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COMPUTER APPLICATION OF ELECTRO-OPTICS 

W. J. Poppelbaum 
Department of Computer Science, University of Illinois 

1. INTRODUCTION 

The first few years of existence of electro-optics 
as a separate field have brought to light a wealth of 
novel ideas and has warmed up a host of old ones 
as well. It turns out that at this time there are two 
large classes of ideas which have relatively little 
overlap: the first class encompasses the development 
of time-honored techniques into practical low-cost 
designs; the second class contains the more futuristic 
devices using laser amplification, laser logic, laser 
source deflection, °etc}-4 Unluckily the latter ideas 
have not yet reached that stage of development 
where they can compete with more classical designs 
as far as cost is concerned. Since the author has 
devoted a previous papers to them, it might be use­
ful to examine all those areas where patient develop­
ment has produced reasonably low-cost designs that 
have proved themselves in practice or are about to 
do so. 

The profusion of devices makes it mandatory to 
reduce the length of the list of subjects still further 
by eliminating arbitrarily the large field of tech­
niques aiming at adaptive systems 6 or making use 
of non dissected forms of the incoming information.7 

This field is amongst the most exciting but, because 
of its links with biology, should perhaps be left 
to a separate di~cussion. 

The ordering principle for the topics will be their 
occurrence in a highly symbolic system according to 
Fig. 1. It might astonish you to see storage and dis­
play in one functional block: the reason is that the 

majority of storage systems automatically give dis­
play and vice versa. It will also become apparent 
that there is a preponderance of subjects in this 
storage and display area and that further subdi­
vision according to the method of access (electron 
beam, light beam, and static) is convenient. For 
simplicity's sake, areas, subdivisions and subjects 
are indicated on the figure. 

2. INTERFACE LOGIC 

The great contribution of electro-optics (or more 
precisely its all-optical branch) to information proc­
essing is probably the development of methods 
giving Fourier Transforms by optical means (see 
2.1). Once this Fourier Transform is obtained, it 
is natural to operate in the frequency plane by ap­
propriate masks in order to eliminate high- or low­
frequency components or more generally to elimi­
nate noise of given frequency distribution by 
matched filters. Such operations can be done by 
purely electronic means using matrix arrays of 
modulated elements (see 2.3). T.hese techniques are 
usually applied to continuous input information 
(e.g., photographs), but there is no reason why the 
same methods should not be applied to discon­
tinuous patterns of dots, leading to parallel proc­
essing of up to 106 bits of information. 

Other developments in the area of interface logic 
are based upon the availability of glass fibers and 
the performance of OR and AND functions be­
tween the input medium and bundles of such fibers. 



2 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

HYBRID D-A I 
PROCESSOR 1IIII~1---------"1 I 

INTERFACE --. -- SCANNER IN 
(LIGHT ) LOGIC (LIGHT) 

• FOURIER TRANSFORM OPTICS 

ASSOCIATIVE FIBER SCANNER 

PHASE MODULATION MATRIX 

• VIDICON. 
FLYING SPOT C.R.T. 

ULTRASONIC DEFLECTOR 

ARDENNE TUBE 

(ELECTRICAL SIGNAL) 

I ~ 

( ELECTRICAL 
SIGNAL) 

STORE 

AND 

DISPLAY 

• 
- ~OUT 

(LIGHT) 

MEMOTRON / VIDICON 

OSCILLATING CLOUD 

PHOTOCHROMIC 

ELECTROLUMINESCENT 

KERR EFFECT 

DIFFRACTION GRATING 

SCANISTOR PARAMOSAIC 

Figure I. Practical electro-optical devices. 

Encoding and decoding devices are particular ex­
amples of the~e techniques as is the associative fiber 
,scanner described below (see 2.2). 

2.1 Fourier Transform Optics 

The idea of using lenses to obtain the Fourier 
Transform of a planar density pattern has been 
discussed at length by its protagonists Leith,8 

Cutrona,9 Parrent 10 and others. High-precision 
optics and strong coherent sources have made such 
a system highly practical and it is now entirely pos­
sible to process up to 106 bits of positional infor­
mation in parallel, e.g., by spatial filtering (see 
below). 

The fundamental principle of the (one-dimen­
sional) optical Fourier Transform is shown in Fig. 
2. The planes-or better, lin,es-of interest are the 
left and right focal planes: the left-hand one con­
tains the object, the right-hand one what we shall 
here call the image even zf it is not the image of the 
object in the conjugate sense., Let P be a point in the 
image plane which is w below the optical axis: its 
illumination or amplitude is determined by the 
brightness and the phase of all beams coming from 
the object. Because P is in a focal plane, these 

beams are all parallel on the left side of the lens and 
form an angle of wlfwith the optical axis, wheref 
is the focal length. The beam issuing from the sec­
tion between x and x + dx contributes an ampli-

tude a(x) dx cos 2A~ where s is the path delay with 

respect to some reference point-here chosen to be 
the intersection of the object plane with the optical 
axis. Geometry shows that s is a linear function of 
x: this is the crux of the matter. Assumption of an 
object and image of infinite extension and a change 
of notation (i.e., replacing cos by the real part of an 
exponential with an imaginary exponent) lead to the 
realization that the total amplitude in P (called il­
lumination) is simply the real part of the Fourier 
Transform of a(x). Of course it is well known that 
measuring devices-including our eye-actually see 
the intensity, i.e., the square of the amplitude. This 
leads to certain difficulties in practical systems, none 
of which, however, cannot be overcome. 

2.2 Associative Fiber Scanner 

The use of GaAs lamps and photodiodes together 
with fiber light conductors offers some rather in­
teresting possibilities. As an example, consider the 
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Figure 2. Fourier Transform optics (one··dimensional). 

arrangement in Fig. 3. It is assumed that we have a 
film frame containing an m· n matrix of dark and 
light spots as well as the m . n matrix of the negative 

(i.e., the digit-wise complement). We want to build 
a device which can decide in one operation whether 
a given key word (XI ••• Xi • •• xn) is among the m 
words (aAI ... aM . .. a>.n) (X = 1 ... m) in the frame, 
and if so, in what position. 

The principle is to inject into the fibers going into 
the first digits the signal XI via lamp L I , etc., so that 
digits aAI are illuminated by Xi. Similarly the digits 
aM on the negative are illuminated by Xi. If we now 
collect-by a second set of fibers-the outputs of 
each row of photocells, the left-hand cell # X will 
receive a signal V,aAixj while the corresponding 
right-hand cell will receive ViaMxi. If we check the 
cells by pairs via OR circuits, only that OR circuit 
for which both inputs are 0 will correspond to 
aAi = Xi: its position gives the X we search for. If 
no such OR circuit exists, the key word is not con­
tained in the frame. 

The system described above has been realized at 
the Department of Computer Science of the Uni-

versity of Illinois II in slightly modified form. It is 
presently being converted in such a fashion that the 
key word does not necessarily contain all the digits: 
provision is then made to read ou't the remaining 
digits upon coincidence. It will also be possible to 
change the key word (and the digits involved) as a 
function of the last word read out. This obviously 
will lead to a Turing-machine-like behavior of the 
system. 

2.3 Phase Modulation Matrix 

One of the astonishing photolithographic feats of 
recent times is Anderson's 12 production of varactor 
diodes having overall dimensions of the order of 10 
microns. By suitable doping and reverse biasing, it 
is possible to make the depletion region behave like 
an optical transmission line, i.e., to use the regions 
of high carrier density as mirrors at a distance of a 
few thousand angstroms. It is not too hard to con­
vince oneself that light going through the plane of 
the junction will suffer a phase change <I> determined 
by the thickness d of the depletion layer where d is 
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i l 

Figure 3. Associative fiber scanner. 

approximately given by the Early-formula d = 

V3V frfO/2aq, q being the charge of one electron 
and a the gradient of the donor density minus that 
of the acceptor density. Figure 4 contains the ex­
pression <I> as a function of d. 

Instead of using the diodes as transmission op­
tical phase shifters, it is also possible to expose one 

surface of the depletion layer by a transparent sub­
strate and to shine the light into the device from the 
side. Such reflective optical phase shifters lend 
themselves more naturally to two-dimensional ar­
rays, although it is not impossible to use transmis­
sion shifters in a matrix. A possible use of revlerse 
biased diodes as storage elements makes such phase 
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Figure 4. Phase modulation matrix used as a spatial filter. 

modulation matrices especially attractive, since it is 
not necessary to connect a given diode to the input 
control voltage at all times: a charging mechanism 
using a scanner would be adequate. 

Figure 4 shows a possible application of a phase 
modulation matrix in the Fourier Transform Plane: 
this is a form of spatial filtering. In the example 
the frequency-analyzed version of the input infor­
mation in the Wx -plane is subjected to phase delays 
in the array of diodes, the control voltage V(wx ) 

being an impressed function of Wx ' If A (wx ) is the 
amplitude in the wx-plane, spatial filtering will pro­
duce A '(wx) = A(wx)ei~("'x) and a reconstitution by 
means of an inverse Fourier Transform will lead to 
a filtered version of the input information. It is pos­
sible to convert the phase modulation into ampli­
tude modulation by mixing the output with a ref­
erence phase as is done in holography. 13 

3. SCANNERS 

The purpose of scanners is to convert incoming 
parallel pictorial information into serial information 
for subsequent transmission or processing: they are 
serializers. At the same time, using persistence of 
phosphors, the human eye, etc., they can be used to 
reconstitute the parallel information: they are also 
staticizers. 

The scanning mechanism is .. usually an appro­
priately deflected beam of electrons or a beam of 
light. Neglecting the well-known examples of elec­
tron beam deflecting in flying spot analyzers (for 
slides) or vidicons (in which the optical information 
is converted to a charge distribution by a photo­
cathode) ·our discussion will be limited to practical 
low-cost light deflectors. These are presently of the· 
ultrasonic (see 3.1) and the KDP-CRT Type (see 
3.2) if one neglects unfashionable mechanical de­
vices like vibrating mirror g"alvanometers and rotat­
ing mirrors. This unluckily temporarily leaves out 
such exciting developments as those proposed by 
Pole 14 and Fleisher .1S 

A recent technique, using the Scanistor, is also in 
a stage where practical applications can be con­
sidered. This device· is essentially static in nature 
and the scanning is done by applying appropriate 
voltages to the photosensitive element to be inter­
rogated (see 3.3). 

3.1 Ultrasonic Deflector 

One of the most efficient systems for deflecting 
light through several degrees with an optical path 
inside the device of a few centimeters is the ultra­
sonic deflector shown schematically in Fig. 5. Here 
a quartz transducer injects an acoustical wave into 
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Figure 5. Ultrasonic deflector (Scophony system). 

a compressible liquid at a frequency corresponding 
to the desired scanning action. The wave travels 
across a critical zone in which a (coherent or non­
coherent) light beam is deflected in "Fata Morgana 
fashion" by the variable densities (and the ensuing 
varying index of refraction) generated by the wave. 
Upon reaching the far side of the device a matched 
absorber eliminates acoustical reflection and stand­
ing waves. 

This system has been successfully used by Reich 
at Lockheed in the design of a photochromic semi­
random access memory.16 The liquid used was 
simply water and the operating frequency one mega­
cycle, the source being a laser providing a beam nar­
row with respect to the acoustical wavelength. The 
beauty of the system is that two-dimensional scan­
ning is possible by using a cell containing two 
acoustical waves traveling at right angles to each 

other. It is perhaps interesting to note that a quarter 
of a century ago the Scophony Television receivers 
in England used precisely the same method of light 
deflection! 

3.2 Ardenne Tube 

Another device saved from oblivion by Pole of 
IBM is the Ardenne Tube 17 shown in Fig. 6. In­
vented in 1934 for the German Postoffice~ for fac­
simile transmission, it is essentially a CRT with a 
special faceplate: a KDP crystal between two e:lec­
trodes, one reflecting and the other transparent. 
When an electron beam hits the reflecting dectrode, 
the negative charge (together with the induced posi­
tive charge in the transparent electrode) produc,es a 
strong electric field in the KD P. Due to the Eleetric 
Kerr Effect there will be a phase difference between 
ordinary and extraordinary components of light, 
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Figure 6. Ardenne tube. 

this difference being proportional to the field. Light 
from a linearly polarized source in front of the face­
plate traverses the crystal twice (being reflected by 
the back electrode) and finally goes through an 
analyzer. If the analyzer is appropriately po­
sitioned, it is possible to make the high field por­
tions of the KDP "light up," the rest of the face­
plate remaining dark. Clearly the position of the 
"light source" is solely controlled by the electron 
beam: we have a method for positioning a high 
luminosity source of light by controlling a CRT. 
Similar designs have been investigated by Pulvari 18 

and Lindberg 19 of Motorola. 

3.3 Scanistor 

The basic idea of Horton's Scanistor 20 is to ac­
cess an array of light-sensitive elements connected 
between a bus and a set of linearly increasing return 
voltages by applying to the bus an appropriate time­
dependent voltage. The selection of any given ele­
ment is actually performed by making the voltage 
across it nearly zero: the reason that this succeeds 
is that a back-to-back diode pair has always a big 
resistance as long as one or the other diode is 
strongly reverse biased. Zero total drop across the 
pair, however, puts both diodes into a region of 
relatively low impedance. If light is now received 
by one of the diodes (which therefore must be not 
only a diode but a photo diode ) it starts acting like 
a current source, the source intensity being approxi­
mately proportional to the incoming light intensity. 

Figure 7 shows an array of diode pairs illumi­
nated by a step-function light distribution. The bus 
is used to sweep through the gamut of return volt­
ages, i.e., e(t) goes from 0 to some voltage Eo within 
some scanning period T. For the first two diode 
pairs nothing happens, even when e(t) reaches 0 
and Eo/ n. The third pair, however, suddenly passes 
a current through the upper bus as e(t) reaches 
2Eo/n. Similarly the fourth pair produces a current 
through the bus as e(t) reaches 3Eo/n, etc. By using 
a transformer, each current increment produced 
during the sweep gives an output pulse to v( t), the 
height being roughly proportional to the light in­
tensity on the pair being accessed. It is easy to see 
that an appropriate integration (or even a running 
together of widened v(t) pulses) produces an enve­
lope which imitates the light intensity after mapping 
position into time: this is precisely what a scanner 
has to do. 

lt is important to note that the voltage divider 
chain between Eo and ground can be built into the 
diode array. Semi-integrated forms of the circuit 
have had as many as 200 diode pairs per inch and 
have performed very satisfactorily. One of the main 
attractions is the very low power requirements of 
the device. 

4. STORAGE AND DISPLAY 

Storage devices must typically accept an optical 
input or the corresponding electric input in the form 
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Figure 7. Scanistor principle. 

of a time sequence of electrical 'signals generated by 
the electronic scanning of the picture. On demand 
they must repeat this time sequence after an arbi­
trarily long period. Excepting core storage of a 
digitized version of the time sequence (which will 
have to be quantized for this effect by subdividing 
scanning lines into a sequence of points!), it is inter­
esting to note that all presently used devices per-

form the storage on a continuous or discontinuous 
matrix. It is this latter fact which makes such 
storage devices good candidates for display. 

The continuous storage matrix may be as trivial 
as an old-fashioned memotron (i.e., a CRT with a 
flood-gun which, by selective secondary emission on 
the screen, keeps bright positions bright and dark 
positions dark) coupled to a vidicon to examine: the 
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stored information. It can be made more sophisti­
cated by essentially uniting all elements into a 
"Tonotron" (Hughes) or Scan Convertor, even if, at 
present, readout for both is somewhat destructive. 
It can finally take on the slightly esoteric form of an 
Oscillating Cloud Tube in which the information is 
a planar electron-density distribution being bounced 
back and forth between suitable electrodes (see 4.1). 
In all these versions the access is provided by an 
electron beam. It is quite possible to obtain storage 
on a continuous matrix using a light beam for ac­
cess. A practical system developed by Lockheed 
uses a photochromic emulsion for storage and an 
ultrasonic scanner. A version with a mechanical 
scanner was designed by NCR. The most elegant 
continuous light-accessed array is, however, the 
electroluminescent panel (see 4.2) in which a CdS­
film is used to store the information and an overlay 
of electroluminescent material as a light emitter 
controlled by the CdS-film. 

Discontinuous storage matrices using light beams 
for. access are presently of the thin magnetic film 
type: here spots are magnetized by a coincident 
current system in an underlying grid of wires. The 
state of magnetization can be read out by observing 
the angle through which the plane of polarization is 
rotated by the magnetic Faraday effect, using a 
plane-polarized scanning beam. Such work has led 

OPTICAL INFORMATION PHOTOCATHODE ELECTRON CLOUD 

.. ,,------ ORTHICON SECTION -------.... 

(AXIAL ELECTRIC AND MAGNETIC FIELD) 

to angles of rotation of several degrees but is yet 
unpublished. Another, now well-developed, tech­
nique is based on the existence of striated domains 
and their observation by a diffraction grating effect 
(see 4.3). 

There is, finally, a static storage and display de­
sign which is a sort of two-dimensional analog of 
the Scanistor. In this "Paramosaic" system a curve 
can be written into a matrix by making its grid­
points equipotential and storing this fact on appro­
priate elements (see 4.4). 

4.1 Oscillating Cloud Tube 

In the Oscillating Cloud Tube 21 designed by Berg 
and Smith of Imperial College and shown in Fig. 8 
we have three distinct sections. To the left is an 
orthicon-like structure in which the electrons given 
off by a photocathode are accelerated by a weak 
axial electric field to a rather low velocity. The 
identity of electron bunches originating from var­
ious parts of the photocathode is preserved by ap­
plying a strong axial magnetic field. The cloud now 
enters the storage section and is trapped between 
gate 1 and gate 2, the electric field applied via V sin 
w t bouncing them back and forth. When informa­
tion is required from the store, gate 2 is opened as 
the cloud approaches it. The selected electrons are 
then accelerated into section 3 (iconoscope) which 

GATE I GATE 2 CHARGED MOSAIC 

Vsinwr 

""---STORAGE SECTION -----. ~ ICONOSCOFiE SECTION---
(OSCILLATING CLOUD) (SCANNER) 

Figure 8. Oscillating cloud storage tube. 
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contains an intermediate mosaic in which the 
charges are stored for subsequent scanning by an 
electron beam. 

The present resolution is in the vicinity of 100 
lines. It seems entirely possible to store a sequence 
of distinct electron clouds, each corresponding to 
one frame of the input information. Selection of 
the appropriate cloud is then operated by timing 
the exit through gate 2. The access time to any in­
formation in the store is of the order of 200 nano­
seconds. 

4.2 Electroluminescent Storage 

Electroluminescent Panels are ideal display de­
vices although they still have a somewhat low light 
output. Recently panels have been made 22 which 
incorporate storage facilities. 

Figure 9 shows the principles of operation. On 
the left is shown a pn diode reverse biassed by - E 
applied to the p-region. Without light, the potential 
barrier Lll/; across the junction is relatively high, its 
value being approximately given by 

Lll/; = kT In np + E 
q n; 

I. n NORMAL 

where nand p are the electron and hole densities 
and nj a constant. Let us now shine a light onto the 
n-region, generating hole-electron pairs. Some sup­
plementary electrons neutralize a part of the donors 
and consequently lower the value of n (assuming 
space charge neutrality!). The formula above, al­
though strictly valid only for equilibrium, shows 
that this amounts to a decrease of Lll/; and therefore 
a stronger current flow. Other supplementary elc!c­
trons are trapped: their slow release after the light 
disappears continues to neutralize donors, i.e., the 
current will remain strong. It is assumed that the 
current itself replenishes the traps, so that the low­
impedance state of the diode is indefinitely con­
served once light has struck it. Only the removal of 
E and the emptying of all traps (in darknt;!ss) will 
bring the diode back to its high-impedance state. 

The storage and display combination is obtained 
by essentially putting a continuous sheet of pn 
diodes on top of an electroluminescent substant:;e. 
Practically the diode action occurs in the barrier 
between a transparent electrode and an underlying 
CdS-film. An opaque layer separates the CdS-film 
and the electroluminescent material and a voltage is 
applied across the whole sandwich. In those spots 

TRANSPARENT 
ELECTRODES 

-r 
THE pn JUNCTION p 

2. 

3. 

I S REVERSE BIASSED. 

--.L ojI 

!:::, ojI I BIG BARRIER 

LIGHT? n DECREASED 1 
(DONORS NEUTRALIZED BY 

,....-_---..---....;.--+-,/GENERATED ELECTRONS) 

-E~ P I nl rn I LIGHT GENERATES PAIRS AND 
~ Wflil THE ELECTRONS NEUTRALIZE 

SOME DONORS. 

n DECREASED 
(DONORS NEUTRALIZED BY 
ITRAPPED ELECTRONS) 

BIG l fJj P II' n 
-E ~ II 

L...-_---II--_--' 

--iw I SMALL BAR~ER 
• 

60/= R In ~ +E 
q nL 
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~ 
I-

~ 
~ 
w 
z 
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d 
a:: 
l­
t) 
W 
....J 
W 
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~ 

PRINCIPLE: THOSE PORTIONS OF THE CdS 
WHICH WERE I LLUMINATED HAVE 
PERMANENTLY ACQUIRED A LOW RESISTANCE. 
MOST OF V IS THEREFORE PERMANENTLY 
APPLIED TO THE ELECTROLUMINESCENT 
MATERIAL IN THESE SPOTS. 

Figure 9. Electroluminescent storage. 
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where the series diode has been locked into its low 
impedance state by incident light, we shall have light 
emission from the highly polarized electrolumi­
nescent layer. 

4.3 Diffraction Grating Display 

Fuller of LFE 23 has produced a combined storage 
and readout system in which a thin magnetic film is 
magnetized in spots by a coincident current arrange­
ment as shown in Fig. 10. The composition of the 
magnetic film is such that for one direction of 
magnetization the domains are long and narrow, the 
width of each being of the order of that of the wave­
length of visible light and constant from one to the 
next. 

A Bitter Solution (essentially iron filings in a suit­
able viscous liquid) is held between two transparent 
covers adjoining the magnetic film. As soon as the 
right magnetization occurs, the Bitter Solution will 
show a bunching effect and will take on the aspect 

-d-
STRIATED MAGNETIZATION 

of a periodic structure having all the properties of 
a diffraction grating. Incident light will therefore 
be diffracted into an observer's eye in the correctly 
magnetized spots, giving direct optical readout of 
the state of magnetization. The memory action 
obviously stems from the retention of this state even 
after the selecting currents have been taken away. 
Certain difficulties with diffused light and higher 
order diffractions can be attenuated by covering the 
device with a supplementary plate, producing total 
reflection for all but the desired direction of output 
light. 

4.4 Paramosaic 

A principle similar to that used in the Scanistor 
(but extended to two dimensions) was used at the 
Department of Computer Science of the University 
of Illinois 24 to produce storage and display in a 
matrix of wires with suitable elements thrown across 

DIFFRACTED LIGHT OCCURS IF I 

nAo = d (sin a + sinf3) 

LIQUID 

BITTER SOLUTION (IRON FILINGS) 
UNIFORM DENSITY 

THIN FILM 

RANDOM MAGNETIZATION 

Figure to. Diffraction grating display. 
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each grid-point (see Fig. II). The practicality of 
such a "Paramosaic" hinges upon the cost of each 
display element. The one shown in the figure only 
gives temporary storage due to the inertia of the 
lamp and the actual model (32 x 32) used a more 
sophisticated design, consisting of a sensitive com­
parator and a flip-flop with readout via a tungsten 
light: if the grid-points were within 0.2v of each 
other, the light would come on permanently. 

The interesting property of: the system is that any 
single-valued function y = f(x) can be displayed by 
giving a minimum amount of information, namely 
the voltage distribution u(x) = kf(x) on the verti­
cal wires. Making v(y) = ky for the horizontal 
wires, only points with y = f(x) (or nearly) will 
light up. Transmitting a sequence of "profiles" 
u(x) can display line drawings with arbitrary com-

Y 

3 
u (y)= ky 

2 

a 
10-_____ U (y) 

Y- PROFILE 
(NORMALIZED TO BE LINEAR) u(x) 

DISPLAY ELEMENT: 

plications and there is a considerable bandwidth re­
duction when the profiles are sent as time sequences. 

5. GRAPHICAL PROCESSING AND 
COMPUTERS 

Graphical processors always involve input and 
output devices of the type described above. 
Usually, however, the scanner is followed by a 
digitizer, and a general-purpose computer is used 
for processing and storage. The author feels that in 
graphical processing, many interesting operations 
can be performed at high speed and low cost by 
appealing to the latest designs in analog circuitry 
and by using storage principles of the kind discussed 
in Section 4. The reasoning is simply that the best 
scanners give resolutions of the order of 1000 lines 

MATRIX OF WIRES 

I I I u(x)=kf(x) I 

I 

u(3)=u(3) 

= -0- ~~--------~------~------~---- X 023 
X - PROFILE 

(CHOSEN TO GIVE CURVE TO BE DISPLAYED) 

Figure 11. Paramosaic. 



COMPUTER APPLICATION OF ELECTRO-OPTICS 13 

(106 bits per frame after quantization) and that as 
long as the machine interacts with a human a frame 
rate of a few frames per second is adequate: the 
data rate inside the processor is then of the order 
of a few megacycles per second. 

The Department of Computer Science at the Uni­
versity of Illinois is presently engaged in proving 

these views in a system according to Fig. 12 used in 
automating the constructions of Euclidian geom­
etry. In this Artrix System 25 use is made of hybrid 
digital-analog circuits with 0.3% precision from DC 
to 2 megacycles, the signal swings being from - 10v 
to + 10v. The three stores (PERMANENT, PAD 
and ACCUMULATOR) are all formed on memo-
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GENERATOR DISPLAY 

---.. (~~\J 
... ADDRESS ... 

j-l GEN . -
..., ..., 

TRANSF. TRIAL 1 256 

IpOINTER] 

DISPLAY 
" 

IINDICATOR I ~J , PERMANENT X h ?-
~ 

STORE .- COUNTER 4 - \ I 

LINE ( POINTS) \ , 
\ I 

GENERATOR ~ .~ 
\ I 
\ I 

...--
IERASEfij 

\ ' II 
4 
1\ 

DISPLAY 
1\ 

I 
I \ 

LJ I \ 
I \ 

I \ 

INTERSECTION PAD . Y I I 

f-- --¢ b--
FINDER ( TEMPORARY) -- COUNTER COMMUT. 

• 4l .. 
lERASER] 

DISPLAY 
H 

IINDICATOR·I _1 
, t - ACCUMULATOR 

,t .. 
(DWGS. ) 

CLOCK 
- --

Figure 12. The Artrix system. 
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tron-vidicon pairs with a 300-line resolution: their 
contents are simultaneously sent to a display moni­
tor which is also used for light-pen writing. A digi­
tal system positions all beams in synchronism and 
permits the transmission of digitized coordinates to 
the processing boxes (CIRCLE GENERATOR, 
LINE GENERATOR and INTERSECTION 
FINDER), thus obviating the storage of analog 
signals: the digital versions, after being converted, 
feed the analog processors. 

Erasure is obtained by selective transfer of in­
formation from the permanent store or the accumu­
lator to the PAD: the portions not to be transferred 
are pointed at with a large aperture "ERASER" 
light-pen. The "POINTER" light-pen is used to set 
the initial construction points into the permanent 
store: it has a small aperture. The "INDICATOR" 
light-pen has again a large aperture and generates 
a gating signal which allows the system to look up 
the exact value of coordinates in the permanent 
store. The two fundamental operations are the 
automatic drawing of straight lines through two 
points and the construction of circles with a given 
center (a,b) and a given radius r. 
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BASIC THEORY OF PARTIAL COHERENCE 

George B. Parrent, Jr. 
Technical Operations Research 

Burlington, Massachusetts 

INTRODUCTION 

The structure for a fundamental treatment of 
image formation problems already exists in the 
formalism of modern coherence theory as intro­
duced by Wolf.l An adequate introduction to the 
subject is provided by Born and Wolf,2 (Chap. 10), 
and a detailed description of most of the results of 
the theory to date may be found in Beran and 
Parrent.3 Therefore it will not be necessary to re­
view the subject extensively here. Rather, we shall 
limit ourselves to a statement of the pertinent defini­
tions and a summary of the treatment of the imag­
ing problem in coherence theory. 

BASIC DEFINITIONS 

Mutual Coherence Function 

The basic entity in the theory of partial coherence 
is the mutual coherence function, r I2 (T), which may 
be defined by 

r I2 (T) == (~h~2,T) = <V(~ht) V*(~2,t + T» (1) 

Here the underscore denotes position vector, the 
asterisk a complex conjugate, and the sharp brack­
ets indicate a long time average, * i.e., 

1 IT <J> == lim -2 Jdt 
T-oo T -T 

(2) 

* Equation (2) is equivalent to the definition introduced by 
Wolf, though in a slightly different form. 

17 

In (1) V is the analytic signal associated with the 
optical disturbance, which we assume to be a single 
Cartesian component of the electric field vector. In 
terms of the mutual coherence function, the com­
plex degree of coherence, 1'12 (T) is defined as 

(3) 

It should be noted that the complex degree of co­
herence, like the mutual coherence function, is a 
function of seven variables, six position coordinates, 
and the time-delay coordinate T. The physical sig­
nificance of these parameters is illustrated by the 
example discussed below. The treatment of prob­
lems involving partially coherent light involves the 
solution of the two wave equations: 

(s = 1,2) (4) 

where V; denotes the Laplacian operator in the co­
ordinates of the point Xs' A typical problem in­
volves determining the mutual coherence in the 
source or object plane, solving (4) to obtain the 
mutual coherence on a later surface, such as the 
image plane, and then recovering the intensity, I, in 
the plane of interest from the relation 

(5) 

Equation (5) follows directly from the definition of 
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the mutual coherence function and the properties of 
the analytic signal. 

For a large class of problems the theory outlined 
in the preceding paragraph may be greatly simpli­
fied. These problems are characterized by the quasi­
monochromatic approximations, which are stated 
as 

{ ~; L\: :< I T I} 
where D.v is the spectral width. Of these two con­
straints, the second is obviously the more signifi­
cant. White light may often be treated as quasi­
monochromatic if the path differences, CiT I, in­
volved in the experiment are suitably small. In 
those circumstances for which the approximations 
above are applicable, the mutual coherence func­
tion may be replaced by the mutual intensity func­
tion, r(~I'-~2)' 

r (x 1 , ~ 2) == r 12 = r (KI , ~2 , 0) (6) 

The complex degree of coherence reduces to 
1"12(0) == 1"12 and the wave equations (4) reduce to 
the two Helmholtz equations 

(s 1,2) (7) 

where Is:. is the wave number. 

Coherent and Incoherent Fields 

Equations (1) through (7) provide the basis of the 
theory of partial coherence as introduced by Wolf. 
To apply this theory to the imaging problem arid 
recover the familiar limiting forms, several the~rems 
due to Parrent are required. Principal among these 
are: 

1. A field is coherent if and only if the 
mutual intensity function describing it 
can be factored in the form 

where 

V2UC~1) + k 2 U(Kd = 0 

2. An incoherent field ~annot exist in free 
space; however, an incoherent source 
consistent with this· result may be de­
fined. 

(8) 

(For the proof of these theorems and their exten­
sions to polychromatic fields the reader is referred 
to Beran and Parrent.J

) Of particular significance 
for the problem of image evaluation is the second 

of these theorems. We shall reserve a discussion of 
the significance of the incoherent limit for a later 
point (a comprehensive treatment may be found in 
Beran and Parrent,3 Chaps. 2 and 3). 

The van Cittert-Zernike Theorem 

An additional theorem is required before attack­
ing the treatment of the image formation probl{~m. 
The van Cittert-Zernike theorem may be stated as 
follows: 

The mutual intensity of the illumination 
derived from a distant incoherent source 
may be expressed in the form 

2 ... i 

r(XI, X2) = J 1(~)eXR f'(~I-~2) d~ (9) 

Here I is the intensity distribution across the source, 
and R is the distance from the source plane to the 
observation plane. If the source is pl.aced- in the 
focal plane of a lens and the coherence of the 
emergent beam examined, it is found to follow the 
same law with the R replaced by the focallengthf 

THE IMAGING PROBLEM 

We may now direct our attention to the formula­
tion of the general imaging problem. As will be­
come clear in the following discussion, a basic de­
scription of image formation (at least as far as the 
lenses are concerned) already exists in coherence 
theory and, in fact, may be found in Refs. 2 and 3. 
This theory has not however been appli<;:d to the 
significant problems of image evaluation. Indt!ed, 
the theory has been applied to very few problems. 
In the next section the basic theory is outlined and 
those pertinent problems that have been solved are 
reviewed and discussed. 

Review of Image Theory 

In coherence theory an object is described by its 
mutual intensity* (or mutual coherence) distribu­
tion rather than its intensity distribution. Thus the 
object described by rO(~l' ~2) and the relationship 
between object and image,-ri(~h.x2)' is developed 
by solving the two Helmholtz equations (7) subject 
to the appropriate boundary conditions. The gen-

*Our discussion in this section will be limited to quasi· 
monochromatic radiation. This serves to introduce the con(:epts, 
and at the same time keeps the development tractable:. 
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eral solution is (see Ref. 3, Chaps. 7 and 8): 

C(XI,-X2) = J J rO(~I' ~2)K(~1 - ~I) 
·K*(~2 - ~2)d~ld~2 (10) 

Here K denotes the amplitude impulse response of 
the lens; i.e., denoting the complex transmission of 
the aperture by A (g), we may write 

( 
f3 ) 2-.:i a·fJ 

K(~) = K AI = J A(g)e >./-- det (II) 

The two familiar limits may be recovered from (10) 
by using the theorems of the previous section. Thus, 
in the coherent limit, r l2 = VI Vf, and (10) reduces 
to 

CC~I' K2) = J VO(~I )K(~I - ~dd~1 
. J V6' (~2 )K* C~2 - ~2 )d~2 (12) 

From (12) and theorem I ("Coherent and Inco­
herent Fields," above), it is clear that the image of 
a coherently illuminated object is coherent. A some­
what more surprising result (and certainly more in­
teresting in the image evaluation problem) is ob­
tained in the incoherent limit. Thus, we may take* 
r l2 = 1(~1 )O(~I - 6) to describe the object. The 
general image~Eq. (10), then reduces to 

C(~I'~2) = J 1(~)K(~1 - ~)K*(:K2 - ~)d~ (13) 

From (13) it is clear that the image mutual intensity 
is no longer of the same form as the object mutual 
intensity; i.e., the image of an incoherent object is 
not incoherent but is partially coherent. This result 
will be seen to have rather far-reaching implications 
in the problems of image formation. 

For most applications, the primary exposing radi­
ation may be safely taken as incoherent. For ex­
ample, sunlight is coherent only over a distance of 
approximately 1/20 mm. Thus, even a reconnais­
sance system which resolved an inch on the ground 
could probably be safely described by the incoherent 
limit of Eq. (10). In this case, the intensity in the 
image can be obtained by setting ~I = ~2 In (13); 
thus 

!i(~) = J 10 (f) 1 K(~ - ~) 12 d~ (14) 

Equation (14) will be recognized as the familiar 
incoherent imaging equation. The difficulty arises, 
of course, when the scale of the mutual coherence 
function becomes comparable with the resolution of 
the optical instrument. (This point will be discussed 

* Actually this form for the incoherent limit is only an approxi­
mation and must be used with care. However, it is sumciently 
precise to illustrate the present problem. 

at length in a later section.) While this condition is 
not likely to arise in the original taking system in 
the near future, it becomes serious in viewing and 
analyzing equipment such as microscopes, en­
largers, and microdensitometers at the present state 
of the art. If one envisions improvements in taking 
equipment of a factor of two or more, it will become 
even more serious. This point will become clear as 
we analyze transilluminated objects. 

While (10) represents the general solution to the 
partially coherent imaging problem, a more useful 
form for application to spatial filtering is obtained 
by considering the object to be a transparency that 
is transilluminated. This is, of course, the case in 
almost all viewing of reconnaissance imagery, ~nd 
certainly in all uses of microscopes and microdensi­
tometers in image evaluation. To describe this class 
of problems, it is necessary to describe the object in 
terms of its complex transmission t(~). For trans­
illuminated objects Eq. (10) may be expressed as 

ri(~I'~2) = J JrO(~I'~2)t(~I)t*(~2) 
·K(~I - ~1)K*(~2 - ~2)d~ld~2 (15) 

In most cases, one is interested in the intensity of 
the image, which may De obtained from (15) by set­
ting ~I = ,!2. Thus, 

li(~) = J J ro(~], ~2)t(~dt*(~2)K(~ - {d 
·K*(~ - ~2)d~ld~2 (16) 

In (15) and (16) rO(~I' 6) must be interpreted as the 
coherence of the illumInation incident on the trans­
parency. The illumination in most cases of practical 
interest will be derived from a primary incoherent 
source. In this case rO(~I' ~2) takes a special form­
(because of the van Cittert-Zernike theorem): 

(17) 

That is, it becomes a function of coordinate differ­
ences only. Under these circumstances (16) be­
comes 

lie,!) = J J rO(~1 - ~2)t(~1 )t*(~2)K(~ - ~) 
·K*(~ - ~2)dgldg2 (18) 

From (18) it is clear that for transilluminated ob­
jects the transition from object intensity 1 t(~) 12 to 
image intensity is nonlinear. The significa-nce of 
this conclusion is that the customary image evalua­
tion techniques and criteria are not, in general, ap­
plicable to such systems. For example, knowing 
how such a system images sine waves or edges does 
not permit us to describe how it images other ob­
jects. Furthermore, the same optical system could 
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be expected to yield different results if the coher­
ence of the illumination varied. At high resolutions 
a small variation in the scale of the coherence func­
tion can produce dramatic; changes in the image. 
This may account, in part, for the difficulty encoun­
tered in intercalibrating instruments in different 
laboratories, or in the cross-checking of microdensi­
tometers that have essentially equivalent optical 
components but produce different results in edge 
trace analysis. 

Since systems of this type are inherently non­
linear, it is impossible to characterize them by a 
transfer function. This point is easily established by 
taking the Fourier transform of both sides of (18). 
Thus, 

i~) = J i({})7*(~_ - Q){J r[~ - (~ + ~)] 
K(~ - ~)K*(~)dqJdf1 (19) 

In (19) the inner integral is characteristic of the in­
strumentonly, while the factors t({3) and t* (Il - (3) 
are determined solely from the object spectrum. 
However, (19) is not in the form of "object spectrum 
times transfer function equals image spectrum." The 
inner integral has been referred to as a generalized 
transfer function, but that nomenclature is rather 
misleading since the function is not used as a trans­
fer function at all. A better terminology is the more 
cumbersome one introduced by Wolf, the "trans­
mission cross coefficient," which emphasizes that it 
is a function of two frequencies. 

With these general reservations in mind, we may 
direct our attention to the development of the sys­
tem analysis for spatial filtering systems. 

SYSTEM ANALYSIS 

In this section the relationships between "object" 
and "image" for three cases of imaging with co­
herent radiation are derived. Denoting by ZI and Z2, 

respectively, the object and image distances, we de­
fine these cases as follows: 

l.~+~=~ 
ZI Z2 / 

2. ZI = Z2 = / 
3. ZI = 0, Z2 = f 

Condition (1) produces an image in the ordinary 
sense only if the object is: in the near field of the 
lens. Condition (2) yields an "image" which is the 
Fourier transform of the object, and condition (3) 
yields a Fourier transform multiplied by a quadratic 
phase term. 

v v 
z, /1 

0(. 

Figure 1. Coordinate system. 

The geometry is illustrated in Fig. 1, in which ~ is 
the coordinate in object space, a is the coordinate in 
the aperture plane, and x is the coordinate image 
space. Assuming paraxial optics and ignoring 
obliquity factors, we may express the rdation be­
tween object and "image" as follows (Beran and 
Parrent,3 Chaps. 3 and 7): 

fi(XI, X2) = J J J J rO(~I' ~2)R(al )R*(a2) 

Here R (a) describes the transmission of the aperture 
and all integrals are infinite. The term a~2 /2/ is, of 
course, the saggital approximation and the r's re­
main from the Green's function. 

Assuming coherent quasi-monochromatic radia­
tion, we find that 

rO(~1,6) = UO(~I)U~(~2) (21) 

and the image becomes 

r i(XI,X2) = Ui(XI)U1(X2) (22) 

where 

ik ~U.a)- ~ +r(a.x)] 
Ui(x) = J J Uo(~)R(a)e 2/ d~da 

(23) 

I
· f d K (~ - a)4 . gnonng terms 0 or er we may wnte 

Z3 

(~ _ a)2 
r(~, a) = ZI + (24) 

2z1 
and 

(25) 

Hence, omitting constant phase terms we may re­
write (23) as 

[~ (~+ ~ _ ~) + L+ ~ a(X ~ ~ )] . J R(a)e ik 2 z, z. / 2z, 2z. - ;;- z: 

·dad~ (26) 
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Case (1): I 

/ 
Under these conditions (26) becomes 

o [r aE x' ax] 
U;(X) = J Uo(~) J R(a)e'k 2z,- z,-+ 2z. - z.- da d~ (27) 

Consider first the integral 

;k[r - 2aEl ;ka' 

J Uo(~)e 2z, d~ = e -zz,- U(a) (28) 

Here 
;k(E-a)' 

U(a) = J Uo(~)e-2Z'-d~ (29) 

Equations (28) and (29) are obtained by simply 
completing the square in the exponent. We may 
now write (27) as 

Uj(x) = J R(a) U(a)e;kG:.- ::- ;:,J da (30) 

Or completing the square again we have 

Ok .[Z' Z~] 
I X ~+~ 

U;(x) e 2z, J R(a) U(a)e da (31) 

;kx'z, ;k(a+ ;;-xr 
e 2Jz. J R(a) U(a)e 2z, da (32) 

If the lens is unapodized and unaberrated, (32) be-
comes 

ikx'z, fa 
U;(x) = e 2Jz. -a U(a)e 

;k(a+z;x)" 

2z1 de¥. (33) 

Under the condition 

(34) 

i.e., object in near field of lens, the limits -a to a 
(the aperture size) may be regarded as infinite and 
(33) may be evaluated by the inversion theorem for 
Fresnel transforms, giving 

V,(x) - elk"g«,,<,) Vo (:: x) (35) 

that is, an image mUltiplied by a quadratic phase 
term. 

Case (2): Zl = Z2 = / 
Under these conditions, (26) reduces to 

;k(a' + E' +x' - 2a(x + E)l 

Ui(x) = J J Uo(~)R(a)e 2J da d~ (36) 

Completing the square on the exponent in (36) gives 

f _lkEx I.a Ik(a-(x+E»)' 

U;(x) = Uo(~)e E-J e 2J da d~ 
-a 

(37) 

Here an ideal lens is assumed again. Provided a, x, 
and ~ and the condition 

a2 » 2/ 
k 

is met, the inner integral yields a constant C and 
(37) becomes' 

;kEx 

U;(x) = C J Uo(~)e -V d~ (38) 
or 

(39) 

i.e., a Fourier transform with no quadratic phase 
term. 

Case (3): Z 1 = 0 Z 2 = / 

Under these conditions we have immediately 
from Eq. (20) 

ikx' ikax 

U;(x) = e 2T J Uo(a)R(a)e -21 da (40) 
or 

(41) 

Spatial filtering systems are properly constructed 
around the configuration characteristics of case 2. 
That is, this setup is used to display the Fourier 
transform of the input transparency. A second 
transparency is placed in the Fourier transform 
plane to modify the spectrum. Then the process is 
repeated and the "filtered" image is displayed in the 
final Fourier transform plane. 

In each spatial filtering experiment the coherence 
conditions should be adjusted in accordance with 
the foregoing analysis in order to be sure that the 
approximations of the theory have been satisfied 
and at the same time to minimize the degrading 
effects associated with coherent imaging. These 
effects arise primarily from the fact that such sys­
tems are nonlinear in intensity. Some examples of 
these effects are shown below. 

EXPERIMENTAL EXAMPLE OF 
COHERENCE EFFECTS 

A simple experiment that illustrates the effects of 
the spatial and temporal coherence is to form two­
beam interference fringes by division of a wavefront. 
Figure 2 shows the result of such an experiment. 
Figure 2a shows high-contrast fringes formed with a 
He-Ne gas laser illuminating a pair of small circular 
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a b 

c d 

Figure 2. Effect of coherence length. A and B-with gas lasers; C and D-with mercury arc. 

apertures~ The envelope function is the diffraction 
pattern of the single aperture. In Fig. 2b, a piece of 
plane optical quality glass 0.5 mm thick was intro­
duced in front of one of the apertures only, to add 
an extra optical path. Again illuminating with the 
He-Ne gas laser, we observe no difference in the 
fringe contrast. However, when the experiment is 
repeated with a coherent field produced by a 
mercury arc lamp without the glass plate, high­
contrast fringes are again seen (Fig. 2c), but with 
the glass in place, the fringes disappear (Fig. 2d). 
The slight scale change between the two pairs of 
illustrations results from the different wavelengths 
(6328 A for He-Ne and 5461 A for the Hg green 

line). This illustration shows that the coherence 
length of the mercury arc radiation is quite small. 
Both fields were spatially coherent but the coherence 
lengths were quite different. Introducing fine 
ground glass across the pair of pinholes resullts in 
the intensity distribution of Fig. 3. The c!xtra paths 
introduced by the ground glass did not exceed the 
coherence length; hence, high-contrast fringes are 
seen over the whole field. A discussion of these 
types of speckle patterns in terms of their auto­
correlation function and their power-sp,ectral den­
sity are to be found in a paper by Goldfischer.4 An 
attempt to build a coherent projection printer is re­
ported by Milinowski,5 in which a rotating pi(~ce of 
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Figure 3. Two-beam interference with diffusing plate. 

ground glass is used to remove some of the co­
herence effects. 

