A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS 155

I Staff Agency: I IncominQ I
Headquarters: A SMC I Outgoing

Task Module Variable Interpretation of Variable

The cards representing the significant sample are
prepared by a computer program to a form accept­
able by the simulation program; these cards con­
tain the identification and significant characteristics
of each message. The computer program (written in
FORTRAN) also prints these characteristics of
each message in English (Fig. 9). This printout
includes time of arrival in the system as day, hour,
and minute, as well as the simulator clock time for
arrival in total seconds. It also includes the identi­
fication number, which indicates whether the mes­
'sage is incoming or outgoing (those numbered over
20;000 are incoming), precedence, classification;
number of addresses, number of lines of text, num­
ber of communications channels required, number
of pages, number of staff agencies on local distribu­
tion, number of local copies, whether otI-iine en­
cryption or decryption is required, special security
categories, or other special characteristics involved.

ID No. of Code
Code Identity Module for use in thi s Task

K Al 1 Queue 1 1

2 SMC inolerk 2

3 Task J next J

If Time factor 1 mean 33 seo 33

5 Time faotor 2 spread 3 seo 3

J A17 1 o.ueue 2 2

2 SMC inclerk 2

3 Next task if flash - G G

If Next task if not flash - H H

G F3 1 Task B next B

~~

V-L/
Figure 7. Worksheet 3, module assignment.

Two programs are available to prepare a mes­
sage deck.

Worksheet 3 (Fig,. 7) aids in the matching of
modules to tasks. The function-definition work­
sheet (Fig. 8) aids in the construction of functions
to define processing times in terms of message char­
acteristics.

One program uses an actual message sample, in
which case the message characteristics are de­
termined by examining a message. These char­
acteristics then are transcribed onto cards, which
are used as data by this input-preparation program.

If statistical generation of messages is desired, an

GPSS GPSS
Function Function Variable Variable Defi niti on in Multiplier

Application Identity for Variable Definition GPSS Language (Time Factor 1) (Time
Factor 2) Functi on

Pony circuit FN10 v6 Number of lines Primary variable 7 or l~
Time

MCPU time FNll V20 1.35 + 60 (number of channels) Kl.35 + K60 * V7 + Kl~O * vB 1
+ 140 x (number of pages)

Multllith time FN12 V21 (Number of copies)/2 x (number Vll/K2 * vB + K150 ~, vB + K10 1

of pages) + 150 x (number of

pages) + 10

Poking time FN1.3 V22 67 + 4 • .3 x (number of addres- K67 + K4.3 * V5/KlO + K9 ~, v6 1

sees) + 9 x (number of lines)

~

~
V

Figure 8. Function-definition worksheet.

156 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

DAY
'112

o
I)

o
o
I)

I)

I)

I)

o
o
o
I)

o
I)

o
I)

o
I)

o
I)

o
o
o
I)

I)

o
I)

o
I)

o
o

HR MI~

o 9
o 19
o 20
1 18
3 3CJ
B 41
CJ 48
9 4CJ
9 50
9 58

10 4
10 27
10 79
10 30
10 5?
10 53
10 54
10 55
11 53
11 53
11 54
11 56
11 56
11 56
12 6
12 22
12 22
12 23
12 45
12 46
12 50

TIME
VI
540

1080
1200
4680

13140
31260
35280
35340
35400
35880
36240
31620
37140
'HBOO
39120
39180
39240
39300
42780
42180
42840
42CJ60
42960
42960
43560
44520
44520
44580
45900
45960
467.00

1~/OUr
V2

20001
2000?
20003 '

1
20004

2
3
4,
5

20005
6:

20006
,"CO{)1
20008'

7
8
9

10,
20009,
20010
20011
20012
20013'
200H'
20015 ;
2001&
20011·
20018·

11
12

20019
END OF

PRfC. CLASS.
V3 V4

IMMED. CONFID
IMMEl. CONFIO
I MMEO. CONFIO
IM~EJ. CONFID
PRIOR. CONFIO
ROUT. CO~FIO
ROUT. SECRET
~OUT. SECRET
ROUT. CIJNFIO
ROUT. EFTO
ROUT. CO~FIO
I MMEO. U~CLAS
ROUT. TS
ROUT. SECRET
'tOUT. C!J~FIO
ROUT. CONf'IO
~OUT. C0"4F10
~OUT. CONFIO
I MMEJ. CONFt 0
PR lOR. EFTO
ROUT. EFTO
PRIOR. UNClAS
ROUT. UNCUS
ROUT. UNCUS
ROUT. CONFIO
ROUT. :ONFIO
ROUT. CONFIO
PRIOR. CONFIO
ROUT. CONFIO
ROUT. CONFIO
PRIOR. SEGREr

lISTP4~ OF INPUT

----NJMBER OF
ADD. 1I NES
V5 V':J

1 4
1 D
1 7.
,. 2~

<) 3:>
1 2
2 3:3
3 5
2 6
2 17
2 6

11 22
:\ It:)
3 lit
3 2'
1 "l
It .. 8
5 21
2 1
5 8
5 <)

2 32
11 11

1 12
:\ 13

12 lit
3 11)
2 38
1 n
i 1

16 5:>
CAROS

CHA~.PAGE
'17 V8

1 1
1 1
1 1
4 2
4 7
1 1
1 1
1 1
2 1
1 1
1 1
7 1
1 2
3 1
1 1
1 1
2 '3
! 2
2 1
1 1
'3 1
1 ?
8 1
1 1
1 1
1 1
1
1 2
1 1
1 1
4 3

AGEN.
'lIt>

3
'3
3

10
4
6
4 ..
3
2
3
1
2
3
3
3

11
4
i
4
1
4
2
2
1
3
1
4
3
2
5

COPt
'In

5
5
5

31
10
l!I

5
5

11
It

1:>
1
8
9
5
It

39
11

12
~

n
1
R
4
3
5
!»

17
!:l
9

CHI»
V:J
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
ND
YES,
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

SPE:n
'In

o
()

/)

()

o
()

o
o
o
o
o
o
o
()

I)

()

o
()

o
o
o
o
o
o
o
o
o
o
o
o
1

SI»EC. OR I :i/ADD
V14

o
o
/)

o
o
o
o
o
o
o
o
o
()

o
o
o
/)

()

/)

o
()

o
o
o
/)

o
o
o
o
o ,

Figure 9. Listing of input messages provided by input programs.

alternative FORTRAN input-preparation program
is available with which the message characteristics
necessary for the run can be easily specified. A
listing of these specifications and detailed diagnostic
routines concerning card or logical errors is pro­
vided. The other outputs of this program are the
same as those of the first input program.

Relatively few items in the printout of the simu­
lation run are significant to this type of model.
Hence, the volume of printout to examine is not
excessive.

The most important question in evaluating a
model of a message-processing system is, "How
long does it take a message to get through the
system?" This information is most meaningful in
terms of the cumulative distribution function of the
total transit time through the system; however, it
may also be important to know the time through
major subsystems, as well as the time for messages
with special characteristics.

A major output of SMPS is a deck of cards,
each of which contains all the characteristics of a
message, a transit time either through the entire
system or through a major portion of the system,
and an Jdentifier specifying the meaning of the
transit time given. Thus, this card deck can be
processed manually, by EAM equipment, or by

computer to select the messages with the character­
istics of interest and to determine the transit-time
distributions for these characteristics.

The other output of SMPS is the printout pro­
duced by the GPSS program. The portions of the
output significant to the user include the tables
which give the fraction of total number of mes­
sages with transit times less than each increment of
an accumulating time scale, and the queue statistics
which indicate where bottlenecks occur.

RANGE OF APPLICABILITY OF THE
PRESENT PACKAGE

Although this application is based on AFPA flow
charts, the technique does not require that AFPA
be used. The .flow chart which describes system
operation may be construc"ted independently; how­
ever, in this case, more skill may be required in
defining the tasks of suitable size. Th,e basic con­
cept is that a task must be small enough that the
personnel and equipment involved would not be in­
terrupted to perform any service for any other
message.

The basic structure of SMPS assumes that a mes­
sage has certain properties which are recorded in the
simulation representation of the message-namely,

SMPS-A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS 157

the G PSS transaction parameters. Two properties
are not fixed and may be defined at each head­
quarters; however, these properties may have, at
most, 10 values. The characteristics chosen are
ones most meaningful to a variety of military head­
quarters. Hence, although the processing examples
carried out thus far involved military terminal proc­
essing, SMPS should be useful for any processing of
military or nonmilitary messages. Although such
properties as off-line encryption or security classi­
fication are not apt to be meaningful for nonmili­
tary applications, any properties defined can be ig­
nored in a model. If the statistical input program
is used, each specified characteristic must be ex­
amin~d to determine whether it can be ignored in
creating the message sample.

In its current form, SMPS can be used to simulate
any message-processing application where the
transit time for a message and its flow through the
processing steps depend only on the message char­
acteristics defined in SMPS and on statistical
variables.

APPLICABILITY OF TECHNIQUE
FOR OTHER USES

The SMPS technique is not limited to dynamic
analysis of message processing. Whenever a system
can be looked on as consisting of processing units
which can be described by a small number of char­
acteristics and where both processing time and
batching time depend on characteristics of these
units alone, a set of building blocks and a structure
similar to SMPS can easily be constructed in a
very short time by personnel with programming
experience.

Because most flow charts contain relatively few
patterns of boxes and lines, it is possible to de­
scribe most systems by reusing a few modules with
different variable values. For example, one general
equipment- or personnel-use module can be used
which includes as variables a queue number, three
or four equipment/personnel identities, the next

task, and several time factors. Two decision
modules corresponding to two- and three-path
branchings, will probably be sufficient. Decision
modules have variables of relations (less than, equal
to, greater than, for example), a number being
tested by the relation, next task if true, and next
task if false. A few special modules can be pro­
grammed to insert in the flow-process chart for
priority assignments, tabulations, origination rates,
and the like. With these types of modules, a model
can easily be constructed.

ADVANTAGES OF THE SIMPLIFIED
MESSAGE-PROCESSING SIMULATION

A "language" such as SMPS is easier to learn
than a simulation or programming language: it
has no grammar and little vocabulary. A model in
SMPS can be constructed very quickly. Changes
are readily made and alternatives are easily com­
pared. Because the level of abstraction is high, the
model is easily understood in terms of activities
which occur and of what is required for the activ­
ities.

REFERENCES

1. A. Cassel et aI, "Improved Message Process­
ing (IMP)-An Analysis of Headquarters Message­
Processing Operations," Technical Report 1-055,
Franklin Institute Research Laboratories (Oct.
1965).'

2. P. W. Maraist and A. Barskis, "Automated
Flow Process Analysis (AFPA)-A Technique for
Analysis of Headquarters Message Processing,"
ibid, no. 1-160 (Nov. 1965).

3. K. Jacoby and D. Fackenthal, "Simplified
Message-Processing Simulation (SMPS)-A Tech­
nique for Analysis of Headquarters Message Proc­
essing," ibid, no. 1-161 (Nov. 1965).

4. General Purpose Systems Simulator II, Form
B20-6346··1, International Business Machines Cor­
poration (1963).

DIGIT AL SIMULATION OF LARGE-SCALE SYSTEMS

Robert V. Jacobson
Advanced Systems Department, Space and Information Systems Division

Raytheon Company, Sudbury, Massachusetts

Over the past decade systems analysis teams have
repeatedly demonstrated the feasibility of using
general purpose digital. computers to simulate the
operation of large-scale real-world systems. BAG,
DECAP, INCA, STAGE, TEFORM and TEMPER
are all representative examples. However, the
process of developing and using these system simu­
lations has not always been entirely satisfying to the
ultimate users. The purpose of this paper is to
examine the process of simulating systems, and so
to suggest some causes of dissatisfaction and their
remedies. Because of the diversity of usage, it seems
to be important to define the key words to be used.

System Model is used to mean the interre­
lationships and logic which describe
the system adequately for the task at
hand.

A Simulation is a mechanism based on a
, model which operates "like" the sys­
tem. That is to say, a simulation is an
operating version of the model.

A Digital Simulation is a simulation in
which the system quantities are repre­
sented by digits, and so is most easily
implemented on a digital computer.

This usage follows M. R. Lackner's paper "Digi­
tal Simulation and System Theory." 1 Note that
the term computer simulation under these defi­
nitions would mean a simulation of a computer.
Other writers 2 have used "computer simulation" in
the samt? sense that "digital simulation" is used

159

here, but this author believes that clarity suffers as
a result.

The task flow diagram (Fig. 1) shows how a
typical case moves from the problem statement to
the final analysis. The figure shows five different

SYSTEM
ANALYSIS

COMPUTEH PRINT-OUT
(FOR ANALYSIS)

DIGITAL SIMULATION
a TEST DATA

SYSTEM
PROBLEM

MODEL CONCEPT
a SCENARIOS

MODEL DESIGN
a TEST DATA

Figure 1. Task flow diagram of model/simulation construc­
tion and use.

160 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

people (or organizations) in the "loop;" while in
fact a smaller number of individual people may be
involved, the division of tasks into these five cate­
gories seems to be a useful one.

The flow begins with the "customer" who states
the problem to be analyzed to the systems analyst.
(The customer is defined as the person or organi­
zation with a principal mission other than the proc­
esses to be described below.) Let us assume that
the systems analyst determines that the problem
can best be solved through the use of a digital simu­
lation and that he directs the model designer to
design a system model. In many cases the systems
analyst and the designer of the system model will
be the same person or organization. The simula­
tion designer, bearing in mind the scenarios which
are to be analyzed, designs a simulation which is
based on the model. The system analyst uses the
output data generated by the digital simulation to
draw conclusions about the operation of the real­
world system, and reports them to the customer.
Once a working computer program for the digital
simulation has been constructed, the system ana­
lyst/model designer hopefully can deal directly with
the computer with the help of the computer sup­
porting staff.

With the above d,efinitions in mind let us consider
first the information flow from the system analyst to
the model designer. The model designer would like
to identify and define the variables and constants
which the system analyst considers significant, and
to find expressions which adequately describe their
interrelationships. Next he wants to develop a logic
diagram which represents the flow (often with time)
of events or processes in the system, and which ties
together the interrelationships. Two problems often
arise here. The system analyst would like to have
"every" real-world variable included in the model,
and would like relationships to be "completely ac­
curate." * In fact, the systems analyst probably
doesn't know quantitatively the contribution made
to the accuracy of the model by each of the param­
eters and variables which he can identify, or a com­
plete representation of their interrelationships. It
is the author's view that the model designer can best
serve the system analyst by urging the initial selec­
tion of variables and relationships which will most
simply (rather than accurately) describe the real-

* The words "large-scale" are included in the title to exclude
from this discussion systems which can in fact be completely
simulated such as savings bank records or an airlines reservation
system.

world system, with the long-range objective that, as
understanding of the operation of the model grows,
complexity can be introduced. As an example of
initial simplicity if one were to simulate detection of
a target by a radar, one might compute the effect
of each of the dozens of quantities which enter into
the detection of a target. On the other hand" one
might begin with a model which says that for a given
radar, detection never occurs beyond a given range,
but at lesser ranges detection always occurs for all
targets. Oversimplified? Perhaps, but :indeed be­
cause received signal varies roughly as the fourth
root of target range the approximation would not be
significantly in error if, for example, one were
modeling an air defense information processing
system, and were not directly concerned with the
sensors, in this case the radar, but rather with such
things as data storage and correlation, data lirik
saturation, and displays. The fact that a larg(~ air­
craft was "detected" at 75 miles instead of 80 miles
as it would be in the real-world may contribute far
less to the inaccuracies of the model than othe~r as- .
sumptions which had been made by default so to
speak, rather than explicitly. That is to say that the
model designer may overlook factors having a far
greater effect on accuracy.

Since the very purpose of constructing the model
and simulation is system analysis, it is implicit that
the contribution to similitude, or accuracy of each
of the model's elements is not known quantitatively
at the beginning of the design effort. If the model
designer can restrain the systems analyst's desire to
model "everything," and rather model as little as
possible initially, the result will be that the complete
structure of the model will emerge at t.he earliest
possible date and then can be quickly converted
into a digital simulation. The systems analyst., and
the model designer are now in a position to test the
significance of each of the elements of their model
in a systematic way. Continuing the example given
above, they might like to make detection range a
yes-no function of the target range, modified by
a linear function of the nominal target cross section.
If this elaboration yields a significantly different
result, they might go a step further and try a model
in which target cross section was a function of both
nominal target cross section and target attitude
relative to the radar.

The important point is that as early as possible in
the design cycle they have a model (and a computer
simulation of it) which operates and generates out­
put. They have been forced to think through the
entire system, as a result have gained a better under-

DIGITAL SIMULATION OF LARGE-SCALE SYSTEMS 161

standing of the system operation, and so have more
accurately identified the really significant system
parameters and variables. The level of detail to
which the model will then be expended is far more
likely to be uniform, and both have the assurance
that something will come from their efforts, however
much it may fall short of their original aspirations.
Equally important, the systems analyst will have a
clear image of the model's structure and so will be
better able to evaluate its output. These points may
be summarized as:

The Model Designer's
Role: To convert the significant elements

of the real-world system into a unified
mathematical/logical model.

Objective: To maximize the utility of the
mathematical model.

Guidelines: Evolutionary model design to
achieve a uniform level of detail, and
systematic evaluation of the model de­
sign.

The problems which the simulation designer must
solve revolve around the conflict between the gener­
ality of the model and the explicit character of com­
puters. The model's logic and expressions must be
stated in an explicit way, input data must be of a
stated form and content, and the format of the out­
put data must be described in advance. On the
other hand, the model designer can be expected to
want to make changes during the design process,
and each change will cost time and money. The
simulation designer will be of greatest service to
the model designer and systems analyst if he accepts
this fact of life, and keeps in mind the thoughts sug­
gested below.

The Simulation Designer's
Role: To convert the mathematical model

into a useful computer program.
Objectives: To maximize machine inde­

dependence and to simplify the proc­
ess of changing the model/simulation.

Guidelines: To serve the problem at hand,
not the computer.

The simulation designer should first take steps to
minimize the impact of the particular computer to
be used on the problem to be solved. That is to say
the computer should serve rather than dominate the
problem. Secondly through forward-looking design
techniques, the simulation designer can often facili­
tate the changes which will inevitably be sought by
the model designer after he has experimented with

the first primative versions of the simulation. The
resulting computer program should have the follow­
ing characteristics:

• Inherent adaptability.
• Complete labeling of output.
• Careful source program record keeping.
• User-oriented input and output, and

operating documents.
• Graphical outputs as appropriate.
• Machine independence.

As an example of adaptability the computer pro­
gram may call for a list to be scanned. In a FOR­
TRAN program this would probably be done with a
DO-LOOP. If there is some uncertainty about the
list size, the DO-LOOP upper limit can be an input
parameter, so that it can be easily and universally
changed if necessary. Likewise if a number of
WRITE formats use a common list of labels which
are subject to change, it might be better to input the
labels rather than store them in the individual for­
mat statements. The important point is not so much
these primitive examples themselves as the design
objective of simplifying changes.

Obviously the simulation designer should be alert
to the effect of computer limitations on simulation
design, and so model design. The size of memory
core storage is the most obvious current limitation,
but running time, turn-around time, and input/out­
put device selection are also significant. Depending
upon his personal background the model designer
may need little or considerable guidance from the
simulation designer. However, the latter shouid
resist the temptation to overwhelm the model de­
signer by detailing the prohibitions placed on the
model design, but rather seek to minimize them.
The impossible cannot be achieved, but imaginative
thinking can often reveal clever solutions to the
problem at hand.

In many cases, the simulation design process will
consume time and money comparable to if not
greater than that devoted to operating the com­
pleted simulation. This fact focuses attention on
the need for careful, systematic simulation design
procedures. For example as a general rule the
output should include an appropriate heading which
adequately identifies the computer run. Adequate
identification might include identification of the
input base data used, the particular version of the
simulation used (since it may be in a state of flux),
the date, and some statement of the objectives of the
run. Equally important is the proper and consistent
use of such a heading. In the rush to meet a com-

162 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

puter run submission d~adline while debugging,
there is a temptation to bypass the process of up­
dating the heading data. However, this is one place
where haste does indeed make waste, and sooner or
later the time and money expended on at least one
computer run of a series is lost because the printout
has lost its identity. At best the run must be re­
peated; at worst wrong conclusions are drawn and
additional runs wasted.

It is equally important to keep careful records of
changes to the program. It should always be pos­
sible to associate a given set of printouts with the

_ specific program that produced it. This permits the
model designer to track the evolving model design
with the output of the simulation. Not uncom­
monly a change in the model (and its reflection as a
change in the simulation) will produce an unex­
pectedly negative effect and the model designer will
want to rescind the change. If he has failed to mark
changes systematically, the simulation designer may
have difficulty in retracing his steps.

A technique has been evolved at Raytheon for
using the field 73-80 of the standard FORTRAN
punch card to record changes. Field 73-78 is coded
with the name of the subroutine, for example
SAMPLE. Field 79-80 holds the serial number of
the change. Assuming subroutine SAMPLE were
included in the first attempt at compilation, field
73-80 for all punched cards would show SAMPLE
Ol. If no more changes were made until say the fifth
batch of compilations, the new and changed cards
would be identified as SAMPLE 05. Furthermore
the simuiation designer inserts a comment card at
the head of SAMPLE which briefly identifies the 05
changes to SAMPLE and assists the model designer
in controlling the growth of the simulation. When
subroutine SAMPLE has been completed the final
punched card deck can have a short subroutine
identifier, i.e., SAMP, and sequential serial numbers
inserted in field 77-80 by a standard utility program.

Finally the simulation designer makes a major
contribution to the value of the model simulation by
providing customer-oriented input and output
formats, and straightforward and well-documented
operating procedures. If he has done his job well,
the completed simulation can be operated by the
model designer directly as suggested by Fig. I.
Hopefully the input format matches the normal
practices of the system analyst. If he is accustomed
to thinking of a quantity in nautical miles, he ob­
viously should not be required to input it in meters.
Likewise output data should conform to and should
be labeled in his terms, not computer program sym-

boIs. During the design and test of a simulation a
variety of output formats will likely be developed
for debugging. Since the specific data which the
system analyst will want to see will vary with the
purpose of the specific run, it is useful to be able
to suppress specific output formats through the
setting of control parameters. The analyst can con­
centrate on the subject of interest, and I/O device
charges are minimized. Lastly, recognizing that one
picture often is worth ten thousand words the simu­
lation designer should be alert for situations in
which graphical output would be useful to thle sys­
tems analyst. Some languages such as DYNAM03

specifically include graphical output. Generalized
programs have been developed which will produce
graphs on a line printer.4

, 5 Many computer systems
now feature X-Y plotters, but conventional line
printers can be used in a graphical mode, and can be
assumed to be available at almost all computer in­
stallations.

Figure 2 is a plot of aircraft and decoy positions
relative to a surface-to-air missile (SATvI) site: gen­
erated by the DECAP model. Notice that all labels
are designed for easy reading. Distances are shown
in nautical miles East-West, and North-South of the
site. The program was designed so that the SAM
site is automatically located in the appropriate
quadrant of the map, and the scales are adjusted
to match. In the case illustrated the program slensed
that the cloud of targets was roughly South-Wiest of
the SAM site and so it located the SAM site in the
North-West quadrant of the map. The symbols
used for targets are defined at the right. The game
and run are identified, and the specific time: and
location depicted is noted. Figure 3 is. a plot of
cumulative kill probability as a function of reentry
vehicles used for each of four differe:nt attacks
against a point target. It is part of the DACE model
developed by Raytheon using the Bolt, Beranek,
and Newman, Incorporated remote-acl:;ess, time­
share system, TELCOMP. The basic plotting func­
tion is a part of the system software. The simulation
designer specified the headings, and s.cales, and
modified the variables to be plotted to match the
specifications of the PLOT function. Specifically
the variable to be plotted may range from - 1 to + 1.
In the case illustrated the variable to be plotted,
cumulative kill probability, ranges from 0 to + l.
The Instructions to transform and plot the variable
take the following form:

PK (A, B) = (PK (A, B)

PLOT PK (A, B)

- 0.5) *2

ONNUM

DIGITAL SIMULATION OF LARGE-SCALE SYSTEMS 163

GAME-009 RUN-XO~

~T 610 SECONDS - ~ARGET ARRAY AT SITE 2.

NIII FA,s""'EST '0 II]0] 5 20

'0

5 ••

NORTH ee.
II J

2 1
!

AND

10.

SOUTH

15

CF ~HE

20.

SIn:
25

30.

10 5. 5. 10 15 20
r'RG;r EN',CEO- 2
TARGETS BEING TRACKEO-)

25 3 0

10

.0;.

...
1 1 If

1
1 1

5
1.

el
$:I

.10

l$

.20

H

.30

25 30

leGEND

$-TARGET ENGAGED
.-TARGET TRACKED

V-TWO SOM8RS
I-ONE DecOY
2-""0 OECOY5
4 0 .. £ BOMSER

+ONE DECOY
'-ONE pOHPER

+lWO DECYS

tONE OEC.OY
M-TWQ eo ... a~s

+11010 OeCYS
(_TOO MAMY

URGETS

Figure 2. A computer-generated map to show disposition of aircraft, and decoys.

(A and B define the four different cases being
studied and NUM is the number of reentry vehicles
yielding the plotted kill probability.) The advantage
to the simulation designer of the generalized instruc­
tion, PLOT, is that he can concentrate his attention
on the problems of the specific simulation. Figure 3
also illustrates a valuable feature of on-line com­
puting. The system analyst monitors the output
from the simulation. When he obtains the desired
results, he can interrupt the computation and go on
to the next case.

The same effect can be achieved on batch com­
puters by storing successive values of a variable on a
scratch tape with appropriate tags. When the run is
completed, the executive portion of the simulation
can make use of an auxiliary program to provide
appropriate headings and scales and to construct
a plot of the variable as a function of the inde­
pendent variable with which each value was tagged.
TEFORM, a central war model, computes counter-

force and countervalue potential ratios at each event
cycle time and stores the values. These are brought
back at the end of a game and converted into a time
plot which follows the event initiated printout.

Since the above implicitly has been stated in terms
of the current family of high-speed batch processing
computers, one might ask what changes the new
remote-access, time-sharing computers will have.
The author's own limited experience suggests that
the model designer will appear to absorb the simula­
tion designer's job in large part because he will com­
municate directly with the computer directly
through his remote console. In fact, it is likely that
the simulation designer's function will remain but in
a new form. First his role in a specific task will be­
come consultive. In looking over the model de­
signer's shoulder either literally, or figuratively, he
will spot program needs which can be best met with
techniques unfamiliar to the model designer, and
suggest them. More Important, however, will be the

164 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

CUMULATIVE KILL PROBABILITY

RV'S 0 .2 .4 .6 .8 1.0
ASGN'O •••
0.0000)

1.0000

2.0000

3.0000

11.0000

18.0000

P\
INTERRUPTED AT STEP 601200
~DO PART 40

Figure 3. A graph generated by a computer in real time.

simulation designer's contributions to the pro­
gramming language. Being able to anticipate at
least to some extent the things the model designer
is going to do, he can seek out ways to adapt the
programming language to the needs. The other area
in which the simulation designer can contribute is in
applications of mass memories. If the computer sys­
tem is capable of storing the input data and results
from a large number of previous runs, the system
analyst may want to be able to compare current
runs with earlier runs. He may want to be able to
repeat an earlier run with only one or few changes,
and compare the results. Since the limitations on
data links are not likely to be eased quickly, the
remote-access, time-sharing system is probably
going to be characterized by a low data transfer rate
for some time to come. As a consequence the sys­
tems analyst will appreciate a programming lan-

guage which enables him to state his problem suc­
cinctly, and to receive only the answer desired
without being distracted by unwanted output. The
simulation designer will be challenged in the dec:ade
ahead to bring to the systems analyst and the model
designer the full power of on-line computing
coupled to a mass memory.

To summarize, system simulations are susceptible
to two broad defects, lack of credibility, and lack
of accessibility. The first is within the controll of
the model designer. If he begins his design with the
maximum simplicity rather than complexity, he can
strive for uniformity of detail, and at the same time
give the systems analyst a clear quantitative: measure
of the effect of departures from "com plete ac­
curacy." By imaginative design of input and output
formats, and operating procedures, the simulation
designer can give the systems analyst a 4:;omputer
program that is easy to operate, and adaptablt~ to
the problem at hand. In the last analysis all of the
above comes down to being customer··oriented.
Each individual in the loop serves best when he
adopts the viewpoint of the person preceding him.

REFERENCES

l. M. R. Lackner, "Digital Simulation and Sys­
tem Theory," Document No. SP-1612, System De­
velopment Corp. (Apr. 6, 1964).

2. M. Greenberger, "A New Methodology for
Computer Simulation," Document No. l\J1AC-TR-
13, MIT Project MAC.

3. A. L. Pugh III, Dynamo User's Manual, 2d ed.,
MIT Press.

4. R. G. West and J. R. Reynolds, "FORTRAN
Programs for Plotting Two Dimensional Graphs,"
Document No. NMC-TM-65-31, U.S. Naval l\,fis­
sile Center (June 21, 1965).

5. G. H. Grace, "Application of Empirical
Methods to Computer-Based System Design,"
Document No. SP-1952, System Development
Corporation (June 1, 1965).

DSL/90-A DIGITAL SIMULATION PROGRAM
FOR CONTINUOUS SYSTEM MODELING

W. M. Syn
Systems Development Division

and
Ro bert N. Linebarger

Data Processing Division
IBM Corporation, San Jose, California

INTRODUCTION

Computer simulation has been used for some time
in the analysis and design of dynamic systems. With
recent advancements in computer performance, the
field of dynamic simulation-long the exclusive
domain of the analog computer-has begun to
utilize digital methods. No less than a score of
digital simulation programs have appeared since
R. G. Selfridge's pioneering effort in 1955; and the
number is ever-increasing. These programs offer a
convenient method of simulating continuous sys­
tem dynamics employing well-known and easy-to­
use analog computer programming techniques.
The common starting point for such simulation is
the conventional analog block diagram, and the
common approach is the breakdown of the mathe­
matical system model into its component parts or
functional blocks. These blocks, having a near one­
to-one correspondence with analog computing ele­
ments such as integrators, summers, limiters, etc.,
usually appear as subroutines within the simulator
program. Using one of the sim ulation packages,
"programming" involves no more than merely in­
terconnecting the functional blocks by a sequence of
connection statements according to the rules laid
down by the input language. This interconnecting

165

of blocks is analogous to the wiring of the patch­
board on an analog computer. Therefore, these
digital-analog simulation programs combine the
best features of the analog and digital computers:
the flexibility of block connection structure of the
former and the accuracy and reliability of the latter.

DSL/90 is a new digital simulation package for
the 7090 family of computers. The program is avail­
able from the SHARE library (lWDSL No. 3358).
Its development, from drawing board to production
code, was guided by the following broad objectives:

• To incorporate within it all the desirable
and proven features of its predecessors;

• To make this useful technique of digital
simulation attractive to a group of users
who are not analog-computer-oriented,
yet retain the large following of analog
programmers who are devoted to the
building-block approach to system anal­
ysis;

• Toprovide a "continuous system simu­
lator" program that is applicable to a
broad range of continuous system anal­
ysisand not restrained by conventional
digital-analog simulator techniques.

166 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Some of the DSL/90 features are:

• A library of DSL system blocks such as
integrator, limiter, summer, etc.;

• A simple nonprocedural applications­
oriented input language specifying the
rules for connecting the library blocks
together;

• An input routine which permits quick
and easy parameter entry and data
changes;

• Complete print output routines includ­
ing a graphical output facility;

• Choice of numerical integration routines
with or without error bounds using cen­
tralized or noncentralized integration
schemes;

• Automatic sequencing of input language
statements (this is called "sorting" in
programs such as ASTRAL and
MIDAS);

• Facility to add to the DSL/90 library
any user-defined blocks in the form of
subroutines (FORTRAN, MAP or
binary decks);

• Intermixing of DSL and FORTRAN
language statements;

• Repeatability of language statements
(macro-generation);

• Dynamic storage of data.

Although DSL/90's input .language statements
are block-oriented, they are not restricted solely to
block notation. DSL/90 permits an intermixing of
its input language statements (henceforth called
DSL statements) and FORTRAN IV statements.
Thus, the power of FORTRAN is made available
to the problem solver. One far-reaching implica­
tion of this language feature is that simulation
"programming" may begin anywhere from the
analog block diagram formulation of the problem
to the higher-level mathematical model in the form
of ordinary differential equations.

OPERATIONAL FEATURES

Basic Language Features

The DSL/90 language statements may be classi­
fied into three general categories: I) structure or
connection statements which define the intercon­
nection of the functional blocks, 2) data statements
which permit the entry of alphanumeric informa­
tion, and 3) simulation control statements.

The Connection Statements. In the DSL/90 input
language, the basic functional block is characterized
by an output (outputs) that is functionally related
to one or more inputs. Parameter names and initial
conditions, if any, are also included in the statement
which has the following general form:

Outputs = Block name (Initial conditions,
Parameters, Inputs)

Below are examples of basic DSL connection or
structure statements:

1. OUTNAM = SQRT (TEMP)

In the block diagram representation (Fig. 1),
SQ R T is the name of the functional block. It has a
single input called TEMP and the output is given
the name OUTNAM.

TEMP-~·I " ~-"""·~OUTNAM

SQRT

Figure 1.

2. Y = INTG RL (lC2, YDOT)

Figure 2 represents the block INTG RL which is
the basic DSL/90 integrator block. IC2 and YDOT
are its initial condition and input name respectively.

IC2

~

1
YDOT ·1; y

INTGRL
Figure 2.

3. OUT1,OUT2 = VALVE (LEVEL, INHI,
INMED, INLO)

Figure 3 illustrates a user-supplied functional
block named VALVE with two outputs OUT1 and
OUT2. LEVEL is a unique parameter name se-

LEVEL

:1
l

IN HI
: OUT 1 INMED

INLO
OUT 2

VALVE

Figure 3.

DSLj90-A DIGITAL SIMULATION PROGRAM 167

lected by the user, and INHI, INMED and INLO
are the names of the three input variables to the
block.

From the above illustrations, it should be evident
that a functional block in the DSL/90 language is
completely specified by the unique names assigned
to the inputs and outputs of each block. The user
is free to select names meaningful to his process
simulation, the only restriction being that a name
consists of no more than 6 alphanumeric characters,
the first of which is alphabetic. User-supplied
blocks may have any name following the same re­
striction above. However, the names of standard

blocks supplied as part of the DSL/90 simulation
package are preassigned. DSL/90 provides an ex­
tensive library of functional blocks which are listed
in Table 1.

The above format for characterizing functional
blocks in DSL/90 is consistently adhered to. How­
ever, there are these exceptions: the basic operations
of multiplying, dividing, summing and subtracting
are replaced by the operators *, /' + and -, re­
spectively. To this list of operators we add ** for
exponentiation. Let us illustrate one of these opera­
tions by simulating a multiplier output (Fig. 4),

OUT = A·B.

Table 1. Functional Description of Standard DSL/90 Blocks

GENERAL FORM FUNCTION

** Y = INTGRL (IC, X) Y=f~ X dt + IC

Y(O) "' IC

INTEGRATOR EQUIVALENT L.APLACE TRANSFORM • t
* Y=MODINT (IC, PI' P2 , X) Y=Jot X dt + IC PI· I, P2 • 0

Y·IC PI =0, P2 • I
MODE-CONTROLLED INTEGRATOR y. LAST OUTPUT PI =0, P2· 0

* Y = REALPL (lC, P, X) py + Y • X
Y (0) • IC

1ST ORDER SYSTEM (REAL POLE) EQUIVALENT LAPLACE
I

TRANSFORM I PS + I

* Y = LEDLAG (lC, PI ' P2 ' X) P2 y + Y .. PI X + x
Y(O)" IC

PS+I
LEAD- LAG EQUIVALENT L APL ACE TRANSFORM 1_1 __

P2S + I

* Y = CMPXPL (IC I , IC2 , PI , P2, X)
•• • 2
Y + 2 PI P2 Y + P2 Y • X

Y(O) ,. IC I
y(O) ,. IC2 I

2 ND ORDER SYSTEM (COMPLEX POLE) EQUIVALENT l.APLACE TRANSFORM I

S2+2PI P2 S + P~

Y ,. DERIV (lC, X) Y = ~~ QUADRATIC INTERPOLATION

Y(O) • IC

DERIVATIVE EQUIVALENT L.APLACE TRANSFORM' S

Y=DELAY (N,P,X) Y(t) = X(t-P) t = P
P =TOTAL DELAY IN TERMS OF INDEPENDENT VAR.

Y=O t < P
N = MAX NO. OF POINTS DELAY

DEAD TIME (DELAY) EQUIVALENT ·LAPLACE TRANSFORM' e -PS

Y ,. ZHOLD (P, X) Y·X P·I

Y (0) = 0 Y • LAST OUTPUT P·O

ZERO-ORDER HOLD EQUIVALENT l.APLACE TRANSFORM I 1. (1- e-St)
S

Y .. IMPL (lC, ERROR, FUNCT) Y"IC t • 0 FIRST ENTRY

IMPLICIT FUNCTION y .. FUNCT (Y) t ~ 0

IY- FUNCT(Y) ''-ERROR' lyl

168 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

SWITCHING FUNCTIONS

Y II FCNSW (P, XI , X2 , X3) y. XI P< 0

y. X2 P-O

FUNCTION SWITCH y. X3 P>O

Y = INSW (P, XI' X2) Y - XI P<O

INPUT SWITCH (RELAY) y. X2 P~O

YI ' Y2 • OUTSW (P, X) YI • X, Y2 • 0 P<O

OUTPUT SWITCH YI • 0, Y2 • X P~O

Y = COMPAR (XI' X2) Y • 0 XI < X2

COMPARATOR Y • I XI ~ X2

Y :: RST (PI' P2 ' P3) y·O PI > 0
Y • I P2 > 0, (PI " 0)
y·O P3 > 0, Yn-I • I , (P2 ~ 0, PI ~ 0)

RST FLIP- FLOP Y • , P3 > 0, Yn-I =0,
II "

* THESE FOUR BLOCKS EXIST AS BUILT-IN MACROS WITHIN DSL. IN-LINE CODE REPRESENTING

AN EQUIVALENT INTE~RATOR CIRCUIT IS GENERATED FOR EACH USE TO PERMIT THE USE OF

CENTRALIZED INTEGRATION SCHEMES WITHIN THE BLOCKS.

* * INTGRL MUST BE THE RIGHTMOST TERM FOR EACH LEVEL OF USAGE. IF X IS A SINGLE VARIIABLE

NAME THEN IT MUST BE UNIQUE WITHIN THE PROBLEM. IC MUST ALSO BE UNIQUE. (-IC IS
NOT VALID). A LITERAL MAY BE USED FOR IC. ALSO SE E SECT. 5-1.

We have decided not to use OUT = MULT (A,
B), but simply OUT = A ~B. Let us summarize
these ideas by considering a solution to Mathieu's
equation:

y + (1 + A cos t) y = 0 y (0) = 0, y(O) = YO

As the DSL connection st41tements for this circuit
follow a near one-to-one cqrrespondence with the
functional blocks in Fig. 5, they may be written as:

FCN A * COS (TIME)
MULT FCN*Y
Y2DOT - Y - MULT
YDOT INTG RL (0., Y2DOT)
Y INTG RL (YO, YDOT)

(Note that TIME is a DSL system name represent­
ing the independent variable of integration. It may
easily be renamed by the user.) ,

Observe that the DSL statements in the above
example are also FORTRAN arithmetic statements,

B

A--..... x t---·OUT

Figure 4.

and the right-hand portions of the statements are
merely FORTRAN expressions. Therefon;:, as such,
their complexity is restricted only by the rules' 1that
govern arithmetic expressions in the FORTRAN
language.

Furthermore, these expressions can serve as
inputs to any functional block, regardless of
whether it is a DSL/90 or user-supplied block. For
example, the first three DSL structure statements in
the problem above may be written as one statem1ent,

Y2DOT = - Y - A * COS (TIME):+: Y;

or perhaps as

Y2DOT = - Y * (1. + A * COS (TU~E)).

Y +(I + A cos t) y : O. y(O):O; yeo): Yo

1-----1----_ Y

MULT

Figure 5.

DSL/90-A DIGITAL SIMULATION PROGRAM 169

FUNCTION GENERATORS

GENERAL FORM FUNCTION

Y·AFGEN (FUNCT. X) Y: FUNCT (X) Xo~X" .Xn
LINEAR INTERPOLATION

y. FUNCT (Xo) X< Xo
ARBITRARY LINEAR FUNCTION GENERATOR Y=FUNCT (Xn) X> Xn

Y·NLFGEN (FUNCT. X) y. FUNCT (X) Xo~X ~ Xn
QUADRATIC INTERPOLATION (LA GRANGE)

Y= FUNCT (Xo) X< Xo
NON - LINEAR FUNCTION GENERATOR y. FUNCT (Xn) X> Xn

Y·LIMIT (PI' P2• X) y. PI X<PI ¥ y. P2 X >P2
LIMITER y·x PI~X~ P2

~---.. X

Y·QNTZR (P, X) y. kP (k-1/2)P<X~(k+ 1/2)P

~x k=O,.:I:I. :2. :1:3

QUANTIZER

Y= DEADSP (PI' P2• X) Y·O PI ~X~ P2 P, Yf~/ y. X- P2 X> P2
DEAD SPACE y. X - PI X< PI

45 0Y· ~ X

Y·HSTRSS (lC. PI' P2 • X) Y = X- PI (X -Xn-I) > 0 AND

~
Yn-I~(X-PI)

Y(O)·IC y. X - P2 (X-Xn_I)<O AND P2 PI 450
X Yn_I~(X - P2)

HYSTERESIS LOOP OTHERWISE y. LAST OUTPUT / /

Y= STEP (P) Y·O t. < P Y tl
STEP FUNCTION y .. I t~P :P t

~ I

y .. RAMP (P) Y=O t<P
Y! P 6 450

RAMP FUNCTION Y =t-P t~ P
t ..

Y=IMPULSE (PI ,P2) Y=O t < PI

Yb"'t:1 Y = I (t - PI) • k P2 I t y=o (t - PI) ~ k P2 ...
IMPULSE GENERATOR k·O.I.2.3 PI

y. PULSE (P, X) y·o INITIAL

~
Y=I Tk~t<(Tk+X) 1 X ,
Y=O OTHERWISE

TI T2 t k=I,2,3
PULSE GENERATOR WITH P AS TRIGGER Tk• t OF PULSE k. Pk

Y • SIN E (PI' P2 • P3) v=o t<PI Y f P
'3

/P2
P2=FREQUENCY IN RADIANS/SEC. V"SIN [P2·(t-PI)+P3] t~PI ~I~·~:--;i P3 = PHASE SHIFT IN RADIANS
TRIGONOMETRIC SINE WAVE WITH I ""-/
AMPLITUDE. PHASE. AND DELAY

V·NORMAL (PI' P2 • P3) Y= GAUSSIAN DISTRIBUTION lAy WITH MEAN. P2 • AND
NOISE GENERATOR ·STANDARD DEV I ATION. P3 (NORMAL DISTRIBUTION) (PI = ANY ODD INTEGER) I ~
y .. UNZRPI (PI) y .. UNIFORM DISTRIBUTION 0 TO I If(Y)

(PI= ANY ODD INTEGER) I Y

o· flY) 1 r ~

V"UNMIPI (PI) V=UNIFORM DISTRIBUTION.
-I TO +1 I I Y

V = UNATOB (PI' P2• P3) Y= UNIFORM DISTRIBUTION.
-I I ~

NOISE GENERATOR P2 TO P2 +P3 ·rtf)-'
(UNIFORM DISTRIBUTION) Ip2 I'!

170 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

In addition, if the output, YDOT, of the first in­
tegrator is not a variable of interest, the two integra­
tors may be "nested" as follows:

Y = INTG RL (YO, INTGRL (0., Y2DOT)).

Finally, if the variable Y is the oRly one whose out­
put is desired, the problem may be described by a
single DSL connection statement, namely,

Y = INTGRL (YO, INTGRL (0., - Y *
(1. + A*COS(TIME)))).

The Data Statements. The subject of data entry was
given prime consideration during the development
of language features of DSL/90. The end result is
free-form and symbolic specification of parameter
values and initial conditions following a card identi­
fier label which is punched left-adjusted in the first
six columns of a data card. For example,

Co Is 1-6
PARAM

INCON
CONST

7-72
A = 0.5, PARI = 62.4,

PAR2 = 3.215 E + 4
ICI = 0.2, XDOT = 1.3
CIC = 7.3, C2C = 100.,

T = 46.25,
EPSILN = 1.0 - 05

The identifying labels begin in column one. The
data items, separated by commas, may be placed
anywhere in columns 7-72. Blanks are ignored.
Three consecutive decimal points at the end of any
statement indicate that it is to be continued on the
next card. Continuation may begin anywhere in
columns 1-72. Data statements may be inter­
mingled with connection statements.

The Control Statements. The statements may be
conveniently grouped into three types:

1. Problem output control statements include
print and plot requirements, title information and
labeling of graphs, such as:

PRINT .01, Y, Y2DOT
PREPAR .005, Y, Y2DOT
GRAPH 8.,6., TIME, Y, Y2DOT
LABEL SOLUTION OF MATHIEU'S

EQUATION
RANGE DELT, X

The above cards will cause the printing of TIME,
Y, and Y2DOT at intervals of 0.01 units of time,
and preparation of TIME, Y, and Y2DOT for
graphing at intervals of 0.005 units of time. A
single 8 x 6-inch graph properly labeled as directed,
will be made with Y and Y2DOT plotted vs TIME.
The maximum and minimum values attained by
DELT and X will be printed at the end of the run.

2. Problem execution control statem,ents are
used to set error bounds and step size for integra­
tion routines, prescribe run cutoff conditions, and to
specify other pertinent run information. Typical
examples are

CONTRL DELT = .05, FINTIM = 2.0
ABSERR YDOT = 1.0 E - 5, Y = 5.0 E - 4.

The simulation will be executed from 0 to 2.0 with
an integration interval of 0.05. The error bounds
on YDOT and Y will be held at 1.0 x 10-5 and
5.0 x 10-4

, respectively. The latter bound will be
applied to all other unspecified integrator outputs.

3. System control statements provide the user
with a number of options, the most important ones
being choice of integration methods, bypassing the
sequencing routine, and renaming of system vari­
ables. They also include an END card which sig­
nifies the end of a logical set of data ,cards, and a
STOP card which ends the computer run.

For example:

CONTIN
INTEG MILNE
NOSORT
RENAME TIME = X, DELT = DELX
FINISH DIST = O.

These cards cause continuation of the simulation
from the last calculated point, selection of the Milne
5th-order integration scheme, exercise of the no-sort
option, renaming of two systems variables, and
termination of the run when the value of DIST
reaches zero.

All data and control cards, with the exception
of the END and STOP cards and certain logical
groups of cards (such as continuation statements)
may be intermixed with DSL structure statements
and may appear in any order. Proper statement
order is determined by an internal sort based on
correct information flow. Table 2 shows a c:ompll~te
list of DSL/90 data and control statements. Re­
turning to Mathieu's equation, a complete DSL/'90
program for y + (1 + A cost) y = 0 may be written
as follows:

1-6
TITLE

PARAM

INCON
INTEG

7-72
SOLUTION OF MATHIEU'S

EQUATION
Y2DOT = - Y*(1.0 + A * COS
(TIME))
A = 0.5
Y = INTGRL (YO, INTGRL (0.,
Y2DOT))
YO = 20.0
MILNE

DSL/90-A DIGITAL SIMULATION PROGRAM 171

TABLE 2 Summary of DSL/90 Data Statement Format,

Label Function (By Example)

COL. 1-6 7-72

PROBLEM DATA I""PUT:
PARAM
CONST
INCON
AFGEN
NLFGEN
TABLE

TAU ~ 25., PAR = 3.15BE3, C4 = 2.0 E-5
CONI =45.3, PI=3.14159, K=3
ICI = 20., A = 50.2, IC3 = 0
FCN = 3.,25.,5.2,26.4,6.0,24., 7.5,21.3
FY3 ~ 0.,850.,5., 1245.,8., 1.574E3, 12.4, 2.4E03
PARI (8) = 4.5, INPUT(l-4) = 2.,2*8.6, 3.52E3

PROBLEM OUTPUT CONTROL:
PRINT 0.1, X, XDOT, VELOC
TITLE MASS, SPRING, DAMPER SYSTEM IN DSL/90
PREPAR .05, X, Y, XDOT
GRAPH 10., 8., TIME, X, XDOT
LABEL MASS, SPRING, DAMPER SYSTEM - 6/1/65
RANGE X, XDOT, VELOC, DELT

PROBLEM EXECUTION CONTROL:
CONTRL DELT = .002, FINTIM = 8.0, DELMIN = I.OHO
FINISH DIST=O., ALT=5000. .
RELERR X = I .E-4, XDOT = 5.E-5
ABSERR X = I .E-3, XDOT = I.E-4
CONTIN
INTEG MILNE
RESET GRAPH, PRINT

DSL/90 TRANSLATOR PSEUDO-OPERATION';:
RENAME TIME = DISPL, DELT ~ DELTX
INTGER K, GO
MEMORY INT(4), DELAY (100)
STORAG IC(6), PARAM (10)
DECK

SORT
NOSORT
PROCED

ENDPRO
MACRO

ENDMAC
END
STOP

CONTRL
ABSERR
PRINT
END
STOP

X = FCN (A, B, PAR5, IC3)

OUT = FCN2 (ICI, R, T, X)

DELT = .02, FINTIM = 2.0
Y2DOT = 1.0E-5, Y = 2.0 E-5
0.05, Y, Y2DOT

It should be apparent by now that the DSL input
language is block-oriented, symbolic, and free-form.
The use of FORTRAN is not limited to arithmetic
statements. All FORTRAN library functions such
as SQRT, SIN, COS, etc., are available. Under
the rules which are clearly defined within DSL/90,
a large subset of FORTRAN becomes available to
the simulation user without sacrificing the ease of
block notation programming. What this means to
the engineer who is unskilled in FORTRAN pro­
gramming is simply this: he can still perform his
process simulation with a simple language, follow­
ing a step-by-step building block approach. As he
becomes more proficient, his programming becomes
correspondingly more efficient and he may want to
include elementary FORTRAN language features in
his connection statements. Still later, as the com­
plexity of his problem increases, he may use to ad­
vantage the more powerful features of DSL and
FORTRAN.

Advanced Language Features

There are a number of other DSL/90 language
features which are especially useful for the simula­
tion of large or complex problems. We shall ex­
amine several of these.

Procedural Statements. Recall that the order in
which DSL statements are entered is unimportant
because connection statements are separated from
the rest and sequenced (or "sorted") by the DSL
processor (unless a "no-sort" option is exercised).
In other words, the DSL/90 language may be con­
sidered as nonprocedural. In contrast, FORTRAN
is a procedural language since FORTRAN state­
ments are executed in the order in which they are
written. Frequently, in a complex process simula­
tion, it is desirable to introduce procedural state­
ments within the simulation program. The purpose
may be to control signal flow in certain portions of
the program, or perhaps to compute a large number
of parameter values once and only once. DSL/90
uses a pair of pseudo:-operations, PROCED and
ENDPRO, punched in columns 1-6, to designate
the beginning and end of a block of procedural
statements (they may be DSL or FORTRAN state­
ments). Input and output names may be specified
on the PROCED card to allow the procedural state­
ments to be sorted as a block relative to other DSL
statements.

PROCED

10

20
30

ENDPRO

For example:

TEMP = BLOCKA (TEST, IN)
IF (TEST) 10, 10,20
TEMP = LIMIT (PARI, PAR2, IN)
GO TO 30
TEMP = IN + TEST
CONTINUE

During the sequencing of DSL statements, the
above procedural statements will be treated as a
single functional block with output TEMP and in­
puts TEST and IN, as illustrated in Fig. 6. The
order of the statements within the procedural block
remains unchanged.

Macro-Generation. Pseudo-operations MACRO
and ENDMAC, which are punched in columns

IN

:1 III TEMP
TEST

BLOCKA
Figure 6.

172 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

1-6, are used to define a macro block. One may
think of a macro as a repeatable procedural block
with parameter variations. This is best illustrated
by example. The following statements constitute a
macro-definition:

1-6
MACRO

ENDMAC

7-72
OUT = FILTER (VI, V2, K, IN)
VI = (IN - V2)/K
V2 = INTGRL (0., VI)
OUT = V2 + O.5*VI

During the definition of the macro, no language
statements are produced. The name of this macro,
FILTER, must be unique. However, the output
name OUT and the input names, VI, V2, K, and
IN, are dummy symbols which will be replaced by
the actual names specified at the time when the
macro is used. The subsequent appearance of the
statement

LINE 1 = FILTER (AI, A2, TAU,XIN)

will cause the following three statements to be gen­
erated in-line:

Al = (XIN - A2) /TAU
A2 = INTGRL (0., AI)
LINEI = A2 + 0.5* Al

Just as in the case of the procedural block, these
statements will be sequenced as a single functional
block with LINEI as output and AI, A2, TAU and
XIN as inputs (see Fig. 7). The statements within
the block are not sorted. Both DSL and FOR­
TRAN statements may appear within a macro.

At

~I A2 LINEl

TAU :
..

XIN

Figure 7.

Implicit Function Block. DSL/'90 provides an im­
plicit function block called IMPL for the solution of
an implicit equationf(y) = 0 expressed in the form
of y = f(y). Clearly some iterative technique must
be employed. These iterations must be performed
within each integration interval until a convergence
criterion is satisfied. The program for IMPL uses
the direct iteration method developed by Wegstein.
If there is no convergence after some preassigned
maximum number of iterations, the simulation of
the problem is terminated with appropriate diag­
nostic printout.

To use the implicit function block, one writes t.he
DSL statement,

Y = IMPL (YO, ERROR, FOFY)

followed by the set of DSL or FORTRAN (or bOllh)
statements evaluating FOFY. Y, YO, ERROR
and FOFY are symbolic names selected by the user.
The DSL/90 system then sets up the necessary
iterative loop. Let us illustrate by solving the im­
plicit equation

C . (e Y - 1)
y =-----

e Y
(C is some constant)

One simply writes:

Y = IMPL (YO, ERROR, FOFY)

A = EXP(Y)

FOFY = C* (A - 1.0) / A

The DSL/90 translator will automatically gener­
ate the following statements:

30001 Y = IMPL (YO, ERROR, FOFY)
IF (NALARM .LE.O) GO TO 30002
A = EXP(Y)
FOFY = C* (A - 1.0) / A
GO TO 30001

30002 CONTINUE

Note that three statements, and only those three, are
added to the ones written by the user. The first time
the IMPL routine is entered, NALARM is set to
one, and Y is given the initial guess YO. After eaeh
calculation of f(y), program flow returns to the
IMPL subroutine where the convergence criterion is
tested. If satisfied, NALARM is set equal to zero
and y assumes the most recently calculated value of
f(y). Otherwise the iteration continues.

User-Supplied Functional Blocks. Although DSL/
90 provides an extensive library of operational
blocks, there are occasions when special blocks are
required to simulate specific process elements.
These special blocks are programmed by the user as
subroutines either in FORTRAN or MAP and
simply added to the data at the time the simulation
run is made. The user may treat these special blocks
like all other DSL library blocks, interconnecting
them to build a complex system model.

As an example of the use of special blocks, con­
sider the modeling of the analog-to-digital convertler
shown as a nonlinear stepwise quantization in Fig.
8. If no such general block existed in the DSL li­
brary, it would be difficult to construct such a char­
acteristic from the standard blocks available. How-

DSLj90-A DIGITAL SIMULATION PROGRAM 173

--------------~~--------------~XIN

Figure 8.

ever, the quantization effect is easily modeled by the
following FORTRAN statements:

FUNCTION QNTZR (P, XIN)
QNT = AINT (0.5 + ABS (XIN)/P)
QNTZR = SIGN (p* QNT, XIN)
RETURN
END

The parameter named P containing the value of the
quanta step size is the only parameter supplied to
the QNTZR block. This value of P is entered into
the simulation program in exactly the same way as
any other DSL parameter-on a PARAM card.
Note also that the two blocks AINT (for truncation)
and SIGN (for transfer of sign) are standard sub­
routines of the FORTRAN library. The above
FORTRAN subprogram for the quantizer may be
entered directly with the data cards for the simula­
tion run, or as an alternative, it may be compiled
independently and the resulting machine language
deck (binary deck) added to the data deck. This
functional block may even be added to the perma­
nent DSL library by simply loading it on the library
tape. In fact this was the case with the QNTZR
block when we found it to be sufficiently useful to
warrant a place in the DSL library. The ease with
which a difficult nonlinearity has been modeled in a
few lines of FORTRAN coding is quite apparent
and typifies the flexibility of DSL/90 for handling
nonlinear functions and special blocks.

Arbitrary Functions. DSL/90 provides two func­
tional blocks, AFGEN and NLFGEN, for handling
arbitrary functions of one variable. The x, y coor­
dinates of the function points are entered sequen­
tially following an identifying label and the symbolic
name of the function, e.g.:

1-6 7-72
AFGEN FCI = -10.2,2.3, - 5.6,6.4, 1.0, 5.9, etc.

Although the total number of data storage locations
is necessarily fixed by machine size, there is no re­
striction on the number of points one may use to
define any function. The only requirement is that
the x coordinates in the sequence x\, YI, X2, Y2, .. '
are monotonically increasing. Any number of arbi­
trary functions may be defined, identified only by
their symbolic names assigned by the user. As an
example, the DSL statement Y3 = AFGEN (FC1,
XIN) will refer to the function called FC 1. AFG EN
provides linear interpolation between consecutive
points, while NLFG EN uses a second-order La­
grange interpolation formula.

Tabular Data. This feature of DSL/90 allows
blocks of data to be tr"ansmitted to the UPDATE
subroutine in tabular form. In the construction of
a special block, the user may have to consider sets of
initial conditions, history and input parameters.
This DSL/90 feature will eliminate the need for a
lengthy subroutine argument string. To illustrate,
suppose we wish to build a special block called
SPEC which requires two initial conditions and 10
parameters. We begin by writing the following two
DSL statements:

1-6 7-72
STORAG IC(2), PAR(10)
TABLE IC(I) = 2.0,IC(2) = 0.0, PAR(l)

= 4., PAR(2-10) = 9* 1.5

The first statement instructs the DSL/90 system to
assign a total of 12 locations-2 for the array IC
and 10 for PAR. The second statement illustrates
the manner in which numeric values are entered into
these reserved locations. Now, when we subse­
quently use a statement such as

YOUT = SPEC (lC, PAR, XINPUT)

DSL/90 system will replace the names IC and PAR
with the addresses of the first locations of the arrays
IC and PAR respectively. Obviously, the user when
programming his subroutine SPEC must realize that
the first two arguments in SPEC are location point­
ers to his arrays. His subroutine could begin with
the following:

FUNCTION SPEC (LOCIC, LOCPAR, XIN)
COMMON /CUR V AL/C(l)
I = LOCIC
J = LOCPAR

CURV AL is the labeled common where the current
values of all variables are stored, and I and J are
indices referencing the first initial conditions IC
and parameter values PAR.

174 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

System Features

DSLj90 System Organization~ The DSL/90 Oper­
ating System is separated into two major functions:
language translation and model simulation. Each
function operates independently under standard
IBSYS control but as one continuous single-pass
operating system. The transition is made by having
the translator develop on an IBSYS scratch tape all
the elements of a standard IBSYS job as well as the
representation of the model to be simulated. This
tape is then switched in as the standard IBSYS input
for compilation and execution to complete the simu­
lation. Diagnostics are printed if errors are found
in translation or simulation. Elements which may
appearas input to the translator are: 1) DSL/90
problem-oriented language sentences to describe the
model, 2) data input to the model for parameter
values and control of the simulation and output, 3)
binary and BCD subroutines and functions supplied
by the user for the simulation, and 4) appropriate
controls to load binary or BCD subroutines and
functions from a library tape. The entire system
may be placed at any level of a standard batched
IBSYS run. Three additional tape drives are re­
quired-two auxiliary and one for plotting.

DSL/90 may be run as an independent program
or it may be used as a subprogram of a conventional
FORTRAN program for control purposes.

Sort. A nonprocedural input language such as
DSL/90 transfers the responsibility of establishing
the execution sequence from the user to the pro­
gram. To accomplish this DSL/90 alters the se­
quence of input statements according to the rule: an
operational element (or statement) is properly se­
quenced if all its inputs are available either as input
parameters or· initial conditions or as previously
computed values in the current iteration cycle. Un­
specified algebraic loops are identified and, if any,
the run is halted. The result of this sequencing oper­
ation is a properly organized FORTRAN IV sub­
program.

Main Program Control. DSL/90 provides for call­
irig the simulation routines from a MAIN program
specified by the user. Hence the actual digital simu­
lation may be placed under control of a FORTRAN
routine compiled at execution time. This feature
allows for testing of response conditions, matching
boundary values, and dynamic: alteration of param­
eters, initial conditions, or run control data between
parameter studies.

Centralized Integration. By use of the block name,
INTG RL, a user may specify that centralized inte­
gration is desired. The translator sets up statements
so as to compute all inputs to the integrators but
bypass computation of outputs until the end of the
iteration cycle. At this time, all integrator outputs
are updated simultaneously. A choice can be made
between the 5th-order Milne Predictor-Corrector,
4th-order Runge-Kutta, Simpson's Trapezoidal, or
Rectangular Integration methods. The first three
allow the integration interval to be adjusted by the
system to meet a specified error criterion, a factor
which allows it to take large or small steps depend­
ing on the rate of change of one or more variabl(!s.
There is provision in DSL/90 for the user to supply
his own integration scheme, which mayor may not
be centralized.

Dynamic Storage Allocation. Data in DSL/90 is
stored in a single vector including current values of
structure variables and table values for function
generators, integration history, error bounds,
STORAG variables, etc. The storage is allocated
dynamically (i.e., at execution time) according to
what portions of the simulator are used and how
many integrators, tables, and structure variables are
in the simulation model. Standard DSL/90 blocks
are loaded only if used.

APPLICA TIONS

Having illustrated operational features of the
DSL/90 digital simulation program, we will now
draw upon the previous introduction to show how
DSL/90 has been flexibly applied to simulation
problems. Three specific simulations will be con­
sidered: 1) a biomedical block notation problem
involving a respiratory servomechanism; 2) a proc­
ess analysis problem involving the simulation IOf
heat transfer dynamics of a recirculating furnace
used in the glass industry; and 3) the simulation of
the flight dynamics of a portion of the SATURN V
booster rocket.

DSL/90 provides special programming features
such as different integration methods, sorting,
special blocks, etc., which make it attractive to the
user for continuous system simulation. Several of
these features will be illustrated in the examples to
follow.

Application No. i-Respiratory Servo Simulation

This problem involves evaluating the response of
a proposed model for respiratory control of CO 2

DSL/90-A DIGITAL SIMULATION PROGRAM 175

partial pressure in the venous and arterial blood
streams of a human. De Fares et al performed the
original study on an analog computer and repre­
sented the basic CO2 control mechanism in respi­
ration by the three-compartment model shown in
Fig. 9. Using the original study as a guide, this first
example will illustrate the ease of handling conven­
tional analog simulation problems using DSL/90.

LOCAL

CO2

Figure 9. C02 control model.

The CO 2 control system operates as follows: The
alveolar tissue in the lung serves as an exit sink for
CO 2 production and possesses both CO 2 capacity
and conductance characteristics. In a similar man­
ner, body tissue can be considered as having an
equivalent CO2 capacitance and conductance. CO2

produced by the body is partially stored in the local
body tissue, raising the local body tissue partial
pressure of CO 2 • The CO 2 produced is simulta­
neously diffused through the tissue and picked up by
the blood stream (venous path). The CO 2 is then
carried to the lung and subsequently diffused to the
alveolar tissue, raising its CO 2 partial pressure. Si­
multaneously, CO 2 is produced in the region of a
receptor (C02 detector) in the medulla. This CO 2 is
similarly diffused and carried to the alveolar tissue
through the venous blood stream. It can be shown
that the basic controlled variable in this system
model is the partial pressure of CO 2 in the receptor
tissue located in the medulla.

If CO 2 -enriched air is also brought into the lungs,
it simultaneously affects the CO 2 diffusion and
buildup in the alveolar lung tissue. De Fares et al
have shown that the partial pressure of CO 2 in the
receptor can serve as an effective mechanism for
controlling diffusion of CO 2 from the receptor and
from inspired air. In this study, the CO 2 partial
pressures of mixed venous blood flow and body
tissue will be assumed equal. Similarly, the CO 2

partial pressures of arterial blood flow and alveolar
lung tissue will be assumed equal. .

By introducing disturbances in the CO 2 content of
inspired air, the dynamics of such a control model
may be studied. The objective of this model is to
hold constant th~ partial pressure of the CO 2 in the
receptor by controlling the diffusion conductance of
CO 2 from the receptor area and of the inspired gas
to the alveolar lung tissue. Thus, the CO 2 partial
pressures of alveolar tissue and local body tissue will
respond dynamically to changes in CO 2 content of
the inspired air.

Network Model. Because of the dynamic analogies
existing between the gas dynamics of the CO 2 dif­
fusion model above and conventional circuit dy­
namics, it is convenient to represent the biological
model by an equivalent circuit model. Figure 10
shows three capacitors tied together with variable
nonlinear conductances, which represent the dif­
fusion characteristics of the separate tissue/blood
interface. The capacitors represent local tissue CO 2

C02 RECEPTOR LUNG BODY TISSUE

Figure 10. Equivalent network model.

capacity, and the voltages become the respective
CO 2 partial pressures. The voltage source E repre­
sents the partial pressure of CO2 -enriched inspired
air and is defined by the following relation:

E Fi (B-47)

Fi % CO 2 content in inspired air

where B = atmospheric pressure in mm Hg.

Table 3 lists the electrical network parameters
and variables together with their physiological
equivalents.

Digital-Analog Simulation. As a first example of
DSL/90 application flexibility, conventional analog

176 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE. 1966

Table 3. Electrical and Physiological Equivalents, Application No.1

Elec. Physiological

Symbol Qkantity ':'Units

G I CO
Z

conductance-air to lung tissue Liters (gas)/min/mm Hg (gas)

GZ CO2 conductance-body tissue to lung Liters (COZ)/min/mm Hg (COZ)

G3 COZ conductance-receptor to lung Liters (COZ)/min/mm Hg (COZ)

C j
Capacity of lung tissue Liters (gils)/mm Hg (gas)

C z Capacity of body tissue Liters (COZ)/mm Hg (COZ)

C 3
Capacity of receptor tissue Liters (COZ)/mm Hg(COZ)

-
VI COZ partial pressure of lung tissue mm Hg (CO

Z
)

V
Z

COZ partial pressure of body tissue mm Hg (CO
Z

)

V3 COZ partial pressure of receptor tissue mm Hg (CO
Z

)

E Partial pressure of COZ in inspired air mm Hg (CO
Z

)

14 Bony COz production Liters (COZ)/min

IS Receptor COZ production Liters (COZ)/min

II ~02 diffusion from inspired air to lung Liters (gas)/min
tIssue

I Z
~OZ diffusion from body tissue to lung Liters (COZ)/min
tIssue

13 CO Z. diffusion from receptor tissue to
lung tissue

Liters (COZ)/min

':'Units are liters BTPS, m. m. Hg, minutes

block notation will be used to program the simula­
tion. Figure 11 represents a DSL/90 digital-analog
simulation block diagram of the network model
shown in Fig. 10. Since DSL/90 operations are in
floating-point arithmetic, no problem scaling is re­
quired and the parameters may be entered directly
in terms of their conductances are given by the fol­
lowing relations:

where t/; is proportional to the slope of the experi­
mentally determined steady-state cardiac output
versus CO 2 partial pressure curves-liters (C0 2)/

min/mm 2 Hg (C0 2); and e == initial value of G,
liters (COi)/min/mm Hg (C02),

Using data from respiratory experiments, the fol­
lowing parameters and initial values hold for the
simulation:

VI (0)
V2 (0)
V3(0)
t/;I

40.0
45.0
45.0
0.0038

0.00344
0.l7
0.0008
0.1648

0.0025
0.0002
0.25

0.0625
0.0007
0.001

The DSL/90 statements which describe this sim­
ulator follow.

TITLE RESPiRATjOI\ SERVO PROBLEM - ANALOG MODE SOLUTION 6-1-65 RUN 1

::j,\=;:'-; i.-STEP(TDELAY))
hj)K2=E i ~~-Vl
G;=PSll*V3-THETAl
11=Gl*ADR2
Vl=INTGRL(VlIC.(ll+12+13)/Cl)
ADR4=V2-Vl
G2=PSI2"V2-THETA2

Connection
Statements

12=G2*ADR4
V2=INTGRLlV2IC.(14-12)/C2)
ADR7=V3-Vl
63 =PS I 3*V 3- THE T A3
13=G3*ADR7
V3-INTGRLlV3IC.(15-13)/0)

PARA'I CI-0.00344. C2=u.17. C3=0.000S.... i
~~k ~:~ :g~ i~;s ~S i~~~ ~~~~: ~6~;; 3~~E ~~~~2 ~: ~~u 7. 6.21. 4 P:~~~ct,~:r.

CO,'lST 14-0.25. 15=0.0(;1. TOELAY=20.0
INCON VlIC=40.0. V2IC=45.0. V3IC.45.0

CO,'lTRL FINTU'l=36.0. DELT-0.05
RELERR Vl=O.OOl
:NTEG MILNE

}
Run

Control

PRINT 001, Vb V2. V3' Gl. G2. G3. 110 12. 13
PREPAR 0.05. Vl' V2. "3' G1. G2. G3. 11. 12. 13
GRAPH 6.0. 4.0. TIME. \/lo V2. V3 Print and
LABEL PAR PRESS 3.0 PRCNT C02 RUN 1 6-1-65 Plot Output
GRAPH 6.0. 4.0. TIME. Gl' G2. G3
LAtlEL CONDUCTANCE 3.U PRCNT C02 RUN 1 6-1-65
GRAPH 6.0. 4.0. TIME. 110 12. 13
LABEL C02 DIFFUSION 3.0 PRCNT C02 RUN 1 6-1-65

END
STOP

DSL/90-A DIGITAL SIMULATION PROGRAM 177

+ + +

Figure 11. Digital-analog simulator block diagram.

Figures 12 and 13 show nonretouched DSL/90
plots of CO 2 partial pressures and tissue conduc­
tances. Inhaled air containing 3% CO2 was assumed
for 20 minutes followed by a 20-minute span of
normal room air with no CO 2 content.

During the first 20 minutes, the receptor tissue
(medulla), body tissue, and aveolar lung tissue all
take up CO 2 • The second 20-minute span shows the
nonlinear response during purging of body CO 2 •

~

IO

'0 x
-~

~

~

~

r-

-~
'§
~

CD

~
18 •

'"

.....
.•..

,-

-. ! ,/
! ,

~x f I _ it'
II

~ /,'
_ il

>: ,I,I

'I
I
I

LEGEND

----- :

VI
V2
va

:+---~----r---~-=='==--'----,
B. 16. 24.

TIME
32. 40. 4B.

Figure 12. Par press 3.0% C02 run 1,6-1-65.

Figure 14 shows part of the results printout and
input data format.

After the initial runs were completed, a change in
the G 3 conductance characteristic was suggested by
medical research personneL Instead of a linear re­
lationship between G 3 and receptor CO 2' partial
pressure, a smoothwise increasing empirical func­
tion as shown in Fig. 15 was substituted. To do

LEGEND
GI
G2

.... G3

~ CD
.,; -

CD --------,:
-N '-'" .-.~

N '?
0

~ B ,\ x '0 -8 " N ,\ 'N - I:.

''I
1\

r5 " '.:l \\

N .,; cO '.~.:....-.-...-.-- ..

~ II>

cD
B. 16. 24. 32. 40, 48. TIME

Figure 13, Conductance 3.0% C02 run 1, 6-1-65.

178 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

*** DSLl9D SIMULATION DATA ***
TITLE RESPIRATOR'! SERVO PROBLEM - NETWORK MODE SOLUTION &-1-65 RUN 4

this, it was necessary to redefine the G 3 conductance
characteristic as the output of an arbitrary function
generator block as follows: PARA!'. Cl~0.uiJ344') CZ·u.17. C3~u.Ov()8 ••••

PSIl.O.0038. PSIZ.O.OuZ5. PSI3.0.00002

THETAI-v.lb41:1. THETA;<=".v&"~. THlTAj= v.vvv7. E·~1.4

(ONST 14=0.Z5. 15'0.0()1. TDELAy z 20.0

INCON VIIC'40.0. VZIC·45.U. V3IC'45.1.

CONTRL FINTI""36.0. DELT.U.v5

RELERR Vl·O.OOI

INTfG "ILNE

PRINT 0.1. VI. V2. V3. GI. 62. G3

PREPAR 0.05. VI. V2. V3. 61. 62. 63

LABEL PAR PRESS 3.0 PROH C02 RUN 4 6-1-&5

6RAPH 6.0. 4.0. TIME. 61. 62. 63

LAI:lEL CONDUCTANCE 3.U PRCNT C02 RUN 4 &-1-6~

FIlD

T Figure 14a. DSL/90 simulation data.

T I .~ E VI V2
O. It.OO,)OE 01 4.5000E

10.000:-02 1+.1'n7~ 01 4.5036£
:?OOOf:-Ql 1+ • (11 (} E 01 4.S0Q7E
1.000~-01 If. ?"3 f)qE 01 It. 516~F
It. 0 OOE - C 1 It-. 231.,6 r: 01 4.5225E
I).OOOE-Ot (+.235'11: 01 4.5?8,st
6.0f)f")E-,)1 4.2V')OE OL 4.")144E
7.000~-,,)1 1 ?3 /.f")'= 01 4. 5/t-0 1 E
:' • I) OOE-I) 1 4.2331E 01 4.1)45 'iF
(}. 000!:-0 1 't. l3 ~ 1,= 01 4.1)t')01E

1C.OOOE-01 4.~315f 01 4.5'557F
1.100F: 00 1+.?30 Q ': 01 4.560SF
1.?00E 00 I ... 2 }'J 1 E 01 4.56'>1':
1.3001: Of) 1 ... 2295E 01 I t .56Qt)E
1.400E 00 4.??~'-}E 01 I ... 573i3r:
1.500~ 01) It. Z 2 g I ... E 01 4.S17QE
!.600E 00 4.??7C)E 01 4.5819E
1.700r- 00 1+ • 2271, r- 01 4.:857 C

1.800E 00 4.227CE ')1 4.SWnE
1.c)OOr: CO 't.?26 Cj,= 01 /+0 5 9? R E
2.000E 00 4.~~f)?r:: 01 Ito ')062 f

4.22 'j iJ E 01 4.5 Q c;/+;:
~C:;J: 01 It .6f')?'1E

~.c)00E r)l ~1' •. , " _ _ , ':>021E
3.510C:: 01 l~ .00 ~l'=, 01 It. SO 2 3f
':3. f) ZOE 01 It • C' O:.? :1 '= 01 4.5023E
3.510r:: 01 14.00?:;~ 01 ' ... 50.::? 3E
'3 • 51~ or: 01 It. 00 2 ~c:: 01 't.50?3E
3.5,)f')C:: 01 4.f)0?,")r~ 01 1·.5023E
1.S60E 01 It. OO? (~i: 01 (~ • (~O 2 3!:
1.570r: 01 I • • OO? ;:) c 01 4.~0~3E

1. c:; IV) ,') 1 I, • (' ()? ,~ 01 I •• r; 0 1. 3 f=
~.['jC)n ()l I~ .(1)) C\ ,: 01 4.I)O?'3E
":\.f:,()0 f) 1 4.00~~': 01 1 •• 5021,E

01
01
01
01
01
01
01
01
01
01
01
01
01
01
rq
01
01
Ot
01
01
01
01
01

'!l
01
01
01
01
01
01
01
01
01
01
01

DSL/90 ~rJ.1lJlt\TrIJN r I ~1 E 13.1192

G3 = AFGEN (F3, V3)

where the G 3 characteristic is given in a sequence! of
X and F(X) values.

AFGEN F3 ~ 0.0, .0002,48., .0002,49., J)0021" '"
50., .00023, 51., .00027, 52., .00031,
53., .00035,... 54., .00039, 55.,
.00043, 56., .000465, 57., .00048" ...
58., .00049, .59., .000495, 60., .0005,
80., .0005

In addition to the analog model approach shown
here, two other methods were programmed in DSL/
90 involving the network equations directly and

V3 Gl G2 G3
4.,)000F 01 6.2000F-03 '5.00001:-02 2.0000'=-04
4.S030E 01 6.31471=-03 5.0089E-02 2.0060E-04
4.1)082E 01 6.51321:--03 5 • 0 2 It- 2 E - 02 2.0165~-04
4.51~!3E 01 6.7232E-03 5.0404E-02 2.02' 751:-04
It-s192E 01 6. '12 flltE-03 5.0562~-02 2.0:'1831:-04
It-. !) 24/t-E 01 1.1.7.62E-03 5.0714E-02 2.0437:::-04

' It-. I) 2 9 / .. E 01 7.3168E-03 5.0861f-02 2.0588!:-04
4.53 4 2E 01 7.S003E-03 5.1002E-02 2 • 06 8 4 I: - 0 It
4.5389E 01 7.676')E-03 5. 1137E"':02 2.0777E-04
4.'1433E 01 7.8468'=-03 5.1267F-02 2.0A67f-04
4.5 1 .. 76E 01 8.0103E-03 5.1392E-02 2.0953::-04
I h 5518E 01 8. 16 76E-03 1).1511c;-02 .7..10361=-04
4.'5558F 01 8.118<)E-03 5.1628E-02 2.11I'1E-04
It .55S6E 01 e • 1.6 4 It C - 03 '5.1 '(39:'=:-02 2 • 1 1 <; ~ r:- i) 4
I •• 5 (>3 3 E 01 8.6043E-03 5.1846E-02 ?1265':-0/.,.
I • • ') f~ f, P, E 01 r.7':\89f-03 I) • 1 ') I. () E - 0 ? ?1336E-(Y.,.
I •• '5 -, 0 2 E 01 8 • 8 6 13 ,'t [- 0 3 5.2047r:-02 1 • l't 0 4 r: - () It
I • • », 3 5 F 01 8.99Zer::-03 5 • 2 1 It 2 ~ - 0 2 2 • 11.,. 70 r: - 0 It
I .. • ') 766 E 01 9.11251:-03 '1.2233 c -02 2.1t)33E-04
I • • 57 ') 7 E 01 9.2276f-03 5.23211:-02 2. I 593F-()/.,.
4.SR26F= 01 9.1382E-03 '5.240C;~-02 2.1652':-04
It. ~'" 't:::r::-03 5 • 2 It- 86 E - 02 2.1708E-/V.

').2'61E-02 2· 1 -.

...... ,,,,", ~ --

.• :Jut9E Ul,

It. 501 9E 01 6.L. JU~~8E-u.,

It. 5 C 19 F. 01 6.271'5f-v~ "Co ?OO38E-04
It. '501 q E 01 6.27!'3E-03 5.00'57E-02 2.0038~-04

4.1)01<)E 01 6.2l14f-03 5.00'J7E-02 2.00~!3E-04

lh 50 t 'H: 01 6.27L41:-03 5.1Y057~-02 2.00 ';!8 E-O/+
It. 5019 E 01 6 • :? 7 l't 1= - 0 3 5.0057f:-()2 2.0038(-04
It. 50 19F 01 6.2713(-03 5.0057E-02 7..0038~-04

1·.')019F 01 6.2713E-01 5.()()1)7E-02 2.()0"38F=-04
4 • " () 1 'I f 01 6.2713~-03 5.0057f::-01. 2.00-::\A=-0/ ..
4.S0I.CJE 01 6.2711[-03 5.0057E-02 2.00'l8~-04

4."nlc)F 01 6.2lt?E-01 5.0057f:-0? 1.. 00 ~17~-04
l ... '50 I (] F 01 6.?.7!2E--03 5.0057E-02 2.00:r/~-04

SECONDS

Figure 14b. Respiratory servo problem-network mode solution.

DSLj90-A DIGITAL SIMULATION PROGRAM 179

or

6.0

5.0

1<2 4.0
><
If) 3.0
LL.

2.0

1.0

V

0.0
48
49
50
51
52
53
54
55
56
57
58
59
60

v
48 52 60 56

80

Figure 15. G3 conductance characteristic.

F3

.0002

.0002

.00021

.00023

.00027

.00031

.00035

.00039

.00043

.000465

.00048

.00049

.000495

.0005

.0005

fundamental compartment models. This last ap­
proach has proven particularly attractive since the
biomedical user can directly program his own simu­
lation problem without learning an artifax tool such
as analog computer notation, network analysis, or
FORTRAN programming. These techniques result
in a major reduction in the user time required from
initial problem coding to achieving final results. In
addition, complete printouts and digital plots are
available for each problem run, considerably simpli­
fying the simulation documentation problem.

Application No.2-Glass Tank
Recirculating Furnace

This second example involves the analysis of the
heat transfer dynamics of a recirculating furnace
used for preheating combustion air on a glass tank.
The problem illustrates the ease of using generalized
block notation in DSL/90 for performing contin­
uous system simulations. In this case, the example
was drawn from the industrial process control field.
The technique, however, is broadly applicable to
any continuous system analysis problem.

As shown in Fig. 16, air is forced through a large
preheating chamber, called a checker, filled with
bricks cross-stacked to allow passage of the air
around the brick surface, thereby preheating the
cold air from the brick. The preheated air is then
mixed with fuel, fired, and the resultant flame front
melts the glass material in the tank. The hot com­
bustion gases are forced through another checker,
heating up the cold brick, and finally forced out the
stack. After a period of time, usually about 15
minutes, the flow direction valve is reversed so that
the cold checker that had been heated by the hot
gases now becomes the preheating checker for the
cold incoming air. Similarly, the previous hot
checker that had been cooled by the cold input air
now receives hot combustion gases which heat it up

[] GLASS
TANK

REVERSING
VALVE HOT

CHECKER

,Figure 16. Schematic diagram-reversing furnace.

again. The object of the simulation is to study the
heat transfer dynamics of the recirculation furnace
during the heating and cooling cycles induced by
air flow reversals.

The first step ~as to divide each checker chamber
into three blocks, as shown in Fig. 17, effectively
breaking a continuously distributed system into a

HOT

CHECKER

jTG~
~~I
jTatJ
~~
jTG~SI
~RIKI

TAIR

GLASS
TANK

COLD

CHECKER

TBRIK6

TGAS6

Figure 17. Reversing furnace-end view.

180 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

sequence of lumped-parameter segments. The non­
linear heat transfer relationships for each block are
given by Eqs. 1 and 2.

d
dt P2 V (TA T GAS = (TAF I TIN - (TAF I T GAS

+ hA I (T BRICK - T GAS)

+ K [(TBRICK + 460)4

- (T GAS + 460)4] (1)

:t M (T B T BRICK = hA 2 (T BRICK - T AMB)

where (TA

(TB

V
M

P2

FI
Al
h
K

..

TBRICK

T GAS

TIN

- hA I (TBRICK - T GAS)

- K [(TBRICK + 460)4

- (T GAS + 460)4]

CHECKER

BLOCK

Figure 18. Checker block.

= specific heat of the gas,
= specific heat of the brick,
=: volume of the checker,
= mass of the checker,
=: gas density,
= gas flow,

(2)

= heat-transfer surface area of brick,
=: conductive heat-transfer coefficient,
= radiation heat-transfer coefficient,
= checker brick temperature,
= checker gas tern perature, and
=: input gas temperature to checker.

These differential equations were programmed in
FOR TRAN and used to define the characteristics of
a checker-block, shown in Fig. 18.

The following assumptions and approximations
hold for Eqs. 1 and 2.

Assumptions
1. Heat transfer by radiation and convection.
2. Temperature of checker is a function of time

and space (I-dimensional).

3. Checker temperature is uniform in any plane
perpendicular to flow.

4. Gas temperature is uniform in any plane per­
pendicular to flow.

5. Brick thermal conductivity is infinite.

Approximation
1. Distributed temperature in each checker is rep­

resented by a lumped parameter system of three
stages.

The generalized block of Fig. 18 has one: input,
the entering gas temperature, and two outputs, the
exiting gas temperature and the internal brick
temperature. Once the block has been programmed
and checked out, the user can connect any numb(~r
of these together to represent the system by simply
using the DSL/90 statement:

TGAS, TBRIK = CHEKR(TGIC, TBIC, TIN),

where TGAS
TBRIK

TGIC
TBIC
TIN

output gas temperature of checker,
internal brick temperature of
checker,

= initial gas temperature,
= initial brick temperature, and
= input gas temperature.

Figure 19 shows the block model of one complete
checker. Three checker blocks have been used

~GAS FLOW

r----~

Figure 19. Block model of checker gas flow.

together with three switching blocks that revers(!
the flow direction through the blocks.

Now if this block model is used as a model of
each checker, the DSL/90 statements which repre,­
sent this system can easily be written by the user

DSLj90-A DIGITAL SIMULATION PROGRAM 181

in terms of the basic checker blocks as follows:
.. ••• STRUCTuRE STATEMENTS

* " •• ChECKER 5~'11 TCrlt:S
C1 1:\= j,\S;'; I TRIGR.TAIR.TGAS2)
C2: ~:o I.,Si/1 TR IGR. TGA:;1 .TGA:;3)
C 3, r;. I 1';:;;\(T R I GR. TGAS2. TCOI~8)
e,,: 1';0 I :-;,,;((TR I GR. TCO:-l6. TGAS5)
e 5 ,1';= ,1\5;': i TR IGR. TGAS4 .TGAS6)
C6; 1';- iNS;" TR I (,R. TGAS5. TAl R)
T R I GR.-O. 5+S TEP (TREVRS)

* ••• HOT CHECKER BLOCKS
TGASltT~RiKI-CHEKR(TGI IC.TiH IC.Cl IN)
TGAS.2. TbRI K2.CHEKR (TG2IC. TI:I21C .C21 N)
TGAS3. TeRI K3-CHEKR« TG31 C. T831C. C31 N)

* ••• COLD CHECKER BLOCKS
TGAS". TtlR I K4.CHEKR (TG4IC. TB41 C. C41 N)
TGASS. TI:lRI KS.CnEKR (TG5IC. TB51 C. C51 N)
TGAS6. TI:!RI K6.CH!::KR (TG6IC. Te61 c. C6IN)

* ••• DATA

PARAM Fl-120000 •• SIGMAA-O.24. SIGMAB.0.24 ••••
TAIR.360 •• TCOMB-2800 •• TAMB-120 •••••
M-IOOOOO •• AI-15000.. AZ-300
K.4.5E-06. H-IO.. v-sooo
TiiEVRS-15.

INCON TG1IC-850.. TG2IC-13i)() •• TG3IC-1800 .. 'OO

TElllC-1600 .. TI:!ZIC-ZOOv •• T63IC-2501l
T(,4IC-Z300 .. TI,;5IC-1900 •• TG6IC-UOII
TtI4IC-1300 .. TtlSIC-I00u .. TB6IC-700.

PRINT 0.1' TGASl' T(,AS2' TGAS3' TG"S4' TG"&5. TG"&6 ••••
TBRIKI. TBRIK2. TBRIK3. TBRIK4. TBRIK5. TBRIK6. TRIGR. ClIN

CONTRL F I NT IM-30 •• DELT-O.ul

pr<~PAR 0.05. TGAS3. TG"S6. T6RIK3. TBRIK6.TG"Slt TG"&4. TdRIKlt TBRIK4
GRAPH 6.0. 4.0. TIME. TGAS3t TflRIK3
LABEL 3RD CHECKER BLOCK TEMP& RUN 4
GRAPH 6.0. 4.0. TGAS6. TBRIK6
LABEL 6TH CHECKER BLOCK TEMPS RUN II
END
STOP

Note that the parameter and variable names are
almost direct symbolic equivalents of the physical
notation used for describing the furnace.

Figures 20 and 21 show the actual plotted results
of temperature variations at the outlets of the hot
and cold checkers for a IS-minute flow reversal
cycle. Advantages of this approach in addition to
those already mentioned in example no. 1 include
the ability to expand the simulation easily to include
control system blocks and other system dynamics
without disturbing the existing furnace simulation.
This feature has proven particularly powerful in
analyzing complex industrial processes.

Application No.3-Saturn V Booster Rocket

Vehicle Description. This study applies digital simu­
lation to the flight dynamics analysis of a large space
vehicle booster. The problem illustrates the use of
DSL/90 algebraic notation stat~ments. In this
study, the system example was drawn from the aero­
space industry, but the use of DSL/90 algebraic
notation can be applied to a broad range of prob­
lems including parts of the previous two examples.

The vehicle used in this study was the SA TURN
V launch vehicle for the APOLLO lunar mission.
As shown in Fig. 22, the vehicle configuration con­
sists of three booster stages and the APOLLO
spacecraft. The overall length is 360 feet and, fully
fueled, the vehicle weighs approximately 6 million
pounds. The first, or S-IC, stage is powered by five

..
N

~
...
~
~ ...
""N
~

i
.... \11

N

:l

III ...

..

~

..
N

..
I:)

Et:j
N

"". r.n
$
fl-..

:l

~
5.

LEGEND

10. 15.
TIME

TGfIIIII
TIIIIQ

20. 26. 30.

Figure 20. Third checker block temperatures, run 5.

" " " " " " "

LEGEND

" " " " "

TGA86
TIIIIK8

~
III ~~----'------r-----.-----r----.-----'

5. 10. 15.
TIME

20. 26. 30.

Figure 21. Sixth checker block temperatures, run 5.

F-l engines, each of which provides a thrust of 1.5
million pounds. The four outboard engines are
swiveled and provide for thrust vector control
during powered flight. The SATURN V vehicle has
an independent inertial navigation and guidance
system from that in the APOLLO spacecraft in
addition to a control computer and required sen­
sors.

Trajectory. This simulation is concerned with the
analysis of flight dynamics from launch through
first-stage burnout. The booster-stage flight profile
is shown in Fig. 22 and consists of a gravity turn for
150 seconds with separation occurring at approxi­
mately 60,000 meters altitude and a 2350-m/sec
velocity. The rigid body equations of motion that
were simulated form a perturbation set with respect
to a rt!ference frame moving along the nominal tra­
jectory as shown in Fig. 23.

Axes X), X 2 X3 form an orthogonal set, with X 2

aligned along the nominal velocity vector and axes
X), X 2 lying in the nominal boost plane. The fuel
sloshing dynamics of the first stage propellants were

182 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE,1966

25

APOLLO SPACELAFT 1
20

S-IVB
ORBITAL +--f INJECTION

~

Q S-IV B STAGE
X t-oo 15 a::
LIJ
J-
LIJ
~ S-lif z
LIJ a 10 ::l
J-

5
ct

S-IC STAGE

5 l
o 250 500 750 1000

TIME (SECONDS)

Figure 22. SA TURN V configuration and flight profile (from Ref. 5).

Nominal

Nominal I rUJ.""UII Y

point

Figure 23. Reference frame axes (from Ref. 6).

included as well as the dynamic effects of elastic
bending along the booster longitudinal axis. The
attitude control system was also included in the
simulation, together with the dynamics of the gim­
balled thrust VECTOR control system and hydrau­
lic actuators for the engines, as shown in Fig. 24.

Since the defining equations of vehicle motion are
far too complex for the purposes of this paper, the
reader is referred to the basic documentation for the
complete problem description. To illustrate the
features of DSL/90, only a small portion of the
larger problem will be treated-the pitch axis con­
trol system. Figure 25 is an expanded description
of the control system filters, together with actuator
and engine dynamics. The command signal filte:r
block processes the pitch command signal from the
control computer prior to applying it to the engine
gimbal hydraulic actuators.

In order to investigate booster flight dynamics, a
primary wind disturbance was applied to the vehide
during the first stage of powered flight as shown in
Fig. 26. Horizontal wind loading was assumed,
with varying azimuth angles for wind heading.

Referring to Fig. 25, the transfer functions for
the command signal filter and engine dynamics can
be expended in Laplace notation to yield the equiva­
lent linear operational equations:

S2{j2 = K I {j21 u + K 2S {j2 + K 3{j2 (3)

DSL/90-A DIGITAL SIMULATION PROGRAM

m
.---------,

IT

183

/3~ r---------· I
t----+----+----i~ HYDRAULIC ENGINE /32

I I ACTUATOR DYNAMICS
I I DYNAMICS

I I I I L ______ --' L _________ J

¢2 + ¢:p

II

I--~~~O----. ---I I

DYNAMICS ¢ I r------ --l : 'HI VEHICLE DYNAMICS I
DATA ADAPTER INERTIAL I INCLUDING LONGITUDINAL

L...-.........-f.---1 DIGITAL REFERENCE 14-----'

COMPUTER SYSTEM BENDING a FUEL

and

I I SLOSHING I
L ________ ~ L---r--~

. . . fR
'X 2 + ¢2 + ¢2

'X2

¢2
. fR

¢2

¢2

cpJP

,Bilu

/3i
/32

NOMINAL PITCH RATE - DEG/SEC

WIND LOAD
DISTURBANCE

PERTUBATION IN RIGID BODY PITCH RATE - DEG/SEC

PITCH RATE DUE TO VEHICLE FLEXING MEASURED AT
THE RATE GYRO STATION - DEG/SEC
PERTUBATION IN PITCH ATTITUDE - DEGREES

ATTITUDE DUE TO VEHICLE FLEXING MEASURED AT
THE STABLE PLATFORM STAT ION - DEG/SEC

/32 PITCH ATTITUDE COMMAND, UNFILTERED

/3 PITCH ATTITUDE COMMAND, FILTERED

ENGINE GIMBAL ANGLE (PITCH AXIS) -DEGREES

Figure 24. Simulation signal flow diagram (from Ref. 5).

S2P2 = (K32P~ - K 31 (2)S + (K34P~ K 33(2)

1 + (K36 P2 - K 3S(2) S (4)

Equations (3) through (5) can be directly pro­
grammed as DSL/90 statements as follows:

where S is the conventional Laplace operator.

* PITCH ATTITUDE CONTROL SECTION
BET2CU == - (AO*(PH12+ PH12FP)

+Al*(CH12D+PH12D
+PH2DFR))

From Fig. 24, the expression for the unfiltered
pitch command signal P~ I U becomes:

P21 11
= [aO(cI>2 + cI>/P) + alex + ~2 + ~l')] (5)

BET2CD = INtG RL(B2CDO, K 1 *BET2CU
+ K2*BET2CD + K3*BET2C)

184 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

COMMAND ACTUATOR
SIGNAL a ENGINE
FIL TER DYNAMICS

/32
C I U

Kl K32S
2

+ K34S + K 36

S2+K2S +K3 {.3.C S3+K3IS2+K33S +K35 2

Figure 25. Pitch axes control system.

BET2C = INTG RL(BET2CO, BET2CD)
BET2DD= K32*BET2CD - K31 *BET2D

+ K34*BET2C ...
- K33*BET2 + INTG RL(IC53,
K36*BET2C - K35*BET2)

BET2D = INTGRL(BET2DO, BET2DD)
BET2 = INTGRL(BET20, BET2D)

/32

For the complete simulation, over 400 DSL/90
statements were required, not including the function
generators and data statements. Both block and
algebraic notation were used for describing the
simulation configuration. The above small portion
of problem coding is an excellent example of the
ease of using both algebraic and block statements
in DSL/90. Note the use of symbolic names for
variable and data names which closely resemble the
actual names. This feature has proven particularly
helpful for large simulations .

. 20

.18

.16

>-
t: .14 u
0

>- ...J

t- w
U > .12
0 w
...J ...J
W u .10 > J:
0 W

Z >
i ...J .08

<t
z
~ .06 0
z

.04

.02

The SATURN V flight dynamics were simulatled
for the first 120 seconds of powered flight. Figures
27,28 and 29 show resultant DSL/90 plots for three
of the system variables being studied.

The SATURN V simulation demonstrated several
important features of digital simulation. First, a
complex nonlinear aerospace problem could be
successfully solved in DSL/90 by engineers rela­
tively unskilled in programming. Second, many
problems require both algebraic and block notation.
The ability of DSL/90 to handle both of these re­
quirements was amply proved. Third, problem
solutions could be obtained quickly with a minimum
of setup time. The original programming I'equified
approximately 16 hours of an engineer's time for
problem setup. Each run of 120 seconds flight time
required approximately 25 minutes of IB]\1 7094
computer time. In addition to the above featuf(!s,
DSL/90 allowed the user to model his problem in
segments, checking out portions of the simulat,ed
vehicle independently, and then to hook these se:c­
tions together. As an example, the trajectory equa­
tions form one section of the simulation, pro­
grammed in algebraic notation, of which the control
system is another independent part programmed in
block notation.

___ ---- 75 m/s

--------------~----~------~----~------------~-----,~ o 20 40 60 80 100 120 140 160

TIME (SECONDS)

Figure 26. Primary wind disturbance (from Ref. 5).

~ ..
N
a.
....J
a: x

i
2.

DSL/90-A DIGITAL SIMULATION PROGRAM

i
4.
iii
6. 8. 10.

TTlHE (XI01)

Figure 27. Pitch axis angular acceleration .

i
12.

i
14.

185

I
16.

• ~--------~------~~------~--------~--------~------~~-------r--------~ I I I I I
t. 4. 6.. 8'. 10. 12. U. 16.

TTtHE (X10l)
Figure 28. Velocity along X3 axis.

CONCLUSIONS

Within IBM, DSL/90 has been used extensively
in many different application areas including circuit
design, mechanical dynamics, process analysis and
control, servo design, aerospace flight simulation
and biomedical modeling. Simplicity of the input

language, clarity and completeness of both print and
plot output, and the ease with which data is handled
are some of the features which have made DSL/90
attractive to an increasing number of problem
solvers from both camps-analog and digital. In
DSL/90 workshops, it was observed that engineers
with hardly any analog or digital computer ex-

186 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

----~--
N
LaJ
CD
X

N
I

~~----.-----~---------~~--------~----------~----------~--I iii i i i
lZ.

i
14.

-,
16. Z. 4. 6. 8. 10.

TTIHE (XlOI)

Figure 29. Engine gimbal angle for pitch axis.

perience successfully "programmed" in DSL/90 at
the end of the first two-hour session. With this
quick "shot" of confidence and further experience,
many have proceeded to more difficult problems
using the more advanced features of the language.

The examples shown indicate only a few of the
broad range of problem areas to which DSL/90 can
be applied. In addition to the above examples,
DSL/90 has successfully simulated the process
dynamics and control system responses for a paper
machine dryer section control system. In this study,
actual process noise gathered at the plant site was
introduced into the simulation through the MAIN
routine. Several nonlinear process and control ele­
ments were successfully modeled using the external
block features of DSL/90, including nonlinear
process controllers and scanning moisture gauges.
DSL/90 was recently used for the simulation of an
ammonia reaction process involving two-point
boundary value matching. In this case, severe simu­
lation problems were created by the fact that the
system had two regions of time response, each
governed by different differential equations and in­
terfacing through initial values. Both the features
of the "MAIN" program and the ability to intro­
duce logical functions into the DSL/90 block struc­
ture were extensively employed.

Many of these simulation areas previously han­
dled with analog techniques have long been troubled
with problems of component reliability, accuracy,

repeatability, and a lack of flexibility in modeling
basic dynamic components and phenomena. In
some respects, the trend toward digital simulation
methods is a result of seeking answers to these;:
problems. Some of the advantages of digital simu··
lation as observed in the above application studies
can be listed as follows:

1. Problem accuracy control.
2. Elimination of problem scaling.
3. Simulation run repeatability.
4. Reliable digital simulation elements.
5. Significantly reduced problem prepara­

tion time and simulation checkout timc~.
6. Simple problem coding. The majority

of detailed circuit knowledge for analog
programming is unnecessary.

7. Easy performance by the digital com­
puter of some operations which at best
are only approximated by analog com­
puters.

8. Effortless provision of positive docu­
mentation of silJlulation configuration
and parameter values.

To date, digital simulation techniques have shown
themselves easy to learn, efficient to operate, accu­
rate, and extremely flexible. They provide the
engineer with an easy and quick method of digitally
simulating complex systems, familiar block notation
concepts, and the power of digital compultation

DSL/90-A DIGITAL SIMULATION PROGRAM 187

methods. The result represents a significant new
simulation tool for engineering analysis and design.

ACKNOWLEDGMENTS

To our co-worker in this project, Mr. D. G.
Wyman, we gratefully acknowledge his excellent
contributions in both programming and concepts.
We have benefited greatly from the many valuable
suggestions of members of the computation labora­
tory, Systems Development Division, IBM, San
Jose. Special thanks are due to Mr.A. H. Hoffman
whose contributions to the exploratory program
PLIANT paved the way for DSL/90.

The contributions of J. G. DeFares, P. E. Cowley,
and F. Crane to the three application examples are
particularly acknowledged ..

BIBLIOGRAPHY

1. Brennan, R. D., and R. N. Linebarger, "A
Survey of Digital SimuJation: Digital-Analog Simu­
lator Programs," Simulation, vol. 3, no. 6, pp. 23-36
(Dec. 1964).

2. __ , "A Survey of Digital Simulation: Part
II-More Digital Analog Simulator Programs,"
ibid (to be published).

3. Dahlin, E. B., and R. N. Linebarger, "Digital
Simulation Applied to Paper Machine Dryer Stud­
ies," Proceedings, Instrument Society of America,
6th International Pulp and Paper Instrumentation
Symposium, Green Bay, Wisconsin, May 4-8,1965.

4. DeFares, J. G., H. Hara, and E. M. Billing­
hurst, "The Stability of the Respiratory Servo­
mechanism: An Analog Computer Study," Progress
in Biocybernetics, Elsevier Publishing Company,
New York, 1964, vol. 1.

5. Gunderson, R. W., and G. H. Hardy, "Piloted
Guidance and Control of the SA TURN V Launch
Vehicle," Proceedings, IFAC Symposium on the
Peaceful Uses of Space, Stavenger, Norway, June
1965.

6. Hardy, G. H., J. V. West and R. W. Gunder­
son, "Evaluation of Pilot's Ability to Stabilize a
Flexible Launch Vehicle During First Stage Boost,"
Technical Note D-2807~ National Aeronautics and
Space Administration, Washington, D. C. (May
1965).

7. Shah, M. J., C. James and J. M. Duffin, "Sim­
ulation of an Ammonia Synthesis Reactor," 1966
Conference Proceedings, International Federation of
Automatic Control, London.

8. Wegsteih, J., "Accelerating Convergence of
Iterative Processes," National Bureau of Standards,
Washington, D. C.

TECHNIQUES FOR REPLACING CHARACTERS THAT ARE
GARBLED ON INPUT

Gary Carlson
Computer Research Center, Brigham Young University

Provo, Utah

With the rapid increase in the availability of mass
storage, we now find that there is an increasing need
for massive data input. This input is requiring in­
creasingly large volumes of data conversion to ma­
chine language. As this load expands, we find that
we must pay more and more attention to the rigor­
ous control of errors on data creation. This study
reports. the results of a computer technique to re­
duce error~ of input data.

The standard techniques of key stroke and verify,
or double punch and compare, are often prohibi­
tively expensive for very large file conversion. Any­
one faced with the problem of large file conversion
must consider the possibility of using optical scan­
ning equipment. We are concerned with a poten­
tially very large file that is in nonmachine language
and should be converted. We sought a better way
to convert and then correct, or proofread, or verify
the data. By a "better way" we mean that we
sought a technique that would give acceptable ac­
curacy at a cost less than other techniques of con­
version.

Any human involvement in the proofreading or
verifying phase has a relatively high cost and still a
moderate error. We wondered if we could use the
computer to reduce the errors on input data.

The basic nature of our records is genealogical,
that is our records contain names of people, dates,
and places. For the conversion to machine lan­
guage of the millions of records that we are con-

_ cerned with, we are considering the possibility of

189

using optical scanning equipment on the existing,
typewritten, multi-font documents. However, most
scanning equipment still seems to have some 2 to
5% character error rate. Fortunately, this equip­
ment can usually indicate confusion on a given char­
acter which is not decisively read. In other words,
the scanning equipment can say that it recognizes
the first, third, and fourth characters but got con­
fused on the second character. The errors of am­
biguity offer the possibility of direct computer cor­
rection.

The problem then is, given that a character is
garbled,can we effectively replace the character.
Later ori~ we hope to work on places or place
names, and even dates. But to begin our study, we
started on the materials available and of most in­
terest-English names. Specifically, then, the object
of the study is to determine if we can replace gar­
bled characters in names.

The basic plan was to develop the empirical fre­
quency of occurrence of sets of characters in names
and use these statistics to replace a missing char­
acter. I am happy to report that we have developed
such techniques-and in most cases a garbled char­
acter can be replaced with better than 90% accuracy.

The basic technique was to develop programs to
compile the required statistics, and then other pro­
grams to replace the character in question. All pro­
grams are written in COBOL, and have been run on
the IBM 7040 tape system.

The frequency of occurrence of trigrams (that is, a

190 'PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

string of three sequential characters) was first devel­
oped for a sample of 73,000 christening records
from English parishes.

Trigrams were used as the most parsimonious so­
lution. Single-character probabilities were tried
and gave very poor replacement. Two-character
strings also gave poor results. In some cases it
may be necessary to consider four-character strings.
Trigrams give generally good results with reason­
able processing times.

We worked first with all names, that is, given and
surnames combined, over 300,000 names. Ap­
proximately 78% correct character replacements
were achieved with this set of data. We then de­
veloped separate trigrams for male given names,
female given names, and then for surnames. This
refinement greatly improved the accuracy of re­
placement.