REFLECTED LIGHT 

The different speckle patterns formed when co­
herent light is reflected from a rough surface have 
been commented upon a number of times and per­
haps form the most objectionable feature of co­
herent imaging by reflected light (as opposed to 
transmitted light discussed in the last section). 
Figure 4 shows a standard bar target that has been 
printed on a matte photographic paper and then 

a 

Figure4. Photograph in reflected coherent light. 

rephotographed in reflected coherent light. The 
edge-ringing effects are masked by the speckle pat­
terns. The speckling is produced by the interference 
between the scattered light and is determined by 
the coherence length of the incident radiation. Fig­
ure 5a is a photograph of a portion of a cement­
block wall illuminated by a mercury arc so that the 
light is spatially coherent. In Figure 5a the same 
portion of the wall is illuminated by a gas laser; the 
speckling completely obscures any structure of the 
wall. Both beams had approximately the same 
spatial coherence, but the gas laser has a consider­
able longer coherence length. 

b 
Figure 5. Effect of coherence length. A-spatially coherent only; B--spatially and temporally coherent. 
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THE ROLE OF COHERENT OPTICAL SYSTEMS IN 
DA T A PROCESSING 

L. J. Cutrona 
Conductron Corporation 

Ann Arbor, Michigan 

INTRODUCTION 

This paper describes a number of signal process­
ing techniques in which coherent optical techniques 
play an important role. The techniques are power­
ful and of great versatility. 

Examples of both two-dimensional and multi­
channel one-dimensional signal operations are de­
scribed. Of particular importance is the fact that 
the most general linear operation can be mechanized 
optically. Further examples show how antenna pat­
terns can be simulated optically. 

A configuration useful for achieving fine resolu­
tion in radar by the generation of a synthetic 
antenna is described. 

Finally, the use of several optical configurations 
for communication purposes are discussed. 

FUNDAMENTAL PRINCIPLES 

Much of the capability of optical configurations 
arises from the ease with which certain one-dimen­
sional and two-dimensional spectral analyses are 
made. I-4 Two basic configurations appear re­
peatedly. These configurations are 

1. A configuration using a spherical lens 
which produces two-dimensional dif-
fraction, and . 

2. A configuration consisting of a spheri­
callens in conjunction with a cylindri-

25 

callens which produces a mUltiplicity of 
one-dimensional diffraction patterns. 

The basic configuration for obtaining two­
dimensional diffraction patterns is shown in Fig. 1. 

In this figure S represents a source of light, LI 
represents a collimating lens, PI represents the input 
plane in which a transparency is placed, and lens L2 
is the spherical lens which is the essential element 
for producing a two-dimensional diffraction pattern. 
Plane P2 is the plane in which the two-dimensional 
spectrum (of the transparency in plane PI) is ex­
hibited. 

In order that the distribution of light in plane P2 
be the two-dimensional spectrum analysis of the 
density distribution of the transparency in plane PI, 
it is necessary that planes PI and P2 be spaced a 
focal length on either side of lens L2. If f(x,y) rep­
resents the amplitude of light emerging from plane 
PI, then the distribution of light amplitude in plane 
P2 is given by Eq. (1): 

F(a, (J) = J J f(x,y)ejk(ax+ py) dx dy (1) , 

In Eq. (1), the amplitude of the light in plane P2 

Figure 1. Configuration for two-dimensional spectrum 
analysis. 
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is given by F(a, (3). Here k represents the wave 
number of the light while a and (3 represent the 
direction cosines of the diffracted beam with re­
spect to the x and y axes. 

The configuration of Fig. 1 can be converted to 
a multichannel one-dimensional diffraction equip­
ment by the addition of a cylindrical lens to the 
configuration of Fig. 1. The cylindrical lens is 
placed between planes PI and P2 to give the con­
figuration shown in Fig. 2. 

In this case the distribution of light in plane P2 

is given by Eq. (2). It will be noted that this expres­
sion indicates distribution of light corresponding to 
a multichannel spectrum analysis. The parameter y 
is an index referring to a given channel. The other 
parameters have been previously defined. 

F(a,y) = J !(x,y)e jkax dx (2) 

Figures 1 and 2 will be seen to appear in a num­
ber of configurations in the following sections. A 
photograph of equipment using the configuration of 
Fig. 2 is shown in Fig. 3. 

LINEAR OPERATIONS 

Signal processing operations include a large num­
ber of linear operations. Among these operations 
are spectrum analysis, filtering, auto-correlation, 
cross-correlation, etc. Each of these operations, 
including (a) the most general linear operation on a 

Figure 2. Configuration for one-dimensional multichannel 
diffraction. 

function of a single continuous variable, and (b) the 
most general linear operations on vectors, can be 
mechanized optically. 

Spectrum Analysis 

The configuration of Figs. 1 and 2 are those essen­
tial for two-dimensional spectrum analysis or multi­
channel one-dimensional spectrum analysis. The 
operation of these configurations formed the con­
tent of the above section. 

Filtering 

It is often desirable to perform filtering opera­
tions upon recorded signals. In such cases, it is 
usually required to view the signals corresponding 
to these altered spectra. To achieve this alteration 
of the spectrum and viewing of the result, it is neces­
sary to modify the optical configurations shown in 
Figs. 1 and 2 to those shown in Figs. 4 and 5, 
respectively. 

The configurations in Figs. 4 and 5 permit opera­
tions on the spectra by filtering operations in plane 
P2 • A number of filtering operations are possible: 

In the simplest case, one can achieve bandpass 
and bandstop filtering in plane P2 • A bandpass is 
achieved by having a transparent region at the ap­
propriate location in plane P2 • A bandstop is 
achieved by locating an opaque spot at the appro­
priate position in plane P2. 

A more complicated filtering operation can be 
achieved by placing in plane P2 a transparency hav­
ing a density varying as a function of position. This 
corresponds to a filter which changes. the rdative 
magnitudes of the spectral components. 

A different filter is one in which phase variations 
are desired. Difficulties in making filt.ers of this 
kind arise from the short wavelengths of light. 

Figure 3. Equipment for one-dimensional multichannel spectrum analysis. 
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Figure 4. Configuration fortwo-dimensional spectrum analysis 
and filtering. 

Figure 5. Configuration for one-dimensional multichannel 
spectrum analysis and filtering. 

In the most general case, a filter is desired in 
which both the magnitude and the phase shift of the 
spectra can be varied. In this case one can place 
two transparencies in contact in plane P2 ; one of 
the transparencies has a varying density while the 
other has a varying thickness or phase shift. This 
permits the most general filtering operation to be 
performed optically. 

Information theory indicates a number of cases 
in which a desirable signal operation is that of pass­
ing a signal through a matched filter. In general the 
matched filter will require a variation of both mag­
nitude and phase, hence the general filter consisting 
of variable magnitude and phase is required. 

A scheme for achieving the equivalent of a com­
plex filter (magnitude and phase shift both variable) 
makes use of a technique recently demonstrated by 
Leith and Upatnieks,5 and Vander Lugt.6 

In this case a recording is made in which both 
phase and magnitude are preserved but in which 
this information can be recovered from a trans­
parency having density variations only. 

Auto-Correlation and Cross-Correlation 

Important linear operations are those of auto­
correlation and cross-correlation. These functions 
will be considered together since the equipment 
needed to mechanize the operations is identical. In 
performing a cross-correlation the operations per­
formed are those indicated by Eq. (3) while an auto­
correlation is given by Eq. (4). 

c,ojg(xo) co: J f(x)g(x - xo) dx (3) 

c,ojixo) = J f(x)f(x - xo) dx (4) 

It will be noted from Eqs. (3) and (4) that to 
mechanize these operations, techniques are needed 

for performing multiplication, translation, and inte­
gration. A configuration capable of performing a 
multiplicity of one-dimensional auto-correlations or 
cross-correlations is given in Fig. 6. In this figure 
the source and collimating lens to the left of the 
plane PI causes a plane coherent wave to be incident 
on the transparency f(x,y). 

The optics between planes PI and P2 causes the 
multichannel spectrum analysis of f(x, y) to appear 
in the plane P2 • The optics between planes P2 and P3 

perform a second multichannel spectrum analysis of 
the signals in plane P2 • Thus, incident upon P3 is 
the function f(x,y). If one looks through plane P3 

toward the source, the distribution of light will be 
the product f(x,y) g(x,y). 

Let the holder which contains the function f(x,y) 
have provision for transporting this transparency 
along the x axes. If this displacement is through a 
distance xo, then the distribution of light in plane P3 

lookIng toward the source will be the product 
f(x, y) g(x - Xo, y). 

The combination of spherical and cylindrical 
optics between planes P3 and P4 cause a multi­
channel spectrum analysis of the light distribution 
emerging from plane P3 • Hence, the distribution of 
light in plane P4 is described by Eq. (5). 

c,o(xo,y; O() = J f(x,y)g(x - xo,y)e jocz dx(5) 

where 0( := 27r"/A sin (). 
It will be noted that Eq. (5) resembles Eq. (3) 

except that a multiplicity of operations is performed 
(one for each value of y) and that the factor e jocx 

appears as a factor in the integrand. In Eq. (5), 
0( = ° corresponds to the light in a slit parallel to 
the y axis. If only the light in this slit is recorded, 
the exponential factor in Eq. (5) assumes the value 
unity. In this case, Eq. (5) becomes identical with 
Eq. (3) except for its multichannel feature. This 
result is written as Eq. (6): 

c,o(xo,y,O) = c,ojg(x,y) (6) 

As the plane P3 is transported,at a given position in 
plane P4 , there will appear an amplitude of light 
corresponding to the value of the cross-correlation 
function for that value of the displacement Xo. This 
auto-correlation function can be recorded by trans­
porting a film past the slit. The configuration in 
Fig. 6 is, thus, capable of performing a mUltiplicity 
of sim ultaneous correlations. 

To perform an auto-correlation using the con­
figuration of Fig. 6 one uses a second copy of f(x,y) 
in plane P3 • 



28 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

f( x I Y) .< Xo I Y ,0) 

00 
Sliit 

P,4 

Figure 6. Cross-correlator configuration. 

In the mechanization shown as Fig. 6 a relatively 
complicated optical arrangement was shown to 
image plane P l onto plane P3' It is necessary to use 
this configuration in order to remove errors arising 
from bias levels used in recording the signals in 
planes Pl and P3 • 

Auto-correlations and cross-correlations are im­
portant operations and there are many instances for 
which information theory indicates these as opti­
mum signal detection and/or parameter estimation 
operations. It will be noted that the configuration 
of Fig. 6 performs a multiplicity of such auto­
correlations or cross-correlations simultaneously. 
There is no difficulty in recording onto film a den­
sity of 50 cycles per mm.Hence 35mm film can be 
used in configuration of Fig. 7 to perform simul­
taneously more than 1000 simultaneous auto-cor­
relations or cross-correlations. Equipments having 
the configuration of Fig. 6 are commercially avail-

Figure 7. 

able. A photograph of such a device is shown as 
Fig. 7. 

General Linear Operation 

The most general linear operation [0] on a func­
tion f(t) to produce an output g(t) can be written 
in the form given by Eq. (7): 

g(t) = O[f(t)] = j h(T, t)j(T) dT (7) 

In this equation, the nature of the operation to be 
performed determines the kernel function h( T, t). 
The fact that Eq. (7) represents a general llinear 
operation is discussed in texts dealing with func­
tional analysis.7 Pertinent discussion has also been 
given in pI~blications by L. A. Zadeh.s 

In order to mechanize the operation givtm by 
Eq. (8), the configuration shown in Fig. 8 may be 
used. 

g(t) = jh(T,t)f(T) dT (8) 

Cross-correIa tor . 

Slit 

---1--00 
g'~~ t) 

Figure 8. General linear operation configuration. 
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If one looks toward the left, the light amplitudes 
in the plane containing f( T) contains the product of 
h(T, t) with f(T). 

Between the transparency f(T) and the output slit 
in which get) is found, is a pair of lenses, one of 
which is spherical, the other of which is cylindrical. 
This configuration performs the function of causing 
the line-by-line spectral analysis of the light in the 
f( T) plane to be displayed in the output plane. The 
distribution of light in the output plane is described 
by Eq. (9). It will be noted that Eq. (9) is a some­
what more general operation than that described by 
Eq. (8), and that it describes a two-dimensional dis­
tribution of light in the output plane. 

I(t,w) = !h(T,t)f(T)e-jWTdT (9) 

It will be further noted that Eq. (9) becomes iden­
tical with Eq. (8) if w is set equal to O. Thus, per­
forming a linear operation expressed as Eq. (8) is 
accomplished simply by observing the light which is 
present in the central slit in the output plane. 

Thus, performing a general linear operation op­
tically requires the configuration shown in Fig. 8 

together with the ability to record on two trans­
parencies the functions h (T, t), which represents the 
operation to be performed, and the function f(T), 
which represents the function upon which the opera­
tion is performed. The result of the operation is 
present in a centrally located slit in the output 
plane of the equipment. 

It is known that, if a number of linear operations 
are performed in tandem, one can represent the tan­
dem sequence of operations by a single equivalent 
operation. Hence, Eq. (8) represents not only a 
single operation but a sequence of linear operations, 
if such is desired. 

Matrix Multiplication 

Eq. (8) and Fig. 8 are pertinent when a general 
linear operation or a function of one variable is to 
be performed. It is useful, however, to consider the 
case in which a linear operation is to be performed 
in a space of a finite number of dimensions. In this 
case each input and output quantity of interest will 
be a vector (n-tuple) and the linear operation will 
be that of matrix mUltiplication. If J!I and J-2 repre-

/ ~Co/lI ... t."LH' 

/-.. ,./Antenna Master Transparency 

/ . ~ Transform Objective 

/' ./ For Field Pattern 

/ /~n'.','n. L ... 

~Master 
/ Transparency 

Image 

Figure 9. Microwave antenna simulator at optical frequency. 
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sent two vectors and if M represents a matrix one 
may write 

J'2 = MJIi (10) 

to indicate that J'2 is derived by a linear operation 
on JIl. 

In Eq. (10) JIl and J'2 are vectors (column ma­
trices whereas M is a k by n matrix. These matrices 
may be of the form given by'Eqs. (11) and (12). 

(11 ) 

(12) 

The operation indicated by Eq. (10) can be per­
formed by the optical configuration shown in Fig. 8. 
In this case, the transparency h(r + t) is replaced 
by a rectangular array representing the matrix M, 
and f( r) is replaced by JIl. The output slit now 
contains the values of Jt2 instead of g(t). 

Thus, the configuration of Fig. 8 makes possible 
the general linear operation for t, a continuous vari­
able, as well as for discrete variables. 

ANTENNA PATTERN SIMULATION 

The far field pattern of an antenna can be com­
puted from its illumination function f(x,y) by the 
use of the relation 

F(a,{3) = J J f(x,y)e-jk(ax+{JY)dxdy (13) 
over 

aperture 

In this equation a and (3 are direction cosines of the 
beam, F(a,{3) is the far field pattern, and k is de­
fined by 

27r 
k =­

A 
(14) 

Figure 10. Antenna simulation-Illumination Plane. 
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This quantity is the wave number and A represents 
the wavelength used. If Eq. (13) is compared with 
Eq. (1) it will be seen to have the same form. Thus, 
the optical configuration shown in Fig. 9 can be 
used to display the far field pattern of an antenna.9 

In this case, a transparency containing the aperture 
function f(x,y) is placed in plane PI and the far 
field pattern is observed in plane P2• 

In some cases, the far field pattern found in plane 
P2 may be too small. It is desirable in this case to 
use another lens to magnify the image found in 
plane P2 • Such a configuration is shown in Fig. 9 
where an enlarged image of the field in plane P2 is 
displayed in plane P3• 

In fIg. 9, one finds that an image of plane PI 
occurs between lenses L3 and plane P3 at plane P4 • 

Thus, between planes P4 and P3 one has an oppor­
tunity to observe the pattern as it emerges from the 

. illumination function through the near field until at 
plane P3 the far field pattern is obtained. With this 

. configuration, studies of the relationship between 
near field and far field can be made. In addition, by 

inserting perturbations into the regions between 
plane P4 and P3, for example, by simulating a non­
homogeneous medium, it is possible to observe the 
effects of perturbations on the far field pattern. 

A series of photographs showing the far field de­
veloping from the illumination function for an array 
antenna9 is shown in Figs. 10-15. This set of photo­
graphs is the optical simulation of an antenna array 
being built by J. P. Wild in Australia. The array 
consists of 96 parabolas arranged on a circle about 
IYz miles ·in diameter. Each parabola has a diam­
eter of 45 feet. The frequency of operation is 80 
megacycles. 

Assuming that the far field pattern begins at a 
distance 2D2/ A the far field pattern begins approxi­
mately 2400 miles from earth. This poses real prob­
lems for measurement of the far field pattern. The 
configuration of Fig. 9, however, enables one to 
obtain not only the far field pattern shown in Figs . 
14 and 15 but also views of the near field pattern. 

Thus, antenna simulation is another ,demonstra­
tion of the versatility of optical equipments. 

Figure II. Antenna simulation-near field. 
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Figure 12. Antenna simulation-near field. 

SYNTHETIC ANTENNA GENERATION 

One of the most successful and important appli­
cations of optical data processing has been that of 
synthetic antenna generation in airborne radar ap­
plications. Here, a sequence of signals collected as 
an airborne radar is translated along a straight line 
is used to achieve the effect of a long linear array. 
The term synthetic antenna derives from the fact 
that signal processing generates the long linear 
array. 

The fundamental idea can best be grasped by con­
sideration of Fig. 16. For the physical antenna 
array shown in Fig. 16a, the individual transmitting 
and receiving elements are dipoles. While each di­
pole has a broad radiation pattern, the assemblage 
of dipoles is made to produce a narrow antenna 
beam by making the electrical lengths of the in­
dividual transmission lines such that signals arriving 

in phase at the dipoles are added in phase at the 
main transmission line to the radar. Since trans­
mission and reception at each of the: dipoles is 
simultaneous, this fixed adjustment of phases serves 
to maintain the desired beam pattern. 

Figure 16b depicts the generation of the synthetic 
array. In this case the individual elements IDf the 
array, as indicated by the x's, do not exist simul­
taneously. Starting with the position at the extreme 
left, a radar pulse is transmitted and tht~ return sig­
nals recorded. A short time later the aircraft has 
carried the side-looking antenna to the second posi­
tion where another pulse "is transmitted and the re­
ceived signals recorded. In this way a signal is re­
corded for each of the positions of the" synthetic 
array. To achieve the effect of a linear array such 
as Fig. 16a, the return signals must contain phase 
information which is preserved in tht~ recording. 
Then by appropriate data processing it should be 
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Figure 13. Antenna simulation-near field. 

possible to retrieve the stored data and combine it 
in proper phase to synthesize the desired effect of a 
narrow-beamed antenna. 

It was evident that the radar would have to have 
excellent transmitter frequency stability and a stable 
frequency reference for use in comparing the_ phase 
of the return signals with the phase of the trans­
mitted pUlses. The method of signal storage (re­
cording) had to preserve the range information so 
that the data processing could be accomplished 
separately for each element of radar range. 

The well-known formula for antenna beamwidth 
showed that, at least in theory, the synthetic-antenna' 
concept had a great potential for fine angular reso­
lution. The half-power beam width {3 of the physical 
side-looking antenna (Fig. 17) is 

{3 = k ~ radians 
D 

(15) 

in which 

A is the wavelength of the radar, 
D is the length of the physical aperture, and 
k is the illumination factor (greater than unity). 

The distance across the antenna beam for a radar 
range r is {3r, which represents the amount of data 
that can be collected between half-power points for 
this range. If this amount of data is processed at 
each range, this would represent a synthetic antenna 
length 

Ls = {3r feet (16) 

if~" is expressed in feet. The phase information ob­
tained for each of the element positions of the syn­
thesized antenna is based on the round-trip distance 
between the side-looking antenna and echoing ob­
jects; for the physical array the phase depends on 
the one-way path length. As a consequence of this 
difference, the phase difference between elements 
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Figure 14. Antenna simulation-far field. 

of equally spaced elements of a synthetic array is 
twice that of a physical array with the same spacing; 
a synthetic antenna has half the beamwidth of a 
physical antenna of a given length. That is, 

{3s = k, i~~ radians (17) 

in which k, is the illumination function for the syn­
thetic-sized antenna. Using Eq. (15) this can be ex­
pressed in terms of the size of the physical antenna 
and radar range as 

{3 k, D d· 
S = k 2r ra lans (18) 

This indicates that the synth,etic beamwidth {3s is not 
only independent of freque'ncy, but also decreases 
with radar range. 

To obtain a measure of resolution, the usual as­
sumption was made that targets could be resolved 
in angle if they were separated by one antenna 

beamwidth. For the beamwidth {3s of the: synthetic 
antenna, the distance across the beam at any radar 
range r is 

k, D 
~x = {3sr k -- 2 feet (19) 

if the length of the physical antenna aperture D is 
expressed in feet. 

In theory, then, the resolution in tht! azimuth 
direction for a synthetic antenna radar is indep,end­
ent of range, independent of radar frequency, and 
smaller than the physical length of the aetual side­
looking antenna carried by the aircraft. This as­
sumes the generation of a synthetic antenna of a 
length equal to the distance across the radar beam 
at each radar range. 

In the analysis represented by Eqs. (15)-(19), the 
generation of a focused synthetic antenna was im­
plicitly assumed. If unfocused synthetic antennas 
are generated, one obtains a resolution given by 
Eq. (21). 
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Figure 15. Antenna simulation-far field (longer exposure). 
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(b) 

Figure 16. (a) Physical array of dipoles. (b) Synthetic array 
generation. 

It is useful to compare the azimuth resolution 
capabilities of conventional radars, unfocused syn­
thetic antenna radars, and focused synthetic an­
tenna radars. The theoretical results are given by 
Eqs. (20), (21), and (22). These results are plotted 
as Fig. 18. 

1. The conventional technique: In this 
technique azimuth resolution depends 
upon the width of the radiated beam. 

2. The unfocused synthetic antennb tech­
nique: In this case the synthetic an-

tenna length is made as long as the un­
focused technique permits. 

3. The focused synthetic antenna technique: 
In this case the synthetic antenna length 
is made equal to the linear width of the 
radiated beam at each range. 

As is shown in the sections which follow, the 
linear transverse resolution for the conventional case 

Figure 17. Synthetic antenna geometry. 



36 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

1000 

500 

200 

£ 100 - 50 c 
0 

4= 20 :) 

0 10 lit 
~ 
~ 5 

Curve c(focussed case)" 

2 

Figure 18. Aximuth resolution for three cases: (a) 
conventional; (b) unfocused; (c) focused. 

is given by 
I . AR Reso utlOnconv = D (20) 

For the unfocused case, the resolution is given by 

Resolutionunf= ~ -V>;R (21) 

whereas for the focused case, the resolution is given 
by 

Resolutionfoc = ~ (22) 

In the above expressions A is the wavelength of the 
radar signal transmitted, D is the horizontal aper­
ture of the antenna, and R is the radar range. 

Figure 18 is a plot of the resolution for each of 
these cases as a function of radar range. This plot is 
for an antenna aperture of 5 ft and a wavelength of· 
0.1 ft. 

One of the most successful applications of co­
herent optical data processlng is the conversion of 
raw data obtained from a synthetic antenna type 
radar system into a fine-resolution radar map. Syn­
thetic aperture radars may· well become the most 
important of the ground-mapping types of radars, 
since they have a resolution potential at long ranges 
which is considerably greater than that of other 
types of mapping radars. Coherent optical process­
ing is eminently well suited to the processing tasks 
which arise in such radar systems. 

The azimuth or angular resolution of a conven­
tional radar is limited by the width of the physical 
radar beam, which is given by AID, where A is the 
wavelength and D is the antenna width. Because 
radar wavelengths are several orders of magnitude 
larger than optical wavelengths, very large values 
of D must be used if radars are to achieve angular 
resolutions comparable with those of photorecon­
naissance systems. If one wishes to hav(! fine (lin­
ear) azimuth resolution at long ranges, the required 
antenna length will be of the order of hundreds or 
thousands of feet; obviously, such an antenna could 
not be carried by an aircraft. 

The synthetic antenna technique lO
-

12 offers a way 
around this impasse: the aircraft carries. a small, 
side-looking antenna, producing a beam that is rela­
tively wide in the azimuth direction, which scans the 
terrain by virtue of the aircraft motion. The an­
tenna is carried by the aircraft to a sequence of 
positions which can be treated as if they were: the 
positions occupied by the individual elements of a 
linear antenna array. At each position, the antenna 
radiates a pulse, then receives and ston~s the re­
flected signal. These stored data are then processed 
in a manner analogous to the coherent weighted 
summation carried out ina large linear array. The 
processed radar signals bear a quantitative simi­
larity to those which would be obtained if a large 
antenna were used; in particular, the resolution and 
the signal-to-noise ratio are greatly improved by the 
signal processing. 

Array-type antennas add, or integrate, the returns 
received on each of the array elements. The syn­
thetic antenna falls into the array category. One 
can readily generate synthetic apertures which are 
so long that they will only realize their full gain and 
azimuth-resolution capabilities if they are focused 
at the range at which the radar is operating. The 
focusing operation represents a phase adjustment of 
the signal received on each array so that, in the sum­
mation process, the contributions from all array 
elements are combined in phase. 

The Radar Signal 

An aircraft carries an antenna which illuminates 
a ground-swath parallel to the flight path; the radar 
beam is oriented in azimuth roughly normal to the 
direction of flight; at range R, the azimuth lineal 
beamwidth /3R" is much larger than the desired 
azimuth resolution at that range. Finally, the radar 
is coherent, that is, the receiver has availablle a 
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reference signai from which the transmitted signal 
was derived. 

Synthetic antenna radars derive range informa­
tion through pulsing, and derive fine azimuth reso­
lution by processing Doppler-shifted radar returns 
which lie in a spectral band which is adequately 
sampled by the pulse rate of the radar. For our pur­
poses, we may neglect this intermediate sampling 
process and consider only the reconstructed azimuth 
histories which are easily derived from the samples. 
We will assume that the entire radar receiver and 
processor behave as a linear system; we can then 
investigate the response of the radar to a single point 
target, and by superposition extend the results to 
apply to realistic reflective complexes .. 

Examples of radar imagery obtained by th~ use of 

synthetic antenna techniques are shown in Figs. 19 
and 20. 

The radar data is recorded onto film as an inter­
mediate step. This film, called a signal history film, 
is then used in an optical configuration such as that 
shown in Fig. 21. 

In this figure, the conical lens is the primary ele­
ment responsible for focusing, while the combina­
tion of cylindrical and spherical lenses causes the 
device to become multichannel so that the separate 
range intervals remain resolved. 

COMMUNICATIONS APPLICATIONS 

The essential components of a communications 
system are shown in Fig. 22. In such a system the 

Figure 19. Fine resolution radar image, Washington, D.C. 
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Figure 20. Fine resolution radar image, southeastern Michigan. 

Figure 21. Optical processor using a conical lens. 

source generates the Information which is eventually 
delivered to the destination. The source may be any 
of a number of items. It may be oral as in voice 
communication; it may be a: picture as in TV trans­
mission; it may be a series of digits if digital data is 
transmitted; it may be an· analog voltage. 

The output of the source is sent to a coder. It is 
the object of the coder to perform such operations 
on the output of the source as will adapt these sig­
nals to the transmission channel. Often a trans­
ducer of some type is included in the coder such as a 
microphone in the case of oral sounds, a TV camera 
for scenes, so that the information is converted into 
electrical form., Additional operations arc! also per­
formed. The most common of these is to impress 
the information onto some electromagnetic carrier. 
Many types of modulation exist, such as amplitude 
modulation, frequency modulation, and a number 
of pulse modulations. 

These operations are primarily for the purpose of 
adapting the signal to the channel. However, in 
more sophisticated communications syst1ems addi­
tional coding is employed for a variety of purposes. 
For example, such additional coding may be used 
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Figure 22. Essential components of a communications system. 

for the purpose of signal-to-noise improvement, 
error correction, etc. 

The output of the coder is fed to the communi­
cations channel. Two general types of channels are 
employed, in one case a wire system connects the 
transmitter to the receiver; in the other case (radio 
transmission) an electromagnetic wave is launched 
by way of a transmitting antenna and a receiving 
antenna associated with the receiver abstracts from 
this electromagnetic energy. A wide range of fre­
quencies is available for either wire transmission or 
radio transmission. Recently, this spectrum has 
been extended to include visual frequencies so that 
modulation of light sources such as lasers may now 
be considered. 

In either wire transmission or radio transmission, 
noise is added to the signals. Often, this is additive 

Logic 
Elements 

Alphabet 

noise. However, multiplicative noise and multipath 
transmission are operations (generally undesirable) 
which may also be performed on signals as they pass 
through the channel. 

The signals from the channel become the input to 
a receiver. It is the function of the receiver to detect 
the signal and to convert it into a form suitable for 
acceptance by the destination. If coding for signal­
to-noise improvement C1r error correction have also 
been included in the coder, the operations necessary 
to achieve these improvements are also performed 
by the decoder. 

Not shown in Figure 22 but sometimes used and 
necessary are a number of administrative equip­
ments. These equipments perform such functions 
as automatic testing, automatic switching to a 
standby unit in case of failure, etc. 

CODER 

'--_ _...--- TV Channel 

Time 8ase 
Generator nL...-.---_---In _____ rL 

Figure 23. Optical coding. 
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Figure 24. Optical decoding. 

Block diagrams of optical coders and decoders' 
are shown in Figs. 23 and' 24. In these figures it is 
assumed that an alphabet (set of symbols) and rules 
for their selection have been previously determined 
using information theoretic considerations. 

CONCLUDING REMARKS 

In this paper optical computing and optical signal 
processing have been applied to a number of prob­
lems. The list of problemsjs by no means complete. 

Optical signal processing must be considered as 
an extremely powerful and versatile technique. 
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REQUIREMENTS FOR HOLOGRAM CONSTRUCTION 

E. N. Leith, A. Kozma and J. Upatnieks 
Institute of Science and Technology 

The University of Michigan, Ann Arbor, Michigan 

INTRODUCTION 

Holography has in the last two years undergone a 
tremendous resurgence. The laser has contributed 
immeasurably to this, through the remarkable co­
herence of its light, which permits previously per­
formed experiments to be carried out with relative 
ease, and in addition allows the performance of 
experiments which were hitherto hardly conceivable. 
Old experiments have been repeated with vastly im­
proved results, and the new interest has given rise 
to new ideas with exciting promise. 

This paper has a twofold purpose: first, to discuss 
the techniques for making good holograms and to 
describe how various factors degrade the process; 
second, to describe other forms of holography, in 
which phase is preserved by methods other than 
through phase modulation of an interferometrically 
produced grating. 

ANALYSIS OF SOME STABILITY 
REQUIREMENTS 

Ideal conditions for biographic recording include, 
among other items, completely stationary compo­
nents, monochromaticity of the source, optical flat­
ness of the recording surface. and linearity of the 
recording process, Failure to achieve these con­
ditions causes in general some degradation of the 
hologram image. 

43 

Vibrations 

Vibration .of the reference beam mirror, the ob­
ject, or the recording plate results in image degrada­
tion that, subject to a few rather plausible con­
straints, can be readily analyzed. 

A hologram is made of the moving point P (Fig. 
1). Let the mean position of the point lie at a dis­
tance Zo from the hologram. Also, let the motion be 
resolved into two components, one along the line 
from object to recording plate, and the other normal 
to this direction. For simplicity, consider each of 
the motions separately. 

The former case was. treated by Powell and Stet-

~----------ZO----------~~I 

Figur.e 1. Hologram for a point object vibrating axially. 
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son 1 for the case of sinusoidal motion. We treat this 
case more generally by assuming a random motion 
with a prescribed probability density function for 
Zm, the deviation of the object point from its mean 
position. 

The hologram of the moving point is a photo­
graphic'record of the time-averaged light intensity 
exposing the recording plate, or, to the usual first­
order approximation, 

I TI" 27r{X2 ~I E(x) = 0 e,ax + kexp -i T ~ + Zo + z'",(t1 2dt 

(1) 

Here Z'", = Kz m , where K is :a scaling factor related 
to the relative amplitude of vibration (K = 0 for 
negligible motion of the poiht), eiax is the reference 
wave, and k is a constant. The virtual image term is 

I T . ~ 7r X2 27r ~ kexp -I ax + - + - KZm(t) dt 
o A Zo + KZm A 

KT .( 7r 2 27r ) = exp -I \ax + >: ZoX + T Zo 

1 IT [ 27r ( X2)] .T 0 exp - i T K 1 - Zo Zm dt (2) 

Assuming that the random process Zm is ergodic, 
the integral becomes . 

(3) 

where M zm is the characteristic function of Zm evalu­

ated at 27r K(l - x:). Since x is usually much less 
A Zo . 

h 27r 
t an zo, the argument of M zm can be taken as - K. 

,A 
The reconstructed image is thus attenuated by the 
factor Mzm; M zm (0) = 1 and M zm (v) < M zm (0) for 
all v. Thus, M zm is always an attenuating factor. In 
the case of a sinusoidal motion, the attenuating fac­
tor is a zero order Bessel function J 0 • Since J 0 is 
oscillatory rather than monotonic, fringes (repre­
senting contours of constant vibrational amplitude) 
form ~n the reconstructed image. 

If the probability density function is Gaussian, 
the characteristic function similarly is Gaussian; the 
attenuation factor is monotone decreasing and 
therefore no fringes are produced on the recon­
structed image, only an attenuation proportional to 
K. 

A similar analysis for a random motion Xm in the 
lateral direction results in a time-averaging factor 

~ IT exp [- i ~ (x~ - 2Xm X)] dt (4) 
T 0 AZo 

Let the vibration be sinusoidal; Xm = A cos (j"m t . 
The integral becomes 

1 [. 27rA 2] - exp -1--
T 4AZo 

iT exp {-i ~:. [~2 

COs 2 wmi - AXCOSwml]}dl 

(5) 

A Bessel function expansion, after negle:ct of var­
ious small term~, leads to the hologram signal term 

being multiplied by Jo(27rAX). This is similar to the 
AZo 

case for axial vibration, except that the presence of 
the variable x within the argument is a complication 
which no longer make~s this factor merely attenua­
tive. 

Another interpretation is applicable, howe:ver. 
The diffraction field of the point source, as formed 
at the hologram plate, has the phase distribution 

exp - i(>.:. x? The spatial frequency. of the dif­

fracted field is 

(6) 

Substitution into the Bessel function argument 
yields 

(7) 

The lateral motion thus has, approximately, tht:~ ef­
fect of a low pass filter which degrades the resolu­
tion of the hologram and also reduces the angular 
field over which the reconstructed image can be 
observed. Note that the filter operates on lthe object 
spectrum before its modulation onto the spatial 
carrier a. 

Finally, consider the effect of lateral motion of 
the recording plate. In this case, a time-averaging 
factor 

1 IT . 7r [2 (2 Azoa) -"Id - exp -1- Xm - X - -- Xm t 
T 0 AZo 7r..l 

(8) 
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is produced. An analysis similar to the one just 
given for the case of sinusoidal lateral vibration of 
the object shows that the proc~ss acts, as in the 
previous case, like a low pass filter except that this 
filter acts on the signal after its modulation onto a 
spatial carrier; the attenuation is thus more severe. 

The Propagation Medium 

The propagation medium in general is indiffer­
ent to whether the imagery is holographic oJ.: con­
ventional; an important exception must be noted, 
however. If the medium is time-invariant and is 
available for the reconstruction process, then the 
medium serves, in the reconstruction process, as a 
compensator for the errors introduced in the holo-' 
gram-making process. Thereby, high-quality imag­
ery is supported in a medium which otherwise is 
incapable of supporting good imagery. This is ac­
com plished by using the real image term in the 
reconstruction process: the real image term is con­
jugate to the original object; thus, phase irregulari­
ties are canceled when the real image term of the 
hologram is formed through the irregular medium. 

This process has been demonstrated experi­
mentally in two instances. In the first, a lens with 
severe spherical aberration was part of the medium,2 
in the second, several pieces of ground glass were 
inserted between object and hologram.3 In each 
case, imagery was produced in which the deleterious 
effects of the medium were eliminated. 

Coherence Requirements 

The basic coherence requirements of the source 
can be stated quite simply, although the coherence 
problem when examined in depth becomes indeed 
abstruse and could itself well be the subject of a 
paper. For example, holograms can be made in 
completely incoherent light, as proposed originally 
by Mertz and Young, and discussed more recently 
by others. 

In the case of a transparency, the object can be 
assumed to have no depth, and the coherency re­
quirement is determined solely by the number of 
fringes required across the hologram, which is, in 
fact, just twice the number of resolution elements 
required across the object transparency. Indeed, 
techniques exist whereby holographic signals can be 
modulated onto diffraction grating images, and the 
source need not have the coherence required to pro­
duce such a raster of fringes. The minimum co­
herence length is that n~eded to produce the re-

required dispersion of the object signal. For 
example, if. a resolution cell on the object trans­
parency is dispersed into a Fresnel zone plate image 
for impulse response having M fringes, coherence 
necessary for producing only M fringes is needed. 
The space-spatial bandwidth product of the signal 
(the spatial analog of the time-bandwidth or TW 
product) is M. Thus, the required coherence is re­
lated to the TW product of the system impulse 
response. 

For the case of three-dimensional objects, the 
situation is more severe, since superimposed on the 
previous requirements is the requirement that the 
coherence length encompass the object depth. For 
an object of depth L, the second requirement is 
).2 
~ ~ L, where ~). is the wavelength spread of the 

source.4 If the source has spectrum S(w), the re­
construction will have implanted on it, in the form 
of intensity variations as a function of depth. the 
autocorrelation function of the spectrum. This sug­
gests the use of holographic methods for interfero­
metric spectroscopy. Alternatively, proper selection 
of S(w) offers a basis for giving precise information 
about the depth dimension of the object. For ex­
ample, in the case of a two-frequency source, fringes 
that approximately represent the contours of con­
stant depth are present in the reconstructed object. 

FILM TRANSFER CHARACTERISTICS 

In holography, photographic film plays the role 
of both a square-law detector and a spatial storage 
device or recorder. In an ideal recording, the inten­
sity of the sum of two spatially modulated coherent 
waves is recorded so that a linear relation is ob­
tained between the intensity and the specular ampli­
tude transmission of the resulting recording. On 
subsequent readout using a coherent interrogating 
beam, the original incident wave amplitudes can be 
faithfully recreated from the stored data. 

It is well known that if one uses photographic 
film in the linear region of the D-Iog E curve, a two­
step recording process with a gamma product of two 
gives a linear relation.5 However, the efficiency of 
this type of recording, in terms of the brightness of 
the reconstruction, is low and the process is difficult 
to accomplish with good fidelity at high spatial 
frequencies. 

A more straightforward practice is to use a one­
step process with exposure versus amplitude trans-
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mission as the photographic transfer curve, where 
exposure is the product of the light intensity and 
the time of exposure. The amplitude transmission 
is defined as 

Ta = (~)Y2 
10 

(9) 

where I' is the light intensity transmitted by the 
recording while 10 is the total intensity of the co­
herent interrogating beam. Here we assume that 
the amplitude transmission is a real function which 
requires that the thickness variations of the film be 
negligible or that the film be immersed in an index 
matching fluid during readout. 

Figure 2 shows the exposure-transmittance (E-Ta) 
curve for a high-constrast film used in wavefront 
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Figure 2. Log exposure vs density curve. Kodak 649 plate, 
exposed with HeNe laser light (6328), developed in 
D19 for 12 minutes at 68~F. 

reconstruction while Fig. 3 shows the D-Iog E curve 
for the same film. One observes from these figures 
that there is a considerable region on the E- Ta curve 
over which approximate linearity is achieved. Also, 
this linear region does not coincide with the linear 
region of the D-Iog E curve, but corresponds with 
the toe and the lower part of the linear region of the 
D-Iog E curve. 

From these observations it is clear that the D­
log E curve is of little interest in wavefront recon­
struction. Generally, a film which is optimally 
recorded for wavefront reconstruction will be un­
derexposed by conventional standards. Also, it is 
apparent that attempts to achieve a specific "y of 
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Figure 3. Exposure vs amplitude transmission curve. Kodak 
649F plate, exposed with HeNe laser lRght (6328), 
developed in D19 for 12 minutes at 68°F. 

the D-Iog E curve is of interest only as a means of 
relating conventional sensitometry to this appllica­
tion . 

The linearity of the E- Ta curve mentioned above 
is the same type of inverse linearity achileved with 
a vacuum tube, that is, linearity about an operating 
bias point. This poses no problem since the inten­
sity functions of interest contain a bias term which 
can be scaled to coincide with the operating point of 
the E- Ta curve. That the linearity is inv,erse is ·of 
little consequence for the type of wavefront relcon­
struction considered here since the spatial fluctu­
ations of the intensity are modulated by a spatial 
carrier frequency. The net effect is that the fluctu­
ating part of the recorded signal is changed in phase 
by 1800 and in the readout the amplitude of the 
recovered signal is similarly reversed in phase. 
However, the recovered signal is ultimatdy sensed 
by an energy detector such as the eye or a photocell 
and the 1800 phase change cannot be detected. 

The reference wave Uo and the signall waVie U 
combine at the recording surface to produce the 
intensity 

1 = 1 Uo + U 12 (10) 

Letting Uo = keiaX, and U = ae- i"" we have 

1 = k 2 + a 2 + kacos(ax + cP) (11) 

The exposure time is chosen so that the product of 
the constant part of Eq. (11) and the tim'e is equal 
to Eo, the operating bias point on the T(Ji-E curve. 
The amplitude transmission of the film is then made 
up of a constant part, To, and a spatially fluctuating 
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part g(x,y) and is given by 

Ta(x,y) = To + g(x,y) (12) 

If k is large compared to a(x,y) then the exposure 
will be confined to the linear portion of the Ta-E 
curve and the transmission Ta is 

Ta(x,y) = To - (jt{a 2 (x,y) 

+ 2ka(x,y)cos[ax + ¢(x,y)]} (13) 

where t is the time exposure and (j is the slope of the 
Ta-E curve at the operating bias point Eo. Thus, 
we have achieved a linear transfer in the sense de­
scribed above. 

Effects of Film Resolution 

To study the effects of the film resolution we as­
sume that the amplitude of the reference wave is 
sufficiently larger than the signal so that we achieve 
a linear transfer. Under this condition, k is large 
compared to a(x,y), a2 (x,y) is small compared to 
2ka(x,y), and Eq. (13) can be rewritten as 

Ta(x,y) = To - {jt{2ka(x,y)cos[ax + ¢(x,y)]} (14) 

Since we are assuming linearity, we can take into 
account the film resolution by assigning an impulse 
response to the film and treating the film as a device 
in a linear system. The ideal transmission of the 
film, Ta , is modified by the response of the film and 
the result is given by 

Ta(x,y)* H(x,y) (15) 

where H(x, y) is the appropriately defined impulse 
response of the film and * denotes the convolution 
operation. 

The physical effect of the frequency transfer char­
acteristics of the film is most easily illustrated by 
considering film resolution as it affects Fraunhofer 
diffraction holograms. In this type of hologram the 
complex wave U is the Fourier transform or the 
Fraunhofer diffraction pattern of the object. Thus, 
a(x,y)e-//fI(x,y) = o [a(u,v)] where a(u,v) is the object 
which is to be stored as a hologram and later re­
constructed. The reconstruction, in this case, is 
performed by placing the photographic record in a 
collimated beam of coherent light and, with a lens, 
taking the Fourier transform of the -record. The 
result, the light amplitude distribution at the back 
focal plane of the lens, is given by 

R(u,v) = Ofra(x,y)* H(x,y») (16) 

Using (14) this can also be written as 

R(u, v) = cfJ {[ To - Kei[aX+I/I(x,y») 

- Ke-/[ax+I/I(x,y»)]* H(x,y») (17) 

where K = 2{jtk. 
Performing the Fourier transform operation we 

obtain 

R(u,v) = Too(u,v) -, Ka(u - a,v)H(u,v) 

- Ka( -u-a, -v)H(u, v) (18) 

The_ second and the third terms of this expression 
are usual images, displaced by ± a, from the lens 
axis, which one expects; however, the images are at­
tenuated by the modulation transfer function of the 
film. 

This situation is quite different from the usual 
effect of the film transfer function, which is to cause 
a loss of resolution through attenuation of the 
higher spatial frequency components. Here, the 
resolution is unaltered by the transfer function 
curve; instead, the image is attenuated by an 
amount proportional to its angular displacement 
from the reference beam, axis. This effect, of the 
film transfer function, is to cause a narrowing of 
the field over which the reconstruction can be 
viewed. 

Effects of Nonlinear Recording 

In order to increase the brightness of the recon­
struction it is desirable to make the amplitude k, of 
the reference beam about the same magnitude as 
the amplitude of the signal, a(x,y). However, if this 
is done, the recording is no longer linear. The effect 
of this nonlinear recording can be analyzed by us­
ing the characteristic function technique for han­
dling nonlinear circuits.6 Let the input to the non­
linearity be E 1 (x,y), the original exposure, E(x,y), 
with the bias removed. Then the output from the 
nonlinearity is some nonlinear function of this input 
given by -g(x,y). Then by expressing -g(x,y) as 
an inverse Fourier transform we have 

-g(x,y) = G[E1(x,y)] 

= _1 100 

G(w)eiIllE,(X'Y)dw (19) 
211"-00 

where G is the Fourier transform of the nonlinear­
ity, G, and E 1(x) = ta 2(x,y) + 2tka(x,y) cos [ax + 
¢(x)]. After substituting E1 in Eq. (19) we have 

..-g(x,y) = 
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Expanding part of the expopential term using the 
Jacobi-Anger formula 7 we have 

'" 
-g(x,y) = L Hj[a(x,y)]cosj[ax + ~(x,y)] (21) 

j=O 

where 

Hj[a(x,y)] = 2E~ (i)j [",'" G(w)ei[/a"j"'Jj [2tkaw]dw 

(22) 

and where Jj is the Bessel function and EO = 1, E j = 

2 (j = 1,2, ... ). The resulting transmission of the 
record is 

T.(x,Y) = To - {Ho[a(x,Yl] 

+ t; H j [a(x,y)] cosj [ax + 4>(X,Y)]} (23) 

Some general observations can be made about the 
recording process from Eqs. (13) and (23). For j = 
1, we have preserved the phase of the original signal 
while distorting the amplitude. If the spatial carrier 
frequency is large compared' with the spatial band­
width of the signal, the various terms in the series 
(23) will not contain overlapping spatial frequencies 
even though the amplitude distortion tends to widen 
the bandwidth of each term. In cases where a(x,y) 
is a slowly varying function or a constant, most of 
the information is contained in the phase part and 
the nonlinearity is of no importance. 

As an example, consider the case where the ob­
ject consists of many randomly distributed points 
of amplitude am and with random phase Om. For 
simplicity, we take these points along a line parallel 
to the hologram so that we can reduce the problem 
to one-dimensional notation. The total amplitude, 
due to the points at the hologram plane is 

a(x)e-i~(X) = L amei[A(x-~m)2+l/mj (24) 
m 

Here we have approximated the phase of each point 
at the hologram plane by a quadratic phase term. 
Then 

a(x) = [L a~ + 2:E a",a.cos [A (x - 13m)' 

. _ mA (x _ 13.~;· + Om _ 0.]] 1/' (25) 

where m = 1,2, ... , N - 1 and n = (m + 1), ... , N 
in the second sum. We can also write 

L am sin [A (x - f3m)2 + Om] 
m 

~(x) = tan- 1
---------- (26) 
L amcos[A (x - f3m)2 + Om] 

m 

The intensity at the hologram using a plane ref­
erence wave, keiaX, is given by 

I(x) = k 2 + a2(x) + 2ka(x)cos[ax + ~(x)] (27) 

where 

cos [ax + ~(x) 1 

L ·amsin(ax + [A (x - f3m)2 + Om]) 
m 

(28) 
a(x) 

Suppose _we take for the Ta -E curve of the film 
a hard-limiter.fhis is an extreme case since film is 
never this nonlinear; however, this nonlinearity can 
be handled simply and it illustrates the eifeets.* For 

a hard-limiter!ff '(w) = ~L where L deJfines the 
IW 

transmission limits of the film. Then substituting -- . . 
for G (w) In (22) we have for H j 

E L 100 ei[/a"j", 
Hj[a(x)] = _l_ (i)l-l. -- Jl [2tkac.c)]dw{29) 

1r _00 w 

If we expand the integrand using a power-·series ex­
pansion we have for Ifj 

EL ~ (;)I'+l-I[ta2]1£ 
Hj[a(x)] = _J_ ~ 

1r Jl.=o p.! 

. I:,',wl'-iJl[2tkaw] dw (30) 

We assume that ta 2 is small enough when com­
pared to 2tka so that only the first two terms of the 
power-series expansion need be used. We also as­
sume that the carrier frequency, a, is sufficiently 
high that the coefficients Hl , for j = 0 and j :> 1, 
can be dropped since the spatial frequencies will not 
overlap with the terms HI. Then the coefficient of 
interest HI (that coefficient associated with the: re­
constructed images) is 

Hda(x) 
2L 

(31) 

Then, the part of the recording needed for re(;on­
structing the points is 

2L 
T~(x) = - cos [ax + ~(x)] (32) 

1r 

* Strictly speaking the hard-limiter or any other odd sym­
metric limiter cannot be a true model for the film since film 
does not have odd symmetry about the bias point. However, 
the even contributions from the film nonlinearity are usually 
much smaller than the odd ones. Other models which can be 
used are the error function limiter (see A. Kozma, "Photo­
graphic Recording of Spatially Modulated Coherent Light," 
J. Opt. Soc. Am. (in press) or a 11th law device 6 ). 
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or, using (25) and (28) we can write 

2L 
I: am sin (ax + [A (x - f3m)2 + Om]) 

m 
T~(x) = (33) 

II: a~ + 2 I: [amancos [A (x - f3m)2 - A (x - f3n)2 + Om - Onll] 1/2 
m m,n 

Since sin a = -cos(a + 7r/2) we see that the 
numerator of Eq. (33) is the correct transmission 
function needed to accurately reconstruct the 
points. If the amplitudes of the points are all of 
about the same magnitude (the object is of mod­
erate dynamic range), then the first sum of the de­
nominator is significantly larger than the double 
sum. To see why this is true we can write the de­
nominator of (33) as 

The second term in the brackets is a large sum of 
sinusoids with small amplitude and random phase. 
In the limit as the number of points considered be­
come large this term will go as the square root of 

2am an h' . 
--2- w lch IS« 1. In this case, the denominator 
'1; am 

reduces to approximately a constant and the object 
points are reconstructed without distortion. 

If one of the points, say aI, in the object is very 
much greater than the other points combined then 
this is not the case. In this case the denominator 
can be expanded as 

A straightforward but tedious calculation shows 
that, in this case, the weaker object points will be 
suppressed relative to the point with amplitude a 1 

and that false points will appear'in the reconstructed 
image. 

OTHER FORMS OF HOLOGRAPHY 

The holographic process, ever since its invention 
by Gabor, has been beset with the problem of elim­
inating the twin image that arises because of incom­
plete recording of the phase relations in the wave 
fi~ld. The off-axis reference or spatial carrier 
method has proved an effective solution to the prob­
lem. With this method now convincingly demon­
strated,. we turn our attention to alternative meth-

ods. There are indeed various other possible 
approaches, several of which we will proceed to 
describe. All the ones described here involve lens 
systems and most involve various forms of spatial 
filtering. 

The twin image term arises from the attempt to 
record a complex function using a phase-discard-

ing method. The traditional objects used in 
holography have generally been transparencies, 
which normally are real functions; however, the 
Fresnel diffraction patterns are complex. The gen­
eration of a complex function from a real one is 
explained by considering that the space between the 
object and hologram planes treats the signal as an 
all-pass dispersive filter; the phase relations in the 
signal are thereby altered. 

Accordingly, we might consider producing holo-

(34) 

grams through a process having a real impulse re­
sponse, which would therefore retain the real nature 
of the original signal. Figure 4 shows such a holo­
gram-producing system. The signal (a transpar­
ency) is introduced at PI, and is imaged at PJ • A 
spatial filter having the property F(w) = F*( -w) 

~ 0 ~ 0 ~ 
Figure 4. Optical system for generalized holograms. 
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is placed at P 2; this ensures a real signal at P 3 . 

The signal is thus recorded with completeness with­
out the need for a carrier-frequency reference beam 
or other phase-preserving technique. We record 
linearly in amplitude, producing 

Uo + U = Uo + s* f (35) 

where f is the impulse response of the spatial filter 
F, and s is the signal transparency, which is con­
verted into the function U =, s* f. 

In the reconstruction process, we image the holo­
gram signal through a second spatial filter with 
impulse response g(x), or transfer function G(w). 
We require that, to within a ~onstant, 

SFG = S (36) 

or 

F(w)G(w) = 1 (37) 

For convenience, we can let F and G be pure phase 
filters, 

thus we require 

or 

F(w) = e i4J ,(IIII) 

G(w) = e;4J·(IIII) 

(38) 

(39) 

(40) 

(41) 

It is often convenient to use the same filter both 
for making the hologram and reconstructing it. 
Two cases arise: The signal may be passed through 
the filter in the same manner in both cases, or the 
signal (or the filter) may be reversed. In the former 
case, we require for reconstruction that 

I FI 2 = (42) 

from which we obtain 

(43) 

where E(W) is a function that assumes the value 0 or 
1 and satisfies the condition E( - w) = - E(W). 

Alternatively, if the reconstruction is to be made 
with the filter of the signal reversed, the reconstruc­
tion condition becomes 

F(w)F(-w) = 1 (44) 

or sincef(w) = F*( -w), we have 

F(w)F*(w) = I F 12 = 1 (45) 

from which we derive 

F(w) = e i4J (IIII) (46) 

with 

cjJ(-w) = -cjJ(w) (47) 

Thus, if we want a filter that produces a re~al output 
when the input is real, and if we want the: function 
1/ F to be the filter reverse F( -w), and if the filter 
is to be purely phase, then we require the phase fac­
tor to be antisymmetric, cjJ( -w) = cjJ(w). An ex­
ample of this case is a lens, one half of which is con­
cave and the other convex, as shown in Fig. 5. To a 

I I 
Figure 5. The antisymmetricallens used in an optictll system for 

generalized holograms. 

first-order approximation, we have F(w) = e IK",2 for 
w > 0, and F(w) = e _IK1III2 for w > O. Thus we may 
write 

(48) 

Clearly, the fabrication of such a lens is not prac­
ticable, since both halves must be matched to within 
a fraction of a fringe. One might consider using a 
symmetrical Fresnel zone plate; it obviously satisfies 
the condition F (w) = F * ( - w). U nfortunatehy, it 
fails to satisfy the requirement I F I = constant. 
There is a feasible solution, however. '''ith a car­
rier-frequency method used in making holograms, 
we may substitute for the required function e tJ( 1l1li1 '" 

its real function equivalent 1 + cos (aw + K I Ull I w); 
the first-order diffracted wave of this func:tion, writ­
ten on a transparency, yields the desired filter func­
tion. A straightforward analysis shows that the re­
quired function can be produced, for a cylindrical 
Fresnel zone plate (focal power in one-dimension 
only) by removing a portion from the center of the 
zone plate and joining the two outer portions. 

Another method of producing a rea.l function 
diffraction pattern involves the use of two identical 
objects, positioned so that their summation pro­
duces a diffraction pattern with constant phase (Le., 
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the diffraction pattern is real). A well-known 
method of accomplishing this is to use a lens, which 
takes the Fourier transform of the object. By mak­
ing the signal symmetrical, its Fourier transform 
will be real. Placing a strong point source on axis 
in the object plane then causes the Fourier trans­
form to be positive as well, and thus recordable 
without the loss of phase. This technique is similar 
to methods used in crystal analyses by X-ray dif~ 
fraction. A positive real Fresnel diffraction pattern 
can be generated by displacing the object trans­
parencies in the axial dimension, but maintaining 
symmetry about the point source which supplies the 
bias. 
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APPLICA TION OF COHERENT OPTICAL TRANSDUCERS TO OPTICAL 
REAL-TIME INFORMATION PROCESSING* 

Dean B. Anderson 
Autonetics, A Division of North American Aviation, Inc. 

Anaheim, Ca-'ifornia 

INTRODUCTION 

Interest in optical information processing stems 
from the never-ending effort to increase data han­
dling capacity and to improve the interface with 
human senses. The manipulation of two-dimen­
sional data in an image format and processing in a 
parallel organized integral transform distinguishes 
the optical analog computer from its counterpart­
the electronic digital computer processing one­
dimensional data in a sequential manner.' The 
optical analog computer is admirably suited to per­
forming linear operations such as matrix products, 
Fourier transform integration, and related correla­
tions and convolutions. The photographic plate is 
usually employed as the input, memory, control 
function, and output to demonstrate optical infor­
mation processing concepts. 

The high' signal sensitivity, large data storage, 
and wide spatial bandwidth are the attractive char­
acteristics of a photographic emulsion. However, 
the time required to develop the latent image to 
obtain access to data is both dismally slow and 
cumbersome in comparison to electronic means. 
The chemical amplification encumbrance has led to 
consideration of thermoplastic and ultrasonic delay 
line recording as an alternative with the attendant 
compromise of serial data input. If optical analog 
computers are to compete with the developing elec-

*Work supported in part by the Office of Naval Research 
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tronic art, it is essential that the access time to 
current data be reducetl to a small fraction of a sec­
ond without compromise of data capacity. Further­
more, as real-time optical processing is achieved, a 
requirement for an optical adaptive capability will 
also arise. 

Optical information processing systems require 
the functions of amplification, modulation, and de­
tection to be performed throughout the signal spa­
tial field. These functions can be effectively syn­
thesized by an array of coherent optical transducers 
extending across the signal spatial field provided 
that the spacing between the individual transducers 
and their size are comparable to the radiation wave­
length. A quasi-microwave approach to coherent 
infrared transducers and their· arrays using micro­
photolithographic techniques is delineated. 

OPTICAL OPERATIONS 

The application of communication theory to phy­
sical optics has provided the foundations of optical 
information processing.2,3 The basic image trans­
formation operation is illustrated in Fig. 1. The 
spatial signal is usually introduced at the object 
plane by coherent plane wave illumination of a 
photographic transparency. The resulting diffrac­
tion pattern in the Fraunhofer region is the Fourier 
transform of the spatial signal. The use of a lens, 
(focal length F) permits the scaling of the Fraun-
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Figure I. Basic image transformation operation. 

hofer diffraction region to a more convenient loca­
tion at the focus of the lens. The Fourier transform 
of the spatial signal is formed in the lens image 
plane as a spatial frequency spectrum. For some 
applications, this spectral analysis is the desired 
output. 

If various shaped aperture stops or blocks are 
inserted into the frequency plane, it follows that the 
output signal distribution from a second transform 
lens system will be altered by the filter impulse re­
sponse. In fact, a lens acts as a low-pass filter. 
Matched filter enhancement of the signal-to-noise 
ratio can be demonstrated by inserting the complex 
conjugate of the signal transform into the frequency 
plane. The realization of a' complex-valued spatial 
function in a photographic transparency is ex­
tremely difficult due to the required phase response. 

An interferometric approach has been introduced 
to record complex functions on photographic 
plates.4

•5 The addition of a reference wavefront 
as a carrier to the spatial signal produces in a photo­
graphic plate one component resembling a diffrac­
tion grating. The grating frequency is proportional 

to the angular separation between signal and 
reference beams. An interferometric recorded spa­
tial filter of the symbol t is shown in Fig. 2. 

The operations of convolution and correlation 
can be realized by further compounding the system 
with additional image transformations. The results 

Figure 2. Interferometric spatial filter. 
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from use of the spatial filter, Fig. 2, for pattern 
recognition is shown in Fig. 3. The diffraction grat­
ing in the spatial filter has provided a convenient 
means to separate, by orders, the various compo­
nents of the matched filter process. Using the sym­
bol t as the input, three components are observed 
in the output: 1) the input convolved with the filter 
impulse response, 2) a crude image reconstruction, 
and 3) the input cross-correlation with the filter 
conjugate impulse response-indicative of recog­
nition. 

Gabor's6 holography has been rekindled anew 
with introduction of interoferometric methods be­
cause of the vivid three-dimension reconstruction of 
the scene with parallax.7 A hologram is a spatial 
filter for a particular scene when coupled with the 
transform in a human eye. The hologram, when 
illuminated by a delta-function distribution (point 
source), which has a uniform spectrum, allows pas­
sage of only those spatial frequencies which will 
form the reconstructed wavefront and thus the de­
sired image. For optical pattern recognition, the 
holography process is inverted so that the unknown 
object serving as a source illuminates a spatial filter 
producing a single point image (correlation point). 
Figure 3 also shows the symbol reconstruction using 
the spatia] filter in Fig. 2 as a hologram. Both the 
real and virtual images of the symbol are apparent. 

Figure 3. Spatial filter operations. 

Current optical pattern recognition techniques re­
quire a rigorous matching of the spatial filter and 
the input. Factors such as position, scale factor, 
orientation aspect, and inversion severely com­
promise the recognition fidelity. Some problems 
can be solved by restricting the list of symbols to a 
particular style. 

Consider the problems of recognition and track­
ing of hurricanes in cloud patterns recorded by 
satellites. Pattern characteristics peculiar to the 
hurricane spiral and invariant with observation con­
ditions are obviously obscured by noise. Therefore, 
during the learning phase it will be necessary to 
assemble a large catalog of spatial filters from suc­
cessive cross-correlations of known hurricane spec­
tra. From the catalog of spatial filters, a charac­
teristic set are selected and the decision criteria 
established. The correlation of unknown cloud 
patterns with the stored filters provides a basis of 
comparison in the recognition process. Of the 
utmost importance is the optimization of the recog­
nition process by including an adaptive feature; that 
is, a measurement of the correlation point amplitude 
ratio with respect to the side lobe skirt level and 
distribution to alter the filters within the classifica­
tion set. This means that techniques must be devel­
oped to alter the spatial filters dynamically so that 
they can change their functional properties with 
time in accordance with new data. 

SPATIAL MODULATOR 

The requirements of a spatial modulator to dy-
, namically implement optical spatial filters are briefly 
outlined. A spatial modulator is schematically 
illustrated as an array in Fig. 4. The functions of 
amplification, modulation, and detection must be 
performed throughout the aperture in a linear 
fashion with respect to the control signal, while the 
quantized elements of the array must operate inde­
pendently without crosstalk. A spatial modulator 
may operate in either a transmission or reflection 
mode and may alter either the amplitude or phase 
characteristic. 

Factors which influence the quantization of the 
spatial modulator into an array are available from 
antenna theory. Some of these are: 

1. The half period factor (T) of the highest 
spatial frequency component must be 
greater than the array period which 
must be greater than one-half the wave­
length. (T12 > S > A/2) 
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Figure 4. Spatial modulator. 

2. The array factor giving rise to a grating 
10 be period must exceed the angular 
diameter of the lens :(see Fig. 1) for an 
unambiguous operation. (Xis ~ DI F) 

3. The beamwidth of a single element 
must exceed the angular diameter of the 
lens to be included .within the integra­
tion" (2Xld ~ DI F) 

4. Random phase and amplitude errors 
should be minimized to preserve the dy­
namic range in the optical system. 

A wide variety of bulk interaction phenomena 
exist to alter the optical properties of materials by 
application of electric and magnetic fields or by 
mechanical stress. Most of these interaction phe­
nomena are weak -even in high fields. It is also 
difficult to induce from the. outside the spatial per­
turbations. Therefore, a bulk spatial modulator 
without quantization and with a ·significant spatial 
bandwidth is impractical. However, heteroepitaxial 
semiconductor, ferroelectric and ferromagnetic8 ma­
terials imbedded with conductor arrays are a 
promising approach. 

Current integrated circuit technology provides an 
approach to quantize the array. Moss9 has analyzed 
various methods of modulating infrared radiation 
using semiconductor materials which will respond 
rapidly. A quasi-microwave approach using semi­
conductor diode junctions which may be assembled 
into arrays for modulation and amplification will 
be discussed in the following sections. The deple-

tion layer in diodes is conSIdered as an optical 
transmission line where its length is controlled by 
the applied voltage. Current integrated circuit te:ch­
no logy is now becoming interconnection-limi1ted. 
The interconnection limitation also prevails in an 
optical spatial modulator. However, t.here are 
several means to circumvent the problem. A variety 
of photoeffects occur in semiconductor material and 
junctions when the illumination radiation wave­
length is shorter than the band edge. Of particular 
interest here is the photovoltaic effect in a junctilon. 
The electron-hole pair created by absorption near 
the junction is separated by the interna!l fieldl at 
the junction and thus alters the optical properties 
of the depletion layer for radiation longer than the 
band edge. Through this process, it should be pos­
sible to control the optical spatial modulator diode 
array by illumination of the array with a second 
beam containing the spatial control signal. A simi­
lar control of a parametric amplifier array is also 
possible through pump excitation. The photo­
detector array art is currently well establilshed and 
need not be discussed. 

PASSIVE INFRARED WAVEGUIDE 

Implementation of an optical spatial transducer 
requires interconnection by a waveguide which 
preserves the state of polarization and mode! of 
propagation" Optical dielectric waveguidles of cir­
cular and planar cross section have been demon­
strated and reported in the literature.1

0-12 Control of 
a specific mode of propagation is best accomplished 
in transmission line with dimensions comparablle to 
the wavelength. The binding of the electromagnetic 
field to the dielectric structure depends upon the 
relative index of refraction of the transmission 
medium being greater than the surrounding en­
vironment. An active and a passive infrared wave­
guide structure is illustrated in Fig. 5. The rec­
tangular dielectric image line supported on a 
reflecting surface is ideally suited for coupling and 
integration with optically active devices such as 
semiconductor junctions.13 

As an example of dielectric image line waveguide, 
Fig. 6 shows a "rat race" hybrid junction fOlrmed 
photolithographically. The dielectric is thermally 
grown silicon dioxide on a highly doped, poliished 
silicon substrate. The dielectric cross section is 
0.6 x 2.0 microns and thus is useful in the near 
infrared region. 

The results of an experiment demonstrating the 
propagation of a single, lowest-order mode through 
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b-DEPLE'l'ION LA YER 

DIELECTRIC IMAGE LINE DEPLETION LA YERW A VEG UIDE 

Figure 5. Passive and active infrared waveguide structures. 

a dielectric image line waveguide are shown in 
Fig. 7. A cleaved cross section of dielectric image 
line (0.3 x 1.2 micron cross section) and substrate 
was used for the photomicrographs. A Lloyd's 
mirror l4 demonstration of interference fringes from 
the image line waveguide substrate is shown in the 
upper figure. The black region is the silicon sub­
strate. The visibility of the fringes immediately 
adjacent to the substrate surface disappears because 
the light source is polychromatic and temporally 

Figure 6. Dielectric image line waveguide- "rat race" 
hybrid junction. 

incoherent. The presence of the waveguide is clearly 
apparent. The discontinuity in the fringes immedi­
ately adjacent to the substrate is due to the reflection 
from the outer surface of the dielectric image line 
waveguide. Note the subdued interferenc~ normal 
to the substrate resembling a Fraunhofer pattern. 
This is due to reflection from the dielectric image 
line waveguide at greater depth. The Lloyd's mirror 
illumination has been removed and repla~ed by a 
laser beam focus"ed on the dielectric image wave­
guide in the lower figure. The transmission of a 
single mode through the waveguide is apparent. The 
circular radiation distribution is due to the dipolar 
field and the offset is due to the image phenomena. 
The substrate surface in the lower figure is indi­
cated by some scattering at the focused input 
coupling. 

ACTIVE INFRARED WAVEGUIDE 

The depletion layer in a reverse-biased semicon­
ductor junction diode will also guide optical 
waves. 15

-
19 The free carriers in both nand p give 

rise to a solid state plasma having a slightly reduced 
index of refraction which confines light propagation 
in the depletion layer. In the back-biased planar 
diode, the thickness of the depletion layer sand­
wiched between nand p regions is controlled by the 
applied bias field and may be comparable to infra­
red wavelengths. A depletion layer waveguide is a 
useful active device because it provides an electronic 
means to control an optical wave phase velocity. 
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Figure 7. Results of Lloyd's mirror experiment showing 
transmission through dielectric image line wave­
guide. 

Obviously, a depletion layer used as a dielectric 
waveguide or resonator must be used in the spectral 
region where it is transparent. Most semiconduc­
tors are opaque in the visible region but are trans­
parent in an adjacent infrared region. The intrinsic 
absorption is due to excitation of electrons across 

the forbidden energy gap. Lattice absorption and 
Reststrahlen bands exist in the far infrared region. 
The intervening region is comparatively transparent 
except for impurity and free carrier absorption. The 
differential index of refraction between the various 
layers in a depletion layer is comparativdy small 
(10-2 to 10-4

) so that a wave field is weaklly bound 
to the junction. Careful attention must be given to 
the selection of doping elements, their concentra­
tion and gradient, and the host lattice defects be­
cause fields surrounding the junction will cause ab­
sorption, diffraction, and scattering losses. 

The work of Nelson and Reinhartl° is illustrated 
in Fig. 8 which shows the transmission through a 
GaP diode junction. Although their work exploited 
the linear electro-optic effect for modulation, this 
photograph vividly illustrates the changing dimen­
sions of the depletion layer waveguide as a function 
of the applied bias field. 

ELECTRICAL 

GALLIUM PHOSPHIDE 
DIODE 

Figure 8. Transmission through GaP diode junction deple-
tion layer waveguide. (By permission of Bell 
Telephone Laboratories. See Ref. 20.) 

There are various other mechanisms to control 
the phase velocity in a depletion layer waveguide 
besides that of geometry. One is the electro-optic 
effect as above which leads to birefringenice in the 
index of refraction. Another is the change of the 
index of refraction below the band edge of a semi­
conductor due to the dispersion associated with the 
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Franz-Keldysh effect. The Franz-Kelkysh effect is a 
shift of the band edge to a longer wavelength be­
cause of the application of an intense electric field. 
The various considerations which enter into the use 
of depletion layer waveguide as an active optical 
circuit element suggest a 111-V semiconductor mate­
rial and a wavelength just short of the band edge. 

A depletion layer boundary may also be used in 
the reflection mode as a movable mirror. A photo 
field effect transistor shown in the photomicrograph 
of Fig. 9 has been 4sed for a demonstration experi­
ment. An alloy gate contact and an etched channel 

Figure 9. Photo field effect transistor. 

were formed in the silicon slice between source and 
drain. The use of a preferential etch, the alloy 
junction technique, and oriented silicon has led to a 
high degree of parallelism between the etched chan­
nel surface and the depletion layer boundary. The 
pinch-off characteristic curve is indicative of the 
optical quality in the boundary planes and shows 
that the depletion layer can be driven into planar 
contact with the channel surface. Experiments 
show that the position of the reflected beam from 
the etched channel front surface and the depletion 
layer is controllable by the applied gate bias. 
Illumination of the channel also provided a control 
of the beam position. 

PARAMETRIC INTERACTION 

To provide optical amplification and a means to 
control an operation by an optical logic "field, the 

characteristics and feasibility of infrared parametric 
interactions are discussed. Parametric interactions 
involve the mixing of one or more signal frequencies 
with an intense source called a "pump" producing 
sum and difference combinations. The Manley and 
Rowe2l energy relations show that there are two 
basic amplification mechanisms distinguished by the 
manner that the signal and pump frequencies are 
allowed to combine. Further discussion will be 
restricted to the difference combinatioh which 
creates an effective negative absorption and results 
in a signal spectrum inversion. 

Parametric interactions depend upon a reactive 
nonlinear phenomena. The nonlinear capacity of a 
varactor diode is due to the change of the deple­
tion layer thickness. In the infrared region the 
carrier inertia prevents a similar response; however, 
the index of refraction of some materials have a 
nonlinear behavior in intense light. The polariza­
tion nonlinear susceptibility of 111-V semiconductor 
compounds is several orders of magnitude larger 
than the piezoelectric crystals which have been used 
for optical parametric amplification. 

Recently, positive gain has been realized in dif­
ference frequency parametric interactions by Wang 
and Racette22 using NH4H2P04 and by Giordmaine 
and MiHer23 using LiNb03. They used a Q-spoiled 
solid state laser to pump a nonlinear cyrstal under 
index matching to efficiently produce a second 
harmonic. After filtering and collimating the beam, 
the harmonic was applied as a pump to a second 
nonlinear crystal to obtain quasi-degenerate opera­
tion. Birefringence in the crystal was used to bal­
ance the index of refraction dispersion to obtain 
matched phase velocities in their traveling wave 
circuit. 

A quasi-microwave approach24 which differs sig­
nificantly from the above investigations using piezo­
electric crystals is currently under way. A planar 
section of depletion layer waveguide is used as a 
multimode resonator tuned to the signal idler and 
pump frequencies. The dimensions have been 
selected sufficiently small to prevent other undesir­
able resonances. The requirements for index match­
ing in a traveling wave structure are removed by 
the use of low-order modes within the resonator 
wherein the fields and geometry defining the bound­
ary conditions establish resonances which are alge­
braically related to the pump frequency. Within 
the constraints of known material technology, the 
available power and emission lines from continuous 
wave gas lasers, and for an acceptably high non­
linear susceptibility, gallium arsenide is preferred 
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for diode fabrication. The current state of micro­
photolithography extends the quasi-microwave ap­
proach into the one-micron region and thus matches 
with gallium arsenide. Signal coupling to the 
amplifier will be provided by image line dielectric 
waveguide. An optical circulator is desirable to 
separate the input and output ports and provide a 
degree of stability. The development of heteroepi­
taxial ferrite and the associated photolithography 
completes the requirements so that a circulator may 
be integrated with the optical parametric amplifier. 

CONCLUSION 

It is hoped that a future report will verify that the 
quasi-microwave approach to optical information 
processing is feasible by demonstration of opera­
tion. At this point in the development, interest may 
be kindled for the extension into adaptive image 
processing by an array where spatial logic is 
achieved optically. 
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INTRODUCTION 

The basic architecture of the IBM System/360 
makes it well suited to processing in a multipro­
gramming and multiprocessing environment. The 
Model 67 extends this basic architecture to provide 
the additional capabilities of an advanced time­
sharing system. 

The Model 67 incorporates .multiprogramming, 
multiprocessing, and multiaccess capabilities. Mul­
tiaccess allows several users at remote consoles to 
communicate directly with the system and to present 
a number of applications ranging from conversa­
tional compiling to desk calculator functions. M ul­
tiprogramming is defined as the ability to have 
several active programs reside in core simultan­
eously. As soon as one job is finishe ... d, or is held up 
by an I/O request, or has depleted its time allow­
ance, the next task can begin immediately. 

The dynamic relocation feature built into the 
hardware facilitates multiprogramming; peripheral 
operations will now be just like any other tasks in 
the memory. Even without the multiaccess capa­
bility, multiprogramming provides much more 
efficient utilization of the computer's resources than 
in a stacked job operation. For the first time, a 
central processing unit is a resource that can be 
allocated. With multiaccessing, where some of the 
jobs in core belong to remote terminals, the multi­
programming capability is further enhanced as this 
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enables the rapid switching between jobs, or "'time­
slicing. " 

The Model 67 enables each processor of a multi­
processor system to operate as a single processor 
with its own I/O subsystem, or, jointlY with other 
processors in a symmetric multiprocessing config­
uration. 

To achieve time-sharing and multiprogramming; 
certain modifications to the product line were made. 
It is the object of this paper to discuss a typical 
configuration of equipment and how it will be used. 
Certain areas where the programming systems relate 
to the hardware will also be discussed. 

CONFIGURATION 

Bus Structure 

A sample configuration is shown in Fig. 1. The 
most significant part of the equipment is the shared 
memories. Each memory module has four "tails," 
or buses, with one tail connected to each CPU and 
one to each channel controller. A system having 
two processors and two channel controllers has four 
buses. Each memory module of 262,144 bytes of 
750 nanosecond storage is independent and three 
memory accesses can occur simultaneously. Con­
flicts that occur among the several buses connected 
to each storage unit are resolved at the storage unit. 
This conflict resolution adds 150 nanoseconds to 
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Figure 1. Configuration of typical Model 67. 
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storage access time. Channel controller requests for 
storage cycles are given priority over processor re­
quests. No longer is the CPU tied to a particular 
memory in the classical configuration. Now, both 
channels may be loading two memories simultan­
eously at the maximum data rates, and there will be 
no interference with the CPU's if they operate from 
the third module. Likewise, a CPU and channel 
could associate with one module in the classical 
simplex method. Besides permitting higher data 
rates to and from core, and with less interference, 
the Module 67 frees the processors from the usual 
role of working on a single job until it is done. One 
CPU can work on a job in one core until it requires 
a routine from .the disk, for example. While the 
data transfer is being made, that CPU could process 
another job in another module. 

Common Routines 

With shared storage, both CPU's could access the 
same compiler and monitor and could utilize the 
same job queues. In order for more than one CPU 
to use the same copy of a routine, the routine must 
be in reenterable coding. That is, there are no ad­
dress modification or common storage locations 
that would be affected by a second program which 
happened to start the routine before the first ended 
it. In fact, one job, partly through a routine, might 
be interrupted to return after other jobs in the same 
CPU had passed through. Reentrancy, therefore, 
is a requirement of multiprogramming as well as 
multiprocessing. 

A parallel reenterable routine is one which can be 
executed simultaneously by more than one task. In 
Time-Sharing System/360 there is only one copy of 
the supervisor in core regardless of the number of 
CPU's attached. All of the supervisor is in reenter­
able coding; some of it parallel reenterable. 

In many cases, however, it is impossible or un­
desirable to have more than one task at a time in a 
routine; for example, one that sets or detects bits in 
a common table. These routines are consequently 
written in a serially reenterable fashion. 

To aid in this, a new instruction, Test and Set, is 
implemented. Its operation uses the left-most bit of 
the specified byte to set the condition code. Simul­
taneously, the byte is set to all ones before another 
access to the same storage is permitted. Test and Set 
allows a second processor to check whether the first 
has started a serially reenterable routine. In this 
way, the first processor job can finish with the rou­
tine before allowing its further use. Also, Test and 

Set is a means of breaking ties between two CPU's 
which become available for a new task at the same 
moment. 

Signaling 

For communications through common storage ele­
ments, a processor must be alerted when a message 
has been prepared for it by another processor. The 
extended direct-control feature and external inter­
rupt lines of the Model 67 perform this function. 

Associated with the direct-control instructions is 
an interface at which eight signals are made avail­
able. A signal from one processor is connected to 
one of the external interruption lines of another 
processor. By means of the Read Direct or Write 
Direct instructions, the program in one processor 
causes an external interruption in another processor. 

If a CPU recognizes a hardware error as indicated 
by a machine check interrupt, it alerts another CPU 
by the direct-control feature and causes a malfunc­
tion alert interrupt. The troubled CPU then goes 
into the wait state while the second begins the re­
covery procedure. 

Channel Controller 

It is difficult to break away from traditional 
thinking of a memory-CPU channel system config­
uration. With multiple tails on the memory and 
independent channels, the CPU's really behave as 
pumps, with one or more processing units working 
on many jobs located in multiple memories. The 
2846 Channel Controller is essentially the same bus 
control unit as in the CPU. It enables the 2860 
Selector and 2870 High Speed Multiplexor Channels 
to communicate directly with the memories without 
interfering with the CPU's bus control units. Chan­
nels are addressed by, and can return their interrup­
tions to, either CPU, providing a flexible and gen­
eralorganization. I/0 terminations, therefore, are 
not unique to a CPU, but may cause an interruption 
in whatever CPU, by masking, is conditioned to 
accept them. 

The 2870 High Speed Multiplexor has the ability 
to handle up to eight control units and 192 devices 
on the basic interface, which can operate in the mul­
tiplexor or burst modes. Up to four medium speed 
interfaces, which can address up to 16 devices, are 
available on the 2870. These selector subchannels 
only operate in the burst mode. 

The basic interface can handle an aggregate rate 
of 110k bytes per second with no selector subchan-
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Table 1. 2870 Data Rates in kbps * 
Basic 

Interface 

110 
88 
66 
44 
30 

1st 

180 
180 
180 
180 

Selector Subchannel 
2d 3d 

180 
180 
180 

180 
180 

* kbps = Thousand bytes per second. 

4th 

100 

nels attached. Lower data rates can be sustained 
with the subchannels as shown in Table 1. 

Dual Data Paths 

Dual data paths have been provided to enable the 
memories to reach any I/O device by at least two 
paths. Partly for reasons of reliability, the dual 
paths also provide flexibility in pathfinding in case 
one control unit is busy. All of the I/O control 
units have two tails, one to each I/O control ele­
ment, which are under program control. This al­
lows each channel controller to reach each I/O 
device, and via any control unit in the case of pooled 
devices. The 2973-2 Disk Switch, for example, al­
lows any two 2311 Disk Storage Units to operate 
simultaneously through the two 2841 Storage Con­
trol Units. Because of the' twin tails on the 2841s, 
each Channel Controller can have as many as two 
2311 disks operating through it simultaneously. 

Similarly, any four of the sixteen 90KC 2400 tape 
units may be operating with any combination of 
channels. The 2973 switch and two-tailed control 
units are unique to time-sharing configurations. 

Pathfinding 

With more than one possible logical route from 
memory to a device, a pathfinding routine is neces­
sary. The pathfinding routine will locate the first 
available logical route in which the channel and 
control unit are neither busy nor unavailable. In 
Fig. 1, for example, there fire eight possible paths 
for data to get to memory from a tape unit. 

The routine is serially reenterable. The supervisor 
enters the pathfinder by giv,ing it a symbolic device 
address. From a Symbolic, Address table, the low 
order bits of the actual I/0 address, called the de­
vice address, are immediately available. 

The Symbolic Address table points to a Device 
Group table where all possible device paths for a 
group consisting of similar devices in a common 
pool are given. 

The pathfinding routine, knowing from tlhe device 
path which channel and control unit are: needed, 
'checks the corresponding Channel and Control Unit 
tables for their availability. 

In the System/360, a selector channel is busy if 
any device is operational on it. On the multiplexor 
channel, however, the data rates of each operational 
subchannel must be examined so that the total mul­
tiplexing data capability will not be exceedl:!d by the 
addition of another device. Consequently, the mul­
tiplexor channel is not busy until the total "weights" 
of all devices attached exceeds 110kc. The 
"weights" of devices connected to the basic inter­
face are their data rates and come from the Device 
Group table; the weights for any 90kc magnetic 
tapes on the selector subchannels are 1l5kc; for 
180kc tapes the weights are 22kc. 

If the channel or the control unit is busy, the path 
is abandoned. If all the possible paths are busy, the 
pathfinding routine returns with the appropriate 
"busy" or "not available" bit set. A reve:rse path­
finding mechanism also exists to clear the busy bits 
for the device, control unit and channel when an 
operation is completed. The tables are created at 
system generation time and can be modific!d by the 
partitioning routines. 

Error Recovery Procedures 

When a machine error is determined by CPU 
hardware, a machine check interrupt occurs in the 
CPU and this same signal is broadcast to all other 
CPU's in the system, which receive such indications 
as malfunction (external) interrupts. 

The original CPU will be put in wait state with in­
terrupts masked, thus preventing it from disrupting 
the total system. One of the other CPU's in the 
system accepts the associated malfunction alert;, the 
others going into the wait state. It is the function of 
the active CPU via the "recovery nucleus'" to iden­
tify the failing unit in order to remove it from the 
active system. Each CPU has a recovery nucleus in 
a different memory module. 

When a less disastrous fault occurs in the system, 
such as failure to read a record correctly from a 
storage device, the time-sharing monitor will invoke 
a standard retry routine. If this retry routine fails to 
read the record correctly, it will report this informa­
tion to the time-sharing supervisor. The supervisor 
will log this information and will then call for a sys­
tem error analysis program, which will dec:ide which 
units are to be eliminated from the resource table 
in the supervisor. 
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The decision as to which unit or units to drop 
from the resource table is made by examining the 
recorded error environment information, then de­
termining the partitioning which would· have the 
least impact on system performance. For example, 
when a .fault occurs in a unit which has two data 
paths, the system error analysis program will ana­
lyze the fault to determine if one of the data paths 
or the unit itself should be eliminated from the re­
source table. The program will not eliminate an 
operational unit from a resource table if there is at 
least one data path to that unit. 

Messages will be sent to the operator when a data 
path is eliminated from the resource table, but no 
maintenance action will be taken until either all data 
paths to the unit are out or until the customer en­
gineer and operator decide that maintenance is re­
quired. At this time, the customer engineer will call 
for the diagnostic monitor and begin the diagnostic 
procedures. If a CPU or memory element fails, a 
warning message is broadcast to all active terminal 
users who might be affected. 

Remote Access 

The Time-Sharing System will support the IBM 
1052, 2741 and 2260 Display as remote terminal 
devices. The terminals may be connected locally as 
operator consoles, or remotely as user terminals. 
The 2702 Transmission Control. and 2848 Display 
Control accept data, serially by bit, and the transfer 
to memory is made one byte at a time. The 2701 
Data Adapter Unit is the general interface enabling 
remote on-line attachment of IBM Model 20s, 
Model 30s, other computers, data sources, and plot­
ters. The interface can be a serial-by-bit communi­
cations adapter or the parallel data adapter. The 
latter is an interface which can accept data up to 
1,200,000 bytes per second and up to 48 bits at a 
time. 

DYNAMIC RELOCATION 

M uitiprogramming 

While the typical scientific computing installation 
may have many large production programs in its 
work load, it will have many more programs which 
are small compared to the hardwa·re resources. The 
maximal claims made by such programs do not in­
clude all of the I/O units or all of the core storage. 
Moreover, these claims are indeed maximal in that 
they include space in the storage for instructions, 

intermediate results, and initial and final values 
which are highly dependent on the precise data set 
used in a particular execution of the program. The 
claims include channels and I/O units, the use of 
which is also highly dependent on the data set. 
Some recent measurements indicate that for many 
programs a storage area two or three times as large 
as necessary is claimed. 

Multiprogramming is a processing mode in which 
a control program attempts to honor the hardware 
claims of several distinct programs simultaneously. 
The object is to keep the CPU busy executing prob­
lem program instructions rather than allow it to re­
main idle during I/O operations which may arise in 
a problem program or in a control program which is 
removing one problem program from the machine 
and bringing in another. The goal is to increase 
throughput. 

A further refinement in multiprogramming comes 
. from the observation that many machine runs con­
sist of a compilation and an execution or an as­
sembly and an execution. In a multiprogramming 
system, one would therefore discover many copies 
of the compiler, assembler, I/O routines, and pro­
grams from a math library existing in core storage 
at the same time. Consequently, the notion of 
common, reenterable programs arise. 

A crude picture of time-sharing shows a control 
program which, during these moments of idleness 
with respect to one console, outputs all of the op­
tional storage, inputs a previously outputted store 
image for a second console, and then permits the 
execution of a transaction for that console. There 
is a cost in this operating mode in terms of time 
used for the exchange of core images in order to 
respond to console requests. In fact, the larger and 
more complex the program, the more useful on-line 
debugging can be, and the greater the cost of ex­
changing problem programs. This cost is an espe­
cially painful burden since the debugging process 
is often such that no more information is required 
for a console transaction for a large program than 
would be required for debugging a small program. 

What is needed in view of the application is a 
system technique which encourages the transaction 
aspect of time-sharing for debugging purposes, a 
technique for elimination of redundant copies of 
popular functions, and a facility for dynamic core 
allocation. An ability on the part of the control 
program to put a problem program in ready status 
without honoring the complete storage claims and 
without the necessity of altering the addressing 
structure of the program is of great value. Properly 
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arranged, it permits effective multiprogramming 
and multiprocessing. 

This ability can be obtained through the notion of 
a logical store and the high-speed monitoring of 
addresses used by problem programs, and the con­
version of these logical addresses into other physical 
addresses. Virtual storage is defined as the entire 
storage which can be reached by the logical address­
ing scheme. Thus, with 24 bits, there are 224

, or 
16,777,216 byte locations in virtual memory. With 
the 32-bit relocation option, 232 or 4,294,967,296 
bytes are addressable in virtual memory. However, 
in either case, the physical storage in the sample 
configuration would be only 786,432 bytes. The 
dynamic relocation scheme described here is the 
method by which the virtual storage is mapped into 
the physical storage. 

Dynamic relocation is achieved by treating the 
addresses supplied by the program as logical ad­
dresses, or relative addresses. A logical address is 
identical to a physical address when the relocation 
feature is not operative. When relocation is em­
ployed, the logical address is that address known by 
the program. The physical address is the address 
(after any relocation) presented to memory for a 
reference. The logical addresses are translated by 
means of a relocation table to physical addresses 
when storage is addressed. 