Additional information was obtained and used.
This includes the location within the name of the
first character of the trigram, e.g., the trigram MAR
from the name MARY has a position of 1. The
trigram AR Y from MARY has a position of 2. A
final refinement that proved very useful was an
indication of the trigram being at the END or NOT
END of a name. The trigram AR Y from MARY
is an END trigram.

We separated the data into two halves, using the
first half to develop the probabilities and basic data,
and then tested the procedures against the first
half and then against the second half. Our tech­
niques systematically delete the characters one at a
time in each name and then replace the character
using the trigram statistics. The basis for the choice
to replace the missing character was the character
from the trigrams that had the highest probability
of occurrence. The percentage of correct replace­
ments is the measure of success. For example see
Table 1.

Here we see that the distribution of trigrams for
the first three characters MA? clearly show MAR
as the most probable. In this particular case, if the
trigram is shifted to cover the next character posi­
tion, A?Y, it is again seen that ARY is by far the
most probable. By combining these two, the choice
for the missing character is the letter "R." The
highly probable ARY trigram is also an END tri­
gram, indicating that the name is now complete.

The second example of MA ?GARET uses the
first MA? as well as the two shown. In this case, the
probabilities do not appear to be quite as striking,
but nevertheless are clearly decisive to select "R"
as the missmg character. In fact, in this particular

Table 1.

Example-MA?Y

MA? A?Y

3rd Position Frequency 2nd Position Frequency
Trigram of Occurrence Trigram of Occurrelllce

MAB 5 ABY
MAG 5
MAL 5 A LY 4

AMY 46
MAR NE* 8,316 A RY End 6,466
MAR End 5 A RY NE* 20
MAS 22
MAT 12
MAU 2
MAW 1
MAY 4

Example-MA?GARET

A?G
2nd Position Frequency

Trigram of Occurrence

AGG

ANG
ARG
AUG

6

2
802

?GA
1 st Position Frequency

Trigram of Occurre:nce

IGA 59

RGA 616

... NE means the trigram was not at the end of the name.

case, "R" is the only possible character when all
three trigrams are considered. For example, start­
ing with the first trigram set, there are se:veral pos­
sibilities:

MAG
MAR
MAU

AGG
ARG
AUG

When the third trigram set is introduced, only
MAR - ARG and RGA remain. This means that
MARGA must be the sequence of letters that was
seen by the scanner.

The combined, or joint probability is similar to a
precoordinated index, where only those items con­
taining a complete set of AND logical relations are
accepted. Such a technique will make some mis­
takes for rare sequences of letters.

What results have been achieved? Let us first ex­
amine in detail the first character position of the
male given, female given, and surname (Table 2).
Here we see that position 1 or the first character of
names is, of course, the hardest one to replacc;~ cor­
rectly since there is only a blank preceding the char­
acter in question. At best, a trigram aJrfangt~ment
uses information based only on the two characters

TECHNIQUES FOR REPLACING CHARACTERS THAT ARE GARBLED ON INPUT 191

Male given name
Female given name
Surname

Table 2.

Position 1

Tape I Tape 2

Total Total
Processed % Processed %

51,629 94.24 51,629 94.23
32,730 83.05 32,730 83.05
73,684 42.24 (not yet available)

following the first character. In Table 2, the num­
bers mean that there were 51,629 male given names
used on tape 1 to develop the basic frequencies of
occurrence. Then, using these as probabilities, we
correctly replaced 94.24% of the first characters that
were deleted in male given names. We then used the
same probabilities and the same COBOL routine to
process the second set of names, which were not
used to develop the basic frequencies of occurrence,
and came up with the almost identical percentage
correct replacement. These numbers are not a typ­
ing error, these just happened in this particular po­
sition to come out identical for both tape 1 (used to
develop the probabilities) and tape 2 (the new data)
for each set of male and female given names. So
you can see that we were developing the trigrams
here on 51,629 names on the male, 32,730 names
for the female, and 73,684 surnames. We are proc­
essing a large batch of names, developing the fre­
quency of occurrence of trigrams, then using this as
a basis to predict the character that is missing in
subsequent data.

As we move away from the first character posi­
tion into the body of the name, it is possible to use
three trigrams as is shown in Table 1 to make the
computer estimate of what the character should be.
As the processing moves further into the name, we
find better results, and then taper off to a less strik­
ing correction possibility at the end of the name. It
should be noted that in addition to recording the
trigram frequency, we recorded a separate condi­
tion within each category of male, female, and sur­
name that indicates whether the trigram was an end
or non-end trigram. The overall results are given
in Table 3.

This table indicates that we often get better than
98% correct replacement of the garbled character.
The specific effect on error reduction is impressive.
If a scanner gives a 5% character error rate, the
trigram replacement technique can correct approxi­
mately 95% of these read errors. The remaining
error is thus 5% of the original 5%, or 0.25% over­
all. Such a low error rate is a fond hope of the very
best verification procedures.

Table 3. Percent Correct Character Replacement

Male Given Female Given Surname
Position of
Character Tape I Tape I Tape I Tape 2 Tape I

1 94.24 94.23 83.05 83.05 42.24
2 99.56 99.45 99.29 99.18 73.23
3 99.33 99.14 99.74 99.56 74.15
4 99.45 99.25 99.14 97.99 72.66
5 99.58 99.32 98.51 98.19 79.85
6 99.11 98.94 95.63 95.32 81.05
7 98.06 97.88 98.84 98.60 84.06
8 99.03 98.28 98.97 98.82 87.99
9 99.39 98.16 98.96 98.89 89.74

10 99.54 98.16 86.56 83.07 92.12
11 100.00 99.46 100.00 88.88 92.21
12 100.00 87.50 96.77
13 99.00
14 100.00
15 100.00

Preliminary results on given names from a com­
pletely different set of data of English Parish reg­
isters gives 96.6% correct character replacement.
This result indicates that the techniques are con­
sistent for comparable data. Such results imply that
modern names can also be "corrected" if we de­
velop a new set of probabilities for modern names.

What are the implications of this study? We find
that there are at least three implications. One, a
technique like this may, indeed, reduce the cost of
verifying the mass of data input coming from scan­
ners. Two, techniques like this may also reduce the
cost of verifying massive data conversion coming
from conventional data input devices like key­
boards, remote terminals, etc. Three, techniques
like this may be effective in other areas of linguistic
manipulation, such as newspaper proofreading, or
may even be developed to locate the error and then
make the correction.

What does this mean for the future, and what
future research do we see that should follow from
the work done to date? Some future research is in­
dicated:

1. We should try to replace the characters in
another data base using our existing trigram fre­
quencies. Preliminary work on modern American
given names, using the English name probabilities,
indicates a 30 to 50% correct character replacement,
about 20 to 30% wrong replacement, and no re­
placement indicated in the remaining 30 to 40%.
This last result came as a surprise, but seems to be
holding. The implication is that if a different data
base is used on a set of data, the present procedures
give no basis for a decision in a large number of

192 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

cases. This no-decision is not as good as a correct
decision, but is also decidedly better than a wrong
replacement. Work is continuing to explore the
ramifications of homogeneity of trigram develop­
ment data and garbled data to be corrected.

2. We must experiment with other than trigrams,
especially for the first and: last part of names or
words. For example, we may have to go to a four­
gram or more at the end of words or names. This
work is currently in process also.

3. We need to try another body of words, other
than English names. This might be newspaper or
magazine material to see if the technique could be
applicable there. This is yet to be done.

4. Techniques must be undertaken to speed up
the processing on the computer. These routines
are fairly fast now, but with a tape system there is
an excessive amount of sorting.

5. There are other techniques that seem to bt~ in­
dicated from the data analysis. It is not clear that
you should always take the most probable char­
acter as your choice. In fact, it may be that if the
distribution of choices is a rectangular distribution,
some heuristic type choice mechanism may give bet­
ter overall results than a straight maximum prob­
ability choice. We have begun work on this, but
the results are not yet conclusive.

6. Definite procedures should be developed to lo­
cate probable errors of character sequenc:e. These
routines could be of value where scanning equip­
ment was not used, and thus the location of the
error is not immediately obvious. This is yet to be
done.

It appears that this kind of analysis can b(~ of
interest in reducing the cost of massive data con­
version.

ADAM-A GENERALIZED DATA MANAGEMENT SYSTEM*

Thomas L. Connors
The MITRE Corporation, Bedford, Massachusetts

INTRODUCTION

ADAM is a computer program system built by
The MITRE Corporation for use in the MITREj
ESD Systems Design Laboratory as a tool to aid
the design and evaluation of data management
systems. ADAM operates on the IBM 7030
(STRETCH) computer and has been operational
since early 1965.

Primarily, ADAM is a tool with which a system
designer can simulate alternative proposed designs
for his data management system. When ADAM .is
run, the computer and its associated displays, type­
writers, and other peripheral equipment become an
operating mock-up of the proposed system, with
simulated or real users working on-line with the
model. System designers may test, evaluate, change,
and retest the model without the usual reprogram­
ming costs associated with changing a design· al­
ready embodied in a large computer program. The
revised system models actually operate in real time.

A secondary purpose is to provide a test-bed in
which techniques of large-system design and pro­
gramming can be implemented, compared, and
evaluated. To this end, partial models and new pro­
grams may be added to the ADAM framework and
tests run on them.

This paper describes some of the things ADAM
can do, mentions some of the problems to which it
has been applied, and conclusions reached, and

*The material contained in this article has been approved for
public dissemination under Contract AF19(628)-5165.

193

gives a few of the internal details of its operation.
It is intended as a description of one of the operat­
ing resources of a laboratory devoted to experi­
mentation in the design of information systems and
as the germ of a concept for a way to build large
systems.

FUNCTIONS

To accomplish its purpose, ADAM incorporates
generalized facilities for performing those functions
which characterize data management systems:

1. File generation and maintenance.
2. Translation and processing of queries

and file processing messages.
3. On-line and off-line input and output.
4. Report generation and formatting.
5. Compilation and execution of sub­

routines.
6. Dynamic allocation of computer re­

sources.

These facilities are generalized in that the programs
of ADAM operate independently of the form,
format, or size of the data, of the input message
language, and of the report formats required.
Specifications of the particular characteristics of a
model reside in the data-base files or dictionaries
along with the problem-data itself. Thus, the defini­
tions of the data-base structure, message-languages,
output-formats and problem-specific processes be­
come data, subject to modification and update with
system procedures.

194 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

The user of ADAM specifies his data-base struc­
ture-how the data is to be organized, named and
interrelated-·in file generation statements. He opts
either to use available ADAM message languages
and report formats or to specify his own. He pro­
grams whatever subroutines are required to accom­
plish complex or time-consuming calculations not
suitable for specification in message languages. He
adds this material to the generalized foundation
which is the ADAM system, and is then ready to
exercise and evaluate his model. To change his
model, he need change only those components he
has specified; these are only a small part of all the
material of which the model is composed. This
generalization of common functions is the essence
of ADAM and leads to:

• Its versatility-its ability to accept speci­
fications for many different data-man­
agement systems.

• Its changeability-the ability to change
data structure, report formats, etc., with­
out reprogramming, in a short time and
in many cases on-line.

• The wide range of its capabilities­
input/output which includes on-line re­
mote inputs is one example; file process­
ing which includes complex data index­
ing is another.

DESCRIPTION

The following material is a general descrintion of
ADAM-its operation, data structures, file process­
ing, and provisions for user subroutines and format
descriptions. A system as large as ADAM defies
description in full detail-many capabilities (such
as remote operation) can be only mentioned, others
not treated at all; however a summary of ADAM
capabilities appears below.

Operation

The operating ADAM system accepts messages
from and sends output to on-line input/output
devices, such as typewriters and display consoles,
or operates with either off-line input, off-line output,
or both. Messages may query the data contained in
ADAM: add, .ehange, or delete data; or cause the
operation of ADAM or user programs.

All data in ADAM are contained in files; crea­
tion, maintenance, processing, and querying the
files are major functions of the system. In addition
to files of problem data, the system keeps files of

subroutines (both problem-specific subroutines and
the subroutines which constitute ADAM itsellf),
language specifications, format specifications, and
various other special-purpose files. Data for reports
are initially made up as an output file, to be format­
ted before actual output.

The file structure and data formats are elaborately
described by a set of dictionaries cum directories
called by the ADAM term rolls. As a di(!tionary,
a .roll stores alphanumeric names of files, entries in
files, data items, routines, formats, and so forth. As
a directory, a roll stores the dynamically (:hanging
information which describes: the current physi1cal
location in the computer, the format, and the size
of elements of the system-files, entries, data items,
etc.

ADAM message processing is shown in Figs .. 1
and 2. As each message is received, the system is
interrupted to determine its priority, to determine
the language in which it is written, and to stack the
message.

Major message processing programs are the
. Translator, Processor and Output Gemerator.
When a message is unstacked, the Translator (with
reference to the appropriate language specification
from the Language File and to the rolls) translates
the message into a list of things to be done, called
a process table. The Processor executes the st(~PS
specified in the process table interpretively, acce:ss­
ing or modifying the data base and operating amy
routines specified. If output is produced, it its always
in the form of a file. The Output Generator per­
forms any formatting required on the data from this
file, as described by a format from the format file,
then delivers the output to be stacked, pending
availability of an output device. When processing
of one message is finished, the next is unstac:ked.

(With "time-sharing" so much in the vogue ll it

: · .. 1 ROLLS 1 :

FILES ---- --- -- ----- ----
- DATA
- SUBROUTINES
- LANGUAGE DESCRIPTIONS
- FORMAT DESCRIPTIONS

: LANGUAGE
: DESCRIPTION

~O"
INPUT MESSAGE TRANSLATED OUTPUT

MESSAGE FILE

Figure 1. Basic execution cycle.

ADAM-A GENERALIZED DATA MANAGEMENT SYSTEM 195

Figure 2. Input-Execute-Output.

cannot be ignored in the description of an on-line
system. ADAM is an asynchronous system, but it
does not swap tasks in and out of memory. Inputs
come in at any time and are stacked, and outputs
go out as fast as the equipment will take them. Both
input and output are asynchronous with the basic
execution cycle which, when it begins a task, runs
the task to completion except for interruptions to
receive inputs and send out outputs.)

File Structure
A file is organized as a series of entries, each of

which has an identical structure, i.e., all entries in
the file are characterized by the same properties.
The actual data is stored as property values; the
collection of property values for a single object con­
stitutes an entry in the file. The entries of a file may
contain substructures called repeating groups which
are collections of associated sets of properties, with
repeated associated sets of property values. A re-

peating group may contain repeating groups, and
any repeating group may have an arbitrary number
of repetitions of sets of its property values.

Figure 3 shows the structure of a file of commer­
cial airline flights organized as a file, with destina­
tion as entries. It illustrates an entry for Boston, a
set of properties which characterize all entries, and
the repeating groups "origins," "fares," and
"flights."

Property values, the actual data, are stored in
various ways, depending on the declared property
type. Property types presently available are:

1. Numeric, signed integer, stored as
binary number in a field long enough to
contain its declared size.

2. Numeric, floating point, stored as float­
ing-point number.

3. Roll-valued, stored as the internal code
for a name or other alphanumeric, with
the actual characters stored in a roll.
Alphanumerics in rolls may be multi­
word and arbitrarily long; their codes
are automatically assigned by ADAM
and are fixed-length.

4. Raw, stored as a string of bits of arbi­
trary length. The length of a value for a
raw property may vary from one entry
to another, and may change dynami­
cally. Raw-type properties are used to
store variable length, nonnumeric data,
such as alphabetic text.

~ ITIME 'ZONEl ~ ORI~INS
~~--------~,------~,---------~
~ ITIME ZONEI FARES .fLIGHTS

IcJsslldos~~ lDEPARTSllARRlvESllNR OF STopsl

Boston EDT 1. 25 Worcester EDT F 6.55 MO-180 0920 0944 0

M 5.00 MO-182 1252 1316 0

NE-792 2015 2126 1

Yarmouth ADT F 31. 00 TC-461 1235 1255 0

Y 23. 00

Chicago CST 3. 00

-- and so forth --

Figure 3. Destination file structure.

196 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

5. Repeating group, stored as the repeated
values of the properties in the group.
Storage is used only for those repeti­
tions of groups which exist (e.g., if there
is no defined tourist-class fare from
Worcester to Boston, no space is left for
it). The number of repetitions of a
group may vary from entry to entry and
from time to time during the operation
of the system.

As a consequence of the variability of the size of
raw properties and the number of repetitions of re­
peating groups, entries in the same file may differ
in length. The variability in entry size is dynamic­
entries and entry size may be changed during
ADAM operation without rewriting or recopying
the whole file.

Each file has one roJI-yalued property whose
values name entries. Data may be retrieved ran­
domly by direct access to a specified entry through
the roll which contains entry names. This roll also
contains the current location in the entry relative
to the beginning of the file. (Another roll contains
the current location in the computer of each file.)
Alternatively, all entries in the file may be accessed
serially. Within an entry, access to a specific repeti­
tion of a repeating group is always serial; the entry
is selected and each repetition of the group exam­
ined until the required one is located.

Rolls

A roll is organized as a series of elements. Each
element consists of one or more external names
associated with a single numeric code used as the
internal name. The several names associated with
the same code are considered synonyms of one
another. Thus, the roll in which values for a prop­
erty "city" were described might have both
BOSTON and BOS equivalent to the same internal
code, say the integer 5. All external references
could then use either term; internally, 5 would be
the unique name for Boston.

In addition to the names and code, a roll element
may contain subsidiary values which describe the
thing named by the element. For example, if
BOSTON were the name of one of the entries in the
Destination file, its roll element (and those of the
names of all other entries) would contain subsidiary
values which gave the relative location in the file
of the entry data.

Each file has associated with it, but physically
separate, an object roll which describes entries and

their names; and a property roll which describes
properties and their names and includes as sub­
sidiary values the type, field-size, location within
an entry, and other characteristics of the property.

Rolls are usually accessed implicitly and need not
be handled by a user. A user may, however, specify
in which rolls his roll-valued properties are to be
defined, thereby providing a context for evaluating
names-names and internal codes are unique only
within the same roll. A user who wanted AST (the
airline code for the city Astoria, Ore:gon) dis­
tinguished from AST (Atlantic Standard Time)
would define the names in different rolls. This is
one way the system can perform validity checks on
data entered.

File ProceSSing
ADAM is fundamentally a file processing system.

Because of its adaptability and the option available
to include user-programmed machine-language sub­
routines, one could say that ADAM can do any­
thing any other program on the IBM 7030 can do.
However, the interesting capabilities are those for
which specific provision is made, without any pro­
gramming required. The examples below are pre­
sented in a file processing language dev,doped to
help check-out ADAM itself. Although the lan­
guage has been found useful enough to be applied
directly to models so far constructed in ADAM,
language design is not a goal of the ADA1\1 pro~ect
and the capabilities exemplified are more impor1tant
here than the form in which they are stated.

Messages may be queries about individual obj'ects
and data items as in the first example of Fig. 4,
in which the object Boston is accessed dir,ectly and
the groups Origins and Flights scanned sl;!r,ially to
find Flight AA123. Messages may change file data,
as in the second example, in which the De:stination
file is accessed serially and changed under the con­
dition "time zone equals EST." The third example
shows the message for the generation of a report, in
which the output file which is produced is f,ormatted
according to the specifications in the (previously
prepared) format F23, and the resulting output
titled.

In Fig. 5, a calculation to determine which are
"short flights" is complicated by the possibility
that a flight may begin just before midnight and c;md
at an earlier time, producing a negative flight time.
The next example shows a cross-file reference, with
a decision made about what to print based on values
of population from those entries in the City file
which correspond to origin names in the Destina-

ADAM-A GENERALIZED DATA MANAGEMENT SYSTEM 197

FOR DESTINATION BOSTON.IF FLIGHT NAME EQ AA123,TYPE FLIGHT NAME,DEPARTURE TIME,ARRIVAL TIME.

FOR DESTINATION. IF TIME ZONE EQ EST, CHANGE TIME ZONE TO EDT.

FOR DESTINATION BOSTON. PRINT FORMAT F23 TITLE 'FLIGHTS TO BOSTON' ORIGIN NAME,FLIGHT NAME.

Figure 4. File Processing Messages.

FOR DESTINATION. FOR FLIGHT. IF ARRIVAL TIME - DEPARTURE TIME LS 60 AND GR-6~ CHANGE FLIGHT NOTE TO SHORT FLIGHT

OR ELSE CHANGE FLIGHT NOTE TO LONG FLIGHT, PRINT FLIGHT NAME, FLIGHT NOTE.

FOR DESTINATION BOSTON. FOR ORIGIN. IF CITY (ORIGIN NAME) POPULATION LS 10000, DISPLAY ORIGIN NAME,

'POPULATION' OF ORIGIN=CITY(ORIGIN NAME) POPULATION, FLIGHTS.

FOR DESTINATION. IF FARE CLASS EQ FIRST,

SAVE ORIGIN, 'OVERNIGHT COST' OF ORIGIN = 2 ,'(FARE COST + CITY (ORIGIN NAME) AVERAGE HOTEL COST.

NAME TRIPFILE.

Figure 5. Mole File Processing Messages.

tion file. The destination entry "Boston" is accessed
directly, and the group origins serially. For each
origin, a direct access is made to the City file entry
with the corresponding name.

Finally, the last example shows the creation of a
new property, "overnight cost," which did not exist
in either of the files from which the data for it was
taken, and shows an example of an output file
being saved and named instead of being deleted
immediately after output. The new file-Tripfile­
is a standard ADAM file, subject to any future
processing desired.

A more detailed examination of the access tech­
niques and operations used in the creation of the
Tripfile is given in Table 1.

These example~ show only some of the file proc­
essing capabilities of ADAM-a list of these and
other capabilities is given below. They show that
an on-line interpretive language with a powerful
system behind it can handle a wide range of proc­
essing tasks. But the range of capability required
to perform the many other file processing tasks
conceivable or already implemented in various
systems is even wider than this. Extensions of
ADAM intended but not yet implemented include
file access and read protection, more extensive text
handling, and more on-line interaction with a user,
among many others.

Table 1

Structure Name Access Operation ----
file Destination Serial -fetch from

file Tripfile Serial -create
(output file) -store into

group Fare Serial -fetch from
-compare property

"Class"
-input property value

"Cost" to arithmetic

group Origin Serial -copy from input file to
output file

property Overnight -create
cost -store into with data

from Destination and
City files

file City Direct, -input property value
indexed "Average Hotel Cost"
by Ori- to arithmetic
gin Name
in Desti-
nation
file

File Generation

File generation tasks in ADAM are treated in the
same way as those specified by any other message
inputs--a message which describes the file and the
data which go into it is translated and processed

198 PROCEEO;NGS-SPRING JOINT COMPUTER CONFERENCE, 1966

through the same procedure by which queries and
other tasks are treated. The generation of files from
data contained within files already in the system
was described above, and involves saving and nam­
ing the output file produced by a query or report
request. Generation of files from bulk data on cards
or tape is specified in a different operator language
than queries or other messages. As with the lan­
guage of the examples above, the language presently
available in ADAM for checkout has been used in
applications thus far, in preference to specifying
another file generation language.

Specifications for file generation include direc­
tions for reading-in data from cards or tape as well
as a structural description of the resulting file. An
example is given in Appendix B. The data may in­
clude fields out of order and variable-length fields,
and separate fields may be subjected to user-sup­
plied or system standard conversion subroutines on
the way in.

Messages and Languages

A designer modeling his system in ADAM has the
choice of using a language already prepared and
inserted in the ADAM language file (such as the
language used in examples thus far) or preparing a
language specification of his own. (The preparation
of new languages is not treated here for lack of
space. Suffice it to say that the ADAM translator
is a syntax-directed translator of a type found in
many compilers and that a new language is prepared
by constructing a syntax-diagram and inserting it
into the ADAM "language" file.) Regardless of the
language(s) used, messages may be inserted on-line
or off-line on cards.

During ADAM on-line operation, a user has
available a language change capability through the
ADAM string-substitution facility, by which he
may define the meanings of certain input words.
Words defined by string substitutions are replaced
by their defined equivalents before an input message
is translated. String-substitution definition5 may
specify that parameters (comprising the words fol­
lowing a use of the defin~d word) be inserted. Thus,
for example:

LET NONSTOP MEAN (IF NR OF STOPS EQ
~). and

LET SKED MEAN (FOR DESTINATION/2/./3/
TYPE ORIGIN/l/FLIGHTS) USING RE­
INSERT.

define substitutions, and the message
SKED BOSTON CHICAGO NONSTOP.

would be transformed to
FOR DESTINATION CHICAGO.IF NR OF

STOPS EQ ~, TYPE ORIGIN BOSTON
FLIGHTS.

before translation.

Problem-Spec(fic Calculations

In order to handle problems which are not easily
or efficiently stated in an on-line message language,
ADAM includes a capability for incorporating sub­
routines specifically coded for a model. An ADAM
compiler, called DAMSEL, compiles routines for
inclusion in the routine file. Although th(~ DA1Vl­
SEL compiler constitutes the primary mc!ans for
writing user-specific subroutines, other compilters
maybe used. In particular, a set o(routinc!s cailled
COMFORT (COMpatible FORTran routines)
adjusts the output of specially prepared FORTRAN
compilations to be compatible with ADAM.

DAMSEL itself allows the usual comple;ment of
arithmetic-assignment, conditional, and subroutine­
call statements, and includes a macro fadlity for
extending the DAMSEL language. In addition, it
provides statements specifically designed to create,
augment, modify and retrieve from ADAM data
structures. File-manipulation statements refer di­
rectly to files by name, or use names which the sub­
routine receives as input parameters from other
routines or from a message input. In either case,
statements in the subroutine are independent of the
format of data referred to; data descriptions are re­
trieved from the rolls when a subroutine is compiled
or executed.

A routine in the system is called by a message
such as

DO OPTIMAL (DESTINATION ,BOSTON,
ORIGIN,CHICAGO)

or within a message as a function
FOR DESTINATION.IF TIMECALC(CHI­

CAGO)GR~, ...
(in which OPTIMAL and TIMECALC are hy­
pothetical user-coded routines).

Output Formatting

Output formatting in ADAM is the proc1ess of re­
arranging the data from an ADAM file into an
order appropriate for output, translating names
from their internal coded form to alphanumeric,
and sending the resulting messages to an output
scheduling program for actual output. The entire
process is directed by a format specification, or for­
mat, from the ADAM format file.

ADAM-A GENERALIZED DATA MANAGEMENT SYSTEM 199

Formats are typically prepared off-line with a for­
matting macro written for the purpose. A format
specification describes margins; spacing; pagination;
file data; titles; and, for display devices, vectors and
points. The formatting program adjusts the output
as required to conform to the physical characteris­
tics of the device to which the output is directed,
without any necessary specification on the part of
the user (who may, however, control the format on
the basis of device, if he desires).

SUMMARY OF CAPABILITIES

ADAM, as an on-line system, provides for multi­
ple consoles used simultaneously, remote operation,
cathode-ray tube output both character and picto­
rial, and light-pen, push-button, typewriter, and
teletype input. As a file-handling system, ADAM
incorporates most of the features found in the more
advanced file handling systems available today.

The file structure allows variable-size data fields,
nested groups of sublevel fields, dynamically vari­
able file and entry size, and both dictionary and
cross-file indexing. File data may be integer, float­
ing-point, alphanumeric, or coded.

File generation may be from card or tape input,
from data in existing files, or from data entered on­
line. Bulk file generation provides for fixed- or var­
iable-field input data, optional validity checks on in­
coming data, and the provision to define and use
special conversion subroutines on data before it is
stored in the newly genera.ted file. On-line file cre­
ation may restructure existing files or extract data
from subsets or arithmetic combinations of data in
existing files. Files generated on-line may include
newly defined fields.

File processing includes querying on logical or
arithmetic criteria applied to any data items or com­
binations of data items, data updates or changes,
operation of general or special-purpose subroutines,
file sorting, and output. Subroutines may be pro­
grammed in FORTRAN or in DAMSEL, an
ADAM compatible compiler.

Output formatting provides for formats prepared
off-line and selected and performed on-line, titles,
routing to other terminals, and pictorial, as well as
symbolic, outputs.

Language variability includes, in addition to the
provision for defining a completely new file proc­
essing language, provision for on-line definition of
synonyms (for file names, field names, etc.) and for
on-line definition of special-purpose words to be
used at selected input terminals.

EXPERIENCE

Experience with ADAM since it became opera­
tional early in 1965 included five diverse applica­
tions:

1. A system for scheduling resource use and ac­
tivities aboard a manned satellite. The model uses
elaborate display formats of file data to present po­
tential schedules to analysts.

2. A subsystem for the command and control of
tactical forces through the use of an airborne sensor
to locate friendly units. The application is a hybrid
of real-time sensor inputs (which become frequent
and voluminous file updates) and file retrieval re­
quests inserted on-line by operators.

3. A study of a personnel and organization sub­
system devised by the System Development Corpor­
ation. This application involved the manipulation
of file structures accomplished with query language
inputs instead of programs.

4. A system of inventory management which in­
volves a large data base, processing of items from
several files at the same time with cross-file indexing,
and reporting in formats appropriate to condensed
output.

5. A man-job-match model in which personnel
qualifications for defined jobs were assessed and
tentative personnel assignments made. This model
used push-button and light-pen inputs to select pa­
rameters for user-prepared subroutines which per­
formed the specialized qualification and assignment
algorithms.

CONCLUSION

From experience with building ADAM and ap­
plying it to a wide range of problems, a qualitative
assessment of some of its principles can be made.
No quantitative studies have been made yet.

Generality is possible. The fact that ADAM was
built and applied to the diverse applications de­
scribed previously shows that a general-purpose
file-handling system can be made to work.

Generality is expensive in computer time and
space. The ADAM system serves its intended pur­
pose, as a design verification tool, but is hardly the
wayan operational system would be built. ADAM
compris(!s 90,000 instructions, representing a range
of capability unlikely to be required in any single
application. During ADAM operation, the effi­
ciency of the programs is reduced somewhat by
their generality, but the cost is considered accept-

200 PROCE,EDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

able for ADAM purposes (in a laboratory environ­
ment) in the light of the capabilities offered.

Generality saves implementation time. If a gen­
eralized data management system is alreCldy avail­
able, the time to implement a defined problem is
considerably shortened, since functions required
for problem solution already exist. In one case, a
partial mode] of a subsystem to display pictorial
information on satellite positions as viewed from a
ground station was implemented concurrently in
ADAM and a FORTRAN . program. With the
query handling and display capabilities already
available in ADAM, but required as new programs
in FORTRAN, the job took nine times as long to
implement in FORTRAN.

ADAM, then, is a system which provides a
modeling capability of general utility as a design
tool. But, more importantly ~ ADAM represents a
concept of generality, of potential application to
large operational systems, and of demonstrated use­
fulness.

Appendix A

IMPLEMENTATION

ADAM accomplishes its functions through a
variety of well-known programming techniques,
most of which have been used individually but
which are not usually combined in a single system.
The five major principles observed in the design of
ADAM are:

1. Keep as much of the model specification as
possible in data, not in program-exemplified by
the use of files to contain formats and language
specifications, routines, and other components of
the system being modeled.

2. Make programs insensitive to change in the
size and format of data-generally, through the dic­
tionaries and other mechanisms which make the
ADAM system and models within it self-descriptive,
and therefore able to vary dynamically.

3. Make the system contain itself as data-for
example, all ADAM routines are in a routine file
and ADAM files and dictionaries are just like user
files and dictionaries.

4. Allow for handling exceptional cases and for
expansion by including in all specifications the op­
tion "do a subroutine" - for example, in addition to
the usual description of an input data field, an op­
tion for the person specifying file generation is "do a

subroutine here," (presumably a special conversion
he wrote) and similarly a format-specification writer
can specify that an arbitrary subroutine can be exe­
cuted in the middle of the formatting process.

5. Allocate compiler resources (memory) only as
needed-through dynamic allocation programs.

Environment

Some of the specifications of the computer on
which ADAM runs are given in Table 2. Primary
storage is approximately 65,000 64-bit registers of
core; secondary bulk storage is 4 million 64-bit
words of disk; input/output channels are provided
for on-line terminals including typewriters~, displlay
consoles, teletypes, and printers.

Table 2. Configuration of the IBM 7030
in The MITRE/ESD Systems Design Laboratory

WORD: 64 Bits = 8 characters
CORE: 65K Words-520K characters

Addressable by bit
Access time 2 microseconds

DISK: 4 million words = 32 million characters
Rotation time 33 milliseconds
Transfer time 4 microseconds

I/O: 16 Channels
3 Channels for 12 tapes
1 Channel for 6 display-typewriter

consoles
1 Channel for 6 printers
7 Channels for teletype or phone lines
4 Channels for printer, punch, reader,

operator console

Jobs run on the computer operate under control
of an operating and monitor system called MCP.
ADAM is no exception; as far as MCP is concerned
the entire ADAM system is a single-user program.
The MITRE version of MCP time-shares ba'ck­
ground and foreground problem programs, which
are operated completely independently of one an­
other. Thus, in addition to being a mUltiple-user
system itself, ADAM operates in an environm'ent
in which it shares the computer with other jobs
(which may be independent copies of ADAM sys­
tems).

System Control

The system control philosophy of ADAM is to
accept input messages as they arrive, recognize
them, and place them according to a priority scheme

ADAM-A GENERALIZED DATA MANAGEMENT SYSTEM 201

in a job queue. ADAM will recognize any input
language whose recognition rules are given to the
system. When processing of a single message is
completed, the top of the job queue is examined and
the appropriate routine is called (problem program,
translator, etc.). When processing of a message is
started, it runs to completion, being interrupted
only for recognition and stacking of input messages,
or to initiate output.

Requests for output are handled immediately if
the channel and peripheral gear are available; other­
wise, they are queued up and sent out when pos­
sible. All system routines (input/output handling,
job scheduling, memory allocation, etc.) are sub­
routines and may call each other as needed.

Allocation

In ADAM, computer resources are allocated to
the task at hand as the need arises during the proc­
essing of a message. Separate allocation programs
handle the allocation of secondary storage, core
storage assigned to data storage, and core storage
assigned to routines and tables. Second-level alloca­
tion programs use these programs to allocate space
for files, rolls, and an ADAM artifice for working
storage called a stream.

Disk Allocation

The disk allocation algorithm operates by linking
together pages of disk, into regions with the link
table kept in core. The disk allocator program also
handles all disk-to-core and core-to-disk transfers,
relieving other programs of the responsibility for
following the links and making all disk allocations
appear to be contiguous. The linking procedure
allows the size and location of allocations to change
at almost any time. From time to time, the system
performs a wholesale reallocation of disk to make
regions contiguous-they can subsequently be read
with fewer disk accesses per region.

Core Allocation

The two separate core allocators (programs and
data) use opposite ends of memory; data is allocated
from one end and programs from the other, so that
the dividing line can move and the ratio of memory­
for-program to memory-for-data adjusts dynami­
cally as the situation requires (Fig. 6).

For routine storage, the unit of allocation is the
routine or table, with its size fixed at compile-time.
Routines and tables are relocated when loaded into
core from the routine file and may contain relo-

DURING MESSAGE
PROCESSING,
APPROXIMATELY
25,000 WORDS

(= 200,000 CHARACTERS)
ARE AVAILABLE FOR
PROBLEM ROUTINES
AND DATA

ROUTINES

TABLES

FILES
ROLLS

STREAMS
AREAS

IBM 7030
UTILITY
SYSTEM

WORDS
cb

I
50,688

65,536

Figure 6. Dynamic core memory allocation.

catable addresses within themselves. Once loaded, a
routine does not move in core. Each routine and
table is accessed through a program allocation
table, created and maintained dynamically by the
program· allocator.

Data allocations on the other hand may move in
core at almost any time. The unit of allocation is
512 words, the disk-arc size, to facilitate transfers
from disk to core and back. A single allocation al­
ways remains contiguous so that it may be continu­
ously addressed and indexed. An instruction in the
7030 repertoire: "transmit (any number of sequen­
tial) words from one core location to another" al­
lows the data allocator to dynamically change the
size of an allocation and to move as much as neces­
sary of the remaining contents of memory to keep
data allocations contiguous. Data allocations are
addressed through index registers which are updated
by the allocator whenever data moves.

Stream Allocation

A stream is a combined allocation of several
levels (presently core and disk) of storage, used as
a single-level continuously addressable store.
Streams are used as temporary storage for, for ex­
ample, input and output queues. As it is made up of
data-core areas and disk regions, it is allocated in
units of 512 computer words, but the Stream Allo­
cator makes it appear to a using routine as a con-

202 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

tinuous series of up to 218 single registers. The por­
tions of a stream in core at any time are called
blocks; a stream may have an arbitrary number of
core blocks attached at any time. The fundamental
operation on a stream is "locate an address" which
causes the allocator to insure that the desired ad­
dress is in a core block. The core blocks thus oper­
ate as separate movable windows through which a
routine may look at registers in the stream. Any
number of independent core blocks may be attached
to a stream at the same time, or none may be at­
tached, in which case the stream is entirely on disk
until core blocks are later attached.

The allocator assigns disk space only for those
pages of a stream which contain registers into which
data have been stored.

File Allocation

File allocation involves assigning data core to in­
dividual entries from files, to lists of entries in ar­
bitrary order, or to an entire file. The allocation
program assigns core space by an algorithm based
on the size of the material requested (obtain from
the rolls) and the amount of available core. A file
allocation is always at least as big as the file entry

ONCE - PER- FILE
PROPERTIES

ATLANTA

BOSTON

,
" " " CHICAGO " \

" \

.........--~

A FILE

- - -----------.

" \
" " "

STANDARD
DATA

FIXED-LENGTH
DATA

EXPANSION
ROOM

VARIABLE
LENGTH DATA

AN ENTRY

being accessed, so that machine indexing can be
used without interruption for input/output. The
allocator automatically transfers file data from disk
to core and core to disk as required.

File Structure in Storage

In main storage, all data for a file are contiguous.
Figure 7 shows the appearance of file data in mem­
ory. A file may be discontinuous in secondary (disk)
storage, but the allocator handles all discontinuities
without requiring notice by any other program.
Disk discontinuities may occur when the size of an
entry or a file is changed during ADAM operation.

Every entry of every ADAM file contains a set of
standard properties which describe the entry and
thereby provide for dynamic variability. One of the
standard properties is "current size of this entry."
Each entry is stored in four parts: the standard
properties, fixed-length properties, variable-length
properties, and an area between fixed and variable
parts available for expansion by addition of new
m~terial, either fixed or variable. When this area
is used up, more is added here. Standard propertiles
describe the sizes of the various parts.

/'

All repeating group data appears in the variable

-

/'
/'

/'

--

/'
'" /'

--

/'

-

:J POINTS TO ORIGINS

r--'" -- -. -- - ..J"",,~

/'
'" /

/'~

"II>

~

I-.::~

'\

" ---

TW 388 -- - - ---

TW 142 --- ---
<~

UA 188 - -- -- -
AA 232 --- - -,-
AA 434 --- - --

<--

CHICAGO CST ~

POINTS TO FLIGHTS

CINCINNATI EST

POINTS TO FLIGHTS

A REPEATING GROUP

Figure 7. File data in storage.

ADAM-A GENERALIZED DATA MANAGEMENT SYSTEM 203

GENERATE FILE, DESTINATION, CMDS. BEGIN OBJECT. part of an entry, to allow for variable numbers of
repetitions in different entries. Groups are con­
ceptually structured as entries, with a fixed and
variable part, but physically they differ from entries
in that all their data are not necessarily contiguous.

ROLLVALUED,

ROLLVALUED,

DECIMAL,

BEGIN
GROUP,

ROLLVAWED,

ROLLVALUED,

IlEGIN
GROUP,

ROLLVALUED,

DECIMAL,

END
GROUP,

BEGIN
GROUP,

ROLLVALUED,

INTEGER,

INTEGER,

INTEGER,

END
GROUP,

END
GROUP,

END OBJECT.

OBJECT NAME
(CITY), LENGTH VARIABLE.

SCAN TO NON' '. ALPHA. USE OBJECT ROLL.

TIll! ZONE, LENGTH 1 COL. ALPHA. USE ROLL TIMES.

TAXI
(TAXI FARE), SPACE TO NEXT CARD.

SPACE 25 COL.
LENGTH 5 COL. NUMERIC.4 DIGITS.

ORIGIN
(ORIGINS) , TERMINATED BY '-'.

SPACE TO NEXT CARD. BEGIN REPETITION

NAME, LENGTH VARIABLE
SCAN TO NON' '. ALPHA. USE OBJECT ROLL

OF CITY FILE.

TIME ZONE, LENGTH 3 COL. ALPHA. USE ROLL TIMES.

FARES, TERMINATED BY '--'.
SPACE TO NEXT CARD. BEGIN REPETITION

NAME
(CLASS) , SPACE 12 COL.

LENGTH 2 COL. ALPHA. USE NEW ROLL
CLASSES.

COST
(FARE), SPACE 12 COL.

LENGTH 6 COL. NUll!RIC.5 DIGITS.
END REPETITION.

FARES,

FLIGHTS
(FLIGHT) , TERMINATED BY , - - - ,

SPACE TO NEXT CARD.

NAME, SPACE 25 COL.
LENGTH 5 COL. ALPHA. USE OBJECT ROLL

OF FLIGHT FILE.

DEPARTS
(DEPARTURE TIME), SPACE BACKWARD 25 COL.

LENGTH 5 COL. NIlMERIC.4 DIGITS.

ARRIVES
(ARRIVAL TIME), SPACE 4 COL.

LENGTH 5 COL. NIlMERIC.4 DIGITS.

NR OF STOPS, SPACE 21 COL.
LENGTH 1 COL. NUMERIC. 1 DIGIT.

END REPETITION.

FLIGHTS. END REPETITION.

ORIGINS.

SPACE TO NEXT CARD.

Figure 8. Message to generate destination file.

Variable data, including· repeating groups, are
accessed by pointers within the fixed-data section
of the entry or group to which they belong. Prop­
erty descriptions reside within the property roll for
a file, rather than in the file itself.

Appendix B

AN EXAMPLE OF FILE GENERATION

A message to generate the Destination file is
shown in Fig. 8. In this file generation language,
spacing is not significant, so the message was spaced
out for readability. The first column gives, for each
property, the property type; the second column, the
property name with synonyms enclosed in paren­
theses. The next column contains directions for
reading input, in this case from cards. Variable
length fields and fields out of order are handled
here. The last column gives the type of conversion
(e.g., ALPHA, NUMERIC, or the name of a user­
supplied conversion subroutine) to be applied to the
input data as it is read in.

THE ENGINEER-SCIENTIST AND AN INFORMATION RETRIEVAL SYSTEM

C. Allen Merritt and Paul J. Nelson
IBM Technical Information Retrieval Center
International Business Machines Corporation

Yorktown Heights, New York

INTRODUCTION

During the last few years a veritable explosion of
study, effort and accomplishment by business,
government, and university organizations has taken
place in the realm of information retrieval and dis­
semination. Theoretical problems have been ex­
plored, new equipment and techniques" have been
developed, and a number of successful operating
systems have been implemented.

This paper will look at the impact of such infor­
mation retrieval systems or cent~rs upon their most
important clientele-the engineer-scientist or the
technical professional. Who are these people? Let
us define them as professionals, working in a scien­
tific or engineering discipline, and very likely in a
research and development environment. Most of
them share some basic information problems. They
recognize that the rapid expansion of knowledge
and data in their technical fields is taxing their time
and memory capacity to the limit. There are in­
creasing pressures on them for more interdisci­
plinary knowledge. Technical obsolescence is a real
problem, for they live in a fast-moving environment
where today's research idea can be tomorrow's
hardware.

As a result of these problems and pressures, the
engineer-scientist, sceptical at first, has been drawn
toward a new source of help-the machine-oriented
information retrieval and dissemination system,
backed by the technical library .

205

To illustrate this new relationship between the
technical professional and the information retrieval
system, we will examine the philosophy and me­
chanics of the IBM Technical Information Retrieval
Center. This particular system represents an inte­
grated approach to the storage, announcement, dis­
semination, and retrieval of technical information.
It combines the best features of both machine proc­
essing and human information skills, and is appli­
cable to a wide range" of data bases and system
activities.

PHILOSOPHY AND APPROACH

The IBM Technical Information Retrieval Center
(lTIRC), located in Yorktown Heights, New York,
was established to serve the IBM scientists and
engineers in all their laboratory locations. A wide
diversity of occupations are involved, ranging from
physicist to circuit designer to programmer. ITIRC
exists to supply the right information to the right
person in the shortest possible time and at the least
possible cost. This is no small undertaking when
you consider the size of the company, the number
of locations, and the tremendous range of interests
in research, development, manufacturing, and sales.
Add this complexity to the general information
problems described earlier and the need for an in­
formation retrieval center becomes urgent.

Regardless of need, however, an information
retrieval system cannot be established until man-

206 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

agement recognizes its value and is willing to set
aside funds and manpower for its operation. Fur­
ther, this funding must cover a period long enough
to permit a valid judgment about the value of the
services rendered. How this valid judgment can be
arrived at will be discussed later.

Along with management and the staff of the in­
formation center, the individual engineer-scientist
has certain responsibilities to the system. First, he
must supply the system with a complete and accu­
rate description of his occupation and related in­
formation needs. Second, as his assignments or
interests change, he must be alert in notifying the
system about the changes. Finally, the information
center looks to him for feedback-is he receiving
pertinent material, is he missing significant infor­
mation, is he getting prompt service? The system
has built-in techniques for making this feedback
easier, but it still takes initiative on the part of the
customer to supply complete and pertinent data.

In parallel with the user's responsibilities, the staff
of ITIRC accepts similar ones. We are committed
to translate his interests into the retrieval and dis­
semination programs accurately and fully, to act
promptly on his sugge.:>lions and complaints, and to
follow up with him personally whenever significant
questions arise.

The ITIRC also has commitments to manage­
ment. Like every operation in a large business, we
must frequently justify our existence, measure our
services in tangible terms, and demonstrate growth
and improvement in many ways. This, too, is not
an easy task because information retrieval deals so
often with intangible results-but it must be done.

THE SCOPE OF THE SYSTEM

Dissemination

What we call the Current Information Selection
program is one of the keystones of ITIRC activities.
The engineer-scientist customer submits a textual
description of his information needs and job re­
sponsibilities. This goes to an information retrieval
specialist who is thoroughly familiar with the so­
phisticated machine-searching techniques that are
used, as well as with the types of documents that are
entering the system. He analyzes the user's specifi­
catio'ns and constructs an accurate profile for entry
into the system. If necessary, he' goes back to the
customer and obtains more detail or clarification.

Once the profile is checked out and operating, it
is compared several times a month with all of the

current documents being processed into the infor­
mation center. Whenever the text of a document
abstract matches the profile, a printed abstract is
generated automatically and sent to the customer.
He screens each notification and takes appropriate
action-by telling the Center how relevant the
document is, by reviewing it on microfilm, or by
requesting a personal copy if he needs it.

Retrieval

Retrospective searching is another important
function of ITIRC. All current document input is
added to a set of master searching tapes, a file that
now includes abstracts of over 125,000 documents.
Search questions come in from customers through­
out IBM, often through the local IBM libraries.
They are directed to the appropriate IR specialist,
depending on which of the several classes of docu­
ments need to be searched. The specialist analyzes
the request and formulates one or more machine
search questions, using the various logicall tools at
his disposal, as well as his broad knowledge of the
data base to be searched. The output of abstracts
that answer the question is reviewed by the specialist
and sent to the customer. He may be satisfied with
the answers, or request a deeper or'narrow(!r search,
of ask for another search on a related topic that has
been brought to light. In the latter case, the process
is repeated.

Retrospective searching is normally schl;!duled to
yield answers within 48 hours. However, an emer­
gency question can be processed almost immedi­
ately. Also, to handle urgent re'quests from distant
locations, the Center maintains two sat.ellites. at
laboratories in San Jose, California, and LaGaude,
France. These have the search programs and dupli­
cate sets of the master search tapes that are updated
monthly.

Announcement

Supplementing the Current Information Selection
program already described, ITIRC publishes
monthly three series of announcement bulletins.
These cover all current documents processed in the
three major data bases-IBM reports, IBM Inven­
tion Disclosure material, and selected external (non­
IBM) documents and journal articles. These bul­
letins are made available to all IBM librari,es, report
centers, and publishing groups. They are also dis­
tributed to selected individuals who have expressed
a need for reviewing all current literature in the
system.

THE ENGINEER-SCIENTIST AND AN INFORMATION RETRIEVAL SYSTEM 207

The bulletins contain abstracts of documents in
order of accession, including titles, authors, sources,
detailed abstracts, and descriptive index terms as­
signed by the IR specialists. Each issue also con­
tains a category index that offers the reader a quick
way to scan the contents selectively. This section
lists each document title under one or more of 23
broad subject headings, with easy cross-reference
by page number back to the abstracts. A second
manual searching aid is an alphabetical subject in­
dex based on the descriptive terms assigned to each
document. Each entry includes title, accession num­
ber, and page reference. Both indexes and abstracts
can also direct the reader to a location on microfilm
where the complete text of most documents is avail­
able for viewing.

Supplementing the general-purpose bulletins are
indexes designed for library and refe'rence use. For
the same documents we publish monthly alpha­
betical author indexes, indexes of the original
source numbers, and sequential listings of the ac­
cession numbers-all with complete titles. Any of
these machine-produced indexes can be cumulated
quarterly or as required. And, with the same ma­
chine programs, various special classes of docu­
ments can be pulled out and indexed.

A specialized type of announcement medium is a
monthly compilation of all the current research and
development projects in the company; we call this
an automated project file. Updated regularly, it
contains descriptions of the projects and budget,
manpower, and planning information. It is dis­
tributed to a controlled listing of management
people as an information and control vehicle.

Microfilm and Hard Copy

To make the complete text of input documents
as widely available as possible, ITIRC is operating
a comprehensive microfilming program. Currently
we are putting on film all the invention disclosure
material, almost all the IBM reports, and as much
of the external material as copyright and distribu~
tion restrictions will permit.

The medium used is 100-foot reels of 16mm
microfilm, with a capacity of about 2300 frames per
reel. Depending on the equipment available, these
are distributed in reel form or packaged in special
cartridges. Most IBM library locations have com­
plete files of film going back several years and now
covering over 24,000 documents.

Thus, for complete copies of documents pro­
cessed by ITIRC, the system customer has two al-

ternatives. He can request them from his nearest
IBM library, which has many current documents on
hand or can order them if needed. Or he can go to
a nearby microfilm reader to scan them. Some lo­
cations have reader-printers, in which case the user
can make selective copies of pages or short docu­
ments.

Admittedly, the problem of supplying hard copy
to many customers is a constant challenge. How­
ever, the Current Information Selection program
helps the situation by preselecting a relatively small
percentage of the total documents for the user. All
of the major system output-machine listings and
publications-offers complete bibliographical data
and detailed abstracts. This gives the customer a
chance to do his own screening without having to
order documents blindly. By the time he decides he
wants a personal copy of an item, he is reasonably
sure of its value. The screening process built into
the system, combined with microfilm accessibility,
tends to control the amount of hard copy requested
and to assure its worth when requested.

THE DATA BASE OF THE SYSTEM

One of the major goals of ITIRC is to cover the
pertinent scientific and technical literature, both
inside and outside IBM, as completely as possible.
Obviously we had to start with what we considered
the most important types of data and expand from
there. The following are the major classes of input
documents now being processed:

1. IBM Research and Engineering Project
Files, mentioned earlier, are the official re­
porting medium for all R&D activities
within the Corporation.

2. IBM reports include formal technical
reports, laboratory and testing reports,
informal published memos, IBM papers
cleared for external use, patents issued to
IBM. personnel, reference and operating
manuals, and a variety of miscellaneous
documents.

3. IBM Invention Disclosures are novel
ideas submitted as Inventions to solve spe­
cific problems. The most promising are
selected to be filed for patent.

4. Non-IBM reports are selected docu­
ments of interest to IBM engineers and
scientists. Typical examples are Defense
Documentation Center reports, university
reports, and technical journal articles.

208 PRO~EEDINGS-SPRING JOINT COMPUTER CONFERENCE. 1966

5. IBM Suggestions. . Like many other
large companies, IBM has a suggestion
system that over the years has amassed a
large number of sugge:stion reports cover­
ing proposed changes 'in products or pro­
cedures. These have been placed on a sep­
arate set of search tapes in a structured
format. When the numerous new sugges­
tions are received they ·are matched against
the data file to see whether similar ideas
have been submitted 'in the past. If no
match occurs, the s~ggestion is investi­
gated further by the 'Suggestion Depart­
ment to see whether it should be accepted
and an award made for it.

As new technologies dev~lop and new kinds of
publications and reports ap'pear, the ITIRC staff is
constantly evaluating them 'and expanding the data
base of the system.

THE SEARCH LOGIC OF THE SYSTEM

One of the most important factors in the ITIRC
system is the computer logic used for searching
(both retrospective searching and current dissemi­
nation). It is a flexible technique for searching a
normal text data base (in this case, the text of the
abstract). It is not a simple technique to use, but an
experienced IR specialist can achieve a high degree
of precision with it.

A fundamental point is inherent in the words
"normal text." Since the data base contains the
language of the original document (and author),
we can phrase search questions or user profiles in
the same kind of normal English or accepted tech­
nical language. We use not just single words but
phrases and adjacent or associated words. We scan
not only the abstract but the title, author, source
information, and index tenns associated with a doc­
ument. With this in mind, let us look at the specific
types of logic available.

Single Word Logic

Single words can be searched for individually.

a) RETRIEVAL
Families of single words can be searched with an
OR technique, to cover variations in spelling,syno­
nyms, and the like.

b) RETRIEVAL or RETRIEVING or
SEARCHING or SEARCH or SEARCHES

We can use AND logic to :search for combinations
of associated single words, where two or more of

the words must be present in the abstract to satisfy
the request.

c) INFORMATION and RETRIEVAL
We can use OR logic within the AND logic groups.

d) (INFORMATION or DOCUMENTS or
DATA or LITERATURE)

and
(RETRIEV AL or RETRIEVING or
SEARCHING or SEARCH or SEARCHES)

And we can expand a broad, simple AND group to
make it much more narrow and specific.

e) (INFORMATION or DOCUMENTS or
DATA or LITERATURE)

and
(RETRIEVAL or RETRIEVING or
SEARCHING or SEARCH or SEARCHES)

and
(MEDICAL or MEDICINE or BIOMED­
ICAL)

In the examples, a) and b) are very broad questions
which would probably not be used to search a large
file. Example c) is more specific, but would prob­
ably miss some of the documents that would be
picked up by d). And e), which requires a match
from each of three groups, is even more precise.

A djacent Word Logic

This is a powerful tool for searching the normal
text of abstracts. Two normally related words may
by their contextual positioning havt~ entirely
changed meanings. To avoid such "false drops,"
we can search for them as adjacent words in a speci­
fied sequence.

a) INFORMATION RETRIEVAL
The above question would not match on RE­
TRIEV AL OF INFORMATION or any other
contextual arrangement. Within these adjacent
word groups, we can make allowances for spelling
and synonyms by means of OR logic.

b) (INFORMATION or LITERATURE) (RE-
TRIEV AL or SEARCHING or SEARCH)

This would match on INFORMATION RE­
TRIEV AL or LITERATURE SEARCHING" etc.
Also, we can look for related groups of adjacent
words by lumping them together as a single: OR
family.

c) INFORMATION RETRIEVAL
or

SELECTIVE DISSEMINATION
We can again use the AND technique to make a
question more precise. One adjacent word group
can be ANDed with another, or a single word.

THE ENGINEER-SCIENTIST AND AN INFORMATION RETRIEVAL SYSTEM 209

d) INFORMATION (RETRIEV A L or
SEARCHING or SEARCH)

and
MEDICAL (LITERATURE or DOCU­
MENTS or DATA)

e) INFORMATION (RETRIEVAL or
SEARCHING or SEARCH)

and
MEDICINE

The adjacent word technique is particularly useful
when we are searching for specific phrases that we
know are likely to occur in pertinent documents. It
makes it easy to look for "operations research,"
"numerical control," "time sharing," and the like.

The Match Criterion

This is simply a numerical designation of the
number of matches required for the computer to
register that a document answers a given question or
satisfies a user's profile. Either a single word or a
complete logical group (OR, AND, or adjacent
word group) is considered as one logical unit. Rais­
ing this criterion beyond a match of one is a helpful
device when a question involves two distinctly· dif­
ferent subject areas that we are trying to find in
combination. For example, if we wanted docu­
ments about information retrieval and dissemina­
tion only when they related to medicine and medical
literature, we could raise the match criterion to two
and phrase the question as follows:

INFORMA TION (RETRIEVAL or
SEARCHING.or SEARCH)

or
SELECTIVE DISSEMINATION

and

}

one
logic~l

umt

MEDICAL (LITERATURE }
or DOCUMENTS) one

or logic~l
umt

MEDICINE or BIOMEDICAL

Both logical units would have to be found in the
document to satisfy the criterion of two.

NOT Logic (Negative)

If a user is interested in certain aspects of a given
subject area but wishes to eliminate or bypass por­
tions of it, we can instruct the computer to ignore
the documents matched if they contain specified
words or phrases. For example:

INFORMATION (RETRIEVAL or RETRIEV­
ING or SEARCH or SEARCHING)

not SDI
not SELECTIVE DISSEMINATION

A bsolute YES Logic (Imperative)

If a user wants to see all abstracts that contain a
specified word or phrase or name, regardle~s of the
rest of the document's content, this can be achieved
by appropriate coding. The specified imperative
will override all other logic, including the match
criterion and NOT logic. If the NOT example just
given also contained MEDICINE as an imperative,
an answer would be printed out even if the abstract
contained both MEDICINE and SDI. This tech­
nique is very useful for extremely specific words that
we know will identify documents pertinent to the
user's interests.

The examples used to describe the search logic
were necessarily brief and simple. Figures 1 to 3
give a more complete illustration. They show how
the original information supplied by the customer is
converted into a working profile by the IR specialist,
and how the profile actually matches against current
input documents.

HOW DO WE EVALUATE
SYSTEM PERFORMANCE?

Measuring the results obtained from a system like
ITIRC is a challenge that increases as the system
grows, the data base broadens, and the number of
users expands. It cannot be done on a hit-or-miss
policy of voluntary feedback, although spontaneous
reports from users are very helpful. We have
worked out more formal techniques.

Each set of answers to a retrospective search re­
quest is sent out with a simple return card. The
customer is asked to check off the following:

- The following items were not specific
answers to my question.

- The following were not listed as answers
but 1 believe should have been.

"I am responsible for development and marketing of Information

Retrieval appl ications across all industry lines. This includes feasibil ity

studies of techniques of automatic indexing, abstracting; optical character

recognition, type composition and editing; language translation, syntactic

analysis; query languages; file organization, image storage ?nd retrieval;

tra·nsmission of images; copyright problems; dissemination of information, as

we II as mec han i zat ion of library operat ions. "

(User also primarily interested in external sources)

Figure 1. The original information supplied to the IR
specialist by a user on his data sheet.

210 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

S;ngle Worth

OCR ISR SOl MEDLARS

not IBM CONFIDENTIAL

Adjacent Words

(INFORMATION or DOCUMENT or DATA or TEXT or IMAGE)

followed by (STORAGE or STORING or RETRIEVAL or RETRIEVING

or SELECTION N SELECTING or SEARCHING or

SEARCH or SEARCHES or SELECTED "' ABSTRACTING

or DISSEMINATION or DISSEMINATING or QUERIES

or QUERY)

SELECTIVE DISSEMINATION

(AUTOMATIC or AUTO or AUTOMATED)

follo_d by (ABSTRACTS or ABSTRACTING or COMPOSING

or COMPOSITION or INDEX or INDEXING or

ABSTRACT or ABSTRACTED or INDEXES or EDIT or

EDITING or EDITED or TRANSLATION or TRANSLATING

or CLASSIFYING or CLASSIFICATION)

TYPE followed by (COMPOSITION or EDITING)

(LANGUAGE or LANGUAGES)foliowed by (TRANSLATION or

TRANSLATING or TRANSLATED)

QUERY followed by (LANGUAGE or LANGUAGES)

(OPTICAL or CHARACTER or PATTERN) followed by (RECOGNITION

or RECOGNIZING or SENSING or READER or READERS)

(SYNTACTIC or SYNTACTICAL) followed by (ANALYSIS or

ANALYZING)

GRAPHIC DATA PROCESSING

(FILE or FILES) followed by (ORGANIZATION or ORGANIZING)

(IMAGE or IMAGES) follo_d by (TRANSMITTING or TRANSMISSION

or TRANSMITTAL)

LIBRARY or LIBRARIES) followed by (MECHANIZING or MECHANIZATION

or AUTOMATION)

Match Criterion set at one -- thus no imperatives necessary.

Figure 2. The completed profile created by the IR specialist from the information on the
original data sheet.

---The answer report proved satisfactory
to my question.

--Other comments.

If the response is negative or if the search seems to
be incomplete, the IR specialist concerned promptly
goes back to the requester, by phone or letter, and
offers further assistance. For example, he may run a
revised search, based on added data supplied by the
user.

Records are kept of the number of searches, the
processing time, the user's reaction to the answers,
and whether any further action was required.

Since the Current Information Selection program
deals with over a thousand users on a recurring
basis, a mechanized feedback system was in order.
Accompanying each printed abstract sent to a
customer is a matching Port-A-Punch response
card. When he reviews the abstract, he simply
punches out the appropriate box and returns the
card. He has a choice of the following reactions to
a document:

1. Abstract 'of interest, document not
needed.

2. Send copy of document.
3. Abstract of interest, have seen docu­

ment before.
4. Abstract not relevant to my profile.
5. Comments-written below. (Change of

address, change to profile, etc.)

The Port-A-Punch cards, into which the program
has already punched user, document, and date

identification, come back to ITIRC for processing.
Document requests and comments are sorted out
for immediate action. Then periodically the ac­
cumulated cards are run against a statistical pro­
gram.

The statistical program supplies a complete
analysis of the returns, for each individual user and
for all users, with separate reports for each of the
major data bases:

1. Total notifications sent out.
2. Number and percentage of response:

cards returned.
3. Number and percentage of interest

(with a breakdown into each of the:
three responses listed above).

4. Number and percentage not relevant.

In addition, the program gives us several special
listings:

5. Users who received no notifications in
the current period.

6. Any users who failed to return their re­
sponse cards within a specified period.

7. A list of users whose "not relevant" re­
sponse exceeded a predetermined per­
centage.

With the help of these statistics, the IR specialist
can quickly identify any customers who do not seem
to be getting satisfactory results from the system.
He can then review the profiles and if necessary
make personal contact with the users to revise or

THE ENGINEER-SCIENTIST AND AN INFORMATION RETRIEVAL SYSTEM 211

AD-608~6~' UNGUISTIC TRANSFORMATIONAL ANALYSIS. OCTOBER 1964.

THORNF. JP LYONS. J
INDIANA UNIVFRSlTY

AD-608747 RADC-TDR-64-200
CONTR AF-30 (6021-2951

THE CONTRACT WAS CONCERNED WITH THE FEASI&ILITY AND UTILITY OF
A KERNELIZATION PROCEDURE FOR PURPOSES OF !iNFORMAtioN RETRiEvAu. THE
LEADING SECTION DISCUSSES. IN GENERAL. THE PROBLEMS INVOLVED IN THE
KERNELI ZAT ION OF COMPLEX ENGLI SH SENTENCES. THE REMIII NDER I SIN THE
FOR"! OF APPENDICES. APPENDIX I CONTAINS A DETAILED REPORT OF THE
KERNELIZATION PROCEDURE. APPENDiX II REPORTS ON A SERIES OF
EXPERIMENTS. TO DETERMINE TO WHAT EXTENT' INFORMATION WAS PRESERVED IN
KERNELIZED VERSIONS OF SENTENCES. APPENDiX I II REPORTS ON A FREQUENCY
taUNT OF THE TRANSFORMATIONS EXHIBITED BY A STRETCH OF RUNNING TEXT.
FINALLY. APPENDIX IV CONTAINS A LIST OF TRANSFORMATIONAL RULES WHICH
HAVE ACTUALLY BEEN WRITTEN. WITH REFERENCES TO SIGNIFICANT PUBLISHED
(A"ID ~OME UNPUBLISHEDI MATERIAL. 119P.

23-MIsCELLANEOUS LANGUAGE DOCUMENTATION
II NFORMAT I ON RETR I EVAI ! SYNTAX
GRAMMAR~

65f\ 0040~-MFOO 1

Figure 3a. A typical document match against the profile. This
document matched on INFORMATION RE­
TRIEV AL. Note that there is also a relationship
between SYNTACTIC ANALYSIS in the profile
and LINGUISTIC ANALYSIS in the document.

AD-608404. DESCRIPTORS AND COMPUTER CODES USED IN NAVAL ORDNANCE
LAB()RATORY LIBRARY RETRIEVAL PROGRAM. DECEMBER 1964.

OOC '

LIBERMAN. E U.S. NAVAL ORDNANCE LABORATORY

AD-60840" NOL TR-64-20

THE DESCRIPTOR AND COMPUTER CODES ARE LISTED SEPARATELY BY
5UFlJECT. EQuIPMENT DESIGNATIONS (INCLUDING ACRONYMS. TRADE NAMES.
CODF. NAMES. ETC. I AND CORPORATE AUTHORS. PERSONAL NAMES. AND
GEOGRAPH I C PLACE NAME S. THE SE DE SCR I P TOR S HAVE BEEN DEVELOPED OVER A
FOUR YfAR PERIOD. THEY PROViDE A SUBJECT APPROACH TO TECHNICAL
REDORTS LITERATURE FOR USE W[TH IBM 1090 COMPUTER. THESE DESCRIPTORS
COOl FORM T:J T HE ARE AS OF LABORATORY I NTERES T [N RESEARCH. DEVELOPMENT.
TEST. AND EVALUATION IN ORDNANCE AND REbATED F[ELDS. 228P.

,i~;~A~gT~~N~~~~ lFVALf
ESCR ~~~~~~I ES CODES

656 00412-MFClOI

Figure 3b. A typical document match against the profile. The.
match here also occurred on INFORMA TION
RETRIEV AL. In addition there is a close con­
nection between LIBRARY AUTOMATION in
the profile and LIBRARY RETRIEVAL in the
docilment.

AD-608574. [S ,AUTOMATiC CLAssiFICATION/A REASONABLE APPLICATION OF
STATI~T1CAL ANALYS[S OF TEXT. AUGUST 1964.

!lDC

DOYLE. L B SYSTEM DEVELOPMENT CORP.

110-608';74

THE CRUCIAL QUESTION OF THE QUALITY OF AUTOMATIC CLASSIFICATION
Is TREATED AT CONSIDERABLE LENGTH. AND EMPIRICAL DATA ARE INTRODUCED
TO SUPPORT THE HYPOTHESIS THAT CLASSIFICATION QUALITY [NPROVES AS
MORE [NFORMAT[ON ABOUT EACH DOCUMENT [S USED FOR [NPUT TO THE
CLASS[F[CAT[ON PROGRAM. SIX NON JUDGMENTAL CR[TER[A ARE USED IN
TESTING THE HYPOTHES[S FOR 100 KEYWORD LISTS (EACH LIST REPRESENTING
A DOCUMENT 1 FOR A !'-ER [ES OF COMPUTER RUNS IN WH I CH THE NUMBER OF
WORDS PER DOCUMENT Is INCREASED PROGRESSIVELY FROM 12 TO 36. FOUR OF
THE ~[X CR[TERIA INDICATE THE HYPOTHESIS HOLDS. AND TWO POINT TO NO
EFFECT. DIlEVIOUS WORK OF THIS K[ND HAS BEEN CONFINED TO THE RANGE OF
ONE THROUGH E[GHT WORDS PER DOCUMENT. F[NALLY. THE FUTURE OF
AUTOMA T [C CLASS [F I CAT [ON AND SOME OF THE PRACT I CAL PROBLEMS TO BE
FACED ARE OUTL INED. 34P.

23-M [SCELLA~EOUS II NFORMAT I ON RETR i EVAU
CLASSIFY[NG [NDExING FILE DOCUMENTATION
CO,,!DUTERS

65B OD420-MFOO 1

Figure 3c. A typical document match against the profile. The
match is on both INFORMATION RETRIEVAL
and AUTOMATIC CLASSIFICATION.

update their profiles. Thereafter he can monitor
program results to make sure that the revisions are
producing the desired effect.

The overall statistics offer a good yardstick for
measuring system performance. Such figures as
number of notifications sent out, percentage re­
turned, current relevance percentage, and quantity
of documents requested are all pertinent to evaluat­
ing how well the system is operating.

HOW HAS THE SYSTEM PERFORMED
TO DATE?

Growth

1. The data base described now includes abstracts
of 125,000 documents, with current additions at the
rate of approximately 10,000 per year.

2. The number of IBM users of the system is in­
creasing steadily. From the pilot group of 500
professionals participating in Current Information
Selection early in 1965, we have expanded to 1700
users. The rate of retrospective searching activity
is now up to about 300 searches per month at York­
town and 100 searches at La Gaude, France, and is
increasing.

3. The satellite operation in La Gaude, France, is
now offering full service to W orId Trade Corpora­
tion personnel in Europe, supplying both retro­
spective searching and Current Information Selec­
tion to more than 400 customers all over Europe.

User Response Statistics

After a statistIcal analysis of over 100,000 CIS
response cards, we found that the overall proportion
of relevance was 79.1 % of the returns. This figure
was 77% in the first 6 months, and increased to over
80% in the third quarter. ·Much of the improvement
was due to the rewriting or revising of the initial
profiles.

Operating Results

1. As expected, the first several months of actual
operating experience showed us numerous avenues
of improvement, since this was the first effort to
correlate user profiles with a natural text searching
program. The group had prior experience in writing
retrospective search questions. However, we found
a noticeable difference in practical strategy between
searching a large data base with a few questions and
searching a relatively small data base with over a
thousand questions (profiles). When we set up the
European satellite in September with this experience
in back of us, we found that most of the earlier

212 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

start-up problems virtually disappeared. The initial
statistical results from Europe were very similar to
our current domestic figures.

2. Overall, between 12 and 13% of the CIS re­
turns were requests for copies of the complete docu­
ments. A much higher percentage of requests (15
to 20%) came rrom the Data Processing Division
and World Trade personnel who were scattered in
small locations without direct IBM library facilities.
For our largest single group of users in a major
IBM complex with library facilities, this figure
dropped to about 10%.

3. Only about 5% of the total responses were
"Relevant, but have already seen the document."
This can be viewed as an encouraging comment on
the timeliness of the announcements, as well as the
nonavailability of some documents from any other
source.

4. The highest percentage of relevance was re­
turned for the data base containing IBM internal
documents (technical reports and the like), which
was to be expected.

The Importance of Personal Contacts

Even though we are talking about a highly
mechanized dissemination system with 1500 custo­
mers, we have found that the "personal touch" is
extremely important. With a small staff serving so
many, it is obviously not possible to talk directly to
every user every month. However, the personal
conversations and letters that we do have time for
have paid dividends in terins of customer satisfac­
tion and participation.

The quarterly statistical run selects and prints out
a "trouble-shooting" list. On it are all the users
who during the quarter (a) had a high percentage of
irrelevant notifications, (b) received none at all, or
(c) returned none of their response cards. With this
list, the information retrieval specialists look at the
operating profiles and often are able to adjust them.
If not, they go directly to the users, by telephone
if possible. The ensuing discussions usually pin­
point the trouble-a profile needs changing, a user

did not realize the function of the response cards,
etc.

On a daily basis, all response cards are scree:ned
and these with "Comments" punched are sorted out
for immediate handling. Some of thes,e request
profile changes, or ask questions about the abstracts
they have received. Again, the information retriteval
specialist checks out the current profile and goes
back to the user to make necessary revisions.

The net result of this personal contact is to im­
prove the caliber of the profiles, particularly the
problem cases. Each call also has the effect. of assur­
ing the user that he is not merely a number in an
impersonal computer system. He knows that he can
get help to change his profile as needed, that his
responses to the system are being monitOired by a
group of specialists, and that if he has complaints
or suggestions they will be acted upon.

CONCLUSIONS

What is ITIRC accomplishing now, and what are
the future possibilities? First, it is in full operation,
serving many hundreds of users throughout the
Corporation. Second, the data base is a broad one,
now covering the most critical areas and capabl<! of
unlimited future expansion. Third, a single manipu­
lation of input data produces output tailored fOir a
variety of needs-dissemination, announcemc;mt,
searching, and microfilm. Fourth, the normal tC!xt­
searching logic that we have developed is an effec­
tive technique today-and will be readily adaptable
to future developments that can put the entire text
of a document into a computer automatically.

Up to now, our efforts have been concenltrated on
operating a practical system to meet the immediate
needs of the IBM engineer-scientist. However, we
have not lost sight of the future. Both within and
outside IBM, the field of information retrieval will
continue to require constant study, research, and
development. For these activities, one of the best
environments may well be within the framc!work of
a live operating system.

EFFECTS OF QUANTIZATION NOISE IN DIGITAL FILTERS

Bernard Gold and Charles M. Rader
Lincoln Laboratory, * Massachusetts Institute of Technology

Lexington, Massachusetts

GENERAL EXPRESSIONS FOR
QUANTIZATION NOISE

If a discrete time linear system, hereafter called a
digital filter, is programmed on a digital computer
or realized with digital elements, computational
errors due to finite word length are unavoidable.
These errors may be subdivided into three classes,
namely, the error caused by discretization of the
system parameters, the error caused by analog to
digital conversion of the input analog signal, and
the error caused by roundoff of the results which are
needed in further computations. The first type of
error results in a fixed deviation in system param­
eters and is akin to a slightly wrong value of (say)
an inductance in an analog filter. We shall not treat
this problem here; it has been treated in some detail
by Kaiser. 1 The other two sources of error are more
complicated but if reasonable simplifying assump­
tions are made they can be treated by the techniques
oflinear system noise theory.2 It is our aim to set up
a model of a digital filter which includes these two
latter sources of error and, through analysis of the
model, to relate the desired system performance to
the required length of computer registers.

Both analog to digital conversion and roundoff
may be considered as noise introducing processes,
very similar in nature. In each case a quantity
known to great precision is expressed with consider-

*Operated with support from the U.S. Air Force.

213

ably less preCISIon. If the digitized or rounded
quantity is allowed to occupy the nearest of a large
number of levels whose smallest separation is Eo,
then, provided that the original quantity is large
compared to Eo and is reasonably well behaved, the
effect of the quantization or rounding may be
treated as additive random noise. Bennett 3 has
shown that such additive noise is nearly white, with
mean squared value of E5/12. Furthermore the
noise is reasonably '.lssumed to be independent from
sample to sample, and roundoff noises occurring
due to different mUltiplications should be inde­
pendent. It is possible to show pathological ex­
amples which disprove each of these assumptions,
but they are reasonable for the great majority of
cases. Ultimately our results must rest on experi­
mental verification, of course.

Since the noise of A-D conversion is assumed
independent of the noise created by roundoff, we
can compute the output of any filter due to either
excitation alone, or due to the signal alone, and
combine them to get the true filter output (of course
the noise terms are known only statistically); there­
fore, we will begin by finding an expression for the
mean squared output of an arbitrary filter excited
by a single noise source. Let the filter function be
H(z); it is understood that H(z) is the transfer func­
tion between the output of the filter and the node
where noise is injected; H(z) may thus be different
from the transfer function between the filter's
normal input and output. Let us thus consider the

214 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

e <_n T_)-....t __ ~I'---H_(Z_> :-_f (~n ~ ..)
Figure I. Random noise applied to a filter.

situation of Fig. 1, where a given noise sequence
e(nT) is applied to H(z), resulting in an output
noise sequencef(nT).

We can conveniently examine this model using
the convolution sum. Thus,

n

f(nT) = L h(mT)e(nT - mT) (1)
m=O

where h(mT) is the inverse z transform of H(z).
The input noise e(nT) is presumed to be zero for
m < 0 and the system is initially at rest. Squaring
Eq. (1) yields

n n

J2(nT) = L L h(mT)h(lT)
m = 0 1=0

x e(nT - mT)e(nT - IT) (2)

Now, if e(nT) is a random variable with zero
mean and variance u 2

, and recalling our assumption
that e(nT) is independent from sample to sample,
the st~tistical mean of Eq. (2) reduces to

n

E[f2(nT)] = u 2 L h2(mT) (3)
m=O

For a system for which the right side of (3) con­
verges, the steady state mean squared value of f(nT)
can be obtained by letting n approach infinity. For
this case, a formula which is usually more con­
venient can be obtained in terms of the system func­
tion H (z). Noting the definition.

H(z) = L h(mT)z-m (4)
m=O

Either the right- or left-hand side of (5) may be
used to evaluate the steady state mean squared value
ofJ(nT).

EXAMPLE-FIRST ORDER SYSTEM

As an example, consider the first order system of
Fig. 2. Let the analog-digital conversion noise
el(nT) have variance u~ and the roundoff noise
e2(nT) have variance ut The system functilon H(z)
of Fig. 2 is given by 1/(1 - Kz- 1) and h(mT) =

Km. The output y(nT) can be expressed as the sum
of a signal term yo(nT), caused by x(nT), and a
noise termf(nT), whose mean squared value can be
written, from (3), as

n

E[.f(nT)] = (u~ + un ~ (Km)2 (6)
m=O

from which the steady state value can be instantly
written as

u~ = lim E(.f(nT» = (u~ + u!)
n-+ao 1 - K

(7)

The implications of Eq. (7) are tricky. The mean
squared value of the noise clearly increases as K ap­
proaches unity. The maximum gain of the fHter also
increases (the gain of the system of Fig. 2 at de: is
(1/(1 - K». For this filter with low frequency
input the signal power to noise power ratio (S2/ N 2)
is proportional to (1 + K) / (1 - K) which ap­
proaches infinity as the pole of the filter approaches
the unit circle. This is a general result. However,
with a finite word length, the input signal must be
kept small enough that it does not cause overflow

y(nT)

~--------------~

of the z transform, we can form the product H(z)

H (!)z -I and!. by performing a closed contour inte-

gration in the z plane within the region of conver- K
gence of both H(z) and H~!). arrive at the identity

(5)
Figure 2. Noise mode for first order system.

EFFECTS OF QUANTIZATION NOISE IN DIGITAL F~LTERS 215

in the computation. Thus, the obtainable signal­
to-noise ratio decreases as K approaches unity.
Clearly, each case deserves its own considerations,
as the signal-to-noise ratio in the filter depends very
much on the actual conditions of the use of the
filter.

Finally, we comment that the cases K = 0, K =
1, in Eq. (7) are unique because U2 becomes zero
since no multiplications are performed.

EFFECT OF DIFFERENT REALIZATIONS
OF THE SAME FILTER

There are a variety of ways of programming a
second order digital filter (or in general a filter with
more than two singularities). Suppose a particular
system function H(z) is desired. If quantization is
ignored, then only the relative speed and memory
requirements of the different methods are of interest
in deciding which way to use. However, Kaiser's
work shows that the truncation of system constants
affects different realizations differently, and may in
fact lead to instability in some realizations. The
noise effects described here also yield different re­
sults for different programming configurations. The
point is illustrated through the examination of the
two systems of Fig. 3. Fig. 3a represents a noisy
programmed realization of the difference equation:

y(nT) = 2r cos bTy(nT - T) - r2y(nT - 2T)

+ x(nT) - r cos bTx(nT - T) (8)

and Fig. 3b represents the pair of simultaneous dif­
ference equations:

w(nT) = x(nT) + 2r cos bT w(nT - T)}
- r2 w(nT - 2T) (9)

y(nT) = w(nT) - r cos bT w(nT - T)

Both systems have the transfer function

H(z) = 1 - rcosbTz-
1

1 - 2r cos bT z -I + r2 Z-2

By examination of the poles and zeros of H(z) in
Fig. 4, we see that our network behaves as a reson­
ator tuned to the radian center frequency b for the
sampling interval T.

In Figs. 3a and 3b, X (nT) represents the noise­
less input to the filter, el (nT) represents the noise
due to A-D conversion of the input, and e2(nT)
represents the noise added by rounding. The
roundoff noise can be caused either by a single
roundoff after all products are summed, or by the
sum of the roundoff error due to each of the multi-

-r cos bT

~--~~y(nT)

Figure 3a. Noise model for second order system-direct
realization.

Figure 3b. Noise model for second order system-canonical
realization.

plications. It is simpler to program the latter, but
more noise is created. Note that, while in the
realization of Fig. 3b the noise terms el (nT) and
e'2(nT) are injected into the filter at the same place
as the input X(nT) and thus see the same transfer
function H(z), in Fig. 3a the noise term e2(nT) is
injected in a different part of the filter and sees a
different transfer function:

1
HI (z) = 1 _ 2r cos bT Z-I + r2z-2 (10)

Thus we can expect that the noise due to e2(nT)
will be different for the filters of Figs. 3a and 3b.

Considering first the realization of Fig. 3a, we
can, after some manipulation, obtain the result,

u~ = ui UI (r,bT) + u~ u2(r,bT) (11)

216 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 4. Pole zero representation of Eqs. (8) or (9).

where O"I and O"~ are the variances of el (nT) and
e2(nT), and with

1 + r2
U2 = 1 _ r2 x r4 + 1 _ 2r2 cos 2bT

and

UI = __ 1_1 [1 _ r2 sin2 bT(1 + r2)]
1 - r2 r 4 + 1 - 2r2 cos 2bT

More insight can be obtained into these results
by letting r = 1 - € and allowing € to be quite
small, of the order of 0.05 or less. Then (11) re­
duces to the simple form

(12)

Carrying through a similar computation for the
realization of Fig. 3b yields

(13)

which can also be reduced, for small values of f, to

2 1 [2 2
O"n = 4f 0"1 + 0"2] (14)

Several important facts can be deduced from Eqs.
(12) and (14). First, the so-called "straightforward"
realization of Fig. 3a leads to increased noise for
low resonance frequencies whereas the "canonic"
realization of Fig. 3b does not. Physically, this re­
suIt can be explained by noting that, in the straight­
forward realization, the noise "passes through" only

the poles of the filter, so that at low frequendes,
the complex conjugate poles interact to form a low
pass filter. In the "canonic" realization the noise
is also filtered by a zero which is close to de and thus
the output noise is of a band-pass nature and less
total energy is able to pass through the fillter.
Second, we note that Eqs. (13) and (14) have the
same functional dependence on pole positions,
namely, that the mean squared output noise is in­
versely proportional to the distance from the pole
to the unit circle and therefore directly proportional
to the gain of the filter.

From these results one can, for example, estimate
the word length needed for a simulation requiring
many filters. One such system is a vocoder synthe­
sizer shown in Fig. 5. Typically, a vocoder syn-

SPECTRAL
COEFFICIENTS

I
I
I
I

VOCODER SYNTHESIZER

Figure 5. Vocoder synthesizer.

SYNTHESIZED
SPEECH

thesizer wi1l contain about 100 resonators. Assum­
ing that the noise from each resonator is additive to
the noise from all other resonators and picking an
effective average € of 0.01, we arrive at a total noise
output of about 7 or 8 bits. It is clear that word
lengths of at least 20 bits are needed to avoid audi­
ble noise outputs superimposed on the vocoder
generated synthetic speech ..

EXPERIMENTAL VERIFICATION FOR
FIRST AND SECOND ORDER FILTERS

The results of the preceding computations wc;!re
experimentally verified by programming various
realizations of first and second order difference
equations on the TX-2 digital computer. To p,er­
form a measurement of output noise for a given
digital filter, the computations were performed with
rounded arithmetic using a 36-bit word, and simul­
taneously, using rounded arithmetic with a shorter
word and exactly the same input. The outputs of

EFFECTS OF QUANTIZATION NOISE IN DIGITAL FILTERS 217

the two filters were subtracted, squared, integrated
and divided by the number of iterations of the
equation. The inputs to the filters were random
noise or sampled sinusoids. The filters were pro­
grammed using the PATSI 4 compiler, and the var­
ious waveforms of interest, including the mean
squared output noise, were displayed during the
computation. The measurement was taken when
the mean squared output noise seemed to reach a
steady value, or in the case of the very high gain
filters, when the patience of the observer was ex­
hausted. As we shall see below, the necessary ob­
servation time for confidence in such a measurement
is highly dependent on the gain of the filter.

Figure 6 shows the predicted and measured out­
put noises for some one-pole filters, as Eq. (7), with
tTr = O. The horizontal axis is the pole position and
the vertical axis is the mean squared output noise
normalized to tT~. Table 1 gives the predicted versus
measured output noises for several two-pole filters
(no re~l zeros) with various pole positions, along
with the measurement error. All of the results seem
to confirm the theory.

It is advisable to determine, on a statistical basis,
the measurement time required before the variance
of such statistical observations is sufficiently small.
Thus, consider a random variable q defined as

1 n
q = - L f2(nT)

n m=O

(15)

where f(nT) is an output noise signal as indicated in
Fig. 1 due to a set of mutually independent input
noise samples e(nT).

Assumingf(nT) to have zero mean, we can im­
mediately perceive that the mean value o-f the meas­
urement q is given by

E[q] = tTl (16)

10
9

X II 29 BITS'N RANDOM
8 NOISE I PUT

7 o • 28 BITS, RANDOM
NOISE INPUT

6 • = 29 BITSN SINE
WAVE I PUT

5

4
I&J
::l
Q

Cf) 3 I&J
0::

Figure 6. Predicted vs measured quantization noise for first
order system.

Table 1. Two-Pole Filter Noise Measurement

Mean Squared Output Noise Error Pole
Predicted Measured % Positions

204 203 0.49% .5 ± .5j
289 297 2.77 .5 ± .707j
508 520 2.36 .5 ± .778j

1011 1058 4.65 .75 ± .56j
2824 2880 l.98 .875 ± .332j
5553 5933 6.40 .90625 ± .235j
5553 5503 0.90 .90625 ± .235j

11014 11450 3.96 .921875 ± .169j
11014 11079 0.59 .921875 ± .169j
3306 3740 13.12 .75 ± .654j
3306 3359 l.60 .75 ± .654j

218 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

where aJis the variance of the (stationary) random
variablef(nT). Now assuming thatf(nT) is a set of
stationary Gaussian variables with correlation co­
efficient p(rT), then it can be shown that 5

E[f2(mnf2 (IT)] = ul + 2R2(mT - IT) (17)

where R2 is defined as the covariance between
f(mT) and f(lT). From Eqs. (16) and (17), we ar­
rive at the expression for the variance of q,

O"~ = E[q2] - E2 [q]

This can be evaluated for first order system of
Fig. 2. For that case R (mT - IT) = K21m - ~ and,
for large n, Eq. (18) reduces to

(19)

where u; is the variance of the input e(nT) as in Fig.
1. Of major interest in determining the time needed
to perform the measurement is the ratio of the
standard deviation to the mean of q. Using an argu­
ment similar to the one that leads to Eq. (7) we can
for the first order system relate u; to U] by the for­
mula u} = u;/(1 - K2), which combined with Eqs.
(19) and (16) yields

E[q] = (1 - K2) Vn
2

(20)

Thus, for example, if K2 = 0.99, we need 108

terms in the measurement of Eq. (15) in order to
reduce the standard deviation of the measurement
to 2% of the mean of the measurement. Assuming
that an iteration could be done in 100 /lsec, 104

seconds would be required for such accuracy.

NOISE CONSIDERATIONS IN
PROGRAMMING ITERATIVE SINE
WAVE GENERATORS

One must be especially attentive to noise con­
siderations in the programming of iterative sine
wave generators. Various efficient routines exist to
compute the sine or cosine of a random argument
rapidly, but for instances where the argument is
nT for successive integers n, the most efficient way
to generate sinusoidal functions is by the use of
iterative difference equations. These are, of course,
digital filters with poles directly on the unit circle,
inputs equal to zero, and initial conditions which

specify the magnitude and phase of the output.
Since the poles of the filter are directly on the unit
circle, the noise, according to Eq. (12) Q1r (14) be­
comes infinite. This is indeed the situation.* The
saving feature is the gradual increase of the noise
term, so that if one runs the program for a limited
time, or periodically resets the initial conditions,
catastrophe can be avoided. To study this problem
theoretically, consider the simultaneous differ,ence
equations

y(nT + T) = cosbTy(nT) 1~
+ sin bT x(nT)

(21)
x(nT + T) = - sin bT y(nT)

+ cos bT x(nT)
~

with initial conditions x(O) 1, y(O) = O. The
"circuit" is shown in Fig. 7.

)----...... --... , .. Y (n T·f- T)

cos bT

sinbT

)----...... ~-.,. X (n T + T)

Figure 7. Iterative sine and cosine generator.

The z transform X (z) of one output x(nT) can be
written

X(z) =

Z2 - zcosbT + zE2(z) - cos~bT E2(z) - sinbTE1 (z)
z2 - 2z cos b T + 1

(22)

We see that the first two terms of the numerator
correspond to the signal and the remaining terms to
the noise, E, (z) and E2 (z) being respectively the. z

*Various nonlinearities can be introduced to keep the noise
finite. This is adequate for many applications since thle selectivity
of the filter can be relied on to keep the output spe(:trally pure
even if the phase of the output is unpredictable.

EFFECTS OF "QUANTIZATION NOISE IN DIGITAL FILTERS 219

transforms of the added noises el (nT) and e2(nT),
both introduced by roundoff error.

Defining:

Z 1 { Z - cos b T } h (nT) - -
1 - Z2 _ 2z cos bT + 1

Z I{ -sin bT } h (nT) - -
2 - Z2 _ 2z cos b T + 1

(23)

where Z -I is the inverse z transform, we can from
Eq. (3) write the total noise as

n

£(f2(nT)) = ut L htcnT)
m=O

(24)
n

+ u~ L h~(nT)
m=O

Solving Eq. (23) explicitly and letting ut u~
£2
_0 we arrive at the result
12

}
£2

+ sin 2(nbT - bT) = 1; n (25)

Notice that is was impossible to use Eq. (5), since
the result obtained would be infinite and thus no
time-dependent result could be formulated. Equa­
tion (25) tells us that the noise increases linearly
with the number of iterations of the difference equa­
tions. For example, after 106 iterations, the noise
is about 10 bits. Assuming that one iteration is
performed in 100 !J.sec, several minutes could cer­
tainly pass, even in an 18-bit machine, before the
generated sine and cosine waves begin to look noisy.

Another program for generating a cosine wave is
expressed by the iteration

y(nT + 2T) = 2 cos bT y(nT + T) - y(nT) (26)

with initial conditions yeO) = 1, y (T) = cos bT.
Noise analysis of Eq. (26) leads to a functional de­
pendence of the mean squared noise, of the form

_._n __ ; thus appreciably greater quantities of noise
sm 2 bT
are generated at low frequencies, and fewer itera­
tions are available before the program becomes
unusable.

The comparison of Eqs. (21) and (26) was per­
formed qualitatively on TX-2 by programming
identical sine wave generators using both methods.
For all frequencies, the method of Eq. (21) pro­
duced sinusoids of more nearly constant amplitude
than the method of Eq. (26), but this difference in
behavior was negligible for frequencies greater than
one fourth of the sampling frequency, and, using
36-bit arithmetic, the distortions were almost unob­
servable for these frequencies. For low frequencies
(of the order of one thousandth of the sampling
rate) the method of Eq. (26) was completely unus­
able, with the generated sine wave being terribly
distorted in the first period.

REFERENCES

1. J. F. Kaiser, "Some Practical Considerations
in the Realization of Linear Digital Filter," 3rd
Allerton Conference (Oct. 20-22, 1965).

2. J. B. Knowles and R. Edwards, "Effect of a
Finite-Word-Length Computer in a Sampled-Data
Feedback System," Proc. IEEE, vol. 112, no. 6,
(June 1965).

3. W. R. Bennett, "Spectra of Quantized Sig­
nals," Bell System Technical Journal, vol. 27, pp.
446-472 (July 1948)~

4. C. M. Rader, "Speech Compression Simula­
tion Compiler," J. Acous{. Soc. Am. (A), June 1965.

5. J. L. Lawson andG. E. Uhlenbeck, Threshold
Signals, MIT Rad. Lab. Series 24,McGraw-Hill,
New York, 1950.

A REAL-TIME COMPUTING SYSTEM FOR LASA

H. W. Briscoe and P. L. Fleck
Lincoln Laboratory, * Massachusetts Institute of Technology

Lexington, Massachusetts

PHYSICAL DESCRIPTION OF LASA

The Large Aperture Seismic A.rray (LASA) con­
sists of 525 vertical motion seismometers installed in
an area of approximately 10,000 square miles in
eastern Montana. Each seismometer is located at
the bottom of a 200-foot borehole to reduce noise
generated by wind, traffic, and livestock. The seis­
mometers are grouped in clusters (subarrays) of 25
seismometers each, and the 21 subarrays are ar­
ranged in a series' of successively inscribed squares
(see Fig. 1) to produce a logarithmic density taper.

The data from each subarray of 25 seismometers
are collected in a buried vault at the center of the
cluster where they are low-pass filtered to avoid
aliasing and are digitized at 20 samples per second.
The frequency passband of the seismometers, well­
head amplifiers, and low-pass filters is approxi­
mately 0.5 to 5 cycles per second. Figure 2 shows
the inside of one of the buried vaults including the
rack of equipment for filtering, mUltiplexing, and
digitizing the signals and a second rack containing
digital phone-line modulating equipment used to
transmit the digital data over open wire and micro­
wave links to the LASA Data Center (LDC) in
Billings, Montana.

The Data Center, shown in Fig. 3, contains gen­
eral purpose and special purpose digital processing
equipment which is used for recording and process-

*Operated with the support of the U.S. Advanced Research
Projects Agency.

221

ing data from the entire array. The data is recorded
on standard Y2-inch 7-channel digital tape in a
format that is compatible with most commercially
available processing equipment. The data rate is
such that a full 2500-foot reel of tape is written every
6 minutes. In order to reduce the array output to
a manageable level, it is imperative that some on­
line processing be done. Since significant seismic
events appear at the array as discreet bursts of
energy lasting from one minute to several hours
spread throughout the day, this on-line data reduc­
tion for LASA consists of selecting those sections of
recordings which contain data from interesting
seismic locations. Thus, the on-line processing, part
of which takes place in the same general-purpose
processor that is used for formatting and recording
the digital tapes, consists of 1) predetection process­
ing to improve the signal-to-noise ratio for detec­
tion, 2) detection of teleseismic events, 3) source
location of detected events, and 4) testing various
remote components in the system. Events occurring
within preselected regions are then further processed
off-line either on-site or at remote processing cen­
ters. ln this paper, we will be primarily concerned
with the first two steps in the on-line processing;
predetection processing and detection.

PREDETECTION PROCESSING TECHNIQUES

Predetection processing uses the LASA as a wide­
band phased array antenna to improve the signal-

222 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

/'

/@
/

/
I ,
\
\
\
\

''{§) ,

--",.
./

---.....,
.........

"

@

....... ./
""'" ",. '-----.,.,.

14------- 200 km ------...

Figure I.

to-noise ratio for detection of small teleseismic
events_ In a' conventional phased array, this is
accomplished by appropriately delaying (phasing)
and adding the signals from each element in the
array. The phasing delay is adjusted so that the
signals add coherently and the noises add inco­
herently. Delaying the data from the elements of
the array is equivalent to pointing a conventional
antenna in a certain geometric ditection in space.
Since seismic noise tends to come from discrete
sources with discrete velocities, the processing can
be further improved; strong noise sources can be
suppressed by selecting gains or amplitude weights
(the antenna "taper"), which place nulls of the an­
tenna sidelobe pattern in the proper direction. Thus
the noise does not add with random phase but with
a controlled anti-phase. If the noise is allowed to

add with random phase, the antenna gain in signal­
to-noise ratio should be approximately the sq~are
root of the number of elements, but this gain may
be much greater if the strong sources of organized
noise can be specifically rejected.

Since the LASA is designed to receive: wideband
signal energy (the passband includes more than an
octave) and since many seismic noise sources emit
energy over much narrower bands in frequency,
additional signal-to-noise gain can be obtained by
optimum frequency filtering. In fact, one of the
most powerful techniques for combining data from
the elements of a seismic array involves employing
a different set of amplitude weights (a different
taper) at each of several frequencies in order to opti­
mize the use of sidelobe nulls at each frequency.
Varying the amplitude gain on a single eleme:nt as

A REAL-TIME COMPUTING SYSTEM FOR LASA 223

Figure 2.

a function of frequency is the same as filtering the
data from that element. It has' been shown that the
optimum design for combining data from the ele­
ments of an array of seismometers consists of apply­
ing a different filter and time delay to data from

each element and· adding the resulting data from all
the elements. Most other linear processing tech­
niques are degenerate forms of this "filter, delay
and sum" processing. For the detection of seismic
signals it is often advantageous to further filter the
data through a narrow bandpass filter. On-line
processing for the LASA involves the use of both
convolution and recursive digital filtering and will
be described in more detail in a later section of this
paper.

ON-LINE PROCESSING FOR THE LASA

We now turn our attention to the specific imple­
mentation of the processing concepts described
above. The functions to be performed by the on­
line processing facility are:

1. Read data into memory.
2. Write data onto magnetic tape.
3. Form 10 beams.
4. Make eight event detectors.
5. Locate source of events.
6. Test components in the system.
7. Output data for monitoring.

First, all the data is read into core memory of the
general-purpose computer. That is, every sampling
interval (50 msec), each seismometer waveform is
digitized, multiplexed, and transmitted to the core
memory.

Second, all this data is written onto magnetic
tape. Each record on tape contains two samples
from each sensor (100 msec of data).

Third, approximately 10 processed outputs are

Figure 3.

224 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE. 1966

formed. Five of these are formed using the delay­
and-sum method to steer the entire array to monitor
five predetermined locations. The other five are
formed using the more powerful filter-and-sum
method on up to 25 channels to produce five over­
lapping beams to monitor the entire region of the
world from approximately 20° distance to 100° dis­
tance. All these beams have a pr"detection signal­
to-noise ratio improvement wb .,_ ~ allows detection
of weaker events in the areaS being monitored.

Fourth, several independent event detectors are
connected to selected channels from widely sepa­
r~ted sensors or beam outputs. The event detectors
uutput the GMT time of any event occurring in
their input waveforms.

Fifth, the outputs from event detectors connected
to widely separated sensors are put into a source
location program which determines where the event
originated. On the basis of the location of detected
events, a decision to save Qr reuse the tapes is made.

Sixth, the general-purpose computer periodically
tests each component in the system and types out

its status so that maintenance teams can bt~ dis­
patched to repair faults as they occur.

Seventh, the computer provides seve:ral on-line
analog outputs for monitoring the system perform­
ance.

Figure 4 shows the equipment configuration used
to accomplish these tasks on-line. The two general­
purpose computers are identical machines. Each
machine has a 16,384 eighteen-bit word memory
with a 1.75 microsecond cycle time. The! tape units
shared by the two machines are standard seven­
track IBM compatible drives operating at 75 inches
per second with character density of 800 characters
per inch. The special-purpose processor (usually
referred to as the "Multi-Channel Filter" or l\.1CF)
is designed to perform filter-and-sum proc,essing
with 25 input channels and up to five processed out­
put channels. The data displays indicated in the
diagram provide the on-line monitoring of the sys­
tem.

Now we shall discuss in more detail how these
points are accomplished. The real-tim'e program-

EXECUTIVE PROGRAM

F*'ULT ON-LINE EVENT EVENT
PDP -7 No. 1 BEAM OUTPUT

MON(TORING - DETECTION RECORDING SELECTIOIN 1+-'
PROGRAM FORMING PROGRAM PROGRAM PROGRAM PROGRAM

PROGRAM

PHONE LINE ~O
INTERFACE (>

DATA DISPLAY

UNITS

EQUIPMENT 1----+---..

SPECIAL PURPOSE
PREDETECTION

PROCESSOR

L

o

()

I
MAGNETIC TAPE

UNITS SHARED BY
2 PDP-7 COMPUTERS

INTER-COMPUTER
COMMUNICATIONS

(I) BACKUP FOR PRIMARY ON-LINE FUNCTIONS
PDP-7 No.2 (2) OFF -LINE UTILITY OPERATIONS 1-+--_.

(3) FUTURE ON-LINE SLOWED DOWN TIME PROCESSING

Figure 4.

A REAL-TIME COMPUTING SYSTEM FOR LASA 225

ming system is timed by an interrupt pulse which
occurs every 50 msec whenever a new set of data
samples is ready to be read into the memory. At
this time the program starts a block transfer which
automatically reads the data into 651 consecutive
locations. When the next data ready interrupt
comes, the computer reads the data into the next
651 consecutive . locations and starts another block
transfer which writes out onto magnetic tape the
data stored from the start of the first block to the
end of the second block. The data rates of the input
and output are just right so both these data transfers
interleave without running into each other.

While the data are being transferred into core and
onto tape, the main program is processing the data.
All the processing is subject to the following con­
straints: It must operate on each data sample as if
comes in; the total time for all the processing must
be less than 50 msec; and everything must fit into
the remaining memory not used for input/output
buffering.

The first waveform processing we do is to form
five delay-and-sum beams. This is shown in Fig. 5
where the h(t)'s represent simple delay lines. A
teleseism from an interesting area of the world can
take up to 15 seconds to propagate across the array
so the simple minded method of putting 15-second
delay lines (300 locations) for each data channel
would take all the remaining core memory. Instead,
the delay for each particular channel is used as an
index to tell into which sum box each data sample
is to be added. This way only 300 locations are
used for each beam, and each data sample is only
used once. This program takes 5 msec (about 3000
cycles) and occupies about 2400 locations in core.

The other five processed outputs are formed by
filter-and-summing in the MCF special purpose

Figure 5.

computer. Figure 5 also shows this processing, but
here the h(t)'s represent linear filters. Each output is .
formed by passing each of the 25 input channels
through a different filter and summing the filtered
waveforms. The 25 input channels for the MCF can
come directly from a single subarray of seismom­
eters via the phone-line interface, or from the gen­
eral-purpose computer which can form clusters of
widely separated seismometers. The MCF inter­
ruptS the program in the central computer each time
an output sample is ready. The interrupt answer­
ing program accepts the sample, stores it in core
memory, and clears the interrupt.

The actual operations of this special-purpose
computer are:

25 78

In = L L hi.j!n-i,j
j= I i=O

where In = the output at time n,
!n-i,j = the ith most recent data input from the

jth channel, and
hij = the impulse response for the jth channel.

Each filter is a 78-point convolutional filter. That
is, the last 78 data samples from each input are
stored in memory and every sampling interval (50
msec) there are 78 multiplications between these
data and 78 presto red "filter constants" with the
accumulated sum of the product pairs being the out­
put sample of one filter. Then the 78 inputs are
pushed down with the new data sample being stored
at the head of the list and the 78th one dropped. All
this is repeated 25 x 5 or 125 times, making a total
of 9750 multiplications and 9875 additions. A trick
is used to get all these operations done in 50 msec.
The memory cycles that get the filter points are
standard read-restore cycles, but the cycles that get
the data points are read-save-restore-previous-data
sample, so that the "push down list" can be done in
essentially no extra time. Phasing delays can be in­
troduced by using filter response functions less than
78 points long and adding appropriate number of
zeros at the beginning and end of each response
function.

The next processing step consists of event detec­
tion on selected channels. Figure 6 shows a block
diagram of one event detector. First, the input
waveform is passed through a bandpass filter and
the output energy is measured. If this energy should
suddenly increase over what it had been, the detec­
tor decides there has just been an event and the cur­
rent GMT time is typed out, along with the channel
number that triggered the detector.

226 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

E:VENT
IF

INPUT

A

3-POLE
BAND PASS

FI LTER
0.95-1.45

B

DIVIDER
RECTIFIER 1---..... -----------..... (FORMS)

C C+E

% ~ THRESHOLD

t--------.......
NO EVENT

IF

LOW PASS
FILTER

T = 30sec

GO-sec
DELAY
LINE

E £. < Tl-tRESH10LD
E

AUTOMATIC EVENT DETECTOR

Figure 6.

Each pole in the bandpass filter is of the recursive
type as opposed to the convolutional type described
earlier. This is shown in Fig. 7. To synthesize a
transfer function with two: complex conjugate poles
and a zero at the origin of the S plane (a RLC filter),
we use a recursion formula where the present value
of the filter output is a linear combination of the two
previous filter outputs and: the first difference of the
input waveform. The difference equation is shown
in the figure. This has the advantage of requiring
only 15 registers in memQry for the constants per
pole, independent of the ringing time of the filter.

If we look again at Fig.! 6, we see that the event
detector uses three rec~rsive filters in cascade in
order to provide v~ry rapid attenuation of low fre­
quency microseismic noise energy. The three poles
are synchronously tuned ,to res

4

0nate at the same
frequency so that the shape of the filter makes an
approximate match to the spectrum of the energy of
a teleseism. This is done in order to maximize the
signal-to-noise ratio at point B.

The passband of the filter is 0.95 cps to 1.45 cps
because our investigations! of many weak teleseisms
showed this to be the frequency where the energy
lies for short-period vertical seismometers. This
passband is very effective in eliminating local events
which have energy at frequencies much higher than
this.

This filter output is then rectified so that the sig­
nal at point C is an appro~imation to the power of
the signal at point B. The waveform is rectified
instead of being squared for two reasons. First, it
takes less time to compute, and second the dynamic
range that the following blocks require is consider­
ably reduced.

Now, following the lower path, the signal is
passed through a low-pass filter whose: time con­
stant is 30 seconds. This is long enough to smooth
the fluctuations caused by the seismic signal, yet
short enough so that it will accurately follow any
long-term variation in the noise power and system
calibration. Thus, at point D we hav4! a slowly­
varying signal which is proportional to the back­
ground noise level in the input seismic signal. This
signal is then passed through a 60-second delay line
such that its output at E is simply the signal at D
delayed in time by one minute.

Now, the signal at C, which is proportional to the
energy in the frequency band 0.95 to 1.45 l~pS is
divided by the average background noise energy in
the same frequency band one minute earlier. We
say there is an event if this ratio exce<;:ds a given
threshold; otherwise there is no event. The reason
for the 60-second delay line becomes dear if you
consider what would happen if it weren't there and a
slowly emerging event should come in. Both the
signals at C and E would rise together and their
ratio would stay constant. Clearly, putting a delay
line in circumvents this problem.

If the threshold is set too low, the event detector
will have a high false alarm rate-that is, it will be
constantly triggering on every little nois1e pulse that
comes along. On the other hand, if the threshold is
set too high, only very strong events willl trigger the
event detector. We have varied the threshold and
empirically decided to make it 5.82. With this value
and pure gaussian noise as an input, seven false
alarms are registered per day on the average" Ac­
tually, however, the seismic signals we use are not
gaussian noise, but have many small local man-

A REAL-TIME COMPUTING SYSTEM FOR LASA 227

o

x(t) 1 1 y(t)

.... -~-1

jw
a

x
S-PLANE

b

- ~-ffi-----. (j

-ot
e

x

Z-PLANE

-2at -e -ot
2e cos bt

UNIT
CI RCLE

ONE-POLE FILTER

Figure 7.

made events in them; so in practice, the false alarm
rate with a threshold of 5.82 is about four per hour.
Using eight independent event detectors, the pro­
gram takes 10 msec and occupies 1300 registers in
core.

The main disadvantage of this event detector is
that it cannot discriminate between a strong local
event or a noise burst in the data line or a teleseism.
Anything that has sufficient energy around 1 % cps
will trigger this event detector. We have found that
for our data about one event in 10 is a genuine
teleseism, the other nine being local events of one
sort or another., We get around this by having more
than one event detector connected to seismometers

separated by several kilometers. Then, whenever
several event detectors trigger within several seconds
of each other, we say a teleseism has been received.
The small local events are too weak to register on
several event detectors, or else take a longer time
due to their lower horizontal velocity. This screen­
ing effectively reduces the false alarm rate from 90%
to about one per day.

When a teleseism has been detected, the program
examines the relative arrival times at the various
sensors and, since these determine the origin of the
teleseism, the program looks to see if this location
is in an area that it has been told is interesting. If it
is, the program tells the operators to save the rele-

228 PROCJ:<:EDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

vant data which has been recorded on magnetic
tape. Thus, the tape recorders have been acting as
mass buffer storage for the d~ta.

In order to save the data that has teleseisms that
are too weak to be detected by the automatic event
detector, one points a beam at the selected area and
puts an event detector on hs output, and if this
single event detector triggers, the data is saved.

In conclusion, we have described a system with a
real-time program directing the overall op{~ration­
from routine testing to selecting the data fOir further
off':'line processing. These operations are done on
the basis of real-time waveform processing. With­
out automating these tasks, the Large Aperture
Seismic Array would be quite impractical to operate
because of its large size, both in data which accumu­
lates and remote transducers which periodically fail.

HIGH-SPEED CONVOLUTION AND CORRELATION*

Thomas G. Stockham, Jr.
Massachusetts Institute of Technology, Project MAC

Cambridge , Massachusetts

INTRODUCTION

Cooley and Tukeyl have disclosed a procedure
for synthesizing and analyzing Fourier series for dis­
crete periodic complex functions. t For functions of
period N, where N is a power of 2, computation
times are proportional to N log2 N as expressed in
Eq. (0).

(0)

where k ct is the constant of proportionality. For
one realization for the IBM 7094, k ct has been
measured at 60 JLsec. Normally the times required
are proportional to N 2

• For N = 1000 speed-up
factors in the order of 50 have been realized! Eq .
. (1 b) synthesizes the Fourier series in question. The
complex Fourier coefficients are given by the analy­
sis equation, Eq. (la).

N-l

F(k), = L: f(j)W-ik

j=O

N-l

f(j) = ..!.. L: F(k) Wik

N k=O

(la)

(lb)

where w = e27fI
/

N
, the principal Nth root of unity.

The functions f and F are said to form a discrete

·Work reported herein was supported (in part) by Project
MAC, an M.I.T. research program sponsored by the Advanced
Research Projects Agency, Department of Defense, under Office
of Naval Research Contract Number Nonr-4102(Ol).

tTo be able to use this procedure the period must be a highly
composite number.

229

periodic complex transform pair. Both functions
are of period N since

F(k) = F(k + 'cN) (2a)

and

f(j) = f(j + cN) (2b)

TRANSFORM PRODUCTS

Consider two functions g and h and their trans­
forms G and H. Let G and H be multiplied to form
the function C according to Eq. (3),

C(k) = G(k) x H(k) (3)

and consider the inverse transform c(j). c(j) is
given by Eq. (4)

N-l

c(j) = ..!.. L: g(J)h(j - J)
N J=O

N-l

= ..!.. L: h(J)g(j - J)
N J=O

(4)

as a sum of lagged products where the lags are per­
formed circularly. Those values that are shifted
from one end of the summation interval are circu­
lated into the other.

The time required to compute c(j) from either
form of Eq. (4) is proportional to N 2

• If one com­
putes the transforms of g and h, performs the multi­
plication of Eq. (3), and then computes the inverse

230 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

transform of C, one requires a time given by Eq. (5)

l~irc = 3 kCI Nlog2 N + kmN

= k circ N(lOg2 N + Il) (5)

where k circ = 3kcl , Il = km/ kf(:irc, and kmN is the time
required to compute Eq. (3). Of course this assumes
N is a power of 2. Similar savings would be possible
provided N is a highly composite number.

APERIODIC CONVOLUTION

The circular lagged product discussed above can
be alternately regarded as a convolution of periodic
functions of equal period. Through suitable modifi­
cation a periodic convolution can be used to com­
pute an aperiodic convolution when each aperiodic
function has zero value everywhere outside some
single finite aperture.

Let the functions be calledd(j) and s(j). Let the
larger finite aperture contain M discrete points and
let the smaller contain N discrete points. The result
of convolving these functions can be obtained from
the result of circularly convolving suitable aug­
mented functions. Let these augmented functions
be periodic of period L, where L is the smallest
power of 2 greater than or equal to M + N. Let
them be called da(j) and sa(j) respectively, and
be formed as indicated by Eq. (6).

fa(j) = f(j + io) 0 ~ j ~ M - 1

= 0

= fa(j + nL)

M~j~L-I

otherwise

(6)

wherejo symbolizes the first point in the aperture of
the function in question. The intervals of zero
values permit the two functions to be totally non­
overlapped for at least one lagged product even
though the lag is a circular one. Thus, while the re­
sult is itself a periodic function, each period is an
exact replica of the desired aperiodic result'.

The time required to compute this result is given
in Eq. (7).

Taper = k circ L(log2 L + Il) (7)

where M + N ~ L < 2(M + N). For this case,
while L must be adjusted to a power of 2 so that the
high-speed Fourier transform can be applied, no re­
strictions are placed upon the values of either M
orN.

SECTIONING

Let us assume that M is the aperture of d(j) and
N is that of s(j). In situations where M is con-

siderably larger than N, the procedure may be
further streamlined by sectioning d(j) into pieces
each of which contains P discrete points where
P + N = L, a power of 2. We require K sections
where

K = least integer ~ M / P (8)

Let the ith section of d(j) be called d;(j). Each sec­
tion is convolved aperiodically with s(j) according
to the discussion of the previous section, through
the periodic convolution of the augmented sections,
da;(j) and sa(j).

Each result section, r;(j), has length L ,= P + N
and must be additively overlapped with its neigh­
bors to form the composite result r(j) which will
be of length

KP + N ~ M + N (9a)

If ri(j) is regarded as an aperiodic function with
zero value for arguments outside the range 0 ~ j
~ L - 1, these overlapped additions may be ex­
pressed as

K-l

r(j) = L r;(j - iP) j = 0,1, ... KP + N - 1
i=O

(9b)

Each overlap margin has width N and there are
K - 1 of them.

The time required for this aperiodic sectioned
convolution is given in Eq. (10).

T sect = kcl(P + N)log2(P + N)
+ 2Kkcl (P + N)log2(P + N)
+ Kkaux(P + N)

= k ct (2K + 1) (P + N)log2(P + N)
+ Kkaux(P + N)

~ k cl (2K + 1) (P + N) [log2(P + N) + ~~I]
(10)

where Il' = kaux/2kcl. Kkaux(P + N) is the: time re­
quired to complete auxiliary processes. These
processes involve the multiplication~ of Eq. (3), the
formation of the augmented sections daj(j), and the
formation of r(j) from the result sections r;(j). 1For
the author's realization in which core memory was
used for the secondary storage of input and output
data, Il' was measured to be 1.5, whkh gives
kaux = 3k c1 ~ 300 Ilsec. If slower forms of auxiliary
storage were employed, this figure would be en­
larged slightly.

For a specific pair of values M and N, P should
be chosen to minimize T sect. Since P + N must be a

HIGH-SPEED CONVOLUTION AND CORRELATION 231

power of 2, it is a simple matter to evaluate Eq. (10)
for a few values of P that are compatible with this
constraint and select the optimum choice. The size
of available memory will place an additional con­
straint on how large P + N may be allowed to be­
come. Memory allocation considerations degrade
the benefits of these methods when N becomes too
large. In extreme cases one is forced to split the
kernel, s(j), into packets, each of which is con­
sidered separately. The results corresponding to all
packets are then added together after each has been
shifted by a suitable number of packet widths. For
the author's realization N must be limited to occupy
about VB of the memory not used for the program or
for the secondary storage-of input/output data. For
larger N, packets would be required.

COMBINATION OF SECTIONS IN PAIRS

If both functions to be convolved are real instead
of complex, further time savings over Eq. (10) can
be made by combining adjacent even and odd sub­
scripted sections da;(j) into -complex composites.
Let even subscripted da;(j) be used as real parts and
odd subscripted da;+ I (j) be used as imaginary parts.
Such a complex composite can then be transformed
through the applicatitm of Eqs. (la), (3), and (lb)
to produce a complex composite result section. The
desired even and odd subscripted result sections
r;(j) and rl+ I (j) are respectively the real and imag­
inary parts of that complex result section.

This device reduces the time required to perform
the convolution. by approximately a factor of 2.
More precisely it modifies K by changing Eq. (8) to

K = least integer ~ M / 2P (11)

For very large numbers of sections, K, Eq. (10)
can be simplified to a form involving M explicitly

instead of implicitly through K. That form is given
in Eq. (12)

Tfast ~ k ct M«P + N)/P) [log2 (P + N) + #t'l (12)

Since it makes no sense to choose P < N, for simple
estimates of an approximate computation time we
can write

EMPIRICAL TIMES

The process for combined-sectioned-aperiodic
convolution of real functions described above was
implemented in the MAD language on the IBM
7094 Computer. Comparisons were made with a
MAD language realization of a standard sum of
lagged products for N = 16, 24, 32, 48, 64, 96, 128,
192, and 256. In each case M was selected to cause
Eq. (11) to be fulfilled with the equal sign-. This step
favors the fast method by avoiding edge effects.
However, P was not selected according to the op­
timization method described above (under "Section­
ing Convolution"), but rather by selecting L as
large as possible under the constraint.

In L ~ PIN (14)

This choice can favor the standard method.
Table 1 compares for various N the actual com­

putation times required in seconds as well as times
in milliseconds per unit lag. Values of M, K, and L
are also given.

Relative speed factors are shown in Table 2.

ACCURACY

The accuracy of the computational procedure
described above is expected to be as good or better

Table 1. Comparative Convolution Times for Various N

N 16 24 32 48 64 96 128 192 256

M 192 208 384 416 768 832 1536 1664 3584
K 2 1 2 1 2 1 2 1 1
L 64 128 128 256 256 512 512 1024 2048

Time in seconds

Tstandard 0.2 0.31 0.8 1.25 3.0 5.0 12 20 48
T fast 0.3 0.4 0.6 0.8 1.3 1.8 3.0 3.8 8'.0

Time in milliseconds per unit lag

Tstandard/ M 1.0 1.4 2.0 3.0 3.9 6.0 7.8 12.0 13.3
Tfast/M 1.5 1.9 1.5 1.9 1.6 2.1 1.9 2.2 2.2

232 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Table 2. Speed Factors for Various N

N 16 24 32 48 64 96
Speed factor i .a. .i 1.5 2.3 2.8 4 3

* Estimated values.

than that obtainable by summing products. Specific
investigations of the accuracy of the program used
to accumulate the data of Tables 1 and 2 are in
process at the time of this writing. The above ex­
pectations are fostered by accuracy measurements
made for floating-point data on the Cooley-Tukey
procedure and a standard Fourier procedure. Since
the standard Fourier procedure computes summed
products, its accuracy characteristics are similar to
those of a standard convolution which also com­
putes summed products. Cases involving functions
of period 64 and 256 were measured and it was dis­
covered that two Cooley-Tukey transforms in cas­
cade produced respectively as much, and half as
much, error as a single standard Fourier transform.
This data implies that the procedures disclosed here
may yield more accurate results than standard
methods with increasing relative accuracy for
larger N.

APPLICATIONS

Today the major applications for the computa­
tion of lagged products are digital signal processing
and spectral analysis.

Digital signal processing, or digital filtering as it
is sometimes called, is often accomplished through
the use of suitable difference equation techniques.
For difference equations characterized by only a few
parameters., computations may be performed in
times short compared to those required for a stand­
ard lagged product or the method described here.
However, in some cases, ·the desired filter char­
acteristics are too complex to permit realization by
a sufficiently simple difference equation. The most
notable cases are those requiring high frequency
selectivity coupled with short-duration impulse
response and those in which the impulse response is
found through physical measurements. In these
situations it is desirable to employ the techniques
described here either alone or cascaded with dif­
ference equation filters.

The standard methods for performing spectral
analysis 2 involves the computation of l~gged prod­
ucts of the form

N-j-l

F(j) = L x(.()y(J + j) (15)
}=o

128 192 256 512 1024 2048 4096
4.0 5.2 6 13* 24* 44* 80*

which, in turn, after weighting by so-callc!d spe:ctral
windows are Fourier transformed into power spec­
trum estimates. Speed advantages can be gained
when Eq. (15) is evaluated in a manner similar to
that outlined above (under "Aperiodic Convolu­
tion") except that in this case L is only required to
exceed N + 0 where 0 is the number of lags to be
considered. This relaxed requirement on L is pos­
sible because it is not necessary to avoid the effect
of performing the lags circularly for all L lags but
rather for only 0 of them. An additional constraint
is that 0 be larger than a multiple of log2 L. The
usual practice is to evaluate Eq. (15) for a number of
lags equal to a substantial fraction of N. Since! the
typical situation involves values of N in the hun­
dreds and thousands, the associated savings may be
appreciable for this application.

Digital spatial filtering is becoming an increas­
ingly important subject.3

•
4 The principles discussed

here are easily extended to the computation of
lagged products across two or more dimensions.
Time savings depend on the total number of data
points contained within the entire data space in
question, and they depend on this number in a
manner similar to that characterizing the one­
dimension case.

ACKNOWLEDGMENTS

The author is indebted to Charles M. Radc;:r of
the MIT Lincoln Laboratory for his ideas concern­
ing the Cooley-Tukey algorithm and to Alan V.
Oppenheim of the Electrical Engineering Depart­
ment, MIT, for suggesting that high-speed convolu­
tions might be realized through the utHization of
that algorithm. During the preparation of this work
the author became aware of the related independent
efforts of Howard D. Helms, Bell Telephone Lab­
oratories, and Gordon Sande, Jr., Princeton Uni­
versity.

REFERENCES

1. J. W. Cooley and J. W. Tukey , "An Algorithm
for the Machine Calculation of Complc;:x Fourier
Series," Mathematics of Computation, vol. 19, no.
90, pp. 297-301, (Apr. 1965).

HIGH-SPEED CONVOLUTION AND CORRELATION 233

2. R. B. Blackman and J. W. Tukey, The Meas­
urement of Power Spectra, Dover Publications, New
York, 1959; also Bell System Technical Journal,
Jan. and Mar. 1958.

3. T. S. Huang and o. J. Tretiak, "Research in
Picture Processing," Optical and Electro-Optical

Information Processing, J. Tippett et ai, eds., MIT
Press, Cambridge, Mass., 19.65, Chap. 3.

4. T. S. Huang, "PCM Picture Transmission,"
IEEE Spectrum, vol. 2, no. 12, pp. 57-63 (Dec.
1965).

A COMPUTER PROGRAM TO TRANSLATE
MACHINE LANGUAGE INTO FORTRAN

William A. Sassaman
TR W Systems, Inc.

Redondo B'each, California

This paper describes a computer program which
translates machine language into FORTRAN. The
program was developed at TRW, Inc., to aid in the
conversion process from our existing equipment to a
third generation computer. The translator was
written to be a real help to people personally in­
volved in conversion, and is intended to be an op­
erational program rather than a pure research
project.

As the title of this paper indicates, the output
language is FO R TRAN . Since the translator de­
sign is not very dependent upon output language,
this appears to be arbitrary. FORTRAN was
chosen since it is a standard. It is well defined and
runs on both our second and third generation com­
puters. It has deficiencies but they are known. It
was desired to' go to a problem-oriented language
to increase future human productivity and therefore
machine language output was not encouraged. In
addition, compiler writers expand considerable ef­
fort to obtain efficient machine language codes and
duplicating this effort appears a waste. Anyone who
really wants machine language can get it as a by­
product of the FORTRAN compilation and hand­
massage it to any degree of perfection he desires.
If the problem is so complex that no FORTRAN
translation is possible, then a completely human
effort appears in order.

The input is symbolic assembly language for the
IBM 7000 series computer operating under a pri-

235

vately developed execution supervisor. The sym­
bolic media was chosen over the binary machine
language since the symbolic cards make it easier to
distinguish between the various types of data, allow
macro identification and contain otherwise useful
information. Since continuity of usage is expected
between the original and translated versions of the
program, it appears highly desirable to maintain
much of the symbolic notation.

In my original thinking of the translational proc­
ess, I was impressed with the concept that actual
translation was, in general, a clerical process rather
than an inventive one. That is, the programmer fol­
lowing the assembly listing figures out from it (and
any documentation) what the original programmer
was doing and codes this in the appropriate lan­
guage for the new machine. Although often it is
necessary to have a knowledge of the problem being
solved, much of the time the translating program­
mer operates as a clerical symbol manipulator. It
is true that the rules for the symbol manipulation
are complex, but the task is basically clerical and
therefore subject to automation. In the translator
I have tried to assign these simple clerical tasks to
the machine and allow the human more time to per­
form in the areas where he can contribute the most.

From a technical viewpoint, it is probably im­
possible to write a program which will translate all
of one computer program into a similarly efficient
program for a second computer. However, as with

236 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

many mathematical processes, it is feasible to ap­
proach the solution as a limit, such that a maximum
automated transfer of source programs may be ef­
fected with minimal cost and human intervention.
The task of writing a translation program has as its
major obstacles the definition of the rules for trans­
lation. It would seem unlikely that anyone could a
priori define all the rules. Therefore a learning ap­
proach has been defined to allow the development
of the model as experience is gained in translation.

I did not try to design for a 100% translation.
Input/output, functions, subroutines, standard­

ized routines, etc., need not be translated. Further
the conversion effort is not by nature one that may
be completely automated. During the process of
converting a program, decisions are made as to the
plan of attack during conversion, i.e., the human
programmer, who has cognizance of the physical
problem being solved and the capabilities and short­
comings of the program, decides which areas are to
be rewritten, which areas are to be deleted, which
areas will be replaced by system subroutines or
standardized routines, and finally the remainder is
to be translated (or transliterated if you wish). It
is rather apparent that these decisions are probably
not the sort to be made by the computer. Further,
the rewriting or regrouping of computations must
also be performed by humans. The remaining area,
translation, is a potential area for automation. Of
course, I try to do a good job' in that which is trans­
lated; however, the law of diminishing returns dic­
tates that the translational rules limit one to about
90% of the code.

Further, I concluded that the source machine lan­
guage program contains a great deal of information
and the translator, retrieving and organizing this
information could perform a very valuable service

. in documentation as well as· aiding the conversion
effort.

The translator during translation attempts to op­
erate as the human does. The. programmer in trans­
lation recognizes in coding not only the individual
instructions but also, and more specifically, prob­
lem-oriented functions, which may be one or more
machine language instructions. It is the purpose of
the translator then to recognize these functions with
their terminals as well as to gather and organize the
program information pertaining to the translational
rules. The functions are gathered into statements
as appropriate before output.

Many of these functions are easily recognizable in
the machine language code. A simple example of
machine language instructions which are easily

recognizable as functions are arithmetk codes.
These may easily be built up into larger statements.
One of these arithmetic statements consists of a
string of functions appropriately connectl!d. The
translator inserts a right parenthesis prior to each
multiplication or division, and a left parenthesis
following each square root or other function. A
similar left or right parenthesis must be entered at
the start of the statement. The statement is nor­
mally terminated by a store instruction. The ad­
dress of this store instruction is obviously the left
side of the FORTRAN statement and followed by
an equal sign. The method of translating addresses
illustrates the buildup of rules for translation. Con­
sider the coding:

l.) CLA A
2.) AXT 10,4
3.) 0 FAD A + 1
4.) FOP B,4
5.) STQ C + 10,4
6.) TIX 0,4,1

The first A is obviously translated as A. Since A
A (1), A + 1 must be translated as A (2). Instruc­
tions three through six are translated as a DO 1000p
using the dummy variable NO X 4. Since it is
subject to index register modification and has no ad­
ditive address, the B is assumed to be a vector run­
ning backwards in storage and is translated as a [.or­
ward running FORTRAN array B (NO X 4). The
C is assumed to be forward running and is trans­
lated as C (NO X 4 + 10 - 10), where the tc!ns
cancel out leaving C (10). Obviously the 0 is trans­
lated as a FORTRAN numeric statement number.
Functions may be more complex and require more
complex rules for translation. A good example of
these are the programmer tricks of using instruc­
tions for something the manufacturer never in­
tended; for the IBM 7000 series, a PXO 0, 0 will
clear the accumulator; a LRS of zero will impose
the sign of the accumulator into the ~Q, etc. Such
translation is analogous to the handling OIf idiOims
and slang in human language outside of a word for
word grammatical translation.

The last bit of philosophy in the design of the
translator is the target. The programs to be con­
verted are engineering applications involving alge­
braic algorithms. These algorithms are easily de­
fined and form the basis of the translator rule set.

As a result of these thoughts, the translator was
designed to intimately interface with and operate
under the supervision of the human us(~r. The
human describes the rules for the particular pro-

A COMPUTER PROGRAM TO TRANSLATE MACHINE LANGUAGE INTO FORTRAN 237

gram involved via control cards, defines areas to be
translated and criteria for recognition of areas of
coding to be translated as FORTRAN subroutines.
Operating with these rules and the basic set, the
computer then performs any initial translation.
This initial attempt normally tells the user what
tasks cannot be handled in FO R TRAN, indicates
the need for additional rules such that the translator
will give a better translation. The deck is then re­
submitted to the computer. The human examines
the computer output and either edits it to achieve
the desired code or redefines the rules or control
cards and translates over again. This learning proc­
ess and human interface dictates the need for a
system to afford maximum convenience and ease of
communication to the user. Although this would
appear to be an ideal on-line application, the sched­
ule, hardware and manpower available dictated the
utilization of a typical centralized large-scale com­
puter.

OPERATION

The translator's functions are to retrieve informa­
tion from the source deck, organize this informa­
tion, merge it with other data, apply the rules for
translation and provide interfaces with the human
during the process. This is not done on-line, al­
though the nature of the problem indicates an on­
line solution might enhance the process. In order
to accomplish these functions, the translator is de­
signed in six separate (and recoverable) phases.
The main task of each of these phases is:

Phase I Separate the program into log-
ical groups.

Phase II Handle parameters - data
types, dimensions, COM-
MON, initial values.

Phase III Core map of symbol alloca-
tion and overlay.

Phase IV Translation of macros.
Phase V Translation into FORTRAN,

routine by routine.
Phase VI Editing and merging.

Although these are the main functions, the phases
have additional tasks because of convenience of
execution. In order to explain the process, I will go
through it phase by phase, explaining what is done
and where the information comes from.

Phase I is the initial phase whose primary task is
to divide the program into logical groups of man-

ageable size. The input to the translator is the
source symbolic card deck, or a tape containing the
card images. The input is read, basically a card at a
time, and broken into the following categories.

• Areas to be treated as FO R TRAN sub-
routines (tape)

• Data and parameters (tape)
• Symbolic equivalence (core/cards)
• Macro skeletons (tape)

In order to make these distinctions, the translator
must know the algorithms for separation. The
BEG IN pseudo operation is recognized as the start
of a routine and the terminus of a previous routine.
Origin and transfer cards are assumed to signal the
end of a routine. Decimal, octal and Hollerith data
are presumed to be in the data domain unless they
appear to be in a routine and do not have a sym­
bolic location assigned to them. The programmer
is allowed to enter control cards in the data stream
to allow the programmer to label name COMMON
in the output stream. Each card included in a sub­
routine area is assigned a FORTRAN location
number.

In order to build up an initial table of floating
point (real) symbols, the address of each floating
point instruction is saved as well as the address of a
loading instruction immediately before it or a stor­
ing instruction immediately following it. Each sym­
bolic name is saved, in sequence, with all origin,
intermediate transfer cards and the final end card.
The address of the first intermediate transfer card
(if none, the address of the end card) is saved as the
point at which computation will be initiated.

Phase II is designed to handle data and param­
eters. The list of floating point symbols generated in
Phase I is organized and checked for redundancy.
The translator then reads the data and parameter
tape and compares the parameter symbolic name to
the built up symbol table equivalences. The symbol
is then checked to see whether it is an allowable
FORTRAN symbol (alphanumeric, initiated, by a
letter), what the type is, and what the dimension is.
The translator tries to define a new symbolic refer­
ence for illegal symbols, expands the symbol table of
equivalences and builds up a table of real and
integer symbols not conforming to the FORTRAN
rules. Every attempt is made to keep the original
symbol as it is assumed to be mnemonic. From the
contents of the data card. image, a data statement is
generated if initial values are assigned to the pa­
rameter. The name and dimension are included in
the name COMMON block as assigned by the

238 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

translator or the programmer if he has such input
information. Upon termination of a name COM­
MON block, the card images are saved on an inter­
mediate tape with the images of the type statements.

Upon processing all datq cards, the translator
calls the computation, using:the address of the end
card (or first intermediate transfer card). A listing is
then made of all parameters with their original
symbolic name, the corrected name, if any, and the
comments from the data card.

Phase III (storage allocation core map and over­
lay structure). The program reads the tape con­
taining the above information, compares it to the
equivalence table and breaks it ino n strings. These
strings are then printed in n columns with origins
matched on the vertical scale.

Phase IV (macro translation). Macros are cur­
rently translated as functions, if they can be, or are
ignored. Details of translation are similar to the
translation of subroutines.

Phase V (translation into FORTRAN subrou­
tines). This is what most people consider the heart
of translation. The card images of the area to be
converted an! read into core from the tape storage.
Each card is assigned a sequential external formula
number. Those which are not used will be sup­
pressed at output time. An initial pass is made to
find the address of all transfer instructions and to
save the concomitant FORTRAN numeric loca­
tion. Locations which are transfers, or transferred
to, are appropriately flagged. New numeric loca­
tions are assigned for undefined transfer addresses.
Special flags are set for the addresses of TIX instruc­
tions, TXI and TXH (under: certain circumstances
index loading instructions, address modification,
etc.).

The actual translation is now begun. The transla­
tor is broken into two alternate paths here: the first
being a search for instructions or functions that
initialize a statement (a statement being merely a
string of appropriately connected functions); the
second being a search for functions that sustain or
terminate a statement. In general, the translator
scans the coding until it recognizes the start of a
statement; then it switches to the terminal branch
where it builds up the function into a statement
until some terminating condition is reached. If on
the initial scan, a sustaining type instruction were
encountered, the translator initiates an appropriate
function to start things off and transfers to the
terminal branch. Similarly if in the terminal branch
the translator finds an initiating statement, it sup­
plies a terminal function to complete the statement.

being processed, tries to search out particular pro­
grammer tricks since something "different" is hap­
pening, and then transfers to the initial branch.
Loading, storing and transfer instructions, and in­
structions which are transferred to, are samples of
what are considered to start or end a s1tateml~nt.

CALL type instruction (TSX) are considered to
start or end a previous statement and start a new
one unless the translator can determine that they are
replaceable by a built-in arithmetic function or
other- functions, in which case the function is in­
cluded in the statement being processed and the
translator continues on the terminal branch. Ar­
bitrarily terminated or initiated statements are
stored in or picked up from "dummy" accumulaltor,
MQ, registers, etc.

The translator on either branch attempts to
search out TIX loops, where a register is counted
down from n to 1 or TXI loops where a register is
incremented from 0 to n and translates as DO
loops nested to a level of 7; if all 7 index registers
are used and the index registers are not saved in­
ternally. A DO statement is inserted just prior to
initiation of the loop. The loop is terminated by a
dummy CONTINUE. The pseudo symbol NOXA
is used to represent index register A. The algo­
rithm for conversion of parameter addresses while
in a TIX loop deducts the initial value of the index
register from any associated address. Note: there is
a difference in the assignment of vectors in ma­
chine language programs and FO R TRAN, each
considering the other backward. The algorithm
attempts to cover the difference.

As previously mentioned, the easiest instructions
to translate are the arithmetic instructions where
each operation and address is added to the right­
hand end of the statement being generate:d. For
multiplication and division a pair of parentheses
must be added, one at each end before the operator
and operand are saved. For functions, a simHar
pair of parentheses must be added except of course,
the functions appear on the left, before the initial
parenthesis. A storing type instruction adds an
equal sign on the left and the address of the operand
to the left of that. Translated output statements
are built up in a table, word by word, until a
terminating condition is reached. The statement is
compacted by reducing spurious blanks, continua­
tion numbers are assigned if more than one card
image is required; and the images are written on a
blocked output tape with an alter number for each
card image. If it has been referenced, th,e FOR­
TRAN numeric location is also written out on the

A COMPUTER PROGRAM TO TRANSLATE MACHINE LANGUAGE INTO FORTRAN 239

first card image. At this point an almost side by side
listing of the original coding and the translated
code are printed for the user.

By actually scanning, ins~ruction by instruction,
while the whole subroutine is in core, the translator
can look for particular sequences of coding which
represent a special case. Much of the detail coding
to effect these rules is lengthy and tends to be repeti­
tive so that many subroutines are used in the areas
of duplication. The coding of the translator is all
very straightforward, and often tedious.

Phase VI allows the user to edit the translator
output from the previous phases which consisted of
an almost side by side listing of the original and
translated coding. Also used is the tape which con­
tains all of the previous translation including the
alter numbers. It is the purpose of Phase VI to al­
low the editing of this tape by use of the alter num­
bers and to produce a new tape and/or a new listing
and/or a punched card deck. The editing is per­
formed by a series of control cards which allow the
user to add or delete cards from the tape or to juggle
large blocks from one place on the tape to another,
without actually shuffling through the cards.

To maximize usefulness, the output tape may be
fed into the FORTRAN compiler at this time with­
out the submittal of a separate run or punching
the cards.

USER INPUTS

The recipe for elephant stew traditionally starts
with "clean one freshly killed elephant." Similarly
the user's input starts with the program to be trans­
lated. This may be in the form of symbolic source
cards or blocked card images on a tape. In gen­
eral, the areas for which translation is not desired
are deleted from the deck. This deck is preceded
by a control card that tells the translator whether
this is a SMASHT, SCAT or IBMAP deck and

whether cards or tape is expected. A number of
EQU cards may be input by the user to assign
names to illegal symbols, rather than accept the
translator's naming. REAL and FIXED define
the type of data these operations refer to when the
translator has insufficient information to arrive at
the appropriate conclusion. Control cards define
the subroutines of function calling sequences for
translating the TSX address. The rules for separa­
tion of areas into subroutines may be defined either
by special coding in the translator or insertion of
dummy control cards. Special algorithms for
translational rules are coded into the translator at
this time. The run is now ready for submittal.

Upon return of the run, the data previously fur­
nished may be modified and the appropriate proc­
esses repeated or the user may desire to continue
into the editing phase and obtain an output deck.

SAMPLE TRANSLATION

Translation is such a complex functiDn that no
all-encompassing sample is feasible in such a short
period of time.

CONCLUSION AND SUMMARY

The translator described here is not a perfect tool
- it does not translate everything nor" is everything
it translates perfect. It does not handle dynamic
programming, i.e., where coding is actually charged,
nor does it handle indirect addressing. Patently it
does not translate into FORTRAN those things
FORTRAN cannot do. Complex and double pre­
cision arithmetic are not attempted. It is designed
to relieve the programmer of much of the clerical
task of translation and to allow the user input into
the translational process and absolute control of the
final output. For those applications we have used it
for, it has performed rapidly and effectively.

TECHNIQUES AND ADVANTAGES OF' USING
THE FORMAL COMPILER WRITING SYSTEM FSL

TO IMPLEMENT A FORMULA ALGOL COMPILER*

Renato Iturriaga, Thomas A. Standish, Rudolph A. Krutar
and Jackson C. Earley

Carnegie Institute of Technology
Pittsburgh, Pennsylvania

INTRODUCTION

Implementing a compiler, as everybody knows, is
not an easy task. There have appeared in the past
few years a number of compiler writing systems.1

-
3

One of these is Feldman's "Formal Semantic Lan­
guage" (FSL}.4,5 In Feldman's thesis the assertion
is made that FSL is potentially a powerful compiler
writing system. The Formula Algol compiler6 is a
large, nontrivial compiler incorporating several new
language features, and the use of FSL to implement
it constitutes the first significant test of the power
of FSL. We find Feldman's assertion is justified,
and the ideas he set forth in theory have been found
to be successful in practice.

Some of the more important advantages of FSL
that we have found are as follows.

First, the amount of time and programming effort
required to implement a compiler such as the
Formula Algol compiler is reasonably small (on the
order of a man-year).

*The research reported here was supported by the Advanced
Research Projects Agency of the Department of Defense under
Contract SD-146 to the Carnegie Institute of Technology.
R. Iturriaga is partially supported by the National University of
Mexico and the Instituto Nacional de la Investigacion Cientifica.
T. A. Standish is a National Science Foundation graduate
fellow.

241

Second, because FSL is a high-level language in­
corporating certain power of expression, the task of
describing compiling processes is sufficiently man­
ageable and easy that experimental flexibility is
achieved. By this we mean that we were able to
experiment with a variety of organizations of parts
of the compiler in order to select those with desired
properties. In particular, we were able to experi­
ment with the syntax of Formula Algol without
appreciably changing its semantics. We could also
change its semantics without appreciably changing
the syntax. Thus we were able to use FSL as a tool
to improve the source language and at the same time
to improve its implementation by finding the best
compilation techniques. In contrast to the case of a
hand coded compiler, we were not forced to make
any organIzational commitments which were of pro­
hibitive expense to change. This is the essential
reason underlying the property of flexibility, and
flexibility makes FSL a good tool for a program­
ming language designer.

A third feature of using FSL to write a compiler
is that it is a rare counterexample to the familiar
tradeoff between efficiency and generality. The use
of the Floyd-Evans production language 7,8 permits
one to write an efficient syntax analyzer with
sophisticated error recovery, and a compiler written
in FSL not only is reasonably efficient but if written

242 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

properly can produce efficient object code. For ex­
ample, the Formula Algol compiler produces for
some classes of expressions more efficient code than
the current handwritten Algol compiler in use at
Carnegie Tech.

A fourth feature of FSL is, that it is a language
sufficiently general to allow several of the better­
known useful compiling techniques to be expressed
and utilized. For example, THUNKS9 were used to
implement parameter calls In procedures, dope
vectors 10 were used to implement array storage and
accessing, and the use of symbol table techniques
was made easy by the fact that tables are primitive
in the language. The reason; for this generality is
that FSL contains a powerful set of primitives that
permit a user to express a large variety of compiling
mechanisms directly by combination of these primi­
tives. This feature also permitted us to invent sev­
eral new variations on known 'compiling techniques
which were well adapted to the problem at hand.

A fifth property for which, at present, we can
produce no real evidence attes~ing to its usefulness,
is that a compiler written in FSL is given a formal
description. This means that in contrast to hand­
written compilers we are provided with a framework
in which we can begin to approach the problems of
proving that compilers recognize given source lan­
guages correctly or that they compile correct code.
In the case of handwritten compilers these questions
are unthinkable. As an example of the kind of ap­
proach that can be made once. a formal description
is given we cite a doctoral thesis by Evans, II in
which certain properties of the production language
are proven.

Finally, the activity~ of implementing Formula
Algol had a feedback effect on the design and im­
plementation of FSL itself.12 Modifications were
made easy by the fact that FSL is in effect compiled
in itself and thus possesses the ~ame organization as
the compilers it produces. For example, an accumu­
lator symbol was introduced as a variable to allow
the user to deal formally with the use of the accumu­
lator. This represents a small change in the original
philosophy of FSL, which waS designed with ma­
chine indeperidence in mind. It is, however, a small
change with far-reaching consequences.

With the exception of the property of the useful­
ness of formal descriptions of compilers, we will
present later in this paper concrete evidence sup­
porting each of the claims we have made in this
introduction. Our first task, however, is to explain
briefly the operation of the compiler writing system.

A BRIEF EXPLANATION OF
THE COMPILER WRITING SYSTEM

The compiler writing system uses two formal
languages to describe a compiler. First, a syntax
analyzer for the source language is written as a pro­
gram in the production language. This program is
processed by a translator called the production
loader producing as output a set of driving tables
which are stored for later use. Second, a collection
of semantic routines is defined by writing a program
in the formal semantic language. Another translator
called the semantic loader then translates this collec­
tion of routines into a set of tables and a block tDf
code, which code is compiled for use as a part of the
compiler itself. This output is also intermediate and
is stored for later use.

The compiler itself (Fig. 1) is another program
which reads in both the syntax tables and the
semantic tables and code, and by using thesl~ trans­
lates a source language program into an objt!ct pro­
gram. For the sake of efficiency a preliminary
lexical transformation is performed on source lan­
guage text as it is read in by a routine called the
subscan. This routine recognizes the primary units
of the language which are operators, fI~served

words, identifiers, and constants. These primary
units of the source language are not fixed by the
system but are declared in the production languagc~.
The subscan is a closed routine called by statements
in the production language. Each time it is called it
returns with the next primary unit in the source
language string. As each identifier is recognized by
the subscan its print name is stored in a table unless
it has been entered previously, and an integ,er rep­
resenting its relative address in the table of print
names is transmitted. This integer functions from
that time on as the internal name of the identifier.
Abbreviations of reserved words and of opc~rators
are transmitted directly, and constants whil:!h arle
too long to transmit directly are saved in at tabl.~

and their locations are transmitted instead.
The fundamental mechanism in the compiler is a

push-down stack of ordered pairs (a, fJ) where a is,
a primitive syntax unit and where fJ holds semantic;
information and is called the "description of a."
Syntactic analysis of the source language proceeds
by a sequence of manipulations of this stack.. Tht!
production language is used to define these manipu ..
lations and it consists of a sequence of productions
of the following form:

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 243

PRODUCTIONS DIFINING

SYNTAX ANALYZER OF

SOURCE lANGUAGE

PROCESSED BY

PRODUCTION

LOADER

SYNTAX

TAILES

~OURCE LANGUAGE INPUT)

(SU8SCAN

COMPILER

EXECUTIVE

THIS lOX IS

THI COMPILER.

... ", ____ J

SEMANTIC

SEMANTIC ROUTINES

WRITTEN IN 'SL. DIFINING

SEMANTICS O.

TAlLES

AND

I-----------t-. COMPILED

PROCESSED BY

SEMANTIC

LOAD.II
SOURCE LANGUAGE

(OIJECT PIOGRAM INPUT

~

CODE

.OR

COMPILE

TIME

ROUTINES

I
I~---___ --~------.--\-(OBJECT CODE OUTPUT)

O~~:CCTUT;::G::M I
LOADED IEFORE

• OIJECT PROGRAM

(OlnCT PROGRAM OUTPUT 15 EXECUTED

RUN TIME

ROUTINES 'OR

SOURC, LANGUAGE

Figure 1. Flow of systems.

LABEL L5 L4 L3 L2 L I I -- R3 R2 R I
I ACTION *LINK

where the appearance of everything except L I and
the two vertical bars is optional. Each production
tests for the presence of a particular configuration
among the topmost syntactic units in the stack by
attempting to match the pattern given by L5 L4 L3
L2 LI against them. If a match. is found and if
-- R3 R2 RI occurs in the production then the
configuration matching L5 L4 L3 L2 L I is trans­
formed into the configuration represented by R3
R2 Rl. Then the ACTION is executed. If -- R3
R2 R 1 is absent and a match is found then the
ACTION is executed and no transformation is per­
formed. The only three actions we will discuss in

this paper are the actions EXEC, SUBR, and RE­
TURN. The actions SUBR and RETURN will be
explained later. The action EXEC N, with param­
eter N, is a call to the semantic routine numbered N.
This semantic routine may, among other things,
alter the descriptions of the syntactic units involved
in the stack transformation described by the pro­
duction. For example, the description of an identi­
fier may consist of the address of the run time loca­
tion assigned to the variable that identifier repre­
sents. The description may also bear type bits tell­
ing the type of the variable (e.g., real, integer,
formula}. After the action is executed the link is
examined to see ifit is prefixed by a *. If it is then
the subscan is called" and the next primary syntactic
unit in the source language string is recognized and

244 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

placed on top of the stack .. Then control passes to
the production whose label is given by the link. If
a * does not precede the link then subscan is not
called and control changes as in the previous case.
In the event that the pattern L5 L4 L3 L2 Ll did
not match the configuration of syntactic units at the
top of the stack control passes to the next produc­
tion in sequence. Also if the link is blank the action
on the next line is executed and this process repeats
until a nonblank link is found.

A sequence of productions may be organized into,
a closed subroutine by use of the actions SUBR and
RETURN. The first production in such a sequence
must be labeled and its label, say L, is the name of
the closed subroutine. To call the closed subroutine
starting at label L we execute the action SUBR L.
When we wish to return from the subroutine we
execute the action RETURN and control returns to
the link of the production that called the subroutine
originally. The control mechanism contains a push­
down stack permitting recursive calls on the closed
subroutines.

The general structure of the syntax analyzer for
Formula Algol is as follows. The major units of the
source language, such as statements and expres­
sions, correspond directly to subroutines in the pro­
duction language, which s~broutines analyze the
given major units. For example, there is a produc­
tion subroutine called the "statement scanner,"
which is called every time a statement is expected in
the source language. There is also a production
subroutine called the "expression scanner," which
processes expressions of all types and which is called
every time an expression is expected in the source
language. The statement scanner may call the ex­
pression scanner and, in fact, corresponding to the
occurrence in the source language of statements
which contain other statements as parts, the state­
ment scanner may call itself. The flow of control
through the syntax analyzer is governed by the
structure of the source language program being
analyzed. It is roughly true. that the structure of
such large production subroutines as the statement
scanner and the expression scanner is the following.
Upon entrance to the subroutine the first few char­
acters of an expected source language construction
are subjected to a sequence of tests which separate
the various possible classes of constructions that
may be encountered into cases. Corresponding to
each case a transfer is made to a part of the routine
which treats that case specially. This basic scheme
of organization was first introduced by Evans in the
writing of the Carnegie Tech: Algol compiler8 and

the structure of the syntax analyzer for the Formula
Algol compiler is basically an extension of ilt.

Because the flow of control in the syntax analyzer
is directed by the constructions· encountered in the
source language it will be possible to use the follow­
ing technique to explain various mechanisms found
in the compiler. We will focus our attention on a
critical subset of productions responsible for plroC­
essing a given type of construction. This critical sub­
system will always be embedded in a larger context
but- since the flow of control will never involve that
contex,t we may isolate the critical subsystem for
study. This subsystem will involve calls on a set of
semantic routines, and these semantic routines will
be solely responsible for the compilation corre­
sponding to the constructions which the critical sub­
system processes.

An explanation of the primitives in the formal
semantic language is given in Refs. 4 and 5. A com­
plete summary of those primitives is not given in
this paper, but the subset of primitives used below
are accompanied by explanations in order to make
the treatment self-contained.

A DETAILED EXAMPLE

Let us consider an example of the compilation of
the assignment statement X +- A + B xC;. As
we begin to process this statement control in the
productions will be transferred to the statement
scanner at label Sl where at entrance to the: scanner
the first character X has been recognized by the
subscan and has been stacked as a syntactic unitt I
on top of the push-down stack. Furthermore, sub­
scan sets the description of I to be the integer which
is the relative address of its print name. The critical
productions in the ~tatement scanner which tr,eat
this case are as follows:

SI

S2 I
I

I

+- --
*S2

E +-+- I EXEC 19 *El
I EXEC 91 *Sl

The first production at S 1 matches all statements
which start with an identifier, and control is trans­
ferred to S2 after scanning the next character. At S2
a discrimination is performed on the second char­
acter and in the case of assignment statements the
initial identifier I is changed to an E and control is
transferred to EXEC 9 where a look-up in the sym­
bol table is performed using the integer in the

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 245

description of I. This causes the retrieval of the
location of the variable X which was assigned pre­
viously and stored in the symbol table while process­
ing the declaration of X. It is conceivable that X
was not declared and thus not stored in the symbol
table. The table look-up procedure sets a signal in
the event that it fails to locate an object during a
table look-up and a test on this signal enables us to
write a semantic error exit corresponding to the
case where a variable is used but not declared in a
source language program. Upon finding the entry
corresponding to X in the symbol table the run time
location of X, and its type (real, formula, etc.) are
retrieved and the description of E in the stack is set
to contain the run-time address, the type bits, and
a bit to denote that the location rather than the
value of X is desired. This description will be car­
ried along as the associate of E until code is com­
piled to perform the assignment. Thus the FSL
code for EXEC 9 looks as follows:

9 i MARKJUMP [FIND];

"FIND"

SIGNAL --
RIGHT2.- KEY + MODEO

+ TYPE + RELOC:
FAULT 9 $ i

KEY .- SYMBOL [LEFT2 , $,
TYPE.- SYMBOL [0 , , $,]
RELOC .- SYMBOL [0, , ,$] ;
JUMP[< FIND>]

Upon entrance to EXEC 9 we execute a mark
transfer to a closed subroutine called FIND which
performs the symbol table look-up using the integer
given in the description in the LEFT 2 entry (same
as L2 position defined above) in the push-down
stack. LEFT2 is a variable whose value is this
description. It is used in the statement KEY
.- SYMBOL [LEFT2, $, ,] to locate the entry
in the symbol table named SYMBOL which begins
with the integer given by the value of LEFT2. Each
line in the symbol table is of the form [integer, loca­
tion, type, relocation base]. The relative position of
the dollar sign $ among the commas indicates which
of the entries in the located line we wish to extract.
Hence the statement KEY .- SYMBOL [LEFT2,
$, ,] extracts the location assigned to the variable
whose internal integer is the value of LEFT2, and
assigns this location to be the value of the variable
KEY. If a zero occurs in place of LEFT2, as in the
statement TYPE.- SYMBOL [0 , , $,] , the
extraction defined uses the line previously selected

saving the cost of an additional identical look-up.
Thus for our example the routine FIND simply
sets the KEY to the location of X, TYPE to the type
of X, and RELOC to the relocation base of X (the
relocation base is used to implement recursion and
is too complicated to explain here). The statement
JUMP [< FIND >] is a return to a mark transfer
call. Returning now to the consideration of EXEC 9
we assume we have executed a mark transfer to
FIND and have returned with either the signal set
false to denote that the table look-up was a failure,
or the signal set true and the variables KEY, TYPE,
and RELOC set with the extracted values. The
statement SIGNAL -- RIGHT2.- KEY
+ MODEO + TYPE + RELOC : FAULT 9 $ is
equivalent to the Algol statement if SIGNAL
= TRUE then RIGHT2.- KEY V MODEO
v TYPE V RELOC else PRINT ('SEMANTIC
FAULT 9') where MODEO is a variable containing
a bit denoting that a location rather than a value
will be used. Executing this statement causes the
logical union of the values of the variables to be
stored as the description of the element in the R2
position of the stack in the event that the signal
was true, and it causes a semantic fault to be printed
otherwise.

At this point in the consideration of our example,
control is returned from EXEC 9 back to the pro­
duction that called it. This in turn causes another
character to be scanned and control to be trans- .
ferred to E 1 which is the beginning of the expression
scanner. The expression scanner contains two main
parts, one starting at E 1 which expects an operand,
as would be the case, for instance, at the beginning
of an expression, and the other starting at E2 which
expects an operator or separator. Thus upon trans­
ferring control to El we will find the following set
of productions:

El I E EXEC 7 *E2

E2 <OP> SUBRCOM *El

At El the first production matches and control is
transferred to EXEC 7 with the syntax units in the
stack looking like E -- E I . EXEC 7 is roughly the
same as EXEC 9 the main difference being that the
description of the E in the RIGHT 1 position is set
to contain a bit denoting that the value rather than
the location of the variable is desired. So far
X .- A has been scanned and converted to E -- E.
We now scan the operator + and transfer control to
E2 in the productions. The expression < OP >
stands for a class of binary operators including the

246 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE. 1966

ROUTINE FOR COMPilATION E)(E:C U? "OM
COM l I 1 IoIJ8 .J NG (SIl) 1 .. <S6) 1 E)(EC 100

·1 (UN) 1 10136 E)(E:C 12n "0M

·2 . 1 IoIJ6 .4 (SIl) 1 .. <86) 1 E)(EC 10n

.J t 1 10134 E)(EC 121 "0M
+4 NG" 1 10132 +5 (SG) 1 .. <SG) 1 E)(EC 187

+5 1 10130 E)(EC 122 !':OM

+6 1 w30 >12ft (SIl) 1 .. <S6) 1 E)(EC 100 ., 1 10128 E)(EC 123 "0M
+1\ 1 w28 +1 (SIl) 1 .. <Se.;) 1 E)(EC 10n

+9 (RE> 1 H26
+10 1 10124 E)(E(I 124 OOM

+11 1 10122 >130 (SIl) 1 .. <SG) 1 E)(EC: 10n

+12 1 w20 E)(E(: 125 COM

+13 ClSO 1 lolA 1 +1 (SG) I .. <SG) 1 ExEC: 10n

+14 (PN) 1 \.119 E)(EC: 126 "OM
"15 (aT) 1 loll 6 >132 NG· E (SG> 1 .. (5G> 1 E)(EC: 107

H16 (SIl> 1 <SG) E)(EC 112 .. ET E)(EC: 127 COM

+1 (SG) 1 <S6) ExEc 112 H34 (SG) 1 .. <SG) 1 ExEC! 1 0 0
ExEC 113 "0M ExEC: 128 "0M

+2 INSE E I L (SIl> 1 .. <56) E)(EC 63 .. ET >136 SIGN E (SG> 1 .. <SG) 1 E)(EC! 107

+3 Al TE E To (5G) 1 .. <SG) E)(EC 62 IIET E)(EC 129 "OM
+4 I" (SG) 1 .. I .. <9e.;) E)(EC 197 ·1 ENT I E (SG) 1 .. <SCi) 1 E)(EC 107

E)(EC ~n7 IIET E)(EC 130 COM

"5 (SIl) 1 .. <S6) ExEC 19~ +2 ARCT r: (SIl) 1 .. <SG) 1 E)(EC 107
ElIEC :>07 ~ET E)(EC 131 COM

+6 E IS NoT E (SIl) 1 .. <5e.;) E)(EC 1 O~ IIET +3 SORT E (SIl) 1 .. <SG) 1 E)(EC 107

.7 E IS ALSO E (SIl> 1 .. (9G) ExEC 1 n~ IIET ExEC 132 COM

+8 E Is E <SG) 1 .. <SG) E)(EC 176 RET +4 ExP E (SG> 1 .. <BG) 1 E)(EC 107

>119 E INST E (SIl) 1 .. : E <SG) ElIEC 1\5 r.OM ' E)(EC 133 "0M
HAl E eLSa E (SIl> 1 .. : E <SG) ElIEC 77 r.OM +5 L.N (SG) 1 .. <SG) 1 E)(EC 107

+1 ClSO E (SG) 1 .. E <9G) E)(EC AU COM ExEC 134 !':OM
>120 E (SIl) 1 .. , E <5G) E)(EC 105 ·6 CoS E (SG) 1 .. <5G) 1 E)(EC 107

ExEC 114 !':OM E)(EC 13~ ~OM

H22 (SIl> 1 .. <SG) 1 El(EC 105 .7 SIN E (SG) 1 .. <Se.;) 1 E)(EC 107
ExEC 11~ ~OM E)(EC 136 !lOM

>124 (SG) 1 .. ' E <5e.;) EIIEC 116 !lOM .8 ASS E (SG) I .. <SG) 1 ExEC 107

H26 (51l) 1 .. E <SG) ExEC 10n ExEC j37 COM
E)(EC 117 ~OM I ., (SG) 1 .. <Se.;) 1 , E)(EC j07

+1 (SIl> 1 .. E <9G) 1 E)(EC 100 ExEC: 13S !':OM
ExEC US COM

, H~~ L.I <SG) 1 .. <SG) EIIEC 87 r:OM

+2 Nl (5G) 1 .. :E <SG) 1 EIIEC 10n <SG) 1 RETURN

Figure 2. Subroutine COM.

plus sign so the production at E2 matches the + sign
on top of the stack and control is transferred to the
production subroutine labeled COM. This sub­
routine is given in Fig. 2. Notice that the expression
< SG > in the LEFTI posit~on matches any arbi­
trary character.

Subroutine COM is equipped with an operator
precedence comparison mecJtanism for sorting on
the hierarGhies of operators: so that, for example,
in the expression A + B x C, code is compiled to
perform the multiplication first· and the addition
second even though the order in which these opera­
tors are encountered in the syntax stack is the re­
verse. As we enter subroutine COM, production
COM+7 matches and a transfer to H28 occurs.
Nothing matches from H28 until the end, so control
returns to the expression scanner which recognizes
the next two characters and: returns to subroutine
COM with E -- E + Ex I: in the syntax stack.
Then production COM+5 matches the stack, con­
trol passes to production H30, nothing matches
until the end of subroutine COM, control returns
to the expression scanner, two more characters are
recognized, and a final transfer is made back to sub-

routine COM. At this point the configuratilon of the
syntax stack is

E--E+ExE;1

Here the expression < OT > matches the semicolon
on top of the stack at production COM+ 15 and
control passes to production H 16. The firs1t produc­
tion to match the stack is production H30. This
leads to the first instance of object code compilation
in the processing of the statement. All previous
actions up until this point have consisted of post­
ponements. The compilation is accomplished by
transfers to EXEC 100 and to EXEC 125 which
compile code to mUltiply Band C. In the case: of
arithmetic operands CLA B is constructed. In the

MPYC
case of formula operands, code is produced to con-
struct when executed the formula tree x

B/ ,·C

The semantic routines used to accomplish this test
the types of the operands, which types have been
stored in the descriptions assigned by EXEC's 7 and
9, and they compile the appropriate code. At the
completion of this compilation the syntax stack is

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 247

altered to look like E -- E + E; I because the
terminal Ex E has been replaced by a single E as
is seen by inspecting production H30. The semantic
routines also set the description of the topmost
(rightmost) E to contain the type of the expression
and the fact that the code compiled leaves the value
of the expression in the run-time accumulator. Con­
trol now passes back to the beginning of subroutine
COM for another iteration of the process. Sub­
routine COM will be seen to reenter itself iteratively
until the entire expression is consumed, until code
for it has been compiled, and until its external rep­
resentation in the syntax stack has been replaced by
E in the case of pure expressions and nothing in the
case of assignment statements. We are now at the
point where the syntax stack looks like E -- E
+ E; I and where we have reentered COM. On this
pass production COM+ 15 matches and passes con­
trol to H 16 where successive productions fail to
match the syntax stack until production H28, at
which point E + E is compiled by EXEC 100 and
EXEC 123. The compile-time routines responsible
for producing code detect the fact that code has
been compiled leaving the value of the second
operand in the run-time accumulator. Thus the
code compiled is ADD A. Again the semantic
routines analyze the types of LEFT2 and LEFT4
to determine whether code should be compiled to
add numerical expressions or to add formula ex­
pressions. After compiling ADD A the stack con­
figuration is changed to E -- E; I and control
passes back to the beginning of subroutine COM.
On this final trip through subroutine COM pro­
duction H 16 constructs code to perform the assign­
ment of LEFT2 to LEFT4 and subroutine COM is
exited with only the semicolon remaining in the
syntax stack, the assignment statement having been
consumed entirely. In the case of expressions,
rather than assignment statements, an E is left upon
exit in the RIGHT2 position with its semantic
description set to contain its type and the fact that
it resides in the run-time accumulator.

The strategy of subroutine COM comes from a
well~known compilingJechnique for which no claim
to originality is made. Both Floyd and Evans have
used similar techniques in their Algol compilers.

FLEXIBILITY OF THE SYNTAX ANALYZER

We will now present examples showing how we
can experiment with, extend, redesign or improve
the syntax of the source language.

Suppose we want to add a new type of binary
logical operator NOR (equivalent to the Pierce
operator familiar to logicians and electrical en­
gineers) and suppose we choose to denote it by the
pair of characters - v in the source language. Let's

. agree that in the expression - A 1\ B - v C
V D the NOR operator binds less tightly than
;.... ,1\, and v so that fully parenth(!~ized the ex­
pression looks like (((--- A) "B), V

(C v D)). We need to do four things to add this
operator to the source language: 1) we declare the
character pair ~ v to be a primary syntactic unit
for subscan; 2) we expand the definition of the class
of operators < OP> to include :.0;., v so that the pro­
duction labeled E2(above) will detect the presence
of this new operator and will pass control to sub­
routine COM. The last two steps are additions to
subroutine COM itself: 3) we insert the production

- v i HNOR

after production COM+ 12 (cf. Fig. 2); and finally
4) we insert the production

HNOR 'E --- v E < SG > I - E < SG >
I EXECK COM

after production HAl + 1 (cf. Fig. 2). Here EXEC
K must compile code for Boolean expressions using
the NOR operator and it looks as follows:

K ~ TEST[LEFT4, BOOLEAN] 1\ TEST[LEFT2,
BOOLEAN] - CODE (RIGHT2 -- -
(LEFT4 v LEFT2)): FAULT K ~

This is our first example of the use of the code
brackets CODE (. . .) . An expression con­
tained in code brackets describes code to be gen­
erated and inserted into the object program. The
test commands test the descriptions in the LEFT4
and LEFT2 positions to see if they contain bits de­
noting the type BOOLEAN.

From this example we see that we can 1) add op­
erators and choose their hierarchies at will, 2)
change the hierarchy of an operator without chang­
ing the operator itself, 3) by redefining an EXEC
routine, change the meaning of an operator without
changing its syntax, and 4) delete operators at will.
This exemplifies the kind of experimental flexibility
available to users of the FSL system.

The organization of the compiler is such that
other kinds of additions, deletions and alterations
may be performed in the syntax analyzer with ease.
For example we may add a new type of variable by
adding its declarator to various lists, by inserting a

248 PROCE~DINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

production in the production subroutine that
processes declarations, and by inserting tests and
consequent compiling actions; in the semantic rou­
tines which are called corresPQnding to expressions
and statements using the new ~ype of variable. It is
also easy to add new types of statements to the state­
ment scanner and to add new types of expressions
to the expression scanner. The implementation of
the list processing part of the Formula Algol lan­
guage demonstrated to us the ease with which it was
possible to extend the compiler. Unfortunately,
space precludes an adequate description of this ex-
tension. .

As a last example of a notational change we con­
sider the evolution of the notation for formula
patterns F INST P as defined; in the first Formula
Algol paper}3 F INST P is, a Boolean primary
which tests whether the formuia F is an instance of
the formula pattern P. Later this notation was
changed to F = = P and an additional type of test
was added of the form F » P tb test whether F con­
tains a subexpression which is :an instance of P. In
the case of changing INST to := = one merely had
to substitute = = for INST in the productions.
When »was added it was possible with a minor
correction to share the productions for = = to
process ». This correction consisted essentially of
substituting a class symbol representing the set
{ = =, »J for occurrences of == in certain produc­
tions. The semantic routines associated with these
productions were also altered 'to compile different
code for the two different cases.

FLEXIBILITY OF THE
SEMANTIC ROUTINES

Having treated some exampl~s of the ftexibi~ity of
the syntax analyzer we now ttirn our attention to
corresponding properties of t~e semantic routines.
The following example is intended to demonstrate
the kind of experimentation that can be done with
the compiling processes in order to improve both
the compile-time efficiency and ithe parsimony of the
formal description of the compiler. 'The example
deals with a type discrimination problem en­
countered in the compilation of expressions involv­
ing unary and binary operators, For instance, when
code is generated for A + B, the types of A and
B must be checked.

REAL + REAL is w~ll defined, the op­
erands are already com­
plete, : and the result is of
type REAL.

REAL + BOOLEAN
FORMULA + REAL

is an illegal construction.
is well defined, but the
right-hand operand must
be made into a formula
data term using a cell
from linked list memory
before a formula repn!­
senting the sum can be
constructed, and thli! result
is of type FORMULA.

We shall describe two methods of implementing this
type discrimination (which is the function of EXEC
100). The first is the most recent obsolete method
and the second is its successor.

In the former method the' set of operators was
partitioned into a small number of equivalence
classes. Two of these are the arithmetic op'erators
+, -, x, =, >, . . . and the Boolean op,erators
v, 1\, -, For arithmetic operators, EXEC
100 checks the types of the operands for compatii­
bility and sets a switch (MACHINE) to 2 if eithe:r
operand is of type FORMULA, and to 1 if both
operands are arithmetic. In the following version
of EXEC 100, X7 is an address extractor.

100 ~ TEST[LEFT4, BOOLEAN] v TEST
[LEFT2, BOOLEAN] -- FAULT]loo:
RIGHT2 -- RIGHT2 1\ X7;

TEST[LEFT4, FORMULA] v TEST
[LEFT2, FORMULA] -- MACHINE
-- 2;
- TEST[LEFT4, FORMULA]

-- CODE(CONSTRUCT FORlvlULA
[LEFT4]) $;

--- TEST[LEFT2, FORMULA]
-- CODE (CONSTRUCT FOR··
MULA[LEFT2]) $

MACHINE -- 1 ;
TEST[LEFT2, REAL] v TEST[LEFT4,

REAL] -- SET[RIGHT2, REAL] :
SET[RIGHT2, INTEGER] $ $ $

As more operators and data types are added to a
language this method becomes complex and ineffi­
cient both with regard to the space required to ex­
press the sequence ~f tests and the average timle
required to execute such a sequence. Therefore wle
have invented a successor to the above method.

The successor is described as follows. It is based
on a single four-column table (DISCR) which may
be preloaded. The first entry in a row of this tabl'i!
is a coded word which has three fields:

[TYPE1, OPERATOR, TYPE2]

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 249

Any combination of two types and an operator may
be described in a single word. Unary operators
have one of the two types fixed. The second entry
indicates a compile time routine to be executed
which makes the operands compatible. The third
entry points to a compile time routine which
actually compiles code for the expression. The final
entry is the type of the result. DISCR may be
initialized as follows:

REAL + REAL none ADD REAL
REAL + INTEGER none ADD REAL
FORMULA + REAL CONS2 FADDFORMULA
FORMULA v BOOLEAN CONS2 OR FORMULA
NONE ~ BOOLEAN none NOT BOOLEAN

When the syntax stack matches any production of
the form

E <OP> E <SG> 1 - E <SG>
1 EXEC 189 COM

then the following code is executed:

189 ~
COMB -- (LEFT4 xL12 + LEFT 3)

x L6 + LEFT2;
R -- DISCR[COMB, $, ,] ;
~ SIGNAL - FAULT 189 :
FINAL -- DISCR [0, , $,];
TYPE -- DISCR [0 '" $] ;
R ¥= 0 - MARKJUMP [R] $;

JUMP[FINAL] $ ~

Here L12 and L6 are shift constants, and LEFT3
contains a small but unique integer representing the
operator.

In some cases we may experiment with the organi­
zation of compile-time processes to improve the
quality of the object code produced, by which is
meant we can reorganize some processes so that
they produce less code which is more efficient. A
small example of this is as follows. Certain patches
of object code may be defined as nonexecutable
because the flow of control may not enter them
directly. For example, control must bypass a pro­
cedure declaration which may be entered only
through a procedure call. If there are several ad­
jacent procedure declarations then one may jump
around each of them in turn or, preferably, one may
jump around all of them simultaneously. The latter
scheme is preferable because the object code re­
quires less machine space, it runs slightly faster,
and it looks less complex to the programmer trying
to debug the system. The actual scheme for com­
piling these jumps has changed several times be­
cause we were able to try one method, tear it out,
and try another both in the same day.

ORGANIZATIONAL EFFICIENCY
IN THE COMPILER

When planning the structure of a compiler written
in FSL we can take advantage of an organizational
principle commonplace in programming, which
states that when performing a class of operations
which have certain common processing require­
ments we should, if possible, make a division of
labor allowing the common processing requirements
to be treated by a single shared routine. It is easy
to apply this principle when writing EXEC routines
since we can write a single EXEC routine perform­
ing labor common to several different compilation
processes and we can share it in conjunction with
other EXEC's to perform each separate process re­
quired. An example of this is EXEC 100 which is
shared in the compilation of arithmetic expressions
as is seen by looking at subroutine COM (Fig. 2).
Another example is EXEC 160 which does every­
thing common to procedures and blocks.

Production subroutines may also be shared. It
may occur that certain syntactic constructs are used
in different places in the source language with dif­
ferent semantics. For example, a list of identifiers
can be used as a variable list in a declaration, as an
array name' list, as a formal parameter list, as a
value list and as a specifier list. The productions
in the syntax analyzer are written so that all identi­
fier lists, no matter the context in which they occur,
are processed by a common subroutine of the form:

ID 11- EXEC 190 * AID

<SG> 1 - ERROR 190 AID
AID 1- * ID

<SG> 1 - RETURN

As is seen, this production subroutine transfers
control to EXEC 190 with the integer corresponding
to the identifier on top of the stack. It does this
for every identifier in the identifier list. In each of
the different contexts of an identifier list it is neces­
sary to process the identifier list in a different
manner. To accomplish this, EXEC 190 is made
into a variable capable of containing transfers to
other EXEC's. For example, when, in FSL, the
statement XEQ 190 -- XEQ 2 is encountered, it
means the next time EXEC 190 is called, EXEC 2
will be executed. This will cause an identifier list
to be processed as a variable list by the semantics.
Similarly the statement XEQ 190 -- XEQ 3 will
cause EXEC 190 to call EXEC 3 thus allowing an
identifier list to be processed as a list of array names.
By this mechanism one can treat the same syntactic

250 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

construct differentially in the semantics on the basis
of context.

The addition of the XEQ construct to FSL is an
example of the effect of feedback from the process
of implementing Formula Algol on the design of
FSL.

FORMULA MANIPULATION

It was decided to represent formulas inside the
computer as trees or list structures built from cells
taken from an available space list in a standard
linked list memory. To add fbrmula manipulation
to the source language formula variables were intro­
duced. In most cases _ the syntax already existing
for numerical Algol was shared for formula manipu­
lation. While no changes in the productions were
necessary for this shared syntax, tests had to be
added to the semantic routines to discriminate be­
tween numerical and formula compiling operations.
For the new constructions added to the source lan­
guage such as EV AL, = =, > > , and the extraction
operator in patterns, additions were made to the
productions and semantic routines were defined for
them. Because most actions involving formulas are
either interpretive at run time or involve manipula­
tions which cannot be compile<;l into the object code
as macros due to the size of the code involved, a set
of run-time routines were constructed in machine
code. These run-time actions constitute, more or
less, a basic order code for formula manipulation.
In effect, the compiler produces code for two ma­
chines, one an interpreter accomplishing formula
manipulation and the other the hardware accom­
plishing numerical manipulation. For example, we
saw (Fig. 2) that in subroutine COM EXEC 100 and
EXEC 123 are called in seque~ce when we compile
code to add two operands together, E + E; As we
have seen previously EXEC 100 checks the types of
the operands and sets a switch (MACHINE) speci­
fying the machine for which we, are to compile code.
The structure of EXEC 123 is as follows:

123 ~ MACHINE = 1 -+ qODE (RIGHT2
-- LEFT2 + LEFT4):

CODE (Xl -- LEFT2; RO __ '+''';
ACC -- LEFT4;

MARKJUMP[CONSTRUCT
FORMULA]; RIGHT2--ACC)
$ ~ .

Here the routine CONSTRU(::TFORMULA is a
basic operation of the formula manipulation ma­
chine which expects a right operand in Xl, a left

operand in the accumulator, and an operator in RO.
Using cells from the list of available space it con­
structs a tree structure representing the sum of the
operands and leaves the address of the head of this
tree structure in the run-time accumulator.

The reader can now see how we could implement
complex arithmetic by defining yet a third machine,
which performs complex operations, and by extend­
ing the compiler by the same process used to accom­
plish the formula manipulation extension.

LIST PROCESSING

We will consider one example of list processing to
try to convey some of the flavor of the mechanisms
involved. Consider the statement INSJ;:R T [A, 13,
C] (AFTER LAST, BEFORE FIRST T) OF S.
Here we assume that S contains a list (represented
by a chain inside the computer). For the sake of
specificity let S contain the list [V, T, V, V] where
V and T have been declared of type SYIVfBOL.
After the insertion statement is performed the list
is to look like [V, A, B, C, T, V, V, A, B, C]. In a
manner similar to that for formula manipulation a
list processing machine is defined with an order code
represented by a set of run-time routines. The com­
piler compiles a sequence of list processing instruc­
tions chosen from this order code corresponding to
each list processing statement. Basic to the opera­
tion of the list processing machine is a push-down
stack extant at run time called the chain accumula­
tor. Most of the run-time list processing operations
consist of manipulations on chains stored in the
chain accumulator. The code produced by the com­
piler corresponding to the statement INSERT
[A, B, C) (AFTER LAST, BEFORE FIRST T)
OF S is a sequence of list processing operations
whose mnemonics are as follows:

Instruction Comment

STACK A (on top of the chain ac:­
cumulator)

STACK B (on top of the chain ac:-
cumulator)

CONCATENA TE (the top two chains in the
chain accumulator)

STACK C (on top of the chain ac-
cumulator)

CONCATENATE (the top two chains)
GO TO ()

p: CLA symbol to denote last
FIND POSITION (this routine locatc~s the!

last element of the chain

THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 251

PERMUTE

CLA T
FIND POSITION

MINUS ONE

PERMUTE

PERFORM
INSERTIONS

GO TO X

(): STACK S

X:

TAKE
CONTENTS

GO TO p

on top of the chain ac­
cum ulator and stacks a
pointer to this element on
top of the chain accumula­
tor)
(we change the order of
the elements in the chain
accumulator so that the
pointer is moved into the
third position)

(locate the position of the
cell in the chain on top of
the chain accumulator
which occurs direcflybe­
fore the first occurrence of
T in that chain; stack a
pointer to that position on
top of the chain accumu­
lator)
(as before, change the
order of the elements in
the chain accumulator so
that the pointer is moved·
into the third position)
(this routine performs in­
sertions using information
sa ved in the chain ac­
cumulator)

(on top of chain accumu­
lator)
(replace S with the chain
that occurs as its contents)

Let us now trace the effect of the execution of this
code on the chain accumulator. We will adopt the
symbolism that I 4> represents the state of the chain
accumulator before we start to execute the code. As
we enter the code we build up the list [A, B, C] and
stack it on top of the chain accumulator. This pro­
ceeds in the following steps. First we stack A on top
of 14> producing A 14>. Then we stack B on top of
this producing B I A 14>. Then we concatenate the
top two chains on the chain accumulator producing
A n B I 4>, where n has been used as a symbol for
the concatenation of chains. Next we stack C pro­
ducing C I A n B I 4>, and then we concatenate
again producing A n B n C I 4>. At this point the
construction of the chain [A, B, C] is complete and
control transfers to location () in the code where
we stack S producing S I A n B n C I 4> and take

its contents producing V n T n V n V I A n B
n C I 4>. Control now returns to p where we com­
pute an9 stack a pointer to the last element· of the
contents of S giving' 0, I V n Tn. V n .,.V I A

n B n C I 4>. This pointer is moved to the third
position in the chain accumulator producing
V n T n V n V I A n B n c.1 0 I 4>. A sec-

I(. . I

ond pointer is now computed and stacked. It points
to the position before the first T in the chain on top
of the chain accumulator o~V n T n V

n V I A n B n C I' 0 I 4>. This pointer is also
It I

moved into the third - position in the stack giving
~n T n V n \ I A n B n C 1,0 1

/
0 14>. We

could continue in this fashion computing and stack­
ing a's"many pointers as we wish, each pointer cor­
responding to a place where an insertion is to be
performed. We now transfer control to a routine
which actually performs the insertions. This routine
pops the chain V n T n V n V from the top of
the chain accumulator and inserts a copy of the
chain A n B n C after the position given by each
pointer in the chain accumulator looping until all
pointers in the chain accumulator are exhausted.
The state of the chain accumulator after the execu­
tion of this statement is I 4>. Control in the code
now passes to X where the execution of the program
continues. The reason for the existence of transfers
in the code sample given is because the order of
recognition of syntactic constructions in the inser­
tion statement in the source language is the reverse
of the order in which we utilize these constructions
in the computation expressed by the code. Spe­
cifically we must stack S and compute its contents
before we compute any pointers locating positions
in the contents where insertions are to be per­
formed. However, the constructions telling us
where to make insertions are encountered in the
source language before we encounter the expression
telling us the object on which the insertions are to
be performed. Floating addresses are used in the
compiler to implement such reversals.

Since the semantics of the source language de­
mands that all insertions be performed simul­
taneously we are forced to compute all locations
where insertions are to be made before performing
any insertions.

CONCLUSIONS

In this paper we have outlined the broad organi­
zation of the Formula Algol compiler. We have
also presented examples exhibiting various proper-

252 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

ties of the FSL compiler writing system. We have
not described completely or, in some cases at all, the
implementations of declarations, switches, arrays,
for statements, recursive procedures, block admin­
istration, formula manipulation or list processing.
For a complete and detailed treatment of these the
reader is referred to another paper by the authors,
"The Implementation of Formula Algol in FSL."14
The subject matter was chosen to reveal what we
feel to be interesting techniques involving the use
of a formal compiler writing system.

ACKNOWLEDGMENTS

The authors are deeply indebted to Professor
Alan J. PerIis who guided a'nd inspired our effort.
Many of the creative and original ideas presented
are his. However, we alone remain responsible for
errors of style or content.

REFERENCES

1. R. Brooker and D .• Morris, "A General
Translation Program for Phrase Structure Lan­
guages," Journal ACM, vol. 9, p. 1 (1962).

2. J. C. Reynolds, "Cogent-A Compiler and
Generalized Translator," Applied Mathematics
Division, Argonne National Laboratory, internal
paper.

3. R. Bolduc, T. E. Cheatham and A. Dean,
"Preliminary Description of the Translator Gen­
erator System-I," Computer Associates, Inc. (Apr.
1964).

4. J. A. Feldman, "A Formal Semantics for
Computer Languages," doctoral dissertation, Car:'
negie Institute of Technology (1964).

5. __ , "A Formal Semantics for Computer
Languages and its Application in a Compiler­
Compiler," Communications of the ACM, vol. 9,
p. 3 (Jan. 1966).

6. A. J. PerIis, R. Iturriaga and T. Standish,
"A Preliminary Sketch of Formula Algol," Car­
negie Institute of Technology (July 1965).

7. R. W. Floyd, "A Descriptive Language for
Symbol Manipulation," Journal ACM, vol. 8, p.
579 (1961).

8. A. Evans, "An Algol 60 Compiler,'" Annual
Review in Automatic Programming, vol. 4, Pergamon
Press.

9. P. Z. Ingerman, "THUNKS," Communica­
tions of the ACM, vol. 4, p. 55 (Jan. 1961).

10. K. Sattley, "Allocation of Storage for Arrays
in ALGOL 60," Communications of the A CM, vol.
4, p. 60 (Jan. 1961).

11. A. Evans, "Syntax Analysis by a Production
Language," doctoral dissertation, Carnegie Institute
of Technology (1965).

12. R. Krutar, FSL II, Carnegie Institute of
Technology, Computation Center, internal publica­
tion.

13. A. J. PerIis and R. Iturriaga~ "An Extensilon
to ALGOL for Manipulating Formulae,," Com­
munications of the ACM, vol. 7, p. 127 (Feb. 1964).

14. R. Iturriaga et aI, "Implementation of
Formula Algol in FSL," Carnegie Institute of Te.:;h­
nology, Computation Center (Oct. 1965).

A PROPOSAL FOR A COMPUTER COMPILER*

Gernot Metze and Sundaram Seshu
Coordinated Science Laboratory and Department of Electrical Engineering

University of Illinois

INTRODUCTION

In recent years digital computers have been ap­
plied, with great success, to the automation of an
increasing variety of tasks in the design of digital
systems, from the printing of wiring tables and the
drawing of logical diagrams to the optimization, ac­
cording to certain criteria, of the layout of com­
ponents and wiring, and even the actual computer­
controlled production of subassemblies such as
printed circuit boards or integrated circuits. Sim­
ilarly, the design of circuits, especially those involv­
ing nonlinear elements, has been made easier by
computer programs (e.g., which perform tolerance
analyses). On the system level, the use of digital
computers has been limited to tasks which are
equally mechanical, such as programs which check
for violations of fan-in, fan-out, and cascading
rules.

More recently, languages have been developed
which permit the simulation of a proposed system
on an existing digital computer. Alternative system
designs can be evaluated not only on the basis of
performance statistics produced by the simulator,
e.g., timing and utilization of machine com­
ponents, but also by permitting the execution of
programs written in the instruction language of the
system being simulated.)

*Supported in part by the National Science Foundation
under Grant GR-32 and in part by the Joint Services Elec­
tronics Program under contract number DA 28 043 AMC
00073 (E).

253

The system designer, however, needs a language
which is powerful enough to permit the description
of the macroscopic structure of the system inde­
pendent of the microscopic structure of its com­
ponents. While the description of the system in this
language may also be used for simulation purposes,
the primary objective is the description of the re­
lationships between system components in such a
way that a compiler program can supply the de­
tailed structure of the components, guided by cer­
tain design and optimization criteria which are
stated explicitly or built into the program. Thus,
the program should be a true compiler, and the sys­
tem design language should permit a description of
the system on a higher level than the languages
proposed by Proctor,2 Schlaeppi,3 and Schorr.4

The linguistic aspects of a system design lan­
guage, while interesting, have not been considered
here, except that the language was developed in
close analogy to the programming language FOR­
TRAN, reflecting the feeling that computer pro­
gramming and computer design are related fields.
In particular, concepts such as modularity (sub­
routine structure), interfaces (subroutine argument
linkages), parallel operations (multiprogramming),
flow diagrams, etc., pervade both philosophies.

Just as FORTRAN translates arithmetic state­
ments written in near-human language into a com­
puter program, the computer compiler will translate
a system description, given essentially in the near­
human language of the programmer's manual, into
a description of the hardware, e.g., ANDs, ORs,

254 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

NOTs, and FLIPFLOPs, and their interconnec­
tions.

GENERAL DESCRIPTION OF THE
COMPILER

In comparison to manual approaches, the design
of a digital system by compiler methods can be
expected to be much fastqr and much cheaper,
making it possible to examine (either externally or
within the compiler itself) many alternative designs
and select the one that is best according to some
criterion. In particular, one could automatically ex­
amine the design for such features as speed, cost, or
maintainability. If the input language is sufficiently
powerful, the effect of adding special features such
as buffered input/output, look-ahead controls, etc.,
can be examined with a minimum of changes to the
specifications. Perhaps most important is the pros­
pect that one good system designer can design the
entire system, leading to a more uniform and more
balanced result.

It is convenient to break the computer compiler
program into two parts: a' hardware-independent
system compiler which reads the input language and
produces an intermediate language output, similar
to the assembly language output of most compilers,
and a hardware-dependent logic compiler which
reads the intermediate language and produces a de­
tailed machine description in terms of the basic
building blocks specified.

The system compiler incorporates several stand­
ard assembler features, such as "macro," "repeat,"
and "library," as well as the facility of interspersing
intermediate language statements if desired. The
intermediate language output is a microinstruction
string for each subprogram (subcontrol), optimized
according to a specified measure. Although the sys­
tem compiler is otherwise hardware-independent,
this measure may involve ,hardware cost. The
microinstruction string output of the system com­
piler includes a specification of the time-hierarchy
and is thus equivalent to a flow chart.

The intermediate language may also be used to
drive a simulator program which permits experi­
mental programming in the ~nstruction language of
the proposed system.

The specification and the development of the
logic compiler is fairly straightforward concep­
tually. The Boolean minimizations required intro­
duce bookkeeping problems but no other diffi­
culties. The logic com pi let; is not discussed any
further in this preliminary report.

The concept of a library subroutine emters the
discussion of a computer compiler in two distinct
ways. The conventional notion is similar to that of
a subcontrol (e.g. arithmetic control, I/0 control),
but in addition open subroutines ("built-in func­
tions" in FORTRAN terminology) may be used,
such as algorithms for arithmetic operations. How­
ever, one could now have several algorithms which
are equivalent in their final answers, say for divi­
sion in two's complement representatipn, and ask
the compiler to choose the algorithm which fits best
with the rest of the design. Thus one may want to
call for any subroutine from a class of subroutines
which is identified by a class name. With a suffi­
ciently rich library one could conceive of "dime a
dozen" designs that one could choose from.

The proposed compiler is also a good research
tool. Since designs can be produced simply, one
could produce examples rapidly to study n4~W design
ideas. Finally, the concepts generated h(!re might
well suggest procedures for the synthesis of non­
computer systems thus providing a formal basis for
"systems engineering."

THE INPUT LANGUAGE

The description of a digital system involves two
aspects: the global description, and the subcontrol
(subprogram) description. The subdivision of the
system into subcontrols is similar to the subdivision
of a program into subprograms, and must: be done
by the system designer. (Thus we implicitly seek
modular designs.) However, in contrast to con­
ventional programming, subcontrols may operate in
parallel, i.e., simultaneously, thus giving rise to the
need of a global description of the system. Counter­
parts to these concepts will become necessary when
multiprogramming compilers are written.

Global Description

The global description carries the special ide:nti­
fier

MACHINE xxxx

followed by the following types of global hleaders:

1. Definitions of global constants by the op1era­
tion SYN (see register declarations below) which
define word length, memory size, etc.

2. Declaration of subcontrols which may operate
in parallel.

3. Information necessary for optimization, such
as cost, time and other measures.

A PROPOSAL FOR A COMPUTER COMPILER 255

There are no program statements in the global
description.

Subcontrol Description

Each subcontrol description has an identifier and:
the necessary header statements followed by the
instruction statements, i.e., the program, which
describe the subcontrol:

1. The identifier is a statement of the type

SUBCONTROL ARITH

where ARITH isa name chosen by the designer.
(The subroutine linkage mechanism is further dis­
cussed under Subroutine CALLs below.)

2. Register Declarations are analogous to DI­
MENSION and COMMON statements in FOR­
TRAN except that 'we follow the machine language
convention and demand that even single bit regis­
ters be declared. There are five statement types in
this category:

a) REGISTER A(L) defines a register A of L bits
where L is an integer or a previously defined symbol.
Individual bits in the register are referred to by sub­
scripts which normally range from ° to (L - 1).
Other ranges of consecutive SUbscripts must be
specified explicitly, as for example in

REGISTER A(-1, ... ,L - 2).

b) SYN (F,N) assigns the value N, which must be
a positive integer, to the symbol F, which may then
be used in register definitions and subscripts.

c) CONNECT (EAQ(-I, ... ,38» = ES.A
(0, ... ,19). Q(1, ... ,19) permits the concatenation
of registers. The registers on the right must have
been previously defined but need not be full regis­
ters. In the example above, Q(O) is not part of the
extended AQ register.

d) EQUIV (FNCTN(O, ... ~9) = IR(3, ... ,13»
labels (a part of) a register by another name and is
thus the inverse of CONNECT.

e) INTERFACE (ARITH) M,A,Q defines regis­
ters M, A, Q as interface registers in common be­
tween the current control and the subcontrol
ARITH. The INTERFACE statement is similar
to the FORTRAN COMMON statement but differs
from it in two respects. First, several subcontrols
in a machine may be operating simulataneously,
which is not the case in present programs. Since the
compiler would normally try to use existing registers
for temporary storage, it must be aware of the inter­
face registers which may be used by parallel con­
trols. Secondly, for the convenience of the logic

compiler as well as for readability, the alternate
control with which the register is shared should be
identified. Interface registers must be dimensioned
by REGISTER, CONNECT, or EQUIV state­
ments, and must be referred to by the same names,
in each of the subcontrols which share them. How­
ever, the order in which they are listed in the IN­
TERF ACE statement is not important.

3. Instruction Decoding. The assignment of bit
configurations for the various instructions is a task
that is best left to the logic compiler. We therefore
allow the design engineer to use mnemonics for in­
structions. There are two types of instructions
involved. First we have the instructions that are to
be decoded and obeyed by the current subcontrol.
'Second there are instructions to be given to other
subcontrols (for example, main control may request
a memory subcontrol to read or write a word). In
the first case, we need to decode and jump to the
appropriate control sequence. In the second case,
we need only set up a configuration of bits in an
appropriate register. In both cases, the function is
undefined. We must, however, specify (to the logic
compiler) the bits that are to be used to define the
function.

a) The format of the decode and jump statement
is
DECODE (IR(O, ... ,9»

HLT, LLS, LRS, JMP, JAN, ...

where IR(O, ... ,9) is (part of) a previously defined
register and HLT, LLS, etc., are mnemonics which
must appear as location field symbols in the main
program. The DECODE statement is itself part of
the main program since it serves as a multi-way
branch, analogous to a computed GO TO.

b) The format ofa translation (or decoder) state­
ment is

UNDF (IR(O, ... ,9» RM, WM. RMW

Here IR is a previously defined register and RM,
WM and RMW are' instructions to be passed on to
other subcontrols. The system compiler generates a
decoder for each such UNDF statement. Each
decoder is defined in detail by the logic compiler.
UNDF is a header statement.

The mnemonics on the right of the parentheses
in both statements must be single-valued Boolean
functions of the bits that are enclosed within the
parentheses. For example, consider the execution of
the instruction REPLACE ADD MEMORY, which
replaces the contents of the memory cell by the sum
of the previous contents and the contents of the

256 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

accumulator. We need to set up first a READ
MEMORY (RM) instruction and then a WRITE
MEMORY (WM) instruction in the instruction
register. of the memory subcontrol. If FN is the
function part of the main instruction register, we
cannot write

UNDF (FN), RM, WM

for RM and WM are not single-valued functions of
FN alone. Some control flip-flop is also involved
and must therefore be defined as

REG ISTER CN (1)

UNDF (FN, CN) RM, WM

The symbols that are used on the right must appear
exactly once in the DECODE statement of another
subcontrol to permit correlation by the logic com­
piler.

4. Program Statements, which may contain a
label, include the following types:

a) Register Transfers. Tije gating of information
from a register A to a register B is specified by

B = A.

The symbol on the right· must either be a register
or an undefined function. Partial register transfers
are indicated by subscripting. Gating is assumed
to be parallel.

b) Branch Statements.

i) DECODE, the counterpart to a com­
puted GO TO, has been discussed in
the preceding section.

ii) An unconditional branch is indicated
by simply writing the symbol (with­
out the words GO TO).

iii) A conditional branch is indicated by

IF (A(O) = 1) JMP

where the true exit is the statement
labeled JMP, the false exit the next
statement. The condition must be
based on a single bit being 0 or 1.

iv) The WAIT statement is similar to the
IF statement, except that the true exit
is the next staterpent, and the false
exit is the WAIT statement itself, e.g.,

WAIT (RQ = 1)

permits the subcontrol to go on to the
next statement only after RQ has
been set to 1.

c) SET and CLEAR permit individual bits, or
entire registers, to be set to 1, or cleared to O. Sub:­
scripts are allowed.

d) SUBROUTINE INSERTIONS a fie accom­
plished by writing the name of the subroutine, with
the argument list in parentheses. Both library sub­
routines and programmer-defined subroutines are
treated as macros. Subroutines may be called by
their class name if the choice of the particular sub­
routine is to be left to the compiler.

e) Subcontrols call other subcontrols through the
statement CALL. Since subcontrols may be parallel
or sequential (see the following section), and one
would like to be free to define them either way by
means of global headers, we provide thre:e formats
for the CALL statement:

CALLS SUB(RQ)

CALLP SUB(RQ)

CALL SUB(RQ)

By convention the argument in parenthes,es (RQ) is
the name of the request flag. The terminalls Sand P
designate the CALL as sequential or parallel and
override the global definition. In the simple CALL,
the global definition prevails. In each case a string
of statements which load interface registers follows
the CALL statement, terminated by an ENDC.
Consider the following example of a main control to
core control CALL (Store Accumulator instruc­
tion):

CALL CORE (MCRQ)

MCAR = ADDR

M=A
MCIR = WM

ENDC

If the memory control is defined as sequential in the
. global headers the compiler produces the micro­

instruction string

GATE MCAR = ADDR

GATEM = A

DECODER 2 = WM

CONNECT DECODER 2 to MCIR

SET MCRQ

WAIT (MCRQ = 0)

If on the other hand the global definition states that
the memory control operates in parallel with main
control, the following microinstruction string

A PROPOSAL FOR A COMPUTER COMPILER 257

results:

WAIT (MCRQ = 0)

GATE MCAR = ADDR

GATEM=A

DECODER 2 = WM

CONNECT DECODER 2 to MCIR

SET MCRQ

5. The Slash Notation. One of the most common
operations in a computer is to read a word from
memory into a register or store a word from a regis­
ter into memory. Therefore we invent a special
shorthand notation for this purpose. The notation
/REG / refers to the memory location whose ad­
dress is in register REG. Thus

IR = /P/

states that the word whose' address is in the program
counter P is to be read and loaded into the instruc­
tion register IR. Similarly

/ADDR/ = A

states that the contents of A are to be stored in the
memory location whose address is in register
ADDR.

Naturally the compiler must be given the inter­
pretations of the two statements by means of macro
definitions. This macro is given the special name
MEMORY. Since the memory address and buffer
registers are unique to the calling program, this
memory definition must be part of the calling pro­
gram. Alternatively it may also be defined in detail
in the global headers as a macro with a local macro
MEMORY (calling the global one) defining the
interface registers.

PARALLEL AND SEQUENTIAL
SUBCONTROLS

As remarked earlier, a subcontrol is similar to a
subprogram. Thus one intuitively expects to use
some type of LINK JUMP (or RETURN JUMP).
Since a subcontrol may be called from several places
(in the same or different controls) it appears in­
tuitively necessary to store the calling address in
some register. If such a procedure were followed,
the subcontrol would have to interpret the contents
of this register and return to the calling point. The
FORTRAN analog is the ASSIGNED GO TO.
This technique is aesthetically unappealing since the
subcontrol has to know the various points from

which it can be called-an impractical procedure
for library routines. Also the notion of a parallel
subcontrol has no exact analog in subroutines. An
interrupt subroutine comes close but a more exact
analogy is the communication betweerr'two com­
puters. In both of these cases, the standard com­
munication technique is the use of flags rather than
LINK JUMPs.

Thus parallel subcontrols must be initiated into
action by means of a flag flip-flop and must simi­
larly indicate the completion of the action by a flag
flip-flop. There appears to be no reason why these
two flip-flops could not be the same. We label it
the REQUEST flip-flop. By convention the CALL
sets the REQUEST and the subcontrol clears it
when it is through.

One would like to be able to write library sub­
routines (subcontrols) with the parallel/sequential
consideration. The executive program (or in our
case, the global headers) should decide whether the
subcontrol is to be used as a parallel or a sequential
subcontrol. The REQUEST convention permits
one to achieve this objective.

There is one further distinction between parallel
and sequential usage which must be mentioned. If a
parallel subcontrol can be called from two (or more)
other subcontrols t~en it should have two (or more)
sets of interface registers and request flip-flops. If
RQ 1, RQ2, ... are the different request flip-flops,
then a subroutine can serve a fixed hierarchy of
requests by the statement

WAIT (RQl + RQ2 + = 1)

where + denotes the Boolean OR. Similarly, a
scanning procedure can be arranged by using a
string of IF statements. In order to make it pos­
sible to write library subroutines independent of the
number of requests, a simple extension of the
INDEFINITE REPEAT feature of macro com­
pilers may be used, with the necessary information
carried in the library call. 0'

In a sequential subcontrol multiplicity of inter­
face registers is not necessary. It may be used
without harm, of course.

We may finally note one distinction between
intercomputer communication and parallel sub­
controls. If two computers are tied together, either
computer may request action by the other (and con­
flicts are somehow resolved). In our case, however,
the standard hierarchical structure of programming
must be observed. If subcontrol A can call on sub-

258 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

control B, subcontrol B may not call on subcon­
trol A. Thus the problem is simpler.

TIME AND CONTROL HIERARCHIES

We have implicitly noted that there are two no­
tions of hierarchy among. subcontrols. The dif­
ferent subcontrols form a partially ordered set under
the relation of extended CALL. As in conven­
tional programming we insist that this relation
define a true partial ordering. Beyond this fact,
however, we ar~ not too concerned with this logical
hierarchy.

A second partial ordering, which is not ab initio
a partial ordering but may be converted into one, is
by time of operation. If two subcontrols may oper­
ate at the same time they are at the same level in this
partial ordering independent of the logical hier­
archy. They are parallel subcontrols in our earlier
terminology. Consider for example a main control,
a buffered input/output subcontrol and a memory
subcontrol. Since I/O is buffered, it may operate at
the same time as main control. Since the I/O sub­
control may call on memory subcontrol, the
memory subcontrol may operate at the same time as
main control. Thus the logical hierarchy is that
shown at the left in Fig. I, :while the time hierarchy
is the one shown at the right.

Figure 1. Hierarchy of subcontrols (Hasse diagrams): Logical
(left); Time (right).

(Formally, "parallel" is a binary relation which
we extend by transitivity. The partial ordering rela­
tion in the time diagram is "not parallel, and below
in logical ordering.")

THE LIBRARY

The library material for the compiler should con­
tain two classes of programs: subroutines and sub­
controls. A subroutine is an "open" subroutine or
a macro. Algorithms for arithmetic operations,
incrementors, etc., come under this category. These
algorithms are divided into- types and are called by
type names; the detailed choice is left to the com-

piler. Subcontrols are complete subprograms but
are processed according to macro conventions, that
is, they are stored in source language with dummy
dimensions and dummy register names. They may
contain such macro features as "indefinite repeat,"
"If True," "If False," etc. An example of the li­
brary call for such a library subcontrol is

ARITH LIB AC5(A, Q, OV, N)

where AC5 is the identifier of the library routine,
ARITH is the name assigned in the machine, A, Q
and OV are registers and N is the dimtmsion (de­
fined in global headers).

It is sometimes necessary to label the "next state­
ment while using the indefinite repeat directive. An
example is a "scanner" which services requests in
sequence. For this purpose we introduce the
CONTINUE statement. An example follows:

C!

SUBROUTINE CORE (RQ, Ml, MAD, MI, ct, AL. WL)

REGISTER MAR (AL). MBR (WL)

IRP (RQ, MI, MAD, lIT, Cl)

REGISTER RQ(!). M(WL). MAD(AL). MI(!)

IF (RQ • 0) C!

DECODE (MI) RD. WR

MAR. MAD

HI - MBR

• CLEAR RQ

C!

MAR' MAO

MBR - HI

CLEAR RQ

If there are three controls which wish to use~ this
memory control in parallel, one may use the library
call

LIB CORE «RQI, Ml, MAl, MIl,),

(RQ2, M2, MA2, MI2,),

(RQ3, M3, MA3, MI3,), AL, WL)

In the subroutine, .CORERD and .COREWR are
library subroutines which set up the signals for
reading and writing core memory . We note that C I
is a repeated argument which has not been specified
in the library call. Hence it becomes a cn~ated

symbol, a different symbol for each repetition. On
the other hand, STM is not an argument. Hence
this symbol is assigned to the first occurrence. The
repetition IRP uses simultaneous substitutions for
all arguments. (This is the simple extension ref,erred
to earlier.) The CONTINUE statement is not

A PROPOSAL FOR A COMPUTER COMPILER 259

translated; its label is assigned to the "next" micro­
instruction.

It is easily verified that the "IF, CONTINUE"
arrangement in the subroutine is in fact a scanner.

THE MICROLANGUAGE (OUTPUT
LANGUAGE OF THE SYSTEM
COMPILER)

The output of the system compiler is a preamble
followed by a string of microinstructions. The pre­
amble contains the information necessary for the
logic compiler. Wherever possible, one would like
to perform microoperations in parallel. For this
purpose the system compiler will associate an
ordered-pair level index with each microinstruction
and specify in the WAIT field the ordered pair
indices of the microsteps which must be previously
completed. Thus the output becomes a description
'of the flow diagram.

The micro language is permissible in the source
program as well (without the ordered-pair indices,
of course). In fact, arithmetic algorithms have to
be written in microlanguage. In the source program
a switch to the micro language is initiated by

-MICRO

and terminated by

-COMPILE.

All arithmetic operations in the microlanguage
are Boolean. The conventions are

A+B

(-A)

A *B

A(+)B

A OR B

NOT A (outer parentheses essential)

A AND B

A EXCLUSIVE OR B

Other operations can be added later. Subscripts
are allowed, and the RANGE of symbolic sub­
scripts may be specified.

An equality sign denotes a definition. If the vari­
able on the left is a flip-flop, the quantity on the
right decides whether the flip-flop is set (1) or
cleared (0). Otherwise the equation is taken as a
signal definition (decoder output for example).

Other microoperations (all self-explanatory) are:

1. GATE RA = RB

2. IF (BIT = 1 (or 0)) LABEL

3. OFF GATE

4. STOP

SAMPLE DESIGN OF A SMALL
DIGITAL SYSTEM

In order to demonstrate the versatility and power
of the input language, we present here the system
design of a small digital computer with a sequential
arithmetic subcontrol and a parallel input/output
subcontrol which handles one-word transfers to and
from memory.

The card format is essentially that of FORTRAN.
A detailed discussion of the example will be found
in the foHowing section. The register layout and
data paths are shown in Fig. 2.

Data from·
ext devices

ARITH II

Figure 2. System layout and data paths in the sample computer.

MACHINE CSLIAC

* GLOBAL HEADERS

SYN (WL,20), (DWL,39) , (AL,IO), (FL,IO), (AAL,5) , (AFL,3) ,

(IOFL,I), (CFt,I)

• LENGTHS OF REGISTERS ARE DEFINED AS FOLLOWS:

* WI.. SINGLE WORD, DWL. DOUBLE WORD, At • ADDRESS, FL • FUNCTION,

* AAL • ARlrnHETIC ADDRESS, AFL. ARI'rIDIETIC FUNCTION.

* IOFL. INPUT/OUTPUT FUNCTION, CFL • CORE MEMORY FUNCTION

PARALLEL (MAIN, 10), (MAIN, CORE), (IO, C<JtE)

* MEM'lRY READ DEFINITION

MACRO MEHRD (X,Y,AD,M',lR,IlQ)

* X IS SOORCE REGISTER FOR IIEI!ORY ADDRESS. Y IS DESTINATION REGISTER FOR

• CONTENTS (OPERAND OR INSTRUCTION), AD IS INTERFACE ADDRESS REGISTER,

* DT IS INTERFACE DATA (OPERAND OR INSTRUCTION) REGISTER, IR IS INTERFACE

* MEMORY INSTRUCTION REGISTER, RQ IS REQUEST FLAG.

* NAME OF HEH<JtV CONTROL IS C<JtE.

CALL CORE (RQ)

AD· X

ENDC

IFF (y. D1')

HElDtY WRITE IlEFINITION. SAME ARGUMENT LIST

MACRO HEMWR(X,Y,AD,DT,IR,RQ)

CALL CORE (RQ)

260 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

AD' x

IFF (y. DT)

DT· Y

ENDC

END

CONTROL MAIN

REGISTER IR(WL). P(AL). RUNSW(I). CN(I).

H(WL). A(WL). Q(WL). ACTR(ML). AIR(AFL), ARQ(I). OY(I).

H1AD(AL). MIIR(IOFL), MIRQ(I).

HCAD(AL). HeIR(CFL). HCRQ(I)

INTERFACE(ARlnt) M, A, Q. ACTR, AIR, ARQ. (]V

INTERFACE (10) MIAD. MIIR; H1RQ

INTERFACE (CDRE) M. HeAD. HeIR, HCRQ

DEFINE RIGHTMOST AL BITS OF INSTRUCTION AS ADDRESS PART

EQUIV (ADDR. IR(WL·AL ••••• WL·I))

DEFINE LEFTMOST FL BITS OF INSTRUCTION AS FUNCTIOII PART

EQUIV (FNCTN· IR(O ••••• FL·I»

ARITllHETlC FUNCTIONS

UNOF (FNCTN) ALL8, ALRS, MOD, ASUB, AMUF, AWP

1/0 FUNCTIONS

UNOF (FNCTN) lORD. IOWR

CORE FUNCTIONS

UNDF (FNCTN, eN) ReM, WCM

SLASH NOTATION DEFINITION

IIEHORY Y • IXI

HEHRD(X, Y ,HCAD,H,MCIR,HCRQ)

MEMORY Ixi • Y

KEMWR(X, Y .MCAD,H,MCIR,MCRQ)

INCR (P.P.AL)

BEGIN IR· IP I FETCH NEXT INSTR

XEQ CLEAR CN

JMP

JAN

STA

LDQ

STQ

LJP

DECODE (FNCTN) HTR., Lt8, LRS, JMP, JAN, LOA, STA, LOO, STQ" SAD,

UP. JOV. ADD, SUB, MUF, DVF, tNP. OUT. JI0

WAIT (RUNSW • I) HALT TRANSFER

CALL ARITH (ARQ)

AIR • ALL5 LONG (ARITH) LEn SHIFT

ACTR. ADT1A (AL-ML ••••• AL-l)

ACTR USES RIGHTMOST AAL BITS OF ADDRESS

CALL ARITH (ARQ)

AIR. ALRS LONG (ARITH) RIGHT SHIFT

ACTR • ADDR (AL-ML ••••• AL·I)

EXIT

P • ADDR JUMP (UNCONDITIONAL)

IF (A(O) • 0) EXIT JUMP ON A NEGATIVE

A· IADT1A1 LOAD ACCUMULATOR

IADDRI • A ST<IlE ACCUKJLATOR

EXIT

Q • IADMI LOAD Q

EXIT

IADMI • Q ST<IlE Q

EXIT

M· IADTJaI SUBSTITUTE ADT1AtsS

H(WL·AL •••• ,WL·I) • A(WL-AL ••••• WL·I)

SET CN

IADT1A1 • M

.INCR (P. p. AI,)

H. IADDRI

LINK JUMP

H(WL-AL ••••• WL·I) • P
SET CN
IADT1A/. M

PLANT CONTENTS OP P IN RlGHTHOST AL BITS OF MEMORY WORD

.INCH (APDR •• P. AL)

BEGIN

IF (OY • 0) EXIT

JMP

CALL ARITH (ARQ)

AIR. MDD

M • IADDRI

ENDC

EXIT

CALL ARITH (ARQ)

AIR • ASUB

M· IADT1A1

ENDC

CALL ARITH (ARQ)

AIR • AMUF

M· IADT1A1

CALL ARITH (ARQ)

AIR· AI1VP

H· IADT1A1

CALL 10(HIRQ)

MIlR • IOIlD

OUT CALL IO(HIRQ)

IP (MIRQ • 0) EXIT

SUBCONTROL ARITII

JUMP ON OIIERFLOW

HlJLTIPLY A BY H (FRAC)

DIVIDE (FRAC) AQ/H

INPUT VIA 10

OUTPUT VIA 10

REGISTER H(WL). A(WL). Q(WL). ACTR(ML). AIR(AFL).