The relocation function provides the ability to 
interrupt a program and record it on external media 
such as a file or drum and at a later time to return 
the program to main storage at different storage 
locations without disturbing the execution of the 
pi ogram except for the time element involved. The 
locations at which a program and its data are stored 
are assigned by the relocation table and occur in 
4096-byte blocks. These blocks need not be con­
tiguous even though they may be addressed by a 
contiguous set of logical addresses. The physical 
fragmentation of programs is thus not apparent to 
the programmer. 

Relocation Operation 

Space-sharing is facilitated by breaking user pro­
grams into segments and sectioning these segments 
into pages. By breaking programs up into pages, 
physical memory may be allocated in page incre­
ments. Only those active pages are brought into 
physical core storage. 

The Model 67 CPU may operate in either the re­
location or nonrelocation mode. With the 32-bit 
option, the CPU may also run in either the 24- or 

32-bit mode. The modes are specified by bilts 4 and 
5 of the extended mode Program Status Word 
(XPSW) as follows: 

Bit 4 

o 
o 

Bit 5 
o 
I 
1 
o 

Modes 

No relocation, 24-bit address 
Relocation, 24-bit address 
Relocation, 32-bit address 
Data exception 

The function of the Program Status Word is lex­
plained below (under "Other Features"'). All 
normal instructions are relocated when bit 5 is set. 
Addresses of control words and data in I/0 opera­
tions, however, are not relocated. Addresses glen­
erated by the CPU or channels for inte:rruptilon 
purposes, such, as timer, CSW, and PSW addresses, 
are not relocated. The standard, 24-bit rdocatilon 
scheme is described in this section. 

All logical addresses are formed using full 32-·bit 
arithmetic. The sum of the 32-bit base register 
specified in an instru.,ction as R 1, the 32-bit index 
register specified as XI, and the 12-bit byte addn!ss, 
or displacement, less the 8 high order bits forms 
the 24-bit logical address. The logical address is 
broken into three sections of 4, 8, and 12 bits spc!ci­
fying the "segment" number, the "page" number, 
and the byte, or "line" number, respectively. Figure 
2 shows this breakdown. 

10 
SEGMENT PAGE 
NUMBER NUMBER 

11112 

BYTE 
NUMBER 

Figure 2. Logical address. 

There are 4096 bytes per page, where a page: of 
programs resides in a block of core storage. With 8 
bits for the page number, there are 256 possible 
pages per segment. Each segment (1 ,048,576-byte 
address space) can contain a program. It can con­
tain a data set. It can also be a million-byte area of 
working space. If the segment number is ignored, 
each such program, data set, or space begins at 
address zero. In the 24-bit scheme, several routines 
will be packed in the same segment. 

The relocation scheme operates essentially as fol­
lows. Each task in the system requires for its op<!ra­
tion one segment table and a page table for each 
segment used. These tables are developed by the 
monitor as the task is created and as new segment 
and page requirements are made by the task. As re-
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quired pages are fetched into physical core, the 
monitor enters in the page table the physical loca­
tion of the logical page. During program execution, 
the hardware automatically does a table look-up on 
each address as it is referenced by the user and the 
physical address is chosen for each logical address 
reference. If the user references a location in a page 
that is not in physical core, an automatic interrupt 
occurs to the monitor, which then sets up a page 
turning routine to fetch the missing page. The 
monitor then gives the CPU to the next user in the 
queue. The waiting program is held in the wait 
status until its required page has been fetched and 
assigned somewhere in physical core. It is then re­
turned to the queue of active users and takes its 
turn vying for CPU time. All of this is transparent 
to the user. To him, the memory is as many as 16 
segments of as many as 1,048,576 bytes each. 

Let us look at the relocation scheme in more de­
tail. There is a 32-bit Table Register, program 
addressable, shown in Fig. 3. Bits 0-7 of the Table 

10 

SEGMENT 
TABLE 
LENGTH 
NO. ENTRIES 
=(L+I)x 
16 

SEGMENT TABLE 
ORIGIN (BYTES) 

Figure 3. Table Register. 

00000 

Register specify the length of the segment table, and 
bits 8-31 specify its origin. The segment table must 
be located at an address which is a multiple of 64, 
and thus bits 26 to 31 of the Table Register must be 
zero. If any bits 26 to 31 are one, a specification 
exception occurs (program interruption with bit 
21 set). Bits 0-3 of the logical address are added 
to bits 26-29 of the Table Register. The resulting 
24-bit address (TRs-31 ) points to a unique 4-byte 
entry in the segment table. 

The number of entries in the segment table is 16 
times the number formed by the sum of the Table 
Register, bits 0-7, and one. Thus, the minimum 
length, with bits 0-7 zero, is 16 entries. These bits 
0-7, with 4 appended low order virtual bits of one, 
are compared with the segment number. If the seg­
ment number is greater, a relocation exception is 
recognized (program interruption with bit 16 set). 
Obviously, in the 24-bit relocation scheme, the 
logical address cannot specify more than 16 entries, 

LOGICAL ADDRESS r--------- - 0 
I ~~~---
I 
I 

10 b .... :--1 1111 
I 1 
1 1 
1-

L..IO ___ ~'--__ -r-__ --L~~~ TABLE REGISTER 
I 

SEGMENT I SEGMENT TABLE ORIGIN 
TABLE 1 1 
'LENGTH' I 

! . 
10 291 PHYSICAL ADDRESS OF 
L..-________ L.-J SEGMENT TABLE ENTRY 

00 

Figure 4. Segment table entry. 

the minimum size; a greater-than compare can never 
result; and this check is academic. 

Each 4-byte entry in the segment table is similar 
to the Table Register. Bits 8-31 specify the origin 
of a page table, while bits 0-7 give its length. Each 
page table is originated at an address which is a 
multiple of 16 so that bit 31 of the segment table 
entry must be zero. If bit 31 is one, a relocation 
exception is recognized. 

The page number, bits 4-11 of the logical address, 
is added to the page table origin, bits 23-30 of the 
segment table entry, to give the unique page table 
entry. Each entry consists of two bytes. As with 
the Table Register, a relocation exception occurs if 
the page number is greater than the page table 
length. The minimum page table has bits 0-7 zero, 
corresponding to one entry, which translates ad­
dresses in the range 0-4095. The maximum page 
table has 256 entries, one for each page in the seg­
ment. 

PAGE NUMBER 

LOGICAL ADDRESS 
I I 
I I 
I I 
I I 
I 1 
1 + 1 
1 1 

10 71 221 301 SEGMENT TABLE ENTRY 

PAGE : I 0 
TABLE I PAGE TABLE ORIGIN 
LENGTH I 

! 1 
I 
I 
1 

10 221 PHYSICAL ADDRESS Of 

0 PAGE TABLE ENTRY 

Figure 5. Page table entry. 
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o 
PAG~ ADDRESS i AVAIL­

I ABILITY 
I 
I 
I 
I 

PAGE TABLE ENTRY 

12 23 LOGICAL ADDRESS 
--~-----r----~ 

BYTE ADDRESS 

_______ ~ _____ ...;,2....J3 PHYSICAL ADDRESS 

Figure 6. Physical address. 

The 2-byte page table entry consists of 12 bits 
specifying the high order 12 bits of the physical 
address. The low order 12 bits of the address are 
the same as the corresponding part of the logical 
address. There is no relocation within the page, 
consequently. Bit 12 of the page table entry is the 
availability bit. When zero, the respective program 
page is in core and the entry may be used for reloca­
tion. When a one, the address may not be relocated 
because the desired page is not in core, and must be 
brought in under monitor control. Therefore, a 
protection exception (bit 19) is recognized and the 
instruction is sl,lppressed. 

If the instruction uses variable length fields, a 
look-ahead operation is performed first to see if the 
storage page boundary will be crossed and, if so, 
whether the new page is available. If the next page 
is used but unavailable, execution is suppressed. 

Bits 13 to 15 of the page table entry are undefined 
and must be zero. When a relocation exception 
occurs, no storage reference. is made. The logical 
address that would have been translated is recorded 

LOGICAL ADDRESS 10 314 "112 231 

I 
+ 

~USED 
LOGICAL PHYSICAL -VAu'DITY 

PAGE BLOCK 
NUMBER NUMBER 

ASSOCIATIVE 
0 " 12 23 26 29 MEMORY 

I • I , 
PHYSICAL ADDRESS 10 "1 12 231 

Figure 7. Associative compare. 

in the Relocation Exception Address Register. It 
may be inspected there by the new Store Multiple 
Control instruction. 

Implementation 

Although the dynamic relocation is pt::rformed 
entirely by hardware, one can see that two memory 
accesses would be required for each rellocation. 
Each operand would require three memory accesses 
instead of one thereby greatly degrading per­
formance. Therefore, the implementation of 1the 
Model 67 dynamic relocation has been modified. 

A high-speed associative memory in locall store: is 
located in each IBM 2067 CPU. It contains 8 
registers, each 30 bits wide. When an address is to 
be translated, the logical· segment and page ad­
dresses are compared to bits 0-11 of each entry in 
the associative memory, in parallel. If there is an 
equality, bits 12-23 become directly the page ad­
dress; the physical address and the relocation is 
completed without memory access. The use of the 
associative memory adds only 150 nanoseconds to 
the cycle time for each relocation. 

Bit 25 in each association memory entry tdls 
whether that entry refers to a page that is in core. 
If a zero, the corresponding page is not in core, 
the entry is invalid, and it is not used in comparison. 

All bits in position 25 are reset upon a change in 
the Table Register since all the entries would be 
invalid. Bit 24 is set to one as each entry is used 
in relocation. When that bit vector is all ones, they 
are reset and the cycle repeats itself. When no com­
parison is found, the relocation hardware must look 
through the segment and page tables to find 1the 
physical page address. The new page table entry is 
then put into the associative memory. The new 
entry will leave bit 24 set to one. It will displace 
in the associative memory the next entry from the 
last one used whose "use" bit (24) is zero. By this 
algorithm, the least used entries are replaced and the 
ass?ciative memory holds the most frequently ref­
erenced page numbers to avoid the table look-·up 
procedure. 

A ninth associative register is a relocated instruc­
tion counter which is updated along with the in­
struction address bits of the Program Statu.s Word. 
Therefore, there is both a logical and a relocated 
instruction counter. Upon a successful branch or 
crossing of a page boundary, the new logical address 
is relocated and the relocated instruction counter is 
updated by hardware. 

Figure 8 is an overall picture of how thl! reloca­
tion works. 
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Figure 8. Relocation address translation. 

An instruction Load Real Address has been 
added which inserts into a general register the 
dynamically translated address of the operand. This 
enables the supervisor to check the translation 
tables and find what a physical address is for a cor­
responding logical address. 

We now have a scheme by which we can use all 
16,777,216 bytes of virtual storage. Our logical 
addresses can cover the entire range from 0 to 224_ 1 
without regard to the amount of physical storage. 
The mapping from logical store to physical ad­
dresses is done by hardware, with supervisor calls 
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needed only to call into core storage a page of 
coding from external storage. 

Virtual Memory 

Although a programmer can address byte 224_ 1, 
he will not be able to make use of the entire physical 
storage. There is a permanently resident supervisor 
which is not in a user's virtual memory and is not 
relocated. It runs in the System/360 supervisor 
state and so it can execute input/output and other 
privileged instructions. A user can only get to those 
pages in physical core that are in his virtual mem­
ory. All tables are managed by the supervisor. A 
user's Table Register points to a Segment Table 
whose entries in turn point to the Page Tables which 
define valid program pages and thus define accept­
able addresses. Another user's virtual memory is 
made available simply by changing the Table 
Register. Virtual memory can therefore be defined 
as a set of relocation tables. Paging, I/0 and in­
terrupt handling are done by the supervisor which is 
protected from user programs because it is not in 
any user's virtual memory. Between the problem 
programs and the resident supervisor, there is an 
intermediate level of privileged service programs, as 

HOW CALLS 
WORK IN A 
BEGIN I/O RE -
OPERATION ENTER-
EXAMPLE ABLE? STATE 

? PROBLEM 

SVC 
SUPERVISOR 
CALL 
INSTRUCTION 

Fig. 9 shows. The figure also shows that the service 
programs are protected from errant problem pro­
grams by being in the supervisor state. 

This is dynamic, hardware-aided address reloca­
tion. It has created a new concept of virtual storage, 
in which the user need not worry about the limits of 
physical storage nor about where his program really 
is in core. With relocation, users share common 
reentrant coded subroutines to avoid redundant 
copies. Complete storage claims of programs are 
honored only when needed, greatly redu1cing (:ore 
requirements. True multiprogramming with sev,eral 
programs sharing core is possible for the 1irst time, 
and this is the heart of the Model 67. 

OTHER FEATURES 

Extended Program Status Word 

The Program Status Word (PSW) is a 64-bit pro­
gram-addressable word that contains all the! detailed 
CPU and program status information necessary to 
describe the present £ondition of the machine. It 
includes bits to mask off I/O and program inter­
rupts, bits that can be sensed following a logical 
operation (cc), the program protection key and the 

USER1S 
VIRTUAL RE- PROTEC:TION 
MEMORY? LOCATED? PAGED? B~' ---

YES YES YES NONE 

YES SUPERVISOR YES YES YES PROTEC:T KEY 

lOCAL 
MACRO 

NOT IN VIRTUAL 
NO SUPERVISOR NO NO NO MEMORY 

SIO 
PRIVILEGED 
INSTRUCTION 

HARDWARE MICRO-
PROGRAM READ -·ONLY 

Figure 9. Protection levels. 
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STANDARD PROGRAM STATUS WORD (PSW) 

SYSTEM 
SYSTEM 
MASK 

0 

0 31~S 
OOOOJ 24/32 
BIT 
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JION 

R 
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PRO­
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KEY AMWP 

II IS 

" 15 

PRO- AMWP ILC 

INTERRUPTION 
CODE 

191 231 

PRO-

31 

31 

TECT CC GRAM 00000000 
KEY MASK 

-EXTERNAL INTERRUPT MASK 
-I/O MASK t ALL CHANNELS 

'-- RELOCATION 

PRO-
ILC GRAM 
CC MASK INSTRUCTION ADDRESS 

3S1 39 63 

39 63 

32 BIT INSTRUCTION ADDRESS 
ADDRESS 
EXTENSION 

EXTENDED PROGRAM STATUS WORD (XPSW) 

Figure 10. Program status word format. 

instruction counter. Upon receiving an enabled 
interrupt, a new PSW is automatically loaded while 
the old PSW is stored in a unique core location, 
thereby immediately entering an error routine with 
a different machine status. The five types of inter­
rupts are I/O, machine-check, program exception, 
supervisor call, and external signal and each type 
causes a unique PSW to be loaded. 

The Model 67 makes use of an Extended Pro­
gram Status Word (XPSW) which has some ex­
panded functions, while other functions are left 
in various control registers. The normal and ex­
tended PSW are shown in Fig. 10. 

The native mode of the Model 67 is that of any 
other System/360. After power-on, there is no re­
location and a standard PSW format is used so that 
it is compatible with System/360. However, the 
Load Multiple Control instruction can load bit 8 of 
control register 6 to make use of the Extended Pro­
gram Status Word. When using the XPSW, the 
interruption codes are placed in core locations 14 
through 23. 

Fetch Protection 

To achieve effective System/360 time-sharing, it 
is necessary to provide for confidential files, which 
are available only to privileged users. Accounting 
data, password information and personnel files are 
examples of restricted files. There is also the need 
for protection of one task against an errant prob­
lem program. Consequently, a read protect feature 
has been incorporated in the Model 67 by adding a 
fifth, fetch-protect bit to the 4-bit storage key. 

There is a 4-bit key associated with every 204.8-
byte block in System/360. A problem program is 
allowed to write into that block only if the key 
matches the current key in the Program Status 
Word. An exception occurs if there is no match. 
The block is likewise protected against I/0 data 
by the requirement of a similar matching key in the 
Channel Address Word. On the Model 67, if the 
fifth bit is a one, the corresponding 2048-byte block 
is fetch (read) protected as well whenever it is read 
protected. Fetch protect without write protect is 
neither possible nor desirable. The privileged in­
structions Set and Insert Storage Key now transmit 
seven instead of four bits to and from the storage 
key. 

The fetch and write protection features are used 
to keep a problem program from service routines in 
its virtual memory, as Fig. 9 shows. 

There are two other means of protection in the 
Model 67. One is the limitation of a problem pro­
gram to addresses within its virtual memory, as de­
fined by its set of page tables. Attempts to transfer, 
read, or write outside of one's virtual memory re­
sults in a relocation exception. 

There is also the supervisor state in System/360 
which restricts non privileged programs to certain 
instructions. This effectively protects the super­
visor against unintentional or intentional memory 
accesses that are out-of-bounds. 

Rolling out of a user's page at the end of his time 
slice is necessary if the memory space is needed for 
another task. However, if nothing has been written 
into that page, there is no need to swap it out be-
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Figure II. Fetch protect. 

cause a valid, up-to-date copy of the page already 
exists on the paging device. Two extra bits on the 
Model 67 have been added to the standard System/ 
360 protect key, one to indicate if the corresponding 
2048-byte block has been referenced, and one to 
indicate if the block has been written in. These are 
tested by the Insert Storage 'Key instruction to de­
termine if paging is necessary. 

Figure 11 shows the fetch protect and reference 
bits. 

Control Registers 

A set of up to 16 control registers is provided on 
the Model 67 to implement various features and to 
allow for the increased number of memories and 
channels that a CPU may address. Each may be as 
long as 32 bits. Some registers may be used to 
sense positions of switches and are not actually 
"hard" registers. The control registers may be 
loaded (where possible) and stored using the two 
new instructions, Load Multiple Control and Store 
Multiple Control. A list of the control registers 
is given in Table 2. 

When using the Extended PSW, the I/O channel 
masks are used from control registers 4 and 5, and 
are controlled by XPSW bit 6. 

Extended I/O Addressing 

Each CPU can now address and mask up to 28 
channels. The channel address is designated by bits 
19-23, instead of 21-23, of the logical address in 
addition to the remainder of the address in bits 24 
to 31. The condition code 3 is set in the PSW if a 
nonoperational channel is addressed. Figure 12 
shows the bit structure of an I/O device address as 
used by the Start I/0 instruction. 

~119 __ 2~ol ____ 2~31 ____ 2~71 __ ,~ 
CHAN­
NEL 
CON­
TROll­
ER 

Timer 

CHAN­
NEL 

CONTROL 
UNIT 

DEVICE 

Figure 12. I/0 address format 

Each CPU contains an interval timer, which per­
mits necessary time-accounting functions to be per­
formed in addition to the above mentioned program 
monitoring. The timer has a counting interval of 13 
microseconds, corresponding to a frequency of 19.2 
kc. Counting takes place in bit 31 of the timer loca­
tion, storage location 80. Actual implementation 
includes the use of an internal register to reduce 
storage interference to the level of the standard 60-
cycle timer. Location address 80 is monitored to 
assure an updated timer content whenever this loca­
tion is referenced. 

Prefix 

Each CPU uses absolute core locations 01-127 for 
PSW's, channel address words, channel status 
words, timer residence and initial program loading. 
Were these locations common, they would be shared 
by several CPU's and interference between CPU's 
would result. Therefore, to provide each CPU with 
separate assigned storage, a quantity called a pn::fix 
is used to relocate dynamically the first 4096 storage 
locations. In multiprocessor operation each CPU is 
normally assigned a unique prefix and hence the 
sharing of these preferred locations is avoided. Al­
ternate prefixes are provided for each CPU in case 
of malfunction. The identity of the CPU executing 
a program may be determined at any moment by 
the setting apart of one of the addresses in the range 
0-4095 as the address of an identifying locat.ion, and 
then loading an identification in each corresponding 
physical location. 

The prefix area also contains the recovery nu­
cleus, machine check information and temporary 
register storage when a base register is unavailable. 

Each CPU has a prefix area in a different memory 
module for reasons of reliability. 

Part it ioning 

A Time-Sharing System which is designed for 
availability may have enough redundant major 
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Bits 
0-31 
0-23 
0-63 

0-3 
8 

24-31 
0-63 

0-31 

0-15 

16-31 

Table 2. Control Register Functions 

Function 
Dynamic relocation Table Register. 
Relocation Exception Address Register'. 
Extended PSW .I/O ch~nnel mask for channels 0-31; un-

assigned mask bits. 
Machine check mask extensions for channel controller 0-3. 
Extendeq control mode. 
External interrupt masking. 
Status of core storage partitioning switches. One byte / 

memory module; one bit/tail. A one indicates that con­
nection is established. 

Core storage address assignment. 4 bits/each memory 
module, containing bits 11 to 14 of the assigned core 
storage address. 

Status of channel controller partitioning switches. 4 bits/ 
each controller; I-bit/tail. A one indicates that a con­
nection is established. 

Channel address assignment (as viewed from the CPU 
executing the STMC instruction), 4 bits/CPU. A field 
containing 1111 indicates that for the particular CPU all 
channel controllers are assigned their prewired addresses 
(i.e., channels 0-7,8-15,16--23,24-31). A field contain­
ing 3 zeros and a one indicates that, for the particular 
CPU, only the channel controller corresponding to the 
bit position which is a one is addressable, and its chan­
nel addresses are 0-6. No other bit combinations are 
possible in these 4-bit fields. 

States of control-unit partitioning switches, with at least 2 
bit positions assigned to each control unit. A one indi­
cates that connection is established. 

14 24-27 States of direct control partitioning switches, one bit for 
each CPU. A one indicates that the direct control inter­
face of the corresponding CPU is connected to the other 
CPU's. 

28-31 States of prefix deactivation switches, one bit for each 
CPU. Zero indicates that the prefix of the correspond­
ing CPU is deactivated. 
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systems components so that it is possible to divide 
or partition the system. Partitioning can be 
achieved without any additional hardware by rely­
ing on the programs in each system to refer only to 
those components which have been assigned to their 
use. However, often a more absolute means of par­
titioning may be required, such as when un debugged 
supervisors and real-time experiments might other­
wise penetrate subsystem boundaries. This is done 
by physically partitioning the Model 67 by means of 
switches at a separate unit, the 2167 Partitioning 

Console, which allow any combination of memory 
modules, CPU's, channel controllers, I/O control 
units and I/O devices to be connected to the same 
system. Figure 13 shows the partitioning switches 
in the sample configuration. 

The addresses of the memory units can be indi­
vidually set under switch control for partitioning. 
In multiprocessing, the addressing for any particular 
byte is the same for either CPU, and the modules 
are addressed contiguously. In partitioning, the 
addresses of each module may be set to a multiple of 
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Figure 13. Configuration of typical Model 67 with partitioning switches. 
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the array size. Thus, with three memory modules, 
one partitioned CPU might have memory addresses 
0..,..256k while the other CPU has 0-512k. This is 
referred to as floating memory addressing. An in­
valid address indication results if an unavailable 
memory unit is addressed. 

In a partitioned mode, the floating channel ad­
dress switch determines which CPU's may initiate 
commands on which controller. Bits in control 
register 11 reflect the setting of the channel address 
switch. In a multiprocessing mode using the Ex­
tended PSW, any CPU can address any device on 
any channel and the floating channel address switch 
is ignored. If a path is disabled, a command to that 
channel causes condition code 3 in the PSW to be 
set, indicating the channel is not operational. The 
CPU-memory, channel-memory, and CPU-channel 
control lines can thus be severed for partitioning. 

The 4 x 16 IBM 2816 Tape Switch normally con­
nects any of the pool of 16 drives to any tape control 
unit at program speeds. To partition, a plugboard 
enables each tape unit to be excluded from or con­
nected to each control unit. Tape drives can thus be 
connected to separate channels, or shared on a 
channel. The IBM 2973-2 Disk Switch works sim­
ilarly. The status of the partitioning switches may 
be sensed by means of the Store Multiple Control 
instruction. It is, therefore, possible for the two 
CPU systems to operate as two single processors, 
as independent processors sharing common storage 
and I/O units, or as a single multiprocessor system. 

Reconfiguration can be achieved dynamically by 
means of privileged operator commands. The DE­
TACH command will logically separate the speci­
fied unit from the system without disruption of 
services. If an I/O device is specified, activity on the 
unit is allowed simply to cease to achieve logical 
partitioning. If a memory unit is specified, the user 
data is allowed to be paged out without reassigning 
the core blocks. When the user areas are free, any 
remaining supervisor pages are moved to a remain­
ing storage element. Any prefix area in the memory 
is reassigned to another memory element. When 
activity has "dried up" on the requested unit, a 
request is made for the operator to set the switch to 
partition off the unit. When the action is completed, 
the program will test the switch setting by checking: 
the bits in Control Register 8, 9, 12 or 13. The 
supervisor then sets the appropriate bits in the path .. 
finding device table to indicate unavailability and 
confirms physical partitioning by a message to the 
operator. The DETACH command therefore al-

lows off-line operation by requiring TSS to grace­
fully withdraw from the affected units. An AT­
TACH command reverses the above procedure. 

When the system is to be reconfigured, a PAR­
TITION command can be given to logically parti­
tion the system according to one of several cata­
loged configurations. Again, after activity has 
"dried up," the supervisor first asks the operator to 
set the partitioning switches, then tests the switches 
and acknowledges physical partitioning. 

TIMING 

Memory Cycle Time 

The basic storage cycle of the Model 67 is 750 
n,anoseconds. One double word of 8 bytes can be 
fetched every 750 nsec, interleaved with another 8-
byte word 375 nsec after the first provided the 
double words have addresses which are .alternately 
even and odd multiples of 8. 

If repeated accesses were made to a byte within a 
group whose first byte has an address which is an 
odd multiple of 8 bytes, and then to one whose 
group has an address as an even 8 bytes, the mem­
ory cycle time would be 375 nsec. Furthermore, 
System/360 instructions are 2-', 4-, and 6-bytes long, 
with most being 4 bytes. Therefore, many pairs of 
consecutive instructions will occur in one 8-byte 
double word so that the second instruction will be 
available "free" with no access time. Therefore, 
memory accesses for operands will occur at an aver­
age rate of between 375 and 750 nsec. 

The delay caused by priority determination of the 
four tails at each memory is 150 nanoseconds. This 
delay only occurs if consecutive accesses are not 
made from the same CPU or channel controller. 
There is no delay caused by priority determination 
where consecutive accesses are made from the same 
CPU or channel, such as with continuous instruc­
tion fetches by one CPU. 

If the relocation action is active, relocation re­
quires another 150 nsec if the address is found in the 
associative memory; 2100 if not. Since the basic 
CPU cycle rate is 200 nsec, the CPU clock is ac­
tually stopped for 150 nsec ("stuttered") to allow 
for the associative compare. The clock is blocked 
for 2.1 microseconds if no valid associative compare 
occurs while the page table entry is fetched and 
loaded into one of the associative registers. Since 
the instruction counter is kept in relocated form, a 
relocation delay occurs only during a branch in-
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struction or when the instruction counter crosses a 
page boundary, Input/output accesses are also not 
relocated, so that the 150 nsec relocation delay ap­
plies only to memory accesses for data. 

The maximum memory cycle time would there­
fore be 750 + 150 + 150 or 1050 nsec, assuming 
no interleaving, assuming a different CPU requests 
service each time, and assuming the only accesses 
are for operands. The effective cycle rate is con­
siderably less than 1050 nsee and depends on the 
instructions used, the location of data and other 
program dependent factors. 

Figure 14 shows the floor plan for the two-CPU 
four-memory configuration. Because some memory 

MEMORY 
MODULE 

Figure 14. Floor plan of typical Model 67. 

modules are physically more distant from some 
CPU's, the signal travel time is increased, and 
memory access time is degraded. For the above 
system, the following table shows the additional 
memory times in nanoseconds due to table length. 

From: 

CPU A 

CPU B 

To Memory Module: 
1 234 

o 0 50 100 

100 50 0 0 

Because this is a symmetric multiprocessing system 
with one copy of the supervisor in core, no attempt 
is made to optimize its location in a "midway" 
memory module. Therefore, the cable delay for 
memory fetches may be considered roughly an 

, average of these figures, or.38 nsec for a 4-memory 
system. 

To achieve a single average overall memory access 
figure would be difficult because of the assumptions 
about the program that must be made. For pur­
poses of discussion, including average cable length 
delay, including priority and relocation delay for 
operands and taking advantage of some interleaving 
of instructions a conservative figure of 800 nsec will 
be used. 

Data Rates 

The data paths between CPU's, memories, Chan­
nel Controllers and channels are eight by ties wide. 
Between the channel and I/O control units, the path 
is one byte wide. Parity is on the byte level. The 
data rates and bandwidths for the devices and chan­
nels are shown in Table 3 for the configured system. 
The CPU in a typical program makes 540 storage 
references in a 1000-microsecond intervall. This 
means a data rate of 540,000 double words per 
second, or 4,320,000 bytes per second. 

A conservative memory access time for a three­
memory module Model 67 system, as shown in Fig. 
1, is 800 nsec. Since the four storage bus systems 
are independent, all three storage units may be 
executing storage cycles concurrently, thus resulting 
in an effective storage data rate of three double 
words per 800 nsec., or 30,000,000 bytes/second. 
The table assumes concurrent use of all three stor­
age units and shows that the memories are being 
accessed at an average rate of 36% of their capacity. 
To be sure, if both CPU's and all I/O activity refer 
to the same unit, the bandwidth is exceeded and 
CPU operation is delayed. However, in no case will 
the I/O activity be restricted by the channel or 
memory bandwidths. 

A simulation run was made with only one proc­
essor executing the instruction mix and without any 
cable or priority determination delay. This run was 
used as the base run. Next, a model assumiing four 
memory modules and two CPU's was simulated. 
All memories in the model have an equal chance of 
being selected regardless of the device making the 
request or the number of other devices contending 
for the storage unit at that time. A random amount 
of interleaving is assumed, and an instruction mix 
which uses 42% of the available memory cycles was 
assumed. Cable and priority delays are included. 
The following table giving the simulation results 4Df 
the model relative to the simplex Model 67 as a 
function of the I/O data rate shows the expected 
system degradation. Degradation is defined as the 
expected increase in job run time. 

I/0 Rate 

\ 0 megabytes 
1.6 
3.2 

System 
Degradation 

8.8% 
9.7 

10.8 

The data rate of 1.6 megabytes, is about average 
for the configured system with the drum and disks 
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Table 3. Date Rates and Bandwidths 

Data Source 

Max. Data Rate 
(system as configured 

in Fig. 1) 
Max. Data Rate 

(bandwidths) 

2301 Drum(4 x 106 bytes cap.) 
2314 Disk .storage (207 x 106 

bytes cap.) 

1200 kbps* 1300 kbps* 

2311 Disk storage (7.3 x 106 

bytes cap.) 

Total, 2860 Selector channels 

Four 2402 tapes (90kc) 
Basic 2870 MPX activity 

312 

156 

1678 

360 
10 

Total, 2870 HS MPX channel 370 

Total, 2846 channel controller 

CPU A, average access 
CPU B, average access 

Average CPU activity 

Total memory access 

*Thousl;lnd bytes per second. 

4320 
4320 

2048 

8640 

10,688 

1300 

1300 

3900 

640 
110 

-t 

30,000 

t2846 data rate capacity exceeds requirements for this configur­
ation. Exact rate to be determined. 

in operation. Nevertheless, the additional degrada­
tion of 0.9% in job run time is small. The overall 
9.7% includes the priority and relocation delays and 
is the penalty to be paid for the advantages in the 
flexibility of shared memories and throughput in­
crease with multiprogramming. 

GROWTH 

The configuration shown, although typical, is by 
no means the only one possible. System/360 Model 
67 was planned with growth and flexibility in mind~ 
As experience is gained with the time-sharing sys­
tem, better systems balances may be obtained as a 
function of the type of applications."" For example, 
an increase in memory size may very well be the pri­
mary requirement to achieve higher throughput in 
a certain installation. 

The minimum time-sharing system consists of one 
processor, one memory and three channels. The in­
dependent memory modules of 256k bytes each may 
be increased to eight. Each module may have up to 
eight tails for eight independent bus systems. The 
total on-line directly addressable 750-nanosecond 
storage thus becomes 2,097,152 bytes. The system 
may grow from one to four CPU's. 

The system may expand to include four IBM 2846 

Channel Controllers. Each controller may have up 
to six selector channels, four high-speed multiplex 
subchannels, and 192 low-speed subchannels, as 
long as the maximum allowable data rates listed 
above (under "Other Features") are not exceeded. 

Each selector channel may have up to eight con­
trol units and 256 I/O devices. Thus, the I/O ca­
pacity of the Model 67 is almost unlimited. Pre­
sumably with the maximum number of devices, 
control units, channels, and channel controllers, the 
total number of I/O devices that may be connected 
to a multiprocessor Model 67 is 7168. 

The Model 67, when operating in the nonrelocate 
mode, is completely compatible with the rest of Sys­
tem/360. In fact, a simplex Model 67 operates 
identically as a Model 65 when running in the non­
relocate mode. Therefore, Operating System/360 
can run on a complete or partitioned Model 67. The 
Time-Sharing System/360 will have a monitor, con­
veq;ation FORTRAN and assembler, PL/l, 
COBOL and sort-merge. The TSS monitor will 
support as terminals the standard IBM 1050 and 
2741 "Selectric" typewriters, as well as 2250 and 
2260 display units. Eventually remote digital and 
analog devices will be tied in and will operate with 
the Model 67 in a time-shared, data-logging mode. 
It is expected that conservatively at least 100 termi-
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nals can be active at one time in a two processor 
system such as described here. 

In one installation, it is planned that about 50% 
of the work will be conventional batch processing 
and will be run as "background" to the time-shar­
ing. The on-line card readers, card punches, print­
ers and plotters will be used with all the background 
jobs, and those terminal-oriented jobs which require 
them. The Time-Sharing System will support a 
SPOOL operation. 

It is expected that both CPU s will be used for the 
time-sharing mode of operation during prime hours. 
At other times, the second CPU will be partitioned 
and used exclusively for batched jobs under Oper­
ating System/360 or else with real-time experiments. 

With dynamic relocation, independent memories, 
a new bus system and dual data paths, the Model 
67 provides a revolutionary method of operation. 
The hardware, when first delivered in April 1966, 
will be IBM's most advanced commercially avail­
able data processing system. The Time-Sharing 
System/360 programming system, when available 
later, will allow the Model 67 to fully realize its 
potential. 
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A DATA MANAGEMENT SYSTEM FOR TIME-SHARED 
FILE PROCESSING USING A CROSS-INDEX FILE 

AND SELF-DEFINING ENTRIES 

E. W. Franks 
System Development Corporation 

Santa Monica, California 

INTRODUCTION 

The Time-Shared Data Management System 
(TDMS), under development at System Develop­
ment Corporation (SDC) for use in its Research and 
Technology Laboratory, is intended to provide the 
users of the SDC Time-Sharing System with a 
powerful set of tools for the manipulation of large 
volumes of formatted, that is, not free text data. 
The functions to be provided include the description 
of data, the storage of files or data bases into the 
computer environment, the retrieval of the data 
either in response to human query or under program 
control for processing by other programs of the 
system, and the maintenance of data already loaded. 

TDMS is for the use of subscribers to the Re­
search and Technology Laboratory's facility; many 
of these users are not professional programmers. 
This imposes the requirement that the system be 
controlled by a nonprogrammer-user-oriented lan­
guage. The data management function for which 
TDMS is the instrument is by no means the sole 
function of the computer system in the laboratory. 
Furthermore, it operates on a time-shared basis with 
the other functions performed by the computer and 
may therefore be used simultaneously by several 
users. This aspect of the environment imposes a 
requirement to provide responses acceptable to on­
line users of the time-sharing system in circum-
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stances where. there may be many users and where 
the volume of data from which responses are re­
quired is very large. The organization of the data is 
designed to optimize on-line retrieval of this kind 
where the criteria for selecting data from the file 
are not known in advance. The two aspects of 
TDMS emphasized in this paper are the user-orien­
tation features and the file organization scheme. 

STRUCTU'RE OF TDMS 

TDMS is designed to operate under the control of 
a Time··Sharing executive program using IBM S/360 
computers. One feature of the system is that it will 
be easy to adapt the system to various models of the 
IBM S/360 computers. Although the system will at 
first be designed for model 65 IBM S/360 com­
puters, as advances are made to the computers, the 
system can be adapted to increasingly sophisticated 
versions, such as the proposed model 67. Com­
munication with the programs is by means of the 
TDMS language, which is a reactive, or dialogue, 
type of language, whose rules of use are always 
available to the user on request to the program. 

The control program of TDMS can be contacted 
through the time-sharing system by any user from 
either remote or local stations. The control pro­
gram of TDM·S will enter a dialogue with the user. 
After the control program has communicated the 



80 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

user's requirements to the time-sharing executive 
and to the computer console operators, as appro­
priate, the user will be granted access to various 
functions of the system without having to be aware 
of the program structure of TOMS. From the user's 
point of view, he is dealing only with the program 
he called through the time-sharing system, although, 
in fact, in the course of performing data manage­
ment operations, he may have used and communi­
cated with as many as half a dozen different pro­
grams. 

In addition to the control program, TOMS in­
cludes a data description translator, a data load 
program, an on-line query and update program, a 
report-generator program, and a maintenance pro­
gram which, in addition to performing batched up­
dating, permits the user to create a subset of a file, 
to merge files and to restructure files including the 
computation or generation of new data elements. 
Space and time limitations preclude presentation of 
a more detailed description of the programs in­
corporated in TOMS. However, to describe the 
user orientation features and file organization 
scheme, it is necessary to first say something about 
the underlying philosophy of data upon which 
TOMS is based. 

CONCEPT OF THE ENTRY 

A TOMS data file or data base, as it is often 
called, is a collection of information sets or entries. 
Each entry contains information about one object. 
The object itself need not be named, but may be 
understood from the description provided by the 
name in the data base itself. . Thus, a data base de­
scribing the personnel in a corporation might have 
one entry for each employee, and yet, within that 
entry, it would never be necessary to state ex­
plicitly "this is the description of a person." The 
kinds of data collections encountered in Command 
Control problems and other management problems 
are seldom as straightforward as the example just 
given. Each entry in a data base describes an ob­
ject, but the objects are not all of the same kind. 
For example, a resources file may contain entries 
dealing with factories and other entries dealing with 
training schools. It is essential, in such circum­
stances, for each entry to identify the object which 
it describes. What TOMS allows, in fact, is the 
accomodation of more than one logically consistent 
file in the same file structure. This makes the cross­
coordination of different kinds of data much easier 

and more efficient in an on-line environm~;!nt than 
would be the case if separate files had tOi be run 
together and matched. 

The logical structure of the TOMS entry is a col­
lection of predefined elements or descriptors. Each 
entry will have a subset of these elements appro­
priate to the object being described. For c!xample, 
the entry describing factories would have an ele­
ment "GROSS PRODUCT IN THOUSANDS OF 
DOLLARS," but would not have the elemc;!nt 
"AVERAGE SIZE OF GRADUATING CLASS 
OVER LAST 10 YEARS." The reverse would be 
true of an entry describing a training schooL 

The TOMS data base is not organized into slOrt 
hierarchies such as CO UNTY within ST ATE within 
COUNTRY. Provision is made, however, to ac­
comodate naturally occurring hierarchies in the 
data. For example, in a data base defining tactical 
military organization, an entry might exist for a 
group. The Group Headquarters, names of staff 
officers, mission, and so forth, would pertain to the 
whole group. Each company of the group, hOlw­
ever, might be in a different location, and each 
might have a specific subordinate mission. One 
possibility of handling this situation woulld be to 
establish separate entries for each company, each 
containing an element labeled "GROUP TO 
WHICH ASSIGNED." But, because TOMS is a 
general system, there would be no special magic in 
that particular label which would enable the systc;!m 
to know that these entries were really part of the 
group description. To ensure retrieval of the whole 
set, the retriever would have to know of the C;!x­
istence of this element and to use it as part of the 
retrieval key expression. To solve this problem, 
TOMS permits the automatic association of data 
connected by a natural hierarchical relationship 
through the device called a repeating group. A re­
peating group is, in effect, a set of subentries whilch 
are part of an entry. Thus, the elements in an entry 
which belong to one of its subordinate repeating 
groups may have several values within that entry, 
but only one value within each of the subentries. 
The flexibility of this device is such that, on the OIne 
hand, it will accomodate a simple multivalue ele­
ment like "PROFESSIONAL ASSOCIATION 
MEMBERSHIP"; on the other hand, an order-of­
battle file with only three basic entries, ARMY, 
NAVY and AIR FORCE, would contain all the 
subordinate organizations appearing as repeating 
groups within the three basic entries. As this state­
ment implies, repeating groups may thc;!mselves 
contain repeating groups to any level of nesting. 
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DESCRIPTION OF DATA 

The best way to understand how data is de­
scribed is to take a hypothetical example. and show 
the process being performed. Let us imagine that 
our hypothetical user is a mail-order merchant who 
handles a variety of merchandise. Let us suppose 
he has access to TDMS and the SDC Time-Sharing 
System through a teletype machine in his office. Let 
us further suppose that he is so committed to using 
a system that he does all of his paper work on that 
one teletype. 

His first task is to describe his data to the system. 
He contacts the TDMS control through the Time­
Sharing Executive. He may request a list of the 
functions available, but, in this case, we assume that 
he knows that the function he wants is called DE­
FINE. The DEFINE program then asks him to 
name his data base. He responds by typing in 

COMPANY OPERATIONS 

From now on he is able to refer to the descriptions 
he will supply and to the collected data itself by this 
name. 

The data our merchant is about to describe will 
exist in two forms: outside the computer system, the 
data will exist as data input; inside the system the 
data will exist as the stored file. The following 
conventions exist for input data. The data input to 
TDMS always exists as card images on tape, or as 
input entered by teletype, but the scheme is the same 
in either case. Each data element is preceded by an 
identifying number field, and the set of elements and 
repeating groups constituting one set or entry is 
terminated by a special symbol selected by the user. 
The sequence of the elements is immaterial except 
that the elements in a repeating group must all be 
listed before the elements of the next repeating 
group or nonrepeating element. Thus, after receiv­
ing the name of the data base, th«.. DEFINE pro­
gram asks the user for the terminating symbo~. In 
this case, let us say that the user chooses the term 
ALL. When the data is loaded, the system will 
know that whenever the term ALL is encountered in 
the input, and the term is not preceded by an 
identifying number, the last of the data for a par­
ticular entry has been received. 

The user now proceeds to name the variou~ ele­
ments of data he will be dealing with. He may re­
quest the system to spell out the rules for the 
description process, and, if he is uncertain of his 
typing skill, he may request the ECHO function, 
under which the program types back what he has 

input, giving him a chance to make corrections to 
what he has just typed before proceeding. 

The elements of data are listed one at a time on 
the teletype. First the identifying number which 
will appear on the input is given. Then the name of 
the data element is stated. Following the name is 
the specification of the data type in one of the fol­
lowing three possible types: 

NAME 
INTEGER 
DECIMAL 

(alphanumeric character string) 

The names of repeating groups, or subentries, are 
given in the same way-first the identifying number, 
then the name of the repeating group, then the term 
REPEATING GROUP (abbreviated as RG). Data 
elements within a repeating group are specified like 
other data elements, except that, following the data 
type specification, the name of the repeating group 
to which the element belongs appears. Thus the 
order in which elements are described does not 
matter. Finally, as an option, input legality check 
information may be inserted. This information may 
be a list of acceptable values, one or more ranges 
of values for numeric data, or a data format de­
scription. A list of some of the data input elements 
entered by the hypothetical merchant is shown in 
Example 1, below. 

Example 1 

ENTRY TYPE (NAME) VALUES 
CUSTOMER PRODUCT 

2 CUSTOMER NAME (NAME) 
3 CUSTOMER CATEGORY (NAME) 

VALUES ACCOUNT PROSPECT 
4 ACCOUNTSYMBOL~AME) FORMAT 

L999 
5 PRODUCT (NAME) 
6 ACCOUNT HISTORY (RG)' 

61 DATE OF ORDER (NA}fE IN 
ACCOUNT HISTORY) FORMAT 
09[/]99[/]99 

62 AMOUNT OF ORDER (DECIMAL IN 
ACCOUNT HISTORY) 

63 BILL OF MATERIAL (RG IN 
ACCOUNT HISTORY 

631 MERCHANDISE (NAME IN BILL OF 
MATERIAL) 

632 QUANTITY (INTEGER IN BILL OF 
MATERIAL) 

633 UNIT PRICE (DECIMAL IN BILL OF 
MATERIAL) 

634 ACTION (NAME IN BILL OF 
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MATERIAL) VALUES SHIPPED 
BACK/ORDER 

635 SUBTOTAL (DECIMAL IN BILL OF 
MATERIAL) 

636 STOCK CODE (NAME IN BILL OF 
MATERIAL) FORMAT LL999 

7 ADDRESS (NAME) 
8 CURRENT STATUS (NAME) VALUES 

PAID OPEN 
9 BALANCE (DECIMAL) 

10 CODE (NAME) FORMAT LL999 
11 WAREHOUSE (NAME) 
12 UNITS ON HAND (INTEGER) 
l3 UNITS ON ORDER (RG) 

131 NUMBER ORDERED (INTEGER IN 
UNITS ON ORDER) 

l32 SOURCE (NAME IN UNITS ON 
ORDER) 

l33 ORDER NUMBER (NAME IN UNITS 
ON ORDER) FORMAT 009LLL 

l34 COST (DECIMAL IN UNITS ON 
ORDER) 

The list is, of course, by no means the complete 
set of elements which would be required for the 
hypothetical operation. It is sufficient, however, to 
illustrate the features of the descriptive language. 