ARQ(I). 011(1). ES(I)

INTERFACE (MAIN) H, A. Q, ACTR, AIR, AltQ, (N

CONNECT (EAQ(-I OWL-I) • ES.A.Q(I ••••• WL-I))

EQUIV (AQ • EAQ(O ••••• OWL· I»

WAIT (ARQ. I)

DECODE (AIR) ALI.S. ALRS, MOD. ASUB. AMUP. ADVF

IF (ACTR • 0) EXIT

.DECR (ACTR. ACTR. ML)

EAQ(·I ••••• OWL·Z) • EAQ(O ••••• OWL·I)

EAQ (OWL· I) • 0

ALLS

IF (ACTR • 0) EXI T

.DECR (AC'l'R, AC'I'R. AAL)

EAQ(I ••••• OWL·I) • EAQ(0 ••••• OWL·2)

LEAVES POSITIONS 0 AND IS UNTOUCHED

.ADD2 (A.M,A.OV.WL)

EXIT

.SUB2 (A,M.A,OV.WL)

AMIJr .N.J'2 (A,M,AQ,CW}WL)

EXIT

.NDIIF (AQ.M.Q.A.av,WL)

InT

EXI T CLEAR ARQ

8mT

END

A PROPOSAL FOR A COMPUTER COMPILER 261

SUBCONTROL 10

REGISTER lOBFR (WL),

MIAD (AL) , MIlR(CFL), MIRQ(I),

ICAD(AL), ICIR(CFL), ICRQ(I)

ICRQ IS REQUEST FROM 10 TO CORE, HIRQ IS REQUEST FROM MAIN TO 10

INTERFACE . (MAIN) HIAD, HIIR, HIRQ

INTERFACE (CORE) IOBFR, lCAD, ICIR, ICRQ

UNDF (ICIR) IRC, IWC

START WAIT (HIRQ' I)

DECODE (MIIR), lORD, IOWR

IOBFRRD (IOBFR)

CALLS CORE (ICRQ)

lCAD· HIAD

ICIR • IWC

ENDC

CLEAR MIRQ

START

GATES INTO BUFFER FROM EXT. DEVICE

IOWR CALLS CORE (ICRQ)

lCAD· HIAD

ICIR • IRC

CLEAR HIRQ

.IOBFRWR (lOBFR) GATES FROM BUFFER TO EXT. DEVICE

START

REGISTER MBR(WL) , MAR (AL) ,

M(WI.), HCAD(AL), HCIR(CFL), HCRQ(l),

IOBFR(WL), lCAD(AL), ICIR(CFL), ICRQ(I)

INTERFACE (MAIN), M, HeAD, MCIR
I

HCRQ

INTERPACE (10), IOBFR, lCAD, ICIR, ICRQ

START WAIT (HCRQ + ICRQ. I)

IP(ICRQ • I) IOD

DECODE (MeIR) RQ{, WCH

DECODE (ICIR) RCI, WCI

RCH MAR • HCAD

Rct

'IICl

.CORERD

CLEAR HCRQ

START

MAR· HeAD

MBR. H

CLEAR HCRQ

.COREWR

START

MAR • ICAD

.CORBD

IOBFR· HBR

CLEAR ICRQ

MAll. I CAD

HBR' IOBFR

.COl\BWl\

CLEAR ICRQ

START

SUBROUTINE .RIPLADD (X,Y,Z,OPL,WL), CLASS .ADD2

x • AUGEND, Y • ADDEND, Z • SUM, on • OVEllPLOW PLAG

RADIX COMPLEMENT ADDITION WITH RIPPLE GARRY

REGISTER X(WL) , Y(WL) , Z(WL) , OPL(I), 5X(I) , 5Z(l)

1FT (X. Z)

REGISTER n(WI.)

IPP (X. Z)

EQUIV (TX • Z)

-- MICRO

C(WL-I) • 0

D(WL-l) • 1

RANGE I • 0, WL .. 1

C(l-I) • X(I)*Y(I)*D(I) + (X(I)+Y(I»*C(I)

0(1-1) • (-X(I»*(-Y(I»*C(I) + «-X(I» + (-Y(I»)*D(I)

WAIT (C(-I) + 0(-1) • 1)

ASSERT (C. (-D»

SCI) • XCI) (+) VII) (+) C(I)

OVS • C(O) (+) C(-I)

GATE OFL • OVS

1FT (X. Z)

GATE X • TX

-- COMPILE

END

DISCUSSION OF THE EXAMPLE

The purpose of the global header subprogram
with' the identifier "MACHINE" is to provide maxi­
mum flexibility in the system design. One can
change word length or memory size simply by
changing one synonym. One can change from buf­
fered I/0 to sequential I/O by removing one state­
ment. One can change from one type of memory to
another by changing macros MEMRD and
MEMWR. We note incidentally the convention
ENDM as macro termination and the use of macros
within macros.

The statements IFF and 1FT mean "IF FALSE"
and "IF TRUE" and cause conditional compilation
of the next statement (MAP convention). All sub­
routines whose mimes start with a period are as­
sumed to be library subroutines (or classes of them).
The subroutines used· have the following interpreta­
tions:

.INCR (SOURCE, DESTINATION,
LENGTH): DESTINATION =
SOURCE + 1

.DECR (SOURCE, DESTINATION,
LENGTH): DESTINATION =

SOURCE - 1
.ADD2 (OPERAND 1, OPERAND 2,

DESTINATION, OVERFLOW,
WORD LENGTH): 2's complement
addition.

.SUB2, .MUF2, .NDVF2 have the same
arguments as .ADD2 and refer to 2's
complement subtraction, multiplica­
tion and non-restoring division.

.IOBFRRD AND .IOBFRWR are subroutines
to activate external I/O devices to read into and
write out of the 10 buffer register, respectively.
Similarly .CORERD and .COREWR generate sig­
nals to read from and write into the core memory.

Since we have adopted the IPL V execution con­
vention for GO TO, certain statement tags are not
admissible. These are: DECODE, CALL, MACRO,
ENDC, ENDM, IF, IFF, 1FT, IRP, END, WAIT,
CLEAR, SET, REGISTER, INTERFACE,
PARALLEL, etc.

262 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Special Points to be Noted

Main Control: ACTR is a counter register for
arithmetic control. RUNSW is a flip-flop controlled
by console switches. When it is off (RNSW = 0),
the instruction HTR stops the main control. How­
ever, the I/O and memory controls may continue to
run. In SAD and LJP we could have used a
read/modify /write procedur~ if the memory control
had such capability. For example, if RMW is the
appropriate core memory instruction, the appropri­
ate string for SAD is:

CALL CORE (MCRQ)

M=A

MCAD = ADDR

MIR = RMW

ENDC

One would define such a string by a macro in the
global description.

Note that register M appears in the interface
between MAIN and ARITH, as well as in the inter­
face between MAIN and CORE. This is permissible
in this case since MAIN calls ARITH sequentially.

A rithmetic Control: We should note the forma­
tion of the long EAQ register by the use of CON­
NECT. The sign bit of Q is excluded in this long
register and the sign bit of A is extended by one
bit (ES).

[0 Control: We note the use of CALLS when
subcontrol CORE is called. In the global definition,
10 and CORE have been defi~ed as parallel as they
could operate at the same time. However, when
CORE is called by 10, we have to wait for the
CORE control to finish. In reading from an 10
device, we have to signal MAIN that the word has
been written into memory; in writing to an 10
device, we need the word from memory to write.
Thus in both cases aWAIT. (ICRQ = 0) is neces­
sary after the initiation of a memory request. If a
simple CALL were used, the ENDC would have to
be followed by such a wait, whereupon the first
WAIT (ICRQ = 0) produced by the compiler be­
comes redundant. (Incidentally, in such a case the
.IOBFRRD must be inside the CALL string.) We
also note that the 10/CORE interface register
10BFR is being used also as 10/EXTERNAL
DEVICE interface. While the compiler itself will
never use an interface register between parallel con­
trols for any other purpose, the programmer may
choose to do so. The compiler will bring this fact
to the attention of the programmer but will not
label it as an error.

Core Control: We note that the initial wait string
assigns a higher priority to 10 than to main control.
If a scanner type of arrangement is desired we
should replace the first two statements by

START

STRTI

IF (ICRQ = 1) 10D

IF (MCRQ = 0) START

and return to STRTI instead of START after RCI
and WCI. Clearly one could, by additional IF
statements, permit more complicated scanning pro­
cedures (such as a 2: 1 priority for 10 over MAIN).
Also we could have saved some writing through the
use oflRP.

Library Subroutine Usage: An example of a
library subroutine is shown under .RIPLADD. The
subroutine belongs to the class .ADD2 and is called
by that class name in the subcontrol ARITH. The
class definition is contained in a table within the
library directory. We note a new statement
ASSERT. This statement is an assertion known to
the programmer but difficult to detect by program.
The assertion is passed on to the logic compiler for
its use.

CONCLUSION

The purpose of this paper was to present a pro­
posal for a computer compiler system of programs.
As of the time of writing this paper, the system of
programs is not available and hence no experimen­
tal data can be provided. The example giv'en estab­
lishes the following facts:

1. The input language is simple and ver­
satile.

2. The input language is complete. That
is, one can describe any existing com­
puter unambiguously in this language.

3. The language is translatable. That is,
there appear to be no conceptual rea­
sons why the input cannot be algorith­
mically translated to produce optimized
hardware designs.

The basic concept proposed here is not entirely
new. Similar work has been reported earlier by
Proctor2 and Schorr.4 The present papt!r differs
from the earlier proposals in several respects. First
the philosophy is different. The basis of each deci­
sion has been user convenience rather than linguistic
structure. In fact we have chosen to disn:gard the
linguistic aspects. By the same token, the user is not
required to specify any more information than he
absolutely has to. For example, no registers that
are not directly referred to in the input need be

A PROPOSAL FOR A COMPUTER COMPILER 263

defined. MACRO, SUBROUTINE, LIBRARY
and conditional compilations are new features (an
elementary MACRO was used by SchlaeppP). The
use of global headers and the notion of parallel/
sequential CALLs to subcontrols introduces a flexi­
bility that was not previously available.

The compiler (when completed) will optimize
more extensively than is humanly possible, main­
taining the modularity specified in the input. Thus
the system compiler will attempt to merge micro­
instruction strings both between instructions (of the
object machine) and within an instruction, inserting
conditional branch statements where necessary. The
hardware compiler will attempt as much Boolean
minimization as practical. The assignment of bit
configurations to instructions and the combination
of different decoders (within one subcontrol) are
places where substantial gains are expected.

One last distinction which is conceptually trivial,
but to us important, is that our designs will be
asynchronous. It is our claim that asynchronous

computers are faster and more reliable in addition
to being more maintainable. Design difficulty,
which has in the past been the main disadvantage,
is eliminated by the computer compiler.

REFERENCES

1. M. S. Zucker, "LOCS: An EDP Machine
Logic and Control Simulator," IEEE Trans. on
Electronic Computers, vol. EC-14, pp. 403-416
(June 1965).

2. R. M. Proctor, "A Logic Design Translator
Experiment Demonstrating Relationships of Lan­
guage to Systems and Logic Design," ibid, vol.
EC-13, pp. 422-430 (Aug. 1964).

3. H. P. Schlaeppi, "A Formal Language for De­
scribing Machine Logic, Timing and Sequencing
(LOTIS)," ibid, pp. 439-448 (Aug. 1964).

4. H. Schorr, "Computer Aided Digital System
Design and Analysis Using a Register Transfer
Language," ibid, pp. 730-737 (Dec. 1964).

A BUSINESS-ORIENTED TIME-SHARING SYSTEM

G. F. Duffy and W. D. Timberlake
International Business Machines Corporation

Systems Development Division, Poughkeepsie, New York

INTRODUCTION

The purpose of this project was twofold. First,
to gain systems and operating experience with a
remote terminal, time-sharing system. This would
help to define the needs of future time-sharing ap­
plications. Second, to achieve productive use of
time-sharing in some of IBM's current operations.

In general, man attempts to solve complex pro~­
lems in a step-by-step manner, basing his next step
on the results of the preceding step. Problem solvers
have continually sought tools to aid them in their
tasks. Several decades ago most of these tools (slide
rules, calculators, etc.) were under direct control of
their users (see Fig. 1). Because turnaround time
was not excessive the problem solver could essen­
tially devote his entire energies to the situation at
hand in real-time. Unfortunately these tools were
not powerful enough.

The computer emerged as an extremely powerful
tool; however, it was too fast and expensive to be
used efficiently by one individual in a real-time
mode. Thus, the jobs had to be processed sequen­
tially by the computer. Tut:naround time increased
and the problem solvers had to time-share their
efforts among several tasks. This tends to be an
inefficient use of human talents. This inefficiency, in
part, has led to the current interest in time-sharing
-whereby the computer serves multiple users
simultaneously.

The early development in time-sharing was ori-

265

ented to the scientific, rather than the business user.
This was due, in part, to a lack of knowledge and
consequently a lack of interest by potential business
users. In spite of this, the Systems and Procedures
Department was interested in fostering the use of
time-sharing by business users.

In 1962, we learned of the Administrative Ter­
minal System that was being developed by IBM's
Advanced Systems Development Division, San
Jose, California. Since this system seemed suitable
for our use we started making plans to install A TS
in the IBM Systems Development Division Labora­
tory in Poughkeepsie.

Two approaches were possible: select one major
application area or select different application areas.
Although the former alternative would have been
easier to implement the latter course of action was
chosen for the following reasons. More experience
would be gained. Initial acceptance would tend to
be enhanced by a more modest beginning in each
area. The system application could be easily ex­
panded at a later time by the addition of more ter­
minals. Finally, failure of a given application would
not significantly impact the entire system.

The task of selecting different application areas,
and justifying the system was simplified because we
were able to obtain three prototype terminals for ex­
perimentation and demonstration. The benefit of
having something tangible to show to potential
users of time-sharing cannot be overemphasized.

266 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

PERIOD BEFORE
LARGE-SCALE
PROCESSORS

PERIOD OF REAL-TIME ENVIRONMENT
PLUS BATCH - PROCESSING

(LARGE-SCALE PROCESSORS) BATCH - PROCESSI NG

LARGE COMPUTER

UNIT RECORD
EQUIPMENT

LESS

LARGE OR
SMALL COMPUTER

/QO
1. ~ CALCULATOR

Ii. '" ~ SLIDE RULE

CLOSE CONTROL

LOW RATE OF
OUTPUT

DIRECT CONTROL LIAISON: MAXIMUM CONTROL

HIGH RATE OF
OUTPUT

HIGH RATE OF (SYSTEMS AND)
OUTPUT PROGRAMMING

D
MANUAL

PROCESSING

~* 1. QUEUEING 'A' PROBLEM

APPLICATION AREA

REMOTE: TERMINj,LS
ON-LINE

Figure I. Man-machine relationship.

SYSTEM DESCRIPTION

A TS is a real-time, multiprogrammed, time­
shared, remote terminal system that can be run on
either a 1440 or 1460 IBM computer (see Fig. 2).
The hardware consists of a processing unit, disk
storage, multiplexor channels, typewriter terminals,
magnetic tape drives, card reader and punch, and
on-line printer(s).

The system permits many operators to simul­
taneously perform different data processing tasks.
These tasks inch.ide data (or text) entry, immediate
correction, storage, retrieval, updating, formatting,
and transmission.

At entry time a backspace-correction feature can
be used to ensure that error-free data is retained in
storage. This is done by backspacing over incorrect
keystrokes and re-keying the correct strokes. Data
can be updated by using add, replace, and delete
functions. Text can be formatted at output time
into various specified formats. (This paper was pre­
pared with the help of A TS.) Figure 3 is an example
of text as it was entered into ATS, and as it was
subsequently formatted and printed.

Data can be transmitted or recorded on various
output devices. These include the originating ter­
minal (or any other terminal on the system that

provides a message transmission capability), on-line
printer, on-line card punch, or magnetic tape. The
on-line printer may be standard or supplemented
with the upper and lower case print feature. The
data recorded on magnetic tape can be used for
further processing (off-line in regard toA TS), off­
line printing (standard or with upper and lower
case characters), or off-line card punching. (See
Fig. 4.)

Input media into the system come primarily from
the remote terminals, but punched cards or mag­
netic tape can also be used.

The software consists of a core resident control
program and various disk resident service programs.
In addition to accepting data from, or transmitting
data to, one' or all terminals, the control program
maintains lists of work in progress, calls lthe service
programs into core as necessary, and handles all
disk I/0 operations.

Core storage is used for various lists and tables
used by the control program and also as core buffer
areas for terminals. Core storage allocation consists
of 5900 positions for control program and system
subroutines, 2700 positions for active service pro­
grams, 1400 positions for tables and lists, and up to
6000 buffer positions (see Fig. 5).

As an option, some portion of upper memory

A BUSINESS-ORIENTED TIME SHARING SYSTEM 267

PLANS
AND

CONTROLS
NETWORK

PLANS AND
CONTROLS - POK (1) PERSONNEL (1)

PRINTER

SYSTEMS AND
PROCEDURES (1)

CHQ-MGMT.
SYSTEMS (1)

LIBRARY
NETWORK

Figure 2. Configuration of the system.

can be used to contain an active peripheral pro­
gram. Thus ATS can perform an additional task:
that of providing a peripheral operation (e.g., tape­
to-printer or card-to-tape) concurrent with terminal
activity.

Data flows from a terminal into core blocks (100

characters long) that are dynamically assigned at
the time of need. When the core block is filled it is
written onto disk "working storage" and the core
block is released for further assignment. Working
storage is defined as that portion of disk containing
documents currently being prepared or updated. A

268 I PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

TEXT AS ENTERED INTO ATS

uc
UNCONTROLLED MODE~

SYSTEM DESCRIPTION
a
AUTOMATIC MODE

ATS is a real-time, multiprogrammed, time-shared, remote
minal system that can be run on either a 1440 or 1460 IBM

computer (see Fit~re 2).~

The hardware consists of a processing unit, disk drives, multiplexor
channels, typewri ter terminals, magnetic tape drives, card readier

nd punch, and, on-line printer(s).

The system permits many opirators to simultaneously perform
different test processing tasks.-,®

These tasks include data (or text) entry, immediate correction,
storage, retrieval, updating, formatting, and transmission.

n
NEXT NUMBER -- 10

8 test teJt~
The system permits many operators to simultaneously perform

different text processing tasks.

TEXT AS CORRECTED, FORMATTED AND PRINTED

SYSTEM DESCRIPTION

ATS is a real-time, multiprogrammed, time-shared,
remote terminal system that can be run on either a 1440 or
1460 IBM computer (see Figure 2). The hardware consists of
a processing unit, disk drives, multiplex0r channels,
typewriter terminals, magnetic tape drives, card reader and
punch, and on-line printer(s).

The system permits many operators to simultaneously
perform different text processing tasks. These tasks
include data (or. text) entry, immediate correction, storage,
retrieval, updating, formatting, and transmission.

KEY x-= The "uc" request will center text automatically.
B - Double carrier return established "end of uni~"
C - Tabbing of units established indented paragraphs.
D - Indicates automatic data correction while entering.
E - Error in unit 8 corrected, and unit automatically outputted.

~--_,------
Figure 3.

A BUSINESS-ORIENTED TIME SHARING SYSTEM 269

2741
TYPEWRITER

TERMINAL

INPUT AND OUTPUT

1460
CENTRAL

PROCESSOR
(CORE STORAGE)

APPLICATION
PROGRAMS

WORKING
STORAGE

PERMANENT
STORAGE

CARD TO DISK
AND

DISK TO CARD

r----------,
I TAPE OUTPUT FOR I

LARGE - SCALE
PROCESSING I

L __ ~A:: INP:~ TO ~~
I NORMAL OUTPUT I
I STANDARD PRINTER I I OR CARD PUNCH I

I I
I I

I
I I
I I

iu;"'-:-~;;"; ;;;;N~OU-;i
I I
I I

I
I I 1--- _______ --1

I ARCHIVE TAPE FILE I
I I

I
I I L _______ --.J

Figure 4. Administrative terminal system - Work-flow 'schematic.

document in this part of storage is essentially pri­
vate toa given terminal.

In contrast, a document in "permanent storage"
can be copied into private working storage by any
terminal operator who has the requisite identifying
iI?-formation. Thus a document can be created in
working storage from any terminal, stored in per­
manent storage from the same terminal, and later
copied from permanent storage into the working
storage of any terminal.

The operation of the terminal is relatively simple.
Many commands are designated by as few as two
keystrokes. A list of the common A TS functions
follow:

• Clear working storage. This erases
working storage.

• Delete stored document.

• Erase line(s) of data from working stor­
age.

• Erase characters in current line of data
in working storage.

• Retrieve document from permanent
storage.

• Retrieve a previous line of data from
working storage.

• Insert a line into working storage.
• Substitute one phrase with another.
• Move line(s) from one portion of work­

ing storage, to another.
• Print working storage. (This command

can take several forms. The printing can
be performed on either a printer or a ter­
minal. It can be formatted or unfor­
matted.)

270 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

o ***********************************

* *
* *
* *
* Control Program and *
* System Subroutines *
* *
* *
* *
* *
* *

5,900 ***********************************

* *
*
*
*
*

Overlay Area­
Service Programs

*
*
*
*

8,600 *****************~*****************
* System tables and lists
*

*
*

10,000 ***********************************

*
*
*
* lOO-Characte~ blocks
* of buffer
*

*
*
*
*
*
*

* * Peripheral Overlay Area
*

*
*
*

16,000 ***********************************

Figure 5. Core stor~ge allocation.

• Store a document.
• Transfer a document to/from magnetic

tape or cards.
• Receive a message sent from another ter­

minal.
• Transmit a message to another terminal.

In addition to the common functions, some pro-
visions available for automatic formatting are:

• Page length specification.
• Page width specification.
• Right margin justification.
• Automatic page numbering.
• Line centering.
• Line skipping.
• Heading/footing. (Automatically gener­

ated at top/bottom of each page.)
• Page skipping.
• Keep specified portion of text together

on a page.

APPROACH TO SYSTEM IMPLEMENTATION

The events leading to actual system implementa­
tion include the following.

Original Proposal

As a result of "hands-on experience" gained from
the initial 3 terminals, which were demonstrated to

more than 25 different areas, we proposed installa­
tion of 17 terminals within 11 application areas.

In order to minimize cost, A TS was to sharle a
1460 computer, which was originally intended for
peripheral printing only. Consequently, the initial
proposal estimated ,a cost and time savings that
would more than cover the cost of the purchased
equipment.

In retrospect, the decision to install A TS in many
areas, rather than one large one, appears to have
been sound. Each application presented new prob­
lems, new benefits, and ideas for future system ex­
perimentation.

The proposal was accepted by management and
the equipment order was placed. See overall ATS
schedule (Fig. 6).

Planning and Training

As shown on the A TS schedule (Fig. 6) it was
necessary to start in-depth systems analysis approx­
imately four months prior to installation of the 1460
ATS. The three original terminals were tied to a
"borrowed" computer and were used as much as
possible during this initial analysis.

The objectives derived from the first analysis in­
cluded:

• Train terminal operators in those areas
receiving terminals.

• Define goals for each A TS application.
• Write procedures and design forms for

jobs to be done after installation of the
system.

• Train computer operators to operate! an
ATS system.

• Determine storage allocations for each
terminal.

After installation of the 17-terminal 1460 Ad­
ministrative Terminal System, the feasibility phase
of the systems analysis began. A target date of
three months for concluding feasibility studies was
set. Questions to be answered included:

• What type of applications are best suited
to ATS?

• Which jobs could A TS best perform with
respect to reduced turnaround time, cost
savings, and manpower savings?

• What human factors must be considc;!red
in operating in a real-time environment?

• What additional procedures are needed
to operate a real-time system?

• What is the future potential of A TS in
the areas studied?

A BUSINESS-ORIENTED TIME SHARING SYSTEM 271

1964 1965
J J A S o N D J F M A M J J A SON

INSTALLATION OF i
3 TERMINALS

3-TERMINAL OPERATION

DEMONSTRATIONS

TRIAL APPLICATIONS

SYSTEMS ANALYSIS FOR
II APPLICATIONS

OPERATOR TRAINING

PROCEDURES. ETC.

PROPOSAL GENERATION
AND APPROVAL

FOR FULL SYSTEM

ORDER PLACED FOR
18 - TERMINAL SYSTEM

EQUIPMENT INSTALLATION
AND TEST

FEASIBILITY STUDIES

W/TOTAL SYSTEM a
II APPLICATION AREAS

EVALUATION REPORT OF
THE SYSTEM

PLANNING STARTED FOR
SYSTEM EXPANSION

W/3 TERMINALS

i

L

i

1-----"""'.;

Figure 6. A TS implementation schedule .

• How much off-line effort will be gener­
ated from ATS activity?

• Which direction should A TS expansion
take relative to system configuration,
programming subroutines, hard-copy vs
displays, etc.?

After installation of the equipment, the feasibility
studies began, and a "Users Conference" was held
to review ground rules and operating procedures.

Coordination

An important aspect of system implementation
was the type of coordination and control required
to operate a remote terminal system. Close com­
munication was essential among the following areas:

Computer Center: ATS computer operators,
and off-line equipment op­
erators

Customer Engineering: terminal customer engi-

Telephone Company:

Application Areas:

neers, and system cus­
tomer engineers
maintenance of lines be­
tween terminals and Com­
puter Center
17 -terminal operators, and
operating management in
each area

Systems & Procedures: systems man for each
operating area

Computer operators had to become accustomed
to dealing with many customers via the terminal
and telephone. They also had to learn that operat­
ing in a time-shared environment does not permit
arbitrary manual intervention, such as pushing the
stop button without advance warning. Requests for
on-line or off-line processing had to be clearly de­
fined by the terminal operator so that each request
could be satisfied. The computer operator also had
to act as a clearing agent for all customer engineer

272 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

calls. Terminal operators and their managers had
to adjust to the condition of being on-line with a
computer. The insulation previously provided by
the systems analyst and/or programmer was con­
siderably reduced.

A Terminal Operator's Guide was written to de­
fine all personal contacts involved, and "what-to­
do" in various situations, such as requesting off-line
processing of A TS documents, asking for A TS time
after prime shift, etc.

Communication breakdowns were frequent dur­
ing the first months of operation, but by the end of
the feasibility phase communications between the
various areas was no longer a problem. It was then
that the applications people recognized that (from a
user viewpoint) real-time systems afford better com­
munications and control than was possible under
the batch-processing mode of operation.

TYPICAL APPLICATIONS OF ATS

A summary of the specific areas selected, the
tasks p~rformed, and the benefits derived by each
user of ATS is discussed in this section.

Engineering Design Services

This area is responsible for the release, and status
control, of Engineering Changes (E/C's). In addi­
tion to preparing tabular-type data on E/C's, this
group prepares Installation Instructions for each
release. The use of A TS has decreased turnaround
time between receipt of paperwork and drawings
from the Engineer, and the release of formal Engi­
neering Changes.

Task Performed
Weekly status reports (on System/360 E/C's).
E/C status histories.
Design automation cycle time reports.
Systems installation instructions.

Benefits Derived Using A TS
Reduced turnaround time for review of E/C's,

and provided faster release of formal
ch(1'nges.

Reduced time to update documents and re­
ports.

Eliminated keypunching, card-handling, and
1401 processing.

Produced cost and manpower savings.
Potential Uses of A TS

Maintain development machine structure, and

switch to production records after release.
(P /N's, Qty, Descrip., where used, etc.)

Engineering Proposals

Requests for price quotes (RPQ) from IBM cus­
tomers presents two problems. The RPQ workload
is high at irregular times, and the requested due
dates usually allow the minimum time for preparilng
a proposal. A TS has allowed the Engineering
groups to manipulate stored text into the;: unique
form required for each RPQ proposal. After mak­
ing minor changes to the standard text, and inse:rt­
ing special information reque~ted by a particular
customer, a finished manuscript can be obtained.

Task Performed
Prepare "Boilerplate" proposal-standard SC;!C­

tions stored for easy retrieval and revision.
Prepare "Unique" proposals-generate unique

portions of text, and bring in standard sec­
tions as required. The standard portion of
each proposal represents about 75% of total
text.

Benefits Derived Using ATS
Reduced typing and editing-only changed

portion of standard text requiring editing, or
retyping.

Increased accuracy of proposal data.
Reduced turnaround time for proposal re­

sponse to customer, because of the rapid
method of updating and editing existing
copy.

Provides camera-ready output.

Library Services

This application involves converting library con­
trol processes to a real-time situation. In addition,
the feasibility of a library network is being e:xplon~d
for the purpose of centralizing the common library
functions of several facilities. Two terminals are
now being used for this purpose.

Task Performed
Book order processing-after data is lentered,

the book order is printed on the tt!rminal,
the total order list is updated, and a status
report output is generated.

Book. holdings-master file by shelflist,. title
and author.

Benefits Derived Using ATS
Eliminated keypunching, card-handling~, etc.
Permitted rapid access to central files.

A BUSINESS-ORIENTED TIME SHARING SYSTEM 273

Reduced turnaround time on processing orders
and answering inquiries.

Produced cost and manpower savings.
Proved feasible for use in larger-scale library

networks.
Potential Uses of A TS

Library announcements.
Subscription control (e.g., periodicals).
Library procedures.
Cataloging and subject index.
Book circulation cards.

Plans and Controls and Documentation Controls

The Plans and Controls (P&C) area is responsible
for project planning, control processes to measure
plans vs performance, and for issuing of status re­
ports.

Because of the shared responsibility for systems
design at various IBM laboratories, and the exis­
tence of an overall P&C manager at divisional head­
quarters, the feasibility of an ATS network for com­
mon P&C needs is being explored.

The Documentation Control area is responsible
for the distribution and status of Engineering Speci­
fications. The status of specifications, i.e., approval
or disapproval, is maintained through ATS.

Task Performed
Prepare engineering specifications.
Prepare functional and performance specifica­

tion status reports.
Perform keypunch simulation (project plan up­

date).
Establish communication network for:

SDD Laboratory-IBM Poughkeepsie
SDD Laboratory-IBM Kingston
SDD HQ-IBM Harrison

Prepare "hot" exception reports (e.g., systems
status).

Prepare "hot" manpower status reports.
Benefits Derived Using ATS

Established central files that are easily re­
trievable in hard-copy form.

Maintained control files on a real-time basis.
Provided rapid communication of critical re­

ports to SDD HQ.
Proved feasibility of larger SDD communica­

tion network for facility control functions.
Resulted in a high degree of accuracy.
Minimized turnaround time between final up- .

date and transmittal of reports and specifi­
cations.

Reduced manpower and cost for the prepara­
tion of control documents and specifications.

Divisional and Corporate HQ-Procedures and
Planning

Task Performed
Preparation of, and file maintenance on:

Procedures
Procedures Distribution Lists
Organization Directory
Document Index
Card-Image Input for Off-line Processing
General Memoranda

Benefits Derived Using A TS
Provided rapid access to stored data.
Minimized turnaround time to update and out-

put new files.
Elimination of keypunch, card-handling, etc.
Reduced typing and editing.
Increased accuracy.

Potential Uses of A TS
Systems and procedures programming.
Legal department documentation.
Corporate policy revisions.
Contract preparation.

CONCLUSIONS

This section discusses the problems encountered
in implementing a time-sharing system, an overall
summary of significant benefits experienced by A TS
users, most promising applications of A TS, and
summary d: 'accomplishments.

. Problems Encountered in Implementing A TS

A list of the common problems encountered in
implementing A TS follows:

I. Human factors, habit patterns, etc., have to be
considered with respect to both operation of the
terminal and designing new procedures.

2. It was found that storage requirements ex­
ceeded available storage. A larger disk file is
planned to increase each terminal's storage alloca­
tion to at least one million characters.

3. Systems analysis of terminal applications has
to be very flexible, in order to permit changing of
existing procedures and formats.

4. Close coordination and control is required,
especially during the first several months, between
the critical areas involved in system implementa­
tion, i.e., Computer Center personnel, customer

274 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

engineers, operating managers, terminal operators
and systems analysts.

5. The selection and training of terminal opera­
tors requires special techniques. Efficient terminal
operation for most applications is facilitated by a
combination of secretarial skills and a logical
thought process.

6. While reductions in turnaround time can be
readily defined, a better means is required to define
cost and manpower savings. This is because these
savings usually overlap service-type departments.

Summary of Significant A TS Benefits

The following is a list of benefits experienced by
one or more of the various A IS users:

1. Proved to be a flexible means of entering text,
tabular and card-image data into the system, with
minimum time required to maintain up-to-date files.

2. Provided real-time access to updated files.
3. Provided the ability to establish common func­

tion networks for constructing central files from
various sources, and also allowing rapid communi­
cation of critical memoranda.

4. Reduced turnaround time between keyboard
entry and desired output.

5. Provided a flexible means of obtaining output
data, i.e., on-line or off-line.

6. Provided the ability to capture data in ma­
chine readable form for large-scale processing.

7. Eliminated transcribing, keypunching, card­
handling and card-to-tape operations.

8. Increased accuracy of text or tabular data,
since unchanged portions are not subject to retyping
errors.

9. Reduced editing time.
10. Cost savings as a result of reducing repetitive

operations as well as reducing intermediate steps
(e.g., control points, delivery, distribution).

Most Promising Type Applications of ATS

The most successful applications of A TS are those
that take advantage of the greatest number of the
following ingredients, especially when overlapping
the three categories listed:

1. Need for capabilities such as:
a) File maintenance on a "real-time"

basis, at frequent intervals.
b) Information retrieval on a "real-time"

basis.

c) Hard-copy requirement, either on·-line
or off-line.

d) Minimum turnaround, entry-to-output.
e) Card-image preparation for batch

processing. (keypunch simulation).

2. Network of common function terminals.
a) Access to central files from various fa­

cilities.
b) Rapid hard-copy communication be­

tween facilities.
c) Merging of various facility files for ac­

cess or processing.

3. Bonus items.
a) Form letters and normal correspon­

dence.
b) Frequently changing lists, tables, man­

power charts, etc.

Summary of Accomplishments

Six months of operating experience proved ATS
to be feasible in 8 of the 11 application areas. Some
terminals have been reassigned with increased em­
phasis on proved production applications.

Although ATS can be justified for many '''single''
functions, it is more easily justified when it. can be
used for various functions within an area.

As expected, much learning has taken place. Our
Computer Center is in a better position to operate
a time-sharing system. A number of people have
been exposed to A TS and the concept of time­
sharing. Others have had considerable terminal
operating experience.

Extremely important is the fact that our systems
people have increased their knowledge of time­
sharing immeasurably. We can now avoid many of
the earlier mistakes we made in planning, ordering,
installing and operating ATS. For example, we
would now expect new terminal operators to be
apprehensive when first exposed to the system. But
we would also expect the majority of them to be­
come enthusiastic supporters in a short p(~riod of
time.

We would expect operating management to be
somewhat negative when time-sharing is first pro­
posed to them. Generally this position changes to
one of expectation that time-sharing can cure all
problems. Certainly it cannot do this, but we can
anticipate the attitude.

We are now in a better position to specify to de-

A BUSINESS-ORIENTED TIME SHARING SYSTEM 275

signers of future systems what was good about ATS.
We can also specify improvements that became ap­
parent to us during this period.

As a forerunner of things to come A TS has served
in an outstanding fashion. We are presently plan­
ning for the next system which will be superior to
A TS partially because of the experience gained from
ATS.

In summary, our experience with A TS has solidi­
fied our previous conviction that time-sharing sys­
tems can, and will in the future, assume a major
role within data processing. If current interest (as
expressed by word of mouth, publications, and
computer manufacturers' plans) are any indication,
this major role is fast approaching.

ACKNOWLEDGMENTS

A TS was designed and developed at the Ad­
vanced System Development Division, San Jose,
California. Me Michael Nekora was principally
responsible for A TS development and implementa­
tion and worked closely with us during the initial
installation of the system at the Poughkeepsie
Laboratory.

The total systems analysis and programming ef­
forts during the implementation of ATS applica­
tions were accomplished through the cooperative
efforts of S&P personnel, computer operators, and
the operating people involved in the design of each
terminal application.

"NEVER-FAIL" AUDIO RESPONSE SYSTEM

Bruce Dale
Honeywell EDP Division

Wellesley Hills, Massachusetts

INTRODUCTION

The Northwestern Bell Traffic Rating System is a
real-time audio response dual computer system
which must be on-line continuously. The system
allows any Northwestern Bell long-distance opera­
tor to interrogate a remotely located computer sys­
tem for a long-distance toll rate. The 3000 operators
are widely scattered over an area covering 10% of
the country. The toll message response consists of
an amount, plus a word denoting whether the rate is
for a "station-to-station" or "person-to-person"
call. These conditions are ideal for using audio re­
sponse for the remote display of information, rather
than any of the commonly used hardware terminals.

The Traffic Rating System concentrates an opera­
tion that was formerly done by widely dispersed
Rate Operators. This concentration has a disadvan­
tage in that the operation is now vulnerable to the
single failure of any part of the computer system.
To keep the operation going continuously, a Sys­
tems Monitor is necessary to 1) detect failure of the
on-line operation, and 2) transfer the operation to a
standby computer system. In this way the system
"heals itself" without recourse to human interven­
tion. The necessity for such a capability is becom­
ing widespread as more computer systems are in­
stalled which must be on-line all the time.

The building and installation of a real-time sys­
tem requires special procedures to deal with the
unique problems involved. Some of the problems in
putting tog~ther the Traffic Rating System were:

277

1. Liaison between the customer and the
manufacturer over a distance of half the
country.

2. Development of two completely new
units for the system-one from a sub­
contractor who was also a great dis­
tance from the manufacturer.

3. The system had to be in operation less
than a year after the contract was
signed, resulting in the parallel debug­
ging of new hardware along with the
software.

4. Once on-line, the system had to operate
continuously. It could not be taken off­
line for any reason, and so no long
shakedown of the system was possible.

These and many other problems had to be solved,
through close liaison, careful planning, and tight
scheduling. The successful installation of the sys­
tem was the one purpose of the project. Of poten­
tially greater value was the gaining of experience
which will provide the capability to meet the grow­
ing demand for this type of system.

PURPOSE AND OPERATION
OF THE TRAFFIC RATING SYSTEM

Manual Rate Quotation

. When a long-distance call is made from a tele­
phone booth,'the operator must determine the ini-

278 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

tial deposit--the rate for the first three minutes. To
do this, she calls a Rate Operator and gives her the
first six digits of each of the two 10-digit telephone
numbers involved. The Rate Operator then goes
through the following procedure:

1. Using the six digits, she looks up in a
table the Vertical and Horizontal Co­
ordinates for the call's origin and ter­
minal points. These are grid coordi­
nates, similar to latitude and longitude.

2. She then calculates the differences be­
tween the two Vertical Coordinates,
and the difference between the two
Horizontal Coordinates. This gives her
a measure of the two legs of the right
triangle whose hypotenuse connects the
two locations.

3. Another table enables her to find the
airline distance between the two loca­
tions.

4. Finally she enters the appropriate rate
table with the distance, and gets the ini­
tial rate, which she relays back to the
operator handling the call.

The above process occupies two operators, their
positions and the connecting -circuit for an average
of 45 seconds. Times as long as two minutes have
been recorded. In an effort to improve the service
while at the same time reducing the costs involved,
telephone companies are investigating ways of auto­
mating the rate quoting process.

Automatic Rate Quotation

The Northwestern Bell Telephone Company
serves an area in the Upper Midwest that covers ap­
proximately 10% of the United States (Fig. 1). Late
in 1964, the company requested bids on a real-time
computer system which would:

1. Be accessible to any of the 3,000 opera­
tors in the Northwestern Bell territory
who handle calls requiring an initial
rate quotation;

2. Accept rate inquiry digits from an oper­
ator;

3. Calculate the rates, using information
previously put in memory, such as Ver­
tical and Horizontal Coordinates, loca­
tion time zones, rate tables, etc.;

4. Inform the operator of the resultant
rate;

5. Operate continuously without fail; and

Figure 1. The Northwestern Bell Traffic Rating System in
Omaha serves 3000 operators in five states.

6. Handle the peak hour load of 5,000 in­
quiries over 24 trunks with less than
60% of the total central processor ca­
pacity.

System Input

Input to the automatic system would come from
keysets which were already an integral feature of
the operators' positions. These keysets send digits
in a form which are received and decoded by a
Multi-Frequency Receiver. The computer systt!m
would interface with 24 trunks, each having a Multi­
Frequency Receiver. (See Fig. 2).

System Output

The answer to an inquiry would consist of an
amount in nickel increments from $0.00 to $3.00
and/ or control or information words. In all, the
replies could be made up from less than twenty dif­
ferent words.

The possible output devices were cathode-ray
tubes, teleprinters, or audio response units. Each
device had certain advantages, as shown by Table 1.
The slight disadvantages of limited vocabulary and
low speed of the Audio Response Unit were more
than offset by its negligible cost and minimum
maintenance requirements. With audio rc!sponse,
the system responsibility of the computer systt::m
manufacturer would be concentrated in one loca­
tion, and not be spread among 3000 remote sites.

"NEVER-FAIL" AUDIO RESPONSE SYSTEM 279

TO/FROM TOLL CALL OPERATORS

TELEPHONE COMPANY
EQUIPMENT:
MULTI- FREQUENCY RECEIVERS

AUDIO RESPONSE UNIT AND

INPUT
TRUNK

MFR#1

PHRASE SELECTION MATRICES :# 1 -II U

OUTPUT
TRUNK
#1

PSM
#1

INPUT
TRUNK

MFR# 24

OUTPUT
TRUNK
#24

PSM
#24

•
COMMUNICATION ADAPTER UNITS

COMMUNICATION
CONTROL UNIT A

SWITCH

COMMUNICATION
CONTROL UNIT B

----, I r--·

~------------------~ : I I ~------------------~ ~--~------~ r __ ~, __ ,~~l __ .~
CENTRAL

PROCESSOR

RANDOM
ACCESS
DRUM

SYSTEM
MONITOR

CENTRAL
PROCESSOR

Figure 2. Diagram of Traffic Rating System.

Table 1. Ratings of Terminal Output Devices

Device Cost Vocabulary Speed Installation Maintenance
Human
Factors

Cathode-Ray
Tube High Unlimited High Difficult Moderate Excellent

Teleprinter Medium Unlimited Medium Difficult Moderate Poor
Audio

Response
Unit Very low* Limited

·Cost is that of central site audio equipment divided by 3000.

Traffic Rating System Operation

In November of 1964, Honeywell proposed a
Traffic Rating System to meet the requirements set
forth by the Northwestern Bell Telephone Company
in their bid request.

To obtain an initial rate from the proposed sys­
tem, an operator performs the following steps.

1. She keys in a three-digit access code, thus ty­
ing her position to one of the 24 trunk.s in Omaha.

Low None None Good

The system recognizes that the trunk has been
"seized." and returns a "beep-beep" tone from the
Audio Response Unit to the operator.

2. Upon hearing the beep-beep tone, she keys in
the 12 digits, plus a 13th digit to signify whether the
call is station-to-station or person-to-person. The
system calculates the rate in less than 0.1 second--a
procedure that took a Rate Operator 45 seconds.
The Central Processor then sends the audio track
addresses for the reply to the trunk's Phrase Selec-

280 PROCEEDINGS~SPRING JOINT COMPUTER CONFERENCE, 1966

tion Matrix. At intervals ot U.) seconds, the matrix
directs the chosen words to the output trunk, and
the reply goes to the operator.

3. The operator hears the reply, such as "eight­
five-station-eight-five." The reply states the re­
quested rate, confirms the rate through repetition in
case the operator did not understand it the first
time, and confirms that the rate is for a station-to­
station call. This form of reply reduces the chance
of operator error or misunderstanding.

Benefits of the Traffic Rating System

A comparison between the manual quotation
procedure and the automated system shows the fol­
lowing advantages of the Traffic Rating System:

1. Service. The customer waits 15 seconds
or less instead of 45 seconds.

2. Cost. The Rate Operators and their po­
sitions are available for other tasks.
This saving is partially offset by the
Traffic Rating System rental, and by the
cost of equipment to handle the addi­
tional long-distance traffic coming to
Omaha.

3. Accuracy. The chances for error in de­
termining the rate are greatly dimin­
ished.

On the cost basis alone, the system will justify itself
many times over. While the other advantages are
difficult to assess quantitatively, they are highly sig­
nificant to an organization which must answer to
the general public in its function as a public utility.

The basic advantage of the Traffic Rating System
is the concentration of the widespread manual rate
quotation operation into an efficient centralized
activity. Efficiency implies the reduction of redun­
dancy. A system without redundancy becomes ex­
tremely vulnerable to failure. A singI'e mishap to
the Traffic Rating System destroys the rate-quoting
capability for the entire Northwestern Bell area.
Such an event must be guarded against at all cost.
The Traffic Rating System must "never fail."

"NEVER-FAIL" SYSTEM REQUIREMENT

The financial justification for installing the Traffic
Rating System is the availability of the Rate Opera­
tors and their positions for other tasks. This means
that no manual backup would be available in case
any component of the system malfunctioned. The
real-time system must also be a full-time system,
on-line 24 hours per day and 7 days per week.

The Traffic Rating System requires the function­
ing of all four major components: Communications
Control Unit, Central Processor, Random Acc:ess
Drum, and Audio Response Unit. The Phrase
Selection Matrices, Communication Adapter Units,
and associated telephone company equipment are
all modular-one unit for each of the 24 trunks
served. A malfunction in a modular unit affects
only one trunk, while a malfunction in a major com­
ponent cripples the entire system. Therefore each
of the major components is duplexed. Switches
enable any component to be switched into or out of
the system almost instantly. This capability prote:cts
the system from failing from any single malifunction.

This capability solves one problem, but brings in
more problems. Now that the switches are avail­
able, these questions arise:

• When should a switch be thrown?
• Which switch is thrown?
• Who (or what) throws the switch?

Obviously a switch is thrown when the syst1em
comes to an unprogrammed halt. Still, th,e system
could be running when only a portion of the syst1em
malfunctioned. Numerous transient errOlrs could
occur which, while individually correctabk, collec­
tively indicate an incipient malfunction. Therefore
the running of the system is not the only criterion
which determines when a switch should be thrown.

Which switch is thrown depends on which of the
major components malfunctioned. If this is not
immediately apparent by a control panel display,
then additional time must be spent in either finding
the bad unit, or trying each switch in turn to see if
the system resumes operation. As an alternative to
these procedures, all switches may be thrown for
any malfunction, thus replacing all major units in
an effort to get the system back on the air as quickly
as possible. Should another malfunction olccur be­
fore the first one is remedied, then which units are
malfunctioning must be determined.

The Traffic Rating System operates in am unat­
tended environment, since none of the usual data
processing personnel are necessary for its operation.
Other personnel are located too far from the syst(;:m
to be of timely assistance. Therefore, the throwing
of the switch must be done automatically, acting
upon information as to the status of the major units
of the system.

Neither of the Central Processors are used! to p(!r­
form the status evaluation and activate the switch,
since they are part of the system which could fail.
An independent judgment is necessary to de:termine

"NEVER-FAIL" AUDIO RESPONSE SYSTEM 281

whether a system has failed. This requirement is
fulfilled by the System Monitor, which also has the
capability of activating the switch to bring in all the
standby components.

Design of the System Monitor

The primary purpose of the System Monitor
(Fig. 3) is to detect malfunctions. The degree of
monitoring could be as simple as the detection of a
system halt, to the complex sensing of all circuits of
a unit (as on the engine of a Saturn rocket). The
more complex a System Monitor becomes, the
greater the probability that: 1) the System Monitor
interferes with the efficiency of the system that it
monitors; and 2) the System Monitor itself mal­
functions. Considering also the high cost of increas­
ing monitor complexity, the development concen­
trated on the simpler design concepts.

The design was also affected by the purpose and
operation of the Traffic Rating System. These were
considered in finding answers to the following ques­
tions:

• Does all information in the system have
to be saved or transferred from the on­
line Central Processor when it is switched
to off-line?

• How are malfunctions detected which do
not halt the system?

• What is the allowable interval between
the occurrence of the malfunction, and
detection? Does the detection have to be
instantaneom;?

When a system requires that all information that
has entered the system be saved, the usual procedure
is to have two computers receive and operate on all

Figure 3. The System Monitor.

282 PROCEEDINGS-~SPRING JOINT COMPUTER CONFERENCE, 1966

incoming data. An example of this operation is the
New York Racing Association Tote System, where
both Honeywell computers receive real-time infor­
mation on every bet made at the Aqueduct, Bel­
mont, and Saratoga Tracks. However, in the Traffic
Rating System each inquiry is independent and
complete-it has no connection with any other in­
quiry before or after it, and the receipt of the reply
completes all processing for that inquiry. If an
operator does not get a reply within seconds after
keying her input, or if she does not understand the
reply for any reason, all she has to do is disconnect,
and re-initiate the inquiry. Since only one computer
is necessary for input to the Traffic Rating System,
the back-up computer could be used for regular
data processing.

Malfunctions which do not halt the system could
be found while running dummy inquiries through
the system, testing all possible program loops, and
ascertaining the correctness of the replies. This
check should not be run too frequently, since it
might degrade the system's capability to handle live
inquiries. Transient errors sometimes indicate that
the system is close to a marginal condition, and
should be "peaked up." A cumulative record of
such events as correctable drum read errors will
provide for the detection of incipient malfunctions.

The interval between the occurrence and detec­
tion of a malfunction was balanced against the time
required to execute the switching procedure. This
time was variable over a small range, since it de­
pended upon the state of the system which was to
go on-line. Since instantaneous detection of a mal­
function was not required, a query-response scheme
rather than a continuous signal method was ad­
vocated. This required the system being monitored
to send a periodic response in reply to an outside
query, rather than passively send a continuous
signal.

System Monitor Operation

The System Monitor is designed to perform the
following functions:

1. It sends a Check character to both Cen­
tral Processors at regular time intervals.

2. It expects to receive an 0 K character in
return, before a new Check character is
due to be sent.

3. If the System Monitor does not receive
theOK character from a system in time,
it sounds the visual and audio alarms.
It may initiate the switching procedure,

depending on whether the on-lim! or
back-up system has the malfunction.

4. If the back-up system is to be brought
on-line, the System Monitor sends a
message to that system, so that it may
be prepared to accept the trunks when
they are switched. After a short time
interval, it switches the trunks.

A Monitor program in each of the Central Pro­
cessors works with the System Monitor. This pro­
gram returns the 0 K character within the: alloted
time span, unless it is blocked from doing so by a
system malfunction or through its own inte:nt. Op­
tional variations to improve the quick detection
and remedy of malfunctions are listed below:

1. The program does not return the 0 K char­
acter immediately, but holds it up until ne;arly the
end of the interval. Should a malfunction occur
during this time, the System Monitor detects the
nonreturn of this OK character rather than the
next one. With this variation, the detection time
is 50% of what it would be otherwise.

2. The Monitor program runs a dummy inquiry
through the system, testing all the major com­
ponents except the Audio Response Unit. If the
result differs from that previously computed, the
program blocks the return of the OK character. The
frequency of the dummy inquiry check is ,either a
function of the current traffic load or a constant.
In either case, care is taken to make sure that the
system capability is not affected by running the
dummy inquiry too frequently.

3. The Monitor program ascertains that the Sys­
tem Monitor is sending the Check characte:rs peri­
odically. This closes the loop to make sure that the
System Monitor is functioning correctly. If a Check
character is not received, the Monitor program dis­
plays this information on the teleprinter attached to
the system.

4. When an OK character is d~liberately blocked
from being sent to the System Monitor, the ~v1onitor
program displays the reason for its action on the
teleprinter. This enables the malfunction to be more
readily identified.

5. The program causes a time signal to be printt!d
on the teleprinter periodically. This evidence of
operation is reassurance that the system has not
somehow malfunctioned' without giving any alarm.
Should a malfunction occur, the printed record
gives the most recent time at which the system can
be presumed to have been operating correctly.

"NEVER-FAIL" AUDIO RESPONSE SYSTEM 283

The Monitor program in each Central Processor
thus provides a great amount of flexibility in the
detection and identification of malfunctions. This
flexibility would be difficult and expensive to achieve
with additional System Monitor hardware.

Secondary System Capabilities

The primary back-up capabilities are handled by
the System Monitor when it switches all off-line
major components to the on-line system in case of
any malfunction. During the period while the mal­
function is being repaired, a second malfunction
could occur in the (new) on-line system. There are
manual switches which allow a functioning Traffic
Rating System to be assembled, assuming that the
malfunctioning components can be identified and
the two components are not identical. These
switches are located on the, System Monitor Control
Panel. The Panel also displays the current status of
all components-which system it is that controls
each componenL

Audio Response Unit Monitor and Switch

The output on each of the 20 tracks of the two
Audio Response Units is continuously monitored.
If a track output falls below a given threshold,
audible and visual alarms on the System Monitor
are activated. If the malfunctioning unit is on-line,
the back-up unit is automatically cross-switched
with it.

Power

The one element that affects every portion of the
Traffic Rating System is the power supply. The
threat of power failure is eliminated through the
following steps:

1. A motor-generator unit is installed to assure
uninterrupted power to the Traffic Rating System in
case of outside power failure.

2. The power supplies within the system are
either duplexed and automatically swit~ed, or else
they can be switched manually. That portion of the
system which must always be available is fed by two
pairs of automatically-switched power supplies (one
pair for the Audio Response Units and the Phrase
Selection Matrices, and the other pair for the re­
mainder of the modular units, plus the System
Monitor and the switches). A regular power supply
is normally connected to each of the two groups of
major components, each group consisting of a
Communications Control Unit, a Central Proces­
sor, and a Random Access Drum.

3. A power switch allows any identical pair of
major components to be cross-switched between the
two regular power supplies. With this switch, two
nonidentical malfunctioning major units from dif­
ferent groups can be fed from one power supply,
while the other supply handles the functioning sys­
tem. A power supply is handled as a major com­
ponent, being able to be switched back and forth
between systems as the need indicates.

4. Each cabinet in the system, and each of the
drawers in the cabinet is provided with interlocks
to enable them to be isolated from the rest of the
system when undergoing repairs.

Other modifications are made to break up the
system so that the effect of any malfunction is iso­
lated, and not propagated throughout the power
supply network.

Future Applications

The computer state-of-the-art is heading toward
a level of sophistication in which large electronic
systems will monitor their own operation, detecting
malfunctioning components and replacing them
without human intervention. The System Monitor
and duplexed components of the Traffic Rating Sys­
tem makes it one of the systems which is leading the
way toward this goal.

IMPLEMENTATION OF THE TRAFFIC
RATING SYSTEM

Planning

Immediately after Honeywell signed the contract
for the Traffic Rating System, an organization was
created to handle the projecL An Engineering
Project Director was appointed to coordinate all the
activities relating to the subcontracting, building,
and testing of the complete system. Coordination
between the customer and the Engineering Project
Director was the responsibility of the Project Man­
ager, who was appointed from the marketing home
office. The Project Manager was the center of a
network of communication lines. It was his job to
collect and interpret the needs of the customer, ex­
amine the effects of different system approaches,
expedite the paperwork, issue progress reports to
interested parties, and in general be informed on all
aspects of the projecL

Scheduling

The initial phase of the project included the set­
ting up of a master schedule, which would end at the

284 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

cut-over date. Progress toward determining that
date was made from three directions simultaneously
-merging the requirements of the Northwestern
Bell management with the capability of their pro­
gramming staff and of Honeywell's Engineering De­
partment. The software was PERT-charted, the
hardware development was scheduled in detail, and
a cut-over date was agreed upon. This date was
less than a year after the contract for the Traffic
Rating System was signed.

Design and Test of New Equipment

When the project started, the Audio Response
U nit and the System Monitor had been functionally
specified. The responsibility for any additional de­
sign work necessary for the Audio Response Unit
was given 'to the subcontractor. The System Moni­
tor was designed and built by Honeywell.

When each equipment prototype was ready, a
series of component tests were run on the individual
units. Only when these were passed was the unit
connected to other components for system test.

The recording for the Audio Response Unit pre­
sented a unique problem. There was no quantitative
way to determine whether the quality of the voice
recording was satisfactory. Can a high voice be
understood better than a low voice? Should the
voice be that of a telephone operator, or that of a
professional voice specialist? Should the phrases be
spoken in a fiat voice or with a rising or falling in­
flection? Even spectral contour plots were used to
determine the solution to such dilemmas as these.

The System Monitor also had its share of prob­
lems. A complex program was written to test the
effect of all possible inputs to the System Monitor.
Timing intervals were measured, changed, -and
measured again. Concurrent with this test, the
Monitor program was being written and debugged.
Through close cooperation among the two pro­
grammers and the engineers, the final checkout of
the System Monitor hardware and software was
done in parallel.

System Test

The complete traffic Rating System was assem­
bled and tested at the Honeywell plant. The system
was arranged in exactly the same way that it would
be installed at Northwestern Bell. Twelve of the 24
trunks were installed to test the interface of the sys­
tem, and to allow live multiple input and output. By

setting up the complete system at the Honeywell
plant, there was little chance of an oversight occur­
ing at a place and time in the future which could be
more difficult to handle by Honeywell engineers.

As quickly as possible, one of the two systt:ms
was made available to the Northwestern Bell pro­
gramming staff, who used it to debug their. pro­
grams. They had planned their program writing so
as to parallel the engineering schedule--working
from the "inside out" by first doing that portion of
the inquiry program involving only the central pro­
cessor, and ending with the complex control pro­
gram which handles a variety of inputs and outputs
to the central processor. Thus, through detailed
program planning and some extra effort at a time
when it could be spared, the final operating program
was completely debugged on the entire system only
a week after the system itself had been debugged.

Acceptance

A total of 12 Multi-Frequency Receivl:!rs were
connected to the system. Each receiver was con­
nected to a keyset, and the 12 keysets beeame 12
telephone operator positions. (Actually, each Multi­
Frequency Receiver could simulate two trunks to
the computer-so the complete environment could
be simulated.)

After the system was turned over to the N orth­
western Bell programming staff for their :final de­
bugging, an extensive series of tests commenced for
checking both hardware and software. These con­
sisted of 2 million rate computations that had al­
ready been calculated as part of a regular batch
process run on a computer. This was followed by a
series of inquiries which were put in simultaneously
on the 12 keysets, with the results being checked
against precalculated answers. When both tests
were completed to the satisfaction of NWB man­
agement, the system was shipped and reassembled
on site in Omaha, where the same tests were run
through the system again.

SUMMARY

Despite the difficulties imposed by distance, time,
and new equipment, the Northwestern Bell Traffic
Rating System began operating on schedule on No­
vember 15, 1965. It has been in continuous opera­
tion since that time, 24 hours a day, 7 days a week.

APPLICATION OF COMPUTER-BASED RETRIEVAL CONCEPTS
TO A MARKETING INFORMATION DISSEMINATION SYSTEM

James J. Gatto
Westinghouse Electric Corporation

East Pittsburgh, Pennsylvania

INTRODUCTION

It is a practical philosophy of many industrial
advertisers to direct promotional material and prod­
uct information to customers and prospects on a
selective basis. This selectivity entails direction of
mail to recipients so that each receives literature in
accord with his established needs and interests. Se­
lectivity affords a considerable reduction in mate­
rial, addressing and postage costs, and insures that
the right information is sent to the right person at
the right time. In addition to ·'enhancing the per­
sonal touch in the process, the likelihood is in­
creased that the recipient will study and retain every
mailing sent to him because he recognizes that these
are about subjects in which he is likely to have an
active interest.

The size, complexity, and number of mailing lists
are rising in proportion to the population growth,
market changes and new product development. The
economics of keeping abreast of this rise, while
validating current lists and accommodating changes,
demand a direct mail program in which one of its
essential features is the maintenance of accurate and
complete mailing lists at minimum cost and maxi­
mum efficiency. Industrial advertisers are becoming
acutely aware of the need for having at their dis­
posal a large set of combinations of criteria for
selecting the audience to which they wish to com­
municate. This essential feature must be provided
by a direct mail program having inherent simplicity

285

and very high speed. In addition, a well-designed
mailing program can relieve the industrial adver­
tiser from demanding deadlines and tight schedul­
ing, and provide him with a facility for consolidat­
ing large, independent mailing activities.

For many industrial advertisers, a mechanical
maintenance and search mailing program does not
have the capacity nor capability to handle large
mailing lists efficiently or economically. The situa­
tion has prompted these organizations to consider
electronic data processing and printing as a solution
to their direct mail problem.

A computerized marketing communications di­
rect mail system, whose shape and form is based
upon a current application of information retrieval
techniques, has been developed to satisfy the in­
formation dissemination requirements of large in­
dustrial advertisers.

MARKETING INFORMATION
DISSEMINATION SYSTEM REQUIREMENTS

The essential phases of current direct mail pro­
grams are the collection and processing of input
data, updating and searching of the data file, and
labeling or imprinting, gathering and distribution of '
publication material. It is helpful to view this mail­
ing cycle as a closed-loop system.

The mailing cycle is initiated by the field salesman
in response to a customer's need and interest for
information regarding one or more of the com-

286 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

pany's products, services and policies. The field
salesman prescribes the input data and enters an
order form for a new customer, or he enters a
change notice for a customer presently being ser­
viced, but who requires a change in status. The
forms are forwarded to a control center where the
input data are translated and entered on a visual,
mechanical or electronic data file. The file is in­
terrogated when a mailing is desired, and the re­
sultant answer set is usually a list or lists of mailing
labels. Each label is affixed to or imprinted on an
envelope which in turn is manually or mechanically
packed with the specified literature. The envelopes
are weighed, proper postage is applied, and distribu­
tion is made through regular mailing channels.

In reviewing the mailing cycle, certain basic con­
siderations become evident:

1. The format design of the order and change
notice forms requires careful attention to details.
The salesman's participation in completing the
forms must be minimized. Any instructions on the
forms must be precise, since it is not possible to
contact every salesman personally to explain their
functions. In addition to being simple and economi­
cal, the forms must easily accommodate new data
entries.

2. A control center must serve as the coordinat­
ing and control body of the mailing program. The
personnel should be familiar with all phases of the
mailing cycle. The center's functions should include
the translation of input data, preparation of search
specifications, scheduling of production runs, vali­
dation of errors and changes, and administration of
the labeling or imprinting, gathering and distribu­
tion processes.

3. The update procedure must be economical,
simple, and must provide a means of validating the
update entries to maintain accurate lists.

4. A large set of combinations of criteria for
selecting the customers to which a particular mar­
keting effort is to be directed must be provided.
The search specifications must be in natural lan­
guage notation to permit anyone with minimal
training to produce a finished set of query state­
ments.

5. The data file must be structured to easily ac­
commodate additional mailing lists.

6. Mailing lists must be sorted by zip code to
comply with postal regulations.

7. The answer set is usually a list or lists of
mailing labels. However, the facility must be pro­
vided in which the answer set may be counts, partial

lists, and lists which reveal all the data on each
customer in the data file.

The above considerations suggest the use of an
electronic computer as the catalyst of a direct mail
program. In fact, the value of a computerized sys­
tem in today's complex mail scene is that it sub­
stantially improves the speed, economy, llexibility,
generality and capability of a direct mail program
in comparison with visual or mechanical systems. A
computer-based mailing program can promote 1I1ew
concepts of marketing possibilities. The idea here
is that a properly designed computer package can
provide the industrial advertiser with the ability to
communicate with all intermediate points between
the company and its audience, and internally within
the company. In this light, the direct mail program
now becomes a marketing information dissemiina­
tion system'.

A marketing information dissemination system is
characterized by the present and future mailing re­
quirements, computer retrieval logic, the company's
policies and practices, and the amount of capital
investment. Industrial advertisers demand that a
marketing information dissemination system satisfy
three basic requirements which are input compati­
bility, file generality and output versatility. These
are described as follows:

1. Input Compatibility. Provision of a commun­
ication channel for use by anyone in the organiza­
tion with a legitimate need to reach employees,
distribution outlets, customers, and prospects or
potential customers. To meet this requirement, the
system must provide:

a) An input data recording scheme which
is flexible, logical, economical, conven­
ient and easy to administer.

b) Addition, cancellation and mainte­
nance of names and descriptions of re­
cipients from a variety of sources.

c) A coordinating and control group
whose responsibility is to process input
data, prepare search specifications,
schedule and conduct query and main­
tenance computer runs, and validate
errors and changes.

d) Classification and coding schemes for
the recipient's industrial and functional
roles, and for the organization's prod­
ucts, discount and commission sched­
ules, renewal parts, and special publica­
tions, and so on. It is essential that

APPLICATION OF COMPUTER-BASED RETRIEVAL CONCEPTS 287

some accommodation of the existing
schemes be made with minimal require­
ments for technical reevaluation.

2. File Generality. Automation to the extent
permitted by technology and economics. The sys­
tem must provide:

a) Complete and readily accessible mail­
ing lists for employees, distribution
outlets and customers.

b) Expansion capability for accommoda­
tion of marketing information dissemi­
nation requirements for other locations
within the organization.

c) Retrieval of mailing label lists or other
answer sets by any combination of cri­
teria as specified.

d) Zip code and other special sorting on
all lists.

3. Output Versatility. Preparation of reports to
meet the marketing information dissemination re­
quirements for buying data, sales promotion mate­
rial, renewal parts, discount and commission sched­
ules, and special publications. The system must
provide:

a) Variety of computer output displays in
prescribed formats to include mailing
label lists, lists with gathering instruc­
tions, lists displaying selective data, and
list counts.

b) Labeling, gathering and distribution
facilities.

A MARKETING INFORMATION
DISSEMINATION SYSTEM

The general model of a marketing information
dissemination system is illustrated in Fig. 1. The
model is divided into three phases:

• Phase I is the collection and processing
of input data and queries.

• Phase II is the updating and searching
of the master file.

• Phase III is the labeling or imprinting,
gathering and distribution processes.

Phase /-Collection and Processing

Input Data. One of the most positive ways to as­
sure regular list maintenance is to require some in­
dividual to "sponsor," or be accountable for, every
name added to a mailing list. In most organizations
the sponsor is usually a field salesman; however,

H DATA

w
en
<C

MEDIA :r a..

CODE

UPDATE

FI SEARCH
w
en
<C

SORT :r
a..

OUTPUT

Subscriber

l
Order or Change

Notice Form

~
Update

INQUIRY

MEDIA

CODE

User ,
Narrative

Form

~
Query

Mailing Lists Other Lists,Counts
------~-------

LABEL Labeling or Heat
IMPRINT Transfer Process

FI ,
w GATliER Literature

~ ,
a.. DISlRlBUTE Moiling Channels ,

REVIEW Subscriber User

Figure I. Dissemination system model.

there is a requirement that anyone with a legitimate
need should have the ability to enter a name to the
mailing list. The sponsor reviews his list of names
periodically and submits an order form for any new
subscriber who has expressed a need for information
regarding one or more of the company's products,
services and policies. In addition, he submits a
change notice form for every subscriber presently
serviced by him, but who requires some change in
status. A subscriber, in this context, is a recipient
of literature through the mailing program and is,
specifically, either an employee, distributor, cus­
tomer or prospect.

The input data are divided into five categories:

1. Identification
2. Classification
3. Profile
4. Address
5. Key

The embodiment of these categories for a particular
subscriber originates a record for that subscriber as
illustrated in Fig. 2.1 Each category is described
by one or more terms and each term is composed
of an attribute which relates to one member of a
class of descriptions, and a value which particular­
izes the description.

288 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

t hat relates
member

clan of

to one

and described
by one or more

of a
descriptions

Function
Mail Code - Category

that particularizes
the description

AI4
1567- 2

Figure 2. Input data and inquiry structure.

The identification consists of a unique numeric
term which identifies a particular subscriber's
record. This number remains unchanged through­
out all subsequent dealings with him, and its coding
structure is dependent upon the expected number
and natural grouping of records. The classification
consists of terms such as sponsor, industry, func­
tion, and any other which may be included in search
specifications. For example, persons of interest may
be all customers who belong to the textile industry
and who function in the role of vice-president.
"Textile Industry" and "Vice:-President" are, then,
values of the classification. The profile reveals the
subscriber's pUblication needs and interests. It is
composed of numeric terms selected from existing
publication groups to include customer discount
schedules, distribution outlet agent commission and
discount schedules, handbooks and other special
publications, renewal parts data, and product in­
formation. Each term in the profile is structured
on a mail code-category basis. A mail code is a
numeric representation which uniquely identifies a
company's product, service or policy, and its cate­
gory is a numeric representation which particular­
izes the kind of information such as a price list,
descriptive bulletin, dimension s.heet, selling policy,
application data, or sales promotion piece. The
address is composed of terms such as firm name,
individual's name and title, street address, city, state
and zip code. The key consists of the identifica-

tion term and selected classification terms, and is
included in the mailing label. One of its primary
roles is to link the mailing label with the subscriber's
record.

The medium for reflecting new subscriber input
data is the mailing list order form, which is a sim­
ple, single-part form. This is designed primarily to
present a clear and logical format to the sponsor to
minimize his participation in its completion. In
addition, the form features a nonrigid format in
which new data entries can be easily accommodated.
The fact that a specific effort is required to enter
profile data should encourage the sponsor not to
oversupply the recipient with literature. The spon­
sor submits a change notice form to report .a change
in status of a subscriber currently being serviced
by him. This form differs from the order form in
that the identification number is entered on the
change notice form by the sponsor whereas this
number is preprinted on the order form. The
change notice form reflects both the addition and
deletion of terms.

A catalog assists the sponsor in entering the
proper data values on either the order or chall1ge
notice forms. The catalog is prepared in a lan­
guage natural to the sponsor and provides an op­
portunity for adequate explanation and instructions.
Since the catalog is separate from the forms, pe­
riodic reissues of the updated version of the catalog
can be made without disturbing their format. A
typical catalog consists of codes for: customer in­
dustry and function, customer discount schedule,
distribution outlet classification and function, dis­
tribution outlet discount and commission schedule,
employee function, products, renewal parts and s.pe­
cial pUblications.

The implementation of a marketing information
dissemination system to replace an obsolete visual,
mechanical or electronic file system poses a few
problems with regard to the initial input data. In
most cases, it is desirable to require that the spon­
sors resubmit new input data rather than convert
data on a current file system. The cost of the latter
is usually prohibitive and, in addition, the question
arises as to whether the data on the current file sys­
tem are accurate or complete, especially if the com­
pany's sales organization has recently been re-struc­
tured. The fact that the data resubmission program
is imminent invariably disheartens the field sales­
man since his available time is usually at a premium.
However, once he is convinced, and some are never
convinced, that the new system will assist him in
better serving his present customers and providing

APPLICA nON OF COMPUTER-BASED RETRIEVAL CONCEPTS 289

him with new prospects, then the field salesman is
more willing to contribute his time and effort. In
addition, he now has a golden opportunity to rid
his list of nonproductive names. It is imperative
that the sponsor be required to submit his order
forms within a specified time interval to minimize
data obsolescence. Futhermore, once the sponsor
is informed of the new system, he becomes less at­
tentive to the old system's maintenance program,
and the timing aspect becomes even more critical.

A mailing list control center is established to
coordinate and control the new system's operations.
Its role during the initial input data phase is to
check the incoming order forms for accuracy and
completeness and to batch the forms in groups
which are specifically numbered to control them.
The forms are keypunched by an outside service
since they have the capacity to perform this task
in the shortest possible time. As soon as sufficient
keypunched data becomes available, a test file is
established to assist in the training of the center's
personnel in all phases of the new system. This is
an important step since, in most cases, their ex­
posure to computer operations has been very lim­
ited. The personnel selected to supervise the cen­
ter's functions should have a natural affinity for
"system" concepts.

After the initial data file is established, the new
system is run concurrently with the old system until
debugging of the new system is completed. At some
point in time, the new system is declared operational
and the old system is eliminated. The mailing list
control center activity now enters Phase I of the
marketing information dissemination system. The
center's functions in Phase I include the transferring
of data from the order and change notice forms to
punched cards, preparing and batching queries, and
scheduling computer runs.

The logical requirements for file maintenance
consist of three update events:

1. Insertion of a new file record
2. Changes in an existing file record
3. Cancellation of an existing file record

A new file record is initiated by receipt of an order
form at the mailing list control center. The data is
transferred to punched cards in prescribed field lo­
cations, and the number of cards is primarily a
function of the number of profile terms entered on
the form. Each card is assigned a predetermined
set of codes. A change to an existing file record
is initiated by receipt of a change notice form which
reflects new values for those terms to be altered.
These values, together with the subscriber's identifi-

cation number and pertinent codes, are keypunched
in the prescribed field locations. It is important
that field locations be a natural consequence of the
order and change notice format designs.

A cancellation of a record is effected by simply
writing the word "cancellation" across the face of
the order form. A single card is keypunched with
the subscriber's identification number, pertinent
codes, and the word "cancellation."

Queries. A question may be posed by anyone who
has an interest in obtaining any logical or arithmetic
implication of the file content. A question is inter­
preted as a request to locate and retrieve a reference
to or data about a record or collection of records,
and is composed of a narrative and a set of state­
ments. The narrative expresses the logic of the
query in a language natural to the user or ques­
tioner, and the set of statements prescribes the search
and report specifications. The intent is to provide a
medium whereby an occasional user can reliably ex­
press his desires or comprehend what is meant if
they were formulated by a professional logician.

The nature of the data and its intended use set
the basis for a marketing information dissemination
system design, and the retrieval logic must be modi­
fied somewhat to obtain the best results within this
framework. A reference retrieval package has been
developed and is currently being applied to a mar­
keting information dissemination system. The re­
trievallogic provides an unusually fast and efficient
scheme, and features a flexible multilevel query ca­
pability. The query notation is. designed to allow
the expression of the search specifications in such
form that minimal training is needed to permit the
user to produce a finished set of statements for
routine query processing of the master file. The
language permits queries of great depth and pro­
vides output reports which are flexible and com­
plete. The reports may be in the form of simple
counts, list of mailing labels or lists with selected
data.

A query postulates the existence of terms or at­
tribute-value combinations, for example, mail code­
category (attribute)-1201-1 (value), or sponsor-
53468, function-B24, and so on. It also requests
that a search be conducted to locate any record
which responds to the logic of the query. The
language consists of a set of primitives or elemental
query statements used to manipulate data. The
primitives are:

1. Search Primitives examine each record in the
master file to determine the relation of the record

290 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

values to those values or arguments cited in the
search specifications, as:

a) EQUAL-search for equal value.
b) PICK-search for equal value. (This is

a special primitive which is ex­
plained later.)

., c) NOTEQ-search for unequal value.
d) EQGR-search for equal or greater

value.
e) EQLS-search for equal or lesser

value.
f) G R --search for greater value.
g) LS--search for lesser value.

2. Result Primitives move partial answers from
level to level and designate final answers, as:

a) TEST -move partial answer to next
higher level.

b) CLEAR-erase previous result.
c) ANSWER-designate result for out­

put.

3. Output Primitives initiate the desired counts
and lists, as:

a) COUNT -accumulate a count of 'hits.'
b) LIST-list respondents of 'hits.'
c) POST-output special information

with list respondents.
d) SELECT-select particular terms of

'hits.'
e) DUMP-list all terms for every record.
f) NOTE-explanatory comment ignored

by logic system;
g) END-end of search and output logic.

There are six different levels at which query
search and result primitives, except PICK, may be
entered; 1 is the highest and 6 is the lowest level.
Odd numbered levels are designated AND levels
and even numbered levels are called OR levels. The
levels are provided to permit the development of
complex logic which may span the entire level range,
or any partition, from the lowest to the highest
level designation. The PICK primitive and the
output primitives do not require a level designa­
tion. A few examples will be considered to illustrate
the form of the query narr&tive and the structure of
the query statements.2

In the first example, the following query is posed:
List all customer mailing labels whose records men­
tion either mail code-category 2181-3, or 1882-1 or
1924-2, and industry 487 and function B38. The
search specifications responsive to this narrative are:

PRIMITIVE LOGIC LEVEL ATTRIBUTE VALUE

EQUAL OR 2 PROFILE 2181-3

EQUAL OR 2 PROFILE 1882-1
EQUAL OR 2 PROFILE 1924-2
TEST 2
EQUAL AND INDUSTRY 487
EQUAL AND FUNCTION 838
ANSWER
LIST
END

The values of 2181-3,1882-1,1924-2,487 and B38
denote the arguments of the search specifications.
The TEST routine evaluates the OR results;
ANSWER prepares the final results for use as out­
put; and LIST calls for the preparation of refere:nce
citations which are, in this case, a list of mailing
labels. The remainder of the search specifications
are rather self-evident. The key point in the ex­
ample is that the user has the ability to reach a
customer, or any subscriber for that mattc!r, by his
industry, function and product interest or any com­
bination thereof.

In actual practice, each specification line consists
of additional information which includes a sequ<!nce
number, query number, record group code and the
user's initials. The query narrative and statements
are entered on separate forms which are designed
for easy translation of data from the form to cards.
The narrative and search specifications are printed
at the beginning of each separate output listing.

In the above query the resultant answter set is a
list of mailing labels. In addition, there is a require­
ment to output a mailing label and its correspond­
ing profile values which match the set of profile
arguments cited in search specifications. The collec­
tion of profile values displayed with a mailing label
is called a 'pick' list which permits a simplification
of the gathering process. The primitive called upon
to produce the pick list output format is the PICK
primitive, which is similar to the EQUAL primitive,
except that it allows a more rapid interrogation of a
record profile and provides a more convenient pro­
cedure for structuring the output data.

To illustrate the use of the PICK primitive, con­
sider the following query: List all customer mailing
labels whose records mention mail code-catt!gory
1418-1,1806-2, 1401-1, and/or 1204-2. The sc!arch
specifications become

PRIMITIVE ATTRIBUTE VALUE

PICK PROFILE 1418-1
PICK PROFILE 1806-2
PICK PROFILE 1401-1
PICK PROFILE 1204-2
END

APPLICATION OF COMPUTER-BASED RETRIEVAL CONCEPTS 291

There are many occasions where special publica­
tions, which are not listed in the catalog, must
appear as members of the pick list for convenient
gathering. The POST primitive is especially suited
to perform this function. To illustrate its use, con­
sider the following query: List all customer mailing
labels which mention industry 311 and function
A46 and post cover sheet CS-l. If industry 311
and function A46 and sponsor 21346 are mentioned,
then post CS-l and additional instructions INST -I.
The search specifications responsive to the narrative
are:

PRIMITIVE LOGIC LEVEL ATTRIBUTE

EQUAL AND
EQUAL AND
ANSWER

INDUSTRY
FUNCTION

VALUE

311
A46

POST CS-l
EQUAL AND SPONSOR 21346
ANSWER
POST INST-l
END

In this example, either CS-l or CS-I and INST-l
would appear as members of the pick list for each
mailing label in the answer set.

Even though the internal logic is intricate and
detailed as necessary for the exploration of the
master file, one can observe from the 'examples
i;ited that the external language is quite direct and
intelligible.

Phase II-Updating and Searching

File Characteristics and Organization. The totality
of subscriber records composes the master file.
Each record in the file is structured identically which
permits the addition of new records to be a matter
of routine.

The number of subfiles within the master file is
primarily determined by the natural grouping of
records. As mentioned earlier, publication material
may be directed to anyone of three classes of recip­
ients, these being employees, distribution outlets,
and customers or prospects. Hence, the master file
is logically organized into a base structure consist­
ing of these three subfiles; however, the capability
is provided for the addition of any other subfiles.
The establishment of a new subfile or its incorpora­
tion into the base structure is primarily an economic
consideration and depends upon the subfiles' antici­
pated frequency of use. Each subfile is identified by
a file number and its records are ordered by sub­
scriber serial number. The file number and the
serial number form the record identification num­
ber.

The number of records in the customer subfile
usually far exceeds the number of records in either
the employee or the distribution outlet subfiles by
an order of magnitude. However, the employee
and distribution outlet files are usually interrogated
more frequently than the customer file by an order
or magnitude. Hence, it is more economical to
combine the employee and distribution outlet sub­
files on one tape and maintain the customer subfile
On another.

Record Format. The subscriber's record format,
illustrated in Fig. 3 consists of a matrix record and
an address record. The records are maintained
separately to provide for the most effective use of
storage locations. All terms which are contenders
for search specifications are structured in the matrix
record, whereas all the terms descriptive of a mail­
ing label are maintained in the address record.

The matrix record consists of the identification,
classification and profile descriptions. The primary
role of the identification term is to uniquely identify
a particular subscriber record. The number is com­
posed of the sub file number, which permits the in-

SUBSCRIBER RECORD

MATRIX RECORD

I
ADDRESS RECORD

I
Identification Key

ClaSSification Address

Profile

Figure 3. Subscriber record structure.

292 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

terrogation of a subfile on a selective basis, and the
subscriber's unique serial number. The number
appears in the address record where it serves to key
the address record to the corresponding matrix
record.

The classification consists of terms such as spon­
sor, function, industry and any other term which
may be a contender for search specifications. The
organization's requirements for obtaining specified
implications of the data file prescribe the kind of
terms to be incorporated in the classification. Each
term may be single- or multiple-valued and is as­
signed a particular alphabe~ic or numeric code for
querying. It is essential that existing schemes be
accommodated to minimize the organization's re­
quirements for technical reevaluation.

The profile comprises mail code-category terms.
The mail code and category values are numeric and
their range of values depends upon the organiza­
tion's product, service and policy classification
schemes. Whether the master file is being updated
or queried, each profile value being processed is
converted by a simple algorithm to a binary repre­
sentation (L-pattern length) which is slotted into
a particular matrix location (Y -matrix location)
with a particular pattern (P-pattern characteriza­
tion). Consequently, there exists a unique pattern
length, characterization and location, or YLP, for
each profile value.

The address record consists of the address and
key, and is called a mailing label when it is printed
out as a member of an answer set. A typical mailing
label is illustrated in Fig. 4. The first line represents

Identification I I Sponsor I I Number of
Number NUMber CODie!

Firm Nome

Individual's Nome and Title

Street Address

City I I State, I I Zipcode

Figure 4. A typical mailing label.

the key terms and the last four lines show the ad­
dress terms. The key terms are dependent upon the
requirements of the organization, but should in­
clude terms which link the· matrix record with the
address record, identify the subscriber's sponsor and
provide useful gathering data. All terms in the
address record are single-valued.

Updating. As mentioned earlier, an update event
may originate one of three file maintenance require­
ments, these being: addition of a new record, dele­
tion of an existing record, or changes in an exist­
ing record. Each update event may initiateon(: or
more of four basic update routines depending upon
the nature of the update data, as:

1. Cancel a record.
2. Delete a term.
3. Add a term.
4. Overlay a term.

The second and third routines are particularly
suited to handle updating of the profile terms and
to accommodate multiple-valued terms in the classi­
fication. Figure 5 illustrates a method of portraying

Moll Code
Cotegory Category Category Categl)

I 2 3 4

1501 A 0 A

Figure 5. A method of portraying profile update data on a
change notice form.

profile update data on a change notice form. The
data are interpreted as: Add (A) profile values 1501-1
and 1501-4, and delete (D) profile value 1501-3 from
the subscriber's record. This scheme r,equin:~s a
minimum effort on the part of the sponsor prepar­
ing the form, facilitates keypunching, and relegates
the conversion of the category description to a digit
by the most natural medium-the computer. The
fourth routine is designed to update all single-vallued
terms in the subscriber record, except the profile
terms.

The file is updated before it is searched so that
the answer sets reflect current information. A list
of card errors is automatically prepared during the
updating process. After these cards are validated
at the control center, the input data forms an:: re­
turned to the respective sponsors. The sponsor dis­
cards the carbon cop'y which he had retained as a
temporary record and replaces it with the original
input data form. In addition to the list of Icard
errors, a list of changes is automatically prepared
so that the control center can make a one-to-one
correspondence between the changes which were to
be made and those which had actually occurred.

Searching. The control center prepares the qu'eries
and schedules the computer runs. The matrix
records which satisfy the search specifications are
matched with their corresponding address records,

APPLICA nON OF COMPUTER-BASED RETRIEVAL CONCEPTS 293

and the resultant answer set may be a list of mailing
labels, list of counts, list of mailing labels with cor­
responding pick values, -special list with selected
data, or any combination of these answer sets. The
capability to prepare as many as 10 separate lists
during one computer run is provided to yield an
economical scheduling program. The batching of
queries and scheduling of computer runs play an im­
portant role in decreasing query cost as query
activity within the organization increases. A charg­
ing rate for any query may be established by auto­
matically assigning a numerical weight to each
primitive in the search specifications, summing up
the total weight, mUltiplying this figure by a pre­
determined number of dollars, and then multiplying
this dollar value by a factor which varies directly
as the number of labels in the answer set. This
provides a convenient means for justifying the cost
of the query to the user.

It is advisable to supplement regular queries with
statistical queries to obtain information which is
useful in improving operations and in anticipating
future needs. For example, a count of the number
of profile entries having a specified value would be
useful in controlling the number of corresponding
publications to be printed at a future date.

Sorting. Since companies with large mailings are
required to sort their lists by zip code, it is impor­
tant that this facility be incorporated into the sys­
tem. In addition, the system must have the facility
to sort on other fields such as the sponsor's number
and the subscriber's last name. For example, pros­
pects responding to the company's ads or releases
are candidates for its product information and pro­
motional material. Every three months a list may
be extracted from the customer's subfile by last
name, first two initials and firm name. This list is
sorted by the customer's last name, arid the names
of the verified prospects are matched against the
list manually, weeding out duplicates. The option
for adding the remaining prospect names to the
customer subfile is then initiated by informing the
appropriate sponsors to contact the pI.'ospects. If
a prospect shows interest in the company's prod­
ucts;services and/or policies, then the sponsor will
prepare an order form in his behalf. The procedure
is economical and provides a linking of the com­
pany's marketing information dissemination system
with its inquiry program.

Output. Since the number of mailing labels in the
answer set ranges from several hundred to tens of

thousands, depending upon the search specifica­
tions, the computer printout format must be de­
signed to minimize printing cost and yet be com­
patible with the labeling, gathering and distribution
processes. Three types of formats will be presented,
but these are by no means exclusive. The type I
format is a list of mailing labels, and the type II and
III formats are lists of mailing labels with corre­
sponding pick values. In the illustrations to follow,
each format appears on a standard printout sheet
which is perforated into four equal horizontal strips
to permit universal and economical usage of each
sheet.

An example of a type I format is illustrated in
Fig. 6. The maximum number of horizontal mailing

· I
~==:::

· L===: L I ----------C I
~ C I
· C::::::=::==""

I I .
I I :
I I .
~.

Figure 6. Type I of printout format.

labels is primarily determined by the number of
printer keys, type of printout paper and the labeling
or imprinting process employed. In this example,
nine mailing labels may be accommodated on each
strip or, in total, 36 labels on each sheet. The type I
format is applicable to either the employee, distri­
bution outlet or customer subfiles.

Figure 7 depicts an example of a type II format.
This format is responsive to the answer set gen­
erated by interrogating the customer subfile with a
PICK primitive having a large number of argu­
ments. The pick list and the corresponding mailing
label are printed in a prescribed arrangement on a
strip. This arrangement, which is designed in con­
junction with the characteristics of a window en­
velope, has advantages which will be discussed later.
The number of pick values which can be listed on
each strip depends on the dimensions of the strip,

294 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

-- ----=--.=--:--~-.:=-=----:';------~ .::.--:..-----

Figure 7. Type II of printout format.

the size of the window envelope, the readability
of the pick values and the practical limitation of
'stuffing' the envelope, that is, whether there is more
publication material than the envelope's design
permits. If the number of pick values exceeds the
strip's capacity, then the mailing label is repeated
on the next strip and the pick list is continued.

An example of a type III format is shown in
Fig. 8. This format is responsive to the answer set
generated by interrogating the employee or distribu­
tion outlet subfiles with a PICK primitive having a
small number of arguments. The pick list is printed
under the corresponding mailing label in the ar­
rangement illustrated. If the pick list exceeds the
allotted number of possible pick values, then the
mailing label is repeated on the next strip and the

L--__ --J, .

- ------------ - ---------------- ---------

Figure 8. Type III of printout format.

pick list is continued. The type III format has the
advantages which will be discussed later.

Each sheet of each of the types is headed by a
numeric code which portrays the list and page num­
bers. This is useful information when multiple lists
are to be printed. In addition, the query narrative
and statements are printed at the beginning of each
list along with a count of the number of labels in
that list.

Phase III-Labeling, Gathering and Distribution

Labeling or Imprinting. There are several excellent
processes for affixing or imprinting labels from the
computer printout to an envelope or a publication.
A labeling machine performs the first operation,
and a heat transfer machine effects the second; in
more recent machine designs, one machine performs
both functions. Imprinting offers a more pro­
fessional result than labeling; however, the imprint­
ing requires special heat transfer printout paper
which is about three times the cost of printout paper
used in the labeling process. The machine c:;an
label at a rate of 15,000 units per hour and imprint
at a rate slightly less than this. Even considering
the machine setup time, it is unlikely that the label­
ing or imprinting process will be a bottleneck in the
total system's operations. The labeling or imprint­
ing process is applicable only to the type][listings.
Type II and III listings are initiated in the gathering
process which, of course, is also applicable to type I.

Gathering. The gathering process may be! manual
or mechanical, and the selection of one or the other
depends primarily upon economic considerations.
For subscriber files less than 100,000 records, the
cost of a mechanical gathering machine is usually
prohibitive. The manual gathering process will be
discussed in this section.

The customer type I listing usually consists of
more than one list. Each list of mailing labels is
responsive to search specifications in which the
EQUAL primitive has one profile argument which
relates to, in general, a sales promotion publication.
Gathering of this publication is accomplished by
mechanically inserting the piece in an envelope
which has been labeled or imprinted with one of the
mailing labels on the list. If the recipient is to re­
ceive two different sales promotion pUblications, his
mailing label appears on two lists, and he will re­
ceive literature under two separate cove:rs. The
reason for this procedure is that the field salesman
wants to direct specific material to a customer under
individual covers to promote the personal touch.

APPLICA nON OF COMPUTER-BASED RETRIEVAL CONCEPTS 295

The employee and distributor outlet type I listings
are treated in the same manner as the customer type
I listing except that the mailing label is affixed to or
printed on a pUblication rather than an envelope.
The pUblication is then manually placed in a par­
ticular bin which is the collection point for all pub­
lications to be distributed in bulk to a location
within the organization. This scheme permits an
economical distribution of literature.

The type II listing is put through a bursting ma­
chine which stacks the strips and maintains the zip­
code order. Each strip is affixed to a standard cover
letter which introduces the contents of the packet.

The publications to be gathered, sometimes re­
ferred to as buying data, are stacked separately by
profile value. These stacks are in the same order as
the PICK primitive arguments in the search specifi­
cation. The publications corresponding to the pick
values on the cover letter are manually gathered and
inserted into a window-envelope. The scheme elim­
inates any labeling or imprinting process, provides
a record of publications contained in the envelope
for tracing purposes, and reduces confusion in the
gathering process. For example, the matching of
the pick list label to an envelope label is eliminated.
In addition, the cover letter adds a professional
touch to the customer's packet.

The type III listing is put through a bursting ma­
chine which stacks the strips. The stacks of strips
are then slit, resulting in three separate stacks of
mailing labels and corresponding pick lists. The
publications corresponding to the pick values on
each gathering slip are manually gathered and sta­
pled to the slip. This packet is then placed in a par­
ticular bin and distributed, with other packets, to a
location within the organization.

Distribution. The envelopes and bulk shipments
are weighed and the proper postage is applied.
Mailings are made through regular channels. The
recipient reviews the literature he has received and
contacts the sponsor if he desires additional service.

CONCLUSION

A marketing information dissemination system
has been proposed to meet the information and
communication requirements of large industrial ad­
vertisers.

Such a system is in current operation at the West-

inghouse Electric Corporation at a cost reduction of
two to one over the previous direct mail system.
The file was established and is maintained under
the Reference Retrieval System, also developed by
Westinghouse.3 The IBM 7094 computer configura­
tion serves as the catalyst of the system and IBM
360-30 computer provides the output medium. The
master file consists of 60,000 customer, 5,000 dis­
tribution outlet and 8,000 employee records. These
can be analyzed and specific mailing lists prepared
at an equivalent search rate of 100,000 records per
minute. The equivalent search rate is derived by
considering that a certain number of queries can
interrogate the file in the time it takes to pass the
file tape. If these queries were supplemented with
an additional simple query, which is defined as an
EQUAL, ANSWER, and LIST logic structure, then
the system is no longer tape bound. It is this addi­
tional query that establishes the incremental query
rate which specifies the equivalent search rate.

Large industrial advertisers are becoming increas­
ingly aware that electronic data processing and
printing are the solution to their information dis­
semination requirements. The computerized system
discussed in this paper improved the speed,
economy, flexibility, generality and capability in
comparison with visual and mechanical systems al­
ready in use by approximately 100 percent.

ACKNOWLEDGMENTS

The author wishes to thank Dr. P. B. ,Henderson
for his encouragement and assistance, Messrs J. G.
Bishop and F. E. Cabron for their technical con­
tributions, and Mr. A. M. McKinney for editing
the manuscript.

REFEH .. ENCES

1. P.. B. Henderson, "System Specifications for
Data Retrieval," First International Meeting of
Operations Research Society of America, Honolulu,
Sept. 1964.

2. --, "On the Design of Data Systems for
File Analysis and Information Retrieval," Eleventh
Annual International Meeting of the Institute of
Management Sciences, Pittsburgh, Mar. 1964.

3. --, "A Theory of Data Systems for Eco­
nomic Decisions," doctorate thesis, Massachusetts
Institute of Technology, June 1960.

A NEW LOOK IN A PERIPHERAL EQUIPMENT DESIGN APPROACH

Earl Masterson
Terminal Equipment Group, Honeywell EDP

Waltham, Massachusetts

DEVELOPMENT PROGRAM OBJECTIVES

The initial work of the development group was to
produce a basic line of peripherals which would be
a major step in freeing the company of its depend­
ence upon vendors. The first product was to be a
line of high-speed printers, the second a card reader,
and the third a card reader/punch. An Optical Bar
Code Reader was in parallel development under a
contractual commitment. This machine later de­
veloped into a line of machines which, strictly
speaking, cannot be considered basic peripherals.

Each machine's specifications were written to at
least equal competitor's specifications. Rather than
try to exceed the functional specifications, it was
decided to place a great deal more emphasis on
reliability and serviceability.

It was felt that every effort should be made to
make a reliability breakthrough. The great ad­
vances made in solid-state circuits, particularly with
regard to reliability, has caused an unbalanced con­
dition between the central processor and the periph­
eral equipments.

Because of an ever-increasing rate of computer
systems sales, the importance of company inde­
pendence in the peripheral area became more im­
mediate.

297

CONSIDERATIONS LEADING
TO THE FORMULATION OF
A DESIGN APPROACH GUIDE

The importance of a successful development pro­
gram depends upon many factors, and the implica­
tions of these many factors must be carefully
weighed before a satisfactory design approach can
be stated. For example, there is probably no one
best design for a given product. The design must be
considered in the light of its total environment.
Described below are a number of factors that went
into the formulation of our design approach guide:

Machine Specifications. The machine specifica­
tions were the only factor in our favor at the start
of this program since they did not dictate a major
breakthrough in speed or other functional perform­
ance. This left us free to choose between the design
approaches of our competitors and something al­
together different. In the following paragraphs we
will show why we chose the second alternative.

Development Time Cycle. The short overall pro­
gram schedule required that serious consideration
be given all methods which could possibly lead to
shortening the overall development and manufac­
turing start-up cycle. One of the very time-consum-

298 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

ing development problems typical of electro­
mechanical design is that of the rather lengthy cycle
of design, life test, redesign, life test, etc. Some
method of reducing this time had to be found. The
successful search for ways to eliminate moving parts
and to use more "off-the-shelf" mechanical and
electro-mechanical components was a great help in
this area.

Engineering Background. Assignment of this
rather large development program to our group also
had its effect on other parts of the engineering or­
ganization. For example, while a few of our asso­
ciates in the circuits, logic, systems, and software
groups had worked with our tape drive development
group, most were more accustomed to working
within the fixed restrictions of vendor devices. This
involved the selection of the vendor equipment,
studying its characteristics which were normally
fixed and known, and then designing the necessary
interfacing software and hardware to work effec­
tively with the device. We were now forced to im­
pose on the other groups within engineering the
problem of design where initially nothing is fixed or
known and where every separate approach or
change has far reaching and interacting results.

Manufacturing Considerations. Our manufac­
turing organization had extensive experience in the
production of large quantities of electro-mechanical
tape drives and had an even more substantial back­
ground in the production of electronic equipment.
In view of this, we felt the time was not inappro­
priate to emphasize an electronic rather than the
traditional highly mechanical peripheral equipment
design.

Field Service Background. Because of the com­
plexity of the electronics involved in modern high­
speed computers, Field Service personnel with
heavy emphasis on an electronics capability have
been and will continue to be employed. We felt that
the Field Service personnel would have fewer prob­
lems in familiarizing themselves with our new equip­
ments in view of the accent on electronics.

Reliability Breakthrough. Electro-mechanical
peripheral equipment is an important part of all
computer systems and is becoming an even larger
part each year. (See Fig. 1.) While thousands of
successful computer systems are in operation with
many thousands of electro-mechanical peripherals,
it is doubtful that anyone would agree that the re­
liability of the peripherals has reached the point
where they are balanced with the reliability of the
modern solid-state central processor. Computer

100.....---------------------,

o
1960

Figure I.

1965

Change in data processing systems. The chart indi­
cates the shift in importance of peripherals in the
average system in a five-year period in our company.

circuit developments have progressed in a relativdy
short period from a time when a single flip-flop re­
quired four vacuum tubes to a point where sixteen
flip-flops can be produced on a single tiny chip.
Component development in the area of electro­
mechanical design has not had this kind of improve­
ment. It often seems that the typical design ,engineer
errs in the direction of overconcern for manufac­
turing costs, not reliability. Where so much of our
equipment is on rental, reliability is even more im­
portant and it seemed that a new evaluation should
be made in developing the design approach. We
realized that this program provided the once-in·-a­
lifetime opportunity to make a breakthrough in a
design approach for reliability because there was no
requirement to "warm over" an old product line.

It might appear that a study of other successful
electro-mechanical ip.dustries could provide a design
approach guide which would make a major im­
provement in peripheral equipment. While this
study did not uncover an industry with an equiva­
lent design requirement, it did prove to be a ve:ry
worthwhile appraisal; and while it may not have
shown a direction to proceed, it did show directions
that should not be pursued.

The automotive industry appears to be based on a
very successful application of what might be called
an electro-mechanical design approach. It might
seem that hiring automotive engineers and adopting
automotive design principles would be a way to in­
sure development of a successful line of electro­
mechanical peripheral equipment. Our study in­
dicated that this would be far from a wise decision.
For example, it appears that the average automobile

A NEW LOOK IN A PERIPHERAL EQUIPMENT DESIGN APPROACH 299

is in operation somewhere between 5 and 10% of the
time, whereas many of our peripheral devices are in
use two and three shifts a day, six days a week.
The average car in the United States is driven ap­
proximately 12,000 miles per year. One indication
that this is accumulated on a very low duty cycle
rate can be seen by the fact that if one were to drive
at a rate of 60 miles per hour for only 872 days, it
would accumulate 12,000 miles. This rather dra­
matic difference in use factor shows that the adop­
tion of automotive design principles would be very
unwise. In other words, while automobile troubles
and maintenance requirements seem to occur very
infrequently, they would occur 10 to 20 times as
often if the same principles were used for peripheral
equipment operating on a three-shift basis.

DESIGN APPROACH OBJECTIVES

The foregoing was weighed and considered in
developing a design approach guide which would be
readily understood and used to advantage by the
many individuals contributing to the program.
Some of the objectives may sound as though we set
the goals too high. A later summary will indicate
that achievement of these goals was surprisingly
complete.

Fewer Moving Parts. One of the obvious ways to
eliminate manufacturing and maintenance problems
with electro-mechanical equipment, and to achieve
reliability is simply to eliminate moving parts. It
was surprising with this as a goal, how many parts
were eliminated compared to the typical approach
for similar machines. Engineers received much
more credit for simplifying a design than for solving
problems in a complex design.

Less Mechanical, More Electrical. When con­
sidering a design approach, it can be seen that a
particular function can in many cases be performed
either electrically or mechanically. When only
manufacturing cost is considered, the decision is
quite often made to use a mechanical approach.
However, when we considered such other key fac­
tors as production quantity, tooling, life testing, the
electrical-electronic capability of the organization,
the machine reliability, and the expanding state-of­
the-art in electronics, it became quite apparent that
we should use nonmechanical techniques as much
as possible; and to our pleasant surprise, the manu­
facturing costs were found to be comparable.

Choice of Moving Parts. If a particular function
cannot be performed electrically, and must be done

mechanically, there is also a good decision and a
poor decision as to the kind of moving parts that
should be used. We established a scale of desirable
types of movements and believe that of all the types
available, flexing is perhpas the most trouble-free
and gives the longest life. For example, a quartz
crystal in an oscillator circuit actually changes its
physical shape every cycle; in other words, a me­
chanical flexing occurs that may take place millions
of times per second and may run trouble-free for
many years.

Another example is found in loudspeaker design
where motion may be a sizeable fraction of an inch
and occurs thousands of times per second. This
indicates that a flexure spring operating well within
its design limits should provide a very satisfactory
answer to the need for reciprocating mechanical
devices.

Reasonable-speed rotary motion appears to be
the next lower level of desirable form of mechanical
motion and very satisfactory bearings can be pro­
vided at least for the life of the subject equipment.
Perhaps the next lower level of satisfactory mechan­
ical motion could be termed pulsating rotary mo­
tion. This can be thought of as having some of the
characteristics of both of the first two motions, but
imposes an additional problem of bearing design.
The next type of mechanical motion, as we go down
the scale of desirable motions, is a sliding or rubbing
motion. This in general, is not a very desirable
motion from a trouble-free life standpoint. It is
usually very dependent upon a satisfactory solution
of many physical guiding, metallurgical, and lubri­
cation problems and, even then, does not generally
lead to a life quite satisfactory for our needs.

The least satisfactory of all moving parts, per­
haps, are those that impact with each other. Here,
two or more surfaces are brought together under
shock conditions and satisfactory operating life will
vary greatly depending upon many factors. Later
examples will show that by establishing design ob­
jectives, the more desirable types of mechanical
motion can usually be employed.

"Off-the-Shelf' Mechanical Components. When
a mechanical design became mandatory, we at­
tempted whenever possible to use standard "off-the­
shelf" components such as sealed ball bearings.
This was done for all simple rotary applications and
also for primary elements in eccentric systems as
substitutes for cams and followers. This change
from the typical approach greatly reduces the
amount of life testing required; lowers the product

300 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

cost; requires less tooling for manufacturing; and
in general, shortens both the development and
manufacturing times.

Elimination of Field Lubrlcation. Early in the
development of our new design approach, it ap­
peared that our objectives would make possible the
elimination of field lubrication. Although some
may argue that this is not an important objective,
experience tells us that devices that do need lubri­
cation inevitably receive too much, too little, or the
wrong kind of lubrication. In addition, lubrication
in the presence of dirt, in particular card or paper
dust, can create a very abrasive mud. Therefore, it
seemed not only important but mandatory to pursue
this as a design objective.

List of 27 Don'ts. Reproduced below is the list
of "27 Don'ts" which was given to each designer
engineer. It was written early in the program and
used as a guide for developing equipment to be
manufactured for service and use in the total en­
vironment found in the data processing business.
Most items were listed because of concern about
reliability, development time, maintenance cost,
manufacturing cost, and quality control. Some were
listed to eliminate design decisions based on the
emotional "we did it this way before," and to insure
pursuit of more challenging and imaginative routes.
In either case, the list was provided as a guide and
people were cautioned that if a rule had to be
broken, it should be done with the full knowledge
that difficulty might develop.

"As a matter of last resort in a data processing
machine design, use:"

1. Field lubrication
2. V belts
3. Miter or bevel gears
4. Worms and gears
5. Helical gears
6. Chain drives
7. Three or more bearings in line
8 . Needle bearings
9. Motors with centrifugal starting

switches
10. Linear ball or roller bearings
11. Bearing length-to-diameter ratios of

less than 5: 1
12. Switches in low-level circuits
13. Shims
14. Surface plate and height gauge as­

sembly techniques
15. Slides requiring parallel ways

16. Ball bearings in short-stroke oscillat­
ing applications

17. Low-force interposer or actuator parts
depending on side guiding

18. Cams and followers
19. Long com pression springs
20. Cap screws everywhere
21. ABEC7 bearings everywhere
22. Glue, cement, paste, and tape
23. Tight tolerance on sheet metal parts.
24. Trapped belts
25. Open switches
26. "Ship in bottle" assembly techniqm~s
27. Interacting adjustments

Our design engineers' first reaction, as can be e:x­
pected, was that their hands were completely tiled
and they had nothing to work with. It was soon
shown by means of frequent design review meetings
that for every "Don't" there. was a very satisfactory
substitute.

EXAMPLES OF MORE DESIRABLE
ELECTRO-MECHANICAL COMPONENTS

The following examples are for dynamically op(~r­
ating components and do not necessarily apply to
more-or-Iess static devices such as operator con­
trols:

Flexure vs Pivots

A flexural member operating well within its stn::ss
limits, as mentioned previously, seems to be;: one of
the longest-lived mechanical elements known. An
excellent substitute for pivot bearings in a recipro­
cating mechanism, therefore is a protected flexure
spring. It has the very desirable characteristics that
it requires no lubrication, is not sensitive to dirt,
paper, or card dust, has substantially no friction,
and does not generate heat. It does have a spring
restoring action, but this is usually of no conse­
quence and sometimes may even be desirable. It
seems almost a paradox that a spring is rated so
highly when everyone has seen broken springs.
Broken springs are inevitably the result of improper
design, improper manufacture or improper use, all
of which can be controlled. The stresses in a spring
can be readily calculated in most cases, and, in all
cases, can be life-tested. Proper manufacture can
be controlled by normal quality control pr04:;eduf'{!s.
Improper use can be controlled by proper design.
For example, we have a rule which states that ea4:;h

A NEW LOOK IN A PERIPHERAL EQUIPMENT DESIGN APPROACH 301

flexure spring system must have limit stops which
prevents accidental overstressing. In many cases,
the rule has even been extended to flexure subas­
semblies to further insure against accidental dam­
age. Figure 2 shows how a flexure spring can be
substituted for a pivot and how simple limit stops
can be designed to 'prevent overstressing.

I
I ",--

.,/ --,. --
1 .,// --- 1 1 .,/ --I (I 1/ 1- __ ,... .. --_I

I .,/?>
/'

.,/
.,/

However, while this system provides essentially
parallel motion, it does not produce pure straight
line motion; in many cases though, the deviation is
so slight that it may be ignored. For example, in
our card punch, the, interposing system is carried
on four two-inch flexure springs. The total stroke
of the interposer system is 0.1 inches and the result-

INPUT
CARD

DECK

SELF LEVELING
PICKER KNIVES

FLEXURE
ASSEMBLY

DETAIL

PIVOT
ASSEMBLY

Figure 2. Flexures vs pivots. Comparison of flexure springs and pivots applied to the same card feed picker knife assembly.

Parallel Motion Flexure vs Slides

Mechanical elements which normally require
slides to provide parallel motion can be greatly im­
proved by using parallel motion flexure springs. As
noted previously, slides are not very high on the pre­
ferred list of mechanical motion. It is very difficult
to prevent metal-to-metal rubbing contact and the
system is usually very dependent upon lubrication.
By using parallel flexure springs (Fig. 3) it is pos­
sible to completely eliminate sliding friction, lubri­
cation, and heat. In addition, the system will never
develop play or clearance during its operating life.

ing deviation from a true straight line motion is
0.002 inches.

Sealed Ball Bearings vs Sleeve Bearings

Sealed ball bearings usually result in a higher
product cost than simple sleeve bearings. It is our
belief that this additional cost is easily offset by
reduced maintenance. The total cost of the down­
time for a failed bearing will probably pay for the
additional cost of providing ball bearings through­
out a machine. Sealed ball bearings in most appli­
cations have the added advantage of requiring no

302 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

MOUNTING
BASE

PARALLEL
MOTION

FLEXURES

SLIDING
BE)~RINGS

Figure 3. Parallel motion flexures vs slides. Comparison of two methods of supporting and guiding an assembly which is in reciprocat­
ing motion.

field lubrication, having very low friction, producing
very little heat and possessing constant characteris­
tics throughout their life. Sealed ball bearings are
good examples of "off-the-shelf" mechanical com­
ponents in which a solution to all the problems of
metallurgy, surface finish, and lubrication required
for a predictable life has already been found by the
bearing manufacturer.

Eccentrics vs Cams and Followers

Cams and followers (Fig. 4) have the desirable
characteristics of being able to convert rotary
motion into controlled reciprocating or linear
motion. Cams and follower systems in our applica­
tions, unfortunately, have many undesirable char­
acteristics. For example, since the basic shape of
cams and followers is cylindrical, the contact be­
tween the two is essentially a line contact. While
this is somewhat modified in practice by the elastic­
ity of metals, the fact remains that the unit pressure
can be exceptionally high. A single cam and fol­
lower provide positive drive in one direction only
and must rely on a return spring for drive in the
opposite direction. A system with two cam surfaces
to provide drive in both directions may eliminate
the return spring, but in so doing must become a
very precise assembly. Other:disadvantages of cams
and followers are that they require lubrication, and

bearing problems sometimes develop because of the
exceptionally high speed of the rather small di­
ameter cam follower. To date, we have found it
possible to provide all our reciprocating drive needs
by using sealed ball bearings in eccentric drive sys­
tems. This allows designs with no lubrication, no
return spring, low unit forces and "off-the shelf"
package assemblies. The time displacement curve
of an eccentric system is normally very close to a
sine wave. In our applications we have found this
potential disadvantage to be a very minor price .
to pay for the many advantages.

Flat Belts and Pulleys vs Gear Trains

Gear train power transmission systems providing
rotary motion to a number of shafts characteristic­
ally have the disadvantage of requiring vt~ry accu­
rate shaft center locations, lubricants and relatively
high-cost components. Modern, thin, flat nylon
belts running on smooth pulleys (Fig. 5) solve many
of these problems. The cost of the entire system is
much lower, center locations are much less criti1cal,
the system requires no lubrication, and problems of
tolerances of all kinds can be absorbed in one
spring-loaded belt-tightening idler. The life of a
properly designed system of this type is exception­
ally long. The reason for this is that the be:lt is very
thin and pliable and readily wraps around the var-

A NEW LOOK IN A PERIPHERAL EQUIPMENT DESIGN APPROACH 303

"-
.........

SUPPORTING
BEARINGS

PARALLEL /"

MOTION <
FLEXURES ~

.......
.......

COUPLING
SUPPORTING BEARINGS

Figure 4. Eccentrics ys cams and followers. Two methods of applying controlled driving power to a reciprocating assembly.

GEAR TRAIN

IDLER
GEARS

Figure 5. Flat belts and pulleys vs gear trains. Shown on the left is an actual fiat belt system used to drive rolls in a card transport
system. A possible gear train drive is shown on the right.

304 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

ious pulleys. It can be guided by one or more crown
pulleys, and therefore, is not in rubbing contact
with any element. A drive system of this type, it
might be argued, has the disadvantage of not being
synchronous., One answer to this is to make the
entire machine asynchronous-which is no handi­
cap. If this cannot be done, a timing belt can be
employed as discussed below.

Timing Belt vs Gear Trains

Toothed belts or timing belts are a very satisfac­
tory substitute for gear trains when it is necessary
to rotate two or more shafts in synchronism. While
the timing belt may not be as precise as certain high­
quality gear trains, it appea'rs that they are com­
pletely adequate in our applications. The timing
belt has many of the same advantages over gear
trains as does the flat belt. For example, it does not
require lubrication, it is not sensitive to wide toler­
ances on shaft centers, and all tolerances can be
absorbed by a single spring-loaded or adjustable
idler.

Moving Coil Motors vs Clutches and Brakes

The introduction of moving coil motors has per­
haps been as close to a breakthrough in the electro-

UPPER PAPER
.... ~ ---

FEED SHAFT

mechanical component field as anything known.
This is a DC motor in which the rotor consists of
a very-low-inertia copper coil. The coil can be
either a disk or a cylinder. This type of motor has
many desirable characteristics: very high torque .. to­
inertia ratio, low inductance, does not saturate (air
core), operates on low voltage and is very compati­
ble with solid-state driver systems. Also, bc!caust: of
low voltage and inductance, it produces very little
brush commutator arcing. We have founcl that all
functions normally provided by a clutch and brake
system can be easily accomplished by one or more
of these motors in a servo system. The degree of
servo sophistication depends entirely on the appli­
cation. A motor in this application has many de­
sirable characteristics such as no high-friction suf­
faces, no impact of mechanical parts, no change: in
operating characteristics throughout life. In addi­
tion, it provides its own power. Figure 6 shows the
simple paper-feed drive system that can be used in
a high-speed printer in place of the typical clutch
and brake. Depending on the servo system, it can
provide not only start and stop functions, but also
variable speed and can operate in either direction.
This is one of the prime examples of the way in
which it is possible to exchange typically trouble­
some electro-mechanical elements with their many

LOWER PAPER
FEED SHAFT
~

!
LMOVING COIL

MOTOR

TACHOMETER

DRIVE MOTOR
,I

DRIVE BELT ~
a PULLEYS

CLUTCH a
BRAKE ASSEMBLY

Figure 6. Moving coil motors vs clutches and brakes. Two drive bystems to supply controlled drive to the paper feed section of a
high-speed printer.

A NEW LOOK IN A PERIPHERAL EQUIPMENT DESIGN APPROACH 305

moving parts to a highly electronic system which
has only one moving part-a simple low-inertia
armature operating in simple rotary motion on
sealed ball bearings.

Moving Coil Motors vs Indexing M echanis,ms

The same moving coil motor discussed in the pre­
ceding paragraph can also be used to great advan­
tage as a substitute for very complex indexing
mechanisms which require very long development
times because of the many problems of metallurgy,
surface finish, and lubrication. Even if the complex
mechanism problems are reasonably well solved,
providing a device with a trouble-free life, it would
still leave something to be desired. A moving coil
motor can frequently provide the same indexing
function with the additional advantage of very long
trouble-free life, plus additional control features
such as interruptions of the indexing function for
indefinite periods and the substitution of continuous
motion at various speeds, even in a bidirectional
mode.

EXAMPLES OF GOOD DESIGN PRACTICES

Following are a few examples of good design prac­
tice rules which have been applied:

Subassembly vs Ship in Bottle. It is our general
rule to make a subassembly of critical inter-related
parts so that they can be bench, assembled, bench
tested, or bench repaired. This may seem like a very
obvious design goal, but, unless it is stated, it some­
times becomes obvious too late.

Multi-Motor vs Complex Drives. We have found
that it is very often desirable to use several drive
motors in a single machine rather than develop a
very complex drive to transmit power over large
distances. This is perhaps somewhat analogous to
the change in power distribution in a manufacturing
plant since the days of a system consisting of over­
head line-shafts with the power coming from a
single large steam engine. Today, this job is ac­
complished by small individual motors added to
each device requiring power. Because of the mass
production of fractional horsepower motors, we
have found it possible to buy motors for less cost
than that of custom-made hardware to transmit
power over distances or around corners. The multi­
motor drive of a machine also provides the oppor­
tunity for a more flexible control during start up,
shutdown, or test modes.

Avoid the use of Glue, Cement, and Tape in Assem­
blies. This may sound like a very odd recommenda­
tion in this age when so many successful products
make extensive use of these techniques. Again, it
must be stressed that this guide is recommended for
the design of equipment to be manufactured, serv­
iced, and used in a data processing environment.
The successful application of modern cementing
techniques is a very specialized business and can
only be accomplished if everyone is fully aware of
the critical quality control problems. Another way
of stating the problem is that because of the limited
production quantity and the multitude of parts and
assembly problems that must be solved, it is very
dangerous to assume that the quality control aspects
of an assembly requiring cementing will get proper
attention.

A void Trapped Belts. Since we have eliminated
gear trains and have gone to the use of belt drives,
our machines will characteristically have several
fairly complex belt drives. We have found without
exception, that if the design is started with the idea
in mind that the design should avoid trapped belts,
it can be accomplished. In all of our machines, any
belt can be replaced without tools.

SUMMARY

Four Product Lines

The success of the program can be stated very
simply. We have in quantity production four new
product Jines. Three are considered basic periph­
erals. This nOw permits our division to ship com­
plete computer systems with all units manufactured
in-house.

Success of Design Approach Rules

The tabulation of Fig. 7 shows the degree of suc­
cess in both eliminating moving parts and in doing
more things electrically and fewer thingsmechan­
ically. The chart lists a number of machine elements
and discusses the typical solution vs our method. It
is difficult to do this comparison in a completely
unbiased way. We believe that the chart shows a
significant difference resulting from our design ap­
proach decisions.

Sometime after we had made the decision to use
an "expensive" moving coil motor system in the
paper feed area of our high-speed printer, we noted
that the parts costs were being reduced and that
with continuing development work, the entire sys-

306 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

tern was being simplified. Finally, we decided it
would be interesting to make a cost comparison
between the new moving coil approach and our old
clutch and brake design. To our very pleasant sur­
prise, the parts costs turned out to be almost iden­
tical and because of the mechanical simplicity of the
moving coil motor system assembly, labor cost was
actually lower.

In summary, then, the effect of the rather high
design approach goals can be stated as follows: Of
the four peripheral product lines presented, none of
the machines contains operating gears, * cams or
followers, clutches or brakes, mechanical indexing
mechanisms, trapped belts, linkages, and none of
the machines requires lubrication.

A ttainment of Specifications Goals

Each of the four product lines fully met or ex­
ceeded the specification goals because of the more
flexible design approaches. In some cases, the speci­
fications can still be revised upward. It is also pleas-

1 ant to note that, again because of the flexibility of
the design approach, future additional improvement
in performance can be obtained from each of the
machines by a relatively small additional develop­
ment effort.

Reliability Goals

The story of the success or failure of reaching the
reliability goals is still being written. There is noth­
ing to date to indicate that any of the design ap-

• At the present time, some "off-the-sheIP' small, sealed gear
head motors are in use. They do not require field lubrication.

CARD PUNCH ELEMENTS

ACTIVE COMPONENT
I SUMMARY COMMENTS ON HONEY
• COMPETITIVE PUNCHES PUNCH

WELL

GEARS
ALL HAVE GEARS. ONE KNOWN MAKE 0 HAS AS MANY AS 43.

CAM a FOLLOWER ALL HAVE CAM a FOLLOWER SYSTEMS

SYSTEMS
SOME AS LOW AS TWO, UP TO AS 0
MANY AS 26.

CLUTCH a BRAKE
RANGE FROM ONE TO TWO. 0

SYSTEMS

MECHANICAL INDEXING THE COMMON METHOD OF INDEXING, 0 SYSTEMS A CARD FOR PUNCHING.

SLIDING ELEMENTS THE COMMON SOLUTION IN PUNCH
(IN ADDITION TO PUNCHES BAIL, STRIPPER BAIL, CARD FEEDINCI, 0
IN GUIDES) AND OTHER AREAS.

PIVOTS a LINKS IN GENERAL USE THROUGH-OUT. UF'

(IN ACTIVE OPERATION)
TO FOUR PER INDIVIDUAL PUNCH 0>
INTERPOSER SYSTEM.

BELTS
RANGE FROM NONE TO A DOZEN

4-WITH SOME TRAPPED.

FLEXURES RANGE FRON NONE TO A FEW. I(

SERVO SYSTEMS NONE KNOWN .2:

RANGE FROM AN OIL BATH CRANK-'
LUBRICATION AREAS CASE TO 30 AREAS SOME OF WHICH 0

ARE IN SETS OF 80.

TRANSISTORS RANGE 300- 500 80 o

Figure 7. Comparison of card elements, showing effect of de­
sign approach.

proach decisions were anything except extremely·
sound.

ACKNOWLEDG MENTS

This paper has reported on what is beli,eved to be
an important advance in the design approach of
peripheral equipment. The author wishes to thank
the many individuals and groups for thdr contri­
butions in making the effort a success.

A SERIAL READER-PUNCH WITH NOVEL CONCEPTS

David W. Bernard, Frank A. Digilio, Frank V. Thiemann, and Ronald F. Borelli
Honeywell ED P, Terminal Equipment Group

Waltham, Massachusetts

INTRODUCTION

A card punch traditionally has been looked upon
as a machine which is composed of many complex
and ingenious mechanisms because of the complex
task that it must perform. Complex mechanisms,
however, have an ingenious way of making noise,
being unreliable and difficult to service. .

An attempt has been made to break away from
the historical approach, by taking a new look at
the real requirements and producing a design using
novel electromechanical and electronic components
which avoid many of these difficulties. Some of the
design considerations are presented here. While the
total engineering program capitalized to a large
extent on a concurrent card reader development,
this reader-punch development included all en­
gineering phases from feasibility study through pro­
duction models and reliability studies. The success
of the program can be attributed in large measure to
the use of "off-the-shelf" mechanical components
with known life and reliability, and the use of solid
state electronics and new motive devices and actua­
tors to perform functions formerly satisfied only by
mechanical devices.

THE SERIAL READER-PUNCH

The Honeywell 214 Serial Reader-Punch reads at
400 cards per minute or reads and punches at 100 to
400 cards per minute depending upon the number of
columns punched. See Fig. 1.

307

Figure 1. The Honeywell 214 Reader-Punch

The basic card transport, input hopper, read sta­
tion, and stacker of this machine are modeled after
and use parts common to the Honeywell high-speed
card reader which was under development at the
same time.

A card is picked from the input hopper, and fed
broadside into a wait station. From here it is fed
serially through a read station, then through the
punch to a cornering station where it is kicked

308 PROCEEDINGS~SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 2. Transport with punch head removed.

"on-the-fly" into rollers for broadside power stack­
ing. Figure 2 shows the transport with the punch
head removed. Card motion is left to right.

Inp~t Hopper

The input hopper has a capacity for 1200 cards
and is tilted slightly away from the operator com­
pletely exposing the front side for easy card loading.
Cards are selected or picked on demand (asyn­
chronously) by a flexure-mounted picker knife
under the control of a high performance servo
system in lieu of the conventional clutch. The

Figure 3. Picker knife and drive system.

picker knife system is shown in Fig. 3. Use of
flexures for articulating the knives, pivoting the arm,
and connecting to the drive crank should be noted.
Sealed bearings are used at the crank pin and in the
moving coil servo motor. Motor acceleration and
deceleration are controlled by an SCR reversing
bridge, via a tachometer generator and differential
amplifier. The rest position of the picker knivf:s is
determined by photoelectric detection of the motor
shaft position.

Cards enter feed rolls and are driven into the wait
station. These continuously running feed rolls and
all others associated with the transport are powered
by nonsynchronous induction motors through non­
captive flat belts thus eliminating the need for gear
trains and lubricants as well as the close tolerances
associated with fixed-center shafts. From the wait
station, card motion in a serial or column by
column manner is initiated by a solenoid actuated
pinch roll operating against a continuously running
capstan.

Read Station

Additional feed rolls continue the card through
the read station at 44 inches per second. These are
belt driven and are part of the read station sub­
assembly. The read station consists of 12 solar cells
for reading the data and additional cells for strobe
generation from the trailing edge of the card. A
single projection lamp provides nearly uniform
illumination over the entire surface of the card.

As the trailing edge of the card uncovers aper­
tures over the strobe cells, a staircase waveform is
generated corresponding to the column llocations.
Since the trailing edge is continuously referenced,

A SERIAL READER-PUNCH WITH NOVEL CONCEPTS 309

strobe pulses are unaffected by minor changes in
card velocity resulting from slippage or eccentricity
of drive rolls and tolerances are noncumulative. To
allow for scored cards, that is cards perforated for
later separation, a continuous strip cell for all 80
columns is not used, but rather is divided into 8
segments, each with 10 apertures, arranged to
become active sequentially under the control of an
associated gate or guard cell ~hich is wide enough
to be unaffected by the score in the card. A wide
variety of trailing edge cuts are accommodated by a
mechanical shutter that switches active apertures
between card rows 6 and 7, and 7 and 8.

Stacking

From the punch station which is described below,
the card is transported via a flat belt to a second
cornering station where it is sensed by photocells
for regular or offset stacking. The card is kicked
"on-the-fly" into broadside stacker rolls. Figure 4
shows a card leaving the punch station, and another
entering the broadside stacker rolls.

The kicker is an armature type solenoid with a
self-damping multiple layer flexure plate attached.
The design keeps the operating air gaps short while

Figure 4. Punch and stacker area.

providing %-in throw at the card. A complete ex­
cursion occurs in 30 msec. Card edge damage is
negligible because the accelerating force is applied
gradually to the entire length of the card.

Since the transport is asynchronous, the card
itself is constantly tracked by photocells, and logic
conditions are established to determine the next
operational sequence or error conditions. For in­
stance, failure to stack, in either the normal or reject
modes allows the card to travel to the end of the
transport where it signals an error condition and
the transport shuts down before a jam occurs.

Punch and Drive

The punches are driven by an eccentric shaft con­
tinuously rotating at 4800 rpm. The shaft is flexure
coupled to a flexure mounted bail imparting nearly
linear motion to the punch interposer carried by the
bail. See Fig. 5.

Figure 5. Punch head.

This eliminates cams, cam followers, and rotary
pivots. It is estimated that if a cam and cam fol­
lower were used in this system, the follower would
rotate at speeds in excess of 25,000 rpm, or if a
sliding follower system were used a lubricant would
be necessary. Every effort has been made to elim­
inate the need for lubricants throughout this device,
including the area subject to most sliding motion
and wear and the collection of abrasive paper dust
-the punch and die itself.

A two-column punch has been designed in order
to keep the speed of the eccentric shaft at half of
what it would be for a single column punch with
the same throughput and little additional com­
plexity elsewhere. Flexure spring pivots are used
throughout to eliminate rotary pivots which are
susceptible to fretting corrosion when experiencing
small oscillatory motions (Fig. 5). A properly de-

310 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

signed flexure spring for this application has a
fatigue life of billions· of cycles. This is borne out
by representative samples of these flexures tested
for over 1 Y2 billion cycles without failure, exceeding
by faT the expected useful life of the machine, under
average operating conditions.

Stripping Mechanism

After punching, selected punches must be with­
drawn and returned to a rest position. The device
which does this is known as a stripper. A precise
timing relationship must exist between the punching
and stripping actions. While this can be accom­
plished by the use of gears and cams, this design has
avoided these components by making the stripper
an integral part of the eccentrically driven punch
mechanism. On the downstroke, the eccentric
drives only the selected punches through the card.
On the upstroke, the common stripper simul­
taneously withdraws all previously selected punches.
Thus proper timing is achieved automatically and
phasing adjustments are not required. (Fig. 5).

Punch Selection Mechanism

The heart of the punch selection mechanism is a
simple flexure spring which serves as both the arma­
ture of the selecting solenoid and the mechanical
punch interposer. There is one for each of the 24
punches. This interposer is mounted on the stripper
bail between two preformed beams (Fig. 5). In the
nonpunching position, it rests against the outside
preform where it cannot contact the top of the
punch. In the selected or punching position, it
moves to the inside preform where, on the next
downstroke, it makes contact with the top of the
punch (Fig. 6). As punching load is applied, the
thin interposer is reinforced by the stiff inside pre­
form. The flexure thus acts like a rigid column and
transmits the required punching force without buck­
ling. Since both preforms and the flexure have a
common point of attachment, there can be no rela­
tive sliding motion between them and therefore no
wear. The deflected beam preforms are used here to
avoid the manufacturing problems inherent in con­
toured machined parts. Since the interposer is car­
ried by the reciprocating assembly and selection is
done magnetically, the relative motion which nor­
mally exists between the reciprocating and fixed
members and results in mechanical wear has also
been eliminated. The interposers are held in a nor­
mally nonpunching position by a permanent mag­
net. Because of their initial preload, the interposers

PUNCH SELECTION MECHANISM

INSIDE

PREf7

INTERPOSER

NON PUNCH\'

PUNCH

Figure 6. Punch selection mechanism.

move to the punching position, when the fi'eld of the
permanent magnet is reduced by an electromagnet.
This punch selection system has only one moving'
part, the interposer, which does not slide, pivot, or
impact. The change of the interposer from the non­
punch to the punch condition occurs at the top of
the stroke when a clearance is established between
the punch and the interposer. There is no impact
between the interposer and the punch because the
action occurs very near the top of the stroke where
the velocity is essentially zero.

Punch Head Accessibility

The punch head mechanism can be opened by an
operator to clear card jams in a matter of seconds
(Fig. 7). This feature is provided by splitting the
punch head at the junction of the die and punch
guide. In this case, the increased manufacturing
cost of splitting the head is justified on the basis of
reduced maintenance cost and increased uptime and
throughput.

Punch Check

In a punch of this type a means is generally pro­
vided for verifying that correct punching has oc­
curred. Short of reading the card immediately after
punching, which is an unwarranted expens1e, a check
on the motion of the punch or its actuator can be
incorporated. Several methods of checking this
punch were considered and rejected. Mechanical
contacts were rejected as being unreliable and prone
to failure because of wear. An echo check generally
involves sensing the position of the actuator arma­
ture at a specific time during the cycle. This was
rejected as being too far removed from the actual
punching and difficult to implement for this particu-

A SERIAL READER-PUNCH WITH NOVEL CONCEPTS 311

Figure 7. Punch station, punch head open.

lar interposer. Reluctance pickups would detect
the motion of the selected punches, but signals
would be small because of the low velocity, and
peak output would occur at midstroke before the
punch pierces the card.

The method selected is a fail-safe position detec­
tor which senses the punch at its maximum excur­
sion fully through the card. With this device the
position of the punch is actually sensed and checked
against input data when the tip of the punch has
gone through the card and into the die. Attached
to the shaft of each punch is a tiny permanent mag­
net with a field strength at its surface of about 500
gauss. Mounted adjacent to each punch is a ferrite
memory core which can be saturated by an external
field (Fig. 8). When the punch is in the up position,
its magnet has negligible effect on the core. When a
punch is selected, the permanent magnet moves
closer to its associated memory core and saturates
it. Each core has single turn primary and secondary
windings. The primaries are excited by a common
alternating carrier current. The secondaries are
connected to peak voltage detectors. In the no­
punch position, the core functions as a transformer,

Figure 8. Punch check cores and punch with magnet attached.

coupling the carrier signal from the primary to the
secondary. At the bottom of the punch stroke, the
permanent magnet saturates the core decreasing the
primary signal coupled to the secondary winding.
The resulting null in secondary voltage causes the
detector circuit to generate a logic signal indicating
that the punch has pierced the card.

While the detectors operate continuously, their
outputs are sampled only when the punches are in
the card. The punch check logic is such that opera­
tion of unselected punches, or failure of selected
punches creates an error signal. This is an extremely
simple punch check system and appears to be the
safest alternative to a post-punch reading of the
card.

INDEXING

Indexing mechanisms fall into four general
groups:

1. Clutched pinch rolls
2. Gated stop units
3. Oscillating pushers
4. Geneva and similar type mechanical indexes

The inherent advantages and disadvantages of
these mechanisms can be summed up as follows.

1. Clutched pinch roll:
a) Wearing clutch face, latches and

sprocket teeth.
b) Good control because the tabulating

card is always gripped and under con­
trol of the rollers.

2. Gated stop unit:
a) Many moving and pivoting parts.
b) Card edge damage.
c) Tabulating card can be ejected.

312 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

3. Oscillating pusher:
a) Card edge damage.
b) Lacks positive card control.

4. Geneva and similar type mechanisms:
a) Wear.
b) Backlash.

Because of the many disadvantages of these and
similar devices, a simple servo system was designed
using a high-performance moving-coil motor to
drive the card pinched between a pair of index and
idler rollers. The card can be indexed for punching
well within the tolerances specified for the card, or
skipped at high speed between columns. The card
also can be transported through the punch (for
read-only modes) or ejected after punching is com­
plete.

The coincident development of this moving-coil
motor was a significant factor in the successful
design of the indexing system which can step the
card 0.174 in 80 times/sec and skip at 100 in/sec.

The motor used has a torque per ampere constant
of 6 oz in/amp and a moment of inertia of 50 x
10-5 oz in sec2

•

Since the load inertia consists only of the card,
the steel index and aluminum idler rolls, their con­
necting shaft and tachometer, an exact inertia match
with the motor is possible (Fig. 7).

The elimination of armature iron in the motor
gives the low inertia, inductance and high torque­
to-inertia and high torque per ampere ratios that
provide an ideal marriage between low-power. solid
state control circuitry and the indexing require­
ments.

Servo System

The servo system used in the reader - punch to
index a card through the punch head is a precision
velocity servo as shown in Fig. 9. A velocity servo
is used in lieu of a position servo because it per­
forms the indexing task with accuracies well within
the specified tolerances without requiring the use of
expensive feedback elements such as resolvers, syn­
chros, etc.

Under the control of this velocity servo, a card is
moved a distance of 0.174 in (two columns) in 5
msec a maximum of 39 times per card by means of
a set of driving rollers, directly coupled to the motor
shaft without any intervening belts, gears, etc. Zero
backlash and faster response are attainable by this
direct drive system.

All timing relationships and synchronization
within the punch head are derived from the con-

VELOCITY SERVO CONTROL. LOOP

ELECTROMAGNETIC I ADVANCE
PICKUP I PULSE

PUNCH STROBE I STOP
.... B_L_O_C_K ____ ---.III PU LS E

S

R

I f--

FLIP
FL.OP

o

--
LEVEL ADJUSTMENTS

:~_:_H_S s_p p_E E_E:_D_R....;.:-=:_:~:E.;....c.R N=-E:~:-'-'E"'---I~~

I
f
I
I
I
I
I
I
I
I
I

SUMMING AMPLIFIERS

I +

l r-------Q DC TACHOMETER

HONEYWE:LL
SERVO
MOTOR

Figure 9. Velocity servo control loop.

tinuous running eccentric drive shaft by an electro­
magnetic pickup. This pickup generates an advance
timing pulse (A TP), the signal to begin advancing
from one punch position to the next as well as the
punch timing pulse (PTP), used to synchronize
selection of the interposers and the punch check
timing pulse (ETP). The punch strobe pulse which
initiates the stopping of the card is generated from
a photo electric sensing block having 40 apertures,
one for each of the 40 stop positions. As a card
passes under the strobe block, the trailing or regis­
tering edge of the card uncovers an aperture, gener­
ating the brake pulses to position the card for
punching the next two columns. Because of con­
tinuous strobing of the trailing edge of the card,
each increment and its associated positional toler­
ance is independent of the previous increment and
therefore any error is noncumulative over the length
of the card. A card enters the punch station at a
speed of 100 in/sec, is picked up by indexing rolls
and its speed reduced to 44 in/sec. When the trail-

A SERIA,L READER-PUNCH WITH NOVEL CONCEPTS 313

ing edge of the card is sensed by the first photocell,
a brake'pulse is generated and the card is registered.
Subsequent synchronization between punching and
indexing is controlled by the electromagnetic pickup
on the continuously running punch eccentric. The
timing relationships can be seen in Fig. 10.

TIMING

CHECK PULSE (ETP)
PUNCH PULSE (PTP)

ADVANCE PI) LSE (ATP)

Figure 10. Punch timing diagram.

Punch Strobe

As in the read station, registration of the card for
punching is controlled by photocell detection of the
card's trailing edge~ Strip cells are arranged behind
a mask with 40 apertures, and illuminated by the
single projection lamp. No lenses are used. As a
card approaches the first punching position, all 40
apertures are covered by the card. As the trailing
edge of the card uncovers the apertures, a staircase
current waveform is generated by the photo cell.
Each step of current is amplified and differentiated.
The output of the differentiator triggers a multivi­
brator whose output signals the servo system to stop
the card. The card waits until the first column pair
has been punched. The servo is then restarted and

--®
(f)

(f)

..J a::

..J lLJ
lLJ li:
(.) ::J g a..

:E 0 oct :I: lLJ a.. a::
a..

-@

RESET----t

PHOTOCELL SELECTOR

ADJUSTABLE
DELAY
MULTIVIBRATOR

STOP PULSE
TO SERVO

Figure 11. Punch strobe logic.

the card advanced until its trailing edge uncovers
the next aperture, apd so on (Fig. 11).

Only one cell is connected to the differentiator at
any given time. The stop pulses are counted by a
scale of 40 counter. Output gates from various
stages of the counter select the cell which is con­
nected to the differentiator. In effect, the counter
tracks the cards down the row of apertures. Every
time the card exposes the last aperture of a cell, the
counter gates off the exposed cell and gates on the
next cell. Using only one photocell at a time allows
the punch to handle cards which have been scored
or perforated for tear-off stubs.

An adjustable delay multivibrator between the
photo cell circuits and the indexing servo allows the
card to travel a short controllable distance beyond
the point where the trailing edge is sensed. This
electrical vernier provides adjustment of the loca­
tion of the card relative to the die and eliminates
the need for a fine mechanical adjustment such as
a lead screw, with its problems of backlash and
possible loss of adjustment with vibration.

ServO' Control

The way in which the velocity servo controls the
card from position to position within the punch
head can be followed by referring to the block dia­
gram, Fig. 9, and the series of timing pulses, Fig. 10.

An advance timing pulse triggers a voltage refer-

314 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

ence level providing the input to the summing am­
plifiers. The output of the summing amplifier is
fed to the power amplifier which drives the motor.
The motor begins accelerating the load to the ve­
locity established by the voltage reference, driving
the tachometer which in turn feeds back a negative
voltage to the summing amplifier. This voltage is
proportional to the rotational speed of the motor.
The motor and load accelerate until the feedback
voltage of the tachometer is equal to the input
voltage reference. At this point, acceleration
ceases and velocity remains constant at 44 in/sec.
The acceleration from zero to 44 in/sec is accom­
plished in less than 1 msec. The constant velocity
level is maintained for about 3 msec until a strobe­
generated stop pulse drops the voltage reference to
zero. Consequently, the summing point is negative
since the only signal present is the feedback voltage
from the tachometer. The power amplifier is now
conditioned to decelerate the motor and load to a
stop.

Deceleration time is less than 1 msec. The card is
now registered within the tolerance required for
punching. The total time for indexing and punching
is 12.5 msec (80 cps) with 5 msec for indexing and
the remainder for punching. In the block diagram,
a second summing amplifier and voltage feedback
loop are shown. The purpose of this loop is to
achieve the proper gain and reduce the servo "dead
zone" for optimum response. The constant velocity
level is of extreme importance in this servo system
because positionai accuracy depends upon the
motor and load braking from the same velocity for
each increment. The specified tolerance for punch
hole registration relative to the trailing edge is
±0.007 in.

The two-column punch design permits this veloc­
ity level to be considerably lower than that which
would be required of a single-column punch with
the same throughput. An additional advantage is
found in the reduced wear on component parts.

In the voltage reference level area of the block
diagram (Fig. 9) a high- and low-speed level dis­
tinction is indicated. In the above explanation,
reference to either input voltage or constant velocity

relates only to low speed, 44 in/sec. The high speed
is used for ejection when punching is complete and
in a read-only mode, for transporting cards at 400
cards per minute without indexing. It is also used
in the high-speed skip feature described below.

High-Speed Skip Feature

This particular feature is unique in that it permits
high speed skipping between columns while punch­
ing. Skipping is performed automatically without
requiring any special program routine and is ac­
complished by two logical functions-searching for
blanks (SFB) and blanks found (BF). The control
logic sends out two pulses, one for each column to
be punched, requesting data and simultaneously
checking for blank columns. As long as blanks are
found in both columns the card moves at high
speed. When blanks are no longer signaled the
indexing system immediately drops from the high
speed to the low speed and resumes normal index­
ing. Registration after a high-speed skip is main­
tained with the same degree of accuracy as a single
increment because the low speed of 44 in/sec is
resumed two columns prior to braking.

CONCLUSION

This paper has described a card reader-punch
designed around mechanical components of proven
reliability. The use of electrical functions to replace
troublesome mechanical operations has n~sulted in
a much simpler mechanism than found in conven­
tional machines of this type. Additional advantages
are increased operator convenience and reduced
maintenance requirements.

ACKNOWLEDGMENTS

The authors wish to acknowledge the Icontribu­
tion of the development team whose talents have
made this effort successful, in particular Messrs
A. B. Ragozzino, R. Carman, C. H. VVang, P.
Nelson and J. Rae, and E. G. Hazle for hils help in
the preparation of materials for the present paper.

THE IBM 2560 MULTI-FUNCTION CARD MACHINE

Chester E. Spurrier
IBM SDD Development Laboratory

Rochester, Minnesota

INTRODUCTION

The IBM 2560 Multi-Function Card Machine
(MFCM) provides the System/360 Model 20 with
a unique and versatile input/output capability. It
combines the facilities of a card reader, card
punch, collator, interpreter, and card document
printer, all under control of the Model 20 processor.
(See Fig. 1.) Two card hoppers, an optical read
station that reads both primary and secondary
cards, a common punch station, an optional
printing station, and five selective radial stackers
provide the Model 20 system with a card handling
capacity never before possible with one pass of the
cards.

HISTORY

Prior to the development of the MFCM, ap­
proaches to peripheral card handling equipment
generally assumed a separate machine for each of
the functions of reading, printing, punching, col­
lating, and selecting cards. Combinations of some
of these five functions had been successfully
achieved, for example, in the collator-reproducer
of Remington Rand, the IBM 101 statistical sorter,
the IBM 1402 and 1622 Reader Punches with their
multiple hoppers and stackers, and the Sperry
Rand 1001 with its reading-sorting-collating ca­
pability. However, not until the development of the
MFCM did any machine combine all five functions

315

into one unit and thus bring a "system" philoso­
phy to card handling.

GENERAL DESCRIPTION

The MFCM reads 500 cards per minute and
punches at a rate of 160 columns per second. The
card throughput during punching is a function of
the number of columns punched or spaced, begin­
ning with column 1. It varies from a minimum of
91 cards per minute for 80 columns punched to a
maximum of approximately 340 cards per minute
for 1 column punched. With the optional print fea­
ture installed, the machine can print 138 characters
per second per line. Throughput when printing is
also a function of the number of columns printed
and varies from a minimum of 99 cards per minute
when printing 64 characters to a maximum of 397
cards per minute when printing 1 character. Since
the Model 20 operates in a time-sharing mode, the
machine prints and punches simultaneously and
thus only the operation requiring the greatest
.amount of time limits the throughput of the ma­
chine.

All the logic circuitry for controlling the MFCM
is contained in the processor. The only electronic
circuits located inside the MFCM are the magnet
drivers, solar cell amplifiers, and pulse shapers
needed for proper operation. All timing pulses
needed by the processor, except those required for
reading, are created by 13 magnetic sensing coils

316 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

Figure I. IBM System-360 Model 20 showing the IBM 2203 Printer, the IBM 2020 Processor, and the IBM 2560 Mul1:i-Funcltion
Card Machine.

which detect the motion of magnets embedded in
five separate timing discs. Card movement and
location are monitored by nine solar cell sensors,
rather than the more conventional mechanical card
levers.

The lower half of the MFCM contains two gates
of electronics, power supplies, and the chip box.
The upper half contains the card handling mecha­
nism (see Fig., 2). An unusual: feature of the machine
is the so-called "backbone" or vertically mounted
plate on which are mounted most machine com­
ponents. This backbone feature greatly improves
accessibility of the card path and components over
the more conventional side frame or "boxed-in"
approach. The two card feed hoppers are mounted
on the front or operator side of the backbone.
The stacker assembly, which consists of a magnetic
selector unit and five radial stackers, is also located
on the operator side. All other components are
mounted on the rear side of the backbone, including
the entire serial card path, the read, punch, and
print units, and the drive motor. The motor drives
all units through toothed belts and pulleys.

CARD FEEDING

Card motion during reading or ejecting in the
MFCM is controlled by the card feed clutch. From
each parallel hopper the cards are fed into a corner­
ing station by picker knives and continuously
running feed rolls, as shown in Fig. 3. From the
cornering station they move serially through the
read, punch, and print stations before cornering
again to move in a parallel path into one of the
five stackers. The movement from the hopper
through these operational stations is under com­
plete processor control and is carried out by either
cam operated or magnetically operated feed roll
selection devices and the feed clutch. Cards are
designated as primary or secondary according to the
hopper from which they are fed. During a typical
operation, one of each type of card is always in
position to enter the read station, one of each type
of card is always in position to enter th,e punch
station and a single card is in position in the print
station. As the card in the print station passes
through the station to go on to the stacker, either

THE IBM 2560 MULTI-FUNCTION CARD MACHINE 317

PRIMAHY SECONDAHY

Figure 2. Rear view of the MFCM showing location of major components.

the primary or secondary card at the pre-punch
station is fed through the punch unit to the print
station and the corresponding primary or secondary
card at the pre-read station is fed through the read
unit to the pre-punch station. At the same time
a card is being fed from the corresponding hopper
to the pre-read station. All of this card movement
occurs simultaneously during one clutch cycle, and
thus all card stations are occupied on every cycle.
Under processor control, cards from one hopper
can be held indefinitely at the pre-read and pre-

punch stations while cards from the other hopper
are processed through the machine.

READING SYSTEM

A magnetically operated pressure roll and the
continuously running read inject roll grip the card
and feed it into the read station from its pre-read
position. The card is accelerated up to the reading
velocity of 146 inches per second, which matches
the peripheral velocity of the continuously running

318 PROCEEDINGS- -SPRING JOINT COMPUTER CONFERENCE, 1966

SECONDARY HOPPE

PRIMARY HOPPER

Figure 3. Schematic of the MFCM card path.

read feed roll. As the leading edge of the card is
gripped by the read feed roll, the trailing edge leaves
the inject roll so that the card is under the control
of the read feed roll for the entire read operation.

The holes are sensed by 12 silicon solar cells
located below the card path. Light is provided
by 12 lens tip lamps located above the card path.
The lamps are individually adjustable for position
and intensity. Both the lamps and the cells are
mounted inside sealed assemblies behind glass
plates to prevent card dust accumulation from
affecting light transmission.

During a read operation, the CPU must be sup­
plied with a series of pulses synchronized with
card motion and timed so as to indicate the opti­
mum time for sampling the output of the read
circuits for each of the 80 card columns. The device
which accomplishes this in the MFCM is the mag­
netic read emitter. A schematic of the emitter is
shown in Fig. 4. The rotor or drum of the emitter
is mounted on the read feed roll shaft. The periph­
ery of the drum is plated with a thin, hard coating
of cobalt. The stationary housing of the emitter
contains 60 heads or probes equally spaced around
the periphery of the drum. The housing also con­
tains a write coil, a read coil, and an erase coil.

As the leading edge of the card enters the read
station, the trailing (or column 80) edge of the card
uncovers a solar cell. The cell is located so that
it becomes uncovered as column "zero" is directly
over the read cells. The uncovering of the trailing
edge cell causes the CPU to send a signal to the
emitter write driver. This results in 60 magnetic
bits being recorded on the drum due to the flux
generated by the single write coil passing through
the 60 heads. The read feed roll on the drum shaft
feeds a card one column in 1/60 of a revolution so

Figure 4. Schematic of the Magnetic Read Emitter.

that as each column is passing under the read sta­
tion, the 60 magnetic bits on the drum have rotated
one position and are being sensed simultaneously by
the 60 heads. The cumulative flux change of the
60 heads is sensed by the common read coil. Any
air gap variation between the drum and the he:ads
caused by eccentricity is of little consequence since
the output signal of the emitter is the sum of the
60 signals. After the card has left the read station,
the erase coil is energized and the 60 bits are erased
so that the emitter may be resynchronized with the
next card as the card is being read.

PUNCHING

To register a card for punching, the punch pusher
clutch and the desired path selection solenoid is en­
ergized. The primary or secondary card s.elected is
pushed into column 1 registration and the incre-

THE IBM 2560 MULTI-FUNCTION CARD MACHINE 319

mental pressure rolls are closed. Command. from
the processor controls the number of columns
punched and incremented.

The chief difficulty in designing a high-speed
serial punch is in maintaining accurate punching
registration over 80 columns of movement. An
error of only 0.001 inch in column to column
spacing would result in the punching being about
one full column out of registration after 80 spaces.
The basic problem is the high card acceleration
necessary to achieve desired throughput. The
MFCM solves this pI:oblem in two ways: 1) by
keeping the acceleration as low as possible, and 2)
by using feed rolls with a very high coefficient of
friction to minimize card slippage. The punch
unit is designed to allow approximately three­
fourths of the 6.25-millisecond punch cycle for
card movement, thus minimizing the acceleration
requirements. The unit utilizes three cams: one
to drive the punch through the card, one for posi­
tively restoring the punch, and one for moving the
interposer-armature assembly, as shown in Fig. 5.
By optimizing each of these motions, the time the
punch is in the card has been reduced to approxi­
mately one-fourth of the punch cycle.

The punch mechanism is controlled by a magnet
unit utilizing the so-called "no-work" principle.
The magnets are only required to prevent the arm­
ature from moving rather than causing them to
move; thus, the origin of the term "no-work" mag­
nets. Several advantages are realized by using this
style of magnet ·unit. 'Since reluctance of the mag­
netic circuit is low, the coil and core size may be
reduced, resulting in a much more compact unit.
Also, magnet driving requirements are lowered and
heat dissipation is reduced.

Figure 5. Cross section of the punch mechanism.

A constantly energized single hold coil sur­
rounding all 12 punch magnets prevents the arm­
ature from following the interposer cam. When
a punch is to be operated, the appropriate punch
magnet coil is energized. This cancels the hold
flux, which releases the armature at the high point
of the interposer cam, and the armature spring
causes the armature to follow the cam. This moves
the interposer between the punch bail and the
punch, causing the punch to be driven through
the carel. The restore lever pulls the punch out of
the card.

CARD DOCUMENT PRINTER

Basic requirements for the MFCM included a
card document printer that would provide an out­
put of 100 fully printed cards per minute, with up to
six lines per card. Existing printing mechanisms
were capable of such output, but at an unreasonable
cost, so an entirely new print unit was developed.
The desired output is achieved by using a wire
matrix print head for each print line and printing in
the serial mode. These wire matrix print heads may
be positioned manually by the operator in any of
the 25 printing row locations from the top to the
bottom of the card to accommodate any card for­
mat.

Each of the printed lines may contain up to 64
characters spaced at 10 characters per inch. A wire
matrix five wires wide by seven wires high forms the
characters. The wires are driven against an inked
ribbon, card, and platen to print the character on
the carel.

One matrix of 35 wires, hereafter called a print
head, prints a complete line on a card. To print
six lines on a card, six print heads are required.
Print heads are installed in groups of two to the
maximum of six. An incremental drive moves. the
card from position to position, stopping the card in
each position. Each print head prints a character on
the card in a 7.23-millisecond cycle, which achieves
the rated speed of 138 characters per second per
line, or 828 characters per second for six print
heads.

A card ejected from the punch station is stopped
in print position 1 registration by a magnet-oper­
ated print gate. During the first print cycle the card
is gripped by incrementing rolls. An· emitter on the
incremental drive triggers each print cycle, which
consists of setting up the characters for each print
head, printing all of the characters in the position,
and moving the card to the next column. Upon

320 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

completion of printing, the card is ejected from the
print station during the following feed cycle.

A ribbon is continuously driven past all the print
heads at an average speed qf 7 inches per second.
A spring-loaded reversing mechanism assists the
ribbon-drive motor in achieving rapid ribbon rever­
sal.

Print Mechanism

Figure 6 is a cross section of the print unit. Each
print armature is fastened to a print wire. A print
unit contains 70 wire and armature assemblies or
two heads. A tube, which is securely fastened at

~--J)RINT TUBE

.-IlZmaIIlWf--MAGNE:T MOUNTING BAR

'---llRINT CAM

'----PRINT ARMATURE

'----BUCK COIL

'-----HOLD COIL

'-----HOLD MAGNET

Figure 6. Cross section of the print unit.

the unit and at the print head, guides each wire. A
compression spring drives each armature and wire
against the ribbon, card, and platen to perform the
printing. The print armatures are controlled by no­
work magnet units similar to those used in the
punch unit. Characters are' formed by energizing
the required buck coils. The selected armatures
drop onto the print cam which controls the time of
impact of the wires, and restores the armatures to
the magnet after printing. When not printing, the
armatures are held away from the print cam by the
hold magnets.

Character Selection

The printing circuitry in the MFCM consists of
an array of 35 magnet drivers, each of which is
connected, through isolation diodes, to the six buck
coils associated with the same matrix position on all

six heads. The common side of the 35 coils for
each head are connected to the power supply
through a separate silicon-controlled rectifier. This
circuitry allows the 210 magnets required for six
print heads to be controlled by only 35 drivers, since
the six heads are set up sequentially rather than
simultaneously.

Two things make sequential operation possible:
1) a memory dwell built into the print cam, and
2) a motionless period for the card which is long
enough to allow the three print cams to be timed
for sequential operation.

Figure 7 shows the sequential timing and the c:am
profile for the three print unit cams. At high dwell
on the print cam, the armatures have been restored
from the previous cycle and are ready for setting
up in the next print cycle. Setup begins when a
pulse arrives from an emitter on the incremental
driv~, timed with high dwell on the print cam for
print unit one. The selected buck coils for print
head one are energized for 350 microseconds, during
which time their armatures are released. The arma­
tures drop to the memory dwell which is an inter­
mediate dwell on the print cam just following the
high dwell. After the coils are de-energized and
the holding flux increases, the armatures are not
reattracted back to the magnets due to the air gap
created by the memory dwell. After the 350-micro­
second buck pulse for head one, there is a 1. 00-
microsecond delay before head two is set up to
allow the silicon-controlled rectifier for head one! to
turn off. Head two is then set up in a similar man­
ner. The second print unit, which controls head
three and four, is timed so that the setup for its
two heads comes just after the print circuitry has
completed the setting up of heads one and two. The
third print unit is similarly timed with respect: to
the second. As a result of this method of timing,

<!)
z

~ UNIT I
~

::E
~ UNIT 2

~
z
~ UNIT 3
Cl.

PRINT HEAD BUCK
PULSE TIMINGS

--"

Figure 7. Electrical and mechanical timing diagram of the
print unit.

THE IBM 2560 MULTI-FUNCTION CARD MACHINE 321

the impact from heads one and two occurs just
after the card has come to rest in the dwell period,
heads three and four print in the center of the dwell
period, and heads five and six print just before the
card starts to move.

CONCLUSIONS

The challenge of designing a machine that could,
in a single pass, perform most of the functions re­
quired in a card-oriented processing system, has
been met by the IBM 2560 Multi-Function Card
Machine.

This machine, as a part of System/360 Model 20,
provides a dramatic reduction in the number of

processing steps and the card processing time re­
quired by conventional punched card equipment.
File maintenance or file updating is now possible
with one machine. The unique concept of the
MFCM has been likened to a "poor man's mag­
netic tape system." In this concept the two card
hoppers simulate two magnetic tape input drives,
the five card stackers simulate magnetic tape output
drives, and the coordinated read-punch-print units
simulate the read-write-copy function of magnetic
tape.

The wide acceptance and interest in the MFCM,
since its announcement, is an indication of the basic
soundness of the multi-function concept in card
handling.

A NEW DEVELOPMENT IN THE TRANSMISSION, STORAGE
AND CONVERSION OF DIGIT AL DATA

R. P. Burr, John J. Rheinhold
Photocircuits Corporation, Glen Cove, New York

and
Roy K. Andres

RCA Communications, Inc., New York, New York

INTRODUCTION

There is a present trend in data processing sys­
tems toward the decentralization of computer sys­
tems as exemplified by time-sharing and related
techniques. A consequence of this development is
a requirement for digital communication systems
capable of operating reliably at comparatively high
speeds. One of the oldest known forms of such
communication is the printing telegraph which
operates at the lower end of the speed spectrum at
rates ranging from 50 to 100 baud. There is some
evidence to suggest that for routine digital com­
munications purposes, particularly in the time­
sharing area, the economic maximum for a few
years into the future will lie in the vicinity of 1000
to 2000 baud and that the volume of traffic at these
rates will rapidly increase. Present practice is gener­
ally to transmit data at such rates in "real time"
only over communication paths which are not ex.­
pected to fail during the transmission period. In the
future, however, it is a virtual certainty that low­
cost buffering devices will be required having the
speed, versatility and storage capacity to handle
system requirements at rates up to 4800 baud or
more.

The use of magnetic tape in preference to paper
tape offers a preferred solution to the problem of

323

high-speed buffering, provided that a technique can
be devised which permits the use of magnetic tape
so that it is in all operational respects equivalent to
paper tape systems. Such a functional equivalence
can be obtained if it is possible to: 1) record on the
tape incrementally over a speed range extending to
at least 300 characters per second on a character-by­
character or bit-by-bit basis and 2) read the infor­
mation recorded on the tape in an incremental man­
ner through the same speed range.

A device having these characteristics would be
functionally equivalent to a paper tape system
capable of operating at punching and reading rates
up to 300 characters per second but would of course
be physically smaller and mechanically simpler be­
cause of the improved packing densities available
on magnetic tape.

To additionally exploit the full advantages of
magnetic tape in such an environment the device
should also be capable or recording and reproduc­
ing digital information "on the fly" in a manner
somewhat analogous to a conventional digital mag­
netic tape transport so that very high acceptance
and transmission rates could be achieved if neces­
sary.

A capstan drive system for magnetic tape which is
capable of satisfying these operating requirements
can be achieved by the proper combination of a fast

324 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

response, smooth torque DC motor operating in
combination with a wideband velocity servo ampli­
fier and logic control circuits. An assembly of this
type is known as a "random incrementer" and can
provide a high degree of flexibility in the control of
tape motion when either recording or reading digital
information.

In the following discussion the operation princi­
ples of the random incrementer will be briefly re­
viewed while two particular applications of the
device in the communications env·ironment will be
described in sufficient detail to illustrate the versa­
tility afforded by the technique.

THE RANDOM INCREMENTER

A simplified block diagram of the basic com­
ponents in a random incrementer system are shown
in Fig. 1. For a detailed description of the system
operation the reader is referred to the paper by
Burr, Rheinhold and Andres. 1 As pointed out in
this reference the characteristics of the drive motor

Control
Flip-Flop

R:' S C Input

Go Stop

Figure 1.

utilized for the application are critical to the proper
functioning of the drive system. SpecificallYll the
motor must be a device having a small mechanical
inertia, a negligible electrical time constant, essen­
tially no preferred positions and the abillity to de­
liver substantial pulse torques. A printed circuit
motor is a component which is ideally compatible
with these requirements and provides excellent per­
formance in the system. (See Fig. 2).

To review briefly, the essential features of the
incrementer system operation are shown in the
waveform di&grams of Figs. 3 and 4, and depend
upon the fact that that portion of the cin:uit to the
right of the point marked "input" on Fig. 1 is basi­
cally a velocity servomechanism of the type gc:mer­
ally known as a regulator. Such a system has the
property that when a fixed DC voltage is applic!d to
the "input" terminal the action of the amplifier and
the tachometer is such as to accelerate the! motor to
a speed such that the difference or error between the
input voltage and the tachometer voltage is just
sufficient to provide the necessary driving voltage
via the amplifier to the motor. Systems of this type
are widely used in the industry for speed control ap­
plications of all sorts and are almost invariably op­
erated in a "nonsaturated" mode, which is to say
that the rate of change of the input signal command
is restrained to a value which can at all times be sat­
isfied by the available acceleration capability of the
~~m. .

In the present instance, however, the random in­
crementer action is obtained by operating the servo

Figure 2.

A NEW DEVELOPMENT IN THE TRANSMISSION, STORAGE AND CONVERSION OF DIGITAL DATA 325

Input b m
Voltage a

Error
Voltage

Motor
Velocity.

Tach
Voltage

Motor
Current,

Motor
Voltage

Figure 3.

in a saturated condition for acceleration or decelera­
tion of the capstan. As will be seen from the wave­
forms of Fig. 3, the system is put in motion by the
application of a voltage step from the control flip­
flop to the servo input terminal. The magnitude of
the final velocity is proportional to the magnitude
of the voltage step. The servo system is designed so
that it remains in saturation until the specified
velocity is reached. Therefore, maximum possible
acceleration is obtained from the capstan motor
during the starting transient interval. Correspond­
ingly, when the input command is removed by clear­
ing the flip-flop, the action of the servo is such to
apply the maximum possible acceleration to the
motor during the stopping transient until zero veloc­
ity is reached.

Va loe ity,
ips

Figure 4.

The shape of a typical velocity increment is shown
in Fig. 4. The distances in this diagram are referred
to the periphery of an optimized tape drive capstan2

mounted on the motor shaft and therefore to the
magnetic tape itself. For purposes of the present
discussion the point of greatest importance is that
the transient accelerations available in this mode
of operation are sufficiently high so that the capstan
(and tape) attain significant velocities in very small
displacements and in comparatively short times.
In Fig. 4, for example, the tape achieves a stable
velocity of 4 inches per second in a distance of
0.002". The total motion time is 2.25 milliseconds
and the total motion displacement is 0.005".

INCREMENTAL READ BACK

In Fig. 4, the beginning of the stopping transient
or stopping displacement of the incremental drive
occurs at the instant that the control flip-flop in
Fig. 1 is Cleared. It will be noted from Fig. 4 that
the stopping displacement for this particular case is
0.002". As a result the incremental drive may be
utilized to read back a record on magnetic tape
having a packing density. such that the distance be­
tween characters is greater than or equal to 0.004".
The apparatus arrangement for accomplishing this
is shown in Fig. 5. For an understanding of the de­
tails of the operation it is immaterial as to whether
a single or multiple track recording is used on the
tape: the only requirement is that for each "and
every character or frame there be a flux transition
of some type which can be interpreted as a "read."

It will be noted from Fig. 5 .that the clearing
terminal of the flip-flop is connected through suit­
able amplification to the magnetic head output so
that whenever a read is obtained from the tape the
control flip-flop will be cleared. In order to read
the tape one character at a time it is therefore only
necessary to apply "advance-and-read" pulses to the
go or set terminal of the control flip-flop. The effect
of so doing will be to put the motor in motion, i.e.,
initiate the starting transient. The motor velocity
will then rise to the limiting value and the tape will
move 0.002" in this process. If the character spacing
is 0.005", the read or stop signal will be received
at the right-hand upper corner of the waveform in
Fig. 4 at a distance of 0.003" from the starting
point. The motor will then decelerate to a stop al­
lowing another 0.002" of tape to pass over the head
so that the final stopping point will be 0.002" after
the previous character and 0.003" before the next
character.

326 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Control
Fli p-flop

o 1
S C

Go

Advance
a

Read

Input

Stop

Heads
-----1

I
I

~.17

Y
t
I
,~ ,.y.

'----ID---.J

Figure 5.

The maximum rate at which information can be
recovered from the tape while retaining the ability
to stop before the next character, which is a limiting
condition on the incremental: reading, I would be 800
characters per second in tpe foregoing situation
since the steady state velocity is 4 inches per second
and the packing density is 200 characters per inch.
The maximum permissible packing density in this
case is that which results in a, distance of 2 x 0.002"
or 0.004" between characters or 250 characters per
inch. The maximum infonrtation rate would then
be 4 x 250 or 1000 characteITs per second.

It is evident that higher operating rates are
possible, subject to a relaxation of the restriction
that the stop distance must be less than half the
distance between characters.

INCREMENTAL RECORDING

Two possible arrangements of the random incre­
menter for recording are shown in Figs. 6 and 7, the
ditTerence between the two schemes being prin­
cipally in the accuracy with which the recorded bit
spacing is generated. '

In Fig. 6 the incoming information is recorded on

the tape (shown in this instance for parallel format)
when a pulse is received from the optical tachoml:!ter
or' code wheel attached to the shaft of the motor.
Recording is therefore made "on the fly" in exact
space synchronism with the output from the optical
pick-otT so that excellent accuracy is obtainable.
The accuracy of bit spacing achieved by this method
will be essentially equivalent to the accuracy of the
divisions on the optical tachometer degraded only
by any tendency for the tape to slip otT thl:! capstan
or by stretching between the capstan and the record­
ing head. Experience indicates that at the low veloc­
ities involved these latter etTects are negligible.

In Fig. 7 the spacing of the recorded data is
basically determined by a single shot pulse genera­
tor which energizes the incrementer for a fixed time
period. The displacement accuracy of the record is
therefore atTected to some extent by tension and
friction "noise" in the system. However, it is most
important to note that if the resulting recording is
to be read by another incrementer system, the
presence of displacement inaccuracies is unim­
portant so long as the minimum bit spacing does
not fall below a figure equal to the sum of the start­
ing and stopping displacements on the n~ading in­
crementer.

A NEW DEVELOPMENT IN THE TRANSMISSION, STORAGE AND CONVERSION OF DIGITAL DATA 327

Control
Flip-Flop

Go

o
S

,
C

Input

Stop

Error

Advance
8c

Record Record
System

Input

0FFl 1
S C

o ,
S C

0---
•

Figure 6.

APPLICATIONS OF THE
INCREMENTER SYSTEM

A more general picture of the flexibility of th~
random incrementer tape transport can be obtained
from the following discussion of two specific appli­
cation areas which range in complexity from the
simple to the complex. The first of these is a simple
and inexpensive serial format data collection device
which is well suited to the slow-speed recording and
"batch" transmission of information. The second
application is a considerably more versatile "paral­
lel format" dual-capstan machine having a wide
speed range and directed specifically towards buffer-

ing applications involving data rates up to approxi­
mately 10,000 baud.

SERIAL FORMAT DATA COLLECTOR

The serial format data collection device is de­
signed to accept a serial data stream of the type
emitted by a printing telegraph machine or serial
paper tape reader, to record this information serially
by bit and by character on one quarter inch wide
magnetic tape, and to read back the data either in
the same format and speed as received or at rates
up to 2400 baud. The higher speed output can be

328 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Go

Control
Flip-Flop

o
S

1
C

Input

Stop

Advance a LJI---e
Record

Data

Input

C>--

0--

Record
System

J--~--------()--

Figure 7. •

either free running or synchronous with an external
clock.

The format used on the tape is shown in Fig. 8.
Although there are several alternative possibilities
this particular case is of special interest because the
"unrecorded" tape, shown in Fig. 8a, carries a
"prerecorded" clock pulse on one of the two avail­
able channels. A sketch of a complete recording is
shown in Fig. 8b. The "clockh is on the upper track
and the data is on the lower. It will be noted that
the data bits are recorded in space register with the
timing bits. The magnetic head used in the system
is a low-cost "two-track stereo" record/reproduce
head of the type used in home entertainment tape
recorders.

A block diagram of the electronic systc!m used
for recording is given in Fig. 9. It will be seen that
the function of the prerecorded clock bits is equiva­
lent to that of the optical pick-off in Fig. 6. When
recording, the serial data stream enters a convtm­
tional synchronizing interface so that the character
"start" or "sync" pulse is recognized and a 10lcal
timing oscillator is phased with the sign ali. Each
successive local oscillator pulse samples each data
pulse following the stl:ut pulse, places the data in a
one-bit storage flip-flop, and simultaneously starts
the incrementing tape drive. When the correspond­
ing "stop" signal is received from the recorded clOick
track, the data is recorded with an RB pulse through
the data head winding, the one-bit storage flip-flop

A NEW DEVELOPMENT IN THE TRANSMISSION, STORAGE AND CONVERSION OF DIGITAL DATA 329

Fig. SA

Fig. 88

t
I II

/4

}

II P II reo -recorded
Clock Pulse

200 bpi

Tape

I } Data
Track

I" } Clock

1/4

I Recorded
Tape }

t Data

Figure 8.

,---------------1
I I Phased, Character Length I

I Clock Pulse Counter I
I I
I I
I
I
I

is cleared and the system waits for the next bit of the
character to be delivered. This process is repeated
through the entire character, so that the tape is
incremented step-by-step for each bit in sequence.
As a result, for example, seven motions are made
for the Baudot code and eleven for the ASCII code.
When the character is completed, the system rests
until the next start pulse appears on the line. The
maximum rate at which this simple system will
accept serial data for recording in this manner is
theoretically 800 bits per second and practically 600
bits per second for an incrementer using a type
PM-368.printed motor. This is, of course, far in
excess of conventional printing telegraph rates. The
local timing oscillator and counter chain must con­
form to the particular signal bit-rate and format.

The recorded packing density is 200 bpi. A stan­
dard home-entertainment EIA cartridge of 300 foot
capacity will therefore accomodate approximately
60,000 characters in the serial format.

Readout can be accomplished with varying levels
of sophistication depending upon the desired result.

In the simplest case the incrementer motor is run
continuously by a constant DC command. The
electronics for this are shown in Fig. 10. The op­
erating speed of the tape is adjusted by setting the
level of the "go" command from the motion control
flip-flop to the desired level. The recorded signals
are recovered from the head, amplified and limited
in a threshold decision circuit to obtain "clean"
pulses. The clock track and data track signals are
then applied to a coincidence logic and flip-flop

Motion Control
FF

,----1 S

C o

...--E---I Li miter ~~p
'----+--1 S

C

Single Bit
Storage

FF

,..-------, . -= /
Record t--~-...., /
Pulse

Generator
Record
Winding

Tape

Head

Figure 9.

330 PROCEEDINGS~SPRING JOINT COMPUTER CONFERENCE, 1966

Motion Control
FF

Go

Stop

Output
Signal

r-----------~------------~S

r-----------~------------~C

Regenerating
FF

J--~--11 S

o
Coincidence

Logic

Tape

Clock winding

Data wind ing

Figure lO.

circuit which regenerates th¢ form of the original
data stream.

The signal transitions (i.e.,'bit rate) resulting from
this type of read-back are "noisy" in time since
there is no speed stabilizati~n on the tape motion
other than that provided by ~he servo. Speed (and
therefore frequency) bumps :on the order of ± 5%
can be expected in the short term. Long-term
accuracy of =1:: 10% is readily achieved.

This read-back method is not suitable at rates of
less than 800 baud and is ,limited in the upward
direction by mechanical tape! path considerations to
about 3000 baud.

An improved but slightly more complex read-out
method is obtained by using the system as an in(;re­
menter (Fig. 11). In this arrangement, the clock
track output is used for a "stop" signal, as pre­
viously described, while the "read" command pulse
is obtained from either the internal local osciallator
or an external reference pulse. In Fig. 11 it is shown
as originating from an external source. The rlead
command pulse and the data pulse are applied to a
logic system including a single bit storage: flip-flop
and a regenerating flip-flop to recreate a replica of
the original input signal.

In this case, the output signal is not noisy in time

Speed
Escalator

Reference
Clock
Pulse

Motion Control FF

"s
C 0

A NEW DEVELOPMENT IN THE TRANSMISSION, STORAGE AND CONVERSION OF DIGITAL DATA 331

but has, instead, transitions which occur exactly in
synchronism with the reference pulse train. The
upper frequency limit for this operation without the
further improvement described below is 600 baud.

The upper frequency limit for synchronous opera­
tion may be extended by a further improvement.
This is obtained by inserting the block marked
"Speed Escalator" in Fig. 11 between the points
marked "X", and is subject to the restriction that
at rates above 600 baud the system will not stop the
tape before the next bit. That is, a synchronizing
time of one to six bits (at 200 bpi) is required on
starting and a similar number of bits will be lost
while stopping, the synchronizing interval measured
in bits being proportional to the square of the op­
erating speed in excess of 800 baud. For higher
speeds therefore, the system begins to operate as a
data "block" reader.

The effect of the speed escalation circuit is to pro­
vide an additional command to the incrementer
which increases the limiting speed as the reference
(read command) pulse is raised. The incrementing
rate therefore tracks with the command, holding the
entire system in synchronism with the reference
clock up to a maximum speed set by mechanical
limitations in the tape path. This limit lies at about
3000 baud for a simple mechanical system. At this
speed, about 6-bit intervals (0.03") are required to
synchronize.

In this case also the output signal is not noisy and
remains in exact synchronism with the reference
clock throughout the speed range. From a servo
viewpoint, the system operates as a random incre­
menter timed from the tape signals at low speeds
and gradually executes a transition to a so-called
"phase-locked" servo locked to the tape as the
speed is raised to high speeds.

In summary, therefore, the random incrementer
drive applied to a single capstan serial tape trans­
port provides a system which will record syn­
chronously at rates up to about 3000 baud (when
speed escalation is used) and which will read syn­
chronously or free-running over the same range. It
should perhaps be specifically noted that the drive is
reversible simply by inverting the command signal
to the incrementer electronics so that rerecording
and rereading operations can be obtained through
the use of additional electronics.

PARALLEL FORMAT DUAL-CAPSTAN
BUFFERING SYSTEM

This more sophisticated apparatus uses two incre­
menter systems in a dual-capstan drive with 72"

magnetic tape as a buffering system for store and
forward applications in a digital communications
path operating at rates up to 4800 baud.

The device includes five basic functions. These
are the input serial-to-parallel converters, the paral­
lel data recording system and tape drive, the ma­
chine control logic system, the parallel data reading
system with its tape drive, and the output parallel­
to-serial converters. These elements are shown in
the block diagram of Fig. 12.

The input and output blocks constitute the inter­
faces between the storage system and the outside
world. Since the parallel-to-serial conversions
which occupy these blocks depend upon time rela­
tionships in the external signals, they both contain
clocks or timing generators which must be com­
patible with the particular type of information
which the buffer is supposed to handle. A change of
element speed or bit rate on either side of the buffer
requires a corresponding adjustment in the clock
rate on that side, as is the case with the previous
serial machine.

It is, of course, possible to omit the serial-to­
parallel conversion blocks. In this case, the middle
three components function simply as a parallel-to­
parallel storage device. The heart of the buffer is,

-in fact, contained in these three blocks and a de­
scription of the apparatus is most easily understood
by assuming initially that we are dealing with a
parallel device and looking at these functions first.

The mechanical arrangement of the magnetic tape
path as shown is intended to indicate that the re­
cording and reading stations are separated by a dis­
tance which is as small as possible. When there is
no information stored on the tape in the machine,
the tape is drawn up into a "tight" condition be­
tween the magnetic heads. The existence of this
tight condition is sensed by a switch in the tape
path and modifies certain of the machine functions,
as will be explained later.

When a character arrives at the input terminals
of the recording circuitry, it is immediately recorded
and transported to the output where it appears in a
register. If the character is not immediately re­
moved from the machine, additional characters
arrive at the machine input and will continue to be
recorded upon the tape which will therefore begin
to form a loop containing stored information be­
tween the recording and reading stations. The size
of this loop can grow until it contains approxi­
mately 250,000 characters. At any time during this
process, characters may be removed from the out­
put, which will, of course, tend to decrease the size

332 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

r------------------~
I Tape Transport I
I I
I I
I I

Input
Data

(Serial)

Input
Data

(Parallel)

Serial To
Parallel

Conversion

I
I
I
I
I
I

~--~
Record

Incrementer

Parallel
Recording
Circuitry

Record Com mand

Control Signals

Co pstan
Control
Logic

Read
Incrementer

Parallel
Reading
Circuitry

Read Command

Control Signals

Parallel To
Serial ---0

Conversion Ou tput
Data

(Serial)

'---------0
Output
Data

I[Parallel)

Figure 12.

of the loop. Finally, when characters are no longer
being applied to the input, the output can continue
to run until the tape has resumed its tight condition
and has been cleared of all data.

It is important to note that each capstan is in­
dividually controlled and the: device may therefore
be used as a speed changer.; As an example, the
input character rate could be; 2,000 baud while the
output could be provided at slower speeds such as
100 baud. The speed conversion could be main­
tained until the storage loop is filled to capacity.
Reverse speed conversion is also possible, that is,
slow input speed, high output,speed. In this particu­
lar case, it would be necessary: to inhibit the readout
until sufficient information is built up in the loop
between the two magnetic heads. Low to high speed
conversion could then be maintained until all the in­
formation in the loop had been transmitted. It is
obvious that once this point is reached, the output
cannot be any faster than the input data rate.

The "tight tape" condition! modifies the machine
functions. When no input data is being recorded
but transmit or read data is being commanded, the
record capstan remains stationary and only the read
capstan moves on external command until such time
as the stored information in the loop of magnetic
tape is depleted or until the tape becomes tight

between the record and read head. When this final
condition exists the tight tape switch actuates and
commands the record capstan to move at the same
velocity as the read capstan even though no in­
formation is being put into the record statiion. As
the read commands continue, a point will eventually
be reached where no character is recorded. on the
tape. In this case, a timing circuit is provided to
transport a length of tape over the read head equal
to the length of tape between the record and read
heads. Should no additional characters be recorded
each time a read command is given, both the record
and read capstan will operate at their control veloc­
ity for this period of time insuring that no informa­
tion is trapped between the two heads.

The device also provides for bidirectional tape
motion in both the record and read capstans. Via
proper external command, the read capstan may be
reversed and stopped at any specific point on the
tape. This feature is utilized for retransmission of
information in the event that the receiving terminal
did not properly receive the transmitted informa­
tion. The record capstan provides the same: type of
control so that incorrect data received and recorded
on the tape may be erased and rerecorded with the
proper information. Other interfaces may be pro­
vided to allow this system to interrogate the received

A NEW DEVELOPMENT IN THE TRANSMISSION, STORAGE AND CONVERSION OF DIGITAL DATA 333

information prior to recording. This serves the
purpose of deleting certain information which is not
required to be stored, providing the capability of
code conversion, and allowing for additional data
to be inserted for coding of the information block
to follow.

CONCLUSION

The random incrementing technique can be in­
corporated in many equipment configurations other
than those described in this paper. The flexibility
and simplicity of the basic capstan drive allows
the design of peripheral devices that combine the
functions of a number of presently used machines
into a single unit.

The new technique also offers the higher speeds
and greater storage capacity of magnetic tape in new
areas and can eliminate data conversion operations
in many systems.

Equipment incorporating the "random incre­
menter" has been manufactured for RCA Com­
munications, Inc. and is in use at the present time.
The rapidly increasing amount of digital communi­
cation would indicate many additional applications
and requirements for the unique capabilities of this
new technique.

REFERENCES

l. R. P. Burr, J. J. Rheinhold and R. K. Andres,
"A New Technique for Application of Magnetic
Tape to Digital Communications," to be presented
at IEEE International Convention and Exhibition,
New York, Mar. 22, 1966.

2. "Operating Principles and Performance of a
Developmental Random Incrementer for Reading
and Writing Magnetic Tape," Engineering Mem­
orandum No. 29, Photo circuits Corp., Glen Cove,
N.Y. (Nov. 8, 1962).

IBM 2321 DATA CELL DRIVE

Alan F. Shugart and,Yang-Hu Tong
IBM Corporation, Systems Development Division

San Jose, California

INTRODUCTION

Ten years ago IBM announced the 305 and 650
RAMAC Data Processing Systems-systems that
heralded the on-line processing concept, wherein
business transactions could be economically pro­
cessed as they occurred. This was made possible
largely through the use of the 350/355 Disk Storage
Files, whose 5 million stored characters were di­
rectly accessible. Since that time, significant ad­
vancements have been made in direct-access mem­
ory development. These include the double density
350/355, the 1405, the 1301 and the 2302. Pioneer­
ing the removability and interchangeability features
of direct-access storage media was the 1311 Disk
Storage Drive. A further advancement is the 2321
Data Cell Drive.

During the conceptual stage of the 2321 Data Cell
Drive, two basic decisions were made:

1. To use magnetic recording techniques
for data storage because of simplicity in
the recording and reproducing pro­
cesses, and

2. To use thin strips as storage media be ..
cause of the high volumetric efficiency
in packaging the media within a ma~
chine frame.

Physically, the components are arranged in a me­
chanical section and an electrical section (Fig. 1).
Each section is a separate self-contained frame, fa­
cilitating manufacturing, shipment, and installation.

335

The L-sbaped configuration was devised to offer
optimum servicing accessibility to the cell array.

Functionally, from a circular array of 10 cells
with 20 subcells each, a cell drive positions a selected
subcell of 10 strips beneath an access station. At
this station a selected strip is withdrawn from the
subcell. Gliding on a film of air which acts as a
hydrodynamic bearing, the selected strip is rotated
past a magnetic head for data transfer. Upon com­
pletion, the strip is returned to its original location
in the subcell.

Magnetic recording, strip transport, and logic
organization are described in the next three sections.
Following these is a section briefly discussing some
other important design considerations. These in­
clude anticlastic curvature, squeeze film, hydrody­
namic lubrication film, computer simulation, mini­
mum wear of machine elements, and contamination
control.

MAGNETIC RECORDING

Storage Medium

The storage medium is a 2~ x 13 x 0.005-inch
saturated polyester strip having an iron oxide coat­
ing for magnetic recording on one side and an anti­
static coating of carbon on the other (Fig. 2). A set
of 10 strips is contained in a subcell. Each strip has
a pair of coding tabs for identifying its position in
the sub(;ell, and a single latching slot for picking up
the strip. Chamfered sides and a "swallow" tail are
introduced to control strip dynamics.

336 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

CELL ARRAY PRESSURIZER

HEAT EXCHANGER

PNEUMATIC CONTROLS -, HYDRAULIC POWER SUPPLY

DRUM DRI VE' \ PORTABLE CONTROL BOX

MAGNETIC HEAD C. E. POWER PANEL

SEPARATION ~~~~~~E~~i;et~~~~ PO R FINGER DRIVEr<:: WE SUPPLY GATE

OPERATOR
PANEL

I NNER COVERS

C. E. PANEL

MOTION CONTROL a RECORDING
ELECTRONIC GATE

ELECTRONIC ~ATE COOLING

RELAY PANEL

POWER
SEQUENCING
PANEL

POWER SIUPPLY
PANEL

1/0 PANEL

1/0 CONNECTORS

'- 1/0 SIGNAL CABLE

Figure 1. Component layout.

Twenty subcells are housed in a cell. Ten cells
are attached around the periphery of a spindle,
forming a cell array. Each cell is physically remov­
able and interchangeable. For machine operation
involving less than a full complement of 10 cells,
ballast cells are used to dynamically balance the
rotating array.

One hundred addressable recording tracks are
available on each strip. Dual-frequency recording
at a nominal density of 3500 flux reversals per inch
provides each of the 100 tracks with 17,500 bits of
storage capacity. Logical extensions show the fol­
lowing incremental storage capabilities:

Track
Head

position
Strip
Subcell
Cell
Full array

Bits
17,500

(20 tracks) 350,000
(100 tracks) ... : 1,750,000
(10 strips) 17,500,000
(20 subcells) 350,000,000
(10 cells) 3,500,000,000

Recording is accomplished in a serial-seldal
fashion. At a nominal strip velocity of 250 inches
per second, the data transfer rate is 437,500 bits per
second.

Magnetic Head

The magnetic head has 40 laminated elements,
20 write and 20 read (Fig. 3). Each element (read or
write) is physically aligned with its adjacent element
on a 0.090-inch center-to-center spacing. The head
can be moved to 1 of 5 discrete positions, thus pro­
vi~:ag for 100 tracks per strip.

The effects of thermal and hygroscopic expansion
of the flexible medium, the element position toler­
ances, and strip registration repeatability are com­
pensated by making read elements much narrower
than the write elements, that is, 0.007 inch vs 0.018
inch. Furthermore, since the updating of any record
requires the identification of its address, the repro­
ducing gap precedes the recording gap by 0.150
inch.

Strip-to-head spacing of approximately 75 micro-

IBM 2321 DATA CELL DRIVE 337

{D t

/
DATA STRIP

(100 TRACKS PER STRIP)

SUB CELL
(10 STRIPS PER SUBCELL)

DRIVE
(10 CELLS PER DRIVE)

CELL
(20 SUBCELLS PER CELL)

Figure 2. Data cell array.

inches is controlled by a self-generated hydrody­
namic lubrication film and longitudinal slots on the
head surface. Circuitwise, a read element is equiva­
lent to 1 millihenry in parallel with 30 picofarads on
a differentjal basis. This represents a self-resonant
frequency of approximately 1 megacycle and an im­
pedance of about 7 kilohms at 437.5 kilocycles.

Recording Electronics

The recording circuits perform the following
functions: selection, write, read, safety, and contro1.

Since only one of the write and read elements is
operative at a time, its selection is accomplished by
an XYZ diode matrix of dimensions 2 x 10 x 2,
respectively. XY selects one of 20 elements, and Z

lr·007

I -J.090f;
Ii I

\ II I

REPRODUCING GAP

y......w....w....w....w...M...JoI...W,------,

.150

ii'

JL.0 18

-----~----

RECORDING GAP

f----LONGITUDINAL
SLOTS

WRITE ELEMENTS

DIRECTION OF
STRIP TRAVEL

Figure 3. Magnetic head.

controls the mode of operation (either write or
read).

In recording, the data transmitted from the con­
trol unit is converted from return-to-zero into non­
return-to-zero dual-frequency code by two write
drivers, each supplying unidirectional current into
one or the other half of the write winding (Fig. 4).
In readback, processing of the signal is begun by the
head preamplifier, located with both write and read
matrices in a special package mounted on the head
assembly. To minimize the effects of common-mode

WRITE
DATA

TENS
DECODE

WRITE
STATUS

1 OF 20
READ

ELEMENTS

Figure 4. Block diagram of write/read circuits.

338 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

noise, amplification starts d:ifferentially and remains
so throughout the entire reaJdback channel.

Because of the dual-frequency encoding and the
gap-filling techniques used in the recording process,
the amplifier is never required to read through an
absence of signal. Hence, the overall philosophy
was to have the readback channel maintain no
threshold level, so that the: ability to recover data
depends exclusively on the signal-to-noise ratio.

To insure data integrity, safety circuits are used
to monitor critical points i of the recording elec­
tronics and to set the 2321 inoperative immediately,
should an unsafe condition c;levelop.

Synchronization between :data handling and strip
position with respect to the ~ead is accomplished by
two transducers mounted on the drum drive and as­
sociated amplifiers. These ~ransducers produce one
pulse for each revolution df the drum and define
the beginning and end of the usable strip area.

Data Handling

To compensate for variations due to the oscillator
frequency and/or the medium velocity, a variable­
frequency oscillator (VFO) is used in the readback
process to produce a signal whose frequency and
phase are controlled by the reproduced raw data. A
synchronous detection is thus possible. Although
the VFO is physically located in the control unit, its
relationship with, and importance to, the 2321 war­
rant a brief discussion. The block diagram of Fig. 5
shows the significant components of the VFO:

1. The error detector, who~e output is a
linear function of the phase difference
between data and VFO output over a
periodic range. :

2. The filter, which has a low-pass charac­
teristic to attenuate fast changes in the
phase error due to noise in the input
signal or to instantaneous peak shift.

3. The variable oscillator, whose output
frequency varies in proportion to the
error signal. When the error signal is
zero, the output frequency is the design
center frequency of the oscillator.

Figure 5. Block diagram of variable-frequency oscillator.

STRIP TRANSPORT

Cell Drive

The basic function of a cell drive is to bidirecltion­
ally rotate the circular array of 10 cells to 1 of 200
discrete subcell positions through the shortest angu­
lar distance. For high speed and positioning accu­
racy involving a moved inertia of 2.4 in-Ib-sec 2

, an
electrohydraulic servomechanism was selected. A
schematic of the drive and its control is shown in
Fig. 6.

DECODED SUBCELL ADDRESS

SEEK

Figure 6. Cell drive and servo controls.

Cell positioning is initiated by a seek instruction.
When all safety interlock conditions are satisfied,
the decoded subcell address selects the appropriate
reed relays. With the use of a reference oscillator
and programmable transformer, the proper voltage
level is applied to the stator windings of a resolver.
Induced voltage in the rotor windings, generally
known as error voltage, is amplified, demodulated,
and summed with a velocity feedback from the DC
tachometer in the servo control circuit. The con­
trolled current is used as an input to the dual-gain
servovalve.

During reed relay selection, a brake is released,

IBM 2321 DATA CELL DRIVE 339

and the blocking valve is moved, permitting a flow
of oil through the servovalve to the hydraulic motor
which converts flow to rotary motion of the array.

As the array rotates, the rotor windings sense a
decreasing error voltage which, in turn, decreases
the input current to the servovalve. The resultant
decrease in oil flow to the hydraulic motor deceler­
ates the array until no further error signal is present
or a null point is reached. As the null is reached, the
arrival detector signals the blocking valve to be
moved and the brake to be applied, locking the
array at the addressed position.

Finger Drive

Concurrent with cell motion, two pairs of strip
separation fingers are moved to 1 of 10 positions for
the selection of 1 of 10 strips in a subcell. A separa­
tion finger drive (Fig. 7) is then initiated. The sub­
cell springs, which maintain the vertical position of
the strips, are first parted by a pair of wedges. Si­
multaneously, the separation fingers move vertically.
downward, followed by a horizontal movement for
strip separation. The wedges and fingers remain in
the actuated position until the strip is fully restored.

Figure 7. Finger drive.

Drum Drive

SEPARATION FINGER
CARRIAGE

To pick and restore the selected strip, the drum
drive is required to rotate both clockwise and coun­
terclockwise. Conventional electric motors do not
provide the torque-to-inertia ratio to meet the
stringent access-time requirements. In addition,
during strip restore, it is difficult for the motors to
control the precise indexing at turn-around (de­
fined as the shaft position when the direction of ro­
tation changes). Lack of turn-around control fur­
ther complicates the latching of the drive shaft at

its home position when the restore operation is
completed.

The present drive uses mechanical indexing,
which allows energy storage and transfer. Two
magnetic clutches are mounted on the shaft-one to
maintain constant speed in the clockwise direction,
and the other, constant kinetic· energy in the coun­
terclockwise direction.

The basic principle is shown in Fig. 8. A torsion
spring, through the lever and the index roller, stores
the kinetic energy of the drive during the restore
cycle. During the pick cycle, the wound-upspring
provides sufficient torque to rapidly and smoothly
accelerate the drive to near synchronous speed, at
which time the magnetic clutch is engaged to main­
tain a constant period of 50 milliseconds per revolu­
tion or a strip surface velocity of 250 inches per
second. A similar arrangement controls the turn­
around indexing.

Also mounted on the drive shaft is a drum. At­
tached to the drum by two connecting links is a
pickup head which contains a latching flipper for
strip pickup and a release lever for strip release.

In front of the drive is the strip housing with two
openings, one for the magnetic head and the other
for passage of the pickup head as well as the selected
strip. Attached to the strip housing are a front
guide ring and a rear mounting plate. They guide
the pickup head and register the revolving strip.

The drum drive may be considered as a slider
crank inversion (Fig. 9). The drum is analogous to
a crank shaft, the links to a connecting rod, the
pickup head to a piston, and the housing guides to a
cylinder. With the drive shaft latched and the drum
at rest, the pickup head is approximately % inch
above the strips. When the shaft is unlatched and
the drum begins to rotate, the pickup head first
moves downward to latch the selected strip, then
upward, and subsequently locks onto the rotating
drum. During restore, the strip is propelled by the
pickup head in a reverse direction. The pickup head
is unlocked and directed downward by housing
guides. At "bottom dead center" of its downward
travel, the strip, fully replaced in the subcell, is re­
leased. The pickup head then reverses its direction
and continues upward to the latched or home posi­
tion of the drive shaft with the drum once again at
rest.

LOGIC ORGANIZATION

The logic organization of the 2321 is shown in
Fig. 10. Principal areas are the interface, address-

340 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

iNDEX

STRIP HOUSING

TORSION SPRING

MAGNETIC CLUTCH
(COUN T E R CLOCKW ISlE)

MOUNTING PLATE

CONNECTING LINK

Fi~ure 8. Drum drive layout showing principle of mechanical indexing.

DRUM

(0) SEPARATION

Ie) STRIP WITHDRAWAL

MAGNETIC
HEAD

PICKUP
HEAD

Ib) STRIP PICKUP

Id) PICKUP HEAD
LATCHED TO DRUM

Figure 9. Strip pick cycle.

ing, motion controls, and' recording electronics.
Address information and control signals are trans­
mitted to the 2321 through ~he interface to initiate
the selection of the proper track for data transfer.

Similarly, status signals are transmitted from the
2321 through the interface to indicate the drive con­
ditions.

Addressing

The physical location of a recording track is
identified by:

1. Data cell drive number
i. Data cell number
3. Subcell number
4. Strip number
5. Cylinder (head position) number
6. Track number

When a record is selected, each item of the new
address listed above is compared against that of the
previous address. From this comparison, the ne1ces­
sary electronic and electromechanical action re­
quired to place the selected record in the data trans­
fer position is determined. For example:, assume
that the new record is in the same data cell drive,
but the remaining portions of the address differ.
The new address thus causes the following to occur:

1. The cell array is rotated to the sel<;!cted
subcell.

2. The magnetic head is positioned.
3. The finger drive and the drum drive are

activated to select and transport the
selected strip past the magnetic head.

INTERFACE

WRITE DATA
CONTROL SIGNALS
HEAD ADDRESS SET

IBM 2321 DATA CELL DRIVE

ADDRESSING
MOTION CONTROL

8
RECORDING ELEC

STATUS sIGNAL....-·-------~

READ DATA ... --t-----------~
STATUS SIGNALS

INDEX
CIRCUITS

READ­
WRITE

CIRCUITS

X-V
SELECT

I MECHANISM

INDEX
TRANSDUCER

READ­
WRITE

ELEMENT

ADDRESS BUS POS 3-7--.....-1-.1 rJ:.- HEAD
HEAD ~ DECODE
ADDR ~ r---- I OF 20 ~
REG 8 READ/WRITE

~ ELEMENTS '--__ ---'-=-=..J

HEAD BAR ADDR SET -I----....,t

FINGER ADDR SET

SUBCELL ADDR SET

CELL ADDRESS SET

CONTROL. SIGNALS

ADDR IA ~. ________________ . ____________ ~ ____ ~- HEAD HHEADBARml
REG 2 ~ POSIT lONER

~ FINGER +1
ADDR ~ .~--------------------------~4---~ 3 FINGER

...--;:::;: POSITIONER REG 3A

~SUBCELL t
ADDR ~ r-­
REG 1t

SUBCELL
DECODE
I OF 10

SUBCELLS ~
SERVO
ELECT

-J- CELL
CELL ~ DECODE

~'--r----r-J
ADDR .4- ~ I OF 20
REG 8 LOGICAL

iO CELLS L--__ --&.;...=...I

STATUS SIGNALS ,...-1----------1 MOTION

CONTROL

[

DRIVE
STATUS SIGNALS ",,,,1-----------1 OPERATIVE 14-

CONTROL

Figure to. Logic flow diagram.

r-- CELL

..... '--_D_R......,' V_E_...J

DRUM
DRIVE

+
FINGER
DRIVE

341

4. The specific read/write head element is
electronically selected.

posItIon, the only action would be the electronic
switching of the proper read/write head.

When the new address is the same as the previous
address in a specific area, no electromechanical
action is required for that area. For example, if the
only difference between a new and previous address
is the selection of a track within the same cylinder

Typical Record Update

During the cycle of updating a record, a typical
sequence of events involves a seek, read (for address
search and verification), write, write-check, and re­
store.

342 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE. 1966

A seek operation causes the addressed data track
to be placed in the proper status to allow data trans­
fer, as described under "Ad~ressing."

A read operation involves the amplification and
shaping of the reproduced signals prior to their
transfer to the control unie Successive read opera­
tions, in a simple read mode, can be performed on
up to 20 tracks on 20 successive drum revolutions
because of the mUltiple read-elements-per-head de­
sign.

A write operation entails the transfer of write
data to the 2321. Track formatting is organized so
that updating of the data portion of a record does
not require the rewrite of either the entire record or
the entire track.

A write-check operation is a read operation per­
formed following a write operation to verify the
da ta written.

A restore operation returns the strip presently on
the drum to the original subcell. This operation is
performed under one of three conditions:

1. When a strip different from that on the
drum is requested. .

2. When the drive is not selected within
800 milliseconds upon completing the
instructed operation, be it a seek, a
read, or a write.

3. When the drive is specifically instructed
to restore the strip.

Formatting

All storage devices on the IBM System/360 have
no mechanical formatting designed into them. In­
stead the format of a record is determined at the
record level and by the user. Each track is identified
by:

1. A home address which defines the phys­
icallocation of the track, as well as the
track condition.

2. A track descriptor record which allows
alternate track assignment.

Following the home address and track descriptor
record, data records may be formatted to any record
length. The maximum record length, as in a single
record per track application, is 2000 8-bit data
bytes. .

SOME OTHER DESIGN CONSIDERATIONS

Anticlastic Curvature

Transverse deformation of a bent strip creates
serious compliance and wear problems, when the

strip is rotated past the magnetic head in the cylin­
drical housing. The phenomenon of the curled-up
edges is known as anticlastic curvature (Fig. lIa).

The cross section (Fig. 11 b) assumes a wave form,
whose amplitude is a maximum (Yo) at ejther edge
and exponentially diminishes to zero at the center.
The major governing parameters of the phenome­
non include Poisson's ratio (~) of the elastic ma­
terial, the material thickness (t), and the bending
radius (R). Simply explained, a force couple e:xists
at the strip edges, as shown in Fig. 11c, b~~caus(, the
outer fiber of the bent strip is under tension and the
inner fiber under compression.

A thorough mathematical analysis has been
made, and a practical approximation of the ildeal
solution of the defining equations was used in strip
fabrication. This requires a carefully controlled
edge chamfer of the side of the strip nc~xt to the
drum (Fig. 11d).

The chamfer reduces the circumferentiall compres­
sive force on the inner fiber, leaving a surplus of the
tensile force on the outer fiber. This surplus allows
a radially inward-directed force component. to
counteract the force couple, producing a nearly per­
fect flat cross section. Uniform spacing be:tween the
rotating strip and the stationary magnetic head is
thus achieved, resulting in a constant reproduced
signal and drastically reducing the wear rate.

(c)

POISSON'S RATIO (JL)

"---'I.-----+-- BENDI NG RADIUS (R)

(0)

INNER FIBER
UNDER COMPRESSION

BENDING AXIS

YO' YI' Y2 a: JL.t
t ,R

xI,x2 a:_

(b)
JL

SURPIi..US
CIRCUMFERENITIAL

~CHAMFER ~~CE
L_~x _tlFl • RANDIN. AXIS ------1------

--1 SECTION X-X

(d)

Figure 11. Anticlastic curvature.

IBM 2321 DATA CELL DRIVE 343

Squeeze Film

The theory dealing with pressure of a thin flat
film whose bounding surfaces are in relative lateral
motion was extensively treated by Osborne Reynold
some 80 years ago. However, limited work exists
in the study of pressure dealing with surfaces in
relative normal motion. While "squeeze film" liter­
ally applies to surfaces being brought together, the
term is also conveniently borrowed here in describ­
ing the converse phenomenon when surfaces are
being parted.

In transporting strips, squeeze film effect was ex­
perienced at three critical areas and times:

1. During strip separation, the swift parting of
strips creates a pressure differential as shown in Fig.
12a such that:

(A) PI ~ P2 (on either side of the selected strip)

and
(B) P A :> PI or P2 (on either side of the sepa­
rated packs).

~n (A), long strip settling time was needed to equal­
Ize the pressures and to achieve stability before the
selected strip was brought within "a pick able range.
As for (B), in addition to a further penalty in terms
of time, a high separation force was encountered in
overcoming the pressure differential.

The potential problem of access time and strip
wear was resolved with the use of carefully filtered,
accurately directed, and precisely balanced air flow
from above the cell to nullify the squeeze film effect
and to dampen strip oscillation. Serving an equally
important function, this same air provides lubrica­
tion to reduce resistance, wear, and "stiction" dur­
ing strip picking and restoring.

AIR ~ g
SELECTED ST~¥\ I SEPARATION FORCE

SEPARATED PACK ~
P2 PI RUCTION FORCE «('\ _PI'

AM.IENT PRESSURE "A
-.. - ..

DRUM

(al

MAGNE TIC HEAD
STRIP

STRIP PASSAGE
OPENING

Figure 12. Squeeze film.

(el

2. During the first pass (defined as the condition
when the strip is partially in the cell as shown in Fig.
12b), the wrapping action of the strip on the drum
causes the strip to adhere to the drum. In due time,
after several drum rotations, centrifugal force and
"unwrapping" force (similar to a bent beam) over­
come the squeeze film effect and allow the strip to
comply to the magnetic head. However, by intro­
ducing longitudinal grooves on the drum (as shown
in Fig. 8), pressure between the strip and drum is
relieved, and the squeeze film effect is removed al­
most instantaneously, thus permitting first-pass
read/write operation.

3. During forward rotation, as the trailing end of
the strip is brought sharply against the housing
across the strip passage opening, the impact is cush­
ioned by air (Fig. 12c, Area X). In this instance, the
beneficia] effect of the squeeze film is instead fully
exploited.

Hydrodynamic Film

Compliance to the magnetic head of a flexible
rotating strip constrained in a cylindrical housing is
very complex in analysis, and influenced by many
parameters. Two of these have been briefly men­
tioned under previous headings. This section deals
principally with the self-generated hydrodynamic
lubrication film effect.

Briefly stated, a thin layer of air, the "boundary
layer," adheres to, and travels with, a moving body.
When this boundary layer comes into contact with a
similar layer adhering to a stationary body, a vis­
cous shearing takes place, causing a change in mo­
mentum of the moving layer, converting the change
into static pressure, and developing a load-carrying
force. In the case of a rotating strip, this force
balances the centrifugal force and "unwrapping"
force. The film effect is achieved by creating a con­
verging wedge-shaped spacing in two critical areas:

1. At the leading edge of the strip with a
properly derived drum geometry, as
shown in Fig. 13a.

2. At the area downstream from the pro­
truding magnetic head, as shown in Fig.
13b.

Once compliance was achieved, optimization of
the strip-to-head spacing became possible. This was
accomplished, in turn, by controlling the effective
air-bearing area with properly designed longitudinal
slots on the face of the magnetic head (as shown in
Fig. 3).

By shaping the unrestrained strip end in a tra-

344 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

DRUM

(a)

(b)

CONVERGING
WEDGE-SHAPED
SPACING

MAGNETIC
HEAD

CONVERGING
WEDGE-SHAPED
SPACE

Figure 13. Hydrodynamic film.

pezoidal ("swallow-tail") design, a near circular
form throughout the rotating strip is obtained.
With the incorporation of other equally critical
parameters (such as, surface finish, strip registration
force, strip housing and magnetic head geometry,
etc.), total compliance at optimum spacing was thus
attained across the strip width.

Computer Simulation

Analytical techniques through computer simu­
lation have been broadly applied throughout the
2321 Data Cell Drive Program. For instance, the
powering and control of a solenoid application was
optimized by equating an~ solving the electro­
mechanical energy conversioin process. Control of
the magnetic clutches was similarly designed for
optimum performance. AlsQ, in designing the strip
housing and pickup head g~ide, the basic funda-

mentals of smooth contours for static and dynamic
transients were followed to avoid impact and wear.
However, none of the computer simulation work is
as significant as that done in analyzing the feedback
control system.

Early in development, a root locus program was
developed to facilitate the transient response anal­
ysis of open and closed-loop systems with limited
capability in treating certain nonlinearities in the
forward path. Subsequently, a digital simulation
language was written with extensive coveragl~ of
nonlinear conditions, such as servovalve hysteresis
and saturation, viscous and coulomb friction, t:lec­
tronic control, etc. Without the aid of the simula­
tion work, the very nonlinear nature and the time­
variant characteristics of the complex AC S4~rvo

system would have rendered the design an extremely
difficult, if not an impossible, task.

Minimum Wear of Machine Elements

A simple wear theory has been postulated and
developed by IBM's Physical Technology Labo­
ratory in Endicott. The theory is based on the maxi­
mum shear stress criterion; that is, plastic flow is

LOWER
NOZZLE

INNER COVERS

FRONT NOZZLE

REAR NOZ:ZLE

DATJ~ CELL

'- PLENUM

FILTER

OUTSIDE AIIR
"--...-~_...v

Figure 14. Contamination control.

IBM 2321 DATA CELL DRIVE 345

assumed to occur when the maximum shear stress at
any point exceeds the shear stress at yield. By keep­
ing the stress in the contact area below an estab­
lished level, the initiation of wear can be prevented.

The wear theory and its experimentally verified
wear data have been extensively applied in determi­
ning the limiting design stresses of all critical con­
tact surfaces in the 2321. The analysis included two
general categories: first, cylinder-against-cylinder
as in cams and followers, and second, cylinder­
against-groove as in journal bearings.

Contamination Control

It was recognized in the early development stage
that particulate contaminants in the strip transport
system could adversely affect recording reliability
and eventually the life of the strip. Other than the
implementation of the appropriate error-recovery
actions, the problem was attacked by creating a
miniature "clean room," housing the area of con­
cern. This consists of:

1. Inner covers to isolate the cell array
from the surrounding mechanism, with

the front entry door serving a func­
tional purpose.

2. Pressurization of the "clean room" with
filtered air.

3. Three vacuum nozzles strategically lo­
cated to continuously insure the cleanli­
ness of the critical areas.

Physical arrangement of the contamination con­
trol scheme is shown in Fig. 14. A high-pressure
blower is used to draw air from the outside and to
recirculate internal air through the vacuum nozzles.
Inside the plenum is a replaceable filter which ef­
fectively removes micron-size as well as larger
particles.

ACKNOWLEDGMENTS

The success of the 2321, embodying numerous
technologies, is the result of the dedicated effort of
many individuals in development, product testing,
and manufacturing. To these individuals, the
authors extend their sincere appreciation and ac­
knowledgments.

HYBRID SIMULATION OF A HELICOPTER

W. J. Kenneally
Avionics Laboratory, U.S. Army Electronics Command

E. E. L. Mitchell, I. Hay and G. Bolton
Electronic Associates, Inc.

Princeton, New Jersey

INTRODUCTION

The recent and rapid increase in the application
of the airmobile concept within the U.S. Army is
well known. Accompanying the fact of the air­
mobile division, brigade, etc., has been the con­
comitant requirement for the development and im­
provement of the airborne electronics (avionics) to
support this major innovation in conventional war­
fare. This increased emphasis for the development
of new and more sophisticated avionic equipments
and subsystems has led to the organization of an
Avionics Laboratory within the U.S. Army Elec­
tronics Command. In the Avionics Laboratory, the
problem of defining system performance character- .
istics for advanced avionics has in turn generated a
requirement for analyzing the tactical mission en­
velope of both existing and advanced Army air ..
craft. One aspect of this particular task-that of
evaluating avionics systems synthesized to provide
particular mission capabilities has resulted in the
development of a unique man-machine known as
the Tactical Avionics System Simulator (Fig. 1).
This simulator system integrates a real-time hybrid
digital-analog computer (expanded EAI HYDAC
2400) with two operable cockpits-e.g., functional
combination of crew inclosures, motion systems,
synthetic instruments, control loading, and acoustic

347

and visual simulators (Fig. 2). As illustrated, the
TASS includes all of the necessary subsystem hard­
ware to provide for the simulation of the aircraft,
the avionics systems and the external environment.
The basic requirement in the implementation of
this expensive and sophisticated system was that the
crew be able to realistically "fly" the aircraft from
hover thru transition to high-speed flight while
providing the avionic engineer with a "hands on"
simulation capability.

The primary goal then was to develop a com­
puter program that would provide for the realistic
representation of the vehicle dynamics, which when
coupled to the rather extensive "cue generators"
(e.g., acoustic, motion, feel, and visual simulators)
would generate an accurate and meaningful tactical
environment and hence a valid base for the evalua­
tion of various avionic equipments and systems.

The first major system to be evaluated with the
aid of this system was. that of the Advanced Aerial
Fire Support System (AAFSS)-a next generation
armed helicopter. Schedule requirements dictated
that the hardware components that collectively
comprise the TASS would be delivered only 75 days
prior to the initiation of the AAFSS evaluation.
The installation, checkout, integration" and com­
puter programming for the evaluation were required
to be accomplished in this 75-day interval. To

348 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

4 2 5

1 DIGITAL COIIPUTER 8 HIGH SPEEO ANALOG 11 COCKPIT MOTION SYSTEMS 18 CONTROL LOADING SYSTE II

2 HIGH SPEED ANALOG 7 DIGITAL CONTROL DESK 12 CENTRAL CONTROL DE SK 17 VIDEO SPECIAL EFFIECTS

3 NON-LINEAR EQUIPIIENT 8 30"X30" X-Y PLOTTER 13 PILOT'S TERRAIN MODEL
GENERATOR

14 GUNNER'S TERRAIN MODEL
U VIDEO CONTROL CO.SOLES

4 DIGITAL OPERATIONS SYSTEII 8' PILOT'S COCKPIT

5 231R ANUOG COIIPUTER 10 GUNNER'S COCKPIT 15 SYSTEM AVIONICS (BLACK BOXES)

Figure 1. Tactical Avionics System Simulator (TASS).

TRANSLATIONAL INPUTS ~<C;, E -------.'~~',7',n~
N
T

p--------~--, 4
I" '1 I,,,}.
::1':3J IJ . I ANGULAR RATES~"t ' MOTION....... MOTION

: CO~~~~ERi~;'JHIC~E \ t ___ if SYSTEM CV~..
I COMPLEX . I 1 ·PI~~t,;! .

: AVIONICS tr-+INSIRUMENTS -+ INS:~~~EHI -+'., ~0U~E.t·

I ":n'
L ________ -------...1 ~··f'f

a...-.-------\\,S '4---------,
l(

Figure 2. TASS functional block diagram.

HYBRID SIMULATION OF A HELICOPTER 349

CAPABILfTII::S

Figure 3. Development of generic model.

minimize the risk inherent in a program scheduled
this tightly, a software development program (Fig.
3) was initiated at an earlier date to provide:

• Verification of the Computer Comple­
ment. This step was intended to identify
the additional computer modules that
would be required to accomplish the
necessary simulation of the AAFSS ve­
hicle.

• Checkout of Operable Cockpit Interface.
Emphasis here was on the definition and
implementation of the specific interfac­
ing required to provide for man-ma­
chine-computer integration.

• Development of A nalysis and Data Re­
duction Techniques. Again, the program
scheduling required that the "Evalua­
tion tools" be in hand at the beginning
of the evaluation period. This particular
effort provided for the development of
the data reduction techniques and func­
tional implementation to verify the con­
cepts postulated.

The software program illustrated did, in fact, de­
velop a hybrid computer program for a generic
single rotor helicopter complete with outer loop
avionics and fire control subsystems. If you will,
the conceptual system was a "straw man" that al-

lowed the analyst to come to grips with a realistic
engineering model of a typical system.

Of greater significance than the successful ac­
complishment of a project gQal however is the flexi­
bility afforded by the basic concept of the computer
program developed. From the viewpoint of an
avionics system designer the aircraft (be it proposed
or existing) must be considered a given condition
since no design alteration can be accomplished. De­
sign alteration of the avionics is however both pos­
sible and necessary and since the hybrid computer
program developed accomplishes the calculation of
the aerodynamic forces and moments on the digi­
tal side (main rotor, tail rotor, etc.) and the co­
ordinate resolution and integration on the analog
side, the avionic designer can easily implement the
study of both inner and outer loops of the flight
control system, the crew interaction, and the nav­
igation, terrain following, formation flight and dis­
play subsystems while accepting the given condition
of the aircraft performance as a boundary value.
Viewed more generically, the digital computer
stores the program that describes the aerody­
namically unique data corresponding to a particu­
lar aircraft. Thus, the digital computer can be
thought of as an "Aero Function Generator" and
with the introduction of the unique aero data into
the digital program a different aircraft configuration
can be interjected into the avionic analysis loop.

350 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

The potential of this aircraft switching capability
is considered to be of significant value in the design
evaluation of avionic systems that apply to more
than one aircraft (e.g., flight control systems) but
must be tailored to each particular aircraft. Looked
at in a more direct manner' the simulation program
provides for the "hands on" simulation of the
avionics and the "hands 'off" simulation of the
basic aircraft.

The concept expressed here has been proven since
the generic hybrid computer program developed
was used as the function' building block in the

u,v,w

Xa
Yo

analysis of proposed avionic designs for the Ad­
vanced Aerial Fire Support System. The sp(~cific
computer program has recently been updated to ac­
curately reflect the latest design configuration for
the AAFSS and is presently being used as the real­
time model for design synthesis and analysis.