The data base contains two types of entries­
customer entries and product entries-so that bill­
ing and mailing operations and inventory control 
operations can be performed from the same file. 
The first element described, ENTRY TYPE, speci­
fies which kind of data is included in a particular 
entry. Only two values are possible for this item of 
data, namely CUSTOMER and PRODUCT, and 
these values are listed, following the word VALUES 
for checking the legality of input. Input Element 2, 
identified as input by a field containing the num­
ber "2" preceding the data value, occurs only if the 
entry is the customer-type entry. The third element, 
also applicable only to the customer-type entry, 
shows a distinction between actual customers (value 
ACCOUNT) and hoped-for customers (value 
PROSPECT). The PROSPECT entries would be 
entered for mailings or in response to queries. Al­
though no such elements are shown in the example, 
data about correspondence, brochure mailings, and 
areas of interest would probably be included in such 
entries. 

Element 5, PRODUCT, is the first element de­
scribed which would be applicable to the inventory 
type of entry. The next element in this category 
does not occur until Element 10, the product code. 

The legality check for this element is a format check. 
The L's stand for letters and the nines for numbt:rs. 
Thus value AAOI0 would be a legal product code 
and value A33 would. not. An additional example 
of format control is shown in Element 61, where the 
slashes in the data are enclosed in square brack4~ts, 
indicating that these exact characters must occ:ur. 
The example shows several repeating groups. The 
first of these, ACCOUNT HISTORY, occurs in 
customer-type entries. The user has chosen to 
number the inputs for the repeating group 6 as 61, 
62, etc. This is an example of a user-devised conven­
tion, and is not required by TDMS. The repeating 
group, ACCOUNT HISTORY, itself contains a 
repeating group, occurring for each order recorded; 
this repeating group is BILL OF MATERIAL. The 
third repeating group is Element 13, UNITS ON 
ORDER, which relates to the inventory type of 
entry. 

The list given is merely the description of the data 
given to TDMS. It is not the data itself. To clarify 
'the significance of the description, two examples of 
input data are given below, one for a customer and 
one for stock. 

Example 2 

Input Data for a Customer- Type Entry 

1) CUSTOMER 2) JOHN Q JONES 
3) ACCOUNT 

4) J021 6) 
61) 5/21/64 62) 205.63 63) 
631 ) TABLECLOTH 632) 17 

633) 5.40 634) 
SHIPPED 

635) 91.80 636) TC301 63) 
631) PLACE SETTINGS 632) 3 

633) 37.81 634) 
SHIPPED 

635) 1l3.43 636) SV002 
7) 2000 LOND ELIUS ST LOS 

ANGELES CALIFORNIA 
8) OPEN 
9) 105.00 

Example 3 

Input Data for a Product-Type Entry 

1) PRODUCT 
2) TIKI FIGURES 

10) TKOOO 11) ZELZAH 12) 
205 13) 

l31) 50 l32) PORYNESHA KK 
YOKOHAMA 

l33) 127PKK 134) 410.00 
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When the user has finished entering his descrip­
tion, he may have it presented to him for checking. 
He may add, delete, or change a description already 
made at any time by calling the REDEFINE func­
tion. He needs to know very little about the opera­
tion of the program or about computers. Tech­
nically, he need only know that data may be numeric 
or nonnumeric. The logic of the organization is the 
logic of the data itself as it appears to him. Once 
the data is described in these user-oriented terms, he 
may load the data into the TD MS system at any 
time by calling the LOAD program. The LOAD 
program expects inputs which agree with the de­
scription given. Discrepancies are logged, and the 
user may have them logged on-line for immediate 
correction. Once the data is entered, it may be 
called by name, and again the user does not need to 
know how it is stored or accessed. He may perform 
spot queries for fact retrieval. He may describe 
formats of output and call a report generator to 
make up bills or bookkeeping summaries. In the 
example given, the inventory is presented as it 
would appear if listed by product within a ware­
house. He may want to obtain summaries by 

,product, regardless of warehouse location, or he 
may want a summary of all products by warehouse. 
He is not restricted by the organization implicit in 
the way he has chosen to define his data. This free­
dom results from the way the data is actually or­
ganized in the computer. 

TDMS DATA BASE STRUCTURE 

The data structure created by TD MS when the 
input data is loaded is designed to optimize retrieval 
in an on-line environment if it is assumed that the 
user has no prior knowledge about what data is 
most likely to be r~trieved or what criteria will be 
used to select data for retrieval. It is also assumed 
that retrieval will be requested from the file on the 
basis of some Boolean expressions given in terms of 
data elements and values. Such Boolean expressions 
define a subset of the data base, namely, those en­
tries in the data base for which the Boolean expres­
sion is true. Frequently, however, instead of re­
quiring the entire contents of this data subset only 
certain values from the qualifying will be needed. 
Thus, the selection path is entered with a combina­
tion of element names and values associated with 
them. This defines a list of entries which meet the 
criteria. The retrieval path is then entered with a 
list of entries and a list of element names for which 
values are required from these entries. The data 

base organization is designed to optimize both the 
selection of qualifying entries and the retrieval of 
the specified element values. 

From the data user's point of view, the data base 
appears to be a collection of values to which he may 
wish to refer. These values have two sets of associa­
tions. In the first place each value is part of the total 
description of one of the objects in the data base. 
In the second place each value is both a value for a 
specified element and a member of the set of all 
values for that element. The TDMS organization 
of the data base reflects both types of value associa­
tion, the element set and the object set. 

The actual values are stored according to the ele­
ment set relationship. That is, for each element 
there is a block of storage for the unique values 
O,ccurring for that element. Each value is stored 
only once, regardless of how many entries of the 
input data may contain it. Associated with these 
lists of unique values are two other groups of lists. 
The first of these has the function of ordering the 
raw value list algebraically, or in the case of sym­
bolic values, alphabetically. The items on the value 
list are stored in a random arrangement; the value 
list orders the values in the sequence in which they 
appear in the input. The ordering list is generated 
to speed up search by permitting the use of binary 
search techniques. The second group of lists asso­
ciated with the blocks of values is the entry group. 
For each entry there is a list of the elements which 
were found in the entry and a reference to the place 
in the value list for that element where ihe specific 
value for that entry may be found. This part of the 
organization is represented schematically in Fig. 1. 

For the purposes of selection, the ordering lists, 
in addition to pointing to values in the value list, 
also point to occurrence lists. The occurrence lists 
are lists of entries in which each value of each ele­
ment occurs. Thus, in order to make a selection on 
the basis of a Boolean expression, the ordering list 
is searched for values which meet the various cri­
teria. When a matching value is found, a list of 
entries containing this value is obtained. The vari­
ous lists obtained for different parts of the Boolean 
expression are merged, using AND or OR logic; the 
result is a final list which represents a subset of the 
data base that meets the criteria for selection. This 
list of entries is then used in combination with the 
names of the elements to be retrieved to obtain the 
values of these elements from the appropriate value 
lists. 

The entire retrieval process becomes clearer if we 
take an example. Let us imagine that our mail-
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order merchant wishes to obtain a list of the cus­
tomers who currently owe him money--an accounts 
receivable list. He might do this through the 
TOMS QUERY program with the following re­
quest: 

PRINT CUSTOMER NAME, BALANCE 
WHERE CURRENT STATUS EQUALS OPEN 

The subset of the data base to be selected is the set 
of entries which have the value OPEN for the ele­
ment called CURRENT STATUS. Through the 
Data Definition Table the program converts the 
name CURRENT STATUS to the address of its 
ordering list. This list is accessed, and is found to 
have only two entries, one for the value PAID and 
one for the value OPEN. The value OPEN points 
to a list of the entries which have the value for 
CURRENT 8T ATUS. Then entry references are 
converted to entry list addresses by means of a 
directory table. The qualifying entries are accessed, 
and, for each one, the pointers to the value lists for 
the elements CUSTOMER NAME and BALANCE 
are followed, and the values are recovered and 
printed. 

The query in the above example is a simple and 
straightforward one, not involving AND and OR 
logic, and not concerned with the complexities of 
nested repeating groups. It does serve, however, to 
introduce the entire data base structJ,.lre as created 
by TOMS when the data is loaded. Figure 2 shows 
this structure schematically. 

Element Ir----l Element 2 
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Ordering Value Value Value Orde";ng 
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Figure 2. 

The route is from definition table to ordering liist. 
The ordering list permits an efficient examination 
of the value list for qualifying values. For ea.ch 
qualifying value there is an occurrence list. The 
occurrence list points to the data base entry whc!re 
the value occurs. Each entry, in turn, points to the 
value lists for all the elements present in it. The 
occurrence list actually points indirectly to the entry 
via a directory of entry addresses. In cases where a 
value occurs only once for a given element, the or­
dering list bypasses the occurrence list and points 
immediately to the directory to save storage space. 

So far little has been said about the directory 
table, which, in its simplest form, simply lists t.he 
address of each entry in the sequence in which the 
entries were loaded. In cases where repeating 
groups are involved, however, the directory assumes 
greater importance, since it is here that the hi'er­
archical restrictions imposed by repeating groups 
are observed. This concept is best expla.ined by 
means of an example. Again using the merchandis­
ing data base, let us imagine that the user wishes to 
obtain a list of customers who have ordered sardines 
in quantities of 100 cans or more as part of an order 
totaling $100 or more. In this case, "sardines" is a 
potential value for the element MERCHANDISE 
and "100 cans or more" represents a potential 
value for the element QUANTITY. Both dements 
occur in the repeating group BILL OF MATE­
RIAL. Both must occur in the same group. In 
other words a value of 100 for QUANTITY is not 
sufficient to qualify the entry unless it is directly as-
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sociated with the value SARDINES for the element 
MERCHANDISE. Furthermore, the co-occur­
rence of these two values does not qualify the entry 
unless the total order of which the sardines are a 
part equals or exceeds $100. It is necessary then to 
find entries in which one of the values for 
AMOUNT OF ORDER in the repeating group 
ACCOUNT HISTORY is equal to or greater than 
100 at the same time as the values for MERCHAN­
DISE and QUANTITY in the BILL OF MATE­
RIAL for that particular order meet the criteria 
respectively of "sardines" and "equal to or greater 
than" 100. 

This complex matching problem is solved by 
carrying an entry for each repeating group, as well 
as for each data base entry proper in the directory 
table. In the case of directory entries for repeating 
groups, instead of an entry address there is a 
reference to the directory entry for the next higher 
level in the hierarchy. In this way it is possible to 
determine whether values for two elements of the 
same repeating group (in the example SARDINES 
and 100 or more cans) actually occur together. If 
they do, the references from their respective occur­
rence tables will be the same. Then, by following 
the pointer from this directory entry to the next 
higher level, namely to the particular order in AC­
COUNT HISTORY to which it belongs, it is pos­
sible to see whether or not the total order was equal 
to or greater than 100 dollars. The entry containing 
this information will qualify if an entry number in 
the directory for an occurrence of AMOUNT OF 
ORDER greater than 'or equal to 100 dollars is the 
same as the next higher entry pointed to by the di­
rectory entry meeting the MERCHANDISE and 
QUANTITY criteria. 

The fact that the elements dealt with are parts of 
repeating groups is determined by the selection pro­
gram from the definition table, as is the relative 
level in the hierarchy of each repeat;ing group. In 
summary, the following is the path followed in re­
sponse to a request phrased 

PRINT CUSTOMER NAME WHERE 
AMOUNT OF ORDER GQ 

100 AND MERCHANDISE EQUALS 
SARDINES 

AND QUANTITY GQ 100 

The program determines that the selection criteria 
elements are members of repeating groups. Starting 
at the highest level where the element appears, it 
accumulates a list of entry numbers in the directory 
table, for which AMOUNT OF ORDER qualifies. 

It then accumulates a list of entries for MER­
CHANDISE equal to SARDINES and a list of 
entries for QUANTITY greater than or equal to 
100. These last two lists are ANDed together to 
eliminate entries with insufficient sardines and en­
tries with a sufficient quantity but the wrong mer­
chandise. The resulting intersection list is then con­
verted to the next higher level by substituting the 
"up" pointers from the directory. The converted 
list i~ then ANDed with the AMOUNT OF OR­
DER list to produce a list of fully qualifying entries. 
This is not, however, the final step, since the 
AMOUNT OF ORDER list contains entries for a 
repeating group, ACCOUNT HISTORY. This 
must be converted to actual entry references again 
by substituting the "up" links, which now results 
in a list of basic entries. These ehtries are retrieved, 
and the output values, in this case, CUSTOMER 
NAME, are retrieved and printed exactly as in the 
first simple example. 

BACKGROUND 

The data handling techniques of TDMS have 
evolved over several years of research and experi­
ment conducted at SDC, and the new system bene­
fits from experience gained elsewhere. In particular, 
the idea of the cross-reference file was developed 
and tested in an experimental data management 
system called LUCID, and was refined and ex­
panded in TSS-LUCID (Time-Sharing LUCID) 
which is currently in operation at SDC on the IBM 
ANFSjQ32 computer under the Time-Sharing Sys­
tem. The cross-reference file is that part of the data 
structure which consists of the value lists, the order­
ing lists and the entry directory table. The concept, 
and indeed, the name of the repeating group is de­
rived from the ADAM system of the MITRE Cor­
poration. The inadequacy of LUCID in dealing 
with the natural hierarchies occurring in data 
prompted this borrowing. What is entirely new in 
TDMS is the entry structure which has been termed 
the "self-defining entry." In LUCID the entry 
association is determined solely from storage jux­
taposition. The values are tightly packed in the 
entries. The values also occur in the value list, thus 
duplicating storage requirements. Furthermore, 
much additional storage space is required to ac­
commodate bits of storage assigned to data elements 
not actually present. In the case of multiple value 
elements with assigned bit locations, this arrange­
ment requires a great deal of space for empty data 
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base storage. Most important, however, in motivat­
ing the development of the .new structure, are time 
considerations. In a general system the locations of 
packed data elements are known to the program 
through parameter tables. An average of more than 
100 machine instructions required to convert such 
parameters to an actual retrieval, and, in iterative 
operations, the process is likely to be very slow. 
TDMS does away with packing parameters so that 
everything is standardized, and in all probability, 
the number of instructions required to move a data 
element is always fewer than ten. 

OTHER OPERATIONS 

The heart of TDMS has been described in some 
detail. The data description language has been pre­
sented to give some idea of the essential simplicity 
of the approach to the system and, thus, of its suita­
bility for non programmer users. The operation of 
retrieval has been explained with some examples of 
the on-line query language being used as illustra­
tions. The retrieval mechanism is the same through­
out the system, whether it is triggered by an on-line 
query or by the execution of a report-generator 
function. What has not been covered is the arith­
metic capability of the system. The extent of this 
capability is illustrated by the following query which 
shows that the system accepts arithmetic expressions 
involving elements of data both as output specifica­
tions and as selection criteria. 

PRINT SUM OF HOURS WORDS 
* HOURLY WAGE 

WHERE 1966 - BIRTHDATE 
GR21 

To optimize operations such as the above without 
sacrificing efficiency in cases of simple retrieval., the 
value lists for numeric elements contain both the 
symbolic form of the values originally input as well 
as binary representations of them in either integ(~r of 
floating point format. In this way the original value 
can be retrieved and printed without going through 
a conversion routine, and arithmetic and magnitude 
comparisons can be made in the binary mode. 

CONCLUSIONS 

TDMS is a generalized system which makes no 
a priori assumptions about the way in which the 
data will be used. In caseS where this is known, the 
data can be converted to the more conventional hi­
erarchical format by the maintenance program so 
that the efficiency of specific usages can be maxi­
mized. Nevertheless, the basically general approach 
is sound. The life expectancy of a special-purpose 
data management program is short, and in terms of 
cost effectiveness, likely to be very poor. Our ex­
perience has been that the collectors and users of 
data approach their problems initially with a some­
what vague and largely intuitive notion of the llses 
to which a data base will be put. It is only as they 
begin to use the data that its full utility becomes ap­
parent. TDMS is an attempt to give users a facility 
which does not preclude the easy and ifl(~xpensive 

evolution of data management procedures, and 
which, at the same time, is remarkably efficient as 
generalized programs go. It is designed for the non­
programmer user. We do not like to say it is for 
the unsophisticated user, because the mon~ sophis­
ticated he is in the terms of his own data and his 
own problems, the better TDMS will serve him. 
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INTRODUCTION 

The development of RQA 1 (Recursive Queue 
Analyzer), a program for the numerical solution of 
the stationary distribution of large scale Markov 
processes, has made possible the accurate analysis 
of large stochastic systems with modest computa­
tional costs. In particular, time-shared computer 
systems with their random program and user char­
acteristics are examples of systems which can be 
modeled as multidimensional Markov queueing 
processes and analyzed' by the method. Having 
obtained a solution for the limiting state proba­
bilities of the model using RQA, one can readily 
derive many time average performance and usage 
characteristics. Thus a useful tool is available to 
provide guides in the design and modification of 
such systems and to forecast user response and sys­
tem capacity in terms of the number of users and 
the operating statistics. 

In current time-sharing systems the major prob­
lem is the sharing of high-speed memory. Economic 
considerations have limited the availability of high­
speed memory from which user programs can be 
executed. Hence large capacity slower access time 
memories have been added to these systems in a 
manner which allows most efficient use oLthe high­
speed memory. 2 In effect there may be many levels 

*This work was supported by Rome Air Development Center 
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of memory with capacity and access time increasing 
as we go down the levels, and there will be continual 
transfer of information between these levels. Thus 
queues arise not only for the use of the central 
processor but also for the use of high-level memory 
and data channels. In practice only a certain num­
ber of user programs can be allowed to occupy the 
highest levels of memory without serious reduction 
in some performance criteria. Useful models depict 
the important queueing phenomena in this regard. 

We now proceed to describe the process of model­
ing a time-sharing system and illustrate some results 
for a particular system. 

DESCRIPTION OF A TIME­
SHARING SYSTEM 

Figure 1 shows a block diagram of the major 
hardware components of a time-sharing system 
which is representative of current designs using a 
single central processor. There are three types of 
memory, the high-speed core memory and memory 
modules A and B which represent two lower levels 
of memory with increasingly larger capacity and 
slower access times. A number of remote com­
munication consoles and the necessary data chan­
nels for the interconnection of all components 
complete the hardware. 

The high-speed core memory would be operated 
on a paging or segment and paging scheme3

,4 to 
allow maximum benefit from the use of common 
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Figure 1. Block diagram of a time-sharing computer system. 

routines and mUltiprogramming. Part of the core 
would be devoted to an executive program and com­
munication tables and the remainder to use pro­
grams. 

Memory module B represents a very large­
capacity file store {for example several disc memory 
units) wherein each user of the system is assigned 
a storage area solely for his own use. Files of source 
decks and binary decks and data files are stored 
here. When a user is operating at a console he will 
activate some of these files and they will be trans­
ferred under executive program control to allotted 
pages of the core memory for; processing. They will 
then be subject to swapping procedures between 
core memory and module A as described below. 

During each user's session at a console he will 
use his own files, many system programs, and in­
formation generated at the console. For efficient 
memory sharing it is desirable that only the current 
working section of each user's program be resident 

in core and that other sections be readily available 
to enter core on a swapping or overlay operation. 
Memory module A (typically consisting of high­
speed drum units) acts as a core store overflow 
medium to contain such currently active files and 
system programs. As many working sections as 
possible should remain in core in order to take 
advantage of averaging their demands on system 
processors. When the system is serving a large 
number of users one would expect frequent changes 
in the working section currently executing in the 
CPU, and continual traffic of pages or segments 
between memory module A and the core store. 

DEVELOPMENT OF A QUEUEING MODEL 
OF THE TIME-SHARING SYSTEM 

We will now derive a queueing model of the time­
sharing system described, indicating assumptions 
involved and some further details of the! system 
operation necessary to complete the model. 

The executive program will include a scheduling 
algorithm for allotting user programs use of the 
CPU and other system processors. When a user 
program is assigned the use of the CPU w(~ assume 
that it executes for a random length of time which 
is short compared with the average time an operator 
takes to interact with the system. Scheduling 
algorithms may induce short execution phases by 
penalizing long programs and assigning execution 
time limits. Also the following three types of events 
will cause random execution phase lengths. 

1. Transfer of control in a users program 
is required to a segment or page which 
is not residing in core and thus pages 
must be swapped or overlaid from 
module A before execution can begin or 
continue. 

2. Console output has been generated and 
the users program is ineligible to exe­
cute until some further information or 
command is supplied by the user. 

3. A user file or program previously un­
used at the current session has been 
called by the user program and must be 
loaded from module B before execution 
can continue. Alternatively the user has 
elected to store a file. 

Thus the program of a user currently operating 
at a console will always have associated with it one 
or more of the following phases of system operation: 
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1. CPU execution. 
2. Segment or page swap (or overlay) from 

module A. 
3. Operator response. 
4. File transfer to or from module B. 
5. Queueing for phases 1, 2, or 3. 

Programs may also queue for information transfer 
in the console data channels, but the significant 
operations are the thinking and response generation 
by the user and these may occur simultaneously 
when each user has his own console. 

The queueing model shown in Fig. 2 is based on 
these five phases of operation. The service opera­
tions corresponding to phases 1 through 4 are de­
picted by blocks containing a parameter (1/ J.l h 1/ J.l2, 

1/ J.l3, or 1/ J.l4) which is the mean execution time in 
that phase. Wherever queues may form this is indi­
cated by a circle containing the value of the maxi­
mum possible queue length. It is assumed that there 
are N consoles in use at all times. The maximum 
queue lengths for swapping and file transfer opera­
tions have been designated N, and N2 respectively. 
There is also a limit on n, the sum of the entries in 
these two queues (n < N), and this limit is the maxi­
mum number of user programs which can concur­
rently have pages of core memory assigned to them. 
If the system reaches the state in which both these 
I/O queues are full, then there is no user program 
in core memory eligible to execute. Likewise it is 
implied that a maximum of N, + N2 programs in 
the queue for CPU execution can have sections 
resident in core memory. 

Once a program completes a CPU execution 
phase it is assumed that it always generates a 

USER 

N CHANNELS 

FILE 
TRANSFER 

Figure 2. Queueing model of the time-sharing system. 

request for one or more of the operation phases 
2, 3, and 4; that is it does not simply remain in core 
to await rescheduling in the CPU. This assumption 
should be accurate when the system is operating 
near its maximum capacity of users, for then com­
petition for the use of the high-speed core will result 
in reassignment of the core space used by programs 
which complete or are interrupted by the scheduler. 
Further, under these conditions a program waiting 
for a user response would almost certainly lose its 
core memory assignment; therefore it is assumed 
that any completion of a CPU execution phase 
which results in user activity also results in a swap­
ping operation to reassign the pages of core memory 
involved. Thus we denote the probabilities with 
which a user program generates requests on com­
pletion of phase 1 for phase 2, phases 2 and 3, and 
and phase 4 by p, q and r respectively (p + q + r = 1). 
These probabilities would be functions of the pro­
gram statistics and the system operating rules. 

it is assumed that each CPU execution phase in­
volves some executive program execution for sched­
uling, monitoring interrupts, setting up I/O opera­
tions, etc. 

ANALYSIS AND INTERPRETATION OF 
THE MATHEMATICAL MODEL 

It is emphasized that the only property of a 
mathematical model required for its solution by 
RQA is that it be a Markov process consisting of 
a closed class of states. There is an upper limit im­
posed on the number of states of the model in ac­
cordance with storage restrictions of current compu­
tational facilities. For details of the RQA program 
and the theory underlying this approach to stochas­
tic system analysis, the paper given by V. L. Wallace 
and R. S. Rosenberg at another session of this con­
ference should be consulted. 

The results which can be obtained from analysis 
of the model described using RQA are of the follow­
ing nature. Assuming or given statistics on the 
programs, user responses and data transfers, we can 
examine relationships such as the response received 
by each user versus the number of users, or the 
change in this response which can be obtained by 
controlling the usage statistics or increasing proces­
sor capacity. To analyze the model we must first 
develop a state description (for example n, pro­
grams awaiting CPU execution, n2 programs await­
ing operator response, n3 programs awaiting page 
transfers and n4 programs awaiting file transfers, 
so that the four variables nh n2, n3, n4 describe the 
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state of the system). RQA uses a transition intensity 
matrix to solve for the stationary probabilities of 
the system existing in any state. The allowable state 
transitions of the model are determined by the sys­
tem constraints and the transition intensities are a 
function of the model parameter values. There is 
some restriction on the probability distributions of 
the model describing the random execution times. 
These must be of a particular class of distributions 
satisfying the Markov property and so are based on 
the exponential distribution (although some excep­
tions can be made5

). A considerable range of dis­
tributions derived from the exponential distribution 
exist with properties useful for modeling real sys­
tems. In general it is the mean values of these dis­
tributions (e g., 1/ Jll) which appear in the transition 
intensity matrix, although for the derived distribu­
tions more than one parameter is necessary.6 

The parameters of the model must be related in 
a simple manner to measurable system characteris­
tics. A meaningful subdivision of user operation at 
a console has been defined as a user interaction.7 

This is the act of a user requesting and receiving 
service from the system and involves the user think­
ing, generating an input, waiting for system re­
sponse and observing the output. It has been pro­
posed that the number of interactions during a 
console session is a good measure of the amount of 
useful work accomplished by a user. In the model a 
new interaction begins each time a user program 
enters phase 3 at some console. Thus the following 
characteristics defined in terms of the model param­
eters are useful in describing the system: 

P 
-+ 
q 

r 

q 

Mean CPU execution time (plus 
executive overhead) for a user pro­
gram per user interaction. 

Mean number of swapping or over­
lay operations per user program 
per user interaction. * 
Mean number of user file trans­
fers per user program per user 
interaction. 

Other characteristics can be equated to individual 
model parameters. 

Some measures of performance and system usage 
readily calculated from the vector of stationary 
probabilities are essential for interpretation of this 
solution. Two parameters which measure different 

*This characteristic should show considerable dependence on 
the number of pages of core storage allotted to a user program. 

aspects of the system response to a user are now 
defined. 

1. User busy fraction: The average frac­
tion of each interaction period that a 
user is busy, that is, making a response. 

The absolute value of this parameter depends on 
the relative mean values of the user program pro­
cessor times and the individual user's mental and 
physical response times. However it probably repre­
sents the average user's subjective evaluation of 1the 
system. 

2. User program response: The average 
fraction of the total time a user pro­
gram is eligible to use system processors 
(CPU and data channels) that it does 
actually use them. 

This parameter js a measure of the overall queueing 
delays experienced by user programs. If there wlere 
only one system user, this parameter value would 
be 1. 

A measure of the total useful system output IS 

given by 

or 

3(a). Program throughput: The rate of 
completion of user programs. 

3(b). Interaction rate: The rate of comple-
tion of user interactions. 

Finally, parameters indicating the fraction of time 
various processors of the system are in use identify 
capacity limitations. 

A PARTICULAR APPLICATION 

We now discuss the use of several variations of 
the model proposed above ("Development of a 
Queueing Model") for the analysis of a small spe­
cial-purpose time-sharing system. 

The system corresponds to Fig. 1, and the ac­
companying description with the Tollowing restric­
tions. Memory modules A and B are the one unit 
(a disc file) using the same data channel. The corc~ is 
not operated on a paging scheme but it is segmented 
on a coarse scale with hardware protection betwc~en 
segments. Segments are assigned to individual user 
programs and during execution these programs 
generate, under executive control, I/O operations 
with the disc file. These operations consist of the 
transfer of fixed-size blocks of information and they 
can be considered equivalent to page swaps in the 
general model. There is only a small number of 
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users so that in general each user program can be 
assigned a segment of core memory which is not 
reassigned during most of his interaction periods. 
Most user programs will be executed repeatedly to 
perform information storage and retrieval or com­
mand and control functions. These programs will 
be loaded from the disc file as required. 

The loading of a new user program in this system 
corresponds to a file transfer in the general system. 
Additional tables to be transferred in the loading 
operation increase the time of use of the disc data 
channel to an average of approximately two seconds 
for the total loading operation. Fixed-size blocks 
of information transferred in the swapping or over­
lay operations instigated by a user program have an 
average transfer time of 150 milliseconds. As the 
same data channel is in use for loading new pro­
grams and swapping operations the executive I/0 
scheduling algorithm must resolve conflicts by pri­
ority. Two possible alternatives for the algorithm, 
priority to loading operations and preemptive pri­
ority to swapping operations, were incorporated in 
different models and their effect is illustrated in the 
results. 

The phases of program execution previously de­
fined have the same meaning in these models once 
we equate file transfers to the loading of a new user 
program. In each model we assumed that the dis­
tributions for the execution times in phases 1 2 
and 3 were negative exponential with appropriat; 
means. These assumptions give a degree of sim­
plicity to the models; however there is evidence7•8 

that this type of distribution is to be found in prac­
tice. Two distributions with identical means were 
used in different models to describe the execution 
time for phase 4 (program loading). These were the 
exponential and the second order Erlang. The 
Erlang distribution has smaller variance than the 
exponential and also gives very small probability of 
short loading times. These characteristics were con­
sidered representative in describing the program 
loading time for this system. 

We now discuss the results from three queueing 
models which correspond to Fig. 2 with the follow­
ing qualifications: 

Modell: Exponential distribution for program 
loading time, priority to program load­
ing operations for use of the disc file data 
channel. 

Model 2: Erlang distribution for program loading 
time, priority to program loading opera­
tions for use of the disc file data channel. 

Model 3: Erlang distribution for program loading 
time, preemptive priority to swapping 
operations for use of the disc file data 
channel. 

We will not discuss the state descriptions necessary 
to incorporate these details in the mathematical 
models. 

RESULTS 

Because of the essentially unchanging class of 
user programs in this application it is convenient 
to use the performance parameters given above 
("Analysis and Interpretation of the Mathematical 
Model") and defined on a per program basis. These 
parameters are plotted in Figs. 3-7 as functions of 
the number of users. All times have been normal­
ized to the mean transfer time involved in phase 2. 
The system characteristics are defined below in 
terms of the model parameters: 

""2 
1 

""3 
1 

""4 
!L 
r 

N 

Mean CPU execution time (plus execu­
tive overhead) for a user program. 

Mean block transfer time between disc 
file and core memory. 

Mean user response time. 

Mean user program loading time. 

Mean number of user interactions per 
user program. 

Mean number of block transfers per 
user program. 

Number of users. 

Most of the results given are for model 3. Fig­
ure 7 and Table 1 include results from models 1 
and 2 for comparison. All the general inferences 
made from the model 3 results could also be made 
from the results of the other models. 

Figure 3 shows how performance is limited as 
user programs generate increasing numbers of block 
swapping operations. For these curves the mean 

user program execution time is short (_1_ = 1), 
,.,,\r 

and hence the CPU is idle most of the time. When 
each user program makes only light use of the disc 

channel (~ ~ 5). we see that the user busy fraction 

stays high for at least three users. Nevertheless the 
user programs experience significant queueing de-
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Figure 3. System performance parameters from model 3 for 
• I/Ill r = I, 1/1l2 = I, 1/1l3 = 20, I/1l4 = 15, 

q/,. = 5. 

lays (note user program response) since the increase 
in the number of users causes the disc channel use 
to rise noticeably. 

When disc channel usage increases to p / r = 20, 
the disc channel becomes saturated. With five users 
it is in use 95% of the time, and the user busy 
fraction drops from 0.73 for one user to 0.46 for 
five users. The task program response curve indi­
cates the queueing delays ir.. the disc channel. 

The program throughout is plotted in Fig. 3b 
showing that for p/r = 5 and five users, programs 
are completed at 4.7 times the rate when there is 
only one user. The reason is that the dominant 
factor in program completion rate is the user re­
sponse time and users can respond in parallel. How­
ever for pi r = 20, the program throughput is only 
3.7 for five users; here queueing in the disc channel 
is causing significant delays and the user response 
time is no longer the dominant factor in the comple­
tion rate. 

For the program statistics assumed in Fig. 3 the 
CPU was not in use more than 5% of the time. In 
Fig. 5 a contrasting set of statistics has belen chosen 
in which the CPU capacity is now the performance 
limit. User response time does not solely determine 
the completion rate even when there is only a single 
user of the system. Queueing delays for use of the 
CPU become significant as soon as there! is more 
than one user. Performance is fairly inse:nsitiv,e to 
the range of disc channel usage chosen. Owing to 
the saturation of the CPU, the program throughput 
increases very little for more than three users, and 
for five users the user busy fraction has been halved. 
Note that the program throughput is slightly higher 
for p/r = 20 than for p/r = 5. The higher fre­
quency of swapping operations for user programs 
increases the number of phases of CPU execution 
per program but reduces the average duration of 
each phase. The net result is to reduce queweing 
delays and thus improve the program throughput. 

user prooram response 
- - - -- user busy frac1ion 
- - - - - user busy fraction (dynam'lc curve) 
_. - probability that disc chanl'11el is in use 
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System performance parameters for model 3 for 
I/Illr = 25, I/1l2 = 1, I/1l3 = 20, I/1l4 = 15, 
q/r = 5. 
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In the discussion so far we have assumed that an 
increase in the number of users does not affect the 
number of swapping operations for each user pro­
gram. However if the amount of core storage allo­
cated to each user program is reduced as more users 
are allowed to use the system, the mean number of 
block transfers per user program p/r must,increase. 
We can therefore treat the curves plotted for fixed 
values of p/r as static performance parameters, and 
to obtain the true performance parameters we must 
use a dynamic operating characteristic which gives 
p/r as a function of N. An example is shown in 
Fig. 4 where a dynamic curve for user busy fraction 
is plotted assuming the relationship between p/r 
and N given by the following table: 

N 1 3 4 5 

p/r 5 10 20 40 
The result is a much more rapid degrading in per­
formance with increasing N. 

The aspects discussed have concerned the varia­
tion in system processor use and the resultant per-

--- user program response 
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1.0..--------------:::1 
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Figure 5. System performance parameter from model 
3 for I/J.l.lr = 75, I/J.l.2 = I, I/J.l.3 = 20, 
I/J.l.4 = 15, q/r = 5. 

formance obtained by each user with different 
program statistics and a range in the number of 
users. It is apparent that the user response time 
in each iteration is a key factor in determining how 
many ~onsoles can be serviced by this type of sys­
tem. The user responses envisaged for this system 
are elementary so that the curves of Figs. 3, 4, and 5 
correspond to rapid responses. If slower response 
times were expected the performance parameters for 
the same number of users would be considerably 
changed. This is illustrated by the curves of Fig. 6 
where the mean response time is 2.5 times that for 
the other figures. 

In Fig. 7 the same performance parameters are 
plotted as a function of the number of users for two 
sets of statistics. Two curves for each parameter are 
given corresponding to models 2 and 3. The curves 

user prooram response 
user busy fraction 
probability that c.p.u. IS in use 
probability that disc channel 
is in use 

1.0~--r--_r----r------' 

0.8 

0.6 -

0.4 -

0.2 -
(I) I/fLlr=25 
(2)1/fLl r = 75 

(a) 

( b) 

Figure 6. System performance parameters from model 3 for 
I/J.l.2 = 1, I/J.l.3 = 50, 1/J.l.4 = 15, q/r = 5, p/r = 
20. 
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Table 

1 
- = 25, 

1 
- = 20, 15, !L = 5 

J.llr J.l3 J.l4 r 

Prob. CPU User Busy Probe Disc Channel is in Use 

p/r N is in Use Fraction Program Loading Swapping 

Modell Model 2 Modell Model 2 Modell Model 2 Modell Modd2 

5 1 .172 .172 .689 .689 .103 .103 .035 .035 
5 3 .447 .450 .597 .600 .264 .268 .089 .090 
5 5 .626 .633 .502 .507 .370 .377 .125 .127 

10 1 .167 .167 .667 .667 .100 .100 .067 .067 
10 3 .423 .425 .565 .568 .251 .254 .169 .170 
10 5 .584 .589 .468 .472 .346 .351 .234 .23.5 

20 1 .156 .156 .625 .625 .094 .094 .125 .12.5 
20 3 .387 .388 .515 .517 .228 .231 .310 .311 
20 5 .522 .524 .416 .418 .308 .311 .418 .419 
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show that the I/O strategy of model 3 (preemptive 
priority to block swapping operations) gives better 
performance for larger N. One would expect a sig­
nificant advantage to be given by this strategy when­
ever there is frequent use of the disc channel. 

In Table 1 performance parameters derived from 
models 1 and 2 with the same statistics are plotted. 
The loading process has been modeled by an ex­
ponential distribution in model 1 and by a second 
order Erlang distribution in model 2. For equal 
mean values of these distributions it is seen that the 
maximum difference in performance parameter 
values is approximately 1 %. This indicates a good 
degree of insensitivity of these performance param­
eters to loading time statistics other than the mean 
value. 

CONCLUSION 

An example has been given of the use of Markov 
models in the analysis of computer systems. With 
sufficient statistics available on the user and pro­
gram characteristics, useful predictions on the sys­
tem performance and capacity could be made. The 
curve for the dynamic operator busy fraction in 
Fig. 4 illustrates the limitations involved in multi­
programming and the segmenting of programs. The 
nonlinear increase in the amount of page swapping, 
as the number of pages of core memory assigned 
to a program is reduced, is not unrealistic. As the 
effect on system performance is so marked it is sug­
gested that considerable care will have to be taken 
in assigning a suitable working area of core to each 
user program. 

The general model proposed for the time-sharing 
system of Fig. 1 involves approximations and as­
sumptions on the operation of such a system and the 
probability of the service times. Experience to date 
has indicated that, provided one is only interested 
in mean value performance, liberal approximation 

and lumping of processing functions may be made 
in the modeling without changing the significant 
results. However it is possible to develop a more 
detailed and accurate mathematical model than that 
of Fig. 2 which is still solvable by RQA. Significant 
points which could be included are the interruption 
of user programs at discrete time intervals, specific 
representation of the executive program execution, 
and the use of multiple processors. 

This modeling technique presents a useful and 
economic alternative to constructing general simu­
lation models in the analysis of time-sharing com­
puter systems. 
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AN OPTIMIZATION MODEL FOR TIME-SHARING * 
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INTRODUCTION 

The proper design of scheduling processes for 
time-shared computers has provoked much dis­
cussion. One of the factors promoting discussion 
is the great variety of scheduling procedures which 
one can feasibly program, and which will operate 
with adequate efficiency. There is wide latitude for 
conjecturing possibly improved procedures. More­
over, the performance requirements of time-sharing 
demand more sophisticated schemes than one can 
analyze with simple queueing theory, yet it is not 
feasible to experiment with many alternative pro­
cedures in operational systems and produce quan­
titative evidence of their relative merits. 

The scheduling techniques in use today are of two 
major types: round-robin procedures and multiple 
priority level procedures. A round-robin process 1,2 

treats the queue of users uniformly, giving each 
program a "slice" of execution time and then swap­
ping it for another. This conforms to one intuitive 
notion of time-sharing, inasmuch as each user may 
obtain an equal share of computer time on a short,;. 
term basis. Multiple priority schemes3 allow the 
choice of a job for execution to be determined by 

*This paper is based upon research performed at the Systems 
Engineering Laboratory of the University of Michigan and sub­
mitted as a Ph.D dissertation in electrical engineering. The 
author is grateful for financial support from the U.S. Air 
Force Rome Air Development Center and the National Science 
Foundation. Assistance in publication was also provided by 
Project MAC at MIT. 
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its initial priority and the amount of execution time 
it has received. Compared to the round-robin, the 
priority procedure has greater flexibility inherent in 
the choice of initial priority assignments and the 
maximum execution time allocated to jobs of each 
priority level. By a proper simplification, a multiple 
priority scheme becomes a round-robin procedure. 

The pioneers of the time-sharing field have experi­
mentally found successful versions of the above pro­
cedures for their particular systems. But the future 
development of on-line computer systems will un­
doubtedly benefit from attempts to establish general 
quantitative properties of scheduling schemes, in­
cluding ones which are not necessarily in current 
use. A good approach to take for this objective is 
to model the queueing situation resulting from a 
proposed scheduling procedure. Even more de­
sirable however is an optimization technique which 
will allow one to model a class of scheduling pro­
cedures, and which will systematically synthesize 
an optimum procedure according to some specified 
criterion. The importance of Markov stochastic 
models in queueing theory suggests that the theory 
of Markov sequential decision processes4--6 will pro­
vide the desired optimization model. 

This paper describes some results produced by 
this type of model for a time-shared computer with 
four remote consoles and three queue levels for 
user jobs. Swapping and program loading time are 
included, and a rather general execution time dis­
tribution is treated. The optimal system has been 
computed for two distinctly different performance 
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measures, both related to response time. Although, 
a wide class of procedures is admissible, the optimal 
systems have much the same structure as those used 
in contemporary systems. 

THE SYSTEM 

The model concerns a hypothetical time-sharing 
system typical of those currently in <?peration, 
illustrated in Fig. 1. The mass memory is a large 
capacity magnetic drum, and we assume its revolu­
tion time to be 50 msec. The main core memory 
contains the Executive Control Program (ECP) for 
the system and a memory area allocated to the user 
program being executed. No multiprogramming is 
involved, so only one user program resides in core 
at any time. The user area is also taken to be of 
modest size, say 8000 words, allowing a user core 
image to be stored in one drum field. Thus swap­
ping of two user programs can be accomplished in 
100 msec minimum. In order to also accomodate 
ECP scheduling overhead we extend the swapping 
time to 150 msec. 

The real time clock provides an interrupt every 
50 msec, equal to the drum revolution time. In 
order to measure the passage of an arbitrary time 
interval, a timekeeping function is part of the ECP, 
and this activity occurs in response to every clock 
interrupt. A clock interrupt may also initiate the 
scheduling operation, as shown in Fig. 2. Because 
of this, the scheduling process involves discrete time 

Remote 
Console 1 

~ Telephone Lines 

• 

• • Communication • 
• Interface 

... 
• • 

"" 

• 

Remote ... 
Console 4 

. 

steps, with a scheduling action possible occurring at 
any 50-msec step. 

Two important conventions will be imposed on 
system operation. A user console may only have 
one command in process at any time. Also, every 
command must be initiated from a user console, 
thereby excluding one job from initiating another. 
As a result, the system may have at most four user 
jobs in process. The completion of any command 
marks the beginning of a user reaction time, after 
which another command arrives from the console. 

One can conceive at this point of a very genc~ral 
scheduling procedure in which each decision re­
quires a dual choice: 

1. Selection of a job from queue to be 
executed. 

2. Selection of a maximum time intt~rval 

for execution of the job before return­
ing it to queue. 

The decision at any time could be based upon a 
variety of data, such as the accomplished execution 
time of jobs in queue, the size of job programs, 
the originating consoles, and the time at the deci­
sion point. We will only investigate a ';'contc~xt­

free" case, in which jobs in queue are distinguish­
able only on the basis of the execution time each has 
already received and their time of arrival. More­
over, in keeping with the simplicity of existing 
systems, the allowable execution time intervals: in 
(2) above will be restricted to three values in such a 
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Figure 1. Equipment organization. 
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Figure 3. Multiple queue structure of the system. 

way as to establish three queues as shown in Fig. 3. 
In this scheme only one job is executed at a time. 

This structure is very similar to that in multiple 
priority procedures. But additional flexibility comes 

about because we may choose to serve a job from 
any queue that is occupied. There is no restriction 
on the choice, such as a priority ranking would 
impose. The choice can depend upon the number 
of jobs in each queue and will of course be in­
fluenced by the specified values for the maximum 
execution intervals, e2, e3 - e2, and q. The model 
allows us to determine the optimum choice relative 
to a specified measure of performance, and to in­
vestigate optimal values of e2, e3, and q. 

MEASURES OF PERFORMANCE 

The quality of performance which users observe 
for a time-sharing system depends upon many 
factors. Reliability and ease of communication via­
suitable high-level languages are important ex­
amples of such factors. A queueing and scheduling 
study, however, emphasizes queueing delay as a 
performance factor. In doing so, one should recog­
nize that the population of users generally consists 
of "interactive" and "background" users, where the 
distinction is loosely established by the average 
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amount of processor time per request. It seems 
clear that interactive users are usually more sensitive 
to delay, and constitute the more significant portion 
of the user population for a well-developed time­
sharing system. Thus, without implying scorn for 
the performance requirements of background users, 
we will concentrate on the response time per­
formance for interactive users. 