HYBRID PROGRAM

Organization

The major airframe simulation was divided into
computational tasks suitable for analog and di.gital

Za u
':':'>::::::'l~-'" VELOCITIES t----=:""';"-M DISTANCES

)(

pqr

OXCG, OM

La
Ma
No ANGULAR

RATES

pqr

,Figure 4. Piv'ision of ta&ks between analog and digital sections.

EULER
ANGLES

CONTROL
ETC.

PILOT

HYBRID SIMULATION OF A HELICOPTER 351

sections of the hybrid computer. With the require­
ment that the simulation be able to cover a full
mission from takeoff to touchdown, a representative
simulation of the airframe dynamics over all flight
regimes was of great importance. 1-3

equipment, and of this the major demand was from
forces and moments produced by the main rotor.

It was found that a straightforward, conventional
analog program for the complete simulation would
have required too large a complement of analog

Hence, a division of tasks between analog and
digital sections was arrived at by assigning all the
forces and moments calculations to the digital sec­
tion and integrating these forces and moments by
continuous, parallel analog equipment to derive the
required outputs.

WIND EARTH TO Uw,vw,W'II...
SUMMATION

\f!w-'
...

Vw BODY AXES FOR TOTAL U,V,W
WIND

VELOCITIES

XA ... RESOLUTION DISTANCE
Ug, VO, Wo FROM UEJVEJWl TRAVELLED N,E,h VA. GROUND BODY AXES --. .. TO EARTH

..
N.E. a -

ZAo.. VELOCITIES REFERENCE height FRAME

tMi

LA ...

MA--. ANGULAR pq r EULER 8¢l/I .
NA ... RATES ANGLES

,.
Ixx

P. q ,r
~ -- Mi FUEL RATE

~
MASS,CG

dx CO
...

MOMENT ..
STORES ...
WEAPON~ OFINERTIA~

DXCG
-" pq 'r

AOSC + ... 8,cp,l/I - AISC CONTROL N, E. h ---- Blse a U,V,W - PILOT
~TR

.. OM -

_ U, V. W
-...

Figure 5. Analog program-block diagram.

352 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

The scheme is shown in Fig. 4. The analog re­
quirement was approximately 100 amplifiers, which
left a considerable amount of equipment for the
simulation of the flight control systems.

The digital computation of the forces and mo­
ments of the main rotor, tail rotor and fuselage was
accomplished in 50 msec, thus giving a sampling
time of 20 samples per sec. : One consequence of
hybrid programming is the existence of an interface
between analog and digital sections. As a result of
the sampling effects introduced, there is an unavoid­
able phase lag that can adversely affect loop damp­
ing within the simulation.

However, using digital prediction on the com­
puted forces and moments, equivalent damping to
the real-world vehicle is obtained-up to about 2
cps natural frequency.

Analog Section

The analog program developed for the six degrees
of freedom simulation followed the block diagram
shown in Fig. 5. Here, the moments and forces

generated digitally were integrated to give angular
rates and body velocities, and these in turn wt:~re

integrated to give vehicle orientation and distance
traveled. The operations involved in the compu­
tation are primarily integrations and rotations of
the velocity vectors from one axis system to an­
other.

Figure 6 shows the generation of angular rates
and orientation angles of the airframe. So as to al­
low for continuous feedback paths around the rate
integrations, the hub moments were linearized as
functions of the control inputs A IS and B IS and spin
rates p and q. These feedback terms were then al­
lowed for by subtracting equivalent terms from the
hub moments computed on the digital computer, so
that only differences had to be transmitted.4

AL = L - (LpP + LqQ + LAlsAls

+ LBlsBls)

AM = M - (MpP + MqQ + MAlsAls

+ MBlsBls)

VEttlCLE pB~ __ ~-P~~I£i

p

8

u

Figure 6. Analog simulation of angular rates and Euler angles.

HYBRID SIMULATION OF A HELICOPTER 353

Since the moments due to velocity were not re­
moved, these corrections were only close to zero at
hover. It should be mentioned, however, that there
was not really any approximation, since the net
pitching moment at the analog integration at any
instant did correspond to that computer digitally,
but part of it arrived a little early to help reduce
effects of phase shift.

Values for the derivatives were obtained by meas­
uring changes in the variable at various speeds and
choosing compromise values to cover as wide a
range as possible.

Avionics, comprising an inner loop stability aug­
mentation system and outer loop long-term stabili­
zation were simulated by standard analog tech­
niques to provide the necessary control inputs and
feedback.

Linkage Section

Data transfer between the analog and digital sec­
tions of the simulation was controlled by a standard
program written for the HYDAC 2400. This pro­
gram provided for up to 20 channels of analog to
digital and 12 channels of digital to analog conver­
sion. The transfers were 12 bits and sign in a sign
magnitude convention.

The Input/Output Subroutine on the digital com­
puter controlled all data transfer, reading a block of
mUltiplexer channels on analog to digital input, and

UVW I
pq,r
AOS MAIN
AIS ROTOR

H
IN/T/ALlZAT/Oli BIS

AERODYNAMICS
RO

Rol

OM

W/M f
U~W .q,r

LMR
-~

AERODYNAMICS WM FUSELAGE
UVW

VARIABLES ~ AERODYNAMICS

RO
TTR~ TAIL ROTOR -----..

UVW pq,r---tlo AERODYNAMICS
OM------

establishing voltages on banks of track/store ampli­
fiers on digital to analog output.

The analog to digital conversion at 70 J.lsec per
channel was used to input the variables u, v, lV, p, q,
r, Q, A os , A IS , B IS , f)TR and dx to the digital com­
puter.- Since scale factors are normally different be­
tween the analog and digital sections of a hybrid
computer, the scaling was adjusted by multiplying
by a constant during the spare time while the next
channel was being converted, before storing the
variable in an input buffer.

Because the number of DA converters was limited
to six, voltages were transferred to two banks of
track/store amplifiers to provide the equivalent of
block demultiplexing. The first bank was used to
output X, Y, Z, L, M, N to the analog computer,
and the second outputted V T, Q MR. Spare channels
in this bank were used for monitoring digital vari­
ables dynamically and were found extremely useful
during debugging phase of simulation.

Digital Section

The digital section received inputs from the pilot's
con trol actions through A os, A IS, B IS, f) TR, from the
helicopter velocities u, v, w, the spin rates p, q, rand
the rotor speed Q. The primary purpose of the digi­
tal program was to compute all forces and moments
acting on and about -the center of gravity of the
vehicle. The total forces and moments were then

ROr OM
LMR LRH l FXR MRH
FYR XA'YA'

LFQMR SUMMATION XF LA.M~
v'F MF OF FORCES

ZF NF AND

MOMENTS

YTR

QTR VT

Figure 7. Digital program-block diagram.

354 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

transmitted to the analog computer 20 times a
second, synchronization with real time occurring
just before the input data ,block where a waiting
loop was executed for the master timing pulse.

The digital program generated these forces and
moments by a succession of subprograms which cal­
culated the effects of fuselaige, tail rotor and main
rotor separately. These are shown in block form in
Fig. 7.

A secondary function of the digital program was
to make various program options available during
program checkout and running. These permitted
printing of intermediate results, programmed halts,
system checkout with test data, and for the hybrid
operation, inclusion of a prediction computation to
compensate for the 50-msec,delay introduced by the
computation interval.

Implementation of the: digital programming
phase was concerned with coding and extensive
checking. Fixed point arithmetic was used through­
out the computation cycle, necessitated by the short
cycle time required because of interaction with the
continuous analog section. : The fixed point coding
of the arithmetic operations was quite straight­
forward; once scaled equations had been written,
occasional checks for overflow and improper divide
being the only precautions taken.

The main program embodied all the computation
for the 12 rotor stations, ~ince this was by far the
largest section of coding. ' Computations for the
forces and moments of the other components, i.e.,
wing, tail, propeller, etc., were coded as closed
subroutines mainly to simplify program organiza­
tion and checkout and to simplify modification as
the programs developed and the vehicles become
more firmly defined. Communication between main

and subprograms was by means of a common stor­
age area so that no time was required to transfer
arguments and results from one region of storage to
another.

Of the various programs shown (Fig. 7) by far the
most important is that of the Main Rotor. Its
organization was dictated by the requirement to
step around the azimuth computing forces and
moments on the disc at each point. The main rotor
was represented by 12 stations defined by the azi­
muth \}t and station y-discussed previously.

The sets of computations of forces and moments
contributed by the stations \}t, y were essentially
identical, differing only in the terms involving sin \}t

and cos \}t. Because the values of \}t are multiples
of 90°, clearly it was not necessary to evaluate all
the sines and cosines; instead the program was ar­
ranged to branch to one of four paths at each of two
appropriate points. For each path, it was then
necessary only to add, subtract or omit correspond­
ing terms equivalent to sin and cos of 1, - 1, or O.

REFERENCES

1. "Simulation of Helicopter and VSTOL Air­
craft," vol. 1, Navtradevcen 1205-1.

2. "The Simulation of Helicopter Motion and
Avionics System," PCC Report 65-6, Electronic
Associates, Inc., R & C Division, Princeton, N.J.

3. "Preliminary Dynamic Report for Trainer
SH-3A (HSS-2) Weapon System," Navtrad(!vcen
1524-5.

4. M. Connelly and O. Fedoroff, "A Demonstra­
tion Hybrid Computer for Real Time Flight Simu­
lation," AMRL-TR-65-97.

A TIME-SHARED HYBRID SIMULATION FACILITY

R. Belluardo, R. Gocht and G. Paquette
United Aircraft Corporation Research Laboratories

East Hartford, Connecticut

INTRODUCTION

The capability for combined analog-digital com­
putation at the United Aircraft Research Labora­
tories was greatly expanded in January 1966 by the
addition of a large-scale, time-shared, general­
purpose digital computer and a pool of hybrid
linkage equipment which can be distributed to any
of four analog consoles. The digital computer time­
sharing system provides hardware and software for
the simultaneous use of the system by several users
at teletype consoles.

This expansion was necessitated by the increased
demand for time on an existing hybrid facility which
has been in operation since December of 1962.1,2
Typical uses for this equipment include determina­
tion of static and dynamic performance character­
istics of rocket engines, jet engines, fuel controls,
helicopters, and V/STOL aircraft.

GENERAL

The ability to efficiently and simultaneously
handle several problems of varying size and com­
plexity, and ease of utilization were the basic
requirements which influenced the selection of com­
ponents for this system. The first of these require­
ments was met by selecting a digital computer capa­
ble of performing both time-dependent (real time)
and non-time-dependent calculations on a machine
sufficiently fast and large enough to simultaneously

355

accommodate several problems. The second of
these requirements was met by selecting a digital
computer system and designing a hybrid linkage
system such that each user, whether hybrid or
digital, would find this system as easy to program
and operate as he would a single non-time-shared
hybrid computer.

A Digital Equipment Corporation PDP-6 Digital
Computer was selected for this purpose.3 This com­
puter is equipped with a core memory of 65,000
36-bit words and 16 high-speed storage register /
accumulators. Cycle time for these memories is
1.75 microseconds and 400 nanoseconds, respec­
tively. Five teletype stations, six Dectape units each
capable of storing about 65,000 words and a paper
tape reader constitute the input/output devices for
this system. Randomly addressable core storage
associated with a single processor can be expanded
to 262,000 words. The system can accommodate
several parallel processors. The number of tele­
type stations can be expanded to 64. A schematic
of the complete system is shown in Fig. 1.

This computer will simultaneously accommodate
several problems in real and non-real time in addi­
tion to several users involved in utility operations
such as edit, assemble, compile and debug. Each
user's program resides in a portion of core memory
and is protected from all other users by hardware
and software features incorporated in the machine.
On-line communication with the system permits use
of symbolic debugging techniques with resulting

356 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

16 K
CORE

MEMORY

16 K
CORE

MEMORY

MEMORY BUS

16 WORD
FAST

MEMORY

ARITHMETIC

PROCESSOR

PAPER
TAPE

READER

TELE­
PRINTER

CONTROL

INPUT/OUTPUT BUS

DATA
COMMUNICATION

SYSTEM

DATA

CONTROL

DECTAPE:

CONTROL.

HYBRID

LINKAGE

Figure I. Schematic of digital computer.

reduction in large problem checkout time. Finally,
initial and operating costs are low enough so that
relatively long periods of time at one of the consoles
are still economically feasible.

Basic to this digital system is a 6000-word execu­
tive routine which provides overall coordination
and control of the total o]l>erating system. Addi­
tional software packages available include an editor,
FORTRAN II (FORTRAN IV is currently under
development), a macro-assembler, a relocating link­
ing loader, a desk calculator and a symbolic de-
bugging program. .

The present hybrid linkage system contains a
Raytheon Multiverter which combines a 48-channel
multiplexer with a 14-bit analog to digital converter.
Total conversion time is under 40 microseconds.
The system also contains 40 Adage Model 4W13
digital to analog converters. These units feature
± 128 volts output and 14-bit accuracy.

Since the system was designed as a multi-user sys­
tem, it was felt that all users should be able to ad­
dress particular D / A's or A/D's beginning with
address O. This was acc,omplished by designing
address relocation hardware for the linkage system.
Basically, relocation constants are added to A/D
and D / A addresses. These constants are predeter­
mined numbers that are functions of how many
D / A's and A/D's are assigned to other users. Pro­
tection hardware which prevents inadvertant ad­
dressing of converters assigned to another user was
also designed into the system.

The remainder of this paper is concerned with a
detailed description of the hybrid linkage system
and modifications to the PDP-6 monitor system that
were required to make time-shared, time-dependent
computing possible.

THE HYBRID LINKAGE

The possibility of having several hybrid simula­
tions in progress sim ultaneously on one dngital l~om­
puter creates a need for a rather special hybrid link­
age. Over and above the requirements that each
analog computer have the appropriate numbc!r of
accurate, reliable and fast converters are the special
requirements imposed by the use of one digital com­
puter to service several analog computers. The
solution to this problem was found by using a pool
of linkage equipment which could be distributed
easily and effectively. The analog to digital con­
verter channels and the digital to analog converters
are distributed to the four analog consoles by a
patch board located within the PDP-6 hybrid link­
age as shown in Fig. 2.

SpecialIj 0 Instructions and Analog Assignment

A PDP-6 user cannot normally execute: any input/
output instructions. Input and output are per­
formed by the monitor on request from a user.
Devices must be assigned to a user before h·e can
expect to use them. In order to make the use of

A TIME-SHARED HYBRID SIMULATION FACILITY 357

DIGITAL COMPUTER HYBRID LINKAGE

I PATCH BOARD I

ANALOG COMPUTERS

CONSOLE 0

REMOTE
TELETYPES

[!ill

.....--------:-/ \
r-A-'--N-A 4~L~-G-T-~

DIGITAL
CONVERTERS

40
DIGITAL TO
ANALOG
CONVERTERS

CONSOLE I

I PDP-Sl---

I DISCRETE IN I
DISCRETE OUT

I REAL TIMEJ
l CLOCK

CONSOLE 2

CONSOLE :3

Figure 2. Hybrid linkage.

hybrid equipment as simple and as fast as possible,
the in-out instructions on the PDP-6 were divided
into two classes; the normal in-out instructions
which are illegal for a user and the special instruc­
tions which are legal for users. Most instructions
for the hybrid linkage are legal for all users.

One user cannot, however, affect another user's
hybrid equipment. This protection is accomplished
by both software and hardware features. Once a
user has been assigned a specific analog console he
can use only that portion of the linkage connected
to that analog console. The monitor turns on the
correct portion of the linkage whenever a job is
selected for running. The monitor can actually turn
on anyone of five analog consoles. These are con- .
soles NONE, 0, 1, 2 and 3. Console NONE is
turned on for all users lOot assigned a specific analog
console. A user cannot change analog console as­
signment except via the monitor commands.

Patch Board Wiring and Converter Addressing

Once set up the hybrid linkage allows each pro­
grammer, both digital and analog, to address analog
to digital converters and digital to analog con-

verters starting at address O. Each analog program
will use as many A/D's and D/A's as is needed.

The corresponding digital program will address
the converters by identical addresses. This ad­
dressing scheme applies to all "four" hybrid com­
puters. A particular program will not change from
day to day as the converters are distributed to users
in different arrangements. Of course the total num­
ber of converters is limited. This addressing scheme
also protects each user.

In order to properly distribute analog to digital
converters and digital to analog converters to the
analog computers the hybrid linkage must be
"set up." This requires a patch board to be wired
and inserted in the patch bay at the hybrid linkage.
The number of converters used on each console
must also be entered in a toggle switch register.
The linkage hardware will then automatically re­
locate converter addresses so that each user starts
addressing with number O.

Since this addressing is perhaps the most unusual
feature of this hybrid linkage a more detailed des­
cription is in order. The outputs of all digital to
analog converters appear on the patch board in the
hybrid linkage. The analog computer patch panel

358 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

positions that are to be used for D / A outputs are
also wired to this patch board. The D / A outputs
must be patched to the analog computers in an
orderly way. The D / A outputs are used starting at
number o. The required number of converters for
console 0 are wired in order. ;The next consecutive
group of D / A converter outputs are wired to analog
console 1, starting with position 0 on console 1. The
next group is wired to console 2 and the final group
to console 3. The number o(converters delegated
to each analog console is then entered on the toggle
switch register. The analog' to digital converters
are distributed in the same marmer.

Figure 3 is a block diagram of the address calcu­
lating hardware. The six-bit address comes directly
from the programmer's in-out instruction. The
console number is selected' by the time-shared
monitor. The numbers No, N j, N2 and N3 are set in
the toggle switch registers and correspond to the
number of components of this type assigned to the
corresponding analog console,

Consider an example. Let console 2 be selected
and No = 10, N 1 = 10 and N2 = 4. The program
addresses converter number 3. The output of the
subtractor signals an illegal address when the result
of the calculation is zero or negative. 4 - 3 is posi­
tive and therefore does not signal an illegal address.
The addition circuit will add 3 to No + N 1 and will
therefore calculate 23. If the patch board wiring is
examined at this point, converter number 23 will be
found wired to patch panel position 3 on console 2.

As a second example, suppose console NONE is
selected and the programmet addresses channel O.
The subtractor signals an illegal address and the
converter action is inhibited.; Any illegal converter
reference would result in this same action.

Summary of Linkage Instructions

In this section an outline of the use of each com­
ponent in the hybrid linkage,.is given. This is done
without going into a detailed description of the
instruction or data formats. These instructions are
exactly the same for any of the "four" hybrid
computers.

Two instructions are used with the digital to
analog coilVerter system. One instruction is used to
select a converter address. ; The other instruction
transfers data to the selected converter. Each data
transfer instruction will increment the address by
one. Consecutive data transfers will load consecu­
tive converters.

Three instructions are associated with the analog
to digital converting system:. One loads the con-

verter address and starts the converter, another
transfers data to the computer. The third instruc­
tion is used as a skip instruction for timing pur­
poses. This instruction will skip when conve:rsion is
complete. As the data is transferred into the com­
puter the converter address is automatically incre­
mented by one and the next conversion is started.

Discrete inputs can be read from each analog
console into the user's digital program. Discre:te
outputs can be set at each analog console from the
user's program. This requires two instructions; one
to read and one to set. There are 12 of these discrete
inputs and outputsperrYlanently assigned to ea1ch
analog console.

The hybrid linkage contains a millisecond clock
that is used mainly by the real-time monitor for all
timing control. Any user can, however, read the
clock. This is useful in computing times Ifor pro­
gram execution within one computing time interval.

TIME-SHARING SOFTWARE

Time-dependent problem solutions using the dig­
ital computer combined with dynamic devices, as in
hybrid simulation, require execution of th,e digital
program within a repeated, fixed time interval while
the problem is operating, i.e., compute mode, in
analog terminology. In previous hybrid computa­
tion at United Aircraft Research Laboratories the
repeated digital program cycle and the execution
time were the same. In many instances, the repe
tition rate, or duty cycle, need not be as short as
execution time. With a longer duty cycle and/or a
faster computer, a portion of the duty cycle can be
shared with program service activities. By mini­
mizing the ratio of time-dependent program, execu­
tion time to an acceptable duty cycle, a number of
these programs can coexist within a common duty
cycle.

Time-Sharing Control

Software control is provided to accomplish time
sharing by the PDP-6 Multiprogramming Syste:m.4

This system includes a resident monitor which
handles input/output service and schedules user
program execution. Using the PDP-6 priority
interrupt channels, the monitor sequences pro­
grams based on delayed input/output reque:sts,
clocked timing, and user's programmed or teletyped
commands. As shown in Fig. 4, service is provided,
in order, to input/output device requests, monitor
service requests from user software or teletype,
and a round-robin sequencing of user programs.

A TIME-SHARED HYBRID SIMULATION FACILITY 359

(0)

6 BIT ADDRESS FROM PDP-6

ILLEGAL ADDRESS SIGNAL

ANALOG
CONSOLE
SELECTED

t__-----,~

6 BIT RELOCATED
ADDRESS TO
CONVERTER

6 BIT RELOCATION
CONSTANT

_(_O_) ____________ ~ .. ~~t-----------~

~N~2 _____ ~-N-O-+-N-I-+~N ... 2~~t------------~

Figure 3. Converter addressing.

Programs in the round-robin include the users soft­
ware as well as library routines called by the user
such as editor, FORTRAN, etc.

Exact, repeated interval control is not a function
of the basic monitor. Clock control is used to

terminate programs in order to prevent long oper­
ation of a, single user without looking at the service
requirements of others. However, clock control is
at low priority and is often deferred for monitor or
inputj output functions.

360 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

ORIGINAL DEC MONITOR

UACRL MONITOR

Figure 4. Monitor priority.

Exact timing of time-dependent users has been
designed into the monitor using the UACRL clock
at high priority. The time-dependent programs are
sequenced within an accurateJ repeated time interval
(the duty cycle) preset to a desired value in milli­
seconds. Each time-dependeht user receives a pre­
assigned position and time in;terval within the duty
cycle. '

Dectape and teletype reading and writing oper­
ations can interrupt time-dependent service. Any of
the routines used at this high~r priority is completed
well within one millisecond. i Their combined use
over the duty cycle should n~ver exceed 10% of the
duty cycle.

The current time-sharing at UACRL permits up
to 95% of the established i duty cycle for time­
dependent use. Time-dependent users are commu­
tated within the duty cycle in ia queue separate from
the round-robin of non-time~dependent users. The
remaining 5~~ of the duty; cycle is reserved for
monitor functions and the round-robin. While the
percentage for non-time-dependent use seems small,
time-dependent users often' operate in compute
mode for reasonably short~ infrequent intervals.
When compute mode does not exist, most of this
user's time is returned to ~he system for lower
priority service. '

In order to implement this form of time·,sharing,
a number of new features were added to the mon­
itor. These functions, described below and s.ummar­
ized in Table 1, include control of:

1. Duty cycle
2. User time
3. Time synchronization
4. Hybrid linkage assignment

The last is provided for the assignment of proper
linkage hardware to each user.

Duty Cycle

The duty cycle can be set by a teletyped command
TSET x, where x is the desired duty cycle in milli­
seconds. This command is accepted by the monitor
only when all time-dependent jobs are absent since
the duty cycle affects all time-dependent users. If a
user attempts to set the duty cycle when it is pro­
tected, he receives a typed return indicating the
number of a job still in time-dependent status and
the original duty cycle is retained.

A command TCLEAR can be typed by a residlent
time-dependent user to permit a duty cycle change
while retaining his original memory and equipment.
He must reinstate his timed operation by a TJOB
command, described below, once the new duty cycle
is set.

One command, TREAD, can be entered from
teletype or from the user's program to access timing
information. As a teletype entry, TREAD will yield
a printout of the duty cycle, time-dependent job
numbers and their reserved time intervals, and time
left for additional reservation (balance of 01.95 duty
cycle in the present system).

The use of TREAD as a programmed operator
results in the transfer of the duty cycle value to a
designated machine accumulator. This information
is useful in calculating data affected by the time
interval as a problem initializing operation.

User Time

With one time-dependent user in the syste:m,
execution of the program at the start of each duty
cycle would provide accurate cycling. Program
execution time varies due to data values and pro­
gram branching and interruptions, but accurate
time cycling of one user is possible by converting
analog information at the start of the cycled
program.

With more than one time-dependent user, the
second and later users must be assured of simillar

A TIME-SHARED HYBRID SIMULATION FACILITY 361

Table 1. Summary of Commands Added to the Monitor

Influences Source Command Action Errors ~eletype Response

Telfotype TSET x Set duty cycle to x in milli- x) 8191 or x = 0 Ix MSEC CAN'T BE SET
seconds if none of the jobs
are currently in time- Duty cycle pro- j IS A TD JOB
dependent status. tected by existing

time-dependent job.

None Carriage return/line feed

Teletype TCLEAR Release duty cycle protection None Carriage return/line feed
for initiating job.

Teletype TREAD Type value of duty cycle, None In MSEC DUTY CYCLE
Duty Cycle reserved user intervals, and r.rIME JOB NUMBER

remaining time available for ml jl
time-dependent use.

mL h
Ix MSEC AVAIL

Program TREAD Transfer value of repetition None None
time to specified accwnulator.

Teletype TJOB y Establish a reserved time y> (0.95 Duty Cycle z MSEC AVAIL
interval, y, in milliseconds, less sum of exist-
if available, and set duty ing reserved
cycle protection for the intervals)
initiating job.

None Carriage return/line feed
User Time

Teletype TJOB 0 Release the execution time None Carriage return/line feed
interval (or set zero time)
for the initiating job.
Duty cycle protection is set.

Program TSYNC Return control to the monitor Execution when job TSYNC FROM NON TD JOB
for job switching and signal does not have non-
the execution of the succeed- zero reserved time

Time Syncro- ing instructions in the interval.
nization initiating job when its next

execution interval begins. TSYNC instruction TD JOB TIMED OUT
not executed before
clock interrupts
time-dependent job.

None None

Teletype ENABLE ANAx Reserve analog console x Device previously ANAx ENABLED FOR JOB j
linkage for the initiating enabled by another
job, if available. The job.
physical hardware assignment
exists only during this Nonexistent console NO SUCH DEVICE
job's operation. Only one number.
console may be assigned to a

Hybrid job. Illegal device name DEVICE CAN'T BE ENABLED

Linkage
None Carriage return/line feed

Teletype DISABLE ANAx Release analog assignment None - note, wrong Carriage return/line feed
or DISABLE for the initiating job. address is ignored

and any console
that was assigned
is released.

362 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

cyclic scheduling. This is accomplished by requir­
ing all time-dependent users to establish a reserved
interval within which they must complete their oper­
ation. Any time not needed by the assigned user,
within his time interval, is a,lotted to the queues of
non-time-dependent operati0ns.

Time-dependent programs operate at high prior­
ity following each interrupt I for successive reserved
intervals until all job intervals are exhausted. The
remainder of the duty cycle is used for non-time­
dependent job functions. If all job operations are
exhausted, the remainder or the duty cycle is spent
in counting this dead time (the null job). The null
job data is a useful indicator of computer utiliza­
tion.

Figure 5 illustrates the ~ubdivision of the duty
cycle. The monitor schedu!les all these operations
within separate queues with high priority given to
the time-cycled queue. The information supplied to
the clock comes from a ring table in sequence. This
table contains the reserved job intervals and the

Ne.xt Time
Dependent User

Service and Response
to Monitor Command

balance of the duty cycle. Thus, with two time­
dependent users active, the executive sequences
three time values to the clock which determine the
interrupts. When the executive responds to an inter­
rupt, it sets the clock interval for the next operation.
This will always occur within the first clock count
after interrupt was signaled. Should the interrupts
occur during execution of a time-dependent pro­
gram, the job is reduced to round-robin operation
and is informed of the error via teletype.

To establish an interval for the user a command
TJOB y is typed into the system, where: y is the
interval in milliseconds to be reserved for the initi­
ating job. A time slot is then entered at the end of
the time-cycled queue for the user. The: time: re­
quested should represent maximum program execu­
tion time plus a buffer time for higher priority
inputj output and program swapping. This buff,er is
recommended as 10% of execution time or one milli­
second, whichever is largest.

The sum of reserved intervals must be less than

Cornrnutated
Round-Robin usersl

Exit E.xit

Null
Job

Last Clock
Interrupt

Exit
By TSYNC At Termination At Termination

*Next
Clock
Interrupt

Time-Dependent Job Interval

First Timed Last Timed Continue non-time
II-_u..".s.:oo.er_In_.:tw.:oe r...,;:v ... a l ___ ---tI .. ·· .. 1-1 __ u_s_e_r_In_t_e_r_v_a_l ___ t--_C..;.y_C_l_e_d_Op.;;....er_a_t_~_. o_n ___ --f

Duty Cycle
Interrupt

Ta
Interrupt

Duty Cycle

T **
j

Interrupt

* This interrupt must occur after time-dependent user service.

** T. must occur before 0.95 of duty cycle.
J

Next Duty Cycle
Interrupt

Figure 5. Time sequences. *This interrupt must occur after time-dependent user service. **Tj must occur before 0.'95 of
duty cycle.

A TIME-SHARED HYBRID SIMULATION FACILITY 363

0.95 of the duty cycle. Should an excessive interval
be specified, an error response will be typed and the
user denied entry to the time-cycled queue.

A command TJOB 0 can be used to release the
user's reserved interval but retains protection of the
duty cycle. This allows for additional sharing of
cyclic operation by two or more cooperating users.
Since they require time cycling only during active
analog linked computing in simulation, an often
small percentage of total use of the computer, users
may successfully alternate time-dependent and
round-robin operation.

Time Synchronization

While the TJOB command reserves an interval for
the user, it does not actually enter his program into
cyclic operation. A programmed operator TSYNC
must be executed within the user's program to ac­
complish the transfer. Prior to execution of this
instruction, the reserved time interval was used for
non-time-dependent functions.

The TSYNC command will result in an error
return if it is encountered without a reserved inter­
val being previously set. This includes the condition
of zero time reserved with TJOB o.

When TSYNC is correctly executed, the user's
operation is terminated for the remainder of the
current duty cycle whether he was operating in
time-cycled queue or round-robin. When this user's
interval is entered during the next duty cycle, the
program begins execution at the instruction follow­
ing the TSYNC. Thus, the TSYNC command pro­
vides for initiating and maintaining time-cycled
operation. Termination of timed operation occurs
when nonhybrid input/output is attempted or the
user signals an exit from program branch or tele­
type.

While input/output service results in termination
of cyclic operation, this monitor controlled service
proceeds legally at its lower priority. Automatic
return to cyclic execution is possible if the user pro­
vides a TSYNC after completing the input/output
programmed operator sequence (Table 1).

Hybrid Linkage Assignment

The monitor provides for user assignment and
protection of hybrid linkage as provided for any

other input/output device. The teletyped command,
ENABLE ANA x, allows a user to reserve analog
console x for his needs. Once assigned to a specific
user, only that job is permitted to access the actual
equipment. Only one console can be assigned to a
job. A subsequent analog ENABLE, calling for a
different console, will result in the release of the
prior console as well as enabling the newly specified
console.

Hardware assignment of the hybrid linkage takes
place whenever the job is selected for operation
regardless of which queue contains the job. In this
way, round-robin operated debugging can include
analog equipment.

The reserved equipment can be released by a cor­
responding DISABLE ANAx, or just DISABLE, as
well as the job canceling KJOB.4

CURRENT STATUS

The entire system which includes the digital com­
puter as delivered by Digital Equipment Corpora­
tion, the hybrid linkage as designed and assembled
by United Aircraft, and the modifications to the
standard PDP-6 monitor as implemented by United
Aircraft has been operating satisfactorily as de­
scribed since February 1, 1966.

REFERENCES

1. R. Belluardo, R. E. Gocht and G. A. Paquette,
"The Hybrid Computation Facility at United Air­
craft Corporation Research Laboratories," Proceed­
ings, DECUS (Digital Equipment Computer Users
Society), 1963, Maynard, Mass., pp. 261-269 (1964).

2. G. A. Paquette, "Progress of Hybrid Compu­
tation at United Aircraft Research Laboratories"
Proceedings, 1964 Fall Joint Computer Conference.

3. "Programmed Data Processor-6 Hand­
book," (F-65), Digital Equipment Corporation,
Maynard, Mass.

4. "PDP-6 Multiprogramming System Manual,"
(ACTOO), Digital Equipment Corporation, Mayn­
ard, Mass.

HYBRID SIMULATION OF A FREE PISTON ENGINE

R. E. Gagne
Mechanical Engineering Division, National Research Council

Ottawa, Ontario, Canada
and

E. J. Wright
Free Piston Development Company

Kingston, Ontario, Canada

INTRODUCTION

The free piston engine principle is one which has
intrigued mechanical engineers for decades. Indeed,
the original gas engine of Otto and Langden em­
ployed a piston assembly which did not contain the
now conventional connecting rod and camshaft
arrangement I and hence may be considered as an
early implementation of the free piston principle.
Today, however, the free piston principle is nor­
mally applied to a highly supercharged two-stroke
compression ignition engine in which two opposed
reciprocating pistons are used in a diesel cylinder.
These pistons do not transmit mechanical energy
but instead pneumatic energy is delivered in the
form of high-pressure, high-temperature exhaust gas
to a separate power turbine to obtain shaft power.

Such an engine has great performance potential
in that it combines the superior thermal efficiency
of the diesel cycle and the flexibility of a free turbine
drive with a basic mechanical design simplicity in
which highly stressed rotating members are absent.
Further, unlike the conventional engine arrange­
men,t, complete dynamic balance of the pistons is
obtained so that the engine is vibrationless, thus
eliminating any need for complicated and expensive
vibration isolation mountings.

365

Unfortunately, however, the lack 'of any mechani­
cal connection to the pistons, other than a simple
rack and pinion system to maintain an out-of-phase
relationship between the pistons, presents a piston
control problem which does not exist in a crank­
shaft engine. This problem is one of ensuring that
the pistons do not exceed certain mechanical design
limits irrespective of engine loading. It was prin­
cipally to investigate various piston control schemes
that this simulation of a specific engine was under­
taken. The ability to implement any control action
without the expense of tooling special components
and without the risk of mechanical damage has
shown the hybrid simulation to be a valuable design
tool.

A number of attempts have been made to simu­
late the free piston engine in the past2

-
4 from which

we concluded that neither the analog nor digital
computer simulations alone provided the most suit­
able means of handling the problem. It was felt
that the ability of the analog to handle the system
dynamics and to allow intimate operator contact
with the problem should be teamed with the digital

, computer's ability to perform the thermodynamic
calculations involved; and this hybrid approach
seemed a most reasonable way to proceed. .

In this discussion we will describe our hybrid

366 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

approach to this problem, confining ourselves to a
discussion of the simulation itself rather than the
results obtained from it. We use it only as a vehicle
for exhibiting the power of hybrid simulations of
systems of this type.

THE HYBRID COMPUTER

The hybrid computer available to us was certainly
modest compared to systems available today. It
consisted of an Electronic Associates 131 R analog
computer, a Control Data (nee Bendix) G 15D
digital computer, coupled together through an
Epsco 8 x 8 converter system. The analog equip­
ment has been modified to allow individual mode
control of some integrators; all mode relays were
replaced with the faster and more dependable reed
type, and a scheme for master mode controlling
the equipment from the digital computer was im­
plemented. The system is shown in Fig. 1.

The patchable logic used was a small logic trainer,
the Digiac 3010, which interfaced to the individual
mode control relays of the integrators through re-

G -15 D

DIGITAL COMPUTER

MAG.

TAPE

IK INTERPRETIVE
MEMORY

PAPER OR
TAPE 2K MACHINE

MEMORY

.-'"

TYPE

WRITER
~-

DRUM

lays. The comparators used were analog amplifi(!rs
with suitable diode feedbacks.

The limited dynamic performance of the;~ analog
equipment required that the simulation be run at a
much reduced time scale, which certainly detracted
from the operator's 'feel' for the problem. As well,
since the digital computer is also slow, the calcula­
tion times were quite long, and this calculation speed
was further decreased over that possible with ma­
chine language programming by using all programs,
including interface control, written in ALGO.s The
slow computing speed was possible only by halting
the simulation at both ends of the engine stroke at
which time the digital calculations were donie.

ENGINE DESCRIPTION

The free piston engine consists of a pair of op­
posed pistons which are constrained to move out of
phase under the influence of gas pressures existing
in chambers adjacent to them. The pistons do not
transmit mechanical power as in conventional
crankshaft engines, but instead serve to provide;: a

IIADDAYERTER"
CONVERTER·

SYSTEM 1---------1
I I
I
I I
I 1 CHANNELS

I
I

D-A CONY.
~ 131R ANALOG

I I COMPUTER
I I
I I
I I 2 CONSOILES I 8 CHANNELS I

A-D CONV. EACH OF
I I
I I 48 AMPLIFIERS

I I
I ANALOG I
I MODE I ..

I
..

I CONTROL
I I
I I

I I

I TIMING
I
I

I UNIT I PATCHABLE
I I LOGIC
I I I

I I
1 _____

r-----..J

TIME
OPTION

Figure 1. National Research Council's hybrid computer.

HYBRID SIMULATION OF A FREE PISTON ENGINE 367

cylinder of varying volume in which the chemical
energy of liquid fuel may be released in a highly
supercharged and effiCient diesel cycle to generate
hot, high-pressure exhaust gas. This is subsequently
passed through a simple gas turbine wheel to obtain
mechanical power. Figure 2 is a diagrammatic
sketch of an outward compressing machine and it
shows one half of the engine. The engine is essen­
tially symmetrical about its centerline, except that
it is usual to arrange the exhaust ports and intake
ports of the diesel cylinder to be controlled by
separate pistons. For convenience, however, these
ports are both shown on the same side. Further,
because of the symmetry of the engine, it is con­
venient to simulate the motion of only one of the
pistons. The remainder of the discussion is limited
to a consideration of this case.

The piston itself serves to divide the cylinders
into three separate expansion chambers. The com­
plete cycle of events in each of these chambers is
as follows:

1. With the piston close to the engine centerline,
fuel is injected into the diesel cylinder and combus­
tion takes place. The resulting high pressure stops

I "'I--------YCR----~

!Ly-~-YBR
"jr----If'-------I

I

I/nletP~

PO

FU'I/lYEX

Inl,ct r- Exhaust Port t
PATM

PBREF

POEL
"2 of enoine shown

Exhaust Receiver En~i;~te~y~:e~trical about

-~

711/"n.
Narrle/ LJ"

Figure 2. Simplified free piston engine. One half of engine
shown. Engine symmetrical about center line.

the inward movement of the piston at its inner dead
point (lOP) and forces the piston to move outward.

2. This outward movement of the piston com­
presses air contained in the compressor and bounce
cylinders.

3. As the piston uncovers the exhaust ports, the
gas in the diesel cylinder expands through the ports
causing a reduction of pressure in the diesel cylin­
der. This process is normally referred to as the
blowdown process.

4. As the piston uncovers the intake ports, the
compressor pressure just exceeds the transfer duct
pressure and the pressure-sensitive delivery valves
open and deliver air to the diesel cylinder via the
transfer duct. -This air scavenges the exhaust gases
from the diesel cylinder, replacing them with fresh
air. The mixture of exhaust gas and some scavenge
air is stored in the exhaust receiver for subsequent
delivery to the turbine at an almost constant rate.

5. Further movement of the piston is resisted by
the increasing pressure in the bounce chamber along
with piston ring friction forces and it finally comes
to rest at its outer dead point (OOP) position.

6. The high-pressure bounce air, coupled with the
air trapped in the clearance volume of the com­
pressor chamber, supplies the necessary energy to
return the piston to its inner dead point (lOP).

7. On the return stroke, compressor pressure
decreases to just less than atmospheric pressure at
which point pressure-sensitive suction valves open
admitting air from the surroundings to recharge the
chamber.

8. As the exhaust ports close, the air trapped in
the diesel cylinder is compressed in readiness for the
next combustion.

9. The reducing pressure in the bounce cylinder is
prevented from falling below a desired minimum
value by supplying air from some reference source.
Such makeup is required to replace leakage from the
bounce eylinder. This cylinder is used as the
primary means of controlling piston motion. This
completes the cycle.

In the absence of a crankshaft, starting of the
engine is accomplished by locking the piston in a
position close to the normal outer dead point (OOP)
position and charging the bounce cylinder with air
at a high pressure. Release of the piston produces
a rapid-inward movement which compresses air in
the diesel cylinder in preparation for injection of the
fuel.

368 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

PO 20 O-------{

-SGN(Y) ~5

Figure 3a. Analog circuit. Time scale 400: 1. Dynamics:

lOY
---()

L = PNB. (ACBK) + PD r AD) _ Pcr AC) _ PB r AB \ __ 1_ (FC\ SGNi(Y)
2400 200m 20 ,10m \200m 20 \lOm} 10m \20}

All pressures in pounds per square inch; all areas in inches squared; mass in slugs; all dimensions in inches.

PO/100

-PO/100

1fl
2

1 Meg.

Blow
Down

PD/20
>---------l~------O

lOY c.---4 2 i---------l

-lOY (±)

+100

-100

~
2000

FC
- 20

-FC/20

FRICTION

DIESEL CYLINDER

FC/20

-100

F/100

FUEL SETTING

100DN -100

0.050
PR.ESET

EXHAUST NOZZLE DIAMETER PERIOD MEASUREMENT
Figure 3b. Analog circuits.

HYBRID SIMULATION OF A FREE PISTON ENGINE 369

Y/20 PC

-'1/20 -PC

PC

lOY

YB
10

-100
COMPRESSOR CYLINDER

-100

Y/20 PB/20

-'1/20 -PB/20
~
"2 PB/20

lOY
BRESET

YCR-YCL
10

BOUNCE CYL INDER

Figure 3c. Analog circuits. Time scale 400: 1.

DIESEL CHAMBER EQUATIONS is obtained for diesel pressure

Solving for the diesel pressure, PD, during the
polytropic expansions when the ports are closed,
and no combustion is occurring, requires solution
of the equation

(PD) vn = const

If the expansion and compression processes are
assumed to be isentropic, then this equation be­
comes:

(PD) y'Y = const

where'Y = cp / Cv for the gas,
cp = specific heat at constant pressure,
Cv = specific heat at constant volume, and
y = effective diesel cylinder length uncov­

ered by the piston.

Differentiating this equation, a first-order equation

d (PD) - 'Y(PD) dy
dt" = y dt

(1)

Although it is known that 'Y is a function of tem­
perature and hence varies in magnitude during the
expansion and compression processes, a suitable
mean value is used to simplify the simulation. Such
approximations are common in engine calculations
and are normally quite acceptable.

Comparator circuits and patchable logic are used
to detect when isentropic expansion or compression
should be taking place, i.e., when Eq. (1) is valid,
and the integrator of Figure 3b which generates
(PD) from Eq. (1) is kept in the hold mode at all
other times by this logic. Since the inward isen­
tropic compression is of air, and the outward isen­
tropic expansion is of hot gas, both at quite dif­
ferent mean temperature levels, a separate value of
'Y is used in each case.

370 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

• ~ Y
Y/20 - '_:-_l2000]

lOY~CPC CPC Y3 > Y
-10Y3 Cl

PC 0-----0 [{OCO] PD/20 o.----G [2cigci]

~SET -VSET C2 SET VSET < 0
2000~[] 3 20t 1 OYC <>-----G [rg]

• ~VDT Y Y/20 C3 • VDT > 0

10Yo-Q[1~] 100DN o.----G [DN]

lOY~XH
10YEX C4 EXH Y > VEX

ANALOG/DIGITAL CHANNELS

PD/20 ~ ':EX
-PDEL/20 ~ PEX = PD > PDEL

-VSET
PC~ ':NL

-1.15PDEL~ INL PC > 1.15PDEL
[SET J N~~T ~
[PDEL] -PDEL
2000 20' PB/20 ~ BREF

-PBREF/20 ~ BREF PB > PBREF ~
[Y3]
10 -10Y3

-PC ~ ATM
0.95PATM ~ ATM PC > 0.95PATM ~

[PD~] Q---o -PD~ 2000 20 COMPARITORS

DIGIT ALLANALOG CHANNELS

Figure 4. Comparitors and converters.

The assumed indicator diagram for the diesel
cylinder is shown in Fig. 7a.As seen in the program
flow chart of Fig. 6, the simulation is halted at the
lOP and OOP piston positions. At the lOP posi­
tion, combustion occurs which causes an instan­
taneous pressure rise followed by a constant pres­
sure expansion before isentrqpic expansion occurs.

When the exhaust ports open, the diesel pressure
falls to the exhaust receiver pressure, and this drop
is assumed to occur exponentially.

COMPRESSOR CHAMBER EQUATIONS

By similar arguments, the 'isentropic portions of
the compressor cycle are described by solving

d(PC) - 'Y(PC) d(yc)
---;Jt = y c dt

(2)

where PC = compressor pressure and Yc effective
compressor chamber length uncovered by the
piston.

Again, suitable logic is used to detect when Eq.
(2) is valid and the circuit of Fig. 3c results. The
compressor chamber indicator diagram is shown in
Fig. 7b. On the inward stroke, isentropic expan­
sion of the clearance volume air occurs until the
compressor pressure is just less than atmospheric
pressure, causing the suction valves to open and
admit air. For the remainder of this inward stroke,
PC is constant and is given by

PC = 0.95 P atm

where the factor accounts for suction valve: pressure
drop.

On the outward stroke, isentropic compression
occurs until the compressor delivery valv,e leading
to the transfer duct is open, at which time we have

PC = 1.13 P del

where P del = exhaust receiver pressure, and the
factor accounts for pressure drops through the

HYBRID SIMULATION OF A FREE PISTON ENGINE 371

compressor delivery valves and the intake and ex­
haust ports of the diesel.

Provided the exhaust receiver is large compared
with the swept volume of the diesel cylinder (of the
order of 3 times), it can be assumed that P del is con­
stant over that portion of the cycle when the ex­
haust port is open, without sacrificing accuracy.
(In the actual engine, Pdel changes in the order of
5% over a complete engine cycle.)

BOUNCE CHAMBER EQUATIONS

The bounce chamber indicator diagram is shown
in Figure 7c. This chamber acts essentially as a
pneumatic spring in which leakage from the cham­
ber results in a pressure loss during the cycle. This
leakage, which occurs past the piston sealing rings,
is proportional to the instantaneous bounce pres­
sure in the chamber. Thus the equation to be solved
IS:

d(PB) -A{PB) d(Yb) _ a(PB)
~ = Yb dt

~ ~:~:o----D htll ==p>---+--+---10 DHOLD

:::o----D "iJ------O DRESET

DIESEL CYLINDER

DHOLD = EXH + MH + CPC·VOT
DRESET = MR + SET·VDT

INL~
VDT . MHo-_-+----+-____ ~ CHOLD

ATM
MR VDT 0 0 CRESET

COMPRESSOR CYLINDER

CHOLD = INL'VDT + ATM·VOT + MH
CRESET = MR

(3)

where PB bounce chamber pressure,
Yb effective bounce chamber length un­

covered by the piston, and
a leakage factor.

When, due to leakage, the bounce pressure drops to
below a desired bounce reference pressure, PBREF ,

the bounce chamber is connected t~, a reference
pressure source by a pressure sensitive valve to hold
the minimum bounce chamber pressure constant.

The analog circuit generating PB is shown in
Fig.3c.

PISTON DYNAMIC EQUATIONS

The forces acting on the piston are due to the
pressures in the various chambers along with piston
ring friction. For dimensions in inches, piston mass
(m) in slugs, and pressure in pounds per square
inch, the equation describing piston motion is:

=D-~BHOLD
MR

O--------Q BRESET

BOUNCE CYLINDER

BHOLD ,= MH + BREF. VDT
BRESET = MR

MR

SET~PRESET
VOT MH~PHOLD

PERIOD GENERATOR

PHOLD ,= MH
PRESET = SET·VTIT + MR

VDT

MASTER
HOLD = MH

(4)

ANALOG OR DIGITAL HOLD
MASTER MODE

CONTROL
MASTER

RESET = MR

~:~_J'\B
PEX ~T.PEX

EXHAUST TIME CONSTANT

0.-0--0
ANALOG OR

DIGITAL RESET

Figure 5. Control logic.

372 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

where PNB

ACBK

negative bounce chamber pressure
(constant),
cross-sectional area of· negative
bounce pist~n surface,

Ad cross-sectional area of diesel piston
surface,

Ae cross-sectional area of compressor
piston surface,

A b cross-sectional area of bounce
piston surface, and

Fe frictional force (assumed constant).
The scaled equations and analog circuit are shown
in Fig. 3a.

MOOE SWITCHING LOGIC

The logic signals necessary to control the simula­
tion are obtained by use of the comparators of
Fig. 4. The mode switching for the compressor and
bounce chambers are relatively straightforward, and
the logic is shown in Fig. 5. The diesel pressure
circuit is perhaps less so, and will be used as an
example of how the mode switching conditions are
obtained.

From Fig. 7a, and starting at the OOP position,
the diesel pressure is equal to that existing in the
exhaust receiver (i.e., Pdel) alild remains at this pres­
sure until the exhaust port is closed. Thus the diesel
integrator is in the hold mode whenever the follow­
ing is true:

VOT·EXH (5)

When EXH is no longer true (port is closed), the
pressure increases adiabatically until lOP is reached;
i.e., until the velocity changes sign. This sign change
is used to put the whole simulation in hold while
the combustion calculations are made. Thus condi­
tion (5) must be OR'ed with master hold (MH).
The new diesel pressure at lOP resulting from the
constant volume portion of the combustion (as
described in the Appendix) is established as an
initial condition input to the diesel pressure in­
tegrator through converters, and this integrator is
placed in reset by use of a SET signal from the
digital computer. Since this SET signal is also used
at OOP to reset the period measuring integrator,
and to allow for engine starting, the reset condition
on the diesel integrator is given by:

ORESET = SET· VOT + MR

where M R is the master reset condition.
If some constant pressure combustion, as de­

scribed in the Appendix, is to take place, then the

voltage Y3 is output to the CPC comparator, and
CPC is true during this constant pressure portion
of the expansion. Thus the integrator is also in hold
whenever the following is true:'

CPC· VOT (6)

When CPC is no longer true, Eq. (1) is integrated to
give the isentropic expansion until the exhaust port
is again opened, at which time the pressure de­
creases exponentially to the exhaust receiver pres­
sure. This exponential pressure decrease is achieved
by placing the diesel integrator in hold and, at the
same time, switching a resistor around the integrat­
ing capacitor until the delivery pressure P dill is
reached. This is achieved by a relay driv,en by the
logic signal B where

B = EXH . VOT . PEX

Parameter Inl~'

~
Type In

Ambient Conditions
Efficiencies , And

Same Geamlttry
Data

Figure 6. Simplified program flow chart.

POI
PDOM __ 2 3

HYBRID . SIMULATION OF A FREE PISTON ENGINE

PC

YCI = IDP+YP

YC2=ODP+YP

PI --I

I
1

I
I

1.13 _____________ -r-----,
PDEL

I
I I 1

POE L - i-T - - - - -:-.+1---1-------,1

I I I

0.95
Potm ------ -f.-- Y5-~

1

1

lOP "13 VEX ODP "I

I
I
I
I
I
1

I
I
IYCR

I I.

7(0) DIESEL CYLINDER 7(b) COMPRESSOR CYLINDER

PB

PBREF_

YBR

lOP ODP y

7(c) BOUNCE CYLINDER

Figure 7. Indicator diagrams.

373

374 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

)(-ENGINE

o -SIMULATION
60 GHP

40
30 PDEL 50

20

2000 RPM

)(

175o"=-=-·-----+.' =----~)I...lI'..Q~~--_:J'.
30 40 ~ PDEL 50

~.
1500

0.45 SFC

---x_~ PDEL ~O
--x-~

0.40 30

0.35

700 TNEW

?
~Q

600~3~0--------------~~--,-~Q~-PI~0

500

~Q

5.5 ODP

1 DP.0.35 in.

5.0 30

4.5

Figure 8. Engine and simulation comparison.

The complete diesel integrator hold condition is
given by:

DHOLD = EXH + VDT . epe + MH

DIGITAL PROGRAM

A simplified flow chart for the digital program is
shown in Fig. 6. The program is entered, and initial
conditions are established on the analog console for
proper starting under specified environmental con­
ditions. Problem running is controlled by a break­
point switch (No.1) which, at any time, can return
the simulation to the starting conditions. The
engine is. started with the piston at the ODP posi­
tion. After the inward strqke, the program causes
the analog console to go to hold at the IDP position
after which the combustion calculations of the
Appendix are performed. The program then re-

leases the analog to operate until it is again put to
hold at the ODP position for the mass flow calcula­
tions. Monitoring information type-outs are con­
trolled by a breakpoint switch (No.2).

RESULTS

The performance data available from actual
measurements on a specific engine are shown in
Fig. 8. The geometry data and ambient envilron­
mentaf conditions were established on the simula­
tion, and the combustion efficiencies, friction co­
efficient, leakage and heat transfer coefficients were
calculated based on measurable quantities and
estimates of the engine properties at the: time: the
results were obtained. These quantities wt!re further
adjusted by a few percent to obtain the comparisons
shown in Fig. 8.

HYBRID SIMULATION OF A FREE PISTON ENGINE 375

Since it is the purpose of the simulation to facili­
tate the design of control hardware to control the
engine under transient conditions, some means of
evaluating the simulation under transient conditions
would have been most useful. As can be appre­
ciated, however, transient behavior of the engine
would involve measurements which are extremely
difficult if not impossible to obtain, and it was
possible to make only qualitative comparisons be­
tween the engine and simulation under these con­
ditions. Figures 9 and 10 are examples of the simu­
lation data which allowed these qualitative com­
parisons to be made. In particular, the transient
during start-up, when an operator familiar with the
engine also attempted simulated runs, allowed us to
conclude that the simulation was adequate for the
purposes of the intended control studies.

PC

50

40

30

20

10

Exhaust Volume YSO Actual Size

1.0 20 3.0

Appendix

DIGITAL CALCULATIONS

The Combustion Model

The diesel cycle assumed is a modified form of the
limited pressure cycle. This cycle assumes that heat
release occurs in two distinct phases:

1. At constant volume, the pressure rising
to a defined maximum pressure;

2. At constant pressure, the volume in­
creasing until all the remaining fuel
energy~expended.

To describe the combustion process the following
assumptions are made.

4.0 5.0 6.0 y

Figure 9. Compressor start-up transient.

376 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

y

144,000 800

96,000 400

~\
\\ ..
~y
\

~
\
\
\

48,000 200

I-----~--~------__ ~~----~--------~----~~~------_='L----60 y 1.0

Figure 10. Velocity and acceleration.

• The gas is ideal obeying PV = mRT.
• The specific heats for constant volume

Cv, and constant pressure Cp , are con­
stant and related by

Cp - Cv = R/J

where J = Joule's constant.
• All losses due to combustion inefficiency,

leakage, and heat transfers can be con­
tained in a single constant efficiency fac­
tor 11c'

Under these conditions, and referring to Fig. 7a,
an energy balance between states (1) and (3) for an

amount of fuel F of calorific value k is giv1en by:

F k 1Jc = mCv (T2 - T I) + mCp (T3 .- T2)

Using the ideal gas law, the above can be reducc;!d to

Y3 = (lOP) + ~ [ks F - (IOP)(P2 - PI)] (A. 1)
P2 l'

where ks = k 1Jc R . This equation forms the basis
CpAd

for the assumed combustion process, and is usc;!d as
follows:

1. If PI > POOM, where POOM is some:
defined pressure, then all combustion is

HYBRID SIMULATION OF A FREE PISTON ENGINE 377

assumed to occur at constant pressure
and (A.I) reduces to

2. If PI < POOM, then P2 is calculated
assuming all the fuel is burnt at con­
stant volume. If the resulting calculated
pressure is less than POOM, then no
constant pressure combustion is
achieved, i.e. Y3 = O. If this calculated
pressure is greater than POOM, then P2

is set equal to POOM, and the resulting
Y3 is calculated using (A. 1).

Exhaust Mass Flow Model

The engine performance is measured in terms of
the exhaust gas mass flow and its mean tempera­
ture and pressure. These properties are determined
by applying I) the continuity equation, 2) the energy
equation, and 3) the turbine nozzle characteristic
equation to a simple model of the gas exchange
process.

The gas delivered to the receiver is given by

(A.2)

where kl RL Ps Ao
Ys stroke length during which the com­

pressor suction valves are open,
Ps atmospheric air density, and
RL leakage factor.

The delivery temperature of the exhaust gas is
determined from an energy balance of the complete
engine. This results in the equation

where k2

k2F
T del = Tamb + -k

IYs

c
c = average specific heat,
F = cyclic fuel input, and
Tamb = ambient temperature.

(A.3)

Solution of the actual gas transfer dynamics dur­
ing gas exchange was prohibited by the lack of
sufficient hardware to cope with the complex, non­
linear equations describing these processes. Instead,
a simple model was assumed in which delivery of
gas to the receiver occurs instantaneously at OOP.
This assumption, though evidently unrealistic, is not
considered to materially affect the results, particu­
larly on a cycle basis.

Oelivery of the exhaust pulse to. the receiver re­
sults in the equations

. Mnew

from which

M + M del

MT + M del Tdel

Mnew

P _ MnewRTnew
new - V

(A.4)

(A.5)

where M = mass in receiver immediately before
delivery of the pulse,

T = temperature of the gas in the receiver,
immediately before delivery of the
pulse,

R = gas constant, and
V = receiver volume.

The mass flow rate leaving the receiver is gov­
erned by the characteristic equation of the nozzle.

This mass flow rate, M, can occur governed by

I) subcritical flow: [P;m] > (:.y ~ Ir~ I (A.6)

2) critical flow: [P;m] ~ (:.y ~ Ir I (A.7)

where sub critical flow is given by

2

2g (~\.~.(Patm)-:Y
R :r-I/T P

(A.8)

and critical flow by

where DN = nozzle diameter,
g = gravitational acceleration, and

Patm = atmospheric pressure, to which noz­
zle is discharging.

If the receiver volume V is large, it can be as­
sumed that the mean receiver pressure during one

378 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

cycle is given by

Pmean
Pnew + Pdel

(A.I0)
2

where P del = pressure in receiver immediately be­
fore next pulse.

Calculating IV! from (A.7), (A.8) and (A.9), where
P = P mean, T = Tnew , the remaining mass is

M = Mnew - IV!Perd (A. II)
and

MRTnew
Pdel = V (A.I2)

where Perd = cyclic period of the piston.

These equations are solved iteratively for each
cycle to obtain the corresponding nozzle mass flow
M, mean pressure Pmean and temperature Tnew.

Gas Horsepower and Specific Fuel Consumption

The gas horsepower is defined as the horsepower
available from exhaust gas when expanded through
an ideal turbine. Thus:

(A.13)

where k4 = cp J /550. The corresponding specific
fuel consumption is

3600F
SFC = Perd(GHP) lb/GHP hr

ACKNOWLEDGMENTS

The authors are indebted to the Engine: Labora­
tory and Analysis Section of the Mechanical Engi­
neering Division of the National Research Council
for providing a helpful and critical atmosphere dur­
ing all phases of this work. In particular we would
like to thank R. F. Henry, K. C. Cowan and M.
Grovum who did the early analysis work, a prelimi­
nary analog study and a parallel digital simulation,
and E. P. Cockshutt who fielded many awkward
questions regarding engine characteristics.

REFERENCES

1. R. G. Fuller, "Free-Piston Gas Turbines and
Their Application to Steam Power Plants.," Cana­
dian Power Show, Dec. 7-9,1961, Toronto.

2. D. R. Olson, "Simulation of a Free-Piston
Engine with a Digital Computer," SAE Trans., vol.
66 (1958).

3. A. R. Bobrowsky, "Analytical Methods for
Performance Estimates of Free-Piston Gasifiers,"
ASME Gas Turbine Power Conf., Detroit, Mich.,
Mar. 18-21, 1957.

4. D. A. Trayser, discussion on Ref. 2 above,
SAE Trans., vol. 66, pp. 681-682 (1958).

5. "ALGa Programming Manual for the Bendix
G 15 Computer," 'available from Control Data
Corp. (Mar. 1961).

6. F. J. Wallace, E. J. Wright and J. S. Campbell,
"Future Development of Free Piston Gasifier Tur­
bine Combinations for Vehicle Traction," Proc.,
Automotive Engineering Congress, Detroit, Mich.,
Jan. 10-14, 1966,paper660132.

HYBRID ANALOG/DIGITAL TECHNIQUES FOR
SIGNAL PROCESSING APPLICATIONS

Thomas G. Hagan and Robert Treiber
Adage, Inc., Boston, Massachusetts

INTRODUCTION

This paper describes a number of hybrid tech­
niques, most of them developed as applications for
the AMBILOG 200 Stored Program Signal Proc­
essor. They are described in fairly general terms,
since our purpose is to elucidate the techniques,
rather than to describe specific applications or de­
tailed methods of implementation.

The signal processing operations here considered
involve the use of analog and hybrid operators
which operate simultaneously upon a number of
analog and digital operands. A stored program
controller controls the array of parallel operators
and provides for the transfer of operands back and
forth between the operator array and core memory.
The AMBILOG 200 system is specifically organized
to perform these control and transfer operations ef­
ficiently. Since its organization for these purposes
has been described in a previous paper, 1 we shall not
discuss it further here.

In many signal processing applications, time is of
the essence. The term "signal" itself, as we use it
here, implies that the dimension of time is signifi­
cant. The signals operated upon by the various
processing techniques described below are often in
analog form at some point. Although ease of ac­
commodating both analog and digital signals as
inputs and outputs is indeed an important virtue of
the hybrid approach, its validity depends upon the
amount of processing it affords per unit time per

379

unit cost, not upon whether the signals to be proc­
essed happen to occur in analog form. Indeed, in
many of those cases where hybrid techniques are
appropriate, both input and output data are in
digital form.

As we shall see in several instances below, the
performance advantage afforded by the hybrid tech­
nique (as compared with an all-digital approach
using a conventional sequential stored program
system) results from the high degree of parallelism
achievable at relatively low cost. For a technique
involving use of multiple parallel arithmetic opera­
tors i,n conjunction with a sequential core memory,
a very rough "figure of merit" is simply the number
of arithmetic operations accomplished per fetch of
an operand from memory. In the operation of a
conventional highly sequential digital computer, a
maximum of one arithmetic operation per fetch of
an operand from memory is usually the limit. In the
hybrid techniques we discuss below, many arithme­
tic operations can usually be accomplished per
memory fetch-5, '10, or even 100 or more.

WAVEFORM MEASUREMENT

We use the term waveform measurement to sig­
nify the measurement of various waveform param­
eters based upon axis crossings, peak values, slope
maxima and minima, discontinuities, and other
such singularities. The effectiveness of hybrid tech­
niques for such measurements is illustrated by a

380 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

1....I.---~r-----1-+--jr----\----+--\---+--+----f.---+---..... time

SIGNAL
VOLTAGE,es

Figure I. Time intervals I between threshold crossings of a signal.

method that has been used for the determination
of histograms of threshold crossing intervals of a
speech waveform. The problem (see Fig. 1) is to
monitor an analog waveform derived from a micro­
phone, to measure the time intervals between
successive positive-going crossings through an arbi­
trary programmable threshold value, and, by count­
ing the number of intervals ~hat occur for each of a
number of different interval lengths, to develop a
histogram (in memory) which can be plotted to
show number of intervals versus interval length.

The measurement of interval length could be ac­
complished by connecting an A-D converter to a
digital computer and executing a program that in­
cluded steps necessary to increment a counter, per-

form an A-D conversion, transfer the result from
the A-D converter into the computer, subtract the
threshold value from the A-D converter result, and
then test for sign of the remainder. Resolution of
the interval length -measurement would be limited
by the length of time required to execute these st1eps.

A hybrid technique that has been used to accom­
plish this operation with fewer program steps is
shown in Fig. 2. The threshold value is transferred
to a DAC, whose output is thenceforth subtracted
by analog means from the analog input signal. The
difference signal feeds an axis crossing detector,
whose output is monitored by a sense lin~:! testable
by the program. The "inner loop" which limits
resolution of the interval measurement need only

DAC
DIGITAL

~-- THRESHOLD
VALUE

SUMMING
AMPLIFIER

ANALOG
AXIS CROSSING
DETECTOR

I....-____ ~ DIGITAL OUTPUT LEVEL
TO SENSE LINE OF
STORED PROGRAM CONTROLLEH

Figure 2. Hybrid technique for measurement of time intervals between threshold crossings.

HYBRID ANALOG/DIGITAL TECHNIQUES FOR SIGNAL PROCESSING APPLICATIONS 381

contaih program steps for testing the sense line,
incrementing a counter, and closing the loop. A
program written to implement this technique, which
also provided for testing the counter and exiting
from the inner loop when the count reached a pre­
scribed limit, resulted in interval measurement
resolution of less than 16 microseconds.

Waveform measurement techniques of this gen­
eral type have been successfully applied to the real­
time analysis of multichannel physiological signals
including electrocardiograms (ekg), vascular pres­
sures, and breathing waveforms.2

R

DIGITAL VALUE REGISTER

where x I through Xn comprise a set of input signals,
YI through Yn are output signals, and aoo through
amn are coefficients in the transformation matrix.
Each output signal Y is achieved by summing the
appropriately weighted input signals x.

A hybrid technique for accomplishing this trans­
formation is illustrated in Fig. 4. Digital coefficients
can be loaded under stored program control into
storage registers contained in the hybrid multiplying
elements (HME's).

The HM E's thenceforth provide the weighting or
multiplication function by multiplying the analog

etc.
R

eout

{ Contents = N } J
\'----~

SIGN BIT VALUE {lis Complement for
Negative Numbers}

Figure 3. A hybrid mUltiplying element (HME) for multiplying an analog signal by a digital coefficient.

LINEAR TRANSFORMATION

Numerous measurement and simulation prob­
lems require a signal processing technique to im­
plement the linear transformation implied by the
equations:

input by the stored coefficient. The weighted out­
puts are analog signals which can be summed with
summing amplifiers. The diagram of an HME is
shown in Fig. 3.

The hybrid technique achieves a high "figure of
merit" for the linear transformation operation in
that once the coefficients of the transformation
matrix have been fetched from memory and loaded
into the array of DAC's and HME's, the parallel
array can perform the equivalent of a very large
number of multiply and add operations as the input
analog signals vary.

382 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

DAC

aOO

x, Xn

HME
CLon

:i, -. '-+---------1----------1----------1

DAC

dmo

HME
ami

HME
d m2

HME
dmn

---------t ----------- --- -----... '-------------------- - - -------t

Figure 4. A hybrid array for performing linear transformations.

SPATIAL COORDINATE
TRANSFORMA TION

The array shown in Fig. 5 can be used to ac­
complish transformation of spatial coordinates.
The three analog input signals x,y,z represent the
coordinates of a point irt one coordinate system;
the three outputs x',y',z' represent the coordinates
of the same point in a different coordinate system,
displaced and rotated with: respect to the first one.

Motion of the coordinate systems with respect to
each other entails updating of the transformation
matrix to reflect changes in displacements and
angles between the two systems. For a given set of
values in the transformation matrix, the analog in­
puts are transformed into, appropriate analog out­
puts, and as the inputs vary, the outputs vary.

VISUAL DISPLAY

The coordinate transformation method described
above can be used for performing translation and
rotation of objects being displayed on a CRT. A
given three-dimensional object can be represented
by the coordinates of a set of points in memory. An
isometric view of the object can be generated by
calling the points from memory one by one, subject­
ing them to a coordinate transformation, and gen-

erating a picture by connecting straight lines be­
tween points. The viewpoint from which the object
is seen can be altered by changing the coefficiemts of
the coordinate transformation to which each point
is subjected as it is called from memory. Co­
efficients of the transformation matrix remain
constant throughout the process of generating one
complete view (frame) of the object. For viewing
a visual display on a CRT, a frame repetition rate
of about 30 frames per second is desirable. Using a
vector generator that develops a line segment con­
necting two points in 30 microseconds, it is possible
to depict objects representable by drawings consist­
ing of about 1000 straight line segments at a 30-
frames-per-second rate.

Arbitrary rotation and translation of the object
viewed requires that the necessary arithmetic opera­
tions to accomplish the coordinate transformation
be performed for each point in turn. A hybrid ar­
ray suitable for performing the operations required
for developing an isometric projection of a solild ob­
ject onto a plane is shown in Fig. 6. The output
variables x' and y' are developed from the input
coordinates x, y, z by operating upon the inputs
with a transformation matrix consisting of coef­
ficients loaded into the operator array. Coefficients
of the transformation matrix are computed once per
frame and loaded into the array. Thenceforth the

HYBRID ANALOG/DIGITAL TECHNIQUES FOR SIGNAL PROCESSING APPLICATIONS 383

x z

DAC HME HME HME

Xl

DAC HME HME HME

DAC HME HME HME

Zl

Figure 5. An array for coordinate transformation.

ANALOG
VECTOR

HORIZONTAL

GENERATOR VERTICAL

Figure 6. Hybrid technique for generation of visual displays with isometric translation and rotation.

necessary multiplications and additions are ac­
complished as the coordinates for each successive
point are fetched from memory and loaded into the
input DAC's.

Geometrical relations for true perspective repre-

sentation of a three-dimensional object are shown
in Fig. 7. Coordinates of the object are stored in
memory in terms of the coordinate system xyz. It
is desired to display the object on a CRT by plotting
the projections of points on the viewing plane x' y',

384 PRQCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 7. Geometrical relations for true perspective display.

a "window" through which an observer- located on
the z' axis at I views the object. The coordinate
system of the object is arbitrarily translated and
rotated with respect to the coordinate system of the
viewing plane. A hybrid technique suitable for de­
termining x" and y" is illustrated in Fig. 8. Co­
ordinates of the point xyz in the object are trans­
formed into the quantities lx', Iy' and I + z'.­
Analog division is then used to produce x" and y",
coordinates of the intersection of the line of sight
(between observer and object) and the plane of the
window. Again, an analog vector generator con­
nects successive points to generate a line drawing.

x y z

For "continuous" (to the eye) motion of the dis­
played object, coefficients in the matrix must be re­
computed for every frame. With inputs in the form
of translations, (m, nand p) and angles (or direction
cosines) between the two coordinate systems, the
coefficients can be computed in less than 500 micro­
seconds. With a 30-microsecond vector generator,
therefore, objects represented by more than 1000
line segments can be displayed at 30 frames per
second. For each fetch of the three operand values
x, y and z representing a point, the hybrid array
performs nine multiplications, 12 additions, and
two divisions-slightly more than seven arithmetic
operations per operand fetch.

FUNCTION GENERATION

Hybrid techniques have proven themselves es­
pecially useful for the generation of arbitrary func­
tions of one or more variables. Various methods
have been worked out, including techniqw:::s in
which quadratic or cubic interpolation is achieved
at high speed by using hybrid arithmeti~:; elements
in parallel to accomplish evaluation of the poly­
nomial algebraic expression required for the inter­
polation. For most applications, straight-line
approximations to arbitrary functions are satis­
factory, however. When a function is: approxi-

ANALOG
VECTOR

GENERATOR

Figure 8. A hybrid technique for generation of visual displays in true perspective with arbitrary translation and rotation.

HYBRID ANALOG/DIGITAL TECHNIQUES FOR SIGNAL PROCESSING APPLICATIONS 385

mated by a series of straight lines, the input/output
relation is simply

Y = mx + b

with different values of m and b for each line
segment.

In one method for generation of an arbitrary
function of one variable, different values of m and b
corresponding to different line segments are stored
in a table in memory. The input signal x is moni­
tored periodically to determine which region it is
within. When x is found to have moved into a
region corresponding to a new line segment, the ap­
propriate new values of m and b are transferred
from memory into an HME and DAC, whose out­
puts are summed to produce y.

This basic technique for establishing an arbitrary
nonlinear relationship between an analog input and
an analog output can be extended in various ways to
accommodate functions of two or more variables.
A number of different methods have been explored
by Chapelle,3 which are based upon hybrid tech­
niques for linear interpolation between break­
points, resulting in a series of discrete outputs be­
tween breakpoints. One of several methods
developed for use with the AMBILOG 200 is sim­
ilar to Chapelle's techniques; however, it provides
a continuous output between breakpoints, elim­
inating errors due to the discrete steps and the
delays encountered in signal conversions from ana­
log to digital and back again. To accomplish this,
the independent variable is used directly in the ana­
log domain in order to obtain the appropriate in­
terpolating factors.

Consider a function of two variables F(x,y)
whose values at equally spaced breakpoints in x and
yare known. Using double linear interpolation,
the expression for F(x,y) is:

F(x,y) = Fn.n 5x 5y + Fn,n+ I ~Oy

+ Fn+l,nOx5y + Fn+l,n+IOxOy

where Xn < x < Xn+1

Yn < Y < yn+1

and Ox
x - Xn

Xn+1 - Xn

Oy =
y - Yn

Yn+1 - Yn

5x = Ox

5y = - Oy

The values of F are the values of the dependent
function at the corresponding breakpoints. The 0
terms may be considered as interpolating factors.
Figure 9 shows the case where:

and

F(X,Y)

F(X,Y)
Foo

x

'I

Figure 9. A function of two variables F(x.y) with equally
spaced breakpoints.

For this case, the bounding values of the inde­
pendent variables, i.e., xo, x I, Yo, and Y I are de­
termined programmatically by monitoring x and y.
By means of DAC's, the values of Xo and Yo are
transmitted to the analog computing elements
where the 0 products are developed as shown in
Fig. 10. These 0 products are then returned as in­
puts to the array of HME's. The HME's are
loaded with the digital values of the dependent
variable at the breakpoints in order that each may
compute one term of the equation for F(x,y).
These four HME outputs are summed to obtain the
desired result, F(x,y). As shown in Fig. 10, the
eight 0 products may be applied to other sets of
HME's to obtain other arbitrary functions of the
input variables x and y.

Note that as long as

XI < X < Xo and

continuous interpolation takes place. This sig­
nificantly relieves the stored program processor of
the major computing chore normally associated
with hybrid function generation. The primary
tasks of the AMBILOG 200 System Control Unit
in performing function generation using this

386 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

X----..;.~

y--t---t

ANALOG COMPUTING
ELEMENTS

HYBRID COMPUTING
ELEMENTS

5X&Y

Foo

SXSY &X&Y bX&Y

FOI

FO<,Y)
~.

TO OTHER HME's,FOR OTHER FUNCTIONS OF X AND Y

Figure 10. Generation of a function of two variables.

technique are:

1. Bracketing or locating the independent
variables with breakpoints;

2. Fetching the appropriate values of the
dependent variables at the breakpoints
and loading them into the HME's; and
finally,

3. Monitoring the independent variables
to detect the crossing of breakpoint
boundaries.

This technique, illustrated for a function of two
variables, applies equally well in the general case of
a function of n variables. In this case, there are n
independent variables and 2 n terms in the equivalent
algorithm corresponding to the 2 n values of the
dependent variable which must be interpolated to
obtain F(x I, X2, X3 ••• xn).

It is worthwhile noting that the technique utilizes
the value of the dependent variables at breakpoints
directly. This is desirable because 1) the breakpoint
data may be used without modification, and 2) the
dependent variable tables occupy a minimum of
core storage. Furthermore, the continuous inter­
polation between breakpoints minimizes errors and
reduces the computing load on the AMBILOG 200.

Typically, utilizing the above technique with the

AMBILOG 200 in performing an aerodynamic
simulation involving force and moment c~quations,
10 functions of two variables may be computed in
less than one millisecond. This capability re:pre­
sents a significant improvement over conventional
techniques and in practice allows for faster-than­
real-time simulation of many problems. This faster­
than-real-time capability in turn enhanc(:s the use
of statistical parameter search techniques in simula­
tion studies.

CONVOLUTION

Convolution and correlation operations provide
another fruitful area for application of hybrid tech­
niques. A hybrid method for performing convolu­
tion integration is shown in Fig. 11. An eight-term
weighting function is loaded into a set of HME
registers. The HME analog inputs an: derived
from DAC's whose flip-flops are interconnected as
shift registers. Successive samples of a digitized
signal are fed into the first DAC. With each new
sample, all DAC values shift right one position, so
that successive samples are stepped sequentially
through the shift register array. Eight cross prod­
ucts are multiplied and summed simultaneously
each time a new sample of the input signal is taken.

HYBRID ANALOG/DIGITAL TECHNIQUES FOR SIGNAL PROCESSING APPLICATIONS 387

SHIFT REGISTER INTERCONNECTION OF DAC FLIP FLOPS ~

...--........... ...---""" /--.... ""--", \--
/ \ / / "\ / \ / "

TO OTHER HME's, CONTAINING OTHER WEIGHTING FUNCTIONS

Figure II. A parallel array for convolution operations.

A new sample can be entered about every 10
microseconds, so the array shown has a multiply j
add rate of about 800 kc. That rate can be in­
creased by expanding the array, either by adding
more DACjHME pairs, or by adding more rows of
HME's. Overall multiply jadd rates of 10 mega­
cycles or more are practical.

INTERCONNECTIONS

In each of the cases above where multiple op­
erators are useful in parallel, a specific interconnec­
tion of analog signal paths between elements is
shown. The techniques illustrated can indeed be
implemented by permanently interconnecting a set
of operators, which then become committed to per­
forming only those operations implied by the inter­
connections. However, the approaches illustrated
here do not necessarily entail permanent com­
mitment of the operators to specific tasks. In fact,
the opposite is usually the case, and in actual im­
plementation considerable flexibility of interconnec­
tion is achieved, sometimes by means of patch pan­
els and more generally under fully programmatic
control.

For arrays numbering 16 or 24 operators, the
highly desirable flexibility of fully programmatic
control of analog interconnections among opera­
tors in the array is economically feasible. Inter­
connections are established by signal steering
elements which consists of digitally controlled,
solid state, precision analog switches. To allow
for all possible interconnections of n operators,

n(n - 1) switches would be required. For arrays of
about 24 operators of two or three different types,
very little loss of generality results if the number of
switches used is reduced by Y2 or even %. Thus,
use of about 200 digitally operated analog signal
steering switches permits very general stored pro­
gram control of an array of 24 operators.

Actual applications of some of the techniques
described above have involved use of parallel arrays
of more than 100 operators. In those cases, some
of the operators in the array are interconnected
by high-speed programmable signal steering
switches, supplemented by conventional analog
computer-type patch panels which provide means of
interconnection combining economic feasibility
with a fair degree of flexibility.

CONCLUSIONS

A number of signal processing techniques have
been developed, based upon the use of multiple
analog and hybrid elements operating in parallel,
all under close stored program control. They have
proven both feasible and useful for a variety of
applications.

In particular, the same basic array of PAC's, hy­
brid multipliers, and summing amplifiers, all or­
ganized to evaluate sums of cross products, has
been shown to be useful for generalized linear trans­
formation, spatial coordinate transformation, gen­
eration of visual displays of three-dimensional
objects in true perspective, generation of functions
of two or more variables, and convolution and cor-

388 PRO,CEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

relation operations: Depending upon the nature of
the problem and the extent of the array, multiply /
add operations at overall rates up to about 10 mil­
lion per second are possible with present-day com­
ponents.

Comprehensive, high-speed, programmatic con­
trol of analog interconnections among operators in
an array is feasible for arrays of up to about 24
operators. Beyond that number, analog computer
patch panels are generally used. Systems with over
100 operators of the DAC and hybrid multiplier
types are being built, and in ,fact are not uncommon.

Various applications of the AMBILOG '. 200
Stored Program Signal Processor have provided
considerable experience with hybrid techniques
of the general type discussed in this paper. . That
applications experience n~w includes ~eal-time

acquisition and analysis of seismic waveforms, real­
time analysis of physiologicill signals from postop­
erative heart surgery patients, speech analysis, sonar
analysis, wind tunnel data reduction, flight test
telemetry data reduction, aerospace vehicular sim-

ulation, and simulation in real time of a secure
speech communication system.

ACKNOWLEDGMENTS

We wish to acknowledge the contributions of
Mr. Sol Max and Mr. Len Sacon of Adage to the
perspective display technique, and of Mr. Art Rubin
of the Martin Company, who is largely f<!sponsible
for the function generation technique descriibed
herein.

REFERENCES

1. J. D. Grandine and T. G. Hagan, "A Parallel/
Sequential, Stored Program Hybrid Signal Proc­
essor," Simulation, Jan. 1965.

2. J. F. Dammann et aI, "Data Acquisition and
Interpretation System for Postoperative Patients,"
Proceedings, San Diego Symposium for Biomedical
Engineering, 1964.

3. W. E. Chapelle, "Hybrid Techniques for
Function Generation," Proceedings, Spring Joint
Computer Conference, 1963.

HYBRID SIMULATION OF A REACTING DISTILLATION COLUMN

R. Ruszkay
E. I. duPont de Nemours & Company, Inc., Wilmington, Delaware

and
E. E. L. Mitchell

Electronic Associates, Inc., Princeton, New Jersey

INTRODUCTION

The recent availability of hybrid computers to the
simulation engineer has made possible the solution
of many complex reactor models that hitherto had
to be either crudely approximated, or else required
extremely long solution times on all-digital ma­
chines. Using the high speed of the parallel analog
equipment and the logic and storage capabilities of
a digital computer has meant that single blocks of
analog equipment can be time-shared where phy~i­
cal similarity exists between process modules result­
ing in large savings in both analog equipment and
running time.

We have written this paper to describe the simula­
tion of a distillation-reactor column which, because
of plate-to-plate similarity, has natural advantages
when multiplexing a single analog tray mode~
throughout the column.

Experience has shown that such a simulation can
be run at approximately 120 times plant time so that
one minute of computer time becomes equivalent to
two plant hours. With variable amplitude scaling
built into the simulation, large dynamic ranges in
the magnitudes of the concentrations can be
handled so that a complete system start-up can be
studied. Because of the exothermic reaction, run­
away effects were' possible, and a study of the dy­
namics of the column was important both from a
control and efficiency point of view.

389

The basic simulation embodies continuous analog
representation of the reboiler and condenser which
interact with a digital simulation of the column. In
order to solve the plate dynamics at sufficiently high
speed, an analog subroutine was used to model one
plate and then switched at high speed up and down
the 26 plates in the column. Sinc~ the digital pro­
gram entailed mainly storage and logic operation, a
relatively unsophisticated computer would suffice
together with adequate analog to digital and digital
to analog data channels.

GENERAL DESCRIPTION OF PROCESS

A schematic of a typical system which might be
simulated is shown in Fig. 1. The main piece of
equipment in the process would be a conventional
distillation column having 26 trays. Reaction as
well as separation is carried out in this column
where the bottom 20 trays constitute the main re­
action zone. The feeds to the column consist of
two liquid reactants, A and B. Reactant B is intro­
duced on the 20th tray while reactant A is intro­
duced on the 2 i st tray.

A and B react together to form products C and D
according to the reversible equation

390 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

COOLI NG WATER \------4

---------.....
---24--- BY PRODUCT D

TO STORAGIE REACTANT A
---21---

REACTANT B ~! ---20---

STEAM

@
I
I
I

L _____ •

, ,
L __ _

-------.,
I
I
I
I
I
I
I
I

1--____ PRODUCT (:

Figure 1. Schematic of the system.

The reaction is moderatety exothermic and the
rate constants, kF and kR obey the Arrhenius rela­
tionship

k = Ae- B/ T

The vapor flow leaving the top tray (#26) is sent
to a partial condenser which ,further purifies the by­
product D, and provides liquid reflux to the top
tray. The vapors leaving the partial condenser are
sent to a total condenser and then to liquid storage
tanks. The heat required to provide the column
boilup is supplied through a shell and tube heat
exchanger (reboiler) by condensing steam on the
shell side. Liquid product is removed from the bot­
tom of the column. Reactant A is added in excess
and removed with product C together with trace
quantities of reactant B. By-product D is so volatile
relative to the other components, that its concen­
tration in the bottoms is very small. Conversely,
the concentration of Band C above the feed plates
is also very small. The six trays above the main

reaction zone constitute a clean up zone to separate
reactant A and by-product D.

A tentative control scheme is also shown in Fig. 1.
The temperature on plate #25 controls flow of cool­
ing water to the partial condenser. Temperature on
plate #3 controls the feed flow rate of reactant A.
The feed flow rate of reactant B is flow controilled.
The column pressure drop controls steam flow to
the reboiler. The level in the bottom of the column
controls the bottom's flow rate.

MATHEMATICAL MODEL OF
THE PROCESS

In order to simulate the process, a realistiic mathe­
matical model must be developed to describe the
pertinent physical phenomena which are taking
place.

The principal equations used to describe the tray
are statements of the material and enthalpy bal­
ances, vapor-liquid equilibrium and reaction kinet­
ics.

HYBRID SIMULATION OF A REACTING DISTILLATION COLUMN 391

Each component is described by a difference
equation of the form:

! [M"X~] = L"+IX~+I + v,,-I Y~-I
- L"X~ - v" Y~ (±) R" + F~

(1)

where M" = liquid hold-up on the nth tray (moles),
Y~ = mole fraction of ith component in va­

por leaving nth tray,
L" = liquid flow rate leaving nth tray (moles

/unit time),
v" = vapor flow rate leaving nth tray (moles

/unit time),
R" = rate of production (or consumption) of

component due to reaction, and
F~ = feed rate of the ith component (if any)

on to nth tray.

These material balance equations are solved for
the individual component hold-up M"X~.

The total material balance is written as:

(2)

Enthalpy balance provides the total enthalpy
hold-up on a tray by:

- L"C" T" - v"H" + dHR"
(3)

where T" = temperature on nth tray rC),
e" = average specific heat of liquid on' nth

tray (PCU /mole DC),
H" = average enthalpy carried by vapor

from nth tray (PCU /mole), and
dH = heat of reaction (PCU /mole).

The vapor-liquid equilibrium can often be ex­
pressed using Raoult's Law and a plate efficiency
factor.

Using a contact value of 0.70 for the plate effi­
ciency, the vapor mole fraction Y~ leaving the tray
can be related to the vapor mole fraction entering,
Y~~ I, the equilibrium mole fraction Y~·' by the rela-
tion

Y~ = 0.7 Y~· + 0.3 Y~_I (4)

Using Raoult's Law the equilibrium mole frac~
tion is obtained by:

Y~. = P?(T,,).X~ (5)

where P?(T,,) = vapor pressure of ith component
on nth tray which is a function of temperature, and
7r" = total pressure on nth tray.

The reaction kinetics are described by:

, r A B X~X~ J
R" = M"k(T,,} LX" x" - KEQ(T,,) '

where k(T,,) = reaction rate constant, and
KEQ(T,,) = equilibrium constant

(6)

Thepn~ssure above the nth tray, 7rn , is equal to the
pressure above the (n + 1)th tray plus the pressure
drop across the (n + 1)th plate, i.e.:

(7)

The pressure drop across the plate is made up of
the hydrostatic head plus the dynamic drop due to
the vapor flow. We can assume the weir height is
large relative to changes in crest over the weir so a
constant average value, dPo, can be used for the
liquid seal pressure drop. The dynamic vapor drop
is a function of the vapor flow rate, which can be
obtained from the tray manufacturer's data, so

dP,,+1 = dPo + fCv,,) (8)

The, main computational difficulty is in determin­
ing the molar vapor flow rate leaving the tray. If the
equations are solved digitally, an iteration must be
performed to adjust the vapor flow until the con­
straint equation that the sum of the Y;'s is unity is
satisfied, i.e.:

L Y~ = 1 (9)
i

In the analog simulation, the constraint is satis­
fiedby feeding the error in this equation into a high
gain amplifier and calling the output v". The circuit
rebalances automatically in the operate mode
through the energy balance and equilibrium rela­
tionships to give the correct value for this vapor
flow rate.

HYBRID SIMULATION

The mathematical model just described for the
representation of a single plate is fairly simple, but
well represents the physical behavior of trays.
Simple as it is however, in mechanizing the equa­
tions computationally, a significant quantity of ana­
log equipment would be utilized. The same applies
to an all digital simulation but here the important
parameter denoting feasibility is time. Because of
the implicit algebraic loops involved, a number of
iterations are required within a time step so that the

392 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

analog representation, with effectively instantaneous
solution of implicit equations, shows to advantage.

For the analog mechanization, however, a repre­
sentation of a complete distillation-reactor column
with a full simulation of each tray becomes im­
practical, since the equipment complement required
could be multiplied by factors ranging from 20-100.
There are a number of ways to avoid this enormous
equipment duplication,I,2 but the one we intend to
discuss is that of time-sharing. Essentially, we want
to use the high-speed capability of the analog com­
puter which is at its best when solving implicit alge­
braic loops or continuously integrating time­
dependent, nonlinear differential equations. The
sequential nature of the digital computer suggests
using an analog single plate ;representation as a sub­
routine, performing the appropriate calculations on
each plate in turn.

The solution of a set of differential equations de­
pends on the initial conditions established on the
state variables and the time history of the forcing
functions acting on the system.

Consider the representation of a single plate in
Fig. 2 where the simulation solves a set of five first­
order, differential equations-Eqs. (1) and (3) above
-under the influence of adjacent trays, the outputs
of which may be considered as forcing functions.
The lower plate acts through the vapor flow and
there are five functions corresponding to compo­
nent and enthalpy fluxes into the plate. Similarly,
the plate above only interacts via a liquid flow down
the downcomer, which again consists of five com­
ponent and enthalpy fluxes. Because of the exist­
ence of feed plates, component and enthalpy feeds
must also be considered in enumerating forcing
functions acting on the tray.

Now we make the fundamental assumption that
is necessary to allow any sequential solution to be
meaningful. This assumption is that if the differ­
ential equations representing the plate are allowed
to integrate for a sufficiently short time, then the
magnitudes of the forcing functions (fluxes) acting
on a tray will not have changed appreciably and so
in a simulation can be held constant. The main
problem in any simulation ~ecomes the interpreta­
tion of how small a time step is necessary in order
that the complete solution will adequately represent
the dynamics of the actual operating column.

Basing results on a stirred tank time constant
T (= MIL) one can say that a time step of 0.1 T is
probably as low as it is necessary to go, and that a
value of 0.5 T would normally be acceptable for an
overall check of column dynamics.

Varying the time step does not influence stability,
the only effect being to increase solution time when
very small time steps are chosen since establishing
initial conditions and determination of end point
values takes a fixed time determined by the equip­
ment used.

The operation of the simulation with the assump­
tion of constant forcing functions is to establish as
analog voltages initial conditions "on the five state
variable integrators. Component and enthalpy
fluxes-both vapor and liquid-forcing th,e plate are
established on to track/store amplifiers and the
program allowed to integrate for about 0.2 T (say).
At the end of this time, a hold mode is established,
and the vapor and liquid fluxes leaving the tray
determined for use as forcing functions for adjacent
trays. The new state variable values are also
measured and these replace the -old values in the
state variable table which represents the condition
of the column.

Each tray can be operated on sequentially from
bottom to top, thus assembling within the! memory
of the digital computer a set of tables describing
both the state variable magnitudes (hold-up) and the
fluxes between trays, representing coupling or inter­
action. If the operation is repeated again, starting
from the bottom, each tray will integrate to stt:ady
state. The whole system will then operate as a dy­
namic representation with a time scale of nT, where
T is the equivalent integration period of a single
tray and n is the number of trays operated IOn.

There are two problems with this approach,
which are, first, the delay involved in propagation of
disturbances down the column and, second, the
dynamic range of the variables over the height of
the column.

When the trays are treated sequentially from
bottom to top (or vice versa) with the st:quencing
direction maintained, disturbances introduced llnto
a tray (i.e., at the top) can only propagate down­
wards at a rate of a single tray per sweep. That is,
an LX calculated on a tray (resulting from an LX
from the tray above) would not be used, for the tray
below, until the next upward sweep. Changes in
liquid or vapor flow rates occur rapidly, compared
with temperature changes say, because the weir time
constant can be effectively neglected. Thus an in­
crease in reflux should appear fairly rapidly as a
higher molar flow into the reboiler, without waiting
for n sweeps to allow the change to propagate down
n trays.

A compromise then, to incorporate faster than
usual transients, is necessary and is accomplished

HYBRID SIMULA TION OF A REACTING DISTILLATION COLUMN 393

I
I
I

(N+I)th TRAY OR REFLUX
I
I
I

LX~I

'----- ____ I

d
dt [MX:] =

d [MX:] Nth TRAY
dt =

LF

eLF TF d
dt [MX~] =

ddt ~TNJ =

d r.MNJ dt L ::'

I-­
I
I

Vy:-I

---I
I
I

(N-I)th TRAY OR REBOILER

Figure 2. Interaction of plate with surroundings.

by sequencing the operating tray first up, and then
down the column. On the way up VY's computed
as leaving a plate are used immediately to force the
tray directly above and on the way down LX's com­
puted as leaving a tray are used to force the plate
directly below.

A rather subtle effect appears here in that any LX
calculated on the way up is never used, being super­
seded by a value calculated on the way down. Simi­
larly, a VY calculated on the way down is super­
seded by one calculated on the way up. Conse-

quently, the forcing function inputs to the nth tray
are maintained constant for two column sweeps, the
LX's for down and up sweeps, the VY's for up and
down sweeps.

Rescaling is necessary in most columns, since dy­
namic ranges of 104 or 105 are quite common and
the removal of trace materials usually determines
the quality of the product.

Rescaling is only necessary in part of the simula­
tion. If a component goes to zero, the contribution
to enthalpy balance or total vapor flow is negligible

394 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

and does not have to be included with high accu­
racy. The accuracy requirement hinges on the cal­
culation of mole fractions in vapor and liquid and
corresponding changes in component flux into and
out of a tray. It will be shown in the next section
that this rescaling operation can be conveniently
performed by a digital multiplication or division
which preserves the full pre~ision available.

In order to maintain. constant scaling in part of
the problem appropriate attenuation factors are
switched in and out (with: 0/ A switches) at different
regions in the column.

Consider, for instance, the liquid flux 01\0, the
volatile component (Fig>-3» which could 'l)~ 'scaled
up from [LyD] leaving ~he 20th tray to [lOLyD]
forcing the 19th tr.~y by .. ~

10 [LYPo] -+ [10 LyD]FORCING
19

Similarly, [10 VyD] leaving the top of the 19th
tray must be scaled down so that

IN

l~ [10 LyD]19 -+ [LyD]F02~CING

OUT
~ ____________ ~A~ ________________________ ~
/ \

A(LXA
)

ANALOG PLATE SIMULATION

Figure 4 shows the loops controlling the molar
mass balance for component A on a single plate and
identical circuits are used to determine molar hold-

22

19

18

Figure 3. Rescaling of volatile componc!nt.

Figure 4. Main loops controlling mass balance.

HYBRID SIMULATION OF A REACTING DISTILLATION COLUMN 395

ups for the other three components. Inputs from
the digital memory through 0/ A converters are re­
quired for the original molar holdup prior to the
current integration period, M nX~(O), and also the
molar fluxes carried by the vapor from below,
v,,-I Y~-I' and by the liquid from above, Ln+ 1 X~+ I'
At the end of the integration period the molar fluxes
out of the tray and the current molar holdup can
be sampled by the A/D converter and stored in the
digital memory.

The equations solved by this section are the mass
balance

~ [MnX~] = v,,-I Y~-I - v" Y~ + Ln+IX~+1

- LnX~ + R~

and Raoult's Law for the equilibrium vapor concen­
tration

where P~ is the equilibrium vapor pressure of com­
ponent A, considered to be a function of tempera­
ture.

The enthalpy balance is obtained (Fig. 5) in a
similar way to the mass balance circuit. In addi­
tion however, the molar vapor flow v" provides a
tight loop because of the large enthalpy carried by
the latent heat of vaporization. This vapor flow rate
is obtained by forCing the molar concentrations in
the vapor phase to add up to unity. Note that
where components interact, a changing scale factor
implies a changing gain, so the amplifier inputs
identified by an asterisk (*) become either relay con­
tacts or digital to analog switches, providing gain
variation in decade steps.

The reaction rate constants can also be obtained
as functions of temperature in this section. The
reaction rates them-selves are obtained by standard
logarithmic multiplication of the respective concen­
trations and reaction rate constants and are not
shown in detail.

DIGITAL LOGIC AND CONTROL PROGRAM

The digital computer is responsible for establish­
ing voltages corresponding to inputs to the tray
simulation and subsequently after an integration
period reading the results of the computation back
into memory.

The basic timing sequence (Fig. 6) consists of a
repetitive IC/OPERA TE/HOLD cycle which we
will assume is a 4-msec IC, 8-msec OPERATE and

4-msec HOLD. The actual times used depend on
hardware speeds and time scaling, but we believe
these would be typical. During the IC period, volt­
ages corresponding to inputs from above and below
the tray are established on track/store amplifiers;
state variable magnitudes are established on the
tray integrators. During the OPERATE period, the
simulation integrates for 8 msec, and this would be
time-scaled to correspond to about 0.2 M / L. Dur­
ing the HOLD period, the new voltages determining
tray outputs-vapor and liquid fluxes-and state
variable magnitudes are read into appropriate slots
in the tables established in digital memory. These
voltages are determined by stepping round a multi­
plexer connected to a single analog-digital con­
verter.

In order to follow the logical control for sequenc­
ing the tray representation up and down the col­
umn, consider Fig. 7.

Within the digital memory, data tables are de­
fined which are TOP+2 entries long, where TOP is
the number of plates in the column. The two extra
entries are required to hold the boundary condi­
tions. A total of 16 tables are required; 5 for the
LX's and LT, 5 for the MX's and MT, 5 for the
VY's arid cVT and I for the plate pressure, which is
not an excessive memory requirement.

Before operation, these tables must be initialized
. to correspond to some physically meaningful state
of the column. If the operating conditions aren't
known, then a cold steady state can be inserted and
the computer used to calculate the operating condi­
tions by simulating a plant start-up.

Only two control locations are needed by the dig­
ital program, which are:

T--thecurrent tray number (::; TOP),
and

U P--this is one when the simulation is
proceeding up the column and zero
going down.

The computation loop is entered from the bottom
of the column, going up, so these cells are suitably
initialized (Fig. 7).

Three tests follow which determine whether
boundary condition information is needed; i.e. the
continuous reboiler simulation will be computing
VY A, VY B, VY c, V and c VT which must be read via
a multiplexer and A/D converter into the T = 0
slots in the appropriate tables. Similarly, LX A,

LXB,LXc , Land cLT must be read from the con­
tinuous condenser-reflux control simulation for
entry into the T = TOP+ I slots in the tables. At
the feed trays, feed controller output is determined

396 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

IN

OUT
~ ________ ~A~ ____________ ~
I

ENTHALPY FLUX
DUE TO
VAPORISATION

+1

}

REACTION
RATE

>K_R __ O CONSTANTS

N.a *' DENOTES GAIN DEPENDENT ON SCALE FACTOR

Figure 5. Main loops controlling enthalpy balance.

-! ~8msec

OPERATE

Ie J1~_
HOLD L

Figure 6. Basic timing sequence.

and the net component and enthalpy fluxes into the
tray computed.

Communication of the column with the outside
world is via the vapor leaving the column top and
liquid leaving the column bottom. In order that
the column simulation can force the external con­
tinuous simulation for reboiler and condenser,

component fluxes in these streams leaving the col­
umn must be sampled when the top and bottom
trays are simulated. In order to accomplish this,
the digital computer controls banks of track/store
amplifiers which themselves act as forcing functions
for the simulation of the peripheral equipment.
Fig. 8 shows the control logic where the output
line TOP is set by the digital compute:r during
operation on the top tray and BOTTO M is set
during operation on the bottom tray. Since these
signals are ANDed with the HOLD signal, the
final values are stored.

The digital section, after establishing these
boundary conditions, then establishes forcing func­
tions and state variables acting on tray T., via dig­
ital-analog converters and track-store amplifiers.

HYBRID SIMULATION OF A REACTING DISTILLATION COLUMN

INITIALISE TABLES

LXo(T=I,n) ---+ LX (T= I,n)

VY 0 (T=I tn) --+ VY(T = I tn)

MXo (T=I,n) ---+ VY (T = I,n)
I --+ UP

I ---+ T

OUTPUT TO ANALOG

VY(T-I)

MX(T)

LX (T+I)

WAIT FOR END

OF OPERATE

PERIOD

SENSE LINE
TEST

SET BOTTOM
CONTROL . LINE
READ VY\ FROM
REBOILER

READ FEED L a LT

SET TOP CONTROL
LINE
READ LX s IN RFLX

READ FROM

ANALOG

VY (T)

MX(T)

LX (T)
Figure 7. Digital control program.

397

398 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

OUTPUT TRACK
CONTROL TOP CONTROL

____ LINE ___________________ . ___ --bOJi!£ .m;I!Q~_._

--------.
I

v~ ~--~~------~--~
I

Vv.!OP r-----, R
>-__________ ~, __ ~" ~~A

I CONDENSER I
I

V~~--~I------~--~

z
o
!;i We
..J
::>
2 etc.
(i)

etc.

I a REFWX I
LXR

CONTROL F~

SIMULATION I

~ I I L let'c.

----- J ---

en
~
::)
Q.

~

0::
l&J
X

~
5
::>
~

C
l&J
X
l&J
..J
Q.

LX:OT r-------lvyR' g
LXA>-----~----------~~ __ ~ ~------------~--~ r~ 4

I REBOILER I
~
::)

~

LX',OT I IVVR8

>------~-.. SIMULATION r' LX" >-----II---------I--....-.t

~-- I

~.
I I lelle.

-----..J

I
etc. I

I
etc.

________ J

- - ---------------_ .. _--
LOGIC SECTI()N

Figure 8. Sampling fluxes from top and bottom tray simulations.

Vapor flow into the tray comes from tables

VYA(T- 1), VYB(T- 1), VYdT- 1),

VeT - 1), c VT(T - 1)

State variables (hold-ups) come from tables

MXA(n, MXB(n, MXdn, MXD(n, MT(n, peT)

Liquid flow onto the tray comes from tables

LXA(T + 1), LX8(T + 1),. LXdT + l),

L(T - 1), cLr(T + 1)

When these levels have become established (- 2
msec), the analog computer integrates for the
8-msec OPERATE period which is then folow(~d by

HYBRID SIMULATION OF A REACTING DISTILLATION COLUMN 399

the HOLD mode. During this time, the new state
variables and fluxes from the tray that will be used
to force adjacent trays can be read and stored-in
the T slot in the tables.

Scaling considerations suggest that it is better to
read a change rather than a magnitude and so the
analog computer is programmed to calculate the
change in flux through the plate, i.e., Vy,{+I.
VYI, etc., so that the addition to obtain the actual
magnitude can be carried out at the full precision
of the digital section.

The logic to control the sequencing up and down
the column is straightforward. Normal operatiori
increments or decrements T according to whether
UP is one or zero respectively. At the ends when
T = 0 or T = TOP, UP is changed over appropri­
ately.

Tests for scale factor changes are not shown, but
at fixed trays, the scale factors in the tables could
be changed by factors of 10. An interesting possi­
bility is dynamic rescaling where the digital com­
puter would itself determine whether overflow were
likely and automatically change scale. Now the
interfaces between scale factor change would depend
on the column operating condition which would
help considerably in evaluating transient conditions.

With the scale factor changes, D / A switches have
to be controlled, and this is accomplished by extra
output control lines (OCP's).

CONCLUSIONS

We have shown how an extremely complex repre­
sentation of a reacting distillation column and

ancillary equipment can be represented by multi­
plexing a high-speed analog single tray representa­
tion up and down the column under digital control.
In actual fact, the demands on the digital section
are minimal since very little logic or arithmetic is
required, the principal requirement being for stor­
age. Even for this, a memory size of less than 4K
would be adequate. Another point worth mention­
ing is that all control and data transfer operations
are performed during the reset or hold periods of
the analog section, so no high-speed interaction with
an operating system is required. Thus, providing
the conversion channels were sufficient in number
(~ 30 x 30), one of the newer small input/output
digital computers would serve for the control and
storage section of the simulation.

The technique for adjusting scale factors dy­
namically or at fixed points in the column certainly
bears consideration since in this way dynamic ranges
over 100,000 to 1 can be achieved-and these
actually occur in typical industrial distillation
columns.

REFERENCES

1. G. Marr, "Distillation Column Dynamics,
Suggested Mathematical Model," AICHE Balti­
more, 1962.

2. A. Frank and L. LapidUS, "Hybrid Computa­
tion Applied to Countercurrent Process," Chemical
Engrg. Progress, vol. 60, no. 4, pp. 61-66
(Apr. 1964).

TRANSIENT NEUTRON DISTRIBUTION SOLUTIONS BY COMPRESSED
AND REAL-TIME COMPUTER COMPLEXES

1. E. Godts
Westinghouse A tomic Power Division

Pittsburgh, Pennsylvania

INTRODUCTION

Core transient neutron flux distribution currently
constitutes one of the most intensively investigated
phenomena in nuclear technology. Independently,
nuclear physicists and system analysts attempt to
develop solutions to the problem. The arsenal of
mathematical tools presently available to them
covers most of the spectrum ranging from precise
multigroup djgital computations to adiabatic core
analog analysis. The former involve a series of
steady state or quasi-steady state situations, hence

STEADY STATE (NO Cj) o DISTRIBUTION
NO fEEDBACK
PRECISE MULTIGROUP-DIGITAL
NUCLEAR PHYSICIST

are not acceptable to the transient analyst. The lat­
ter are too inadequate for detailed safeguard or
control analysis, thus forcing the designer to in­
crease his conservative margin.

However, as seen in Fig. 1, a workable compro­
mise has been achieved by the author based on the
,modal synthesis. Although it is not claimed that
this constitutes the best possible approach, it is con­
sidered to be an extremely useful tool for solving
present problems. Figure 2 demonstrates the com­
promise which the proposed method offers in the
modal-nodal plan. Figure 3 illustrates, by graphical

TRANSIENT ANALYSIS (6 Cj)
POINT REACTOR

COMPLETE FEEDBACK
CRUDE CORE - ANALOG
SYSTEM ANALYST

MODAL SYNTHESIS

STEADY STATE (NO Cj) o DISTRIBUTION
CORE FEEDBACK
PRECISE FEW GROUP-DIGITAL
NUCLEAR ENGINEER

TYPICAL TRANSIENTS (I ?6 Cj)
o DISTRIBUTION - H. C. F.