Two quantitative measures of response time per­
formance are of interest here. For the first we con­
sider the system performance over any period of 
time to be measured by the sum of the intervals for 
all user jobs in that period. An improvement of 
response time performance can be achieved by seek­
ing a scheduling procedure wh:ch minimizes this 
sum. Recognizing that job arrivals and completions 
are random, and taking an arbitrarily long period 
of time this optimization criterion becomes equiv­
alent to minimizing the average number of user jobs 
in process at any instant of time. 

The second optimization criterion arises from the 
realiiation that the minimum response time to any 
command is its execution time, and a user who re­
quests a long computation must, by his own choice, 
be satisfied with a correspondingly long response 
time. Thus, for example, 0.5 sec additional delay 
on ajob taking a minimum of 3 sec to do should not 
be as degrading to performance as the same addi­
tional delay on a 10-msec job. This reasoning sug­
gests measuring system performance by a weighted 
sum of the :response times for all jobs over some 
time period, where the weight applied to the re­
sponse time of a job depends upon its execution 
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Figure 4. Weighting function for the second optimization 
criterion. 

time. Figure 4 depicts one weighting function which 
we have used to explore this case. Note that the 
first ment~oned measure of performance corre­
sponds to a unit weight for any value of execution 
time. The second optimization criterion therefore 
amounts to minimizing the average total weighted 
response time to user commands in any long time 
period of system operation. Table 1 summarizes the 
two criteria. 

Table 1. Optimization Criteria 

No. Statement 

Minimize average total response time for all 
user commands in a period of system 
operation. 

2 Minimize average total response time for all 
user commands, each weighted :according 
to Fig. 4,over a period of system oper­
ation. 

MODELING 

As one should anticipate, modeling of the tiime­
shared system as a Markov sequential decision 
process depends upon certain idealizations. Among 
these is the assumption that the user reacltion time, 
lu, and the execution time per command, Ie, are 
independent random variables. These time: intervals 
are the human time and the central processor tilme, 
respectively, in a man-machine interaction. The 
probability distributions treated are the following: 

Probability of lu ~ T = 1 - e- T/ Tu (1) 

where Tu is the mean value of lu, an~ 

Probability of Ie ~ T = 1 - 'Yle-p,T - 'Y2e-p·T (2) 

where J.i.l and J.i.2 are positive, and 1'1 and 1'2 are 
probabilities with unit sum. The mean lexecultion 
time is Te = l' I/J.i. 1 + 'Yl/1.L2' Equation (2) is called 
a hyperexponential distribution (Ref. 7, p. 19), and 
its use stems from some observations of execution 
time on the batch-processing operation of the Com­
puting Center at the University of Michigan.s In 
Fig. 5 some points are given from these ba1tch­
processing observations, as well as two curves de­
rived from Eq. (2) by different choices of the param­
eters. One sees that the observations could be fitted 
fairly well by a suitable member of the family rep­
resented by Eq. (2). We will concentrate on curves 
1 and 2 of Fig. 5 as representative members of this 
family. 
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Both distributions (1) and (2) above seem reason­
able, but there is little data available to irrefutably 
justify them. Our batch-processing observations 
certainly provide some evidence supporting the 
general shape of the distribution for execution time. 
Also, there has been some statistical data from the 
MIT system 9 which indicates these idealizations are 
good approximations, as are the particular system 
parameter values we will use (see Table 2). 

In addition we take constant values for both the 
swapping time, s, and the set-up time, S. The latter 
is the CPU time spent in initial relocation and link­
ing of subroutines for a command. The ECP over­
.head occurring between successive scheduling deci­
sions is neglected. 

Based upon these assumptions and the physical 
properties of the system one can proceed to formu­
late a Markov model and derive the data needed 
for the optimization algorithm devised by Howard5 

and Jewell.6 Such data includes probabilities on the 
command arrivals and the job completion during an 
execution pass, and the mean time durations be­
tween successive scheduling decisions. Also in-

. volved are quantities which measure the per­
formance during an execution pass as determined 
by the optimization criterion of interest. A full 
discussion of the formulation of the model and how 
the necessary data are derived is beyond the scope 
of this paper. The interested reader should consult 
the references and the full report from which this 
paper is drawn. lO 

OPTIMAL SCHEDULING 

The alternative choices of the queue to be served 
for each combination of numbers of jobs in the 
queues give rise to well over one billion different 

. scheduling procedures for this system. Included in 
this number are the first-come, first-served pro­
cedure (FCFS), and the six priority procedures 
possible with this system. Among the latter, our 
results point especially to the "1-3-2 Priority," 
which assigns priorities 1, 3, and 2 to Queue 1, 
Queue 2, and Queue 3, respectively. (Priority 1 is 
top priority.) The optimization computation de­
termines an optimal procedure from the admissible 
set for a given set of values of the system parameters 
listed in Table 2. The computation is fast enough, 
however, so that we have economically obtained 
solutions and general conclusions for the range of 
parameter values shown. These may hold for even 
wider variation of the parameters. 

Table 2. System Parameters 

Appropriate 
Symbol Definition Values 

Tu Mean user reaction time 20-30 sec 
Te Mean execution time per 1-4 sec 

interaction 
s Swap time 150 msec 
S Setup time for relocation 1 sec or less 

and subroutine linking 
e2, Execution time alloca- Arbitrary, 

e3 - e2, tions subject to 
and q modeling 

limitations 

To begin the discussion, consider the first optimi­
zation criterion. The execution time distribution 
shown in Fig. 5 as curve 1, although not as ap­
propriate as curve 2 perhaps, produces a rather 
interesting result. The optimal procedure is first­
come, first-served for all parameter values. This 
makes sense intuitively, for FCFS avoids swapping 
time. Moreover, with this execution time distribu­
tion FCFS is always processing a job having min­
imum mean execution time to completion. 

For the execution time distribution given by curve 
2, one must consider both the optimal procedure 
and the optimal values for e2, e3, and q. The min­
imum value of e3 permitted by the Markov model is 
1.5 Te, and any larger value gives poorer per­
formance. A smaller value of e3 is therefore likely 
to further improve performance. Subject to this 
limitation, optimization of the model indicates that 
the optimum procedure is 1-3-2 Priority and 
optimal values of e2 and q are Te and one clock 
interval (50 msec), respectively. This holds for 
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Table 3. Average Total Queue for 
Optimal Scheduling with Criterion 1 

Optimal Aver. 
Tu Te S e2 e3 q Policy Queue 

\Seconds Priority: 
30 4 0 0.6 6 0.05 1-3-2 0.8l31 
30 4 0 3.5 6 0.05 1-3-2 0.6691 
30 4 0 4.0 6 0.05 1-3-2 0.6671 
30 4 0 4.25 6 0.05 1-3-2 0.6690 
30 4 0 4.0 6 0.50 1-3-2 0.6725 
20 1 1 0.50 1.5 0.05 1-3-2 0.4893 
20 1 1 1.0 1.5 0.05 1-3-2 0.4853 
20 1 1 1.45 1.5 0.05 1-3-2 0.4862 
20 1 5 1.0 1.5 0.05 FCFS 1.402 

values of S not exceeding Te. Table 3 gives the com­
puted average total queue of jobs for typical cases. 
The minimum queue occurs for the optimal values 
of e2 and q. 

Now consider the second optimization criterion. 
The minimum value of e3 permitted by the model is 
the larger of 1.5 Te and 4 sec, the latter arising from 
a need to have constant weight for jobs taking 
longer execution than e3 (see Fig. 4). Although this 
limitation has some effect, it is still surprising that 
the optimal system is much the same as for the first 
criterion. Moreover, the optimal system is the same 
for both execution time distributions (I) and (2) of 
Fig. 5, in contrast to the case of the first criterion. 
Table 4 shows typical values of the computed per­
formance measure over a one-unit (50-msec) time 
interval. 

Table 4. Average Unit Time Performance Measure 
for Optimal Scheduling with Criterion 2 

seconds 
30 4 0 2 
30 4 0 3 
30 4 0 4 
30 4 0 3 
30 1 1 0.50 
30 1 1 1.5 
30 1 1 2.0 
30 1 1 1.0 

Optimal 
e3 q Policy 

Priority: 
6 0.05 1-3-2 
6 0.05 1-3-2 
6 0.05 1-3-2 
6 0.50 1-3-2 
4 0.05 1-2-3 
4 0.05 1-3-2 
4 0.05 1-3-2 
4 0.50 1-2-3 

Aver. 
Unit Time 

Performance 

0.0806 
0.0782 
0.0788 
0.0821 
0.1592 
0.15~ 
0.15 5 
0.1599 

Several important points emerge from the optimi. 
zation of the model. The optimal system is sub­
stantially insensitive to the precise values of the 
system parameters. This makes it feasible to apply 

the results of the model to a physical system, where 
parameters are not known exactly and may change 
gradually. The fact that all optimal procedures are 
priority procedures is noteworthy both in regard to 
simplicity of implementation and the current prac­
tice in time-shared systems. The emphasis upon a 
minimum execution time allocation for the third 
queue indicates a need for very rapid preemption of 
low priority jobs. This is a contribution, for ap­
parently no existing system allows preemption 
except after a significant delay. 

This study leads us to suggest a scheduling pro­
cedure which should produce somewhat better per­
formance than those considered here. The system 
would have two priority levels, with new jobs enlter­
ing the first priority queue. A first priority job 
would preempt a lower priority job one clock inter­
val after the former's arrival, and would then rec:eive 
execution for a maximum time equal to Tn the 
mean execution time of the population. After this it 
would be relegated to second priority. The lower 
queue would be served round-robin with an execu­
tion quantum much larger than Te. 

COMPARISON OF PROCEDURES 

A much better picture of the performance of the 
optimal system can be obtained from the mean 
response time of a command, given the execution 
time required. Table 5 describes the optimal system 
and three other scheduling policies used in existing 
systems. The round-robin procedure is ~~ssentially 
a 2-1-3 Priority system, which places new arrivals at 
the head of the round-robin queue. FigufC!s 6 and 7 

Table 5. Scheduling Policies for Comparison 

Policy Type e2 e3 q 

Fig. 6 Cases: 
Priority: seconds 

Round-
Robin 2-1-3 6.01 6.0 

Priority A 1-2-3 2.0 6.01 8.0 
Priority B 1-2-3 2.0 6.01 2.0 
Optimum 1-3-2 4.0 6.0 0.05 
Fig. 7 Cases: 
Round-

Robin 2-1-3 1.5 1.5 
Priority A 1-2-3 0.5 1.5 2.0 
Priority B 1-2-3 0.5 1.5 0.5 
Optimum 1-3-2 1.0 1.5 0.05 
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compare the mean response time for these policies. 
One can see that the optimal system achieves a 
smaller response time for trivial computations at a 

cost of larger response time for jobs requiring exe­
cution time Te or greater. The other policies ex­
perience a large jump in response time at an execu­
tion time of 1.5 Te , so this aspect of the optimal 
system should not be disturbing. 

CONCLUSIONS 

The optimization approach we have used is quite 
new for systems with queues, and the practical re­
sults one can obtain commend it for future studies. 

The time-shared computer system we have 
modeled is quite typical of existing systems. Three 
noteworthy conclusions relative to time-sharing 
practice have been found. To begin, it makes no 
substantial difference under the performance meas­
ure we have treated whether or not one gives extra 
importance ·to the response time of trivial compu­
tations. The optimal system, subject to the limita­
tions of the model, is a multiple priority scheme 
and is reasonably insensitive. to the values of the 
system parameters. There is a need for more rapid 
preemption of lower priority jobs than presently 
used in operational systems. 

Our results suggest a two-priority scheme where 
new arrivals are given first priority and are relegated 
to second priority after receiving the mean execution 
time. A new arrival should preempt a lower priority 
job as soon as possible. There is a need to study 
multiple Pl \ority schemes with more levels, and with 
greater flexibility in execution time allocations than 
we have treated. 
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INTRODUCTION 

The study of dynamical systems with the aid of 
analog and digital computers has developed rapidly 
in the past two decades. Increased interest in sys­
tems described by differential equations which are 
nonlinear or have time-varying coefficients, has re­
sulted in more reliance on techniques requiring 
on-line computation. Usually less is known a priori 
of how the solutions will develop or what param­
eter values or initial conditions should be used. The 
recent trend to using hybrid computers (combina­
tions of digital and analog equipment) has been 
motivated by the desire to study complex dynamical 
systems with computer configurations which are 
designed with particular classes of problems in 
mind. Extensive use· of display, plotting, and print­
ing equipment as well as elaborate consoles attest 
the on-line capability of such computers. 

Designing a computer for the on-line study of 
dynamical systems involves many factors, but 
among others, speed, accuracy, cost, and user 
convenience are particularly important. The system 
described here has emphasized user convenience so 

*Operated with support from the U.S. Air Force. 
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that experimental or "trial and error" computa­
tional methods are encouraged. An accuracy of 
0.1% to 0.01% was considered adequate, and the 
speed (as measured by ability to solve problems in 
real tim(~) is roughly equal to the fastest commercial 
digital computers. Although many modern analog 
computers are considerably faster in solving systems 
of ordinary differential equations, and much greater 
accuracy can be obtained on digital computers, this 
compromise still allows the study of many problems 
of great interest. The system is a laboratory experi­
mental model rather than a production prototype, 
and the cost was kept low by using many com­
ponents which were on hand. The added cost to the 
large time-shared system, of which it is a part, was 
relatively small. 

The basic computer configuration is similar to 
many hybrid computers in that it includes a general­
purpose digital computer and a special-purpose 
computer which is largely a collection of integrators. 
Most frequently, the special-purpose computer in 
a hybrid is a high-speed analog computer that meets 
the need for real-time simulation. In the system 
discussed here, the special-purpose computer is a 
high-speed digital differential analyzer (DDA)­
a collection of digital summers which approximate 
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integration. (See Ref. 7 also.) One great con­
venience to the user results from the fact that the 
interconnection of the integrators is specified as part 
of the 86-bit words that describe the integrators. 
Thus, a patch board is not needed, and as a result, 
it is possible to write programs for a general­
purpose computer to set up the DDA. It is the 
combination of hardware, which allows rapid, 
program-controlled changes in interconnection, and 
software, which translates a problem statement into 
interconnection information, that makes this system 
quite attractive. High-speed operation is important 
in reducing reaction time, and flexible controls that 
allow start/stop, display, sampling, and repetition 
are other notable features. 

The interconnection of the small general-purpose 
digital computer, the LINe, and the DDA is de­
scribed in the next section. The setup of the DDA 
is done by transferring information from the LINe 
core memory to the DDA core memory. The in­
formation in the LINe core memory is obtained by 
transfer from a large time-shared computer in which 
a mapping and scaling program operates. At pres­
ent, interconnection to the Project MAe computer 
over a teletype line has been made, and connection 
to the Lincoln Laboratory IBM 360 System will be 
completed soon. The mapping and scaling can be 
done manually for simple problems and the results 
inserted directly into the LINe core memory. The 
operation of the system is described in a later sec­
tion; an important feature is the special combination 
of LINe and DDA which the user may operate in 
an experimental fashion with less concern for the 
usual high charges for time on a large central 
processor. The large processor is used only when it 
is necessary to map or scale. 

A HIGH-SPEED DIGITAL DIFFERENTIAL 
ANALYZER 

Basic DDA Algorithms and Other Features 

The design of early DDA's was centered about 
the use of magnetic drums, these being memory 
devices of reasonable cost with a serial operation 
which was especially attractive in the processing of a 
set of DDA integrators. The development of core 
memories of modest price with cycle times in the 
I-microsecond region provides the designer with the 
possibility of making a DDA with a much higher 
speed and at quite reasonable costs. 

A DDA in which a core memory is used requires 
a structure different from the usual one. In addi-

tion, when one desires to connect a general-purpose 
machine in a reasonable way, and in particular, to 
organize the DDA so that the general-purpose 
machine easily can load (or change) the intercon­
nections of the integrators, the starting and intl;::r­
mediate values in the integrators, the scale factors, 
and so forth, a different organization becomes 
attractive. Each word in the memory stores the in­
formation concerning a single integrator, and all 
operations for updating an integrator are pe:rformed 
using parallel arithmetic. 

Before proceeding with the organization of the 
machine, let us briefly examine the integrator algo­
rithm and number system selected. These date back 
to MADDIDA, and (to the best of our knowledge) 
were the work of I. S. Reed. Each integrator in the 
system consists of a single word in the core memory. 
Variables in the system are represented by 24 binary 
bits including sign. The number system used is a 
2's complement system with sign bit comple:ment(!d. 
For 4-bit numbers, the number representatiion is as 
shown below: 

1111 +7 
1110 +6 
1101 +5 
1100 = +4 
1011 +3 
1010 = +2 
1001 = +1 
1000 = 0 

0111 = -1 
0110 = -2 
0101 -3 
0100 -4 
0011 -5 
0010 -6 
0001 -7 
0000 = -8 

Each integrator realizes the relation 

dz = Cydx (1) 

where C is a constant, dz an "output increment," 
and dx an "input increment," and y the integrand. 

The definite integral of the above relation is 

z(x) = z(xo) + C jX y( 'Y) dx( 1') (2) 
xo 

This definite integral is approximated by a sum. 
The interval ('Yo, 'Y) is divided into n subintervals of 
length A'Y so that i"k = 'Yo + kA'Y, and we choose 
Xo = x('Yo) and x = x(i"). Therefore, 

n 

z(x) = z(xo) + C L: Y( 'Yk) AX( 'Yk) + ~n 
k .. ! 

where 

and 
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and En is an approximation error. Finally, letting 
Y( I'k) Llx( I'd = ~z( I'k), the result is 

n 

z(x) = z(xo) + C L ~z( I'k) + En (3) 
k=! 

where fn is again an error term. 
This mathematical representation shows that the 

DDA performs incremental computations rather 
than full-word operations, and the approximation 
to integration is usually called rectangular integra­
tion. As shown below, the computations are fixed­
point, so that scaling is very important. Finally, it 
should be noted that the DDA solves initial-value 
problems. 

Let us now consider a part of an integrator regis­
ter. An integrator register can be looked upon as a 
"black box" with two inputs, dx and dy, an output 
dz, and a stored value y, such that relation (1) above 
is approximated. 

In this machine there are 256 integrators which 
are sequentially updated. Each integrator is in 
reality a word in the core memory consisting of 
24-bit R-register and a 24-bit Y-register, plus in­
formation as to which outputs from the other inte­
grators comprise the dy and dx inputs to the inte­
grator. There is also other information in each, 
word, and this is discussed in the following section. 
Figure 1 is a block diagram of an integrator. 

a. Symbol for a Single Integrator 

DX~DZ 
L-To;' 

b. Operations In a Single Integrator 

Figure 1. Block diagram of DDA integrator. 

The Y-register part of each word contains values 
of the variable y. Provision is made so that the 
Y-register can be added to or subtracted from the 
R-register, and this is controlled by the dx input, 
which is a one-bit input that we call ~X .. 

The overflow or carry from the most significant 
bit of R (each time Y is added to R) is called ~Z, 
and it has value + 1 if an overflow of R occurs and 
- 1 if no overflow occurs. 

The dy input is actually a sum of the outputs (or 
~Z's) from up to 16 other integrators. We call this 
sum ~ Y and the particular ~Z's which are added 
together to form ~ Yare selected in a manner which 
is descri bed later. 

The LlZ's from each integrator are stored in a 
circular shift register of 256 flip-flops. Each position 
in the shift register corresponds to an address in 
the memory .. The integrators are processed or up­
dated starting with the integrator at address 1 in the 
memory proceeding through the integrators until all 
those that are being used have been updated; then 
the integrator at location 1 is again updated fol­
lowed by the others. The core memory is a split­
cycle memory requiring 0.75J.,Lsec fpr each half-cycle 
so that it takes 1.5J.,Lsec to update a single integrator. 
A problem with 16 integrators would then require 
24J.,Lsec for a single iteration or updating of all 
integrators. 

During each updating of an integrator the follow­
ing operations occur (see Figs. 1 and 2): 

1. The ~Z's in the shift register, the sum 
of which comprise the ~ Y for the inte-

Clock Pulses: I 
(4Mc) 0 

Read/Write: 

Transfers: 

Operations: I I 
~Y8el 

~ith Cycle----+ 

I I I I I I I I I I I I I I 
3 450 1 2 3 • 5 0 I 234 
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..... 
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W Q 
-) -) 

Q MBR 

Y+AY Rover 

-+ ~ 
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Figure 2. Timing for processing the Ith integrator. The Ll Y" 
bits for the Ith integrator are stored in the (I - 1 )th 
word. 
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grator being updated, are selected and 
added together and stored in five flip­
flops. 

2. The AX input is selected from the AZ 
shift register and stored in a flip-flop. 

3. The value of AY is added to the current 
value of Y. 

4. The new value of Y is multiplied by AX 
and this is added to R. The value of the 
overflow from R is then stored in the 
appropriate location in the AZ shift 
register. 

Proof that this algorithm will yield a system in 
which the integrators approximate the relation given 
earlier may be found in Ref. l. Other DDA's are 
described in Refs. 2, 3,4, and 8. 

A servo mode of operation for the integrators 
also is included, in which, instead of using the over­
flow from R as the value to be placed in the AZ 
shift register, the sign of y is placed in AZ each 
time. This makes it possible to obtain an increment 
which approximates a sum of increments. A bit in 
each integrator word tells the control whether servo 
mode or conventional mode is to be used with a 
particular integrator. 

It is also possible to invert or· complement the 
AZ output from a given integrator. A bit in each 
integrator word tells whether or not the overflow 
from R (or sign of Y in the servo mode) is to be 
complemented before being stored in the AZ shift 
register. 

Description of Machine Organization 

The basic difference between this DDA and 
others which have been constructed to date is that 
each integrator carries with it information as to 
which of the other integrators comprise the AY and 
AX inputs. Also, complete information is provided 
as to whether it is to be us·ed as an integrator or in 
the servo mode, whether or not it should be sam­
pled, and so forth. As a result, each word in the 
core memory contains 86 bits. 

Figure 3 shows a simplified block diagram of the 
DDA. Each time an integrator is to be updated, 
it is selected and read into the memory buffer regis­
ter, which is a part of the memory. The integrator 
word is then transferred into the W register. The 
parts of each 86-bit word are as follows: 

1. R is the remainder, or running sum, as ex­
plained previously; 24 bits are used for R. 

2. Y contains the current value of the variable y 

INDEX 

~ 
~"'E"'ORY AODR"~S 

CONTROL COUNTI:RS 
881TS 

- ---

Figure 3. Block diagram of DDA. 

as explained in the previous section; 24 bits are used 
for Y. 

3. AXs contains 9 binary bits, 8 of these are used 
to select the value of AX from the 256-bit tJ,Z regis­
ter, or an independent increment, AT, is selected 
by the 9th bit. 

4. A Ys contains 18 bits. This part of the register 
is used to select the A Y-inputs to be added to Y. 
The selection can be made in three ways, and 2 bits 
of t~e register tell which way A Ys is to be uSI~d. The 
possibilities are: 

a) AYs may be used as a linear mask:; in 
which case, the 16 selection bits of d Ys 

are simply placed over the AZ register 
with the 8th bit on the AZ from the c:ur­
rent integrator. If a given bit in AYs is 
aI, the corresponding AZ is selected to 
be added into A Y; if the bit is a 0, the 
corresponding AZ is not added into 
AY. 

b) The first 8 of the selection bits of L~ Ys 

can be used to select a single AZ to be 
added to Y. Anyone of the 256 AZ's 
can be selected in this manner. 

c) The first 8 selection bits of A Ys can be 
used to select a AZ and the second 
8 bits to select another AZ, so that .1 Y 
will be the sum of these two selected 
AZ's. 

5. D consists of two bits and tells the display 
equipment whether or not the current value of Y is 
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to be displayed on the oscilloscope; and if it is to be 
displayed, whether it should be used to deflect along 
the X or Y axis of the scope. 

6. E is a I-bit register that tells whether or not 
the Y-value of the integrator should be given to the 
LINe computer for examination. The frequency at 
which the integrators are to be examined by the 
LINe computer is loaded into the DDA as the 
number of iterations to be performed between each 
examination. Only those registers which have 1 's 
in their E-position will have their Y-values trans­
ferred to the LINe computer. At this time, the 
system also can change values in the Y-registers. 
This enables the user to introduce step functions or 
other functions and also to check on current pro­
grams, record data, or display it when required. 

7. S contains 5 bits and is used to give the scale 
factor that determines the length of the Y and R 
registers for the integrator. S determines which 
carry or overflow from the added stages is examined 
to form IlZ for a given integrator. 

8. M consists of two mode bits. One bit indicates 
whether the integrator is to operate in normal or 
servo mode. The second indicates that the program­
mer wishes to stop the DDA if C(Y) = O. 

9. IlZsign is a bit which indicates whether the IlZ 
output is to be complemented. 

The use of Il Y", as a linear selector permits up to 
16 IlZ inputs to a single integrator i, but these 
must be within the interval (i - 7, i + 8). A study of 
the problem of interconnecting integrators with 
this capability revealed that while most problems 
could be mapped by adding "dummy" integrators, 
it made the actual number of integrators in use in 
some cases unreasonably large. The addition of an 
optional selection mode allowing either one or two 
IlZ's from among any of the 256 integrators allevi­
ated this problem and greatly increased the apparent 
capacity of the DDA. 

In setting up a problem, the LINe computer must 
give the DDA certain information in addition to 
that in the integrator. For instance, the number of 
integrators to be used is first entered into DDA 
circuitry. The machine is constructed so that the 
number of integrators processed is determined by 
this number. Integrators are processed in sequence, 
and one can use 16, 32, 48, ... , or 256 integrators 
in a problem. Thus for small problems only 16 inte­
grators are processed each cycle of the machine, 
requiring only 24JLsec. HoWeVer'qor a IOO-integra­
tor problem, 112 integrators wo ld be processed 
each cycle and a single updating ould require 168 

JLsec. Any unused integrators in these groups are 
processed, but no harm results except a slight loss in 
speed of operation. The LINe also loads a counter 
with the number of iterations or passes through the 
integrators which are to be made. The DDA will 
then stop after having performed the required num­
ber of iterations. Finally, the LINe loads the num­
ber of iterations between samples into the DDA. 
The sampling rate is determined by this. If the 
LINe loads the number N into the DDA, after each 
N iterations the DDA will pause on each integrator 
having a I in the E bit and transfer the contents 
(Y-register) of this integrator to the LINe. The 
LINe program examines each of the selected inte­
grators in turn, and the value in each of the integra­
tors also may be changed. 

In order to use the memory efficiently, a split­
cycle memory is used, and the integrators are not 
processed in a direct line. When the word associ­
ated with an integrator is called, and the memory 
delivers the word, there is not enough time to pro­
cess the integrator and write the results back into 
the memory without a delay. We therefore process 
integrator i while writing the word for i-I into 
memory and reading i + I from memory. This is 
possible since an extra buffer, the Q-register, is in­
cluded in addition to the W-register and the mem­
ory buffer register (MBR). Three transfers are in­
volved: MBR to W, W to Q, and Q to MBR. 
Figure 2 illustrates the timing of the combined pro­
cessing of i, the writing of i-I, and the reading of 
i + 1 during a I.5-JLsec cycle. 

A cause for interruption of the processing of the 
integrators is the overflow of a Y-register. The 
contents of a given Y-register can exceed the capac­
ity of the (scaled) register in either a positive or a 
negative direction, and each Y-register is checked 
before and after the Il Y is added to see if overflow 
has occurred. If this happens, the DDA transfers 
this information to the LINe. 

Finally, a stop on a zero crossing, (i.e., C(Y) = 0) 
can be programmed so that some decision capabil­
ity is included. This allows the user to stop the 
DDA when certain dependent variables reach 
selected values. 

METHOD OF USING THE SYSTEM 

The basic input to the system that the user must 
supply is very much like the usual format used in 
the study of ordinary differential equations. The 
user must have his equation in first-order normal 
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form. After calling the mapping program, he first 
enters his equations. For example, if the original 
equation is 

let 
ij- qq - sin q = 0 

sin q 

q2 cos q 

q3 = q 

and dq) = cos q dq 

dq2 = -sin q dq 

dq3 = dq = ijdt 

(4) 

q4 = q dq4 = dij = ijdt (S) 

and the required form is then 

dq) = q2dq3 

dq2 = -q)dq3 

dq3 = q4dt 

dq4 = q3q4dt + q) dt 

This information is types as 

DQ1 = Q2*DQ3 

DQ2 = -Q1 *DQ3 

DQ3 Q4*DT 

DQ4 = Q3*Q4*DT + Q1 *DT 

(6) 

(7) 

and the mapping program then generates a map. 
Although a number of arbitrary rules are used in 
the mapping, test problems and recent experience 
indicate that the program generates maps which are 
almost as efficient as those done manually in very 
simple problems. In complex cases, maps that 
would be quite time-consuming if done manually 
are generated in several seconds.5 

The interconnection table that is generated by the 
mapping program is next used as an input to the 
scaling program. The user also must supply an 
estimate of the maximum magnitude of each vari­
able, i.e., I qj I max, i = 1, 2,... This information 
is then used to compute an optimal set of scale fac­
tors using a linear programming routine which 
maximizes the sum of the number of bits used in all 
the Y-registers.6 Finally, fO, a variable in the scaling 
program that relates problem time to machine time, 
must be specified within limits set by the scaling 
program. 

The mapping and scaling are illustrated in Fig. 4 
and Tables 1 and 2. Since the user generally does 
not need this information, it is saved in the large 
computer system and supplied only on special re­
quest. Figure 4 is a map of Eqs. (6), and Table 1 
is the corresponding interconnection table. Table 2 
is a table of scale factors tha, illustrates the inter­
action of scaling variables; the time scale and maxi­
mum values were chosen arbitrarily. 

Figure 4. Map. 

Upon completion of mapping and scaling, the 
initial contents of R (set to zero), dXs , d Ys , kf, 
dZsign, and S have been specified. The remaining 
inputs required of the user are the initial values 
qj(O), the number of iterations to be run, the sam­
pling period, and an indication of what variables 
are to be displayed and sampled. The transfer of 
this binary information to the LINe is initiated, 
and after completion, the run on the DDA is madle. 

Table 1. Interconnection Table 

Int. No. DX-Input DY-Inputs 

1 4 
2 4 
3 0 
4 0 
S 4 

NOTE: 0 indicates a DT input. 

Table 2. Scaling Table 

Int. 
No. n l' a f 

1 1* -12 1 -11 
2 1* -12 1 -11 
3 1* -1St 6 -9t 
4 3* -1St 3 -12 
S 3* -12 3 -9t 

*Obtained from user estimates as in b) below. 
tDetermine DT scale relative to problem time. 
tThese must be equal. 

NOTES: 

2 
1 
1 

3,S 
4 

() 

-11 
-11 
-11 
-9 
-12 

a) "'fj, OJ, Ej are scales on dXj, dYj, dz j , e.g., dX, = 2'Y j dxj. 

v 

12 
12 
17 
12 
IS 

b) aj ~ l1j where 21 Yj 1 max ~ 27Jj > 1 Yj 1 max, and qj is Yj 
in the example. 

c) Vj = aj - OJ and 23 ~ Vj ~ 4. 
d) aj + "'fj = Ej. 
e) Sj = Vj + 1, Le., the S-bits of Integrator i. 
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Repeated runs may be made and ~w variables may 
be sampled or displayed by maki g changes at the 
LINC keyboard. If parameters i the differential 
equations are changed, rescaling may be required, 
and the scaling program is then called again on the 
time-shared computer. The same is necessary if 
overflow occurs because of wrong estimates on 
the I q; I max. 

It is of interest to estimate some typical operating 
times. After input typing is completed, the reaction 
times are between several minutes and several sec­
onds depending on the accessibility of the time­
shared system programs. The loading and running 
time on the DDA is at most about 20 seconds for 
215 iterations of 256 integrators. The time for re­
peated runs depends largely on the time required 
for the user to enter new information at the LINC 
keyboard. 

SUMMARY 

The design of a system for on-line studies of 
dynamical systems has been described, and the 
details of operation of the high-speed DDA have 
been given. Two applications of the system which 
are showing its usefulness are 

1. Spectral analyses of radar data in which 
a number of frequencies, spectral win­
dows, smoothing times, and range gates 
were examined. On-line techniques en­
able the user to search for combinations 
of interest rather quickly. The LINC/­
DDA combination can generate 30 
spectral lines, compute a periodogram, 
and display the results in about 20 sec­
onds. 

2. Trajectory generation in simulation 
studies where the effect of changing 
parameters in an estimation algorithm 
are of interest. A set of 3-degree-of­
freedom equations that includes at­
mospheric drag variations and gravita­
tional variations requires 55 integrators. 
One run (i.e., one trajectory) requires 
5 seconds in this case. 

A subject requiring further study on the system is 
error analysis. Error prediction for equations that 
are integrated by incremental arithmetic operations 
is extremely difficult, but it is believed that more 

experience will provide some insight. Very little 
theoretical work has been done, and the combina­
tion of nonlinear equations, incremental methods, 
and quantization makes the prospect of estimating 
useful error bounds discouraging.. It also may be 
noted that the sequential processing of the integra­
tors introduces an ordering problem in the mapping 
program, and the effect of a given ordering scheme 
on computational errors is again difficult to predict. 

Nevertheless, the system is proving very useful 
in problems where on-line searching and experi­
mentation lead to more complete understanding of 
certain physical problems. The combination of 
general and special-purpose digital computers is 
of great value for studying complex dynamical 
systems. 
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SIMULATION OF LOGICAL DECISION NETWORKS OF TIME"·DELA Y 
ELEMENTS BY MEANS OF A GENERJ\L·PURPOSE DIGITAL COMPUTER 

Y. N. Chang and O. M. George 
North American Aviation, Space and Information Systems Division 

Downey, California 

INTRODUCTION 

For the purpose of this paper, a logical decision 
network is defined as a system whose elements can 
be in either of only two states, TRUE or FALSE. 
Therefore the operation of the system can be de­
scribed by a set of simultaneous Boolean equations 
which are functions of time. These states must be 
defined specifically for each of the elements of the 
system, and in particular might represent yes and 
no, on and off, energize and de-energize a coil, 
"make" and "break" of a relay contact, presence 
and absence of voltage at a node, open and close a 
mechanical valve, etc. 

Digital switching networks, relay control systems, 
production and manpower scheduling, and the 
transportation problem are examples of logic sys­
tems. In logic systems like the last two examples, 
the digital program is used to solve the problem. In 
the first two examples, where hardware is involved, 
simulation on a general-purpose digital computer is 
used to verify the time-sequential operation of the 
system before money and time have been spent in 
building it. A simulation should also permit one to 
vary the time delays in order to set tolerances for 
design specifications. A third application would be 
a study of the effects on the system of malfunctions 
of any elements. Finally, if one has simulated the 
checkout of various subsystems, it should be pos­
sible to simulate a combined system without recod­
ing the Boolean equations. All of this can be done 
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with the IBM 7094 program described herein. In 
addition, the time-sequential states of all the ele­
ments are plotted on the S-C 4020 in the form of an 
n-channel recorder chart. 

The art of simulation involves building a mathe­
matical model which represents the system. Bool­
ean algebra is the natural mathematics for a logic 
system; however, Boolean algebra does not incor­
porate time per se. The authors propose and il­
lustrate an extension of standard notation so that 
time relationships between cause and effect can be 
expressed explicitly in the Boolean equations that 
are written to describe the logical operation of a 
system. 

MECHANIZATION OF A LOGICAL SYSTEM 

Input and Dependent Elements 
Any physical device (e.g., relay coil, switch, light, 

squib, or hydraulic valve) which has only two pos­
sible states is defined as a "logical element." A 
logical element can also be abstract (e.g., the set or 
reset action of a motor switch, the grounding of a 
buss, the short circuiting of a battery, or the pres­
ence of voltage at a node)~ Letter T is used to rep­
resent the "true" state (i.e., on, closed, energized, 
shorted, etc.) of an element, and the letter F repre­
sents the opposite "false" state. A device which has 
more than two states must be resolved" into n logical 
elements. For example, an n-position rotary-type 
stepping switch must be programmed as n logical 
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elements where each element is in state T only while 
the switch makes contact at its position. In order 
to simulate the operation of a system by means of 
the digital computer program described in this 
paper, each logical element must be identified by a 
name of six or fewer legitimate alphameric char­
acters. 

Input elements (e.g., hand-set switches, or radio­
command signals) are defined as those logical ele­
ments whose states are independent of the states of 
other elements. The states of input elements are as­
signed from time to time during the simulation by 
the entry of data. 

A dependent element is defined as a logical ele­
ment whose state is determined by solving a Bool­
ean equation which expresses the state as a function 
of time-delay variables and/or the states of input 
elements. 

Time-Delay Variables 

A time-delay variable is always related to a logi­
cal element and, therefore, is identified by the same 
name as its associated control element. For in­
stance, the coil of a relay (say dependent element 
DEPEND) may control the operation of two time­
delay contacts. The states of these contacts would 
then be time-delay variables in Boolean equations. 
To indicate the source of control of the two con­
tacts, the name DEPEND would be used for each 
appearance of the variables in the set of Boolean 
equations for the logic system. The time-sequential 
effect of the operation of each of the two contacts is 
determined by their specific delays. 

A special Boolean algebra notation is introduced 
here to specify the time dependence of cause and 
effect for a variable. Two types of time delay are 
recognized. The a-delay is defined as the elapsed 
time between a change of state from F to T of an 
element and the resulting change from F to T of an 
associated variable. The ,B-delay is defined sim­
ilarly for a change from T to F. These delays are 
separated by a comma and written as a numerical 
superscript on the name designating the variable 
(e.g., va,p is written as DEPEND s,3). Each variable 
may have a different set of a and ,B values even 
though the variables are associated with the same 
logical element (i.e., a relay may have several dif­
ferent time-delay contacts). The omission of a and 
,B implies that the change of state of the variable oc­
curs instantaneously with that of the control ele­
ment (i.e., no time delay). 

As an example of this extended Boolean algebra 
notation, refer to the equations given below in the 

section "Application of Program to a Simplified 
System." In Eqs. (1-3) switches START and 
STOP are input elements (manually controlled), and 
we have a 2-contact relay, CONRLY, a.nd a 4-
contact device, TIMER, as dependent dements. 
Equation (1) defines the state of dependent elem,ent 
HORN as a function of three variables and relative 
time. Time is explicitly included by means of the 
a- and ,B-delays. The * represents the logical ope:ra­
tion AND, + represents OR, and the bar over the 
third variable represents NOT. Note tha1t a time­
delay variable TIMER appears in all three equa­
tions but with different values of a. These three 
terms (variables) represent three of the contacts of 
the timing device, a dependent element whose state 
is defined by Eq. (2). 

The validity of the results of any simulation de­
pends on the accuracy with which the mathematical 
model represents the physical system. The Boolc~an 
program described in this paper is no exc(~ption to 
the rule. The fundamental principles of modeling a 
logic system are illustrated by the set of Boolc~an 
equations (1-13). Since the illustrative control 
system comprises only single-input electrical deviices 
(relays and timers) connected in series-parallel 
groups, one can write the Boolean equations more 
or less by inspection once the schematic diagram, 
Fig. 3, has been drawn. However, an explanation 
of some of the details might be desirable. 

The term (START + TIMER), in Eq. (2) for 
the state of dependent element TIMER, r1epresemts 
the fact that START is a momentary push button 
which starts the timer immediately, but TIMER 
continues in state T after the push button is re­
leased (i.e., after START changes from T to F). 
The meaning of the time-delay variable TIMER~ 15,0 

is that although dependent element TIMER 
changed from F to T state, the effective state of this 
term will not become F (i.e., complement of T) 
until 15 seconds later as indicated by the a-delay. A 
similar time-delay variable TIMER 5,0 appears in 
Eq. (1). Therefore, the horn will start blowing 
when the start push button is pressed, but it will 
stop automatically 5 seconds later. The variable 
TIMER 10,0 in Eq. (3) signifies that dependent de­
ment CONRL Y changes from F to T stat,e 10 sec­
onds after TIMER = T. Note that STOP is a 
normally closed push button. The variable 
CONRL Y in the term (CONRL Y + TIMER 10,0) 

maintains the element in state T until push button 
STOP is pressed, even though the timer stopped 
automatically after running for 15 seconds. 

A ,B-delay of zero is indicated for each time-de:lay 
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variable in Eqs. (1-3), which signifies that the 
"drop-out" action of the contact is instantaneous. 
For hardware, the delays are never zero but they 
may be small compared to other time intervals in 
the sequential operation of the system. Proper 
simulation may necessitate entering a small value, 
rather than zero, for such a delay. The behavior 
of dependent elements HORN, CONRLY and 
TIMER is independent of the value of fJ so the 
use of fJ = 0 is satisfactory for the simulation de­
scribed in Eqs. (1-3). Conveyor A (Fig. 2) must not 
.start until after conveyor B is in motion, and should 
shut down automatically if conveyor B stops. These 
requirements are expressed in Eq. (4) by the a- and 
fJ-delays on the time-delay variable CNVB 5,3. 

A simple illustrative control system was chosen so 
that the use of a- and fJ-delays in a Boolean model 
could be explained. Many control systems incor­
porate multiple-input devices such as motor 
switches, latching relays, and flip-flops. The states 
of such a device should be related to the inputs by 
means of a Veitch diagram so that the Boolean 
equation will give a correct state for all combina­
tions of the inputs. A discussion of these techniques 
for modeling logic devices is presented in the Ap­
pendix. 

FUNCTIONAL DESCRIPTION OF DIGITAL 
COMPUTER PROGRAM 

The functional organization of the complete 
program is shown diagrammatically in Fig. 1. The 
philosophy of the basic control program is similar 
to that of an earlier program I written by the au­
thors in machine language for the IBM 704. In de­
tail, however, the current program differs consider­
ably because it has been coded for a seven-index­
register IBM 7094 for operation iD the FORTRAN 
IV IBSYS/IBJOB system, and new features have· 
been incorporated as a result of use of the original 
program in the analysis of many control systems.2 

Basic specifications for the current program were 
1) efficient use of core and 2) maximum execution 
speed so that logical systems of 2000 or more ele­
ments could be simulated economically. The Bool­
ean structure of the FO R TRAN IV source language 
is not compatible with these specifications. Conse­
quently, the major part of the program is written 
in the MAP symbolic language. 

The Boolean equations which describe the logic 
system are coded in MAP and assembled as a sub­
routine named BOOLEQ as illustrated in the fol­
lowing section and also in Fig. 4. The basic con-

CODEDJ BOOLEAN 
EQUATIONS 

I 
MAP J ASSEMBL Y 

1 
BooLEQ I 

SUBROUTI~ 

I 

I 
PRINT 

SEQUENTIAL 
DATA AND 

DIAGNOSTICS 

i-------------~;A-~;~--------------j 

I I 
I I 

: ELEMENT CONTROL SEQUENTIAL l 
I NAME TABLE CARDS INPUTS I 
I I 

l_____ ----------i---------1-----J 

CONTROL 
PROGRAM 

I 
SoC 4020 OPTIONAL 
PLOT OF SEQUENTIAL 
STATES PRINT OF 

VS TIME STATE CHANGES 

Figure 1. Functional diagram of Boolean simulator program. 

o LOCKOUT STOP 

PUSH BUTTON STATION 

~
START 

o STOP 
L R 
0' SELECTOR SW ITCH 

0::::] HORN 

Figure 2. A conveyor system. 

trol program solves the equations, checks for 
incompatible states, prints diagnostic comments, 
and increments time automatically to simulate the 
operation of the logic system. The desired sequence 
is directed by 1) states of input elements entered as 
data at any time, 2) the time delays (which may be 
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SYMBOLS 

---: Selector Switch -{"}- Relay Coil or Device 

-0--0- Start Button Normally Open ¥ 
~ Stop Button Normally Closed * Relay Contact Normally Open 

Relay Contact Normally Closed 

-L... 
STARI)ooT---------tt-----f 

STOP 
Master Push Buttons 

SELSW 

CNVCLO SELSW 
I 
: Selector Switch 

I ~,_W-___"II....I..<II'_"---___I 
I 

FlASHS 

FLASHA3,3 CNVEO, ° 
'-----4...--'---.4-----II----f 

TIMER 

HORN 

Control Relay 
CONRLY 

Conveyor A 
CNVA 

Conveyor B 
CNVB 

Crusher 
CRUSH 

Conveyor CLeft 
CNVCL 

Conveyor D 
CNVD 

Conveyor E 
CNVE 

Classifier 
CLASS 

Flashing Signal 
FlASHA 

Flashing Signal 
FlASHB 

Figure 3. Conveyor system schematic diagraw. 

varied), and 3) malfunctions simulated by the entry 
of special data at any time. 

At the option of the user, the states of selected 
elements are compared with' specifications (the ex­
pected states at that time entered as data) and the 
results of the comparison are printed. If the specifi­
cations are met, the simulation continues. The user 
may direct the program to continue if a specification 
is not met; otherwise, it stops. Dependent elements 
may be "disabled" to a T or F state at any time to 
simulate the malfunction of a device. Subse­
quently, they may be "enabled" to simulate a repaIr 
or replacement. The "enable" feature is also used 
to initialize the state of a dependent variable. The 
normal (X- and fj-delays are specified in the coding 
of the equations in subroutine BOOLEQ but they 
may be varied at any time by a special data entry. 
At the end-simulation time, entered as initial data, 
the program plots the states of all the elements on 
the S-C 402'0 as a time-sequential recorder chart. At 
the option of the user, a time-sequential tabulation 
of all the changes of state will be printed. Provision 
is made for entering a brief description of the system 

which will be printed on the S-C 4020 plot to id4~n­
tify the results. 

The simulated operation of the system starts at 
time zero. The time is incremented variably, lthe 
increment being determined at any time by the time 
delays that are effective or by the entry of data or 
specifications. This automatic fea~ure of the pro­
gram relieves the user of the responsibility of 
analyzing the system and selecting the proper inc:re­
ment at each instant of time and ensures that the 
simulation will run at the maximum speed compat­
ible with the delays and the inputs of data. At each 
increment of time, the program determines the 
stable state of each dependent element by a rep(~ti­
tive solution of the set of Boolean equations. The 
transition states that appear during these solutions 
may be used to detect critical and noncritical race 
conditions as defined by Caldwell.3 A time-delay 
subroutine applies the (X- and fj-delays of a variable 
to the recorded time at which the associated control 
element changes state and thus determines t.he effec­
tive state of the variable at each increment of time. 
These delays permit the analysis of systems using 
make before break, and break before make, types of 
contacts. 

Debugging routines print diagnostic comments 
and stop the simulation for indeterminate or incom­
patible states, or the improper entry of input states 
and specifications. 

APPLICATION OF PROGRAM TO A 
SIMPLIFIED SYSTEM 

The example described below was chos4~n to il­
lustrate the procedures for using the control pro­
gram and to show the input data and the: printed 
and plotted results of an analysis of a switching 
network. 

Description of the System 

The physical arrangement of the system is shown 
in Fig. 2. Conveyor A transports ore from a load­
ing area to the plant site. Conveyor B transfers 
rough ore from conveyor A to the crusher. After 
being crushed, the fine ore can be direct(~d either 
through conveyors C and D to a storage: bin, or 
through C and E to a classifier where the ore: is 
separated according to size. Start and stop push 
buttons and a selector switch, which selects one of 
the two modes of operation, are provided at the 
master station. A horn warns workers off the con­
veyors prior to their movement, and several emer­
gency lock-out push buttons and flashing lights 
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UBMAP C(1"1VYR 
- flilllLcllN (<JUATI(JNS FOR CCtliVEYOR SYSTEM SWITC~q\G ~~rh(JRK 
- MAP ASSSMBlEO FOR USF WI fH FORTRUI IV DECt< IIl-030 
,. 0. M. GEORGE, 41-200-)00, 4 JUf'o 1965 
M<\K~ EQU 25 SPECIFY PR(JP!:R ;~lJMH ICAl VALUE 
TA8lE '= (l!\jTRl Ttt8LL 

US!:: TASLE ELEMENT-NAMES TARLE 
!ISS 50 .. US T BE MUL T I PL E (IF 50 

SET VARlA8LE DI"'r\SI(l"lS FUR ARRoSYS 
eONTRL 
USE 
8SS 2-MAXN·l ELEMENT STAfES AND TIMES 

flUFF<\ C(1N TRl 8UFFA 
USE RUFF 1\ INPUT-OUTPUT PUFFfR SIlE, 
BSS 3·MAXN BUT !IoCT lESS THAN 2 TIMES Tt<E MAX IMUM 

NUMBER IlF 8COlEAI~ I"IPIJTS AT ANY TIME 
USE 
eQU TEMP DEFIfl.ES T AS ALTERNATE Svr-8CL F'JR TEMP. 

10 ERASAeLE LOCAT IOtllS, TEI'P TO r(MP+9 

FCLLCWING .'EQU' CARCS OEF INf THE 
ELE"lENT-fl.AME UBLE, I.E. THE ASS ICNMF.NT OF 
INTERNAL SEQIJEt-4T I AL CLEMEIo,T NUMIIERS. 

SUH EQU C+l 
STIJP F.IJU C+l 
SELS" [UU C+3 

FL4SH(l EQIJ C+23 
SP.~~E EQU C+2" 
~~(1flF.A E·;U C+.l; 

!l(lOLEQ SAVE 
STMT OF BJJL:IIN EOIJATlCI\ Nll. 1 FOil DEPENDENT EIoEI,1EM 'HOflN' 

~m HIJ~N 

CAL START LOAD LIlGICAL ACCUMULATOR WITH STATE olF 'START' 
llRA TIMER LOGICAL 'OR' Ttl ACCUMULATOR 
SLW TEMP SAVE' TEMPaRAIHLY 

CUl THE DELAY SUBROUTINE FOR caNT~CL ELEMENT 'TIMER' 
!lASIC U'HT r:OR UL D[LAYS IS OECISECOf'oDS 

CALL !)fLAYITI"ER,~O,OI 

COM 
ARGt;"ENTS ARE (COfl.TROl ELEMENT,AlFA DELlIY,BETA lJELI\YI 

LaGfC.L ' .... OJO 
ANA TEMP 
TRA SUTi: 

• [lO(lLEAN EQUATION NO. 
STR TIMER 
CAL STI\,{l 
O,{A T I MCP. 
SLW T 

LOGICAL' AND' TO ACCUMULATOR 
Ell' OF ll(lOLEAfI. EQUATICN Ft;R ' .. aRN' 

2 FOR 'TIIOER' 

OPTlaNAL use aF T FOR TEMP 
CALL DELAY C Tl MER ,150 ,0 I 
COM 

CCCC':C10 
CCCCC02C 
CCCCCc. .. O 
cccceC50 
CC(CvC5S 
cecor.C6l 
CCCOr.C61 
CCtC"Cb2 
CetCI.07C 
CCCC~C1' 
CtCeC01b 
OCCOlle17 
CCCCC018 
C(OC-:C79 
ecr.ceCRe· 
CCCCOOlll 
CCCCOOP2 
OC000084 
CCCCCCRS 
OCCC'::O~b 
OCCOCO~7 
CCCtCOSR 
OCCCOOfl9 
85CC:;COl 
85CC0002 
8S()I)C003 

IIS(CU023 
85CCJC2" 
85ceC025 
eCCOC090 
ccerCO'l5 
Ctrefllce 
ecc 01'1105 
OC(0';110 
CCCO')12(1 
CCCCOUO 
(CtC0140 
eccor141 
eceCIllse 
ccr00155 
cccce170 
cceeC1AO 
CCCOCI 'lO 
CocOU2ce 
C(COf-ll0 
cccerno 
eccCI.23(\ 
cccee2"" 
coceC25C 
CCCCOHO 

-------------------------- --- .. ---
• EQUHIllN .~(1. 13 roq FLASIiING LIGHT B 

STR HASti8 
IlLIJSTUTES caCFO 0,0 DELAYS FaR VA:lIABLt: f.ELAY FEATURE 

CALL I)ELAY (C!lVE ,0 ,01 
SlW T 
CALL f)ELAYCFLASHA,10,30) 
IINA C:jt-4l\lY 

.'.~A 
TRA 
R~TU~N 
E'IO 

T 
SJA T[ 
1\0~LlQ,l Etlle OF ALL MOLEA'" EQUAT I ClNS 

Figure 4. Sample page from subroutine BOOLEQ. 

cce01400 
0(001401 
OCOC1405 
OC001410 
OCC011015 
OCC01410 
OC001 .... 0 
OCOOl45C 
ceOO! lobO 
CCCO 15'111 
~CC015'l9 
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are installed at various points for safety reasons. 
The relay switching schematic diagram is shown in 
Fig. 3. Equipments are interlocked with time­
delay relays so that no equipments can start until 
the downstream equipments are in motion. These 
same interlocks automatically stop the upstream 
components of the system when a piece of equip­
ment fails. With the time delays and selector switch 
position shown in Fig. 3, the sequence of major 
events for a possible operation are given in Table 1. 

indicate a logical AND, a + for inclusive OR, a -
for exclusive OR, and a bar over the name (or an 
expression) to indicate NOT. 

Procedures for Using the Control Program 

1. Assign identifier names (6 or fewer legitimate 
alphameric characters)to the input and dependent 
elements (refer to Fig. 3). Prepare a descriptive list 
of all the elements defining the T and F states for 
each. For the conveyor system, F means off and T 
means on, except for the selector switch where F 
means left and T means right. 

2. Write Boolean equations for the dependent 
elements as illustrated in Eqs. (1-13). Use an * to 

HORN (ST AR T + TIMER) 
* TIMERs,o 

TIMER (START + TIMER) 
* TIMER 15

•
o 

CONRL Y = 'STOP * (CONRL Y 
+ TIMER IO•o) 

CNVA = CONRLY * (CNVCR~·3 
+ CNVCL5

•
3) * CNV ALO 

* CNVBs.3 

CNVB CONRLY * (CNVCR5•3 

+ C~VCLS.3) * CNVBLO 
* CRUSHs.3 

CRUSH CONRLY * (CNVCR5•3 

+ CNVCL5
•
3) * CRSHLO 

CNVCR CONRL Y * CNVCLO 
* SELSW * CNVD5

•
3 

CNVCL CONRL Y * CNVCLO 
* SELSW * CNVE5

•
3 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Table 1. A Simulated Operation of the Conveyor System 

Input: 

Input: 

Resp: 
Resp: 
Resp: 

Resp: 
Resp: 
Resp: 
Resp: 
Input: 

Resp: 
Resp: 
Input: 

Resp: 
Resp: 

Resp: 
Resp: 
Resp: 
Resp: 
Input: 

Resp: 
Resp: 
Resp: 
Resp: 
Resp: 
Resp: 
Resp: 
Input: 

Inputs to, and/or Responses of, System 

Press master push button (i.e., input STAR T = T). 
Selector switch to the left (Le., = F) for classifier opera­
tion is standard initial state; do not enter an INPUT. 

Set START = F to simulate release of momentary push 
button. 
Horn stops blowing. 
Control relay CONRL Y energized and starts classifier. 
Timer resets to 0, and conveyor E starts together with its 
associated flashing signals (they flash alternately). 
Conveyor C left drive starts. 
Crusher starts. 
Conveyor B starts. 
Conveyor A starts. All selected equipments operating. 
DISABLE conveyor E to off (= F) to simulate a mal­
function. 
Flashing signals stop. 
Conveyor C left drive stops. 
Press safety lockout button (CNVELO = T). Set selector 
switch to right (= T) for storage bin operation while con­
veyor E is being repaired. 
Classifier stops; conveyor D starts. 
Conveyors A and B and the crusher stop because the 
selector switch was changed. 
Conveyor C right drive starts. 
Crusher restarts. 
Conveyor B restarts. 
Conveyor A restarts. 
Reset lockout button (CNVELO = F), set selector switch 
back to left (SELSW = F) and ENABLE conveyor E to 
off (= F) to simulate restoration of classifier operation 
after repair of conveyor E. 
Conveyors D and C-right-drive stop; classifier starts. 
Conveyors A and B and the crusher stop. 
Conveyor E and associated flashing lights restart. 
Conveyor C left drive starts. 
Crusher starts. 
Conveyor B starts. 
Conveyor A starts. 
Push master stop button (STOP = T). Stops entire 
system. 

120 End of simulation. 
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CNVD = CONRL Y * SELSW 
* CNVDLO (9) 

CNVE = CONRLY* SELSW 
* CNVELO * CLASS5,3 (10) 

CLASS = CONRLY *SELSW 
* CLASLO (11) 

FLASHA = CONRL Y * CNVEo,o 
* FLASHB (12) 

FLASHB = CONRL Y * CNVEo,o 
* FLASHA3,3 (13) 

Note tlftlt conveyor C has been assigned two names: 
CNVCR for motion to the right, CNVCL for 
motion to the left. Also note in Eqs. (12) and (13), 
that the delays for variable CNVE have been spe­
cifically indicated aso,o. This was done so that the 
Boolean equations contain nominal values which 
can be varied at execution time, like all the other 
delays, by the entry of special data. This feature 
is illustrated by the printout in Fig. 6, which shows 
that the {j-delay was changed to 10 deciseconds. 

The term [CONRLY * (CNVCR 5,3 + 
CNVCL5,3)] appears in each of Eqs. (4-6). The 
code for subroutine BOOLEQ may be simplified 
by assigning name NODEA (see Fig. 3) to a point 
in the schematic diagram. Now we write 

NODEA = CONRLY * (CNVCR5,3 

+ CNVL5,3) (14) 

so that Eqs. (4-6) can be simplified to 

CNV A = NODEA * CNV ALO 
* CNVB5,3 (4') 

CNVB = NODEA * CNVBLO 
* CRUSH5,3 (5') 

CRUSH = NODEA * CRSHLO (6') 

A further simplification can be made in the code for 
subroutine BOOLEQ when one bas a string of terms 
of the form 

A *-B * C"* ... 

By using DeMorgan's theorem, Eq. (11) could be 
written 

CLASS = CONRL Y * (SELSW + CLASLO) 
(11 ') 

so that instead of complementing each variable, we 
OR the variables and complement the result. 

3. Code the Boolean equations in the language of 
the particular digital computer being used. For the 
IBM 7094, a typical example follows for dependent 
element HORN, i.e., Eq. (1): 

Code 

STR HORN 
CALL DELAY 

(TIMER,5,0) 
COM 

SLW TEMP 
CAL TIMER 

ORA START 
ANA TEMP 

TRA STATE 

Comment 

Start of instructions for the horn 
Control element is timer, a­

delay is 5, {j:-delay is ° 
Complement the state 

(i.e., NOT) 
Save temporarily 
Load the logical accumulator 

with state of the timer 
OR the state of start switch 
AND the result saved from 

DELAY 
End of Boolean equation 

4. Assemble the code to produce a MAP sub­
routine named BOOLEQ, that is compatible with, 
and will be combined with, the machine-language 
control program (see the sample in Fig. 4). The 
Boolean equations need not be written or coded in 
a particular order. If there is a stable set of states 
at each instant of time, the repetitive solution pro­
cedure in the control program will terminate nor­
mally; otherwise, a diagnostic message is printed 
and the simulation is aborted. 

INPUTS TO PROGRAM AT 
EXECUTION TIME 

Figure 5 is a sample of the type of data sheets 
that were prepared for a simulation of the operation 
of the conveyor system. Note that a set of data 
cards, terminated by an * in column 1, is prepared 
for each data-read time. At t = 0, the element 
name table, a special control card and one to six 
title cards terminated by an * in column 1 must be 
the first cards of the data deck. These cards are not 
illustrated. Initial Boolean data are entered as 
shown on card No.9. In addition, the basic criteria 
for the simulation must be entered as shown on card 
No. 10. An entry on this card gives the next time in 
basic units (deciseconds in this case) at which data 
can be read. 

Note that element numbers, which are determined 
by the order of element names in the name table, 
are used in entering the T or F states of the element. 
A special data-reading subroutine is used to facili­
tate the entry of Boolean data in the relatively free 
form indicated on cards No.9 and 18. This sub­
routine also permits the intermixture of Boolean 
and integer data cards; the type is indicated by a 
designator in the first field of each card. Subsequent 
to t = 0, it is only necessary to prepare cards for the 
Boolean data to be read at each data-read time, and 
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DESCRIPTION DO· NOT KEY PUNCH 

Figure 5. Sample of data sheets. 

to designate NXTIME. The simulation is ter­
minated automatically' at time MAXT. 

OUTPUT FROM EXECUTION 
OF PROGRAM 

For the example shown in Fig. 3 and Table 1, 
input conditions were entered at times 0, 0.1, 50, 55, 
90 and 1,18 seconds and specifications at various 
times. Several incorrect specifications were entered 
to illustrate the bad-specification printout. The data 
and specifications printout is shown in Fig. 6. The 
program can print a maximum of six lines of prob­
lem description (60 alphameric characters maximum 
per line). Unused lines are left blank. Note in 
Fig. 6 that a state was entered at time zero for input 
variable START only. The program automatically 
sets all the other states to F. No input element 
should ever be set to F by data unless it has pre­
viously been set to T. Also, note that operation of 
the spring-loaded master start button START was 

simulated by a data entry at 0.1 second signifying 
release of the button. 

In addition to the data and specifications print­
out, the control program plots a complete time 
history of the states of the elements on the S··C 4020 
(see Fig. 8). A print subroutine is provided to 
enable the engineer to obtain a selectiv4~ time­
sequential printout of the elements which c:hanged 
state as illustrated in Fig. 7. 

SUMMARY 

The original program I has been used for the 
analysis of many aerospace control systems2 and 
this experience provided the basis for the n(!w pro­
gram described in the present paper. One result 
was the development of a special data-reading sub­
routine to simplify the entry of Boolean data. 
Another result was a simplification of the print<:d 
output which eliminated the searching of records on 
tape and shortened the execution time. The COln-
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CH[C~OUT CF RL-C3C BUOLEA~ ANALYSIS PROGRAM WITh EQUATIONS 
FOR CCNVEYor.: SYSTE'-1 SWITCHING NETWORK. 

9ASIC LNIT OF TIME IS DECISECONOS 

o. M. GFCRGE, 41-200-300, 4 JUN 19f5 

*** TIME 0.0 SECCNDS' 
MAX ELEME~T NO. = 25 MAX T[ME 1200 SCALE 10 
CO~T(NUE = T P~IN~ T NEXT CASE ~ F SAVE STATE F RACE-CHECK INDICATOR F 

INPUT VARIABLES E~TE~ED 
ELEMENT STATE 

1 T 

VARIABLE DELAYS ENTE~ED 
ELEMfNT CONTROL ALFA DELAY BETA DELAY 

22 20 o 10 

*** TIME 0.1 SECCNDS 

INPUT VARIA~LES ENTERED 
ELEMENT STATE 

1 F 

*** TIME 5.0 SECCNDS 

SPECIFICATIONS ENTERED 
ELEMENT 

If>. 
21 
11 

STATE 
T 
T 
F 

FOLLCWING SPECS ~OT MET 
ELEMENT STATE 

18 F 
SINCE TIME ( SECONDS 

0.0 
21 F 0.0 

*** TIME 50.0 SECONDS 

DEPENCENT ELEMENTS DISABLED 
ELEMENT STATE 

20 F 

Figure 6. Sample printout of inputs and specifications. 

veyor system simulation summarized in the plot 
(Fig. 8) represents a two-minute operation of the 
system; the IBM 7094 execution time was only eight 
seconds. This increase in speed of execution was 
also due to the programming of a greatest-increment 
selection procedure which relieves the user of the 
responsibility of analyzing the system and selecting 
the proper increment at each instant of time. This 
automatic feature also ensures that no critical event 
will be missed as a result of making a time step that 
exceeds any effective delay. An S-C 4020 plot of the 
results was added which increases the accuracy and 
speed of analysis of a logical system. In most cases, 
this plot is sufficient and the maximum speed of 
execution is obtained by not entering any specifica­
tions and by not requesting a printout of the results. 

Normally, the production of a digital simulator 
program involves two steps: creating the model, and 
then writing the program. SIMSCRIPT4 is a gen­
eralized language that permits the model and simu­
lator program to be written in a terminology that is 
more oriented to simulation than is the language of 
FORTRAN. The SIMSCRIPT preprocessor pro­
duces a set of routines which can be compiled by 
FORTRAN to produce machine-language decks for 
a general-purpose digital computer. We recognize 
the power of a generalized language for pro­
gramming simulations, but wish to point out that 
for the class of problems (analysis and debugging 
of control systems, the transportation problem, and 
certain manpower and production scheduling prob­
lems) which can be solved by the special program 
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RESULTS CF BOOLEAN ANALYSIS 

••• TIME 0.0 SECONDS 
ELEMENT STATE ELEMENT STATE ELEMENT ST A TF. ELEMENT STATE ELEMENT ST'ATE 
*START T HORN T TIMER T 

•• * TIME 0.1 SECCNDS 
ELEMENT STATE ELEMENT STATE elEMENT STATE ELE ... ENT STATE ELEMENT STATE 
*STAR T F 

••• TIME 5.0 SECCNDS 
ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE 

HORN F 

*.* TIME 10.0 SECCNDS 
ELEMENT STATE ELEMENT STATE elEMENT STATE ELEMENT STATE ELEMENT STATE 

CCNRLY T CLASS T 

**. TIME 15.0 SECCNDS 
ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE 

TIMER F CNVE T FlASHA T 

*** TIME 18.0 SECONDS 
ElEI'4ENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE 

FLASHA F FLASHB T 

••• TIME ?O.O SECCNDS 
ELEMENT STATE ELEMENT STATE ELHIE"NT STATE ELEMENT STATE ELE'4ENT STATE 

CNVCL T 

•• * TIME 21.0 SECCNDS 
ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE ELEMENT STATE 

FLASHA T FLASHB F 

Figure 7. Sample printout of results of simulation. 

described in this paper, only the model needs to be 
programmed and debugged. The executive program 
is invariant; it has already been written and checked 
out for correct operation, simplicity of data entry, 
appropriate diagnostic messages, and a concise pre­
sentation of the results of the simulation. 

The program described in this paper has saved 
thousands of dollars and man-hours by permitting 
the checkout of a control-system design before time 
and money are spent in building it. The program 
has also been used for the analysis of "race" condi­
tions in relay circuits, single-point failures, and the 
effects of malfunctions or proposed changes in 
design. 

Appendix 

TECHNIQUES FOR MODELING 
LOGIC DEVICES 

A logic device is described conventionally by 
stating the relationship of its outputs to the inputs. 

In this paper, instead of relating the outputs directly 
to the inputs, we establish an intermediate state for 
the device, or so-called dependent element. The 
outputs are then related to the dependent element 
by time-delay variables. To relate the statles of the 
element to the inputs, it is necessary to have a com­
plete logical description of the states, otherwise the 
simulation may give incorrect states to the: element 
for those input conditions which are not defined. A 
good way to relate states to inputs is to use a Veitch 
diagram except for single-input devices iin which 
case the state-to-input relationships are slequential 
(i.e., time-delay relationships) rather than (;ombina­
tional.3 The model of the element is simply the 
Boolean equation for the Veitch diagram. The fol­
lowing examples illustrate this procedure. 

Motor Switch 

This device uses a motor to open or dosle a set of 
contacts. There are two inputs, one for the set 
action and the other for reset. Figun: 9 is a 
schematic diagram of a motor switch in which it 
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CHECKOUT OF 8l-030 BOOLEAN ANALYSIS PROGRAM WITH EQUATIONS 
BASIC UNIT OF TIME IS DECISECONDS 

FOR CONYE~R SYSTEM SWITCHING NETWORK. 

B 

NODEA 
SPARE 
FLASH 
FLASH 
CLASS 
CNYE 
CNYO 
CNYCL 
CNYCR 
CRUSH 
CNVB 
CNVA 
CONRl 
TIMER 
HORN 
CLASL 
CNYEL 
CNYOL 
CNYCl 
CRSHl 
CNVBL 
CNVAl 
SELSW 
STOP 
START 

A 

Y 

,.. 
,~ ... 
0 
0 
0 
0 
0 

05 1 

O. M. GEORGE, 41-200-300, 4 JUN 1965 

, I 

I 

22 3444 5 9 1111 

TIME IN SECONDS 

Figure 8. S-C 4020 plot of true states. 

takes 10 milliseconds to open or close the contacts. 
Let us label the components and actions by the fol­
lowing identifiers: 

MTRSW 
SNODE 
RNODE 
SET 
RESET 

the motor switch 
input node for set 
input node for reset 
set action of motor 
reset action of motor 

The action of the motor can be written very simply 
as follows: 

SET = SNODE'" MTRSWo.01,O.Ol (15) 

RESET = RNODE'" MTRSWo.01,O.0l (16) 

The state of the motor switch, however, should first 
be represented by a Veitch diagram 
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,---------------------------, 
I 

MTRSWa,1J : 
I SNODE <>-------i--#-------{ 

INPUTS 

MTRSW a ,6 
RNODE 0-0 --;----11 t---------i 

I 

OUTPUT VARIABLE-o+o-MTRSWa,1J 
I 

COMPLEMENT VARIABLE~ MTRSW
a

,6 

L __________________________ _ 

Figure 9. Motor switch. 

SET 

impossible F RESET 

RESET T no change 

so that all the possible states are included in the 
Boolean equation that is written for dependent ele­
ment MTRSW. Note that one block of the diagram 
is labeled "impossible" because of the interlocks 
indicated in Eqs. (15) and (16). The Boolean equa­
tion for the motor switch can now be written from 
the Veitch diagram and comprises two terms as 
follows: 

MTRSW = (SET * RESET) 
+ (MTRSW * SET * RESET) (17) 

The first term specifies the T state, and the second 
defines "no change" (i.e., it is a memory term). It 
is not necessary to have a term for the F state be­
cause it is implied by the nature of binary algebra. 

Magnetic Latching Relay 

In this device, two permanent magnets are used in 
conjunction with a set coil and a reset coil. When 
both coils are energized or de-energized simul­
taneously, there is no resultant force to move the 
switch; it remains in its previous state. When only 
one coil is energized, the relay is set or reset accord­
ingly. Figure 10 is a schematic diagram of a mag­
netic latching relay with 5 millisecond a- and fJ­
delays for the output variables. Let us identify th<! 
components by the following names: 

LATRLY the latching relay 
SNODE input node for the set coil 
RNODE input node for the reset coil 
SET the set coil 
RESET the reset coil 

r---------------------------, 
SET COIL 

SNODE <>-------;.---------i 

INPUTS 

MAGNET 
LATRLya,fj 

0--

OUTPUT VARIABLES~ 

LATRLy a ,6 

a AGNET 

RNODE 0-0 ---:---------t~t-------:----i 

I RESET COIL L __________________________ _ 

Figure 10. Magnetic latching relay. 

The equations for the set and reset coils are 

SET = SNODE 

RESET = RNODE 

( 18) 

(19) 

The possible states of latching relay LA TRL Y may 
be shown in the Veitch diagram 

RESET 

RESET 

SET 

no change 

T 

from which the Boolean equation 

LA TRL Y = (SET * RESET) 

F 

no change 

+ LA TRL Y * [(SET * RESET) 
+ (SET * RESET)] (20) 

may be written. This example is similar to that for 
the motor switch, but it shows how an additional 
item in the Veitch diagram affects the equation for 
dependent element LA TRL Y. The output of the 
device will appear as a time-delay variable 
LATRL ya,fJ in the equations for other elements 
of the system. In a particular case we might have 
a = fJ = 0.005 seconds. 

The latching relay is a frequently used component 
coding of its representation in the Boolean equa­
tions for the system, one should code a subroutine 
for such a device and merely call the subroutine 
with specific arguments (i.e., element names) each 
time that type of device is encountered. Figure 11 
is the IBM 7094 code for a magnetic latching-relay 
subroutine. 

Three-Input Flip-Flop 

The three inputs might be set, reset and clock rep­
resented by S, R, and K respectively in the following 
diagram. 



SIMULATION OF LOGICAL DECISION NETWORKS OF TIME-DELAY ELEMENTS 

SIBMAP LATCH 
- BASIC MAGNETIC LATCHING-RELAY SUBRBUTINE 
• USE AS FBLLBWS 
- STR RELAY 
• CALL LATCH(RELAY,SET,RESET) 
• TRA STATE 
• A PARTICULAR CASE MIGHT BE 
• STR LR234 BEGIN EQUATIBN FBR LATCHING RELAY 
• CALL LATCH(LR234,LR234S,LR234R) 
- TRA STATE END EQUATIBN FBR LATCH RELAY LR234 

ENTRY LATCH 
LATCH CAL. 4,4 

ORA. 5,4 
COM 
SLW T 
CAL. 4,4 
ANA. 5,4 
ORA T 
ANA. 3,4 
SLW T 
CAL. 5,4 
COM 
ANA­
ORA 
TRA 
BSS 
END 

4,4 
T 
1,4 
1 

RETURN TB BBOLEAN EQUATIBNS 
T 

Figure 11. Magnetic latching-relay subroutine. 

S t----- Q 
FF 

R --------~ r--------Q 
~----_r--------~ 

K __________ ---J 

D --------I 
E -------I 
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00000018 
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The output Q may be defined by the Veitch diagram for which the Boolean equations are quite straight­
forward. For example 

R 

R 

from which the Boolean equation for the clock­
controlled flip-flop is 

Q = (K * S * R) + Q * [K * (R * S + R * S), 
+ K] (21) 

This type of flip-flop is used in digital logic design 
where the set and reset signals Sand R might come 
from gating logic such as 

A --------I 

B -------IJ....-_..J S 

S (A * B) + C 

R (0 + E) * H 

(22) 

(23) 

The input signal K to the flip-flop might come from 
a "one-shot" pulse generator M, a single input 
device, where J is the input to device M which gen­
erates a pulse 0.5 msec wide. 

J-------t M I-------K 

M = J (24) 
Then 

K = J * M O
•
OOO5

, ° (25) 

or a simpler expression is 

K = J * JO
.
OOO5

, ° (26) 
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However, if the input K to the flip-flop comes from 
a l-KC clock V, 

p----t V t-----K 

whose input is P, then 

K = p * yO.0005.0.0005 (27) 

for the signal K, and 

y P * K (28) 

for the l-KC clock. 
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SIMULATION OF A MULTIPROC[3S0R COMPUTER SYSTEM 
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International Business Machines Corporation, Scientific Center 

Los Angeles, California 

1. INTRODUCTION 

Computer simulators have generally been con­
structed at one of two levels of detail: the instruc­
tion level or the bit-time (logic) level. Such simula­
tors have been produced for many years now and 
their value is well established. By contrast, only 
minor attention has been given to simulating com­
puter systems at a macroscopic level. One type of 
macro-level simulator has been reported recently by 
Hutchinson '; in his model the simulated system 
consists of an entire computation center, with the 
computer representing merely a component. 

As computer systems grow increasingly complex 
the macro-level modeling of such systems becomes 
increasingly useful. By applying such a model one 
can predict the performance of the system on a pre­
scribed job load, and/or evaluate the effect of var­
ious parameters on system performance. 

In this paper we report on an experimental model 
that is applicable to a class of multiprocessor oper­
ating systems including IBM's Direct-Couple Oper­
ating System (DCS). The model has enabled us to 
evaluate the effect of selected hardware parameters, 
software parameters and environmental parameters 
on the performance of a DCS-type multiprocessor 
operating system. The principal measures of system 
performance produced by the model are statistics 
on turnaround time, throughput, equipment utili­
zation, and job queues. 

The paper is in eight sections. Section 2 discusses 
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the main features of the existing Direct-Couple 
Operating System. Section 3 sketches the simulated 
system treated by the model. Section 4 gives an 
overview of the simulation system, which consists 
of two computer programs-the Job Generator and 
the Simulator. Section 5 discusses the Job Gener­
ator, an auxiliary program which generates the 
properties of specific sets of jobs that are fed to the 
Simulator. Section 6, the principal section of the 
paper, discusses the Simulator itself. Section 7 dis­
cusses the analysis supporting the specification of 
the Overhead Analy.zer, an important component of 
the Simulator. And Section 8 summarizes the main 
findings. 

2. MAIN FEATURES OF THE DIRECT­
COUPLE OPERATING SYSTEM 

A main purpose of the multiprocessor model is 
to evaluate the Direct-Couple Operating System. 
Thus DCS, as actually implemented, is of central 
importance in the model. DCS is described in vary­
ing levels of detail in appropriate documents of the 
IBM Systems Reference Library. 2-4 In this section 
we discuss its main features. The section is offered 
as background for subsequent sections of the paper. 

The development of DeS is a natural result of 
two major trends in computer development. One is 
the trend towards multiprocessing computer sys-
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l!.~ ~!x_ ~a~ y.!~c~s.!i21i. ~!t.:.~ 
• Performs executilln of DCS 

program itself 
• Services 709x I/O requests 
• Selects jobs for 709x 
• Provides for man/machine 

communication 

Channel A 

IBM 1402 Card Read Punch 
_____ ~nit.!. _____ -_ fo-

• Provide for punched 
card I/O 

• Provide for printed output 

IBM 1014 Remote 
___ .!n.s'!!~:'LU2i.! ___ - - fo-

• Provides additional 
facilities for man/machine 
communication 

(l!.M_ ~~"-~a!.a y.!~c~s!.!'!¥J>r.s.!e!." 
DC Channel • Performs job processing 

• Requests I/O via 704x 

L _____ -, 
Channe,l B I 

1-___ ...-,J!.lB""M-!.9Q4_~a~_C.!'~n~e.! _____ _ 

• Provides direct link from 1301 
to 709x for transmitting 709x 
programming systems 

I 
__ J!!~ .!.3.2 !....~i!k_S.!o.!~.:. __ _ 

• Provides for residence of 
709x programming oystems 

• Provideo intermediate otorage 
for I/O 

• Provide for tape I/O 

Figure 1. DCS machine configuration. 

terns. The other is the trend towards increasingly 
automatic operating systems. Figure 1 shows the 
general, machine configuration of DeS and the 
principal functions of the various equipments.\ 

The main advantages of DeS are that 1) it mirti­
mizes the need for operator intervention (and gener­
ally overlaps such intervention with useful compu­
tation) and 2) it processes several jobs in parallel. 
The parallel processing of jobs makes it possible 
for the system to time-share its various equipments 
to a greater extent than is realizable with serial 
processing. 

In genera], any given job which DeS processes 
goes through three phases: a preprocessing phase, 
a processing phase and a postprocessing phase. 
Each phase consists of one or more stages. The 
preprocessing phase consists, of the input and setup 
stages; the processing phase consists of the execu­
tion stage; and the postprocessing phase consists of 
the breakdown, punch, print and purge stages. An 
additional stage, the utility stage, is not associated 
with any of the three phases; it occurs in lieu of the 
execution stage. The phases and stages, and their 
principal functions, are shown in Figs. 2, 3 and 4. 

With regard to modeling, three properties of DeS 
stand out in importance. 

1. Commutator Control. The main loop of the 
Des control program consists of a comm utator, 
i.e., a sequence of gates (or switches) which re­
linquishes,control to various parts of the DeS con-

I Preprocessing Phase ~ 

- - - - - - - .!n'po:! E~s..e - - - ._ - - - - '_]_ 
• Analyzes a job's control cards and 

enters job in DCS 
• Converts a job's input deck to "DeS" 

format and stores on disk':' 

- - - - - - - ~e.!u'p E~i..e - - - .- - - - - 'J--
• Selects available tape units 
• Signal,S operator to mount tape unitl; 
• If necessary, converts input tapes t.o 

DCS format and store s on disk 

Figure 2. DCS: preprocessing phase. 

Prod,:s sing Phase 

Figure 3. 

I 
I 
I 
L_ 

.Selects job irom queue for processing 
• Transmits (part of) job's input file to 

704x buffers 
.Establishes 704x buffers to receive 

job's output 
• Transmits appropriate programming 

system (DC-IBSYS) to 709x 
.Transfers control to job via DC-IBSYS 

_______ U.!i~tr E~s..e:' ___ -_-_-_-_-_g_ 
• Performs tape-to-print I tape -to-punch 

and card-to-tape operations for records 
in DCS format L-________________ __ 

DCS: processing phase. 

I- ___ ~~a~~~'!. ~~~ ____ _ 
eIf necessary, deblocks 

709x output (from DeS for­
mat) and transmi,ts to tape 

e Rewinds tapes and returns 
them to availability status 

.If necessary, deblocks 709x 
output for (simulated) 720 
printing 

Postprocessing Phase ...-_+-__ --1 • Punches output previously , 
r- - - - - - ~uE-<:..h l'~.s.e_ - - __ ] 

Figure 4. 

stored on disk 

r- - - - - - ~rin.! ~t~.I~ - - - __ ] 

I---.....f • Prints output previously 
stored on disk 

r- - - - - .!:'~ll.e_S.!a.B':.. - - - __ ] 

• Purge s data pertaining to 
job from 704x and disk L-__ -I 

DCS: postprocessing phase. 
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trol program for only very short bursts of time. * 
Therefore, in a strictly imitative model, the model 
clock would advance in microscopic increments. 
This renders a strictly imitative approach incom­
patible with a macro-level model. 

2. Parallel Processing. The fact that DCS proc­
esses jobs in parallel means that the model must 
view all jobs in the system concurrently. This re­
quirement has led to the system-state approach 
described in Section 6. 

3. Facility Sharing. For efficiency purposes cer­
tain facilities within a multiprocessor system are 
generally shared by several jobs. An important 
instance of facility-sharing in DCS is the sharing of 
the disk by programs residing on the 709x and 704x. 
Whenever programs on both computers make com­
petitive demands for the disk, one program is de­
layed while the other is serviced. Thus, the sharing 
of facilities is a major contributor to overhead t 
occurring in a multiprocessor system. The treat­
ment of overhead in the model is of basic impor­
tance and is handled by the Overhead Analyzer. 

3. THE SIMULATED SYSTEM 

The extent of the simulated system is indicated in 
Fig.5. 

An individual job may be submitted by a pro­
grammer at a remote station or a remote terminal; 
it is at this point in time that simulation of the job 
begins. Simulation of the job continues until the 
time the job is returned to the originating station or 
terminal. Thus, the model is able to give simulated 
results on turnaround time. The gross events for a 
job submitted at a station are the following: 

• A messenger picks up the job at the sta­
tion and transmits it to keypunching 
and/or "central in" of the computer sys­
tem. 

• The Job is processed by the computer 
system proper and stacked at "central 
out" of the computer system. 

• A messenger picks up the job at "central 
out" and delivers it to the originating 
station. 

For a job submitted at a remote terminal, messenger 
pickup service is not required; messenger delivery 

*A multiprocessor control program is mechanized in this way 
in order to (try to) keep the various equipments in the system 
continually busy. 

t Overhead, in a general sense, is defined as time not devoted 
to the performance of directly useful work. Overhead is defined 
in a numerical sense under "Updating the Matrix" in Section 6. 

r' -------------:1 
Remote I 0 0 0 1 
Stations 1 • • • I L ______________ .J 

Key Central 
Punch In 

Central 
Out 

r--- - ----------, 

L _____________ J 

Computer System Proper 

Figure 5. Simulated system. 

.----. o 
o 

• 
• 
• 

o ___ .J 
Remote 

Terminals 

service mayor may not be required, depending on 
whether or not off-terminal output is generated. 

An individual job is simulated at a more detailed 
level during its passage through the computer sys­
tem proper. Here, a job is simulated at the "stage" 
level. Thus, the model is able to give simulated 
results on throughput time, i.e., time through the 
computer system proper. Figure 5, Computer Sys­
tem Proper, shows the 12 stages included in the 
model. In a typical case a job might be processed 
by the following stages: 

Card input stage-to read job's input onto disk; 
Setup A stage-to mount an input tape for the job; 
Setup B stage- to convert contents of input tape to 

an internal processing format; 
Execution stage-to perform job's main execution 

(input from disk and output to disk); 
Breakdown stage-to reconvert tape output and re­

lease tape; 
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Punch stage--to punch output stored on disk; and 
Print stage-to print output stored on disk. 

The arrows shown in Fig. 5 indicate the preced­
ence relations among stages. This concept is an im­
portant one in connection with a multiprocessor 
system and will be discussed in Section 6 (under 
"Software Parameters"). 

4. OVERVIEW OF THE SIMULATION 
SYSTEM 

The multiprocessor simulation system (Fig. 6) 
consists of two computer programs: the Job Gener­
ator and the Simulator. 

The Job Generator is an auxiliary program which 
generates the properties of jobs that are fed to the 
Simulator. The program accepts as input the sta­
tistical properties of the user's job population. Its 
output consists of parameters that characterize a set 
of specific jobs; the set represents a sample drawn 
from the user's population of jobs. 

The Simulator accepts two general kinds of input: 
1) the output produced by the Job Generator and 2) 
user-supplied input. The latter includes parameters 
that characterize the hardware system, the software 
system, and the environment of the computer 
system. Output from the Simulator consists of 
various statistics that give measures of system per­
formance. 

The Simulator consists of two parts: the Simula­
tor Proper and the Overhead Analyzer. The Over­
head Analyzer is subordinate to the Simulator 
Proper and services the Simulator Proper on de­
mand. The Simulator Proper is virtually inde­
pendent of the computer system configuration, the 
configuration-dependence being buried almost ex­
clusively in the Overhead Analyzer. 

User-supplied Input: 

5. THE JOB GENERATOR 

An individual job fed to the Simulator is charac-
terized by 21 parameters: 

1. Job identification number. 
2. Time-of-arrival in system. 
3. Station or terminal at which job ar-, 

rives. 
4. Job priority, e.g., 0,1,2, ... , with 

"zero" the lowest priority. 
5. Maximum time in execution stage, as 

specified by programmer. * 
6. Maximum number of lines of printed 

output, as specified by programmer. 
7. Maximum number of cards of punched 

output, as specified by programmer. 
8. Keypunching time. 
9. Whether job enters computer system 

via cards or tape. 
10. Whether I/O is direct mode or com­

patibility mode. t 
11. Rate of I/O calls during execution 

stage. 
12. Number of cards of input. 
13. Number of characters of remote termi­

nal input. 

·Parameters (5), (6) and (7) are programmer-specified cutoff 
parameters. 

t Two modes are available in DCS for data transmission be­
tween the 709x and 704x: direct and compatibility. Direct 
mode I/O conventions take full advantage of DCS facilities 
whereas compatibility mode I/O conventions do not; thus direct 
mode transmission is faster. Jobs written in FORTRAN IV, 
COBOL and MAP operate in the direct mode inasmuch as the 
IBM 7090/7094 IBJOB Processor operates on DCS in the direct 
mode. Other kinds of jobs written for the standard 709x Data 
Processing System operate on DCS in the compatibility mode. 

• simula tion control parameter s SIMULATOR 

.hardware parameters r------------, 
• software parameters 

I I • environmental parameters ....... I 
-, 

PART I: 
I ~ Meas 

r--- r---- J.. SIMULATOR PROPER I Sy 
Statistical T I Perfo 
Properties JOB Parameters for I ~ . I """-of User's Job GENERATOR Specific Set of Jobs 

I I Population PART II: 
I 1 

-J ures of 
stem =:e 

I OVERHEAD ANALYZER I 

I I 
I 
I I 
L ___________ --' 

Figure 6. Simulation system. 
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14. Base time* for setup A stage. 
15. Base time for setup B stage. 
16. Base time for execution stage. 
·17. Base time for utility stage. 
18. Base time for breakdown stage. 
19. Number of cards of punched output. 
20. Number of lines of printed output. 
21. Number of characters of remote termi-

naloutput. 

It is the function of the Job Generator to construct 
sets of job parameters that reflect the actual jobs of 
a particular user's installation. Thus, the input to 
the Job Generator consists of statistics on the user's 
job population. The input consists mostly of 1) 
frequency distributions for individual job param­
eters and 2) data specifying correlations among 
various parameters. 

In order to help specify the generator an extensive 
analysis was made of a full month's actual data of 
a large aerospace company. The analysis included 
the computation of frequency distributions, means 
and standard deviations for all job variables, as well 
as the computation of scatter diagrams and cor­
relation coefficients for various pairs of variables. 
In addition, statistical significance tests were made 
in order to insure that the data sample was suf­
ficiently reliable. 

6. THE SIMULATOR 

In this section we describe the Simulator itself. 
The section consists of six parts. The first two dis­
cuss input and output of the Simulator respectively. 
The third part discusses the basic approach of the 
model, the system-state approach. Part four pre­
sents the model logic. The fifth part reviews some 
basic concepts in Simscript, the language in which 
the model is mechanized. And the final part de­
scribes the program organization of the Simulator. 

Simulator Input 

In addition to the sets of job parameters fed to the 
Simulator (Section 5), four other classes of param­
eters are required: simulation control parameters, 
hardware parameters, software parameters and en­
vironmental parameters. 

Simulation Control Parameters. Parameters that 
control simulation include 1) time simulation be-

*Base time for a multiprocessor stage is the processing time 
for that stage under conditions of "no overhead" in the multi­
processor system. In general, actual processing time for a stage 
is greater than base time due to the existence of overhead. 

gins, 2) time observation begins,t 3) time simulation 
ends, and 4) options governing simulation output. 

Hardware Parameters. Hardware parameters in­
clude 1) number of read-punch units, 2) number and 
types of printers, and 3) number of remote termi­
nals. Thus, hardware parameters serve to specify 
an equipment configuration. 

Software Parameters. Software parameters enable 
us to study the effect of scheduling jobs within a 
multiprocessor system under various scheduling 
policies. 