CORE & PARTIAL PLANT FEEDBACK
1-1/2 GROUP-DIGITAL ,ANALOG HYBRID
NUCLEAR ENG. X SYSTEM ANALYST

TYPICAL TRANSIENTS (6 Cj) o REACTOR CHANNEL
CORE & PART FEEDBACK
AXIAL CORE-DIGITAL,ANALOG ,HYBRID
SYSTEM-THERMO ANALYST

Figure 1. C j = delayed neutron group; (jJ = neutron flux; HCF = hot channel factor.

401

402 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

equivalence, the various flux descriptions. The
mathematical model is the same in all approaches;
only the proposed solutions differ largely in their
form and in their goal. The choice between dif­
ference (or nodal), modal (or series of eigenvalues)
and synthesis (or series of functions) is influenced
by the major discipline of the analyst and his goal.
Quasi-steady state solutions are best sought by dif­
ference digital methods, while control design prob­
lems are generally best approached by methods
based upon use of an analog computer.

From the above general discussion emerges a
mathematical solution based on a modal-synthesis
method. I

•2 For one spatial dimension, no such
modal-synthesis is needed, since the analog equip­
ment can directly perform the iterations for the

MODAL - GEOMETRIC SYNTHESIS - PHYS. NODAL - LOCAL
OVERALL CORE INITIAL & FINAL (S-S) LOCAL PROPERTIES
ANALYTIC MODES "WELL CHOSEN "TERMS CHOICE BY EXPERIENCE
LARGE * OF TERMS FEW TERMS. LARGEN OF REGIONS

I
MODAL - SYNTHESIS
INTRINSIC BUCKLING
REGION PROPERTIES
FEW TERMS

Figure 2.

MODAL SYNTHESIS

boundary conditions for the solution described! by
the neutron diffusion equation, as shown in this
paper. For two spatial dimensions, decomposition
in basic modes is necessary.

This paper proposes to show that the different
basic processes necessary to solve a two-spatial­
dimension transient diffusion equation can be per­
formed satisfactorily with present equipment. These
basic operations are:

1. Iteration processes on a boundary con­
dition of the diffusion equation in a
discontinuous medium.

2. Double iteration processes on the above
(two conditions).

3. Iteration of a time-dependent diffusion
equation in one dimension.

The circuitry and results are briefly described and
some of the computer solutions obtained are shown.
This type of computation need not be limited to
repetitive real-time analog computer systems, but
can be well adapted to hybrid computation. In the
near future, such simulations will be performed
with the memory extension achieved digitally and
with the iterations made on the analog computer.
The main (and indirectly the only) reason for re­
serving the analog computer for the iterative process

NODAL

MODAL - SYNTHESIS

Figure 3.

TRANSIENT NEUTRON DISTRIBUTION SOLUTIONS 403

and plant simulation is that the control designer
must, at least at present, be aware of the plant
reactions. He must then modify the design accord­
ing to the response trend as directly observed on
the display of the computer solution. The busy con­
trol designer cannot afford to wait for the answers
of large digital codes, where only a few cases can be
seen at a time. Furthermore, the design processes
are not sufficiently perfected to where machines can
perform the complete tasks. The nuclear plant
designer must continually alter the mathematical
model details in order to decrease the over design
margins imposed by conservatism due to insuffi­
cient knowledge. Although such new models are
easily introduced in analog simulations, they neces­
sitate costly modifications to existing codes.

For these reasons, analog-hybrid simulations
have a possible life expectancy of 10 to 20 years,
thus some hardware expenditures may be justified.

MODEL DEFINITION

The system analyst confronted with the transient
study of a nuclear power plant faces two problems:

1. Safety problems: Checking to make sure
that no safety limitations are exceeded.

2. Control problems: Designing the con­
troller so as to insure that no design
limitations are exceeded.

Both problems are studied on the same or on dif­
ferent models. The trend to limit design over con-

r-------------1---FROM COUNTER!
BLOCK 4 I BLOCK 5 (ONLY FOR I

I LOWEST MODE) I
I I

1 SAMPLE!
I-----+-+--.... z= L I

I s I
SET AREA I I
~ I I ~5ET I

d0 I
dZ z=Q I I

isLOC~(j2~ ------RtsE~d0 11 -i- RESIT-ITERATlON---,

I dz T ' dz I
I I I I I (SIGNS NOTCONSIDERED) I
I (A-).~) 0 I I
I I I
I I). 2 I
I A A _).2 1-~ I
I PI PI m PI I L _~ _____ ~Oc~J
I I
: 0 I
I "\ 2 I = Y I
I 1\ m + I
I --=- I L ______________ · _4 ____ L_~OCK ~_J

Figure 4.

404 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

servatism present in certain core designs makes
necessary the transient spatial description of the
neutron flow. The development of highly sophisti­
cated hybrid computer complexes provides the sys­
tem engineer with more vers~tile tools.

In order to solve the three basic problems stated
in the Introduction, the study was divided into four
parts.

The first part deals with solving the one-dimen­
sional model, which consists! of the neutron kinetics
equation eigenvalue problem. No delayed neutron
equation is considered in this case.

The second part introduces the delayed neutron
equation and studies> the eigenvalue problem of the
system of the equation proposed.

The third part employs the equation without
delayed neutron and operates a second series of
iteration on the normalization of the result.

The last part solves a one-dimensional time­
dependent diffusion equation."

For the first three parts, only the compressed
time repetitive computer (GPS) is used. Only in
the fourth part is the simulation performed on the
computer complex consisting of real time (EA) and
compressed time (GPS) elements.

Simple Problem Models, Circuitry and Displays

The eigenvalue problem corresponding to the
one-dimensional model, with or without delayed
neutron and with or without normalization, is
expressed in a general matricial form as: 3

L<I> - A~<I> = 0

where L = a square matrix operator,
<I> = a column matrix of flux and delayed

neutron flux, and
A~ = the mth eigenvalue solution.

The problem can also be expressed as:

d 2<I>
dz 2 + A(z)<I> + 'Y A~<I> (1)

<I> -'Y A~'Y (2)

The eigenvalue A~ must be found by iteration,
and the circuitry used is developed in steps.

If no delayed neutrons are present, and no nor­
malization is operated, Eq~ (1) is expressed in a
much simpler form:

d2<I> - + A(z)<I> = A~<I> (3)
dz 2

The fact that A is a function of z was illustrated
in our example by a step in value at a given value of
the independent variable.

U sing the circuitry illustrated in Fig. 4 (Blocks
1 and 2), the displays obtained are given by Figs. 5,
6 and 7. To illustrate the work performe:d by the
machine during a very slow iteration process, the
convergence towards the solution from two different
initial conditions is shown by Figs. 8 and 9.

The mentioned "control rod depth" corresponds
to the location of the step in the value of A.

To check the stability and reality ofa given solu­
tion, the inversion of the properties along the inde­
pendent variable z was performed (Figs. 101 and 11).
The obtained results were perfectly symmetrical.
(The iteration is always performed at the riight
boundary.)

The large discontinuities of material, correspond­
ing to the control rod boundaries in nudear f(~ac­
tors, result in large discontinuities in the second

Figure 5. The first two modes. Vertical white line (fiourth
square from left) indicates control rod depth.

Figure 6. Third mode (iteration not completed). Arrow points
to location of x = 2L.

TRANSIENT NEUTRON DIStRIBUTION SOLUTIONS 405

Figure 7. The fourth mode. Arrow points to location of
x = 2L.

Figure 8.

Figure 9.

Boundary value search for fixed initial tangent search
on ,,~, starting point with a large ,,~.

Boundary value search for fixed initial tangent search
on ,,~, starting point with a small ,,~.

Figure 10. The first mode, its first and second derivative.

Figure 11.

Arrow (top) points to first derivative; double arrow
(lower left) to second derivative; arrow (right) to
location of x = 2 L.

Reversed iteratidn of Fig. 10. Arrow (top left)
points to first derivative; double arrow (top center)
points to second derivative. White vertical line
(lower left) indicates rod insertion depth. Arrow
(lower right) points to location of x = 2L.

derivatives (e.g., Fig. 10). If the choice of the spatial
variable direction is free, the preferred solution has
the highest possible. gradient at the boundary of
iteration (Fig. 10). Since the solution will converge
more rapidly, it will be more precise and more
stable.

The higher mode solutions were somewhat more
difficult to obtain than the fundamental, and meth­
ods should be devised to scan automatically the
successive values of A~ (Figs. 5, 6 and 7).

To show the adaptability of the circuit, a small
slug of reactive material was introduced into a scat­
tering material. Successive modes were easily ob­
tained (Figs. 12, 13 and 14).

406 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Figure 12. First mode slug case. White vertical lines (bottom)
indicate position of the slug.

Figure 13. Fourth mode slug case, first and second derivatives.
White vertical lines (bottom) indicate position of the
slug. Arrow (right) points to location of x = 2L.

Figure 14. Sixth mode slug case, first and second derivatives.
White vertical lines (bottom) indicate position of the
slug. Arrow (right) points to location of x = 2 L.

Introducing Delayed Neutron into the Equation

This introduction is performed by adding block 3
(Fig. 4) to the circuit. If one delayed neutron
group (precursor) is introduced, each nodal solu­
tion comprises two orders.

The physical meaning of the two orders is found
in the initial conditions imposed in the problem.
In the case of one delayed neutron group problem,
the suitable initial conditions consist of a flux
distribution and a delayed neutron distribution. It
is assumed that such distributions follow the first
mode curve. The relative amplitude of flux and
delayed neutron distribution must be d~;!termiined

and the initial condition must fit them. This is only
possible if two orders exist, since two conditions
must be satisfied. It can be further demonstrated
that the relative sign of the delayed neutron and
the flux distribution is the same in one of the o~ders,
and that the delayed neutron distribution has the

• ,-1: - - I: -""
... .

.... 1: ~ I"
I" 1IIii1 , I I"

I"
/'

, I

:'

... - - I: - - I: -.....
I - IE

I P.:I ... U '
-I

...
-"

AI

I,
I •

II

I
1

Figure 15. First order offirst mode.

Figure 16. Second order of first modle.

TRANSIENT NEUTRON DISTRIBUTION SOLUTIONS 407

opposite sign of the flux distribution in the other
order.

It is proved mathematically that the orders give
different relative sign of the flux and the delayed
neutron.2

In the search for the second order, the sign of
the divider must thus be inverted. The iteration
process will then proceed normally towards the
solution. To avoid making a complete revision of
the scaling, no changes were made in the simulation;
only the display amplification was changed. This
explains the large amount of noise present in one
of the solutions (Fig. 15 and 16).

The Solution with Two Iterations

To perform this operation, the delayed neutron
circuit was rendered inactive (block 3 and block 4
were introduced).

Only the fundamental mode is of interest for this
transient study. An absorbing rod was suddenly
removed from the core, and the subsequent condi-
tions imposed are that: .

1. The flux vanishes at the outer bound­
ary.

2. The area enclosed by the flux distribu-
tion curve is constant.

Figure 17 shows the resulting display. The two
iterations are performed alternatively, each for
15 machine cycles, by the introduction of block 5
(Fig. 4). In practice, this large number of itera­
tions cannot be maintained; it was successfully re­
duced to three or four machine cycles per iteration.

Figure 17. Constant area problem during rod removal process.
A-initial flux distribution; B-final flux distribu­
tion; C-initial rod insertion depth; D-initial
second derivate curve; E-influence of the itera­
tion process on the second derivate distribution;
F-initial flux jump.

When the procedure performs adequately, a
modification of the area should not change the
extrapolated boundary conditions. A test was con­
ducted to check this statement by inverting the sign
of the required area. Only four machine cycles per
iteration were retained. The result appears in
Fig. 18.

Figure 18. Area inversion at fixed rod position. G-initial
flux distribution; H-initial second derivative curve;
I-rod insertion depth; J-final second derivative
curve; K-final flux distribution with area inverted.

One-Dimensional Time-Dependent
Diffusion Equation

The problem was introduced in the following
mathematical form:

cr<1> a<1> - + A(z,t)<1> = a-
az 2 at

The solution is approached by using a time dif­
ference equation of the following type:

d
2

<1>(t +. dt) + (A _ ~) <1>(t + ~t) = ~ <1>(t)
dz 2 ~t ~t

The function <1>(t) is stored in a memory after each
iteration is performed, and thus can be used for the
next time step. The block diagram used in shown in
Fig. 19.

Each new circuitry has already been explained.
The A(z, t) function was formed by the intervention
of the fast repetitive computer for the z dependency,
and the real-time computer for the time dependency.

The task of the real-time computer was to· simu­
late the whole plant response. This was done on a

. 1: 1 time basis. The memory used was formed with
elements of the GPS computeri and does not pre-

408 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

ITERATION CIRCUITRY

DIFFUSION EQUATION

MEMORY

LOGIC
CONTROL

¢ LOGIC INTERVENTION

Figure 19.

sent any originality. This is certainly the part of the
circuitry that most needs to be perfected. For future
simulations, it is intended to use digital memories
of various types.

In its present form, the memory circuitry is inade­
quate since the number of retention points is too
small and necessitates a far too large an amount of
equipment. ,

Nevertheless, it was tried on a rod insertion and
withdrawal problem. The processes provide the
displays shown in Figs. 20 and 21.

CONCLUSIONS

The search for the modes and orders of the neu­
tron diffusion equations can be performed satis­
factorily on analog computers.

The one-dimensional transient flux distribution
can be successfully simulated as part of a complete

Figure 20. The rod insertion process. Dotted lines represent
extent of rod depth.

I

11+
II

+++ .. ++++ I

I
I

II!:! !!:iiI 111 I ---• -sa .- !!::iii
:::iiiii IIiiii::!!III ~ I • ~ ::iiiiiiiii ~ • ill:,

I'J ... ii:I.: :.::
t'n'J' .:: :::.=:: ~ . -: ~;.:

"- ----
!

Figure 21. The rod removal process. Dotted lines represc~nt
extent of rod depth.

nuclear plant simulation. It is, nevertheless, necc:!s­
sary to improve the memory capacities of the prc:!s­
ent machines by further hybridization of the
complexes.

The two-dimensional transient flux distribution
can be performed, but present equipment requires
too large amounts of circuitry for a safety and con­
trol analysis of nuclear reactors. Nevertheless,
average methods, as described in Refs. 1 and 2,
should prove adequate for present needs. They are
based on the studies described in this paper.

The introduction of simplified circuitry or func­
tionals in the simulation will permit future simula­
tion of the two-dimensional flux distribution within
a complete nuclear plant study.

Simplified circuitry and memory equipment might
even enable the introduction of more than one
group of delayed neutrons.

No difficulty was encountered in the interconn(~c-

TRANSIENT NEUTRON DISTRIBUTION SOLUTIONS 409

tion of the slow real-time computer (EA 231 R) and
the fast repetitive computer (GPS). An auxiliary
problem of a rod ejection accident in a thermal
reac,tor was successfully tried on the circuit. The
answers were rapidly obtained and with sufficient
accuracy for qualitative evaluation.

The limiting factors for such large problems (a
complete problem uses two GPS, two EA 16-31R
and one EA 231 R plus logic and memory) are the
necessary zeroing time and the equipment failure
rate. It is foreseeable that units could be designed
with self-zeroing and self-checking features. These
operations could be performed automatically during
the off times of the machines. With the use of the
above-mentioned functionals reducing greatly the
amount of equipment, large multivariable problems
will then be within the reach of the analog hybrid
simulators and will certainly be welcomed by the
nuclear system engineer.

REFERENCES

l. J. E. Godts, "Analog Analysis of Transient
Neutron Flux by Discontinuous Synthesis," Ph.D.
thesis, Carnegie Institute of Technology, 1965; also

WCAP-2828, Westinghouse Atomic Power Division
(July 1965).

2. J. E. Godts and E. F. Restelli, Jr., "Transient
Flux Distributions by Discontinuous Modal Syn­
thesis," WCAP-2755, Westinghouse Atomic Power
Division (July 1965).

3. J. E. Godts and A. S. Weinstein, "Transient
Flux Distributions by Discontinuous Modal Syn­
thesis," Conference on Safety, Fuels and Core De­
sign in Large Fast Reactors, Argonne National
Laboratory, Oct. 11-14, 1965.

4. J. E. Godts and E. F. Restelli, Jr., "Transient
Temperature Distribution in Fuel Elements," ibid.

BIBLIOGRAPHY

Kaplan, S., "Extensions and Applications of the
Method of Finite Transforms," Ph.D. thesis, Uni­
versity of Pittsburgh, 1960.

___ , "Some New Methods of Flux Synthe­
sis," Nuclear Science and Engineering, vol. 13, pp.
22-31 (1962).

Radkowsky, A., Naval Reactor Physics Hand­
book, Vol. I, U.S. Atomic Energy Commission, U.S.
Government Printing Office, 1964.

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES*

Robert S. Ledley, Louis S. Rotolo, Marilyn Belson, John Jacobsen,
James B. Wilson, and Thomas Golab

National Biomedical Research Foundation
Silver Spring, Maryland

The biomedical sciences characteristically deal
with huge masses of data, which must be organized,
reduced, analyzed, and generally processed in many
different ways.) Much of this data is in the form of
pictures: photomicrographs, electron micrographs,
X-ray films, Schlieren photographs, X-ray diffrac­
tion patterns, autoradiographs, time-lapse films,
cineradiographs, or the like. Individual pictures
hold a great wealth of precise numerical informa­
tion, such as the morphological and structural char­
acteristics of lengths, areas, volumes, anq densities.
From sequences of pictures, quantitative results can
be derived, such as the kinematic and dynamic char­
acteristics of trajectories. Such pictures relate to
almost every field of biomedical research: chromo­
some karyograms in cytogenetics, angiogram cine­
radiographs in cardiology, Schlieren photographs
in ultracentrifugal molecular-weight determinations,
auto radiographs of polymorphonuclear leukocytes
in the study of leukemia, Golgi-stained neuron
photomicrographs in the study of the ontogeny and
phylogeny of the brain, X rays of bones in studies of
calcium density distribution in orthopedic diseases,
X rays of epiphysial plates of the hand in investiga­
tions of accurate physiological age, X-ray crystallo­
graphic plates in protein structure determination,
electron micrographs in the investigation of the fine

*This work was supported by National Institutes of Health
grants GM-10797, GM-10789, NB-04472, GM-11201, and
AM-08959.

411

structure of virus particles, motion pictures of
marine crustaceans in the detection of their sensitiv­
ity to polarized light, tissue-culture time-lapse films
in the investigation of cancer-cell motility, and
many others.

In this paper we shall describe selected illustra­
tions of work already accomplished QY the authors
in the pattern-recognition analysis of biomedical
pictures. The technique involves two main steps:
first, a scanning instrument, called FIDAC (Film
Input to Digital Automatic Computer), scans the
picture on-line into the high-speed memory of a
digital computer; second, two computer program­
ming systems (called FIDACSYS and BUGSYS)
are used to recognize the objects to be measured
and to process the quantitative data, according to
the requirements of the particular biological or
.-nedical problem under consideration. This FIDAC
sy~tem was designed specifically for the processing
of biomedical pictures.

THE FIDAC INSTRUMENT

The FIDAC instrument is responsible in the first
place for putting the picture into the computer's
memory; it is an on-line computer-input device
which can scan in real-time at very high speed and
with high resolution, under computer-program feed­
back control (see Fig. 1). These capabilities make
feasible the successful application to biomedical
problems. FIDAC has a high-speed scan of less

412 PRO<;:EEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

than 0.3 seconds per frame, which makes possible
the rapid processing of pictures for statistical
analysis and screening purposes. During the scan,
350,000 points per picture (700 x 500 point raster)
are sampled in the seven-level gray mode, which
uses three memory bits per picture point, or 800,000
points per picture (1000 x 800 point raster) are
sampled in the black-and-white mode, which uses

Figure lao The FIDAC Instrument.

FIDACSYS
PROGRAMMING

SYStEM

IBM 7094
COMPUTER

one memory bit per picture point. As a comparison,
during the scan the FIDAC can load the computer's
core memory 10 to 50 times faster than can conven­
tional magnetic tape input units. (The 1 BM 7094
computer, equipped with a direct data channel, is
used.)

FIDAC has a high resolution (greater than that
of the optical microscope), which enables the re:ten­
tion of all information when photomicrographs are
scanned. This is because when the specimen is seen
at a magnification of 1000 X , the field has a diam­
eter of about 50J.L; thus the 750 points sampled by
FIDAC across this field gives about 700/50 == 14
points per micron on the specimen, or about
3 points in the 0.2J.L, that is, the optical resolution of
a microscope at 1000 power.

The capability of real-time operation enables pro­
gram control of the FIDAC by the computer-that
is, when the processing of a film frame has· been
completed, the program signals the FIDAC to move
automatically to the next frame. The fact that
FIDAC is on-line with the computer, with no inter­
mediate magnetic-tape recording, results in extreme
flexibility, convenience, and economy of storage of
the original data. For instance, a single: 100-foot
roll of 16mm film, which fits in a 3 Y2-inch diameter
can, contains 4000 frames and will record over 4 bil-

The FIDAC Instrument

COMPUTER
MATCHING CIRCUITS

....• _____ ~"-____ R_A~STTE-R----~] DIGITAL LOG ICAL
CONTROL CIRCUITS

~---------,-------------
ANALOG

TO DIGITAL
CONVERTER

VIDEO
AMPLI FI ER

FI LM TRANSPORT
AND

CONTROL CIRCUITS

Figure I b. Block Diagram of FIDAC System.

GENERATOR
DRIVER

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 413

---..,-.... ..,---.................... ::::~~~~~:~~~!~
- .. - _................ --l\i"'-
-~~~~~~~-~~~-~~-~~~~~-~-~
--~~~~~~~-~~~~~~-~~~~~~~~~

-~-~~-~~~~~~-~~~~~-~-~~---
~-~~~~~-~~-~~~~--~-~~~~~~

Figure Ie. Cineangiogram of a dog's heart as recorded in the computer's memory. The original photograph is scanned by
FIDAC and a 700 x 500 raster of spots is sampled. The density of the film at the location of each of these spots
is determined as one of seven gray-levels. The picture in the computer's memory, therefore, consists of codes for
these density levels. To show what is in the computer's memory, the computer translates the code for each spot
into a numerical gray-level value, and prints the value in its correct relative position for each of the 350,000 spots
that comprise the picture. This is what is shown in the figure. In the lower-left inset we illustrate an enlarged por­
tion of the figure showing the density levels. The other inset shows a portion of the original cineangiographic pic­
ture.

414 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

lion bits of information; this would require more
than 55 conventional digital-magnetic tape reels,
making a stack more than 4 feet high.

THE PROGRAMMING SYSTEM
FIDACSYS

Once the picture is recorded in the computer's
core memory, as a grid of points, each with one of
seven gray-level values, the computer analysis pro­
ceeds by means of the two programming systems.
The FIDACSYS system 2 is the basic picture­
handling and object-recognition system; the
BUGSYS language is used mainly to facilitate
picture analysis and measurement.

The first problem for theFIDACSYS system is
to read the picture into the computer's memory.
The program does this by :signaling the FIDAC
through the direct data channel. The program
monitors the read-in, line by line, keeping track of
the lines and the size of the picture. Of course, the
program must select the proper FIDAC mode. The
program also moves or positjons the film. Usually
the film is advanced to the next frame by the pro­
gram immediately after the picture has been read
in. This is done during the time the analysis pro­
gram is being executed, and if the analysis time is
greater than the film movement time, namely 1/.., of
a second, then no provision need be made for film
movement time. A roll of film is processed frame
by frame in this manner. The program keeps track
of the number of frames to be processed, and when
all of the frames have been processed, the program
proceeds to compute the statistical results ap­
plicable to the film roll.

In processing each frame, the FIDACSYS system
first determines whether or not the frame is blank;
if it is not blank, then any required overall picture
processing, such as differentiation, is carried out.
Next the program locates and processes one object
at a time; this is accomplished by an internal, pro­
grammed scan of the picture, starting at the top left­
hand corner and continuing row by row. We say
that this internal scan is accomplished by a "bug,"
which is looking for a picture spot that has a gray
level greater than the "cutoff" gray level. The cut­
off gray level is defined such that the interior points
of any object will have gray-level values greater
than that cutoff level. When an object is found, it is
then processed. In this way each object is sequen­
tially processed, until finally, when the scanning
bug reaches the lower right-hand corner of this

picture, all of the objects have been processed and
the program proceeds to the statistical analysis ap­
plicable to that frame.

When an object has been found, its processing is
carried out by the FIDACSYS program in terms of
a boundary analysis. The bug is moved around the
boundary of the object in such a direction that the
interior of the object is kept to the right. The next
boundary point is determined by looking dockwise
around the present boundary point, starting from
the previous boundary point (see Fig. 2a). When a
certain number N of boundary points (that is, a
certain boundary length) has been traversed, a seg­
ment is defined. The segment is then characterized
by the coordinates of its center point, the: compo­
nents of a leading vector, and the components of a
trailing vector (see Fig. 2b). The length of the seg­
ment chosen must be short enough that the angle
between the leading and trailing vectors is approxi­
mately a measure of the curvature of the segment.
Then the vector sum of the leading and trailling vec­
tors is approximately the tangent to the segment at
its center point and gives a measure of the direction
of the segment. There are three user parameters
associated with a segment, varied to suit the par­
ticular problem under consideration. These are the
segment length N, the arrow length A, and the
distance D between centers of successive segments.
A boundary-characterization list is constructed as
each boundary segment is analyzed successively,
until the original boundary entry point is reached
again.

As each boundary point is traversed, its gray­
level value is changed by the bug to the value 7, so
that the object is completely enclosed in a string
of 7's. Only seven gray levels per spot were used in
the scan so that the eighth level, namely 7, could be
reserved for this purpose. Thus no object is re­
processed, because only objects not enclosed in such
a string of 7's are found by the search. If the anal­
ysis involves the investigation of holes wlithin the
object, then the holes are discovered by carrying
out an erasing process. When a hole in the object
is discovered during the erasure procedure, its
boundary is characterized by segments. Islands
within holes are found by filling in the holes, and
holes within islands within holes are found by
erasing, ad infinitum. (However, only simple holies,
with no islands, are found in most applications.)

The recognition of the object by the FIDACSYS
programming system is accomplished by means of
the boundary-characterization list. A syntax-

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 415

Figure 2a. The black box is the present
boundary point, the verti­
cally hatched box the prev­
ious boundary point, and
the horizontally hatched
box the next boundary
point.

H
Hy

Tx

(a)

Figure 2b. A segment (above) illustrating
the center of the segment
C(x, y), the trailing arrow
components Tx and Ty, and
the leading arrow component
Hx and Hy. The tangent vec­
tor T + H (below) and the
angle () = Lj K, giving K =

Lj(), where K is the curvature
and L is the segment length
(and () is in radians).

directed pattern-recognition technique is utilized.
(An introduction to this technique is described
elsewhere.3,4)

Since in the IBM 7094 memory the picture takes
up more than 25,000 words of the 32,OOO-word

memory, the FIDACSYS programming system has
to be broken into links, each link being executed
separarely in the memory. The initial link enables
the user input parameters to be inserted into the
program. The second link is concerned with
reading-in the picture and "compacting" it into the
proper part of the memory, in appropriate form.

The next link will manipulate the picture, will
move the film to the next frame if desired, and will
print the picture as it appears in the memory if
desired. Optional manipulations of the picture
include masking, that is, widening the margins of
the picture; reducing, that is, decreasing the density
of spots of the picture as read into the computer;
differentiating, that is, processing the picture to
emphasize changes in gray level; and other related
processes, as well as printing the picture.

The fourth link scans a picture and proc,esses the
objects, as described previously, and is carried out
in the three phases. Phase 1 concerns the locating,
boundary tracing, boundary-list characterizing, and
optional erasing of an object. Phase 2 is concerned
with the syntax analysis leading to the identification
of the parts of the object. And Phase 3 is concerned
with actually making the measurements on the
object. The fourth link also accomplishes the over­
all statistical processing for each frame.

THE BUGSYS LANGUAGE

BUGSYS is a picture processing and measuring
programming language for the analysis of the pic­
ture in the computer's memory.5 The main concept
of the system is the use of a collection of program­
mable pointers, which are visualized as a family of
"bugs." A bug can be "initiated," or "placed," and
once initiated a bug can be "moved." In addition, a
bug can "change" the gray-level value of the spot
on which it is located, and it can lay down a so­
called "stick" across a thick line in the picture as an
aid to locating the middle of the line. In addition,
two bugs together can "probe" along the direction
of the line between them or along a direction per­
pendicular to the line between them. These probes
can sense an extension of an object or the width of
an object, and so forth. "Globs" of objects can be
assessed by laying down squares and determining
the percentage of the area of the square intersected
with the object. The system is composed of many
such stat(~ments as will be illustrated below.

For each bug initiated by means of the macro
PLACE, there is associated a list which gives the

416 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

x and y coordinates of the current position of that
bug, the actual core location, the spot position
(0-11) within this location (there are three bits per
spot, or 12 spots per 36-bit IBM 7094 computer
word), and the gray-level value of the current posi­
tion of the bug. For example, if the bug named
"ZIPPY" is in the position x = 6, y = 8, then the
list for ZIPPY might contain the following:

Address

ZIPPY(l)
ZIPPY(2)
ZIPPY(3)

ZIPPY(4)

ZIPPY(5)

Contents

6
8

6009

6

4

Comment

x

Y
5553 (first location of pic-

ture) + 456 (57 words per
line times y) + 0 (x di­
vided by 12 spots per
word and truncated to an
integer)

remainder of x divided by
12

gray-level value or contents
of spot

As a bug is moved about the picture by a program,
the list for the bug is kept current. In fact, in es­
sence, the list is the bug.

We will now proceed to describe some of the
statements of the BUGSYS language. The PLACE
statement initiates, or sets up, a bug by assigning a
name and initial coordinate to it. Thus we have

< PLACE statement> : : = PLACE <bug
name>, < x coordinate>, < y coordinate>

where the bug name is a FORTRAN label and the
x and y coordinates are either unsigned integers or
integer variables.

The BUGS statement allocates five storage loca­
tions to each bug named; its form is

< BUGS statement> :: = BUGS « bug-name
list>)

where the bug-name list is a string of bug names
separated by commas.

A bug can be moved a specified distance (i.e.,
number of spots in the picture) in either the x or y
direction by the following statement:

< MOVE statement> :: = MOVE < bug
name>, < direction>, < distance>

where the direction is given by the literals LEFT,
RIGHT, UP, or DOWN, and the distance is an un­
signed integer or integer variable. The statement
"MOVE ZIPPY,RIGHT,15" moves the bug named

ZIPPY to a new location having the same y co­
ordinate but a new x coordinate 15 spots to the right
of the present x coordinate. Each time a bug is
moved, of course, the list corresponding to the bug
name is adjusted for the new values.

Many of the statements involve multiple-,way
branches, for provision must be made to be sure
that the bug will not be moved out of the picture.
For instance, in the MOVE statement if the bug
would be moved out of the picture, then it is not
moved at all, and the next sequential instruction is
taken as a next executed instruction. Otherwise
(i.e., if the bug will still be in the pictun: after the
move) the bug is moved and the next sequential in­
struction is skipped.

The BUGSYS language also includes a GO.TO
statement and a series of TEST stateme:nts. For
example, the statement

< TEST statement> :: = TEST < bug name>,
< relation>, < gray cutoff >

would test the value of the gray level on the spot of
the picture at which the bug is located, with respect
to the gray cutoff (which is specified by a literal
digit from 0 through 7). The relation can be
EQUAL or GREATR or LESSN. If the relation
is not satisfied, then the next instruction following
the TEST is executed. Otherwise (if the gray-level
value of the bug location is in true relation to the
cutoff gray level) the next sequential instruction is
skipped and the' second following instruction is ex­
ecuted.

The statement

< CHANGE statement> CHANGE
< bug name>, < gray value>

can change the value of the bug location spot to
the literal specified as the gray value. When using
the BUGSYS program, it is usually convenient to
change the value of the bug location to a 7. In this
way the bugs will leave "footprints" as they move
around the picture during the analysis, and these
footprints can be utilized as an aid in che:cking out
results. The BUGSYS language also includes pro­
visions for bounding an object. This is the same
subprogram as the bounding routine which appears
in the FIDACSYS system, except that in BUGSYS
it can be utilized in a macro called BOUND.

BUGSYS also includes a specialized macro called
CRANK, defined as follows:

< CRANK statement> :: = CRANK <bug
name>, < direction>, < gray cutoff>,
< neighbor number>

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 417

where the "direction" is either the literal CLOCK
or the literal CCLOCK, the "gray cutoff" is a literal
digit from 0 through 7, and the "neighbor number"
is an octal-integer variable. The purpose of
CRANK is' to help initiate a bounding procedure.
As we mentioned above, finding the next boundary
point involves knowing the previous boundary
point; but in initiating a bounding process no previ­
ous boundary point is available. CRANK will
produce a previous boundary point for the macro
BOUND and will assign this as the value of the
"neighbor number." The bounding, and hence the
cranking, can be clockwise or counterclockwise
around the object, accounting for the term "direc­
tion."

The "stick" and "probe" statements enable a bug
to investigate its surroundings in various ways. For
example, consider the normal-probe statement
NPROBE, defined as

<NPROBE statement> :: = NPROBE <bug
name>, < bug name>, < bug name>,
<distance>, <gray cutoff >

Here the probe will be made perpe,ndicular to the
direction between the first two bugs named. The
third bug named will hold the result of the probe.
This probe consists in effect of moving a bug along
a line perpendicular to the line between the first two
bugs mentioned until this moving bug comes to the
edge of the object. The "distance" is included so
that if the bug does not come to the edge of the
object before going the distance specified, then an
alternative branch may be chosen. It is supposed
that the probing bug will start out inside the object.
Additional macros are also available in the system.

ILLUSTRATIONS OF RESULTS
ACCOMPLISHED

We shall now describe four applications of the
FIDAC system: 1) Analysis of Neuron Dendrites
(Fig. 3); 2) Analysis of Schlieren Photographs (Fig.
4); 3) Analysis of Rabbit Brain Cells (Fig. 5); and
4) Analysis of Chromosome Karyograms (Figs.
6-11).

Analysis of Neuron Dendrites

In the young kitten's brain, certain cells in the
cortex will appear almost entirely within a single
microtome section. The following is a discussion
of our computer program used for the analysis of
such cells, in order that comparisons can be made

among these cells in kittens of different develop­
ment stages. The BUGSYS language was used. In
general, bugs will search the picture to find an ob­
ject, i.e., a neuron cell, and then will move around
the boundary of the object, recognizing the den­
drites, as distinguished from the cell body itself, and
making measurements on dendrite segment lengths
from branch to branch. In particular, four com­
ponents of such a neuron cell must be recognized
before the measurements can be made. These are
the cell body, the dendrite-to-cell-body junction,
the dendritic branching points, and the ends of the
dendrite branches. Figure 3a shows a neuron cell
as it appears in the computer's memory; Fig. 3b
points out a detail of this picture; and Fig. 3c gives
a flow chart of the program for the neuron analysis
with the BUGSYS language.

Six subprograms are utilized, as shown in Fig. 3c.
The first of these subprograms directs the FIDAC
instrument to scan the photomicrographic trans­
parency in the gray mode.

Next a bug, called SRCHXY, is directed to search
the picture systematically to find the first object.
There are two possible outcomes to this process:
either a next object is found; or the bug comes to
the lower right-hand corner of the frame, which
means there are no more objects in the frame. These
are the main functions of the subprogram
SUNBOG.

If a next object is found, then the program enters
the subprogram CBLOCK. In this subprogram the
components of bug SRCHXY are used to initiate a
new bug, called BUGM, which together with an
auxiliary bug, called BUGS, finds the cell body.
There art! two possible outcomes to this process:
first the object may not be a complete neuron or
may be some other fragment, in which case there
will be no cell body; here transfer of control will
be returned to subprogram SUNBOG, which will
continue on to look for another object. The second
outcome of CBLOOK is that BUGM and BUGS
will actually find a cell body, in which case the
subprogram DDLOOK is activated.

In the subprogram DDLOOK, the cell-body
boundary is traced until a dendritic junction is
found. Again there are two possible outcomes to
this subprogram: First, a dendrite may not be
found, in which case transfer of control is returned
to SUNBOG, which looks for another object. The
second outcome is that a dendrite is actually found.
In this case BUGM will be residing on one side of
the dendrite, cell-body junction. BUGM will then

418 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

be used to set up another bug, called BUGT, on the
other side of this same junction, and subprogram
MAPDD will be activated.

In the subprogram MAPDD, BUGM and BUGT
move up the dendrite looking for branch points and
end points, and by this means these bugs are able to
make the desired measurements on the branching
dendrite. When they have completely analyzed all
the branches, they will return to the dendrite, cell­
body junction where BUGM is again utilized. If
more dendrites might possible exist, BUGM will

continue to look for these other dendrites, in the
subroutine DDOOK. On the other hand, if during
the mapping of the present dendrite it has been ob­
served that the entire cell has been analyzed, then
BUGM will transfer control to SUNBOG and the
search for the next object will be reinitiated.

After all of the objects in a frame have been ana­
lyzed, the final-result display subprogram, SC4020,
will be activated.

Let us now describe some of the mechanisms by
means of which the different subprograms are car-

Figure 3a. The large black dots illustrate the computer's determination of the ends of the dendrite arms, of the branch points,
and of the cell's body-dendrite junctions. The thin line is drawn at the computer's determination of the actual den­
drite, cell-body junction.

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 419

ried out. The first step in subprogram CBLOOK is
that bug SRCHXY is used to set up BUGM. Now
BUGM will move clockwise along the boundary of
the object. BUGM will also be used to initiate the
subsidiary bug BUGS, which BUGM will drag at a
prescribed distance behind it. Together, BUGM

and BUGS look for a cell body. The method for
finding a cell body is for BUGM to form a normal
probe perpendicular to their connecting line, di­
rected into the object. The probe is made long
enough that it will pass through and beyond the
relatively narrow dendritic arm. However, the cell

::: ::::::::::::::::::::::::::::: :::::::::::::~:::::::::::: ::::: :Ht~1212U}~H::: ::::: :::: ::::: ::::::: ::iiii :i: hltH::::::::: ::::::::::::

~i ~ ;~; ~ : ~ H i 2i2 lfi {i ~ ~ ~ ~ ~ ~: i ~ i:: ~f~: : i ii' HMUUUH~~ : : : : ~ :: ::: :: ~ ~ ~~ ~ ~
.. 1 •..... 111 "•.......••.•••.. i. Itlh2 ~1~2lH""illl~~HF2.\22l. ~~~2Zll111•.•.•..•....•
ii~i:: :i::::::::::::::::::::: ::: ::::: :::: :::: :::::::::::::: ::::: :::::::. HI I U~22U\i~ h i2izHtHhz21lh tli: ::::::: ::::: ::::: ::::::
i ll.illll... 2 2222 2 22~22~2221111111
.Ill llid ii: ~i::: ::::::::::: :::::::: :::: :::::: ::::::::::: :::::: :::::::::!! ~ 22~hIHnlliH!!!:::::: ::: :::::: :::::::
B l HBI H I it h::: H :tUU! • .••• 2~H. 1. i: 11 d 1: if: i:::::::::::::::::::::: 11221111111111111 1 .. ~ .66"" 22p ...•.. 1111 1
! H H H t t 111 H Hi: i i: : i: : : i: : ::: ::: : : ::: : :: : ~::: : : : :: : :: :: : : ::: : ::::: : :: :::: f ·:06661:' .6. f~ il i 1 iii i H H t ~ i : : : :: : : : : : :: : : ::: . i2' • Hs
HHHld III H2llHii lli :: i~'111:: i:;::::::::::::::::: ::::::::::::: :::::::: ::: = ~ ·~ttttttt~· 22~1"lHIHHtHHH Iii:::::::::: i: :::! s~~~55
lll1lPHJllP~pplt 111 .. 1 .. til ·66666' 21 2ill2211111111111ol11;2222 •.... 55 ffl
BFttltttlh11t lth Hiihl!h!:::::::::::::::l::::::::::::::::::::::::' ~it 22 .~~~ •• 22· 22HlllllqUl~ •• ;6666:e:::::ll~~ .. : 22d2111l1:lz111hlHH1HIHllP1l.1 ... 11 ~~ ···5' 2Hl1 H~BzHHHl12 "666H,'"
BUHHH IfBHlhu111111.11.1il::: ::i: :::: !:::::::: :::: ::::::::::: •. :::l h :~~~: Hlh~22~~~2H~H!H122 '6~~~~"'i' I.::: ::::::::
H1HHlH itBHHHlUHHiPHh::: ::: ::::::c:::::::::: ::::::::::. ;: :!! .lH :~H: ~H!fU~H2UUB22 •• bb~···~2~1!.:· ::::: :':::::::

HnHHHHnlll11111P1l111!llH!i!~:::!::::::::::::::::::::::::: .::i::::' ~t~: 2222hi!i~H '~"66~~~" ~h!!:::: :::::::::::::: 21112222111222211 1 1 11111lll11p.l.ll.......................... '6'(,· 22212 ~22 2'~~66666" 2

IHIHHHiHHHIHHHIlHlldhHdi~:::::::::::::::::::::::::· :::::: ... lle! '6tt;:~: HH~2~2 '6~~~~~~' 2H!!:::::: ::::::::::::::: 121122122211111111111111111111111111 .. 11111 111 '66666' 2222222 '666666' 221 211121221111111111111111111111111111\111 "1112 '6666666' 2 .'66666.' 211.........•...... 2211HFHPHIHH1\il· 111 1 1........................ l2 '661166b66 "666666' 211
Hlltllh 11 tll111111iliHtHtHHHHlll!i !!i::::: :::::::::::::: . ::: 7 .: !lh '6U~t~~~t~ '6~~~~·"Z11~!~:::::::::::· ::::::::::: ::::: 21111Z111l1111111111lHll1Pl111111111 tl111 11122·66661166!>555 r '66.·' 221
HHHhH IHHHHl. ... !:.: !l1ttl11. flU::::::::::::::::::::: .:::'. :iiF .6~~t~Ut~t~. ~ •• , ·f! !::::::::::::::::: :::::: ::::::::::: 111l11l1111211111111 lll1l1 112 '666666666666 . ·,6' 2, '111 i l\1 1112111111111111111\ .. 112 '6666666bb666 666. 221. \11 1.11 1111111211111111 11 .. 1 ... 12 "666666666666(,665' ·2221. 11111111 0 •••••••••••• 11111111111111111111t1 tl11 12 '666~66b6666b66 666' 22222 ~12~~!llll'!.1
HHHHH 1

j
l

1HHHH i1:::::::::::::::::::::::::::::::'::l'::1' l~'r · •• b~U~Ut~t~~~~~~ b~~' 2~HH~ H~~HttthL:: ::::::ii::i:i:i::::
11 •• 111111 11111111 1 i .. 1. . 2 '666666666666666bb ,.. .. 222222. 22221211111 \1 .••.•.• 111111 .. 1111111111l11•...•• 1.1~1 ... lll.11q.2 b6bb666666666!.6'" 2i 22222222 ~222111111111 1.1. 11 •••••.
11 .. 11.11111111.1111 11 .. 1 1 1 t11 ... 11 1 .. z ,6b6b6b666666'" 22222. 2Fl1l21. 2112121•. 1.11 ... 1
pqiHHiIlHHIP~lHt::t!:::::::::::::i::iih!I!!HtHH·.6 ~tt~~t~t~~~·· 22~; HHHHi fthtHH HHHHH1: :::::::!H~l:i::::::
.H11l!HllHHHdldtdL:F:::::::::::::i!:IHHHH~~22 6U ~~~~~~~~ •• 2HHr jHHHH tllUHtll·HtHfh:: :::::::::!:::::::::::
iI:HHHllHHHltitHHt!!l:!!::::::::i::~h!illHUF : ,~t~ ~~tt~~· tHUll! HHHIH: .:11111 1 ... 1 .. !::· ::::::::::::::::::::: 111l11.Ull11111111111111111 1 1 .. 11.111HF "6 ,66/ 6666b' 2lp11r 1211111.11 .1.11111p l ••••• l

tH1H~lUlltPl~lHHHHHHli!:!::i:::::::i~i!dl12 '6~U :~~: ~t~~· 22nh t'11
1

f
,liftll11tll:l: ':lhUIllt 111111111111 111111111111.11111 1 11112 '66666,66166' 221111 1 ! 1 111.1 .•.... 11 211111111111111111.11111111111111 .. 11.11 ... 1'1.1l1F·6666!>6 ·661 b· 222211HH 111l111.1.1 10 •••• 111.

HIPP111~HHHIHllilH\HHtHiitii:I:~:ilHH '6~~tt~t ~~~. 2HHH1111' 11 lH il!l!!!: 1 ...• 1211hlHllll1111111Pllll111111111.t .. 11.11.1p2 '6666666, 65 22222211111 '. 111 .11 ...
HHIHliIIHHHtH1!HlHHHHH~iil!!llilb2 :~~~~~UU~ ~. HH~HHHhH :H~~~:::!::
nHIHIHIHHHPHIH!lHhH!!Hh!!:EHF :~g~~~~~~ttf, HHHHH:HH HHIH:ih: 11111111111111111.1111.11"ll1111111.1.011112 '666666666;' 22 11\21111il11tll \1111111 1111111111111111111ppl 111Pl 11 •••• 1122 '6666666666b' 222 21 1 11 1 1 I ~lPPl''''.
1HHHIHH·1P1

t
11 Itl ll1 llid~HUlP~F .a~~~~~~U~~· Ui HUliH hl it hhhhi~i:: 1111111111111L\ Illh·h1hlHp··111ltz "66666666666' ~!H ?12111HHHH i 2lUpHl· .. ·

ihlHH!i d1hHll1Hlll12211dtiHld .a~~~~g~~~~~~· 22 ~22 iHHh11i1112! nHdll.l::: ~:::::i! 111111111.11111Pllt1112212?11l111111F '6666666666666' 2~ :2~ ~2U21212 2222: 112211111
IhHH!IPHHdthPHIHHHHHH .~g~g~~t~~~~~~~· 2h.h~22H~~HHFHlHHH!1:: 1111111.11I11.1111111h2122111211112 '66666666666665. 222~; 22 222 22222222~ !222211111111.
HHI!i!HIHlp ll·PPHHHHH 12 .at~~~~~ggtt~~~· 22~H21 H l 111.111111I1111Hddtl1111121222 '.6666666666666.. 222212. 12 ; v OE9CRIPTIOII

tHHH!HIHIHH1HHHIHllgz :~~~~~~~~6bh"~:: aU"LL~ ~:. 'n9 1811 CELl JUNCTIO. 385
Lllll11122}22211111121211111 22 '66·' _voob6" 222122~112Zr~;. ~ 117 BIUNC~_PC1~1 ""7 111l1l1 21,22222~ 1112221112 .1-- _eb66666·.· 2221212 Btl lH-"HO
HHHHHBBHHHH~~~HF Ob6~~~~~~~~~· 2~HHfHHnll ,: It52 10ft e~c feiNT ft52
Ll211l222p22F~2~H2Z22p7 6666666t6666' 222111111112Pil111111 ItSO
gHHF~2;2~/2f122HH""l :~t~~~~~~~~~·· 22fH~lP12HHll 111!1'i!1 126 BRH;ct- P(I~l "52

5EGHEN T

Z222212~22J2d21112112' l.6666666666" 221111 dH1111 1 11.1) It83 110 EII[feiNT 483
l222221!21'~2~21222121 1 '6666666666. 221111111ll1111lL11l11ol.. 222222 1 f 2 2221271 • '6666666666' 21111111111111ttttltt11·1~~- .. -- -- ... ".. . t· 2222 1 • 1 12211. .66666666" 2221111\1111 1 1 \11 1 .•... 1 •••• 1 1111 Il ... l1 •• 1 ••• l· .. 1 1
t. 22221Jl1111l11< -66666666' 22121 1 1111111 . ..1 •...• 1 [. 1 }t.•.. 1 ;6.. 221~ 11 2 221 t. '6666666" 221111111111111111111. 111•.• 1 11.1 ... 1 1.1 1111 1.\ ••••••••••••• , .. 6.. 2.211111222 '66666666' 212112222211112lil111ittl ... 1 •••. 1 1.111 1 111 .•. 11.· ••••••••• 1.11111 1 1 6 •• 5. 2;222112222 '66666666' 2222121122111112 1 1 1.1.1•••••....•.•• i l ... 1 ... 1.Ll.lll1· 01 •• 111111111222111 ... 1 ••..•. '6,'6"6' 2222 2 666666666S' 2221112212221112 11111 .1 1 1 1 U11.1.1. .1. ••••••• 1 .. 11 1111111 .. i.l ;"6'6'6" 2 66666666' 222222222112122221111111ttl·11··1··············· .. •· .. 1 •••••. , 11 11 11.1
·.6-6-6··6. • •• 6·. 6666665- Z22222222Z122l12211.tllttl 11 -I ················itJ···tlt11~ tt l •••••• l ••••••.••• 1. 1 ••••••••••••••
••• 6·6 •• 6.t •• • ••• 66.6· 6666665' 22 222222222222222 1 1 .1.1 .•••••..••••... 1t1 It •••• l 1 ••• 1 .. 11•...• ··6·6··6·6 •• ··6··66·6·6 666666. 22222 2222222221222111 111111.1• tll 11 1 •• ·6 •• 6.6· .• ·.6 ... 66·6·6 666665· 222 22222222222221111l1l11 •.•. 11 •.•....•.•.• 1. . ,.,111 1.111.1 1 .••.•.••.• ••• .. 6·6· ... 6·6··66·6·6 66666' 2222222222222222211tl li·· .. ·• ···· .~ ... 11t 1 tl1111ltl1 6 66.6 •• 66·6·6 ·666' 22222222222222222~2 H1 l 1 •• 1. • ••• t.ll1 .. 11 .. 1. 1 • 6 ••••••• 6166.6.·66·6·6 666' 22222Z22222222~ 2 1 1 ••••.•••• 1 •• 1 tlll1 .1 1 ;'6"'6"6'66'6·'66-6'6 66· 2 22222222~2217'? ,. - rI."t 1 11.t 1. l 111.l11 1
~~:6~:t::~:t~6~:a~g:~~~6 ~- ~ ~u2"::,~a2·~IitttlHlfl iIi ::::i:·t::!ll:!.il . i!ttHl!!:!: .. :::::::::::::::::::::::::::::::::::
·.6··6··6·t·66··6666·66.6/: •. ':2222222222~1 221111£t • •.••••.••• 1 iiI'" Iii t.•.....•....•.. ·6··6··6·6f·66"6666·66·66 2222222212211111111111ill'1·ll.··t·l[.....• 111 111 11. 11 ..•••..................•..•...•..••...••.
~··6··6·66t.66 .. 6666.66.6 ~~ 2 222222222P2112 1 1.1 .. 1. "I' 1......... . 1 1~
:;:~:;:~:~~~~ :g~::gggg:~~:.. 2 222~HHHHtH HtH Ull llll·11 !hli!l!!:: il:i:: :t!!l'iilhliitli::::::: I::::::::::::::::::::::::::::::::
'6"66'666t'66"66666665' 22222?22221tl1t~ 2\ltH}llllt1 1 •••. 11 1 I •• 1 1111
;6"bfl'66tt66b6b66666666' 22~22~HHP 1 ~ t u It\11 ••• 1 •••.•••••••• 1·.11 ••• l·t 1 l I .. ·• .. •···
~~~t~~~~~~a~~~~~~~gg~~· F2h~hHH2~ ~ 1 d 1 11 •• !:: ::.:::::: :::. ::: .:tlth !. t:.:::: ::i:~!:::! i·:::::::::::::::::::::::: !>666666666f6666666666' 22222 22122H2~lHIHt\ ~ 11t .. •· I ... 1 ••••••. 11 1·· 1111 .. 1 •••••• , •••••••••• i ...................... .. 
~~t;;;;;;U;;;;;ttt;~· ~~~~~H~~hat uJ. ~t .. L ~h i !~i:: !:li:! !:~!l:: iJt!H •. iiil:::::::::::::!::: !!:::::::::::::::::::::::: 

Figure 3b. Details of computer analysis of upper left-hand neuron dendrite showing computered locations of cell junction, branch 
points, and end points. 



420 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966 

NEURON 

INPUT a EDIT PICTUR.E 

BUGM 
BUGS 

BUGT 
BUGM 

MAPDD 

BUGM 
BUGS 

frame 5C4020 

Figure 3c. Flow chart of program for neuron analysis. 

body has the distinguishing feature of being thicker 
than a denqrite. Hence when the end of the probe 
still remains within the object, it would be reason­
able to suppose that a cell body may have been 
found. A further test is used to confirm the finding 
of a cell body, since it is possible that a branching 
point will be wide enough to contain the entire 
probe. In contrast to such a branching point, the 
cell body is relatively massive, and hence another 
criterion is utilized, namely that a reasonably large 
interior area is found in the region ahead of the 
probe. Only if such an area is found is the location 
of a cell body confirmed. 

In the subprogram DDLpOK, the boundary of 
the cell body is searched by BUGM and BUGS. 
At every point a probe is drawn normal to the line 
between BUGM and BUGS. When the two bugs 
begin to climb up a dendrite, the probe goes through 
the narrow dendrite and comes out the other side. 
When the width of this narrow portion is less than a 
predetermined length, then a dendrite is presumed 
to have been found. When a dendrite is found, 
BUGT is set up on the other side of the dendrite, 

cell-body junction, opposite BUGM, and the sub­
program MAPDD is initiated. As they bound the 
cell body looking for dendrites, BUGM and BUGT 
also observe whether or not either has n!turned to 
SRCHXY. If it has, this indicates that the entire 
object has been bounded, and at the termination of 
MAPDD the subprogram SUNBOG is ·entered 
once more. 

The subprogram MAPDD is more intricate than 
the other programs. Its overall tactic is to have 
BUGM and BUGT climb out on the dendrite. At 
the dendrite, cell-body junction, BUGM and BUGT 
are opposite each other. During the climb they are 
programmed to remain approximately opposite 
each other on the dendrite. When a branch point 
in the dendrite is found, BUGT will be going out 
on one side of one of the branches while the BUGM 
will be going out on the other side of the other 
branch. Thus BUGM and BUGT begin to move 
apart.· The distance between them is obst!rved, and 
if it exceeds a certain value a branch point is indi­
cated. Confirmation of this branch point is assured 
by drawing a line, or tangential probe, between 
BUGM and BUGT. Only when this line leaves and 
reenters the cell area is the attainment of the branch 
confirmed. In addition, since this line completely 
crosses each of the two branches, new bugs can be 
set up at its intersections with the inner sides of 
the branch. 

Of course there may be many branches to a den­
drite. The procedure is to analyze in each case the 
most counterclockwise branch first. The other 
branch is stored in a so-called push-down list for 
later analysis. The end of a branch is fOlUnd when 
BUGM and BUGT meet at the same point. Then 
the most recent branch in the push-down list is 
popped up and analyzed. A little reflection will show 
that all of the branches can be systematkally ana­
lyzed by this means. 

Analysis of Schlieren Photographs 

At present, data from ultracentrifugal experi­
ments is usually presented in the form of Schlieren, 
or interference, images on film or on glass-baeked 
spectroscopic plates. These images are normally 
measured manually on a microscope having a mi­
crometer stage; then the measurements are pro­
cessed by certain algorithms to obtain sedimenta­
tion coefficients, weight-average molecular weights, 
or whatever molecular parameters the investigator 
may be studying. Usually as much time is spent 
measuring the plates, and as much time again in 



~
444444444"5 
2,":l'":lc ~3;J;;:} "2 
2c:'22~2cc21 

I I I ~. J I 1 I I Il J 
I J l' 1. J I I t I j I 
J I I I 1 I f J J j 1 I 
I II If I I I 1 ttl 
l' I 'I I I II 1 I I' 
I • I I J I l I I I II' 
J ) It 1 I I r IJ I I 
I • I 11 ). I t I J I I' 
I I. I • I I I I • I I 

,I I f Ut It II I I 
11 t I , 1 1 I I I I II 
!, I I ttl I 11 I I I 
JI 1111 II II. II 
I I I t j I II J I It'· 
J I I j I I I I J 'I I, ,,, 
J I' I I I I t I I 1 I· 

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 

I t I I • I J I 1 I 1,'1, 

~~ lltll~lrll ' . 22"22 21 -".1 
• 4L1~44 4~~~ 

44.:::ac:; o:t r;:::<=c44~ . 
44!~!!~~!e~~ 
4~4444444444 . 
¥f'ffft~fr1¥17 . 
I I I 11'11 I I f It·, 
J I I I 1 r 11 11 I·f 
1 1.1 H) tl tlJ.t·, 

421 

Figure 4a. Picture of a Schlieren photograph as recorded in the computer's memory. In the insert we illustrate an enlarged 
portion of the figure showing the density levels (where the unit is the zero level). We have also shown an insert of a 
portion of the original Schlieren photograph. 



422 PROCEEDINGS-SPRING JOINT COMPUTER· CONFERENCE, 1966 

computation, as was required to perform the ex­
periments. The automatic analysis of such ultra­
centrifugal Schlieren photographs consists in first 
reading each picture into the computer by means of 
the FIDAC instrument (see Fig. 4a), and then utiliz­
ing the BUGSYS language to make measurements 

1"6666666665321 
2666666665321 
26~6666f6"22 
24se6686632t 
136ft6666Sl21 
! 46666665321 

266e666522 
2!e66665221 

l36666665221 
14666666532 
1 J6et-b6~521 

~:::~~:~;~'1 
2-1666666421 
12'56~6666~221 ~ 

12.J66666665221 
12 223 '36~66666'5 221 

2222222 2222223" ••• ~.3 4666666 6666!!:4 32 22111 

~~:~~~~~~~:~~~:~~:~~~ ~ ~ :~~~~:: ~~~~ii ~ ~22 ~221 2 ~i~ ~5!~~~:::~~~i:~~1~~~ ~~ll~~ll~11~6666 
1366664221 11222222222222233333455555555555 
IJ666t:321 11 llli 

2!l666:J21 1?3442222al 
246.421 lJJ5E.6J221 
246.421 13466.6421 

t:!~6.~21 2J!6.66421 
I:! • 1 J46E.6321 
.466.6321 ZO\ff.6521 
14t16.521 2366.6 .. 21 
14f6.521 2:!f.e.642 
2466. ~21 23fE:.6321 
2466.5221 1.3~t.6.2t 
2~6 .6421 12'!6. E:421 
2466.-::21 12~E:.e~ZI 
24f:6.521 I '3eE:.6421 
246.6421 246.632 
2'56.6421 24E:.6421 
246.6321 1 '!e. 6421 
246.6421 Z4f6.521 
2'H:.bla21 116.64.21 

1 3f6 .64 21 1 J66. ~21 
256.'521 1~6.521 
H:6.64~1 2E:li.532 
Jeto,.b:!21 1466.6321 
256.6:!21 1466.612' 
1e6.5:!2 IH:6.E:12' 
366.532 2':6.6421 
26b.6:!2l 256.6521 
2'5b.6J21 2!6.6421 

l'!66.5,!21, 146.642, 

~;~.522 ~.6':.~~I: 

1:~~:~:~~1 
14e6.S'!21 t> 1466.642. 

~:~~:g~~: "< ::~~:~il: 
2'56.f5221 1466.6"', 
24e.64il 1)66.652. 
:-4e.64i:2 366.6522 
i4E:"'>. '52~ 14E:6.5522 
.i5E:.6~22 366.65j21 
;:·H:.6JZl 356.t.o6 21 
25t.64~1 256.66 21 
266."'4C'1 266.66"21 

I :!66.6521 256.1'15121 
11\66.6321 256f..e 21 

256.64;:;1 ~46f.6 2Z1 

;~~:~:~i ~:::::~J~: 
14..,6.64221 ~466.E:S!2' 
1::!66.6lt21 1"66.66421 

..?6e.64221 1366.66.21 
'!.l6.64221 1'l666.d'!221 

~:~~:~;~:I :~~:~::~~~I 
246e.63221 2566.e~3U 
2466 .. (,4211 ;1:666.4!515321 
2"6~.64221 l566.4!56321 i!"l6.t.6............ 2"66.66 ........................ .. 

. 
1 tl t 11 1111 
It I It 1111 

1 
1\ 
1\ 

IJb6.flll42211 25"H"h6643l 
IJ6~.f642211 1246f>6 .. :6'3321 
1]66.6642211 126"6.6115321 
24ol').~.b4221 24f-'-I6.f5321 
14':6.6£:3221 236tJ6,,66321 
2.6~ .. ~632211 Z4666~~6321 
2"'~6.1')6422111 24666,,665221 
21166.661t2211 13666.665221 
c466 .. ~:'2211 2"6~".65221 
24:f:5 .0l:J~ I 24666.6")221 
2466 .~f:2211 I 3664!5 .66J21 
1"66.tt2~11 2466~ .. 66"211 
2_!l~.l:32211 13".:!6~.664211 
2~c6.~l:I3211 136MI.665221 

~:~~:~~~~~:1 ~!~~6!~~;~n 
;:"65.M,,~2211 246d~.66~221 

3:~~:~~~~~ ~ ~::~~:~~;~~: 
;:561').6':2211 1"f~~.666]211 

12566.6522211 2t\6t!1f.:.66f.42Z1 
t;::666.tl~22111 13~d~.ti6f:321 
lJ6"l6.65c.lll 12566.6664211 
1 '!66 ."e,,2211 2 .... H.6.664221 

II 24666.6522ll1 24d66.6652211 
1111111 1246'.6.f:~'22111 2:4tS~6.6b52211 

~~1U::::::JII::::~:~~~:~;~~~~~:::::111 II i~~~~:~g;.~~~:: 
2:!2H22?111111111C246 56.u~32?;!221111111111 12666.66642221 

~~~if: i g ~:: ~:: t : ~~~~2: ~~~~~~~~~~~~~: ~:::: 1 I ~ ~~~~~~~~~~~~~: 
22111122211 ~ 111111 <!4606 .664:!221'2~222 12221221124666. 6t;.632221I
1111 i12' I 1 ~,~ 11111225666.661)32222222:; 221122.! 1124:~66. t:t>b"Z2211
2222222 .22':!,l.! 11) 1 ?:2~66~. o!!"'64 32~:::2222Z2 !221 ?111.l4e/.lt-6. 66'j22Z2111
2Z~2222 2.!'!2 '! t !2 2:'t 2 266 6. 6"~3 22 2.!? 22 22 22111221112t: 666.66532222111
2222222.!2"?2 '!122?;>2:2~66 .tlu6~ '!?2Z2222~ 22121221112"56"'6.666322221111
2322C'?.12~?. 22 222 22 C 266..,6 .~6':i 122;: 2.2 2' 2~ 222212221 1 .a~6M •• 66632.2 2.2111 1
2322l2i.2222'?222l .. H'::'5b'). l'i6b" 3?22222Z'2~2112221124666e. 61')522221 t

1221
124221 .2.

2122l ~2 ~2 2 2 ~~.! ~ L 2' 216e. 66.06'542;t.22 22 2 2 22 2 2 22 2:' H ~46(o.6f:. 666.J2~2 211 11111
232?222.!2:22~.!:~';!222 ~66~6 .66'34 ~ 3222c2£"2l222l,222123{)l-66. 66632222211111111
2:t22::!2ll22;P.!~22::'246f)66 .f;e15~412C!2c222JL!i.l222222J6"6f. 661;52l222111 t 1111I 1
~32.!22Z 2:1 ~ 2.!2l?7.':2 56G ~t.. b()S'544 .13:!:! 3~ '! J 32222:t:2 2 2'2566t. 6665122232' 2222222111111111' II'
3')] 1 ·jJ3]" ~ 3 '!! 3 3 .. "i ." "'66~6. tf!5!5""" 44'" J:!!!! 32 222222'! 5666. 666t 4 ~z 2 '!222222 222 21 21 111111111
., J333331""3 131' ') 14 t6f1. ~6 .6"554 3 3:!:! 33 ~ 2 3 3222~32 22.2_066(. 6oSl-522 2 '222222 222 ?222.2, 121 • III
33 l""4 3 '1 'l' 31,n":1 ~.:!r:.66 66.666'5"" 3J ~:! '1 ~ l'nJ J222 22 :i!24661':6. 66652.2? 32 22222222222221211111'
2133Jc2212222 322.~ .1'566 66. ,..,655544 3! "!:!J J4l33 32 3 32 2! . .:! 36666. 666t.42 2 322222~ 222.121211111111
.B3332.l 2:' 2 2::? 212 32'! ('06 t:. 66654 4444 ~3 '1=:t 33.!] 3223 222:2 'l6a6e6. 666'32 2 32 ~2222 222112\211111111
]J JJ~ 'Ij]~22 2:tJ]2 223~66 66.66'5'3544 ,.,3 J~ J 33 3 3323 3 32:2366666.6665323222222222 t 221 211111111
444 "'333 3 3 '] 3' 3 12 J? 3e6f)oS6. f;~5S~" 33 3333 3 3222222 32 2'2 250t66. 66653222 22222 222e! 121 11111111
4'5"4444" ')44 4 3 J 1 J 34 e66 66. (,65554 33:! 333 J 3 32 22221! %2246666 .66664 ?22 22 222 221 21 21111111111
5'34444",,] 3J 3., ... " 3 16 -;66661",. 66655'!! "4444 4544 "'4"" 44 3~2466666. 6665 J3222tZ2 222 2222 21211 III
'j65S"i554441t :'I 3'55'546~f"'666. 66665544444 454 .. 4443 34 :J.22 'lSe.t'lfl6. 6666 3 32 22222 222 222a 2222222' 1

;;~;~~~ ~i~~::; ~ ~:: :~~ ::~~~;~~~;:;::: ;~;::::: ;:~~~~: ::::~: ~~~ ;~~ ~ ~ § ~~ ~~~ ~,~ ~ ~ ~~~ ~ ~ ~~ ~ ~
5to5S:;,.,. 444",. .. 54 ,.It~ te6 tl6e6. ~5 '\5 ~5 ~ 4"" 4 '5" 4 444. 44 4::12 3 366666. I'J 66 '542 2 2 2 22 2222222222222221

~::~~:~~~~;~~~§~~~~::~:~~~~~:: ~~~~~~~:~;~;:::::: :~!~~~~~: g~g~::~~~~~ ~~~~:~~ ~~~~~~~~ ~
b~6f\666b6661)f:>6'S4je.e66661'166666. 6"66l:l56~~'5S'S5'55!;!!44" 5t'1666. 6666':. ••••••••• : 2222
66666I'JtlJfl666.t- 6'!tf ~ 't6 6f666 66tj66~666 6 6 6~1S6ft6655~5! 5.55. 34l-666 e 66666~ 'l 2 2.333 'l2 2 212 222222222:
6661'!J66666 66666'5 566666 e 61!16666 65 555'55S56'5!! '55554", 4 4 32 25666 ~666666 4 21.21 322 2 2 2.2 222: 2 2 2 2 2 2
66t.6655 ")56':16 5~'S ".156 eb6 f:6 66666 6""1, 55 'S'!!! '!! 56!! SS5'5I}S!-! 542 ~4 66~6666 666 5 32 22 222" 2 32? 2 2l2: 2 2 2 2
66666t-6116h6{,66116o;6 66G 6 6 66666 6t-66 6l: 66 6655 5$Sb65'!1<5~5 3 2 366666 66 6666. 2 222 2? 2 2]222: 2 2 2: 2 22 2
666666666666 36 ~ 56" 666 66 t:66666 6 66 61'166 6651111j! 5 3151554·" 5S 3 3 3666666666665 32222222322: 22 2 222 2 2
66b666u66666 56 5 31'J666f1o 66 fl6666 66666666 d666 6 555'5~5',5 6654. 4 66f,666 \!16ft 6S 31 2J3 3 J.:3] 122222 e:2 2
66666666666 ~666666 ~H. 6 6 b6666 6666 66 66 6666 6666 6 55·'3 66~ S4" 666f>66 666'" ~5. 3 J 33 3 33 J 3 3 3 22 2 2. a 2
666666t>1l1\666C)6 5 06 6 Ge6 e.o!I6666t..6666 6~6E: 6666 6666 66 E 6 666 ;34.6666 66666 660;. J 222 33 3J.4 3 32 2. 2 2 2
66«066t>66~6S54 ~"~I'Je. e;61"i 6 ~ ~6 61'.16 6666 "6ee 666t e.6~e666 6 6,.665"566666666 66')"3 222334.4." J 3 2. 2 2 2,
66f.66t16 66'544 'J.66 ~66666 6 6 6tJ6666666 "!5~ 56 6f f666660S 6 61'J6 54 2 366666 666666 33 32 Z 2. 34""" 4 32 222 2
66666'!'\.~ " ... 4.'.) 5o!161!o66 f6b 66 ~ 6666666666 6! !56666 6~tl6666 !l6S!4 336666666666654) 312 2 2 33 34 333132 2
66555!55 5"j~66I')oSb 666 6(;'" 6666666 6666 66 61: 666666666 ~ ~'5455 ~44 "66666 66666666 5 33 2 2322223:1 3" 4 4

Figure 4b. Computer analysis of Schlieren photographs show­
ing "footprints" of the paths of the bugs.

on the picture. As illustrated by the dots, or "foot­
prints," in Fig. 4b, a bug is first plac.ed to the right,
beyond the two lines. It is then moved to the left,
searching for the rightmost line, or function curve.
When this line is found, another bug continues the
motion to the left, looking for the second line, or
base axis. Now we have one bug placed on each
line. The bugs are then moved up along their re­
spective lines until the right-hand bug finds the be­
ginning of the function curve. The measurement to
be made in this case is the horizontal distance be­
tween the two bugs, i.e., Lly. The bugs now move
down, one point at a time, making approximately
115 measurements of Lly on the curve. The
measurements are made from the "middle" of each
line, since the line is really "thick." Th~! STICK
statement is used to keep the bug in the middle of
the line. After all the measurements are made, the
computer programs to determine molecular param­
eters are executed, to produce the finally desired
results. On an IBM 7094, this entire process takes
less than one second per Schlieren photograph, with
the FIDAC device.

Analysis of Neuron Cell Bodies

The purpose of this study was to investigate pos­
sible morphological changes due to aging in cell
populations of neurons from the caudate nucleus of
the rabbit. The morphological characteristics
measured were 1) the area, 2) the maximum di­
ameter, 3) the maximum perpendicular radii, and
4) eccentricity of the perpendicular radii (see Fig.
5a). These measurements were made for both the
nucleus and cytoplasm of each of about 6000 cdls,
utilizing the FIDAC scanning instrument on an
IBM 7094 computer. About 2.1 seconds p(~r celt, or
3 Y2 hours altogether, were required to process the
6000 cells, including the scanning and computer­
measurement times.

A problem arose from the fact that in looking
through a microscope at a three-dimensional ,cell
only a two-dimensional section is seen at the plane
of focus. Therefore the largest projected area of
the cell can only be obtained from the examination
of a composite of sections seen at many levels of
focus. To obtain such a composite, the image from
the microscope was projected into a ground-glass
plate, and as the plane of focus of the microscope
was moved up and down the largest projected area
was traced on paper. In this way, drawings were
made of each cell in the study, with the cytoplasm
in black and the nucleus clear. These drawings were

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 423

Figure 5a. Diagrammatic picture of a cell indicating the meas­
urements to be made. For the cytoplasm the meas­
urements to be made are the maximum diameter
DcD'c and the semiminor axes SCPI and S'cP2,
as well as the eccentricity PI P2 and the area. For
the nucleus the measurements to be made are the
maximum diameter DND'N, the semiminor radii
S N P3 and S'N P4 and the eccentricity P3 P 4 and the
area.

Figure 5b. Actual 35mm frames showing cells.

then photographed on 35mm film for input through
the FIDAC (see Fig. 5b).

For this problem the FIDACSYS programming
system was utilized. In the first step, the FIDACSYS
system directed the FIDAC to scan a frame and
read the picture into the computer's memory. After
a frame had been read into the computer, the in­
ternal bug scan was initiated in order to locate the
first object or cell. When a cell was located, its
boundary segments were determined (see Fig. 5c).
While tracing out the boundary, the bug also re­
places the boundary points with the value "7." In
addition, during this process the maximum and
minimum x and y extensions of the cell under con­
sideration are also determined.

For the computation of the maximum diameter,
the distances between all pairs of boundary points
are determined; the points corresponding to the
largest distance are the end points of the maximum
diameter. For the computation of the maximum
perpendicular radii, the areas of all possible tri­
angles constructed on the maximum diameter with
an intermediate boundary point as vertex are com-

• 1 ~

.17

.1 S

• 1 ~

• 1/~

.1 j

Figure 5c. On the right, a partial-print of an object. On the
left, illustration of the selected boundary points on
the object and examples of the triangles by means of
which the minor semidiameter is determined. This
object is shown for illustrative purposes only. In
general the brain cells analyzed were much larger,
and about 200 boundary points were obtained on
the cytoplasm.

pared. The largest area on either side will give the
two largest perpendicular radii. A simple calcu­
lation gives the point of intersection of each maxi­
mum perpendicular radius with the maximum di­
ameter, and the eccentricity is thereby determined.

Next an erasing process is initiated; the object is
erased from the top down until the nucleus of the
cell, which is a clear area, is found. The boundary
of the nucleus is then traced by the bug, and a list
of boundary points is· made. From this list of
points, the maximum diameter, perpendicular radii,
and eccentricity are again computed.'

Analysis of Chromosome Karyograms

As a final example we shall consider the auto­
matic analysis of chromosomes by the FIDACSYS
programming system. Recently there has been
much active interest in the analysis of chromosomes
in the metaphase stage of mitosis, when they ap­
pear as structures split longitudinally into rod­
shaped chromatids, lying side by side and held to
one another by a constricted area called the centro­
mere. Certain abnormalities in the number and
structure of chromosomes are particularly evident at
this stage and can be related to clinical conditions
in animals and in men. For example, in man, mon­
golism and the Klinefelter and Turner syndromes
have been correlated with chromosomal aberra­
tions.

The study of chromosomes by manual methods,
however, requires a great deal of time-enlarged
prints must be made from photomicrographs, and

424 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

each chromosome must then be cut out from the
print so that it can be aligned with the others for
classification into the so-called chromosome karyo­
type. With the FIDAC system, the time required
for analyzing and classifying! each chromosome can
be radically reduced, to about half a second per
chromosome or about 20 seconds for the full com­
plement of human chromosomes. Here' we use the

computer for investigating large numbers of cells
with respect to total chromosome complement
counts, to quantitative measurements of individlual
chromosome arm-length ratios, densities, areas, and
other morphological characteristics, and so forth.

By processing large numbers of chromosome sets
and statistically analyzing the data, it is possible to
give very accurate descriptions of the standard

(a)

F(,iUR-AI~I'J,f:.[) CHROMCSOME FOU\lD wITH CENTeR OF GRAVITY AT X ;; 403. Y :: lIS,.

A~M-C:ND

A ~~ C. A :: 2 8'~ • ;). PER I M E. TEn = 89.2.

LENGTHS OF FIRST ARM PAIR IDENTIFIED ARC
LENGTHS OF 3ECO\lD ARM PAIR IDENTIFIED ARE

A~~-LENGTH RATIO =J .4R9

o v i::: ~ ALL LEN G T t-:: 2 4 • 2

COORDINATES.

1ST ARM. X = 412. Y = 126
2ND ARM. X = 399. y = 12<;
3t-lO A~M , X = 396. Y = 1(6
4TH A~M. X = 4 ~ 8. Y = 1(,5

7.8 AND
17.5 AND

8. 1 ~
IS.G.

THi CENTROMERES ARE LOCATED AT X = 4~7. Y = 120. AND AT X = 403. Y = 122

. . . · · · '. •••••• :. · , · • •••••••• ·
• • • • • • • • • • ••••••• · : · .
•

. ; .. · : .. .
•• • • • • • • • • • • • · ;

••••••
• ••••
••••• • •••• ·

• •••
•

•
• • • • •

• • ••••
•••••

••• • ••••••••••••••••

(b)

PLOT OF BOUNDARf POINTS

.17 .18
.15 .16

.19
.14

• 1
.13

.2
.12

.3

• 11
.4

.11
.7 .5

.6
.8

.9

C. C)

Figure 6. (a) Results of analysis on a chromosome. (b) Subprintout of chromosome being analyzed. (c) Centers of boundary
segments.

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 425

chromosome complement and of individual chro­
mosome variability for particular species. This
statistical technique may be the only way to uncover
small variations, which may prove important in re­
lating chromosome karyotypes to diseases.

Figures 6 through 11 illustrate the capabilities of
the FIDACSYS chromosome-analysis computer
program. After the picture has been placed in the
computer's memory, an internal programmed scan
is made in the memory for each of the chromo­
somes in the picture. When a chromosome is
found, it is analyzed; the results obtained are as
shown, for example, in Fig. 6a. The coordinates of
the center of gravity of the chromosome are deter­
mined, its area and perimeter are measured, its
centromere and arms are identified and the lengths
of the arms of each arm pair are/ measured, the arm­
length ratio is computed, and the overall length of
the chromosome is determined. Of course, the
actual coordinates of the ends of the arms and of
the centro meres had to be determined in order that
the arm lengths could be properly measured. These
coordinates are also given for the chromosome, as
illustrated in Fig. 6a.

PLOT OF eASIC PARTS FOA OBJECT

.0 A .OC
.OE .ou

In Fig. 6b we show a subprintout of the particular
chromosome being analyzed. When a chromosome
is located during the internal scan in the computer's
memory, the boundary of that chromosome is
traced. This boundary is then characterized by a
sequence of boundary segments. Figure 6c illus­
trates the actual locations of the centers of the
boundary segments that were chosen to characterize
the chromosome of the illustration; for this chromo­
some, there were 19 such segment centers in all.

The next step in the analysis of a chromosome is
to characterize the curvatures of the boundary seg­
ments. These curvatures, called the basic parts of
the chromosome, are illustrated in Fig. 7a, in which
we show the curvature code corresponding to each
boundary segment. The code letters at the end of
the alphabet, namely U, V, W, X, Y, and Z, repre­
sent concave curvatures in increasing order, whereas
the code letters A, B, C, D, E, and F, represent
convex curvatures in increasing order. The code
letter 0 represents an essentially straight segment.
Next, from these basic parts, the syntax-directed
pattern-recognition technique is carried out to build
up the so-called derived parts of the chromosomes.

.08
.00

PLOT OF DERtV(O PARTS

.ou
.0A .93 .90

.90 .95

.OC .0,.. .72
,<J3 END POINTS (E) AND CENTROME C

.ov

.()v
.08

.95
.93 It E

E It

.OC
.ov .OB

.08

.93
.93

It
It

.00
.OF .95

.95
.9(,;

It
It

.93
.95 .72

It

.93
.93

.90 c
c

It

It

(a) E
It

It

(b) E

(C)

Figure 7. (a) Curvature codes corresponding to each boundary point. (b) Codes for derived parts. (c) Final results showing
end points "E," and centromere location "C-C."

426 PRO(:EEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

CHROMOSOME ANALYSIS SU~'MARY
FR CH T CEI~TER PERI OVRALL 2 L.ONG ~ SHORT LENGTH ARLA LONG SHORT AREA
NO NO GRAVI1¥ :II1ETER LlNGTH LENGTHS LENGTHS I~ATIO AREA AREA RATIO

1 1 C 32d' 37 100 • .3 34.7 26.2,26.5 7.9, B.6 • 761 499. 390 • 105. .70(1,
1 2 A .321, 7lJ 103. t) 73.3 3B.5,37.~ 34.9,35.2 .522 1013. 512. 489. .51c
1 .3 C 245, 69 8'.1.5 20.(3 19.2'19.~ 8.6,10.3 .673 434. 303. 125. .703
1 4 0 41t)l fJ7 59.7 16.9 B.4,10.9 8.1,10 • .3 • 511 219. lIn • 110. .501
1 5 C 2:>9. 90 t;1.2 29.0 24.9,24.7 3.8. L~. ~ • 856 378. 357 • 35. .910
1 6 C 2tH3,11.3 68.5 24.4 19.5,19.0 5.3, 5.0 • 78B 295. 235 • 56. .eOR
1 7 C 338,134 ~j.~ 1b.1 H.6, 8.6 7.3, 7.d .~33 171. 93. 76. .549
1 U E 220'1~b 11~.3 40.~ 24.7,2..3.8 16.4,16.1 .598 572. 324. 242. .572
1 I) 0 2 tHJ.146 b4.~ 2C1.1 12.0,10.0 8.9, 8.~ • 56fl, 240. lL~3 • 100. .589
1 lO C 441,151 bO.7 2u.2 ~1.O'19.4 8.2, 7.6 • 716 397. 293 • 97. .750
1 11 A 427'18;) 199.7 78.7 42.3,40.9 37.5,36.7 .529 1114. 591. 499. .542
1 12 G 208,164 49.5 10.6 8.7, 7.5 7.fH 7.4 • 520 153. 79 • 72. .521
1 1 .~

.. J n 304,1()U 117.6 41.0 2~.2'21.5 20.0,15.3 • 570 531 • 295 • 237. .555
1 lt~ b 3~6'20d 99.2 32.1 la.5,1i3.7 12.7,14.2 .580 451. 246. 205. .545
1 l~ D 3~6'21~ 63.6 19.8 11.9,11.0 9.1, 7.5 .580 219. 128. 87. .596
1 16 D 2t>5'26~ 51.7 16.5 8.7, 9.2 7.9, 7.1 .544 154. 81. 69. .540
1 17 !j 214,27:' 90.9 30.5 19.1,18.7 12.0,11.2 .619 3R2. 253. 125. .669
1 18 C 442,274 76.5 24.7 21.0'18.~ 5.3, 4.6 .799 351. 277. 64. .813
1 19 A 2::>0,.307 161.0 59.7 32.4,32.0 28.(),26.9 .~40 895. 450. 426. .514
1 20 C 2b5,.30~ 71.6 23.9 23.2'21.6 1.5, 1.5 • 937 301. 297 • 7. .977
1 21 C 366,318 90.9 30.2 22.0,22.4 8.9, 7.1 .735 3A2. 310. 69. .SlA
1 22 A 303,350 203.2 83.0 45.4,46.0 36.5,38.2 • 550 1139. 592 • 550. .518
1 2.3 H 356,394 120.5 39.3 23.5.19.9 20.5,14.7 .552 596. 318. 262. .548

Figure 8. Printout of final results of completely automatic analysis of full complement of chromosomes of the Chinese··hamst~:r
tissue-culture cell of Fig. 9.

This procedure results in the recognition of the ends
of the arms and the centromere position. Figure 7b
illustrates the codes developed for the derived parts.

Figure 7c illustrates the final results of the recog­
nition method for our illustrative chromosome.
Here the letter E has been placed at the points
which represent the ends of the arms of the chromo­
some, and the letter C has been placed at the points
that represent the location of its centromere. The
measurements of the arm lengths are made from the
centromere to the end of the corresponding arm.
The area and perimeter of the chromosome have
previously been determined by the computer pro­
gram.

Figure 8 shows a printout from the computer of
the completely automatic analysis of the full com­
plement of chromosomes from a Chinese-hamster
tissue-culture cell. Note that the computer has
automatically 1) counted the chromosomes, and for
each chromosome has automatically 2) found the
center, 3) evaluated the perimeter, 4) measured the
overall length, 5) measured the lengths of the two
long arms, 6) measured the lengths of the two short
arms, 7) calculated the (arm) length ratio, * 8) evalu-

*The arm-length ratio is computed as the average of the long
arm lengths divided by the sum of the averages of the short and
long arm lengths.

ated the overall area, 9) measured the arlea of the
long arms, 10) measured the area of the short arms,
and 11) calculated the ratio of the arm areas.t
Figure 9a shows the photomicrograph of the cell of
Fig. 8. Figure 9b was plotted by the computer only
from the results of its analysis. This plot shows
where the computer 1) located and 2) counted each
chromosome (see small numbers), and for each
chromosome shows how the computer 3) traced the
perimeter (see chromosome outlines), 4) identified
the arm end points (see x's), and 5) determined the
centromere (see line across chromosome).

In Fig. 10 the computer has plotted the results of
the automatic classification of the chromosomes of
the cell of Figs. 8 and 9, giving the complete karyo­
gram. The x marks the centromere, and the lines
diagramatically illustrate the actual arm lengths;
the number below each schematic chromosome re­
lates it to the corresponding chromosome in the
Table of Fig. 8 and in the plot of Fig. 9b. In Fig .. 11
the computer has plotted a scattergram of the short
arm lengths vs the long arm lengths, where the small
numbers again relate to the chromosome n4mbers
of Figs. 8 and 9.

tThe ratio of the arm areas is computed as the area of the long
arms divided by the total area of the chromosome.

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 427

Figure 9a. Photomicrograph of cell of Fig. 8.

428 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

,

.0 8

Figure 9b. Plot of computer analysis of cell of Fig. 9a.

PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 429

TYPE A CHROMOSOMES

TYPE C CHROMOSOMES

)()()()(

)()()()()()()()(

19

18
21 10

II

RPE B CHROMOSOMES

I~ 17

IS :IS

Figure 10. Karyogram plotted by computer.

SUMMARY

In this paper we have presented an introduction
to the instrumentation and programming techniques
utilized by the authors in biomedical pattern recog­
nition and processing. We have illustrated the tech­
niques by briefly describing four applications al­
ready accomplished. Such techniques promise to
open up entirely newfields in biomedical research.

ACKNOWLEDGMENTS

We acknowledge the cooperation in this work of
Prof. Charles Noback, Dr. Richard Moore, Dr.
Alden Dudley, and Prof. Frank Ruddle.

REFERENCES

1. R. S. Ledley, Use of Computers in Biology and
Medicine, McGraw-Hill Book Co., New York,
1965.

2. Ledley et aI, "FIDAC: Film Input to Digital
Automatic Computer and Associated Syntax-Di­
rected Pattern-Recognition Programming System,"
in J. T. Tippet et al (Eds.), Optical and Electro­
Optical Infor. Proc., MIT Press, Cambridge, Mass.,
1965, Chap. 33, preprint.

3. R. S. Ledley, Programming and Utilizing
Digital Computers, McGraw-Hill Book Co., New
York, 1962, Chap. 8.

430 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

II

" "

•

II

rt:

III

to I"
Ie

'·.000
I

1t.7tH
I

18.42';
--------r-- I I

S5.1l9 Sl.es1 ~.667 28.986
L~'1G R'1M LENGT"iC;;

Figure II. Scattergram plotted by computer of short arm lengths vs long arm lengths_

4. Ledley and J. B. Wilson, "Automatic-Pro­
gramming-Language Translation Through Syntac­
tical Analysis," Commun. Assoc. Computing Ma­
chinery, vol. 5, no. 3, pp. 145-155 (Mar. 1962).

5. Ledley, J. D.· Jacobsen and M. Belson,

"BUGSYS-A Programming Language Not for
Debugging," ibid, vol. 9, no. 2 (Feb. 1966). See also
K. C. Knowlton, "A Computer Technique for Pro­
ducing Animated Movies," A FIPS Con! P'roc., vol.
25, pp. 67-87 (Spring 1964).

A CHESS MATING COMBINATIONS PROGRAM*

George W. Baylor and Herbert A. Simon
Carnegie Institute of Technology

Pittsburgh, Pennsylvania

1. INTRODUCTION

The program reported here is not a complete
chess player; it does not play games. Rather, it is a
chess analyst limited to searching for checkmating
combinations in positions containing tactical possi­
bilities. A combination in chess is a series of forcing
moves with sacrifice that ends with an objective ad­
vantage for the active side. 1 A checkmating com­
bination, then, is a combination in which that
objective advantage is checkmate.t Thus the pro­
gram described here-dubbed MATER-given a
position, proceeds by generating that class of forc­
ing moves that put the enemy King in check or
threaten mate in one move, and then by analyzing
first those moves that appear most promising.

The organization of this paper centers around
MATER's ability to analyze chess positions. After
a brief look at the program's history in Section 2,
the overall organization of the program is presented
in Section 3, an organization which is designed to

*This investigation was supported in part by Research Grant
MD~07722~OI from the National Institutes of Health, and by the
System Development Corporation while the author was a sum~
mer associate there.

tSometimes the defender is able to avert the checkmate by
incurring a heavy loss in material (pieces and/or Pawns). If the
attacker's gain in material is indeed an "objective advantage"­
the defender being left with no compensatory attacking changes
-then such combinations would generally be called mating
combinations, even though not ending in mate. The current
version of the program confines itself to mating combinations
in the narrow sense-those from which there is no escape. Inclu­
sion of the broader class is an obvious extension.

431

allow flexible movements in an analysis tree of
possibilities. Then in Section 4 the "top level"
comes under consideration; MATER's heuristics of
analysis-the search rules and priorities, the search
evaluators-that enable it to find a mate in the
maze of possibilities. In Section 5 data on the per­
formance of the program is presented. Finally, the
programming language representation of the chess­
board and chess pieces and the basic chess capa­
bilities this affords are reported in the Appendix
(they are reported in yet finer detail in Baylor2

).

2. HISTORY OF THE PROGRAM

MATER has led a checkered life. The original
mating combinations program,as conceived by
Simon and Simon3 was a hand simulation setting
forth a strategy of search. According to hand simu­
lations the program discovered mating combina­
tions in 52 of the 129 positions collected in Fine's4
chapter on the mating attack. But a hand simula­
tion is not a rigorous model and, as such, is itself
sometimes prone to the imprecisions and ambigui­
ties of many verbal theories. Indeed, Myron and
May~ pointed out two such ambiguities in the
specifications laid down by Simon and Simon 3

•

Newell and Prasad6 coded an IPL·V program
which set up a chessboard, recorded positions, made
moves, tested their . legality , and performed a few
other functions (see Appendix). This they overlaid
with the beginnings of a mating program.

432 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

8 11

1
W-:-:-k~

IJ

1
Figure 1. The Analysis Tree

(The W's are White moves, the B's, replies.)

The first version of a mating program described
here-MATER I-is the work of G. Baylord,2
H. Simon and P. Simon,3 using the Newell-Prasad6

chessboard. The program was revised during 1964
by Baylor into a second version, MATER II.

3. ORGANIZATION OF THE
ANALYSIS TREE

The Problem

As stated in Section 1 the mating program
analyzes chess positions. An analysis of a position
-as the term is used here*-consists of the set of
moves and evaluations made in the course of re­
solving the choice-of-move problem. Taken to­
gether, moves and positions make up a tree of
possibilities in which moves operate on positions to
produce new positions (see Fig. 1) and on which
evaluations of positions and· of moves in achieving
desired positions can be hung as desired.

The dots or nodes in Fig. 1 denote positions
(static states) and the lines between dots denote
moves (operators) that transform one position into
another.t

*Chess players would probably prefer to define "analysis" as
the finished product rather than the process of search, laying
stress on the "right" moves and continuations rather than
emphasizing how these were arrived at.

tSimon and NeweiF have often drawn this difference equation
analogy to the problem-solving process: given an initial state
description and a desired state, the problem is to find a process
description that operates on the initial state to produce the
desired one. In discussion of the Logic Theorist,8 for example,
the logic expressions correspond to the static states, and the
rules of inference, to the operators.

How should the analysis of a posItIOn be c:on­
ducted? Figure 2 presents one simple scheme.
Would this scheme be workable if it wc;~re made
operational? For example, let:

1. "X" be defined as checkmate and the
program be given the capability of
generating moves in its service;

2. the criteria for deciding among moves
be specified by certain rules of selec­
tion;

3. the program be given the capability
of making moves and updating board
positions;

4. a test be provided so that the pro­
gram "knew" if it had achieved ';'X";
and

5-8. the corresponding provisions be made
for "Y", defined as escaping check,
and for choosing among replies.

The answer is no, not quite. The schem,e lacks a
means for recovering from false starts, for retracing
its steps when it runs into blind alleys. Ind4;!ed,
what is lacking can be seen by considering the dif­
ference between actually playing a game of chess
and analyzing a chess position: the course of analy­
sis is fickle and reversible, whereas in an acltual game
a move once made cannot be unmade. In other
words, the scheme outlined above needs provisions
for unmaking moves and for abandoning seemingly
unpromising positions as much as it needs the capa­
bility of making moves and pursuing promising
positions. Ideally, one should like to be ablt~ to

A CHESS MATING COMBINATIONS PROGRAM 433

(1)

Generate a set Select
Enter .. of moves in the ~ one ~

service of X move

+
Yes
I

Test if Y Make that
+- has been ..,- reply in

(3)

Make that
move in the ~

analysis

Select

(4)

Test if X
has been I---

achieved

I
No
t

Generate

Select
Yes ----+- another

reply.

~ one ~ replies in the
No more
replies =
mate. achieved the analysis reply service of Y

(8) (7) (6) (5)
Figure 2. A simple recursive mating scheme:-

enter and reenter the move tree at any node (posi­
tion) at any time and from there to proceed down
any branch, old or new. Providing such capabilities
for reinstating the right position at the right time is
probably the central problem of organization at this
level of the program, while making operational and
making sense out of steps 1-8 above is probably the
central problem at the next higher conceptual level.
This section ,reports on the former problem: imple­
mentation of a flexible move tree. Section 4 is
devoted to the latter: defining the problem and the
heuristics of search.

Building the Tree

The notion of analysis as a tree search is mis­
leading to the extent that it implies that each step
consists solely of selecting a move from the many
available alternatives. Actually, the process is more
one of generating moves as one goes along, of build­
ing one's own tree. This is the very distinction
Maier9 (p. 218) has drawn between decision making
under conditions of uncertainty* and problem
solving: "Decision making implies a given number
of alternatives, whereas in problem solving the
alternatives must be created. Thus, problem solving
involves both choice b~havior and the finding or
creating of alternatives."

In every chess position, of course, the rules of the
game place an upper limit on the number of possi­
bilities that can be created; de Groot ll found that,
averaged across the course of a game, the mean
number of legal move possibilities lies somewhere
between 30 and 35. This is a full-grown tree; the
one the searcher actually builds is much smaller: on

* According to Luce and Raiffa 10 decision making under un­
certainty is the condition in which the outcomes of the various
known alternatives are unknown.

the average, four or five branches at the top node
and smaller thereafter.

The first question addressed in this section is the
technical one: How does one build a tree? How are
limbs and nodes-moves and positions, respectively
-structured into a tree of possibilities? (See the
Appendix for the details of construction of moves
and positions.) Second, and pursuing the metaphor,
think of the chess player climbing the tree as he
builds it. Crawling along a branch in one direction
corresponds to making a move in the current posi­
tion (node) while traversing it in the opposite direc­
tion corresponds to unmaking a move and restoring
the previous position (node). This ability to back
up the tree is what enables a player to abandon
unpromising lines of investigation and start afresh.
In starting afresh, moreover, the player may either
reinvestigate branches he has previously built or
build new ones.

Third, as the player builds and climbs he also
accrues and retains information. The information
garnered en route and the use to which it is put are
in large part what Denkpsychologists have called
the development of the problem. That is, the
searcher's conception of the problem at anyone
time consists of the information he has about the
problem, how he has evaluated this information,
and even how it has shaped his definition of what
the problem is (cf Duncker 12 and de Groot ll

). Pro­
visions for gathering information are considered in
both this section and the next; the use to which
information is put and the matter of problem devel­
opment are more properly treated in the subsequent
sections.

Most of the organizational problems are solved
via the description lists of moves. For convenience
of reference the entire list of possible attributes a
move can take on is set forth in Table 1.

434 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

With respect to the first question-provisions for
holding the tree together-a signal cell and attri­
butes A46 and A47 do the job. The signal cell con­
tains the name of the most recent move made on the
board-the contemporary-while attributes A46
and A47 are its ancestor and; its list of descendants,

Table 1. Move Attributes

A40-From square
A4I-To square
A42-Special move (yes or no)
A43-Man removed from castle list
A44-Man captured
A4S-Square of captured en passant Pawn
A46-Ancestor
A47-List of descendants
A48-Irreversibility of move (reversible; or

irreversible)
A49-Value of move (mate, no mate, no value)
ASO~ Number of descendants
ASI- Man moved
AS2-Double check (yes or no)
AS3-Discovered check (yes or no)
AS4-Checking move (yes or no)
ASS-Descendant's list of m'ate threats
AS6-Threatened mating square
AS8--Mating piece on V(AS6) square
A63-Reply NOMV (no mo;ve)
A6S-Number of checking moves generated to date
A66-Number of replies generated to date
A 70-List of King replies
A 71-List of capturing replies
A 72-List 0 f interposing replies

respectively. The log of the analysis is preserved by
defining a dummy move, L31, which has on its de­
scription list the list of descendants attribute A47.
Thus the course of analysis is linked together as a
chain of moves with contemporaries linked by an-

cestor and descendant relations, as in the exam pIle of
an analysis tree in Fig. 3.

Second, because of the strong family ties just
described, one can eventually crawl one's way down
any branch of any node and then back up. That is
to say, one can make or unmake any move. Two
routines, E6S and E66, make and unmake moves,
respectively. The procedure for unmaking a move
is exactly the reverse. With the help of routine Ell
the position list is restored, that is, the dt~scription
lists of the pieces and squares affected are restQired
and the signal cells reset.

At any node a new limb may also be constructed
(by routines ESI and ES2; see Appendix) simply by
specifying the "from square" and the "tQi square"
(and special move status, if any) whereupon the
move is added to the list of descendants, V(A47),
and assigned an ancestor, V(A46).

Third, information gathered in the st~arch for
mate is stored on the description list of the move
that gathers it. (See Table 1.) When a move is con­
structed, its ancestor is always assigned as a valule of
A46 and the man moved in always assigned as a
value of AS1. Conditionally, a move is assigned a
value of A43 if a Rook or King is removed from the
castle list, a value of A44 if a man is captured, a
value of A4S if a Pawn is captured en passant, a
value of AS2 if it is a double check, a value of AS3
if it is a discovered check, and a value of AS4 if it
is a checking move at all.

Evaluative information is also gathcTed: attribute
A49 records the win-loss value of a move: mate, no
mate, or no value. If a checking movie has. no
descendants, that move mates; consequently, attri­
butes A 70, A 71, and A 72 record the kinds of replies
to check. Attribute A47 lists the descendants in toto
and the value of ASO is a count of them.

The point here is to illustrate how information is
hung on the move tree as it is gathered. How the
information is retrieved and utilized is a topic for
the next section.

A46 None

L31 G" (I.P-K4)
A46 L3l A46 l.P·K4

~JiI. .. p-K4)1 ~ None

~1...N.-KB3U A46 (1.P·K4)

~ (2.P-K5)
A46 (1 ... N·KB3)

Gi{(2 ... N,Q4)}
(2 ... N.K5) etc.

Figure 3. Course of analysis linked as contemporaries, ancestors, and descendants.

A CHESS MATING COMBINATIONS PROGRAM 435

4. THE EXECUTIVE AND HEURISTICS
OF SEARCH

Introduction

In a given position, what moves should be con­
sidered and in what order? Human chess players are
known to be highly selective in the moves they look
at, a selectivity based on their heuristics of search.
Computers must also incorporate such selectivity.
What follows then is a discussion of the search
heuristics incorporated into the early version of the
mating program, some measures on its search be­
havior, a brief description of the routines that effect
the move generation, and, finally, later develop­
ments added to a second version of the program,
MATER II.

MATER I

Restricting the mobility of the opponent's pieces
is a recognized principle of chess strategy. It is par­
ticularly important in checkmating combinations
since checkmate is defined as an unopposed attack
on an enemy King whose mobility has been reduced
to zero. Strategically this means the attacker strives
to gain control over 1) the square the enemy King
occupies, as well as 2) all the squares contiguous to
it that do not contain an enemy piece. If just condi­
tion (1) obtains, the enemy King is simply in check;
if just condition (2) holds, the enemy King is stale­
mated; while if both (1) and (2) hold, he is check­
mated. Viewed in this light, checkmate is a process
of acquiring 'controls, or more and more restricting
the enemy King's mobility. This principle is the
cornerstone of the mating program.

The restriction of mobility principle applies to the
generation and selection of moves as well as to deci­
sions about when to abandon search in certain
directions. Thus in the mating program: Only
checking moves (in MATER I) and moves that
threaten mate in one move (in MATER II) are gen­
erated for the attacker; the move selected for in­
vestigation is the one that most restricts the oppo­
nent's mobility; and search is continued down a
chosen path only so long as the opponent's mobility
is on the decline. This-the rate of growth of the
search tree-is an alternative formulation to an
evaluation function for terminating search in a par­
ticular direction.

Before illustrating the flow of control and the pro­
gram's executive structure, it is necessary to intro­
duce the notion of a try-list, a notion similar to the
"pool of subgoals" in the Logic Theory Machine. 13

Since only one move can be tried out at a time in
any particular position, other "eligible" checking
moves must wait their turn on a list, L35-the try­
list. This list has two noteworthy properties: first of
all, it is an ordered list, and second it is independent
of a move's level. * Such independence proves
powerful in directing search.

The list is ordered by a fewest-replies heuristic:
highest priority goes to moves with the fewest num­
ber of legal replies, while checking moves with more
than four legal replies are discarded entirely. Ties
are broken by giving priority to double checks, then
to checks that have no capturing responses, then to
the order in which the checks were generated. The
second property-that checks from all levels are
mixed--effects the evaluative principle that search is
continued down a particular path only so long as
the opponent's mobility is on the decline: when the
number of replies at some node in the current line
of investigation is equal to or greater than the num­
ber of replies at some prior node, the current line is
abandoned, the prior node restored, and the al­
ternative that had once been passed over is tried.
This nips in the bud unpromising proliferations in
the move tree.

In addition to the notions just described-rate of
growth serving to terminate search in a particular
direction, the set of considerable moves serving to
restrict the set of applicable operators in the given
position, the try-list ordered by the fewest-replies
heuristic serving to stipulate the application of of­
fensive operators-some heuristics of chess strategy
serving to stipulate the order of application of
defensive operators can also be seen more clearly
from the following illustrative position taken from
Fine4 and MATER I's performance on it. t

The following layout is adapted to the simple
recursive scheme of Fig. 2.

*The level of a move refers to its depth in the move tree, i.e.,
how many moves out it is from the starting position.

t They can also be seen more clearly within the picture of
heuristic search in general in Newell and Ernst. 14

436 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

(I) Generate checking moves: LN-K6ch; B-K7ch; B-B7ch;
Q-B6ch.

(2) Select one move for further analysis:
(a) l.N-K6ch l.B-K7ch l.B-B7ch l.Q-B6ch

1...K-K 1 1...NxB 1...NxB 1 ... NxQ
1 ... QPxN 1. 1- 1 ... N-K2
1 ... BPxN 1.

1.

(b) Transfer checks to try-list; order them by their "u"
values (number of replies):

L35 .y.
l.B-K7ch 1
1.B-B7ch I
l.Q-B6ch 2
1.N-K6ch 3.

(c) Select and delete top move from try-list L35: l.B-K7ch.
(3) Make that move (l.B-K7ch) in the analysis.
(4) Test if checkmate has been achieved: No.
(5) Generate replies to relieve check: 1 ... NxB.
(6) Select "best" reply*: 1 ... NxB.
(7) Make that reply (l...NxB) in the analysis.
(8) Test if check has been relieved: Yes.

(I) Generate checking moves: 2.N-K6ch.
(2) Select one move for further analysis.

(a) For each check generate and count replies:

2.N-K6ch
2 ... K-KI
2 ... QPxN
2 ... BPxN

1.
(b) Transfer check to try-list: order them by their "u"

values:

L35 .y.
I.B-B7ch I
l.Q-B6ch 2
I.N-K6ch 3
2.N-K6ch 3.

(c) Select and delete top move from try-list L35: 1.B-B7ch.
(3) Make that move (l.B-B7ch) in the analysis, restoring the

board to the initial position.
(4) Test if checkmate has been achieved: No.
(5) Generate replies that relieve check: 1 ... NxB.
(6) Select best reply: 1 ... NxB.
(7) Make that reply (l...NxB) in the analysis.
(8) Test if check has been relieved: Yes.

(I) Generate checking moves: 2.N~K6ch; Q-B6ch.
(2) Select one move for further analysis.

(a) For each check generate and count replies:

2.N-K6ch 2.Q-B6ch
2 ... K-KI 2 ... NxQ
2 ... QPxN 2 ... N-K2
2 ... BPxN 2..
2 ... NxN

~.

*"Best" is defined in the text immediately following this ex­
ample.

(b) Transfer checks to try-list; order them by their "u"
values:

L35 .y.
1.Q~B6ch 2
2.Q-B6ch 2
I.N-K6ch 3
2.N-K6ch 3
2.N-K6ch'4.

(c) Select and delete top move from try-list: l.Q-B6ch.
(3) Make that move (l.Q-B6ch) in the analysis, restoring the

board to the initial position.
(4) Test if checkmate has been achieved: No.
(5) Generate replies to relieve check: 1 ... NxQ; N-K2.
(6) Select best reply: 1 ... NxQ.
(7) Make that reply (l...NxQ) in the analysis.
(8) Test if check 'has been relieved: Yes.

(I) Generate checking moves: 2.N-K6ch; B-K7ch; B-B7ch ..
(2) Select one move for further analysis.

(a) For each check generate and count replies:

2.N-K6ch
2 ... K-KI
2 ... QPxN

2.B-K7ch
Q.

2.B-E:7ch
2 ... N:I(B

1.
2 ... BPxN

1.
(b) Transfer checks to try-list; order them by their "u"

values:

ill .Y.
2.B-K7ch 0
2.B-B7ch I
2.Q-B6ch 2
2.N-K6ch 3
I.N-K6ch 3
2.N-K6ch 3
2.N-K6ch' 4.

(c) Select and delete top move from try-list L35: 2.B-K7ch.
(3) Make that move (2.B-K 7ch) in the analysis.
(4) Test if checkmate has been achieved: Yes.
(6') Select next best reply: 1...N-K2.
(7') Make that reply (1...N-K2) in the analysis, mstoring the

board to the appropritte position.
(8') Test if check has been relieved: Yes.

(1) Generate checking moves: 2.N-K6ch; BxNch; B-B7ch;
QxNch.

(2) Select one move for further analysis.
(a) For each check generate and count replies:

2.N-K6ch
2 ... K-KI
2 ... QPxN
2 ... BPxN

1.

2.BxNch
.Q.

2.B-B7ch
2 ... NxB

1.

2.QxNch
.Q.

(b) Transfer checks to try-list; order them by their "u"
values:

L35 !!
2.BxNch 0
2.QxNch 0
2.B-B7ch' I
2.B-B7ch I
2.Q-B6ch 2

A CHESS MA TING COMBINATIONS PROGRAM 437

Diagram 36
1/6/
10/15 ~

0·B6

2.

2 ...

~ "=2 ~

;;

N.K6 @ B.B~7 N.~XN

.

MATE MATE
18 21

K·Kl OpxN BpxN K·Kl OpxN BPxN
u=3 u=4 u=2 u=3 u=3

Figure 4. MATER I's analysis tree of Diagram 36, Fine4
.

(The u's are a tally of the number of replies by which the pnonty of .move~ on. the try-Itst IS es~ablts~ed. The sq.u~re boxes
represent positions and the numbers in them trace the course of the mvestIgatIon-the order 10 which the posItions were
taken up. The crosshatched branches trace the mating path.)

2.N-K6ch"3
2.N-K6ch'" 3
I.N-K6ch 3
2.N~K6ch 3
2.N-K6ch' 4.

(c) Select and delete move from try-list L35: 2.BxNch.
(3) Make that move (2.BxNch) in the analysis.
(4) Test if checkmate has been achieved: Yes.
(6') Select next best reply: None.
(7') Make that reply (None) in the analysis.
(8') Test if check has been relieved: No.
Mark MATE and print move-tree (Fig. 4).

This example also illustrates the criteria by which
the order of application of defensive moves is ac­
complished: by "best" reply is meant that reply
that seems most likely to give. the attacker trouble.
Thus the priority of defensive moves Black tries is,
first, the capture of the most valuable White pieces
by the least valuable Black pieces followed by King
moves, interpositions, then order of generation.
Again this is an attempt to clip unnecessary pro­
liferations in the move tree: if there is a "killing"
reply to a checking move, further analysis of that
checking move would seem futile. *

*This is the minimax assumption; namely, that the opponent
will make his strongest reply at every opportunity. McCarthy's
killer heuristic (see Kotok (5) assumes that a killing reply to
one checking move may be a killing reply to other checking
moves and thus should be looked at first.

Measures of Search Behavior. Many measures of
search behavior can be picked off an analysis tree
like MATER I's of Diagram 36 (Fig. 4). For ex­
ample, the tree can be characterized by counting the
number of positions or the number of moves. Simon
and Simon) call the total number of positions ex­
amined the "exploration tree"; in Diagram 36,
above, the position count yields an exploration tree
of size 16. In general, however, more moves are
seen than positions are investigated, which is to say
that some moves remain unexplored, such as the
replies to l.N-K6ch in the example above. The
count of moves seen-the un investigated as well as
the investigated ones-will be called the discovery
tree; in Diagram 36, above, this move tally yields a
discovery tree of size 36 (14 checks and 22 re­
sponses). One further refinement can be carved out
of the exploration and discovery trees; namely, the
"verification tree," which Simon and Sjmon) define
as the total number of positions required to prove
the combination-the positions resulting from the
single best move at each node for the attacker and
from every legal move at each node for the defender;
respectively, the positive and negative parts of the
proof schema. 11 The verification tree "is precisely
analogous to the correct path in a maze. It is a tree
instead of a single path because all alternatives al­
lowed to the defender must be tested" (Simon and
Simon,) p. 427). In Diagram 36, above, the

438 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

branches of the verification tree are crosshatched,
yielding a position count of size 6, or alternatively,
a move count of size 5.

These measures do not reveal the time order in
which the tree was generated. Human chess players
are fickle tree climbers, "progressive deepeners," to
use de Groot's 11 term for the phenonenon: "The
investigation not only broadens itself progressively
by growing new branches, countermoves, or con­
siderable own-moves, but also literally deepens it­
self: the same variant is taken up anew and is calcu­
lated further than before" (de Groot,1l p. 266). In
other words, the search strategy is an important
structural characteristic of the thought process. In
Fig. 4 the order in which positions are taken up is
captured by numbering the nodes (positions) in the
analysis. These measures will be used for com­
parative purposes in Section 5.

Routines. How are checking moves arid replies ac­
tually generated in any given position? There would
seem to be two tacks, corresponding to a one-many
approach and a many-one approach. In trying to
find all the checks in a given position, for example,
one could either radiate out from the enemy King
and from each square, search for a piece that can get
there and give check (the one-many approach), or
converge from the squares along the move direc­
tions of each attacking piece onto the enemy King's
square (the many-one approach). If there are many
pieces on the board, the former is the more efficient;
if few, the latter.

G 1 is a master routine that procures all checks in
a given position. It employs the many-one ap­
proach, calling subroutine GIl for Queen, Bishop,
and Rook checking moves: G 12 for Knight and
regular Pawn checks; and G 13 for double Pawn
moves that administer check. Similarly, R21 pro­
cures all replies to a given checking move: Rl1 gen­
erates all the King moves that get out of check, R 12,
all the captures of the checking piece, and R13, all
the interpositions. In this way the mating program
is able to enumerate all checks and all replies in a
particular position.

MATER Il

In designing search programs it is useful to distinguish the
strategy of search from the information that is gathered during
the search. The search strategy tells where to go next, and what
information must be kept so that the search can be carried out.
It does not tell what other information to obtain while at the
various positions, nor what to do with the information after it
is obtained. There may be strong interaction between the search
itself and the information found, as in the decision to stop

searching, but we can often view this as occurring within the
confines of a fixed search strategy.

(Newell and Simon,116 pp. 24-25)

MATER II adds a modification to MATER I's
search strategy by bypassing the fixedne:ss in the
order of application of operators inherent in the try­
list. The new search rule states: in the given posi­
tion pursue immediately and in depth all checking
moves that keep the enemy King stalemated (or
nearly so), i.e., moves that can only be answered by
captures and/ or interpositions or, in the absence of
both, by one and only one King move (the "ne:arly
so" condition). In addition to altering the pro­
gram's search strategy by telling it "where to go
next," this procedure also gathers Information
about the position. In this respect it resembles what
de Groot 11 has called a "sample variation," a kind
of trial balloon sent up for the express purpose of
gathering information to direct subsequent investi­
gation; in this sense it is orientative. Before turning
to what information is gathered and how it is used,
it should be mentioned that sometimes a sample
variation pays off directly-the "samph! moves"
may be a path to a quick mate.

Specifically, a routine G 10 conducts the prelimi­
nary search and, if no "easy mate" is found, records
the sequence of moves investigated on a list B4. A
routine G 17 makes use of this information latt~r in
drawing up a plan of attack. Just how these rou­
tines operate can best be seen by considering in three
parts MATER II's analysis for a particular posi­
tion, Diagram 97 from Fine.4

The first part has to do with the preliminary
search; the second with the use to which th{~ re­
corded information is put in drawing up a plan; and
the third with the exploration and verification of
that plan.

The first 10 moves of the discovery tree: are those
in Fig. 5a. (Note that both the I.Q-N7ch and
I.QxRPch sample variations are record(!d on list
B4.)

A CHESS MATING COMBINATIONS PROGRAM 439

~)
1. Q-N7ch QxRPch

--liL CD
RxQ QxQ KxQ

QJ ctJ
1. ..

pxRch N-NSch

Record ed on list 84

Sequence 1: l.Q-N7ch,
RxQ;

2.pxRch.

Sequence 2: l.QxRPc,h,
KxQ;

qJ J1L
K-N1 K-R1 K-R3

• 2.

2 ...

2.N-NSch.

-(K no longer
sto lemoted)

Figure SA. MATER II's preliminary search in Position 97.

Clearly, the "wishful thinking" goal of the sample
variations went unfulfilled; the preliminary excur­
sions did not yield mate. They do yield two se­
quences of forcing moves, however, that may be
useful in constructing a plan of attack. Indeed, the
routine G 17 searches list B4 for the first move can­
didates and finds, in this example, I.PxR and
l.N-N5. The former is rejected as illegal in the cur­
rent position while the latter is deemed considerable.
Note that the set of operators that may be applied
in the initial position is expanded in MATER II to
include moves other than just checking moves, yet
the means by which these are generated continues
to ensure a high degree of selectivity.

Routine G 17 asks if a proposed move, in this
case I.N-N5, threatens mate in one move. It deter­
mines the answer by assuming that Black does
nothing on his turn, that is, by playing a "No
Move" and then seeing if White can enforce an im­
mediate checkmate. And, indeed, 2.QxRP is ,mate.
In other words, White leaves the actual problem
space to seek a mate in a simplified planning space
(see Newell, Shaw and SimonS) and, in fact, the
second part of the move tree is given over to solving
the problem in the planning space (Fig. 5b).*

Finally, the third stage is devoted to testing the
soundness of the plan; that is, suppose Black tries to
avert 1.N-N5 and 2.QxRPmate. Can he? It hap-

* A hybrid version of MATER I and II would first have re­
investigated 1.Q-N7ch and 1.QxRPch, invoking the fewest­
replies heuristic, transferring these two checks to the' try-list,
and elaborating them, before even considering moves which
threaten mate in one. Unfortunately the statistics gathered on
various versions of the program are too incomplete to say which
search strategy is superior across positions, if in fact a correct
strategy can be determined independent of position.

pens that in this position he cannot so that the ex­
ploration tree and the verification tree are identical
in this stage of the analysis. (The rather lengthy
third stage is omitted here.)

MA TER II contains one other highly selective
mechanism for finding moves that threaten mate in
one. Controls exerted over the enemy King's square
and the squares in this immediate vicinity are built
into a list structure called the King's Sector. For a
given square five kinds of control have been de­
fined:

1. No control-the enemy King can move
to the given square.

2. Attacking control-the attacker can
move to or capture on the given square.

3. Occupation control-one of the at­
tacker's pieces occupies the given
square.

4. Block control-one of the defender's
pieces occupies the given square.

5. X-ray control-the attacker can un­
mask an attacker control by removing

I

~ (Diagram 97)

N·NS

cb
No Move

NXBPch
®

QXRPch Q·N7 ch

~ ~
QxN

@]
~
MATE RxQ QxQ

lm ffiJ
NOM NO,M NOM

Figure SB. MATER II's plan formation in Position 97.

440 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

one of his own pieces . (corresponding to
a "discovery" in chess jargon) or he
could unmask an attacking control but
for an enemy interposer (corresponding
to a "pin").

The King's Sector, L40, is constructed by the four
routines E91-E94. ' The complete structure of L40
and the information contained therein can best be
seen in Fig. 6, the King's Sector for Diagram 70
from Fine.4 Attribute Y3 has data term XO as its
value, a tally of the number of uncontrolled squares
in the Sector (see Fig. 6).

How is all this information retrieved and used by
the program? First, a routine G 14 tries to generate
mate-threatening moves by converting an X-ray
control into a second attacking control. For ex­
ample, in Diagram 70, routine G 14, seizing on the
White Bishop's X-ray control of KNS, proposes
I.BxBP but then rejects the move because 2.B-NS
does not administer check, let along mate. Second,
a routine G 19, given one attacking control, tries to
add a second. Routine G 19, seeing an attacking
control over KN7 in position 70, proposes to add
another with the moves LQ-KB6, l.Q-N6, and
l.Q-R6. Since all three produce mate if Black does
nothing, all three are accepted as considerable
moves in the plan.

In summary , MATER II contains several mech­
anisms for generating a s'elective set of considerable

L40 9-0
9-0 0

S64 (KR8)
9-1 (ICR8) 9-1 0

moves. Incorporating MATER I's ability to gener­
ate all checking moves and all replies in a given
position, MATER II goes on to generate mate­
threatening moves based either on their earlier
appearance in forced sequences of checking moves
or on the function they serve in controHing key
squares around the enemy King. Moreover,
MATER II has a set of routines, R15, ,R16, R22,
for generating defensive replies to a threatened
mate.

MA TER II also contains three principal me:ch­
anisms in its search strategy specifying the order in
which moves are to be considered. Defensively., in I

reply to checking moves, captures are preferred to
King moves, which, in turn, are preferred to inter­
positions; while in reply to one-move mate threats,
captures are preferred to moves that defend the
mating square as well as to interpositions and King
runs. Offensively, search is directed by pursuing
particular moves in depth so long as the ene:my
King remains very highly constricted, and t.hen later
by pursuing the move that leaves the opponent with
the fewest replies. Each of these search evaluators
rests on a single criterion: sometimes a line of search
is terminated because the defender is left with King
moves in reply (nodes 4 and 7 in the move tree;: of
position 97); sometimes a move is rejected because
it does not produce immediate mate (node:s II and
12 in position 97); sometimes a move just never gets
off the waiting list (node 2 in position 36); and

863 (KN8)
9-2

MO (Man on KR8?)
M29 (Black King) 0

855 (KN7)
9-3
856 (KR7)
9-4
Y3 (No control over how

many squares?)
XO = 1

Knight {854 (KB7)
directions 9-5
not used in 847 (KN6)
tallying XO 9-6 0

(KN8) 9-2 0
Y7 (X-ray control)
9-10
y6 (Attacking control)
9-11 0

(KN7) 9-3 0
y6 (Attacking control)
9-12
Y4 (Block control)
M23 (Black Pawn blocks KN7) 0

(KR7) 9-4 0
y4 (Block control)
M24 (Black Pawn blocks KR7) 0

(KB7) 9-5 0
y6 (Attacking control)
9-13
y4 (Block control)
M22 (Black Pawn blocks KB7) 0

(KN6) 9-6 0
y6 (Attacking ~ontrol)
9-14 0

9-10 0
M6 (White Bishop X-rays KNB)
M22 (Black Pawn is X-I'ayed) I)

9-11 0
M2 (White Knight attacks KNB) 0

9-12 0
M7 (v-'hite Knight attacks KN7) 0

9-13 0
M6 (White Bishop attacks KB7) 0

9-14 0
M4 (vlhite Queen and White
M2 Knight attack KN6) 0

Figure 6. IPL·,V List Structure o~ King's Sector Controls (arranged in attribute-value pairs) of R. Fine's14 Diagram 70, from a game
Alekhine-Supico, 1942.

A CHESS MATING COMBINATIONS PROGRAM 441

checking moves with more than four legal replies
are always rejected out of hand. Indeed, it is the
thesis here that these kinds of criteria, criteria based
on features of the task area, are what regulate chess
players' choice-of-move decisions and form a good
alternative representation to complicated weighting
functions of the sort employed by Samuel 17 in
checkers and Bernstein and Roberts 18 in chess. Even
though mating combinations are the only facet of
the game in which the final evaluators, MATE and
NOMATE, are well defined*-a degree of certainty
attained nowhere else in the game-the search­
directing decisions intermediate to the final choice
of move must all be made on far less than certain
criteria, just like the rest of the game.

Except for the sample variations recorded on the
list B4, the information-gathering mechanisms rely
on the description list of the move that gathered it,
including the final evaluation, MATE or NOMATE,
which are propagated back up the tree by the mini­
max inference procedure in an attempt to demon­
strate the proof of a combination.

5. INTERPRETATION AND RESULTS

Introduction

With respect to the verification of simulation
models in general, and problem-solving models in
particular, two criteria for assessment seem to have
emerged clearly: an achievement criterion and a
process criterion. Th<l;t is, can the model solve the
class of problems it was designed to handle, and are
its mechanisms for doing so equivalent to, or even
comparable to, a human problem solver's? The
answer to the first question is relatively straightfor­
ward; not so to the second, however, since the re­
quirements for equivalence or comparability of pro­
cess are themselves open to question. In the present
report, we shall not consider questions of human
simulation but will confine ourselves to a discussion
of the achievement of the programs.

MATER I solves combinations which consist of
uninterrupted series of checking moves, given that
the defender at no node in the verification tree has
more than four legal replies; MATER II solves
combinations that begin either with checks or with
one-move mate threats and checking moves there­
after. This limitation on the class of moves the
program can see restricts severely the class of com-

*"Well defined" is used in the sense that there exists a satis­
factory test that enables the player to recognize the solution to
his problem. 19

binations on which the model can be tested. Never­
theless, the program has been tested on material
taken from Fine's4 chapter on the mating attack.
Solutions to one class of positions in the chapter
call for an uninterrupted series of checking moves
ending in mate (51/129 positions). Anotherclass of
positions is solved with one-move mate threats and
checking moves thereafter (5/129 positions). In the
residual class, mate ~an either be averted through a
sacrifice of material or the mate is not "forced," as
the term was defined in Sectiqn 1 (73/129 positions).

MATER I's'Achievement

MATER I found solutions to 43 of the 51 mating
positions. The machine missed one combination en­
tirely by failing to move a Pawn that gave a dis­
covered check and exhausted available space before
finding the other seven. * Table 2 breaks these 43
positions down according to certain structural
measures of search behavior: the depth of search to
mate (D), the mean size of the verification tree
necessary to prove the combination (VT measured
in movt~s), and the mean size of the discovery tree
generated in searching for mate (DT me,asured in
moves). These latter two measures were defined in
Section 4.

Table 2. MATER I's Performance on 43 Positions
from Fine4

N (positions) D VT DT VTjD DTjD VTjDT

15 2 3.5 15.5 1.8 7.8 4.4
11 3 5.4 24.6 1.8 8.2 4.6
14 4 9.9 61.5 2.5 15.4 6.2
2 5 11.0 56.0 2.2 11.2 5.1
1 8 17.0 108.0 2.1 13.5 6.4

Simon and Simon3 (p. 428) suggest depth, num­
ber of positions in the exploration tree, and number
of positions in the verification tree as measures of
the difficulty of combinations. They remark that the
four positions in their sample "are not ordered in
the same way with respect to the different measures
of difficulty." Using depth, number of moves in the
discovery tree (DT), and number of moves in the
verification tree (VT) as equivalent measures, the

*In particular, MATER I failed to, see 2.P-B6ch in position
148. The seven positions that exhausted available space did so
because the fewest replies heuristic failed to discriminate among
alternative checking moves: among six alternative discovered
checks in positions 41 and tOO; among a large number of initial
checks available in positions t09 and 140; and among a large
number of checks in depth involved in a King hunt on the open
board in positions Ill, 130, and 157.

442 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

1.

I
I
I
I
I
I
I

1.

~_________ ~6 Q~
.~~ ~Q---)," -", NO+~N~~
QxNPch NxPch NxPch R-R3ch QxNPch QxRPch QxNP Q;<NP

1 ... 1 ...

2.

rill~ Al ~~4~~[~
MATE L.TJ MATE I MATE MII.TE

I I

PiN K-Nl K-R2 RxQ KxQ

2.

2 ••• 2 •••

3.

3 ...

4.

piagram 70
Legal number of first moves = 54
Number of first moves considered = 4

Discovery tree = 38 moves generated
Exploration tree = 38 positions considered
Verification tree = 13 positions (dashed lines)
Depth of mate = 4 moves (7 half moves)

. 0 ~ l$;;M
I
I

R-R3ch

~
I
I

Q-R5
I

~
I
I

RxQ
I

~
MATE

I

[$
I
I

R-R3ch
I

~
MATE

3.

3·· .

Fig~~e 7. MA TER II's Analysis Tree and Order of Search on Diagram 70, from Fine 4.

data of Table 2 do show, with but one exception,
the same ordiflal relationship across measures, at
least when averaged over the 43 positions.

Between depth and the size of the verification
tree (VTjD) there" is a fairly clQse correlation­
around two moves in the verification tree per move
in depth. This confirms the Simon and SiIl1on 3 ob­
servation: the tree varies linearly, not exponentially,
with depth, and it probably is this property that
makes deep analysis possible in combinations.
Neither DT jD nor VT jDT shows any consistent
relationship.

The only roughly constant ratio, VT jD, has more
to do with the characteristics of mating positions
than with characteristics of the mating program.
The only measure on the program's search behavior
is DT and there seems to be no consistent relation­
ship between it and the two measures on the com­
binations (DT jD and VT jDT).

MATER Irs Achievement

MA TER II has been tested on all five positions
from Fine4 that necessitated an initial threat of mate
in one and checks thereafter. It solved three di­
rectly, the other two, because of a change in com­
puter facilities, by hand simulation. The search tree
for position 97 has already been described. In posi­
tion 107 the initial Queen sacrifice as well as an un­
expected Bishop sacrifice were easily spotted in the
service of mate. The analysis tree of position 70 is
given in Fig. 7. Note that the correct move and
theme in position 70 derive from the celebrated
game of Marshall's for which spectators showered
the chessboard with gold coins!* Of the two hand

*The program also finds the correct sequence of moves from
the immortal Lewitzky-Marshall game, played in Breslau in
1912 (Diagram 69 in Fine4

); it is excluded from the count here
since Lewitzky, had he not chosen to resign, could have averted
mate at the cost of a piece.

A CHESS MATING COMBINATIONS PROGRAM 443

simulated runs position 95 required but the simple
addition of a second control on the KN7 square via
I.Q- R6, while position 113 required the move
l.R-R5, which had been discovered in one of the ex­
ploratory sample variants.

Conclusion

In conclusion, MATER's power stems from its
ability to generate a small selective set of moves that
merit investigation. Since most of the earlier chess
programs (see the review in Newell, Shaw and
Simon 20

; and Kotok l5
) spent their analysis time

processing tb~ wrong moves, it would seem that
MATER II's two major mechanisms for generating
relevant moves-its reliance on the sample varia­
tions and on the control of key squares-warrant
further research. MATER II's major weakness, on
the other hand, lies in its poorly organized search
strategy for using its selectivity at all points in the
analysis process.

On the horizon, proposals have been made for
strengthening the program's perceptual capabilities
as well as altering its search strategy.

Appendix

THE BASIC REPRESENTATION

Statement of the Problem

In this Appendix we describe the basic represen­
tation implemented by Newell and Prasad.6 Two
interrelated questions guided the choice of repre­
sentation:

1.. What areithe necessary components of
a chess representation?

2. How sho'uld this information be or­
ganized?

In response to (1): The program should be able to
"see" the same things a human sees when he looks
at a chessboard. Thus the program requires an in­
ternal representation of the squares and pieces on a
chessboard and the relations among them, and a set
of processes that can pick off and make use of these
relations as needed. The former requirement is
called "setting 'up the chessboard," the latter
"move-making and board processing capabilities."

In response to' (2): The game of ,chess provides
an inhomogeneous collection of information out of '
which moves must be forged. Thus there must be
enough variety in the representation to discriminate
all the different kinds of moves; given that, the in-

formation should be stored in such a way that little
space is allotted to moves that seldom occur (such
as Pawn promotions, castling, etc.), and the de­
pendence and division of information between rou­
tines and data should remain flexible and open to
change and never solidify into a resistant collection
of conventions (NewelFI). List processing lan­
guages are specifically designed to cope with such
problems.

A chessboard is made up of squares, which lodge
pieces, which make moves from one square to an­
other. Objects in chess, like the 64 squares and 32
men, can be represented as symbols on lists, and
moves can be represented as names of description
lists with certain prescribed associations (such as
the square from which a piece comes, the square to
which it moves, and the kind of move in question).
A chess position, moreover, can be fully described
as a list of pieces and squares and a chess game as a
list of moves that originate from a standardized ini­
tial position and terminate in a well-defined check­
mate position.

Setting up the Chessboard

A chessboard is made up of eight ranks and eight
files which rule off 64 squares. The sequence of
symbols S 1 ... S64 is used to denote these 64 squares.

In the data section of the program there are a list
of ranks, Ll, containing members Rl through R8,
and a list of files, L2, containing members Fl
through F8. Each rank is itself the name of a list
containing eight member squares; e.g., R 1 contains
SI, S2, ... , S8.

In the routines section of the program a super­
routine, E 1, sets up a chessboard; it calls nine rou­
tines E2,·E7, E9, EI0, and E12, which do the work.
Routine E2 builds the eight file lists, Fl through F8,
out of the rank lists, R 1 through R8. Then routine
E 12 takes each of the 64 squares and assigns it rank
and file (x,y) coordinates, which are later used to
compute another set of relations among squares.

Squares. For each square on a chessboard it is es­
sential to know: 1) the name of its occupant, if there
is one, and 2) the name of all its neighboring squares
in the chess-legal directions. The first desideratum
is effected by defining an attribute MO, "Man on
Square?" on the description list of every square and
assigning as its value the name of the piece occupy­
ing it-if there is one.

The extensive network of relations among squares,
constituting all legal move directions in chess, is
captured by defining 16 directions on the chess-

444 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

board, beginning with D I' for the forward direction
and continuing clockwise to D16 for forward and
left (e.g., the Knight's move KN 1 to KB3).

Thus the even numbers (D2, D4, ... ,D16) define
the eight possible Knight move directions; half the
odd numbers (D1, D5, D9, D13) define rank (hori­
zontal) and file (vertical) directions; the other half
(D3, D7, D 11, D 15), diagonal directions.

Routines E3, E4, E5, and E8 use lists Ll, L2, L5,
and L6 to build the network of relations among
squares by assigning to each of the 64 squares all
surrounding squares as values of each of the
1:6 directions that obtain. In the initial position,
for example, the list structure of the square S8-
White's KR t in standard American chess notation
-would look like this:

Name oflist Attribute Value

Square KRI (S8) Man on Square White King Rook (MS)
(MO)?

Square to the Square KR2 (S 16)
North (DI)?

Square to the Square KN I (S7)
West (Dl3)?

Square to the Square KB2 (SI4)
WNW
(DI4)?

Square to the Square KN2 (SIS)
NW (DIS)?

Square to the Square KN3 (S23).
NNW
(DI6)?

Note that in such a list structure representation
only those five of the 16 legal directions that are
needed are defined; space in memory is not con­
sumed by providing the "information" that the
other 11 directions have no values, as it would seem
to be in a matrix representation of this kind of data.
(Cf the argument in Newell,21 pp. 411-412, for a
fuller statement of this view.)

Men. The 32 men take and retain their designa­
tions from their placement in the initial position;
they are denoted by the sequence of symbols
MI ... M32.

For each piece, it is essential to know:

1. the square he occupies (attribute SO),
2. his type (attribute AI),
3. his color or side (attribute A2),
4. his legally permissible move directions

(attribute A20), and
5. his legally permissible capture direc­

tions (attribute A21) ..

The first of these is effected by defining an attri­
bute SO, "Square on?" on the description list of
every piece and assigning as its value th<;: name of
the square the piece currently occupies. The other
four attributes assume the complete range of values
in accord with the rules of chess.

In the data structure there are 11 lists that group
the chess men by types or otherwise useful cate­
gories: White Pawns; Black Pawns; Bishops; Rooks;
Knights; Queens; Kings; White Rooks, Bishops and
Queen; Black Rooks, Bishops, and Que<;:n; White
Knights; and Black Knights.

For each side, moreover, there is a list giving the
type of each man on that side, and another list
giving the move directions of each type of man.

Routines E6 and E7 assign to each man his type,
color, move directions, and capture directions. In
the initial position, for instance, the list structure
of M8 would look like this:

Name oflist

White King
Rook (M8)

Attribute

Man on what
square (SO)?

Type of man (A I)?
Color of man

(A2)?
Move directions

(A20)?
Capture directions

(A21)?

Value

Square KR I (S8)

a Rook
White (KIO)

a list of dinections D I,
D5,D9,DI3

a list of directions
DI,D5,D9,DI3 ..

Positions. A chess position can be described fully in
terms of squares and pieces. Since MATER is s:up­
posed to find a checkmate in any given position,
obviously some representation is necessary for
encoding a particular position. This representation
is a describable list called the position list, L 10. Its
main list consists simply of the name of <;:ach man
present on the board and the name of the square
each man occupies, arranged in attribute-value
pairs. Its description list contains a set of special
attributes pertinent to the characterization of the
position; in particular, S65, the "Whose move is
it?" attribute that flip-flops between KIlO (White
on move) and Kl1 (Black on move); S66, the name
of the castle list that contains the Kings and Rooks
still "eligible" for castling; S67, the signal cell that
gets set when an en passant capture is in the o·ffimg;
and S69, the name of the most recent move made
on the board.

Routine EtO takes as input any position list­
either the initial position or the mating position,
which is read in from cards by routine E90-and

A CHESS MATING COMBINATIONS PROGRAM 445

converts it into a set of associations between pieces
and squares such that every piece has an attribute
SO ("Square on?") with the square that piece occu­
pies as value, and every square has an attribute
MO ("Man on?") with the name of the chess piece
-if there is one-occupying that square as its
value.

This ends what might be called the "static" per­
ceptual relations on the chessboard. What follows
is a bundle of basic routines that attempts to pro­
vide "dynamic" perceptual relations to the program.

Move-Making Capabilities

Moves are the operators that transform one chess
position into another. What are the common prop­
erties of chess moves? Each involves a piece, or
sometimes two, going from one square to another.
If the "to square" is already occupied, the move is
called a capture. If the "to square" is on the eighth
rank and the piece a Pawn, it is called a promotion.
But in all cases the common "from-to" property
holds.

This permits a move to be represented as the
name of a description list containing a "from
square" (as the value of an attribute A40) and a
"to square" (as the value of an attribute A41). This
information is sufficient to specify most moves.
There is a special class of moves, however, which,
while adhering to this "from-to" pattern, introduce
some idiosyncratic properties of pieces. Each of the
following five members in this class is assigned a dif­
ferent value to the special move attribute A42:
King's side castling, Queen's side castling, a double
Pawn move, an en passant response thereto, and a
Pawn promotion.

Five steps are required 'to make a move: first, the
move must be constructed; second, it must be tested
for legality; third, for repetition of position; fourth,
it must actually be made on the board; and fifth, it
should be printed.

Routines E51 and E52 construct regular moves
and special moves, respectively. Both create a new
cell or symbol, which becomes the name of the
move. Both take as input the square from which the
piece is to move and the square to which it is to
move and assign these as values of attributes A40
and A41, respectively. For the special move routine,
E52, the type of move must also be specified as
input; it is assigned as the value of attribute A42.
The name of the man moved is also received as the
value of another attribute A51, for reasons that

will appear under step 3 below. The move I.P-K4,
for example, would be represented as follows (where
al and a2 are internal cell names):

Name of list Attribute

al From Square (A40)?
To Square (A41)?
Man moved (AS I)?

Value

Square K2 (SI3)
Square K4 (S29)
White King Pawn (M 13),

Similarly, the special move P-K8 = Q would be
represented in the following format:

Name of list Attribute

a2 From Square (A40)?
To Square (A41)?
Special Move (A42)?
Man moved (A51)?

Value

Square K 7 (S53)
Square K8 (S61)
Promotion to Queen
White King Pawn (M 13),

Second, a routine E 18 checks to insure that a
newly constructed move is legal. The routine tests,
for example, whether a Bishop is moving through a
Pawn, whether a Rook is making a Bishop move,
whether a player is castling through check, and the
like. The output is a simple" +" ("yes, the move is
legal") or "-" ("no, the move is illegal").

Third, according to the laws of chess a threefold
repetition of position constitutes a draw, and, ac­
cording to the laws of computers, a loop. Before a
move is executed, therefore, a routine E55 tests if
the move under consideration has been played be­
fore in this same position. The position could not
have occurred before if the move is irreversible, that
is, if once the move is made on the board no subse­
quent set of legal moves can ever regain the exact
same position. Captures, Pawn moves, and castling
are all irreversible. Thus when a capturing move is
constructed (step I), it is given an attribute A44
with the man captured as its value. When a castling
move is constructed, its status as a special move is
recorded as the value of attribute A42. And for a
Pawn move, a record is kept via the man moved
attribute, A51. Routine E56, called by E55, tests for
any of these three conditions to declare a move ir­
reversible. If none of them obtains, E55 must take
some further comparisons between the A40 and A41
values of the proposed move and earlier moves.

Fourth, a routine E65 makes a regular move on
the board; routines E71-E75 and E81-E85 execute
the special moves. A move is made by updating
the position list, which is done in two steps: first,
with the assistance of routine Ell, the description
lists of the pieces and squares affected by the move
are updated. Second, the signal cells-S65, S66,
S67, and S69-affected by the move are reset.

446 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Since different routines are needed to make each
of the five special moves, these routines are simply
associated with their respective special move values
in the data section of the program.

Fifth, there is a print routine, E16, which prints
out the name of the move, the "from square," the
"to square," and the man captured, if any.

Additional Board Processing Capabilities

In addition to the move-making capabilities just
described, there is a second group of routines in­
tended to provide the macqine with some more of
the perceptual capabilities a human possesses;
these are the board processing routines which pro­
vide answers to question~ asked of the board.
Routine E13 finds the direction, if one exists, be­
tween two given squares. R6utine E14 tests to see if
there is a piece between two squares in a given direc­
tion, and E24, if there is one and only one piece
between two squares in a given direction. E15 tests
if a piece is under attack,: and routine E26 asks
specifically if that piece is the enemy King. Routine
E33 tests whether a given Square is under attack,
while E34 builds up the list' of men of a particular
color attacking· a given square. Routine E36 tests
if a given square is defended. These are some of
the more important "building block" routines used
in constructing the move tree.

Processing Speed

It might be supposed that since the program was
written in an interpretive lalllguage, IPL-V, without
any attempt to provide a special machine-language
representation for primitive board manipulations,
that it would be a very slow player. This has not
proved to be the case-a tri.bute to the advantages
of selectivity over machine brute force. The most
difficult mates, requiring the examination of about
100 positions, were achieved:in about 10 minutes on
a CDC G-20-which would. be equivalent to about
three minutes for the IPL-V system on the IBM
7090. An excellent human player might be expected
to take ten minutes or more! to discover and verify
the mate in a position of this!difficulty.

i

ACKNOWLEDGMENTS

We would like to acknowledge the assistance of
G. A. Forehand, B. F. Green, A. Newell, M. R.
Quillian, and R. F. Simmons.

REFERENCES

1. M. M. Botvinnik, One Hundred Selected
Games (translated by S. Garry), Dover Press, New
York, 1960.

2. G. W. Baylor, "Report on a Mating Com­
binations Program," SOC Paper, No. SP-2150,
System Development Corporation, Santa Monica,
Calif. (1965).

3. H. A. Simon and P. A. Simon, "Trial and
Error Search in Solving Difficult Probl,ems: Evi­
dence from the Game of Chess," Behavioral Science,
vol. 7, pp. 425-429 (1962).

4. R. Fine, The Middle Game in Chess, David
McKay, New York, 1952.

5. S. M. Myron and W. H. May, "A Nott! on
Serendipity, Aesthetics, and Problem Solving,"
Behavioral Science, vol. 8, pp. 242-243 (1963).

6. A.Newell and N. S. Prasad, "IPL-V Chess
Position Program," unpublished working paper,
Carnegie Institute of Technology (1963).

7. H. A. Simon and A. Newell, "Models: Their
Uses and Limitations," The State of the Social Sci­
ences, L. D. White, ed., University of Chicago Press,
Chicago, 1956, pp. 66-83.

8. A. Newell, J. C. Shaw, and H. A. Simon,
"The Processes of Creative Thinking," Contempo­
rary Approaches to Creative Thinking, H. E. Gruber,
G. Terrell and M. Wertheimer, eds., Atherton Press,
New York, 1962, pp. 63-119.

9. N. R. F. Maier, "Screening Solutions to Up­
grade Quality: A New Approach to Problem Solv­
ing Under Conditions of Uncertainty," Journal of
Psychology, vol. 49, pp. 217-231 (1960).

10. D. Luceand H. Raiffa, Games and Decisions,
John Wiley & Sons. New York, 1957.

. 11. A. D. de Groot, Thought and Choice in Chess
(rev. translation). Mouton and Company, The
Hague, 1965.

12. K. Duncker, HOn Problem Solving," (trans ..
lated by L. S. Lees from the 1935 original), Psycho­
logical Monographs, vol. 58, no. 270 (1945).

13. A. Newell, J. C. Shaw and H. A. Simon,
"Empirical Explorations with the Logic: Theory
Machine: A Case Study in Heuristics, n Computers
and Thought, E. A. Feigenbaum and J. Feldman,
eds., McGraw·Hill, New York, 1963, pp. 109-133.

14. A. Newell and G. Ernst, HThe Sc~arch for
Generality," Proceedings of IFIPS Congress 65,
Spartan Books, Washington, D.C., 1965. vol. 1, pp.
17-24.

A CHESS MATING COMBINATIONS PROGRAM 447

15. A. Kotok, "A Chess Playing Program for the
IBM 7090," unpublished bachelor's thesis, Massa­
chusetts Institute of Technology, 1962.

16. A. Newell and H. A. Simon, "An Example of
Human Chess Play in the Light of Chess Playing
Programs," Progress in Biocybernetics, N. Weiner
and J. P. Schade, eds., Elsevier, Amsterdam, 1965,
vol. 2, pp. 19-75.

17. A. L. Samuel, "Some Studies in Machine
Learning Using the Game of Checkers," Computers
and Thought, E. A. Feigenbaum and J. Feldman,
eds., McGraw-Hill, New York, 1963, pp. 71-105.

18. A. Bernstein and M. DeY. Roberts, "Com­
puter vs. Chess Player," Scientific American, vol.
198, pp. 96-105 (1958).

19. J. McCarthy, "The Inversion of Functions
Defined by Turing Machines," Automata Studies,
P. E. Shannon and J. McCarthy, eds., Princeton
University Press, Princeton, N.J., 1956, pp. 177--
181.

20. A. Newell, J. C. Shaw, and H. A. Simon,
"Chess-playing Programs and the Problem of Com­
plexity," Computers and Thought, E. A. Feigenbaum
and J. Feldman, eds., McGraw-Hill, New York,
1963, pp. 39-70.

21. A. Newell, "Some Problems of Basic Organi­
zation in Problem-Solving Programs," Self-Organiz­
ing Systems, M. Yovitts, G. T. Jacobi and G. D.
Goldstein, eds., Spartan Books, New York, 1962,
pp. 393-423.

MULTIDIMENSIONAL CORRELATION LATTICES AS AN AID TO
THREE-DIMENSIONAL PATTERN RECONSTRUCTION*

Samuel J. Penny and James H. Burkhard.
Lawrence Radiation Laboratory, University of California

Berkeley, California

INTRODUCTION

Spatial reccn:-::truction of a three-dimensional
object from a set I...'f stereo photographs must begin
with the matching \ f the topological characteristics
in one view with thosl.! in the other views. A human
is usually good at this form of pattern recognition,
but he is too slow for some applications. For high­
speed processing of bubble chamber photographs it
has been necessary to design a computer code that
will match the images seen in the various views.

If we have n stereo views of an object, where each
view contains images of the m characteristics to be
correlated, a total of mn combinations are possible
when one image is used from each view. These
combinations are known as "n-tuplets." There is
then some set containing m of the n-tuplets that
describes the true matching of the images. With the
physical limitation that an image in one view should
not match more than one image in any other view,
this solution set must be chosen from a total of
(m!)n-I possible sets. This is in the class of combina­
torial problems that involve the construction of an.
ordered set S = {Sh ... ,sml where the Sj are ele­
ments of a finite set U and the elements of the set S
must be chosen subject to certain restrictions.

One approach for finding the correct solution set
would be to compute the likelihood for each pos-

*This work was performed under the auspices of the U.S.
Atomic Energy Commission.

449

sible set of m n-tuplets, and then choose that set with
the maximum likelihood. This approach can re­
quire a prohibitive amount of computation and is
unreliable when there are large errors in the data.
An alternative approach would be to use some type
of elimination process, but even this can be ex­
pensive unless a technique is used to simplify the
bookkeeping and to provide a rapid correlation
among the various steps in the process. The "cor­
relation lattice" and methods for scanning it for
solution sets (by means of an iterative scheme of
backtrack programming l,2) supply the simplicity
and speed to make this approach economical on a
computer.

THE THREE-DIMENSIONAL LATTICE

At the Lawrence Radiation Laboratory in Berke­
ley, much of the high-energy-physics research deals
with nuclear-particle events occurring in a bubble
chamber. Three stereo views of the event are photo­
graphed, and points along the track images are
measured. The images must then be matched so
that the spatial trajectories of the particles involved
in the interaction can be mathematically recon­
structed. Using the parameters of the trajectories,
we do a kinematic analysis of the interaction to pro­
duce the information required by the physicist for
his experiments.

Figure 1 is a photograph and sketches of a simple
nuclear event that occurred in the bubble chamber.

450 PROCEEDINGS~SPRING JOINT COMPUTER CONFERENCE, 1966

View I

2

View 2 View :3

Figure 1. A photograph and sketches of a nuclear-particle
interaction.

As charged nuclear partiCles move through the
liquid in the chamber, they leave small tracks of
bubbles. A nuclear event occurs when an elemen­
tary particle interacts with an atomic nucleus in the
liquid and produces a new:group of particles mov­
ing in different directions.

Numbers have been assigned to the track images
in the different views in the ;figure. The set of image­
number triplets that corrFsponds to the correct
track-image matching is

S = ((1,1,3), (2,3,2), (3,2,1)1 (1)

where, for example, the triplet (1,1,3) means that
track image 1 in view 1, track image 1 in view 2, and
track image 3 in view 3 ~ue images of the same
physical track.

Producing the Lattice

The computer's procedure for matching the track
images begins with the construction of the correla­
tion lattice, E. Each dimension of this lattice cor-

responds to a set of track images from one of the
stereo views, and the indices along a dimension are
the identifying numbers of the track images in that
view. The value, one or zero, of an element eijk in E
will indicate the possibility or impossibility, re­
spectively, of matching image i in view 1 with image
j in view 2 with image k in view 3. Since all image
combinations must initially be assumed to be pos­
sible, the procedure begins with all lattice elements
equal to one. Figure 2 shows the initial lattic'e for
our sample event.

View I

Figure 2. The initial correlation lattice. (In Figs. 2-6, the
solid disk. represents a value one; an open disk 0

represents zero.)

Often the correlation lattice will not be c:ubic,
as it was for our sample event. It is possible that
spurious images may be seen or real images missed
in some views. With the bubble chamber film, it
may be difficult to dissociate the background tracks
from the interesting interaction in some view, thus
producing spurious images in that view. However,
the measuring devices seldom miss tral;k images.
The strategy for dealing with the noncubic lattice
for track matching is then rather simple: if L is the
number of images the code "expects" to match. then
every view must have at least L measured track
images, and the solution set must contain L triplets.
Other applications may require' other strat1egies.

The remainder of the matching procedure is an
iterative process of applying successively mone dif­
ficult tests of physical consistency to the image
combinations in an attempt to eliminate! mat1ching
possibilities from the correlation lattice, and, after
each test sequence, scanning the lattice to determine
the number of possible solutions sets that remain.

MULTIDIMENSIONAL CORRELATION LATTICES 45]

If there is no such set, or only one, the procedure
ends. If there is more than one set, the lattice is
still ambiguous, and it is necessary to go into the
next test sequence.

Testing Image Combinations

A test may be concerned with an image from each
of the three views (a triplet test) or it may compare
images from only two views (a pair test). The pair
test is very effective in the early stages of the pro­
cedure since, if an image pair is shown to be incon­
sistent, any triplet involving that pair must also be
inconsistent. A single test can therefore eliminate
many elements at a time.

The tests may be expressed as binary-valued func­
tions. A pair test is written as the binary function
Fp.Q(p,q) of the pair of image indices p and q from
views P and Q. When the image pair is not con­
sistent with physical constraints, the value of the
function is zero; otherwise its value is one. A simi­
lar definition is made of the triplet test F I •2•3(i,j, k).

For efficiency, we do not apply a test to any image
combination that has already been eliminated by a
previous test sequence. The determination of trip­
lets to be tested with a triplet test is straightforward:
A triplet is tested only if its corresponding element
in E has the value of one. For the set of pair tests
(F I •2 ; F2•3; F3.d, one view at a time must be syste­
matically eliminated from the image combinations
by forming the "projections" of E along each of its
three dimensions, one at a time. This produces the
three two-dimensional-projection lattices IE, 2E,
and 3E, where the elements of these lattices are
given by

(2a)

(2b)

(2c)

. OR. is the logical sum operator, i.e.,

OR 0

o 0

The image pairs to be tested are determined by scan­
ning the three projection lattices for elements with a

value of one and testing only the corresponding
pairs. The projections of the initial lattice shown in
Fig. 2 will obviously produce projection lattices that
have elements all equal to one.

Recording Test Results

Now that the image combinations to be tested
are determined, it is now necessary to record the
results of the test sequence in the correlation lat­
tice E. For a triplet test this simply involves setting
the lattice element corresponding to the triplet to
zero if the value of the test function is zero. The
procedure for recording the results of a pair-test
sequence is to record the value of the test function in
the two-dimensional-projection lattices that indi­
cated the image pairs to be tested. After all image
pairs have been tested, the resulting projection lat­
tices are used to "mask" the correlation lattice E.
This masking operation is written as

E' = kE.AND.E (3)

or expressed at the element level for the view 7:~

projection as

(4)

for all i, j, and k. Here, .AND. is the logical prod­
uct operator

ANDIO

o

The masking is done for all three projections, and
the final lattice E' replaces E as the correlation
lattice.

Returning to our sample event, suppose that the
first test sequence was a pair test and eliminated five
image pairs: (1,2) and (2,2) were inconsistent in
views 1 and 2, and (1,1), (2,1), and (2,3) were incon­
sistent in views 1 and 3. No pairs could be elimi­
nated from views 2 and 3. Figure 3 shows the pro­
jection lattices containing the test results ready to be
masked into the correlation lattice E .

. Scanning for Solutions

After masking into the correlation lattice, we now
scan the three-dimensional lattice for possible solu­
tions. A solution in the lattice is defined as a set of
lattice elements that all have a value of one and are
chosen in such a way that no image in any view is
used more than once. The length L of the solution

452 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

~ ~ I' 1
: View 3 :1 -----

: View 2:

-- -- .

view!L, __ ,~
---- --

Figure 3. The projection lattices contammg the test results
ready to be masked into the correlation lattice.

set is defined as the number of elements in the solu­
tion set; in our sample event, the length is three.

Figure 4 shows the resuLts of the masking opera­
tion on our sample event. • The dashed lines repre­
sent the two possible solution sets that will be found
by the scanning procedure.

The search for solutions in the three-dimensional
lattice is based on the following proposition: If
there exists a solution set qonsisting of L triplets­
SL{E)-in the three-dimensional lattice E, then at
least one two-dimensional-solution set consisting of
L doublets-SL{kE)-must also exist in each of the
projection lattices of E; iie., a solution in E will
project as a solution in any projection of E. A
corollary to this proposition is that if no solution
set of length L is found in some projection of E,
then no solution set of length L exists in E.

View I

Figure 4. The correlation lattice after making. Dashed lines
show the two remaining solutions.

The scanning procedure is a four-step process.
In the first step the lattice is reprojected along some
axis to produce kE (3E in our case). In llhe second
step this two-dimensional lattice is scanned for two­
dimensional solutions of the required length by the
technique of backtrack programming. When a solu­
tion is found, the index pairs forming the solution
set are used to construct a two-dimensional "post­
projection" lattice P (step three) as described llater.
In step four this lattice is then scanned for solutions
in order to determine the third index of the solution
triplets. This type of scan fixes the indiices of the
triplets one view at a time-Le., i is fixed for vi(~w 1,
then corresponding j's are chosen from view 2" and
this information is used to pick out the correspond­
ing k's from view 3. These steps are illustrat(~d in
Fig. 5.

Figure 5. The lattice and projections used in the scanning
procedure. The solution in 3 E defines posts iJll E to
be used as rows in P.

As the three-dimensional solutions are found,
they are used to construct a new three-dimensional
lattice, E s , that contains only elements known to be
a part of some solution. This lattice will be used
later to discard unused elements on the basis of
logical inconsistency. (If it is found that an element
is not now a part of some solution in E, ill can never
be a part of any solution, and it can then therefore
be ignored in any further processing.)

The first step-to produce 3E-is the projection
procedure of Eq. (2c). By the proposition stated
above, any solution in E will project as a solution
in 3E.

The second step-to scan 3E for a two-diimen­
sional solution-is done with backtrack program-

MULTIDIMENSIONAL CORRELATION LATTICES 453

ming I in the following way. Suppose that we are
dealing with a projection lattice of n rows and
m columns and are searching for solutions of length
L. Row i of the lattice is used to form the set
R; = {rij}, where the first m members of the set have
values of zero or one, equal to the corresponding
elements of the row, and the (m + I)th member of
the set is always zero. (This last member repre­
sents a dummy track used to flag the row as not
being used in a solution set.) Using these sets to
form the Cartesian product space RI x R2 X •••

x Rn, we search for a vector (rlj" r2j., ... ,rnjn) in
the space that satisfies the criterion function

n

fer) = L rij; = L (5)
i= I

and that meets the constraint that no two j; indices
can have the same value unless that value is m + I.
(This constrairit allows any column of the projec­
tion lattice to be used only once.)

The concept of backtracking is to construct the
vector one component at a time, with modified cri­
terion functions used at each step to determine if
the line of pursuit still has a chance of success.
When it is found that a partially constructed vector
is doomed to failure, the last component is dis­
carded, and the program backtracks to resume con­
struction from the preceding elements.

The modified criterion function used in the scan
of a projection lattice at the kth row is

k

fk(r) = L rij; ~ L - (n - k) (6)
i= I

i.e., there must be enough rows left for the scan to
reach the final value of L. When nand L are equal
(as in our sample event), this function reduces to

(7)

In Fig. 5, the backtrack program begins by select­
ing rll from set R I and testing it with the modified
criterion function fl (r). In this case

fl(rll) = 1

and the criterion is met. Having found the first
component of our sample vector, (rll, -, -), the pro­
gram now begins a search in R 2 • The first choice is
r21 and by applying Eq. (7) we see that

f2(rll, r21) = 2

However, the constraint that a column may be used
only once eliminates this path from consideration.

The component r21 is discarded, and we move to r22.
Here again we meet failure because

fz(rll, r22) < 2

Continuing, we find that r23 meets the require­
ments, and the sample vector is extended to
(rll, r23, -).

The search now goes to R 3 • As seen in Fig. 5,
r32 is the only member meeting the constraints, and
so completes the vector (rll, r23, r32)' The solution
set we have found in 3E is then

S(3E) = {(l,I), (2,3), (3,2)} (8)

At this point in the scan procedure, the position of
the scan in 3E is saved, and step three is entered.

The third step is to construct the post projection
lattice, P, defined by the solution set just found in
3E [Eq. (8)]. The index pairs in this set prescribe the
posts (parallel to view 3) in the correlation lattice E
that are to be used as rows in P. This projection is
shown on the left of Fig. 5.

The fourth step-to fix the third index of the
solution triplets-is done by a scan of P in the same
manner as the scan at 3E. As shown in the figure,
the solution vector (rl3, r22, r31) is the only one pos­
sible, and a solution set has been found in the cor­
relation lattice E-

SeE) = {(l,1,2), (2,3,2), (3,2,1)} (9)

Elements corresponding to this set are made equal
to 1 in the "solution lattice" Es.

After the solution is found in P, the scan of P
will continue in an effort to find any more that
might be present. If other solutions had been found,
they also would have been entered into Es.

When the scan for solution sets in the post projec­
tion has been exhausted, the program returns to step
two to continue the scan of 3E from the point where
the last solution set was found. If another solution
set is found, steps three and four are again used to
determine if the solution in 3E is the projection of a
solution in the three-dimensional lattice. These·
procedures continue until the scan of 3E is ex­
hausted, at which time the solution lattice, E s , will
contain the elements of all solutions found in the
scan. There is a second possible solution for our
sample event, with the resulting solution lattice
shown in Fig. 6.

The solution lattice is used as a replacement for
the original correlation lattice in order to eliminate
all elements that do not contribute to some solution
set. This lattice is now checked for elements com­
mon,to all solutions in the lattice. These triplets are

454 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

Q'--~--~~--~-o~--~--~~.-View 2

View I

Figure 6. The solution lattice ES showing the two remaining
solutions.

fully determined and need no further testing. Their
elements are set equal to zero, their indices are
saved to become a part of the final solution, and the
required solution length in E is reduced accord­
ingly. In Fig. 6 we see that the triplet (3,2,1) is. of
this type and can be eliminated from the lattice.
This leaves only four elements to be tested by the
second test sequence, thus illustrating the power of
what seemed to be a rather weak first test that could
eliminate only 5 image pairs out of the 27 tested.

THE MULTIDIMENSIONAL
CORRELATION LATTICE

The properties and procedures described thus far
for the correlation lattice can be extended to the
case of n stereo views requiring an n-dimensional
correlation lattice. If mj topological characteris­
tics are seen in view i, the lattice will have dimen­
sions of ml by m2 by ... by m n • Solutions in this lat­
tice will be made of L n-tuplets chosen with the same
constraints as those used in the three-view case.

In this general case, the tests of image combina­
tions can compare any number of views from 2 to n,
and the concept of the pair and triplet test is ex­
tended to the more general k-tuplet test, a binary
function of image indices from k views.

It is possible to form various "orders" of projec­
tions of an n-dimensional lattice. The first-order
projection, kE, that we used in the three-dimen­
sional case still eliminates only one view, but it
produces an (n - 1)-dimensional projection lattice.
The elements of the 1 E projection are now written as

ml

lej ... k = .OR. eij ... k
i= 1

(10)

The second-order projection, jk E, eliminates two of
the views and is formed by projection from the ap­
propriate first-order projeclion. In this procedure,
the projection operation is commutative, i.e.,

(11)

In general, it is then possible to discuss the kth­
order projection in which k of the views have been
eliminated by successive projections.

An (n - k)-tuplet test will use the kth-order pro­
jection lattices to determine which image combina­
tions it is to test and to record the results. However,
the masking of the projections back into the lattice
may be done in different ways. Storage require­
ments may prevent the keeping of all intervening
projections to allow successively higher order mask­
ing back onto the n-dimensional lattice. It may be
more efficient to record the test results directly into
the lattice E; i.e., if the value of the test function is
zero, then all elements in E that use the same indices
used by the test function are set to zero.

The scanning procedure for the n-dimensional
lattice is simply a continuation of the three-dimen­
sional scan. A solution set in the two-dimensional
projection lattice, 3 ... nE, defines the posts in the
three-dimensional lattice, 4 ... nE, to be used in the
construction of the post-projection lattice. A solu­
tion set in this lattice then defines posts in the four­
dimensional lattice, and a second two-dimensional
post projection is constructed. This continue:s as
far as the selection of posts from the n-dimensional
lattice E in order to determine the final index of the
n-tuplets forming the solution set.

SUMMARY

The correlation lattice and the iterative back­
track scheme of scanning for solution sets of match­
ing triplets were used as the basis for a code written
in the FORTRAN IV language to match track
images of nuclear-particle events. This code has
been running on the IBM 7094 for over a year, and
timing studies show that it can match images of
events with seven images in each view in less than
one half second, with most of that time devoted to
computation for the various image-combination
tests.

As developed, the program is divided into two
logically separate sections (test and logi.c) with a

MULTIDIMENSIONAL CORRELATION LATTICES 455

simple interface. The tests are represented as
FORTRAN logical functions which have values
".TRUE." or ".FALSE." corresponding to the pos;­
sibility or impossibility, respectively, of matching
the image combination being tested. This division
allows the tests to be developed independently of the
logic section of the code and permits easy develop­
ment of new programs using the same solution­
finding technique.

The literature offers several examples of the use
of backtrack programming. 1-3 As Golomb and
Baumert so candidly state in their excellent sum­
mary of the technique,1 "Backtrack has been inde­
pendently 'discovered' and applied by many
people." We regret that we are a member of those
ranks. However, the notion of using backtrack in
an iterative sense as we have done seems to be new.
We feel that backtrack in any form may offer other
people a very useful tool and hope that wider
publication of the method will result in fewer inde­
pendent discoveries.

ACKNOWLEDGMENTS

We thank Dr. Frank Solmitz and Dr. Margaret
Alston for their suggestions and encouragement
during the development of the concepts and meth­
ods of the correlation lattice.

REFERENCES

1. S. W. Golomb and L. D. Baumert, "Back­
track Programming," Journal of the Association for
Computing Machinery, vol. 12, no. 4, pp. 516-524
(Oct. 1965).

2. R. J. Walker, "An Enumerative Technique for
a Class of Combinatorial Problems," Proceedings
of the Tenth Symposium in Applied Mathematics
of the American Mathematical Society, vol. 10,
American Mathematical Society, Providence, R.I.,
1960, pp.91-94.

3. J. D. Swift, "Isomorph Rejection in Exhaus­
tive Search Techniques," ibid, pp. 195-200.

A PATTERN RECOGNITION TECHNIQUE AND
ITS APPLICA YION TO HIGH-RESOLUTION IMAGERY

R. D. Joseph and S. S. Viglione
Astropower Laboratory, Missile & Space Systems Division, Douglas Aircraft Company, Inc.

Newport Beach, California

SCOPE OF THE PROGRAM

The purpose of this project was to extend the
study of the feasibility of automatic TIROS photo­
graph analysis. A specific objective was to arrive at
the design specification for a feasibility model of an
automatic vortex recognition system.

The study had four main phases: 1) the develop­
ment of logical design techniques applicable to the
analysis of TIROS photographs, 2) experimental
investigations of selected design parameters on a
simplified problem, 3) the simulated design of a vor­
tex recognition system using actual TIROS photo­
graphs, and 4) the consideration of suitable hard­
ware for implementing the system.

In the study of the design approach, a variation
of the discriminant analysis-iterative design tech­
nique 1 was developed. A description of this
technique is given in the next section along with a
discussion on discriminant analysis, in which al­
ternative pattern differences are assumed. Only one
of these, one in which differences in covariance
matrices of the pattern distributions are exploited,
is suitable for the cloud pattern analysis. This dis­
criminant analysis yields a quadratic discriminant
surface and requires complex hardware for mecha­
nization of the resulting first layer logic units. To
simplify the implementation of the system, an ap­
proximation to the quadratic unit was developed.
The approximate unit is derived from a principal

457

axis solution, and substitutes a pair of parallel hy­
perplanes for the quadratic switching surface of the
more complex unit. Methods have been developed
to make the system invariant to changes in the
brightness and contrast of the input patterns. This
invariance is considerably more effective than a
simple normalization of the input pattern, as it is
achieved by making each logic unit invariant to such
changes. The iterative design process itself is a
means for assigning output weights to the logic
units, and for emphasizing the difficult patterns. In
common with the popular error correction meth­
ods, iterative design will find a solution whenever
it is possible to assign these output weights to give
perfect performance on the sample patterns. Unlike
error correction, iterative design provides an "opti­
mum" set of weights when no solution exists, and
maximizes the switching surface to pattern distances
when one does exist.

A portion of the experimental program was per­
formed on a simplified problem using low-resolu­
tion, hand-printed alphabetic characters. These
studies were used to investigate selected aspects of
the design technique, rather than its application.
The simplified problem permitted a very much more
extensive investigation than would be possible on
the cloud patterns. The average computer simula­
tion time (IBM 7094) to design a recognition net­
work for cloud patterns was five hours-for the
alphabetic characters, five minutes. Two sets of

458 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

alphabetic patterns were obtained, each consisting
of 20 examples of 12 letters. One of these sets was
used to design recognition networks, the other to
test them. The topics studied include the cost of
providing contrast and brightness invariance and
the cost of the parallel hyperplane approximation.

Certain topics, namely those which are particular
to TIROS photograph analysis, or the application
of the design technique to cloud pattern analysis,
are not suitable for the sample problem investiga­
tion. Studies were therefore performed on actual
TIROS cloud photographs. In one study, the reso­
lution of negatives taken from the TV display were
modified by a screen process. Prints of these modi­
fied resolution frames were examined by a large
number of people to determine the resolution re­
quirements of untrained personnel for vortex recog­
nition. The remaining studies were performed on
patterns stored as digitized video signals. The study
of primary interest was whether or not a vortex
recognition network could be designed that would
give good generalization results, i.e., a network
capable of recognizing vortices in cloud photo­
graphs not included in the training or learning
sample. Pattern sets of 1000 patterns and 200 pat­
terns were utilized, the former for network design·
and the latter for generalization testing. Other

topics studied were the effect of changing the reso­
lution of the design set of patterns, the effect of
changing the rate of network design, the effect of
merging several network designs, the effect of Hmit­
ing the input fields of the logic units, and the 'effect
of varying a parameter which controls the propor­
tion of patterns which turn the logic units on.

THE APPROACH INVESTIGATED

The Design Technique

The design technique for designing n,etworks of
the general perceptron structure (Fig. 1) is based on
a loss function. To each pattern in a sample of
classified patterns a loss is assigned. The;: particular
form of the loss function employed assigns tht~ loss
L j to the ith sample pattern

(1)

where () is the threshold of the response unit, OJ is
plus or minus one, depending on the desired classifi­
cation of the ith pattern, and {3j is the value of the
discriminant function for the ith pattern.

(2)

Sensory Units
(pattern sampling)

Logic Units Response Unit
(property detection) (pattern classification)

Figure 1. Decision network structure.

PATTERN RECOGNITION 459

where Wj is a weight assigned to the jth logic unit,
aj is one if the jth logic unit is activated by the ith
pattern and zero otherwise. The system loss is de­
fined as the sum of all of the sample pattern losses.

Iterative Design. In the work of Highleyman 2 and
Bledsoe, * the weights, Wj, and the threshold, (), are
established by minimizing the loss function. "Dis­
criminant-analysesjiterative-design" shares the
usage with the earlier techniques. The current ap­
proach extends these techniques, utilizing the loss
function for two additional purposes.

The recognition logic is designed sequentially.
Logic units are designed using discriminant analysis.
As logic units are added to the design, the pattern
losses indicate which of the sample patterns require
the most attention. In acquiring the data required
to generate additional logic units, the loss assigned
to a pattern is used to weight the contribution of
that pattern to the group statistics. This insures
that the logic units thus derived are suitable for the
part of the recognition problem as yet unsolved.

Logic units are generated by selecting a subspace
of the original signal space, and performing a dis­
criminant analysis in that subspace. Subspaces are
used since it is usually not practical to perform the
discriminant analysis in spaces with high dimension­
ality, nor is the implementation in analog hardware
of the resulting logic unit feasible. No technique
has yet been found for optimally selecting sub­
spaces, so that an element of randomness is used.

Randomly chosen subspaces are not all of equal
utility, and often a particular subspace will prove
to be of no value at all. For this reason, selection is
used. Each time the recognition network is to be
expanded by the addition of logic units, more units
are generated than are to be added. Only the best
of these units are selected. The selection criterion
is-which unit would result in the greatest decrease
in the system loss.

The particular form of the system loss function
does not permit its optimization with respect to all
of the weights, Wj, simultaneously. Its optimization
with respect to one weight and the threshold simul­
taneously, however, is readily accomplished. A re­
laxation process is used, cycling through all of the
logic unit output weights and optimizing with re­
spect to each weight individually. It has been
shown 3 that this iterative process will lead to a de­
sirable set of weights if the process is continued in

* Personal communication.

depth. However, as new units are added to the net­
work, different weightings for the units become de­
sirable, so that it seems uneconomical to iterate the
weight adjustment process too long on a partially
designed network. The compromise chosen is to
iterate the process a given number of cycles each
time the network is expanded. Part of the investiga­
tion was concerned with the effects of the number of
iterative cycles used.

Discriminant Analysis. Discriminant analyses are
used to generate a logic unit, given a subspace. To
pe;form the discriminant analysis, assumptions con­
cerning the distributions of patterns in the subspace
must be made. These assumptions, in general, are
not justified. To some extent these assumptions are
important; in other cases, they are not.

In the cases under investigation, two pattern
classes are considered. The two pattern classes are
assumed to have multivariate normal distributions.
The statistical data which must be extracted from
the patterns is thus limited to the first two mo­
ments but this does not seem to be a serious short­
coming for this problem. Experience with discrimi­
nant analysis with a normality assumption has
shown it to work well even when the distributions
are not normal, provided, of course, that the pattern
classes may be separated on the first two moments
of their distributions. Further, the selection and
iter~tive design procedures evaluate and weight
logic units according to their actual performance on
the sample patterns rath~r than the performance
predicted for them by the discriminant analysis.

The assumptions which are made concerning the
mean vectors and the covariance matrices of the two
distributions seem more important. These assump­
tions control the nature of the differences between
the distributions which are to be exploited. They
also control the nature of the resulting logic units.

An assumption, which results in easily imple­
mented logic units, is that the covariance matrices
are equal. The pattern class distributions differ only
in their mean vectors. Under this assumption the
optimum decision boundary for a logic unit is a
hyperplane-one which bisects the line segment
joining the mean points of the two pattern classes.
The estimate of the common· covariance matrix is
used to establish the orientation of this hyperplane.
The resulting logic unit is the linear input threshold
unit almost universally used in perceptron work. In
the following material, this technique is designated
"Oriented Hyperplane." Figure 2a illustrates the

460 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

oriented hyperplane in two dimensions (in this case
the hyperplane is a line).

The calculation can be simplified by ignoring the
orientation of the hyperplane. The logic unit
boundary is the hyperplane which bisects the line
segment joining the class means and which is per­
pendicular to that line segment. This approach
eliminated the need for estimating and inverting the
covariance matrix. The same logic unit would re­
sult if it were assumed that the common covariance
matrix was a multiple of the identity matrix. This
technique is designated "Perpendicular Bisector"
and is illustrated in Figure 2b.

The assumption of the preceding techniques­
that the pattern class distributions differ in their
mean vectors-does not fit :the cloud pattern recog­
nition problem. It can be shown that if patterns are
to be recognized in all rotations and translations,
then the mean vector for a pattern class will have all
components equal. These components will equal
the average intensity of all patterns of that class. It
would appear that the mean vectors should be as­
sumed equal, and the common mean vector should
have equal components. The pattern classes are
differentiated by their covariance matrices.

If it is assumed the covariance matrices are dif­
ferent, then the decision boundary becomes a quad-

(a) Oriented Hyperplane

Logic Unit
Decision Boundary

(c) Quadratic Surface

Logic Unit
Decision Boundary

(b) Perpendicular Bilector

Logic Unit
Decision Boundary

(d) Parallel Hyperplane

Figure 2. Discriminant functions.

ratic surface. The assumption concerning the mean
vectors does not alter the general form of the solu­
tion, just its computation. The technique which
assumes the mean vectors equal, and the common
mean vector to have equal components is called
"Quadratic Surface." It is illustrated in Fig. 2c.,

Quadratic units are difficult to implement in hard­
ware, and require large amounts of memory in a
digital simulation. An approximation is possible in
which the principle axis of differentiation is com­
puted. A pair of parallel hyperplanes perpendicular

,to this axis is substituted for the quadratic surface.
The resulting logic unit is easily implemented. This
technique is designated "Parallel Hyperplane" and
is illustrated in Fig. 2d.

Detail::; of the computations for these four tech­
niques are given in Ref. 3. The techniques are sum­
marized in Table 1.

Table 1. Technique Comparison

Difference
Technique Exploited Remarks

Oriented Hyperplane Mean vector Linear imput threshold
unit

Perpendicular Bi- Mean vector Same--easier c:ompu-
sector tation

Quadratic Surface Covariance matrix Quadratic input
threshold unit

Parallel Hyperplanes Covariance matrix Linear imput-double
threshold unit

Gray Scale Invariance. The gray scale of TIROS
frames vary from picture to picture, and the darker
shades on one picture may actually be lighter than
the brighter areas of another frame. Indeed, such
variation can occur in different areas within a single
frame. It seems desirable that an in variance to such
changes in the gray scale be built into tht~ logic of a
decision network, rather than obtained by providing
a multiplicity of hardware to operate at different
gray scale levels. A single normalization of the gray
scale of a frame does not provide the degree of in­
variance of the techniques used in this study.

For each of the techniques previously described a
version which was invariant under linear transfor­
mations of the gray scale was devised (that is, when
the intensity x is replaced by a(x + b». This was
accomplished by determining the restrictions placed
on the decision boundary of a logic unit by the re­
quirement that its switching surface be su<ch that the
unit's state is unaffected by changes of picture
brightness or contrast. Next, it was determined
what conditions were required in the discriminant

PATTERN RECOGNITION 461

analysis to assure that the restrictions on the deci­
sion boundary would be met. Finally, the bright­
ness and contrast of the sample pictures were modi­
fied to yield the desired conditions.

As an example, the Perpendicular Bisector (which
produces linear logic unit boundaries) will be con­
sidered. It is easily shown that for these units to
have the desired invariance, the threshold must be
zero, and the weights of the input connections must
sum to zero. To insure that the weights sum to zero,
the weight vector is the difference between the mean
vectors for the two pattern classes within the sub­
space, each mean vector was required to have the
appropriate coordinates summed to zero. Thus, in
the computation for each unit, for each sample pat­
tern, a value of "b" is computed which will produce
the desired zero sum, and the pattern components
reduced accordingly. Similarly, a zero threshold
occurs when the mean vectors within the subspace
have equal length. This in turn is accomplished by
scaling each pattern so that the (zero sum) means
have equal length. For the generation of each unit,
one scale factor "a" is derived and is applied to all
patterns of the negative class. For this technique
(Perpendicular Bisector), it is not necessary to treat
individual patterns, as the mean vectors themselves
may be reduced and scaled to the same end. The
consideration above shows, however, that this re­
duction and scaling is legitimate under the assump­
tion that all patterns which differ only in brightness
and contrast are equivalent.

SAMPLE PROBLEM INVESTIGATION

A study of a simplified problem-alphabetic
character recognition-permitted a much broader
investigation, as the computer time required for a
single network design averaged 1/60 that required
with the actual TIROS frames. The investigation
was for the most part restricted to problems con­
cerning the design technique itself, rather than its
application to a specific problem. Eight variations
of the basic design technique were studied, these
differing in the means for generating property filters,
and four variations on these to produce units in~
variant to changes in the gray scale. Two of the
basic methods exploit differences in the means of the
distributions of measurement vectors for the pattern
classes, one method representing a computational
simplification of the other. The other two basic
methods exploit differences in the covariance ma­
trices of the distributions, one method permitting

much simpler implementation than the other.
Several "open" perceptron techniques and a cor­
relation technique were studied to provide a basis
for evaluation.

All eight of the techniques were very effective in
producing small networks giving perfect perfor­
mance on the sample patterns. In general, 10 to 15
property filters were required for one binary deci­
sion on the 240 patterns. * This rate of design is too
fast, and emphasizes the weakness in using only
performance on a limited sample of patterns (the
240 samples represented 12 different letters) as the
design criterion. Any false correlations which are
found may solve part of the problem of classifying
the sample patterns, but do not contribute to the
solution of the real problem. In part, these false
correlations may be detected by comparing the error
rates achieved on the sample patterns used in the
design with the error rates on an independent
sample. When these false correlations are prevalent,
one should increase the sample size, or make
stronger use of distributional assumptions. For
partial relief, several steps to slow down the design
rate have been considered. A slower rate allows
more opportunity for useful properties to be found
before portions of the problem are considered
solved on the basis of extraneous correlations. The
presence of the false correlations is also indicated
in a comparison of the results with the property
filter generation methods based on differences in the
means of the distributions, and those based on dif­
ferences in the covariance matrices. Although little
difference is shown in the rate of design, the ability
of the networks to generalize to the independent
sample is considerably different. As shown in Fig.
3, there is considerable variability in the design, due
to randomness in the selection of subspaces for the
logic units. This variability tends to mask differ­
ences which occur in the experiments performed.
At least three networks were designed with each
method, and the results averaged to reduce the
variability.

In part, the variability is due to the high selection
ratio (see Fig. 4) used, the ratio of the number of
property filters generated to the number incorpo­
rated in the network. Since the subspaces are gener­
ated randomly, the evaluation of a unit to be gen-

* Figure 3 is a plot of system loss vs number of logic units for
a number of network designs for each technique. The curves for
each technique represent a different randomly selected starting
point.

462 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

til
til
o
~

180riEtmEm

60 t-++-Ir+++i++H+

o t-++-If+I+l++H+

60lmWWm

o tttt:t:t:tUllillitillt

Number of Logic Units

DELOSU vs AHINR T J'.:on Invariant \"l'rsions

Figure 3~ Effects of randomness-system loss (curves are for individual networks),

erated may be regarded as a random variable. With
a high selection ratio, only the tail of its distribution
is being used, a situation which induces variability.
High selection ratios may be. undesirable since units
which are selected are usually of high utility for the
classification of the sample patterns. In a complex
problem, however, it is unlikely that a single prop­
erty filter could solve a large portion of the real
problem. High ratios could thus put a premium on
the extraction of extraneous correlations.

Despite the difficulties discussed above, the design
techniques worked comparatively well on the
sample problem. The final, network designs work
considerably better, both on the sample patterns
used in the design process and the independent
sample, than did networks; three to five times as
large, designed using two "open" perceptron tech­
niques. The utility of the current technique appears
to be in the design of a set of property filters. In one
experiment, the linear decision function of a net­
work designed with the current technique was re­
assigned using the perceptron techniques. The re-

suIting network classified the independel1t sample
about as well as did the original network. A corre­
lation method was also used. The entire set of
sample patterns was stored, and unknown patterns
classified by finding the highest correlation coef­
ficient (the second highest when the sample deck
was used for testing). This method showed the 14~ast
effect of spurious features correlating highly with a
pattern class. The error rates on the design sample
and the independent sample were virtually identical.
The generalization error rates were the lowest
achieved. The best networks designed with the Gur­
rent technique came very close to the generalization
error rates of the correlation scheme.

The number of freely variable weights in a lI1et­
work appears to be a critical quantity. Within the
range investigated, the effect of the number of input
connections per property filter may be accoul1ted
for by this quantity. For the linear input propc~rty
filters, the number of free weights varies linearly
with the number of connections. Thus a m:twork of
seven logic units, each with seven input cOlllnections

PATTERN RECOGNITION 463

Number of Logic Units

N

240

20

40

o
DELOSU VB AHINRT

Figure 4. Effects of selection ratio-system loss.

would work about as well as one with eight units
each with six connections. For the quadratic input
units, the number of free weights varies quadrati­
cally with the number of input connections (Fig. 5).

The cost of making the property filters invariant
to linear changes in the gray scale may also be ac­
counted for by the number of free weights. It can be
shown that the constraints which produce the in­
variance reduce the number of free weights by two
per property filter for the linear input units, and by
the number of input connections plus one for the
quadratic input units. In both cases, the loss is
equivalent to the loss of one connection plus one
weight. The experimental results confirm these pre­
dictions. The value of the gray scale invariance is
strikingly demonstrated by the generalization error
rates for samples in which the gray scale has been
varied both'linearly (as per the invariance) and non­
linearly (see Fig. 6).

The cost of using the simplified techniques ap­
pears to be an increase of 30% in the number of

property filters needed when differences in the mean
vectors are being exploited, and an increase of 50-
75% when covariance matrix differences are being
used. In the latter case, the simplified units have
less than half as many free weights, so that the total
network has fewer free weights in the simplified
case (see Fig. 7).

CLOUD PATTERN INVESTIGATION

Four files of digitized TIROS patterns were gener­
ated. The first and third files are frames containing
vortex patterns, the frames in the second and fourth
files contain nonvortex cloud cover. The first two
files contain 500 patterns each, and were used in net­
work design; the last two files of 100 patterns each
were used for testing the networks. The 1200 pat­
terns are derived from 223 actual TIROS frames, by
considering different translations and rotations of
these pictures. Great difficulties were encountered
in obtaining and verifying these patterns. The

464 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Degrees of Freedom

III
III
o
~

E
!

180ffiOOR

o 1-H+t+++++H+

~ 1 Rm+-H-+++++H-f+l-

Figure 5. Degrees of freedom comparisons-system loss.

TIROS frames were edited to:a 180-by-180 size, and
the gray scale reduced to four bits. Examples of
these patterns are shown in Wig. 8. The editing of
9/16 of the original frames was accomplished to
remove as much of the horizon as possible.

Seven complete recogniti~n networks were de­
signed, and four fractional networks were designed.
A total of 48 hours of IBM 7094 time was used to
design these networks and two hours were used to
test their generality. These ngures are dwarfed by
the amount of time used in program debugging.

The partial network designs were obtained to ad­
just two parameters of the design technique. One of
these parameters controls the expected fraction of
nonvortex patterns which turn each property filter
on, the other parameter controls the rate of design
and the stability of the weight adjusting procedure.
Three partial networks were 'available for selection
of each parameter. Instabilit~ did not occur in these
networks (although it had o,ccurred with different
values in the debugging run~). Values which gave
the fastest design rates were selected for these

parameters. In retrospect, this criterion does not
seem optimum. The parameter value sell;!cted by
this method gives an expected activity rate for non­
vortex patterns of one-half of the property filters.

Approximately 250 property filters are required
to provide perfect separation of the 1000 patterns
in the design files. The actual figures range from 220
to 290. Designs with more than 250 units occuned
only when constraints were placed on the prop­
erty filters. Steps to terminate the design process
are taken when perfect performance on the design
patterns is obtained. This termination procedun:: is
such that it produces designs with 10 property filters
more than required for the zero error rate. Thlese
units and the additional adjustments made to 1the
output weights appear to reduce performance levels
rather than improve them. The error rates on the
design sample drop rapidly until they reach 1 %, at
which point a sharp break is noted in the rate of
reduction. Approximately 180 property filters are
required to achieve the 1 % error rate (see Fig. 9).

Two generalization error rates were comput,ed,

PATTERN RECOGNITION 465

Number of Logic Units

N

90 I-H-H-H-t+tt+

30 I-H-t+++tttttttt

o t:t:tt:ttttttttli:
DELOSU VB AHINRT Gray Invariant Versions

Shown by Broken Lines

Figure 6. Effects of gray scale patterns-Deck II, V AR

corresponding to different thresholds for the de­
cision element. One of these thresholds gives a min­
imum rate on the generalization patterns. These
error rates are computed for each increment of 10
property filters to the network. The error curves
generally show two significant local minima. Usu­
ally these minima occur near the beginning of the
design and in mid-design. Occasionally, the mini­
mum near the beginning is replaced by one near the
end of the design. The mid-design minimum occurs
when the error rate on the design patterns is about
5 or 6%. The mid-design minimum is usually the
larger of the two (see Fig. 10).

The first three networks were designed under
standard conditions. Different random numbers
provide different input connection combinations
and hence different networks. These networks pro­
vide the best generalization performances of the
seven networks, giving error rates which are not
particularly low. Network 1 has 250 property

. filters. The first minimum gives a 36.5% generaliza­
tion error rate with both thresholds-the lowest
rate observed. The mid-design minimum gives the
rates of 37.5 and 39.5%. The highest error rate is
46%. Network 2 has 250 property filters, early error
rates of 38 and 43.5%, and mid-design minima of
41 and 42.5%. The maximum error rate is 48%.
Network 3, with 220 property filters, exhibits only
mid-design minima which are 39 and 44%. At one
point in the design an error rate of 51 % is observed.
Thus each network is capable of making less than
two errors in each five decisions at some point in its
design. Although these performances are not high,
the networks do achieve better than chance per­
formance quite consistently.

When the first three networks are considered in
combination, the generalization error rates are not
better than those for the best single network. The
error rate curves are smoother, however. Failure
to improve the single network performance is in-

466 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Number of Logic Units

Ul 40
H
0
H
H

riI
s::
.~ 2
~
u

.....
Ul
Ul

~
U
.....
0
H

~ 6utlmWttltt
6
::l
Z

6
::l

6 4UI-++-I-I4-I~-I-I+
C
~

o L..I..I..J..I..I..L I .. I.I.JW.

N
o

DELOSU vs AHINRT Gray Invariant Versions
Shown in Right Hand .Panels

Figure 7. Technique complexity comparison-learning rate.

dicative of a nonrepresentative design sample rather
than too fast a design rate ..

Networks 4 and 5 were designed on reduced reso­
lution design patterns, using 90-by-90 and 60-by-60
rasters, respectively. The generalization perfor­
mances were tested on full resolution patterns, how­
ever. Network 4, (see Fig. 11) with 240 property
filters has early minima of 41 and 42%, and mid­
design minima of 43.5 and 46.5%, these latter occur­
ring at different points in the design. Performance
no better than chance is observed 12 times in the
design. Network 5 has 250 units and shows pro­
nounced minima only near the end of the design.
These minima are 41 and 41.5%. Performance no
better than chance is observed 10 times in the de­
sign. These figures represent significant deteriora­
tions from the first three networks. Combined with
optical studies, which indicated that full resolution
is necessary for many patterns, this result indicates
that the property filters in the first three networks,

at least in part, are dealing with the proper level of
detail.

Networks 6 and 7 were designed with restricte:d
area subfields for the property filters, No.6 with 90-
by-90 subfields, No.7 with 45-by-45 subfields. The~y

required 280 and 290 property filters. The rate of
design was similar to the other networks until a 1
or 2% error rate on the design patterns was
achieved. Unlike the first four networks, the gener­
alization error rate did not incr:.!ase during the rc!­
maining network design. The minimum error rat(~s
for network 6 (see Fig. 12) are 41.5 and 44.5%. Per­
formance is no better than chance seven time:s. For
Network 7, the minimum error rates are 43.5 and
45%. The design fails to better chance performance
19 times. These results are significantly pooner than
those with the first three networks. The condusion
is that local properties are not desirable for thils
problem when 10 input connections are used for
each property filter.

(49)

(22)

(45)

PATTERN RECOGNITION

(50)

Variations in Vortex Size

(28)

Variations in Picture Contrast

(18)

Difference s in Pattern Definition

Figure 8. Examples of cloud patterns.

467

(36)

(31)

(55)

468 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE. 1966

~------~--------~~--------.----------.----------.------Y- 900

COSPHI = .248

BETA = .07

RANDOM = 02061926 (Fixed) 800

300-+-4~----~------~----------~--------1------~---4~----;

700

250-+~--~~~----~--------~~--------~------~--~

600

.~

200 '"' 500 Ul 0 Ul

'"' 0
'"' ..-:l (xl

4-< E 0
2

'"' Ul Q) >-.D --- 400 Vl E
::s 150 ------
Z

-- -- 300

100

- --- 200

50

100

5 10 15 20 25 30 33

Pass Number

Figure 9. Machine design #1.

Optical studies were performed on TIROS
frames. The resolution of 60 frames was altered to
several levels using a screening process (see Fig. 13).
The prints obtained were then examined by 15 to 20
people, in order of increasing ~esolution. The reso­
lution level at which their decisions became consis­
tent with their final judgment was noted. For a re­
markable number of frames, the panel disagreed in
their final judgment. When the resolution was too
low, the frame was almost always judged nonvortex.
Consequently, when the final judgment was nonvor­
tex, all preceding judgments were also. About half

of the vortex decisions were reached at the highest
resolution level (240 lines per frame). The othe~r
half were made at the coarsest resolution levells
(about 70 lines per frame). Very few final judgments
were made at intermediate levels.

SUMMARY AND CONCLUSIONS

An extensive study of a particular design tech­
nique for pattern recognition, and particularly its
application to TIROS photographs, has beem con­
ducted. Many aspects of the technique which were

PATTERN RECOGNITION 469

400

Machine #1 Machine #2 Machine #3

\
___ Minimum Errors on Design Patterns

__ Minimum Errors on Generalization Patterns

- - - _ - Generalization Errors Against Present Threshold

120

~ 100
0

'"' '"' W
I=:

~
<\I 80 .~

';;j
'"' <1l
I=:
<1l
()

'"' 0 60
<1l

';;j
U

U)

40

20

300

til

'"' o
'"'
'"' W
I=:
'"' ti
<\I

p..
200 I=:

.~

100

til
<1l
o
'"' o
<1l

';;j
U

U)

°0~------~10~0~----~2~0~0~~~=-======--4~0~0~------~5~O~0-------6~0-0---------~7~0~0----~800
Number of Property Filters

Figure 10. Network performance-machine #1 plus #2 plus #3.

not specific to this application were investigated in
a series of experiments on alphabetic characters.
Other experiments were performed on data from
actual TIROS frames in an attempt to separate
frames containing vortices from those which do not.

Automatic design techniques for pattern recogni­
tion networks may be given varying degrees of
coupling to a sample of patterns. At one extreme,
the technique may be tightly coupled in that the
only design criterion is the correct classification of
the design sample of patterns. The drawback to this
extreme is that even if the sample of patterns is very
representative of the actual distributions, the finite­
ness of the sample can lead to networks giving poor
generalization results. A nonrepresentative sample
almost insures poor generalization. The advantages

are I) that there is no need to make distributional
assumptions; and 2) that since the goal is a high
level of performance on all patterns, and since. it is
unlikely that the generalization performance will ex­
ceed the performance on the design sample, perfect
or near perfect performance on the design sample is
a good starting point. At the other extreme are the
techniques with minimal coupling to the design
sample. A design is accomplished by making strong
assumptions concerning the actual distributions of
patterns, using the sample to estimate a limited
number of parameters of these distributions. The
disadvantages are that if the distributional assump­
tions are incorrect, then poor performance is ob­
tained. Even if the assumptions are nearly correct,
the technique usually results in networks which

470 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

-100

Machine #4 --- Minimum Errors on Design Patterns

__ Minimum Errors on Generalization Patterns

- - - - - Generalization Errors Against Present Threshold

'"' .2 60
Q)

~
u

CJ)

40

20

300

;;
~
0.,

200 Sn
"Uj

Q)

o

100

0~0------~1~0~0------~~~--~3~0~0------~4~0~0-------5~0~0------~6~0~0------~7~0~0------~800

Number of Property Filters

Figure II. Network performance-machine #4.

classify a majority of the patterns correctly, but
leave a substantial minority incorrect. Increasing
the sample size does not help usually, for although
the less common patterns are better represented,
only a few a·.rerage values are extracted from the
sample. The advantage is that "the number of
sample patterns required by the technique is mini­
mized, since the technique is ~ot nearly as sensitive
to noise and false clues in the sample patterns.

The present technique was selected to provide a
compromise between these ex:tremes. Initially, the
design of the property filters is very loosely coupled
in that populations of them are designed statistically
under very strong distributional assumptions. The
selection of property filters and the design of a linear
discriminant for the decision element are tightly

coupled to the design sample. This is done in terms
of a loss function which reflects how well each
sample pattern is classified. The losses are used as
weightings in the statistical averages used to design
property filters so that as the design process pro­
ceeds, the design of these filters becom(~s more
tightly coupled to the sample patterns. The intent
was to derive properties in a loosely coupled fashion
to avoid the sensitivity to sample representativeness
of the tightly coupled systems. The purpos.e of in­
creasing the extent of this coupling was to avoid the
common failing of loosely coupled systems--that of
solving the same portion of the problem over and
over, while ignoring the harder parts of the problem.

The effects of this increase in coupling are evident
in the experimental programs, in which the generali-

PATTERN RECOGNITION 471

400

Machine #6

--- Minimum Errors on Design Patterns

- _ Minimum. Errors on ·Generalization Patterns

- - - - - Generalization Errors Against Present Threshold

120

'"' .8 60
(l)

'';is
u

U)

20

300

til

'"' o
'"' M

W
~
M

~
ro

0..

200 .~

100

til
(l)

o

O~ ______ ~~ ____ ~~~~-L~~ ____ ~~ ______ ~~ ____ ~~ ______________ ~
o 100 300 400 500 600 700 800

Number of Property Filters

Figure 12. Network performance--machine #6.

zation performance nearly always does not improve,
and often deteriorates as the last few errors in the
design phase' are eliminated. Overall, the design
technique appears to be tightly coupled, having
never indicated an inability to provide perfect per­
formance on the sample patterns with a relatively
small network.

Techniques were devised to provide property
filters which were invariant to linear changes in the
gray scale. Experiments on the alphabetic charac­
ters indicated that the increase in network complex­
ity required for perfect performance on the sample
patterns was nominal, although for the type of
property filter selected, the gray invariance was
costly in the hardware implementation.

Consideration of the TIROS frame analysis indi-

cates that the property filters must be designed by a
covariance analysis-that is, it is combinations of
intensity values rather than individual intensities
which are important. The alphabetic characters
seem more susceptible to analysis of the distribution
means, due to centering of the patterns. In the ex­
periments on alphabetic characters both mean
analysis and covariance analysis were used. On the
TIROS frames only covariance analysis was used.

Normal populations which differ in their covar­
iance matrices give rise to quadratic input property
filters. These are very expensive in analog hard­
ware, and require very large amounts of memory in
digital implementations. A parallel hyperplane ap­
proximation was developed. Experiments on the
alphabetic characters indicate that with this approx-

472

. :.:

.

. '.'

.:.:
:.:.

. -:.

. :.

....

-.

-.~

PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

.-.
.:.:::

::: :.:.::::

:.~ ::::::: !. ':.:;::.: :.:.
;-;

-'.' -.
-'

'.'

.'.
~;

.... :::

;.;

;.:
~'.

::;.

::::

= ::: :::;

: :;::! ,'.'~ ::: :;:::
,'.

:. :.:.:.:

.... ·.·::~;~~;~::::::~;:m ~ /'. ;::. ': .. :.
'. :. .':'

30
TAPE

Figure 13. Pattern 30 at resolutions of 95, 111, 150 and 220.

....... .
::: ::::::';" . ::: :

.;. :.: :::
"':.:::';' :.: ;"::::::: .;.

,-" :.:.::.: ,.;.: ,'.

:.;:;;.;:;:;:;:; :;:;:. :::
:. ~.:'.: ~;: . :.: :/: r

::::: .:-
::::
:.:

::::
:.

;:::

:-:

:.: .:.::

:.: .}:::: ':= ~
::: •. ')tI~ 1~ :~: :.:.: :;: '~ ::: =::: .;. .

:::::::
.;.: .:.:.;::::::=?

PATTERN RECOGNITION 473

imation the increase in the number of property fil­
ters to separate the sample patterns is not great,
considerably reducing the overall system complex­
ity. Implementation of the gray invariant version
of this approximation in digital equipment is simple,
but the analog form suffers from the same problems
as the quadratic unit, but on a more limited scale.
The gray invariant approximation was used in the
TIROS frame experiments.

In the experiments on the alphabetic characters,
eight methods for generating property filters were
used. Four of these were designed to exploit dif­
ferences in the means of the distributions, and four
to exploit differences in the covariance matrices.
Half of the techniques in each case produce prop­
erty filters invariant to changes in the gray scale.

There was sufficient information in the sample
patterns to permit each of these techniques to pro­
vide complete networks. The number of property
filters required to separate the sample patterns gen­
erally ranged between 8 and 15, depending on the
particular technique.

The generalization performance of these networks
was reasonable. For the techniques based on dif­
ferences in the distribution means, there is little dif­
ference in performance, each technique averaging
about an 8% error rate. The best individual net­
work had about a 6% error rate. The quadratic
units gave a 10% error rate. The parallel hyperplane
technique gave a 13% error rate and its gray invari­
ant version yielded 15% errors. The best generali­
zation performance generally occurred when the
design was about 70% completed. Although the
performance degrades only about 1 % after the best
level is reached, better levels might have been
achieved if the coupling did not become as great as
it does toward the end of the network design.

The utility of the gray invariance was demon­
strated by modifying the gray scale of the sample
patterns. A linear change has no effect on the per­
formance of the gray invariant networks while
having profound effects on the noninvariant ones.
Even for some nonlinear changes in the scale, the
effect on the noninvariant networks is much greater
than for the invariant ones.

These performances were achieved on one binary
decision. The design and generalization sets of
sample patterns consisted of 20 examples, each con­
taining 12 letters. These were sloppy handprinted
characters. To put the results in perspective, several
other design techniques were tried. The best of
these, in which all of the sample patterns are stored

in memory, and the unknown patterns correlated
against all of these to find the highest correlation,
gave a 5% error rate. In other tests perceptrons with
both 50 randomly selected property filters, and 50
property filters designed by analysis of the distri­
bution means, and forced learning and Bayes
weights for decision function assignment gave 25
and 20% generalization errors respectively. Using
14 property filters taken from a network designed by
the current technique (one which analyzes distribu­
tion means), the forced learning approach gave 9%
generalization errors, just 1 % more than the net­
work from which the units were taken. The value of
the selectivity and the coupling in the present tech­
nique is apparent.

Despite the shortcomings shown in the generali­
zation data, and the hardware difficulties in imple­
mentation, the gray invariant version of the parallel
hyperplane technique was used in the TIROS frame
investigation. Unless a considerable amount of
normalization can be achieved, methods based on
differences in the distribution means will not be
effective in photo interpretation. This leaves the
quadratic units and the parallel hyperplane units.
The parallel hyperplane units were selected, as they
require only 22% as much memory for unit specifi­
cation. The value of the gray invariance when the
gray scale does change was deemed to be sufficient
compensation for the slightly higher error rate on
the black and white generalization patterns.

One thousand patterns were used as design pat­
terns in the TIROS investigation. Five hundred of
these contained vortices; 500 did not. An additional
200 patterns used as a generalization sample were
also equally divided. This classification was ac­
complished by meteorologists with experience on
TIROS photographs. Classification by Douglas
personnel was less consistent.

Optical studies were performed on some TIROS
pictures to determine· the minimum resolution re­
quirements compatible with good recognition per­
formance by people. Sixty different frames were
utilized. Prints of these frames were made at vari­
ous resolutions, using a screen process to control
the resolutions. These were examined by 15 to 20
people, in order of increasing resolution, to deter­
mine the coarsest resolution level at which their
classification became consistent. A remarkable
number of frames resulted in split decisions, nearly
half of the people calling them vortex and half
nonvortex, even at the highest resolution level. For
the vortex patterns the decision point seems to split

474 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

evenly between the highest and lowest resolution
levels (240 lines and 70 lines).

Seven networks were designed to separate the
sample patterns. The first three of these were
designed with 180-by-180 resolutions, with each
property filter receiving 10 connections selected
randomly from the entire input field. A different
starting random number provides distinct networks.
The first two networks required 250 property filters,
the third required 220 to separate the sample pat­
terns. Thus the networks aver.ged 2400 input con­
nections, or 8% of the available picture points.
Since the resolution study did not indicate that the
smaller vortices could be identified at 70 lines (giv­
ing 8% as many elements as 240 lines), one network
alone will not be particularly general. If the de­
sign sample is sufficiently representative, improved
generalization should result if the networks are
combined. Such combinations do not result in
significant improvements in the generalization per­
formance.

Each of the three networks can produce generali­
zation error rates less than 40% at some stage
in its design. Machine No. 1 is best in this respect,
giving a minimum of 36.5% errors at one point, and
maintaining 40% or less through most of the design.
For machines 1 and 2 the error rate has a minimum
at a point about half way through the design. Quite
consistently, the error rate on the design patterns is
3-6% at this point. In all cases the error rate deteri­
orates toward the end of the design. Combining
the networks overcomes this tendency for the error
rate to rise. The conclusion from these data is that
the increase in coupling in the design of the prop­
erty filters is undesirable.

The poor generalization performance is due to the
nonrepresentativeness of the sample patterns. That
500 patterns, unnormalized for size, position, hori­
zon location, or· fiducial mark location, do not
adequately represent the vortex or nonvortex classes
on a 32,400-point input field is not surprising. The
network which achieved perfect separation on non­
representative samples may have accomplished
some combinations of two things. The network
may be a good design for a smaller class of vortex
and nonvortex patterns of which the design sample
is representative, or it may be a design which capi­
talizes on the nonrepresentativeness of the ex­
traneous features in the samples, such as the loca­
tion of the horizon or fiducial marks. The extent of
the combination achieved cannot be determined
without a very detailed study of the design and

generalization patterns. Some indication is given in
the resolution results to be discussed next. That at
least some honest properties were found is ,evi­
denced by the fact that generalization performance
is consistently better than chance.

Networks 4 and 5 were designed on lower reso­
lution patterns. These maintained the 180-by-180
format, but the gray level changed only every
second or third point, respectively. Generalization
for these networks was tested against full resolution
patterns. The networks required 240 and 250 prop­
erty filters, respectively. Each network has a best
generalization error rate of 41 %, near the beginning
of the design for Network 4 and near the: end for
Network 5. This significant deterioration is again
indicative that some honest properties have b4~en

derived.
Networks 6 and 7 were designed with limitations

on the input fields of the property filters. For Net­
work 6 the connections for the filters were drawn
from 90-by-90 subfields positioned randomly in the
main field. For Network 7 45-by-45 subfields were
used. These networks required 280 and 290 prop­
erty filters for complete design. The rate of design
is not noticeably slower than for the other networks
until the error rate on the design patterns is less than
2%. The minimum generalization error rates are
41Yz% and 43Yz%, respectively, each minimum
being achieved twice. Therefore, there does not
appear to be any advantage, and indeed there is
some disadvantage, in seeking more localized prop­
erties.

The following conclusions are drawn:

I. The design technique is capable of producing
networks to separate the design sample of patterns.
When this sample is representative, as with the al­
phabetic characters, good generalization results are
achieved. In this case, the primary value of the
process is in the set of property filters derived, rather
than the discriminant function. When the sample is
nonrepresentative, as with the TIROS frames, only
limited generalization success is achieved.

2. The coupling between the design technique
and the sample patterns is too tight. The increase
in coupling in the property filter design should Ibe
removed or reduced, the parameter which controls
the rate of design should be adjusted to give a lower
rate, and perhaps the criteria for acceptance of
property filters should be weakened.

3. The size of the design sample required depends
upon the minimum number of picture points needed

PATTERN RECOGNITION 475

for recognition and on the amount of normalization
and "cleaning-up" of the patterns. For essentially
unnormalized vortex patterns on a 32,400-point in­
put field, 1000 sample patterns are inadequate to
give a properly stratified (representative) sample.

4. If the designs achieved are to be practical, con­
siderably more attention must be given to normal­
ization of the patterns. A size normalization would
permit the use of a resolution level suitable to all
patterns rather than just the smallest ones. The re­
sultant decrease in the number of picture points
required would make the sample more represen­
tative by editing or averaging out noise, and by
limiting the number of effective translations of the
patterns. Local and general normalizations of the
contrast in the frame could eliminate the need for
gray invariant property filters, reSUlting in a much
simpler hardware implementation of the parallel
hyperplane technique, and somewhat better per­
formance. Position normalization (i.e., centering)
could make one of the techniques based on distribu­
tion means practical, or at least would simplify the
recognition task.

ACKNOWLEDGMENTS

This program was sponsored by the NASA God­
dard Space Flight Center. Mr. J. Silverman was

Technical Officer for NASA. His assistance and
suggestions during the course of the project were
appreciated. The assistance of Mr. M. Maxwell of
NASA/GSFC and Dr. Arking, Institute for Space
Studies, Columbia University, in obtaining the
digitized TIROS data is appreciated, as are their
early suggestions regarding tape formatting and
editing.

Numerous individuals at the Douglas Aircraft
Company Computing Center in Huntington Beach
and the Astropower Laboratory in Newport Beach
assisted on the program. The principal contributors
to the study were Messrs A. G. Mucci, A. G. Osten­
soe, R. G. Runge, and M. Uemura.

REFERENCES

1. J. Daly, R. D. Joseph, and D. M. Ramsey,
"An Iterative Design Technique for Pattern Classifi­
cation Logic," Astropower Laboratory Paper EL-
6320, presented at WESCON 1963 (July 9, 1963).

2. W. H. Highleyman, "Linear Decision Func­
tions, with Applications to Pattern Recognition,"
Proc. IRE, vol. 50, no. 6 (June 1962).

3. "Design Study of a Cloud Pattern Recognition
System," Astropower Electronics Department,
MSSD, Douglas Aircraft Co. Final Report, Con­
tract NAS 5-3866 (1965).

AMERICAN FEDERATION OF INFORMATION
PROCESSING SOCIETIES (AFIPS)

211 E. 43rd Street, New York 17, New York

Officers and Board of Directors of AFIPS

Chairman

DR. EDWIN L. HARDER*
1204 Milton Avenue

Pittsburgh 18, Pennsylvania

Chairman-Elect

DR. BRUCE GILCHRIST*
IBM CorpoFation

Data Processing Division
112 East Post Road

White Plains, New York

MR. J. D. MADDEN
ACM Headquarters
211 East 43rd Street

New York, New York 10017

MR. HOWARD BROMBERG*
CEIR, Inc.

1200 Jefferson Davis Highway
Arlington, Virginia 22202

MR. WALTER L. ANDERSON*
General Kinetics, Inc.
2611 Shirlington Road
Arlington 6, Virginia

MR. L. C. HOBBS
4701 Surrey Drive

Corona Del Mar, California

Simulation Councils Director

MR. JOHN E. SHERMAN
Lockheed Missiles &, Space Corp.

D-59-15, B~ 102
P. O. Box 504

Sunnyvale, California

AssociationJor Machine Translation
and Computational Linguistics-Observer

DR. PAUL GARVIN
8433 Fallbrook Avenue

Canoga Park, California 91304

* Executive Committee

A CM Directors

IEEE Directors

Secretary

MR. MAUGHAN S. MASON
Thiokol Chemical Corporation

Wasatch Division-MIS 850
Brigham City, Utah 84302

Treasurer

MR. FRANK E. HEART*
Lincoln Laboratory-MIT

P. O. Box 73
Lexington 73, Massachusetts

DR. GEORGE FORSYTHE
Computation Center
Stanford University
Stanford, California

DR. BRUCE GILCHRIST
IBM Corporation

Data Processing Division
112 East Post Road

White Plains, New York

DR. T. J. WILLIAMS
Control & Information Systems Lab.

Purdue University
Lafayette, Indiana 47907

DR. R. I. TANAKA
3427 Janice Way

Palo Alto, California

A merican Documentation
Institute Director

MR. HAROLD BORKO
System Development Corp.

2500 Colorado Avenue
Santa Monica, California

Executive Secretary

MR. H. G. ASMUS
AFIPS Headquarters
211 East 43rd Street

New York, New York 10017

Abstracting

DR. DAVID G. HAYS
The RAND Corporation

1700 Main Street
Santa Monica, California

Admissions

MR. WALTER L. ANDERSON
General Kinetics, Inc.
2611 Shirlington Road

Arlington, Virginia

Award

MR. SAMUEL LEVINE
Bunker-Ramo Corporation

445 Fairfield A venue
Stamford, Connecticut

Conference

DR. MORTON M. ASTRAHAN
IBM Corporation~ASDD

P. O. Box 66
Los Gatos, California

Constitution & By-Laws

MR. MAUGHAN S. MASON
Thiokol Chemical Corporation

Wasatch Division-MjS 850
Brigham City, Utah 84302

Education

DR. DONALD L. THOMSEN, JR.
BM Corporation

Old Orchard Road
Armonk, New York

Finance

MR. WILLIAM D. ROWE
Sylvania Electronics Systems

189 B. Street
Needham Heights, Massachusetts

Harry Goode Memorial A ward

DR. ALSTON HOUSEHOLDER
Director, Math Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee

International Relations

PROFESSOR JOHN R. PASTA
Digital Computer Laboratory

University of Illinois
Urbana, Illinois

Committee Chairmen

Planning

DR. JACK MOSHMAN
CEIR, Inc.

One Farragut Square, South
Washington, D.C.

Public Relations

MR. ISAAC SELIGSOHN
IBM Corporation
Old Orchard Road

Armonk, New York

Publications

MR. STANLEY ROGERS
P. O. Box 625

Del Mar, California

Social Implications of Information
Processing Technology

MR. PAUL ARMER
The RAND Corporation

1700 Main Street
Santa Monica, California

Technical Program

MR. PAUL M. DAVIES
2703 Pine Avenue

Manhattan Beach, California

Newsletter

MR. DONALD B. HOUGHTON, 15-W
Westinghouse Electric Corporation

3 Gateway Center, Box 2278
Pittsburgh 30, Pennsylvania

1966 SJCC

MR. HARLAN E. ANDERSON
Digital Equipment Corporation

146 Main Street
Maynard, Massachusetts

1966 FJCC

MR. R. GEORGE GLASER
McKinsey & Company

100 California Street
San Francisco, California 94111

COSA TI Liaison

MR. GERHARD L. HOLLANDER
P. O. Box 2276

Fullerton, California

Conferences I to 19 were sponsored by the National Joint Computer Conference.
predecessor of AFIPS. Conferences 20 and up are sponsored by AFIPS. Copies
of volumes 1-26, Part II may be purchased from SPARTAN BOOKS, scientific
and technical division of Books, Inc., 432 Park Avenue South, New York, N.Y.

Volume Part List Price M ember Price

1-3 11.00 11.00
4-6 9.00 9.00
7-9 9.00 9.00
10,11 7.00 7.00
12,13 7.00 7.00
14,15 8.00 8.QO
16,17 6.00 6.00
18 3.00 3.00
19 3.00 3.00
20 12.00 12.00
21 6.00 6,00
22 8.00 4,00
23 10.00 5.00
24 16.50 8.25
25 16.00 8.00
26 I 18.75 9.50
26 II 4.75 2.50
27 I 28.00 14.00

Cumulative Ind~x; to Vols. 1-16, Part II $3.00

Vol. 28. 1966 Spring Joint Computer Conference,
Boston~ Massachusetts, April, 1966

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478