Fixed Versus Dynamic Stage Scheduling. One 
such parameter is fundamental and specifies the 
stage scheduling mode: fixed or dynamic. DeS, 
as implemented, schedules job stages in a fixed 
sequence, i.e., a given job has its stages executed in 
an unvarying sequence each time it is run. It is 
possible" however, for a multiprocessor control 
progranl to schedule job stages dynamically, i.e., in 
accordance with on-the-spot conditions within the 
system. The idea of dynamic scheduling in connec­
tion with parallel processing of jobs has been sug­
gested by Leiner et al.6 

With regard to dynamic scheduling the concept 
of precedence relations is basic. In Fig. 5, if two 
stages are connected by arrow (e.g., execution and 
breakdown), then one stage (execution) must pre­
cede the other (breakdown). However, if two stages 
are not connected by arrow (e.g., punch and print), 
then the order in which the stages are executed is 
immaterial. Under the dynamic scheduling option 
the model observes the stage precedence relations 
shown in Fig. 5, with the pool queue stage holding 
the queue of jobs scheduled for the punch, print, 
and remote terminal output stages. 

Stage Queue Disciplines. Each stage in the simu­
lated computer system has a job queue associated 
with it. For each job queue there is a queue disci­
pline which specifies the basis on which jobs in the 
queue are ranked for service. The queue disciplines 
to be invoked at various multiprocessor stages are 
specified by means of a class of software parameters. 

At the print stage, for instance, one might choose 
to service jobs in the queue 1) on the basis of prior­
ity and time-of-arrival in the computer system; 2) on 
the basis of priority, maximum number of lines of 

tIn simulating a traffic system it is sometimes useful to con­
sider the simulation period as consisting of an initialization 
period followed by an observation period. This enables the user 
to suppress the gathering of statistics while the system is building 
up into a more-or-Iess "steady state." The feature has been used~ 
for example, in the simulation of an automobile traffic network. 
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printed output, and time-of-arrival in the computer 
system; or 3) on some other user-specified basis. 
Each of these options is available by parameter, 
with option (3) requiring user-supplied code in the 
program. 

Queue discipline options are also available at the 
execution, punch, terminal input and pool queue 
stages. 

The implementation of queue discipline options 
in the model raises a question in Simscript. In the 
terminology of Simscript the problem of ranking 
jobs in a queue becomes the following: How can 
the entities belonging to a Simscript set be ranked 
on the basis of n attributes, given that Simscript 
provides machinery for rankipg on the basis of one 
attribute only? A discussion of the problem is given 
in the Appendix. 

Cutoff Parameters. A final class of software 
parameters specifies 1) the maximum time any job 
can spend in the execution stage; 2) the maximum 
number of lines of printed output for any job; and 
3) the maximum number of cards of punched output 
for any job. These installation-specified cutoff 
parameters are used by the multiprocessor system 
in the event the programmer himself does not 
supply overriding cutoff parameters. 

Environmental Parameters. Environmental param­
eters specify the environment within which the com­
puter system operates. These parameters include 
the following: 1) the number of stations in the sys­
tem, 2) the messenger pickup and delivery schedules 
at each station, and 3) the messenger transmission 
times from (to) each station to (from) the computer 
system. 

Simulator Output 

Simulator output reports are delivered at inter­
mediate points of simulation as specified by user 
option and at the end of simulation. Each report 
contains two types of statistics: updating and cumu­
lative. Updating statistics are those that are gath­
ered since the issuance of the previous output re­
port, while cumulative statistics are those that are 
gathered since the beginning of observation. 

Before describing the items of output on a report, 
we define four kinds of statistics: 

1. Throughput time for a job is defined as the time 
it takes for the job to pass through the multi­
processor com puter system. 

2. Turnaround time for a job is defined as the dif­
ference between the time the job is returned to a 
station~nd the time the job· was submitted to the 
station. 

3. Each job is assigned a sequence number when 
it enters the computer system. Similarly each job 
is assigned a sequence number when it exits from 
the computer system. The computer system service 
displacement for a job is defined as the computer 
system entrance number minus the computer syst1em 
exit number. The absolute computer system service 
displacement is defined as the absolute value of the 
computer system service displacement. 

4. Corresponding to (3), a· job is also assigned 
sequence numbers when it enters the system at a 
station and when it leaves the system. This gives 
analogous definitions for system service displacement 
and absolute system service displacement. 

The definitions in (3) and (4) make it possible to 
measure the extent to which the (computer) system 
deviates from being a first-in, first-out service fa­
cility. 

A simulator output report contains ten c:lasses of 
statistics: 

1. Overall performance of the system­
including the mean, high, low, range 
and standard deviation for each of the 
following: throughput time, turn­
around time, absolute computer sys­
tem service displacement, and absolute 
system service displacement. 

2. Job queues at stations. 
3. Job queues at the various computer 

system stages. 
4. The activity/inactivity of the various 

computer system stages. 
5. Computer system stage performance, 

including base time vs overhead time. 
6. The activity/inactivity of computer 

system equipments. 
7. Throughput time by priority. 
8. Turnaround time by priority. 
9. Turnaround time by station. 

10. The distribution of jobs within the sys­
tem. 

Figures 7, 8, 9 and 10 illustrate selected sections 
of output in more detail. Figure 7 illustrates job 
queues at computer system stages. Figuw 8 illus­
trates computer system stage performance. Figure 
9 illustrates activity/inactivity of computer syst1em 
equipments. And Fig. 10 illustrates throughput 
time by priority. 

In addition to the aggregative statistics above, 
detailed statistics are collected on each individual 

. job processed by the Simulator. 
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SECTION 3. STAGE QUeUE S 

SU8SFC T10N 3.1 UPDA TI NG 

NO. OF JOIiS NO. OF JOBS HIGH NO. OF LOW NO. OF MEAN NO. OF 
IN QUEUE IN QUEUE JOBS IN OUEUE JOBS I~ QUEUE JOBS IN QUEUE TI ME TI ME JOB-

ST4GE A T START OF AT END OF DURING DUlliNG DURI NG QUEUe QUEUE CkJEUE 
REPORTI NG REPORTING REPORTING REPJRT I'4G REPORTING EMPTY NON- HOURS 

PERIOO PERIOD PERIOD PER DO PERIOD EMPTY 

(11 CARD INPUT 0 0 26 0 2.1911 2.1561 1.2439 11.1645 
C 21 TAPE Il,iPUT 0 0 0 0 o. 4.0000 o. o. 
C 31 TERM INAl INPUT 0 0 0 0 o. 4.0000 O. o. 
141 SETUP A 0 0 1 0 o. 4.0000 o. o. 
( 51 SETUP B 0 0 0 0 o. 4.0000 o. o. 
161 EXECUTION 0 26 32 0 8.9819 1.6216 2.3124 35.9216 
11) UTILI TY 0 0 1 0 o. 4.0000 o. o. 
181 AREAKOOWN 0 0 0 0 o. 4.0000 o. o. 
191 POOL QUEUE 0 0 0 0 o. 4.0000 o. o. 
( 10) P UNC H 0 0 4 0 0.0541 3.9076 0.0924 0.'2188 
C 11) PR INT 0 0 2 0 0.0434 3.8839 0.1161 0.1738 
I 12) TERMINAl OUTPUT 0 0 0 0 o. 4.0000 o. o. 

Figure 7. Job queues at computer system stages. 

SECTION I). STAGE PERFORMANCE 
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(816REAKOr:JWN 
f 101 PUNCH 
Cll)PRINT 
(12) TERMINAl OUTPuT 

SION 

1 
1 
1 
1 
1 
1 
1 
1 
1 
3 
1 

SECTIO~ 6. EQUIPMENT ACTIVITY/INACTIVITY 

SUBSECl ION 6.1 lIPOA TI NG 

EOUIPMENT 

709X DATA PROCESSING SYSTEM 
704X OATA PRnCESSING SYSTEM 
CARD READER 1 
CARn PUNCH 1 
PRINTER 1 
PR INTFI< 2 
PR INTFR :\ 
R FIoIOTE TERMINAL 

TI ME TIME TIME FACTOR FAC TOR FACTOR 

111 121 131- 141- 151- 161-
11hl21 1311111 C 31/SYS BUSY T IlIlSYS BUSY T 

1.~059 0.0200 1.3259 1.0153 0.49 0.49 
O. o. o. o. O. o. 
O. O. o. o. O. O. 
0.4178 O. 0.4178 1.0000 0.16 0.16 
O. O. o. o. o. O. 
2.5466 o. 2.5466 1.0000 0.95 0.95 
0.0849 O. 0.0849 1.0000 0.03 0.03 
O. o. o. o. o. O. 
0.3067 0.0599 0.3666 1.1955 0.14 0.11 
3.0251 0.3463 3.3714 1.1145 1.26 1.13 
O. o. o. o. o. o. 

Figure 8. Computer system stage performance. 

DISTRIBUTION OF OBSERVATION TIME 
BY EOU I PMENT BUSY/I Dl. E 

Tl ME PEPCENTAGE 
BUSY IDLE BUSY [OLE 

2.5466 1.4534 63.7 36.3 
2.6857 1.3l't3 67.1 32.9 
1.3259 2.6741 33.1 66.9 \ 
0.3666 3.6334 9.2 90.8 
1.6554 2.3446 41.4 58.6 
1.2446 2.1554 31.1 6t1.9 
O.47i4 3.5286 11.8 88.2 
o. 4.0000 o. 100.0 

HSTRIBUTION OF SYSTEM bUSY TIME 
BY EQUIPMENT 8USY/IDLE 

TIME PERCENT AGE 
BUSY IDLE BUSY IDLE 

2.5466 0.1391 94.8 5.2 
2.6851 o. 100.0 o. 
1.3259 1.3598 49.4 50.6 
0.:\666 2.3191 13.7 86.3 
1.6554 1.0303 61.6 38.4 
1.2446 1.4411 46.3 53.7 
0.4114 2.2143 17.6 tl2.4 
o. l.6851 o. IDO.O 

Figure 9. Activity /inactivity of computer system equipments. 

SECTION 1. THROUGHPUT TIMF BY PRIORITY 

PR lOR I TV 

o 
1 

NUMBER OF JOB S 

Bl 
3 

THROUGHPUT 

MEAN HIGH 

30.19 18.63 
10.96 18.10 

Figure 10. Throughput time by priority. 

TIME (MINUTESI 

LOW RANGE STANDARD 
DEVIATION 

0.55 18.08 21.52 
3.13 15.51 6,.3~ 
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The System-State Approach. 

In simulating a multiprocessor system at a macro­
level we have rejected a strictly imitative approach 
and have constructed a model based upon the sys­
tem-state approach. The basic concept in this ap­
proach is that the multiprocessor computer system 
is consid~red to "change state" whenever any job in 
the computer system completes any stage or when­
ever a new job enters the computer system. Each 
such change of state is accompanied by an advance 
in the model clock. 

The system-state approach yields four important 
benefits: 

1. The model clock is advanced in the largest 
possible incremen,ts, consistent with a faithful simu­
lation. Consequently, the resulting model is at an 
appropriate level of abstraction and its running time 
is relatively short. 

2. The system-state approach is conceptually 
straightforward whereas a strictly imitative ap­
proach would have been conceptually difficult. By 
definition, a strictly imitative approach is one in 
which the model logic resembles in very large meas­
ure the logic of the multiprocess or control program 
itself. Hence, a strictly imitative approach leads to 
model logic which tends to become as complex as 
multiprocessor control program logic. 

3. In order to characterize multiprocessor over­
head in the model, it suffices to measure actual 

2 3 4 

~ 
card tape ter- setup 
input input minal A 

row·vector 
input 

d = dimension X X X X 

2 P = queue discipline X X X X 

3 q = job queue X X X X 

4 e = job execution X X X X 

5 t = base time remaining X X X X 

6 v = overhead accumulation X X X X 

7 s = successor stages X X X X 

overhead empirically, i.e., by observing the effects of 
overhead in an actual multiprocessor system. This 
kind of measurement has turned out to be feasible. 
The kind of measurement required in support of a 
strictly imitative model might not have been feasi­
ble. A strictly imitative model would have required 
an extensive analysis and timing of the multiproces­
sor control program itself. 

4. The model is relatively independent of the 
computer system configuration being modeled. The 
model can be viewed as consisting of two compo­
nents: a large-sized configuration-independent 
component and a small-sized configuration-depend­
ent component. Since these components are prac­
tically distinct, the effect of making a change to the 
computer system configuration can be determined 
on the basis of making a corresponding change to 
the appropriate part of the configuration-dc;~pend'ent 
component of the model. 

Model Logic 

In the system-state approach the statt! of the 
multiprocessor computer system is repres1ented by 
a 7-by-12 matrix (Fig. 11). The 12 columns of the 
matrix represent the 12 stages of the model. The 
movement of a job through the computer system 
is represented in the model by the movement of a 
job from column-to-column of the matrix. 

Not all elements of the matrix are relevant. Some 
elements are never relevant; some are rele:vant for 

5 6 7 8 

setup execu- utility break-
B tion down 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

9 10 

pool punch 
queue 

X X 

D F 

D F 

0 X 

0 X 

0 X 

D X 

11 

print 

X 

F 

F 

X 

X 

X 

X 

12 

ter­
minal 
output 

X 

F 

F 

X 

X 

X 

D 

Figure 11. System-state matrix. 
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fixed stage scheduling only; and some are relevant 
for dynamic stage scheduling only. 

The System-State Matrix. The system-state matrix 
consists of seven 12-dimensional row vectors. 

1. Dimension Vector. Let di denote the ith ele­
ment of the dimension vector d. The value di speci­
fies the number of jobs which the ith stage can 
process concurrently. We have 

d = (a, 1, c, 1, 1, 1, 1, 1,0, a, b, c) 

where a = number of read-punch units, b = num­
ber of printers, and c = number of remote terminal 
units. Note that d9 = ° since no job can be proc­
essed by the pool queue stage which is merely a 
queue for punch, print, and remote terminal output 
under dynamic stage scheduling. 

2. Queue Discipline Vector. Let Pi denote the ith 
element of the queue discipline vector p. The value 
Pi is a code which specifies the queue discipline to be 
invoked to rank the jobs in the queue belonging to 
the ith stage. 

A discussion of queue disciplines is given above 
(under "Software Parameters"). 

3. Job Queue Vector. Let q; denote the ith ele­
ment ofthejob queue vector q. 

For i =;tf 9, qi identifies the set of jobs waiting for 
ith stage execution. Thus qi is a vector. The job 
identification numbers constituting this vector are 
ordered according to Pi' the queue discipline for ith 
stage execution. 

For i = 9, qi identifies the set of jobs waiting for 
10th, 11th or 12th stage execution. Again qi is a 
vector. This vector is relevant only in the case of 
dynamic stage scheduling. The job identification 
numbers constituting this vector are ordered accord­
ing to P9. 

4. Job Execution Vector. Let ei denote the ith ele­
ment of the job execution vector e. 

Then ei, i =;tf 9, is itself a vector whose jth element 
is denoted ei,j' j = 1, ... , di . If ei,j > 0, then ei,j is 
the identification number of the job being executed 
in the j th position * of the ith stage. If e i,j = 0, 
then no job is being executed in the jth position of 
the ith stage. 

The value e9 is null. 

5. Base Time Remaining Vector. Let ti denote the 
ith element of the base time remaining vector t. 

Then t i , i =;tf 9, is itself a vector whose jth element 
is denoted ti,j' The value ti,j specifies the base time 

*The number of "positions" of the ith stage equals di. 

remaining for the job in the jth position of the ith 
stage. 

The value t9 is null. 

6. Overhead Accumulation Vector. Let Vi denote 
the ith element of the overhead accumulation vector 
v. 

Then Vi, i =;tf 9, is itself a vector whose jth element 
is denoted Vi,j' The value Vi,j specifies the overhead 
time which has accumulated for the job in the jth 
position of the ith stage. 

The value V9 is null. 

7. Successor Stages Vector. Let Si denote the ith 
element of the successor stages vector s. 

Then Si is itself a vector whose jth element is de­
noted Si,j' The value Si,j is in turn a vector that speci­
fies the successor stages for the job in the jth posi­
tion of the ith stage. 

Updating the Matrix. The essential steps in updat­
ing the system-state matrix are the following: 

1. Overhead Factor Vector. In accordance with 
relevant properties of the system-state currently 
existing, the subroutine called the Overhead Ana­
lyzer computes the overhead for each job being 
processed. Relevant properties include 1) the par­
ticular stages that are active; 2) the number of jobs 
that are active in each of those stages; and 3) the 
input/output properties of active jobs. The over­
head factor for the job in the jth position of the 
ith stage is designated fi,j ~ 1. 

An example of an overhead factor is the follow­
ing: Assume "printer 2" has a maximum rate of 
1100 lpm and assume that due to overhead existing 
in the current system-state its actual rate is 1000 
lpm. Thenfll,2 = 1.1. 

The analysis supporting the specification of the 
Overhead Analyzer is discussed in Section 7. 

2. Potential Advancement of Model Clock. The 
potential advancement in the model clock is 

w = ~~n {ti,jfi,j}, ej,j > 0, j = 1, ... , d j, i 

= 1, ... , 12 

No job iIi the-system will complete its current stage 
until this amount of time passes. 

3. Actual Advancement of Model Clock. The 
actual advancement in the model clock is 

r = min {w,zl 

where z is the amount of time remaining before the 
next job enters the computer system. 
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4. The New Base Time Remaining Vector. Let 

t(g) = (t~g») = «t~~»)) 
1 I.) 

designate the value of the t vector following execu­
tion of the gth system-state. And let 

e(g) = (e~g») = «e~~»)) 
1 I.) 

designate the value of the e vector following execu­
tion of the gth system-state. Then the value of the t 
vector following execution of the (g + 1 )th system­
state is 

where 

(g+ I) {o, e~g~ = ° t. . = I.) 

I., t~g.) _ ~, e~g.) > ° 
I.) fi.j I.) 

5. The New Overhead Accumulation Vector. Let 

v(g) = (v~g») = « v~~»)) 
1 I.J 

designate the value of the v vector following execu­
tion of the gth system-state. Then the value of the 
v vector following execution of the (g + 1 )th sys­
tem-state is 

where 

6. Inter-Stage Movement of Jobs. Any job whose 
stage is complete is moved from its current stage to 
its new stage queue. As many jobs as possible are 
moved from stage queues to stage execution. 

Review of Simscript Concepts 

The Simulator has been mechanized using the 
Simscript language and hence is structured within 
the general framework provi~ed by Simscript. The 
reader is referred to Dimsqale and Markowitz 7 

for a description of Simscript or to Markowitz 
et al 8 for a complete reference manual on the lan­
guage. In this section we review by example the 
basic Simscript concepts, namely, the concepts of 
temporary entity, permanent entity, attribute, set, 
exogenous event and endogenous event. Entities, 
attributes and sets depict the status of the simulated 
system, and events cause changes to the status. 

An example of a type of temporary entity is job. 
Each job fed to the Simulator is an entity; it is 
temporary since in general the job is not present in 
the system during the full course of simulation. 

An example of a type of permanent entity is 

printer. Each printer in the simulated computer 
system is an entity; it is permanent since it exists in 
the system for the full course of simulation. 

Examples of attributes are "number of ,cards of 
input" and "time printer busy"; the former is an 
attribute of job while the latter is an attribute of 
printer. 

An example of a type of Simscript set is stage 
queue. Each of the 12 stage queues is a set. The 
members of each set are the jobs in the queue. 

An exogenous event is an event caused by forces 
outside the boundary of the simulated syst1em. An 
example is the event ENTER, which marks the I~n­
trance of a job in the system. 

An endogenous event is an event caused by pre­
ceding events within the boundary of the simulated 
system. An example is the event DONE, which 
marks the completion of a job on the computer. 

Program Organization 

The Simulator consists ,of two phases that are ex­
ecuted serially. Phase I performs the simulation and 
writes output data on disk, and Phase II delivers the 
output reports constructed from this data. 

Data Description. The data description of the Simu­
lator is expressed by means of 2 types of temporary 
entities and their attributes, 10 types of permanl~nt 
entities and their attributes, and 6 types of SI~tS. 

Temporary Entities. A temporary entity JOB 
exists for each job in the simulated system. This 
entity. is described by a total of 46 attributes. A 
temporary entity BATCH exists for each batch of 
jobs being carried 1) from station to keypunching 
and/or "central in" and 2) from "central out" to 
station. This entity is described by a total of thlree 
attributes. 

Permanent Entities. A permanent entity STAGE 
(with 29 attributes) exists for each of the 12 stages 
in the computer system. A permanent entity ST A­
TION (with 27 attributes) exists for each station in 
the system. A permanent entity READ /l?UNCH 
(with four attributes) exists for each read/punch 
unit in the computer system. A permanent entity 
PRINTER (with three attributes) exists for each 
printer in the computer system. And a permanc!nt 
entity PRIORITY (with 10 attributes) exists for 
each job priority level. 

In addition to the above, four more permanent 
entities serve array-dimensioning functions. 

Finally, the (implied) permanent entity SYSTEM 
is described by a total of 94 attributes. 
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Sets. A set STATION QUEUE is owned by each 
station in the system. A set KEYPUNCH QUEUE 
is owned by the SYSTEM: A set STAGE QUEUE 
is owned by each stage in the computer system. A 
set EXECUTION QUEUE is owned by the SYS­
TEM. A set CENTRAL OUT QUEUE is owned 
by each station in the system. And a set BATCH 
QUEUE is owned by each batch of jobs in the sys­
tem. 

The member entities of each of the above sets are 
JOB's. 

Program Logic. The logic of the Simulator is ex­
pressed by means of 2 exogenous event routines 
and 10 endogenous event routines. For supporting 
logic the event routines, in turn, call upon 28 sub­
routine subprograms, 3 function subprograms and 
10 report subprograms. 

Exogenous Event Routines. The routine GO per­
forms program initialization. This routine is the 
first in the program to be executed and is executed 
once only. The routine ENTER is executed each 
time a job is entered in the simulated system. 

Endogenous Event Routines. The routine LOOK 
is executed at the beginning of the observation 
period. This routine performs initialization for 
statistics gathering. The routine STOP is executed 
at the conclusion of the simulation period. This 
routine terminates Phase I of the Simulator and 
calls report-writing Phase II. The routine STAT is 
executed each time a report is to be issued. This 
routine generates output data for the report. The 
routine TO is executed each time a messenger picks 
up a batch of jobs at a station for transmittal to 
keypunching and/or "central in" of tb,e computer 
system. The routine KEY is executed each time a 
batch of jobs arrives at keypunching. The routine 
ON is executed whenever there arrives at the com­
puter system 1) a batch of jobs direct from a. sta­
tion; 2) an individual job via keypunching; or 3) an 
individual job via a remote terminal. The routine 
DONE is executed each time the computer system 
completes processing of a job. The routine FROM 
is executed each time a messenger picks up a batch 
of jobs at "central out" for transmittal to a station. 
The routine EXIT is executed each time a job exits 
from the simulated system. And the routine STEP 
is executed at the conclusion of each system-state. 
This routine carries out the logic indicated under 
"Model Logic" above. 

7. ANALYSIS OF MULTIPROCESSOR 
OVERHEAD 

The specification of the Overhead Analyzer repre­
sented a major phase of the modeling process. The 
specification was based on an intensive, empirical 
analysis of the occurrence of overhead in an actual 
multiprocessor system (DCS). 

Modification to DeS Operating System 

In order to measure actual DCS overhead, the 
DCS Operating System was modified so that it pro­
duces a binary tape containing a sequence of "time­
stamps." The time-stamps are created during DCS 
operation and stored in 460-word data buffers, just 
like other output. The resulting time-stamp data 
provides a profile of actual system-states and a pro­
file of individual jobs passing through the computer 
system. 

Prior to modifying DCS we consulted with DCS 
experts on the question of what effect the collection 
of time-stamp data would have on actual DCS op­
eration. Their judgment was that DCS operation 
would be affected in only a negligible way and that 
the act of observing DCS "from the inside" would 
not affect significantly our observation results. * 
This judgment was shown to be correct by an actual 
experiment carried out following modification of 
the system. The experiment consisted of running a 
set of jobs twice-under standard DCS and under 
modified DCS. The running times differed by 15 
hundredths of 1 percent-specifically 3 seconds in 
some 34 minutes. 

Time-Stamp Data 

Entries on the time-stamp tape are of three types: 
state identifiers, events and I/O counts. 

State Identifiers. Each occurrence of a change-of­
state in DCS causes a time-stamp entry identifying 
the new system-state. 

Events. Each occurrence of an event in DCS causes 
an event time-stamp entry. An event time-stamp 
consists of four components: 1) type of event, 2) 
buffer saturation indicator, 3) job number identify­
ing the job associated with the event, and 4) time of 
occurrence. The principal types of events time­
stamped are the following: 

* An exception to this is the occurrence of buffer saturation; 
the collection of time-stamps induces buffer saturation some­
what earlier than normal. 
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• Reading one card from the ith reader, 
i = 1,2, ... 

• Printing one line on the ith printer, i = 

1,2, ... 
• Punching one card on the ith punch 

unit, i = 1,2, ... 
• Typing one character. 
• Reading one card image from tape. 
• Beginning/ending of DCS purge stage. 
• Beginning/ending of system load. 
• Beginning/ending of library load. 
• Beginning/ending of dump. 

I/O Counts. Each occurrence of an end-of-system­
state on DCS causes seven time-stamp entries giving 
counts of input/output activity that occurred 
during the preceding system-state: 

• Number of 709x reads. 
• Number of 709x writes. 
• Number of 709x non-data selects. 
• Number of 709x input J?uffer loads. 
• Number of 709x outpu~ buffer loads. 
• Number of 704x input buffer loads. 
• Number of 704x output buffer loads. 

Analysis of Time-Stamp Data 

Using routines that print and plot time-stamp 
data and that compute overhead factors for speci­
fied system-states, we have been able to construct 
appropriate statistical distributions for inclusion in 
the Overhead Analyzer of the model. 

Table 1 illustrates four sets of overhead factors 
collected in 5-second intervals from a 7094/7044 
installation. Each of the four columns represents 
a cumulative frequency distribution. The meaning 
of a typical entry in this table, e.g., entry 45 in col­
umn 2, is as follows: Consider the case where jobs 
on the 7094 are in the compatibility mode and is­
sue I/O calls at a rate of less than 4-per-second, and 
compute overhead factors for the 1100 line-per­
minute printer every 5 seconds. Then 45 percent of 
these overhead factors are 1.04 or less. 

8. SUMMARY 

With the advent of multiprocessor computer sys­
tems the prediction of computer system perform­
ance on a prescribed job load has become a prob­
lem of considerable complexity. This paper has 
described a model whose principal purpose is to 
ease this problem. A second ,important purpose of 
the model is to determine the effect of varying basic 

Table 1. Illustrative Overhead Factors 

Cumulative Percentage 
Overhead Reader Printer (1100 lpm) 

Factor Com patibility I Direct 
<4 I/O 

calls per > 10 I/O calls 
sec per sec 

(1) (2) (3) (4) 

1.01 64 12 0 4 
1.02 76 26 2 10 
1.03 78 36 3 22 
1.04 80 45 9 26 
1.05 87 49 14 30 
1.08 89 59 19 36 
1.15 99+ 75 27 52 
1.30 84 42 68 
1.50 91 61 84 
2.00 98 77 93 
2.50 99+ 91 97 
3.00 97 99+ 
3.50 99+ 

system parameters-hardware, software and en­
vironmental. 

The model is at a macroscopic level, i.e., it at­
tempts a relatively high degree of abstraction of the 
real system. This level of simulation has been made 
possible in connection with a multiprocessor sys­
tem as a result of using the system-state approach, 
the main idea in the model. With simulation at a 
macro-level the running time of the program is at­
tractively short. For a sample of the runs com­
pleted to date the ratio of real time to simulatled 
time is 195. That is, a typical 16-hour workload 
can be simulated in less than 5 minutes. The 5 
minutes here refers to 7094 time using a 7094/7044 
Direct-Couple System to host the simulation. 

Following are some representative questions to 
which the model has helped provide answers: 
• For a given equipment configuration and a speci- ' 

fied job load, what improvement in throughput 
can be achieved using dynamic stage scheduling 
rather than fixed stage scheduling? 

• If all jobs submitted from Station 1 are assign1ed 
priority level 9 (highest priority) rather than thc!ir 
currently assigned priorities, what change will re­
sult in the mean throughput time (and high 
throughput time) for jobs submitted from each of 
the individual stations? 
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• If a third printer is added to a given two-printer 
equipment configuration, what change will result 
in the mean number (and high number) of jobs in 
the print stage queue? What change will result 
in printer equipment utilization? Answer ques­
tions two ways-assuming third printer 600 lpm 
and 1100 lpm. 

• For a given equipment configuration and a speci­
fied job load, suppose the queue discipline for the 
execution stage is changed from 1) priority and 
time-of-arrival to 2) priority, maximum time in 
execution stage, and time-of-arrival. What 
change will result in the mean throughput time 
(and high throughput time)? What change will 
result in the mean (high) absolute computer sys­
tem service displacement? 

• Suppose messenger service is improved by adding 
one messenger and by making prescribed changes 
in the messenger schedule. What change will re­
sult in the turnaround time at each station? 

An indication of the level of effort of the multi­
processor simulation project is the amount of pro­
gramming involved. The Simulator itself consists of 
some 2650 source cards in Simscript. The Job Gen­
erator consists of some 375 source cards, also in 
Simscript. The modification to DCS consists of 
some 650 source cards in MAP. And the routines 
that analyze the time-stamp tape produced by the 
modified DCS consist of some 2175 source cards, 
in FORTRAN and Autocoder. 
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Appendix 

RANKING A SET ON n ATTRIBUTES 

Simscript provides automatic machinery for rank­
ing the entities of a set on the basis of one attribute. 
It is sometimes necessary, however, to rank the 

entities of a set on the basis of n attributes. In such 
a case one can employ a function that maps n at­
tribute values into a "'composite attribute value" 
and rank the set on the basis of the composite 
attribute. 

Consider, for example, the following problem: 
Let n equal the number of attributes on which 

the ranking is to be based. 
Let the ith attribute "outrank" in importance 

the U + l)th attribute, i = 1, ... , n - 1. 
Let Xi denote the value of the ith attribute; as­

sume Xi is positive integer-valued, with its maximum 
mi; i.e., Xi = 1,2, ... , mi· 

Then the n attribute values (Xl, ... , Xn) can be 
mapped into an appropriate composite attribute 
value by means of the function 

n-l n 

f(xl, ... ,Xn ) = Zn + L Zi II mj 
i-I j=i+l 

where Zi = Xi if ith attribute is ranked "high" in 
Simscript sense (i = 1, ... , n), and Zi = mi - Xi if 
ith attribute is ranked "low" in Simscript sense. 
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INTRODUCTION 

The advent of multiple-access computing, the 
increasing variety of processors in systems, and the 
growing use of multiprocessing and multiprogram­
ming in computing systems has put many new bur­
dens on the computing system designer-planner­
programmer. The selection of suitable system 
structure and programming structure, as well as the 
selection of scheduling rules, requires a much more 
detailed and precise understanding of the stochastic 
behavior of system traffic than has been required in 
the past. In short, the "architect" of system hard­
ware and software is finding a need for more and 
more insight into the behavior of computers as net­
works of queues and processors. 

As a rule, his chief tool for obtaining this insight 
has been by the use of Monte Carlo simulations. 
However, as the systems gain in complexity, and as 
system design becomes more sensitive to the effects 
of congestion, these simulations become either too 
expensive or their estimations of probability too 
imprecise to be viable as tools for exploring system 
behavior in depth. Accuracy can be obtained only 

*This work was sponsored by the Rome Air Development 
Center, Rome, N.Y., under Contract No. AF 30(602)-3558. 
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at the expense of very large samples. Exploration 
means even further calculation as parameter values 
and structures are changed and solution repeated. 
Even if everything has been done to reduce the sys­
tem to the simplest model having the desired 
properties, the calculations are still likely to be 
extensive (hence expensive). 

In this paper we will discuss an approach to the 
solution of computing system congestion which is 
very often an attractive alternative to simulation 
for a system designer or "architect." The approach 
is based on the use of finite-state Markov chains 
as models for the system, followed by a numerical 
solution of a set of algebraic equations for the equi­
librium probabilities of those Markov chains. t 
It will be shown that, through the use of an efficient 
program for the accurate solution of large problems 
of the above type, much less computation time is 
needed than would be needed to simulate the same 
system. 

This technique also shows promise of providing a 
procedure which is well suited to use on-line in a 
man-machine interactive mode. In such a mode, a 

tFollowing Churchman, 1 we note that since our procedure 
does not involve "sampling" of the model, it is not a simulation 
technique at all. 
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user of the procedure should be able to explore 
systems freely, and without excessive delays, while 
solutions to the problems he poses are prepared for 
him. He should also receive precise, reproducible 
answers which can be rationally compared with the 
results of other analyses and other systems. The 
procedure described here comes close to these goals 
in many respects. 

MARKOV CHAIN MODELS 

It should first be pointed out that the mathe­
matical models known as Markov chains represent 
a quite broad and useful class of stochastic models 
for computer systems. Indeed, most models usually 
represented by networks of queues and processes 
can be approximated quite closely by some model 
derived from a Markov chain. However, the usual 
problem encountered in the use of these models is 
one of size; the number of states in the chain repre­
senting the system can easily exceed all reasonable 
bounds. By going to numerical methods, rather 
than the analytical methods typical of queueing 
theory, it is possible to deal with much larger 
Markov chains and hence to make substantial use of 
their generality. 

Now, in the most common cases we regard the 
system being modeled as an interconnection of 
queues and processes,~ with a prescribed stochastic 
flow of tasks among them. In this context, any 
processing capability which can be occupied by at 
most one task at a time can be considered a process. 
Thus an arithmetic processor, a segment of memory, 
a data channel, a stored program, a console, or even 
an operator or user can be considered processes. 
Also, in this context, a queue is any list or collection 
of uncompleted tasks whose routes are stochasti­
cally indistinguishable. There will usually be an 
integer variable associated with each queue or group 
of processes:. e.g., the number of tasks waiting in 
that queue, or the number of processes in that group 
currently occupied by tasks. Also associated with 
each process will be a random time variable repre­
senting the duration of time that a task will occupy 
the process. At the end of that interval the values of 
some of the integer variables will change, due to the 
motion of the task from the process to its next 
process. Many things can happen to this flow: 
processes may be blocked by other processes, pre­
emptions may occur, priorities may be assigned. 
Whatever happens it should be represented in the 

tIn queueing theory, the term server would be more common. 

model. However, in order to be solved it. must be 
described in terms of a mathematical model which 
is capable of solution. 

As a practical matter, the most useful model for 
the purpose is the Markov chain, which will be 
described in the following sentences. For the sake 
of generality, and in order not to lose the ability to 
represent blocking, preemptions, priorities, and 
other complications, this discussion is relatively 
abstract and general. 

The process of creating a Markovian model 
whose characteristics approximate a given com­
puter system having any complexity in its rules of 
behavior is, broadly speaking, a part of queU(~ing 
theory, and a thorough presentation of that process 
will not be attempted here. It suits our purposes 
merely to indicate the nature of the Markovian 
restrictions, and so to give assurance that: Markov 
chains can be often applied as models. A paper by 
Smith,2 appearing in another session of this con­
ference, presents a discussion of several such models 
which represent aspects of a time-shared computer 
system, along with conclusions derived from RQA-l 
analysis. That paper will serve to illustrat(~ the next 
remarks more concretely. Two previous applica­
tions of Markovian models and of RQA-l have also 
been discussed elsewhere,3,4 and serve as good il­
lustrations. 

Consider the state of a system to be described by 
an n-component vector ~= {Xt.X2, •.. ,XnJ. Let 
the components Xi be integer-valued and 0 ~ 
Xi ~ N i , where Ni is a known finite integer., for e:ach 
i = 1,2, ... , n. Let the value of the state:!. at any 
particular time t be represented by a random vari­
able ~, so that {~/' 0 ~ t < ooJ represent.s a con­
tinuous-time stochastic process. Since the value of 
~, will vary with time by distinct jumps, the time 
intervals between successive jumps can be desig­
nated by a sequence of random variables {Tt. 72, ... J. 

V nder certain conditions, the process 2£, can be 
represented by a Markov chain. Let 

i = 1,2, ... (1) 

and 
to = (J+ (2) 

so that the Ii' i = 1,2, ... , represent time values 
immediately after occurrence of a jump. Then let 
the following be true: 

(1) For every pair of states (1, m) represent­
ing a jump from 1 to !!1 which is possi-
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ble (probability ~ 0), the sequence (TI' 
T2, ••• J is a family of conditionally in­
dependent5 random variables: given 
Xt· I = l,x t . = m. 

(2) F~~ each ia~d each fixed pair of states 
Q, m) in the above set 

pr(Tj S T' I ~tj_1 = l,~tj = mJ 
= 1 _ t:-"!..!!!.T' 

where v.!. • .!!!. is a positive constant. 

(3) 

Under these circumstances ~t is a continuous-time 
finite-state Markov chain. 

If we interpret the state variables as represent­
ing values of queue lengths, numbers of occupied 
processes of a particular type, etc., and if we inter­
pret the times tj as the times just after arrivals occur 
or processes complete, then what this implies is that 
the intervals of time between arrivals, and the inter­
vals of time during which a task occupies a process, 
must be 

1. Independent of all other inter-arrival or 
occupancy times, and 

2. Exponentially distributed random vari­
ables when the state at the beginning of 
the interval, and the consequences of 
ending the interval, are known. 

However, since state variables may represent any 
integer variable related to the system modeled, the 
latter interpretation is sometimes unnecessarily re­
strictive. It should especially be noted that fre­
quently a model which is not Markovian in a par­
ticular defined state space will be Markovian if 
several additional variables are added. One usually 
attempts to choose as state variables Xj the smallest 
set of variables for which ~t is Markovian. 

The requirement that all processing intervals must 
be exponentially distributed, in the sense of Eq. (3), 
is often too severe a restriction. Fortunately, there 
are several recourses available. First, there is a con­
siderable range of derived distributions which can 
be constructed by appropriate interconnection of 
"exponential" processes.6 In other words, a "non­
exponential" process can be replaced by several arti­
fica I exponential processes. The cost of this artifice 
is the addition of more state variables, and thus an 
increase in the complexity of the model. Figure 1 
(adapted from a figure of Morse6

) shows several of 
these derived distributions in order to illustrate 
some of the variety of distributions available by 
this means. If we represent, schematically, an ex­
ponential process by the symbol of Fig. 2, then the 

Figure 1. 

3 

Distribution functions and density functions derived 
from the exponential. The mean of each distribution 
is 1/p,. (a) Exponential, parameter p,. (b) Special 
second order Erlang, parameter p,. (c) Special fifth 
order Erlang, parameter p,. (d) Hyperexponential, 
second order P,I = p,/2, P,2 = 2p" al = a2 = 1/2. 

Figure 2. Schematic representation of an exponential process 
with mean service time 1/ p,. 

Erlang and Hyperexponential processes can be 
represented by Figs. 3 and 4 respectively. 

Secondly, if only one of the processors does not 
have an exponentially distributed processing inter­
val, the entire system can be transformed into a 
related discrete-time Markov chain by a process 
known as imbedding.7 Once the discrete-time 
imbedded chain has been solved, one proceeds 
(usually in a straightforward manner) to find the 
related solution of the original process. One im­
portant class of proc.esses for which this approach 

Figure 3. Schematic diagram modeling an nth order Erlang 
process. 
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Figure 4. Schematic diagram of an nth order hyper-exponential 
process. 

is highly useful is the class of semi-Markov pro­
cesses.s 

This survey of modeling techniques was neces­
sarily brief, and intended merely to indicate that a 
great deal of flexibility in modeling is available if 
one can treat either continuous-time or discrete­
time Markov chains which have a large number of 
states. Again, for examples of the power of the 
models Refs. 2, 3, and 4 are recommended. They 
are, in fact, relatively simple models; many more 
complex models can and have been treated ef­
fectively. 

EQUILIBRIUM JOINT PROBABILITY 
DISTRIBUTIONS 

The prime objective of most analyses of queueing 
systems is the evaluation of the equilibrium9 proba­
bilities of state. Since the state is described by the 
vector {Xh X2, ... ,xn }, the probability distribution 
of the state will be a multivariate distribution, and 
the state probabilities will be joint probabilities for 
the variables Xh X2,' •• ,Xn • Once these joint proba­
bilities are known many other probabilistic meas­
ures are readily established as marginal distribu­
tions, expectations, or simple functions of these. 
Through-put rates, processor utilization efficiency, 
expected waiting times, distributions of queue 
lengths, distributions of the number of processe& 
occupied, and probability of "busy signal" are but a 
few of these which are readily computed from the 
equilibrium probabilities of state. 

In order to simplify what follows, we will refer to 
the states without regard to their vector character. 
In other words, we will refer to a state as a positive 
integer i which is the result of a function i = iC~) 

which assigns an integer value to each distinct vec­
tor state which occurs with a nonzero probability. 
(Since each dimension of every.:! is finite, the se:t of 
values of i will also be finite). The vector interpre­
tation is readily recovered after the calculation of 
the "probability of state i" is completed. Appro­
priate marginal distributions, expectations., etc., can 
thus still be computed. By this device, we can treat 
the state as a finite integer, and the vector-vallued 
Markov chain {:!t: 0 ~ t < oo} by a one-dimensional 
continuous-time finite-state Markov chain {it: 10 ~ 
t < oo}. Correspondingly, if it is a discrete-time 
vector-valued Markov chain {~k: k = 0,1, ... } which 
must be solved, then it can be treated as a one­
dimensional discrete-time Markov chain. 

THE RECURSIVE QUEUE ANALYZER 

The Recursive Queue Analyzer,1O RQA-l, is a 
computer program designed to evaluate the equi­
librium joint probability distributions of the state 
variables in very large, finite Markovian quew~ing 
systems. It has been designed to facilitate the 
analysis of both discrete- and continuous-time 
Markov chains having as many as 5000 states. The 
primary design goal has been to provide a compu­
tation fast enough to encourage experimentation 
with models in the study of system design. This has 
been achieved through efficient use of available 
(32K) high-speed storage in the computer (an IBM 
7090), and through careful program design. The 
program was written in the MAD language, with 
selective use of the UMAP assembly language. 

For a continuous-time Markov chain with a finite 
state space, one can always write an equation for 
the equilibrium probabilities in the form 

JIQ = 0 (4) 

where 7r is a vector whose ith element is the equi­
librium-probability that the system is in state i, and 
Q is a matrix of constants called the transition in­
tensity matrix of the chain. Q is descriptive of the 
system model. 

For a discrete-time Markov chain with a finite 
state space, one can equivalently write an equation 
for the equilibrium probabilities in the form 

1[A = 1I (5) 
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where 7r has the same significance, and A is a matrix 
of constants called the transition matrix of the 
chain. 

The RQA-l employs an iterative procedure to 
determine the solution ~ to Eqs. (5) and (6). The 
procedure is a straightforward power-iteration pro­
cedure,1I so that if J!.k is the kth iterate, 

(6) 

is the (k + 1 )th iterate. The matrix G may be either 
equal to the matrix ~Q + I, (~ a scalar), or the 
matrix ~A + (l - ~)I, (~ a scalar), depending on 
whether Eq. (4) or (5) is to be solved. The ~ and ~ 
are chosen so as to guarantee efficient convergence 
to a solution of (4) or (5). 

Clearly, a 5000 degree matrix when stored as a 
two-index array requires 25,000,000 locations of 
storage, which is unreasonable for a "fast" pro­
gram. However, both A and Q are generally sparse 
matrices (have mostly zero-valued elements) and 
will usually have a high degree of repetition of equal 
element values. Hence a scheme of storage which 
lists location information along with value informa­
tion is a necessary starting point. * The repetitive­
ness is partially a result of a "block structure"­
imposed on the matrices A or Q by a choice of a 
well-behaved mapping function i(x), and partially a 
result of the fact that the probabilities of transition 
from a state 1 to a state m are often constant func­
tions of one or more of the coordinates of 1, at least 
over some range of values. Both of these effects are 
often imperfect, but still useful. . (If they were per­
fect, they would have to have been the result of a 
process having independent projections, and the 
matrices A or Q would be Kronecker sums of the 
matrices of the projection processes.) 

In the program a set of four vectors, together 
called a transition table, are constructed which 
implicitly define the matrix. Let us call them a, fJ, 
'Y, and B and denote their ith elements by ai, fJi' 
'Yi, and Bi respectively. The quadruple (ai' fJi' 'Yi, Bi) 
specifies one or more elements of a matrix in the fol­
lowing manner: 

The value of the element is ai and its matrix co­
ordinates are (fJi' 'Yi)' Due to the repetition usually 
found in the matrices, the value ai may occur in 
other locations of the matrix with coordinates 
(fJi + ro, 'Yi + ro), where 0 is a constant (fixed 

*The storage scheme below, and the procedure for carrying 
out the iteration when using this storage scheme, were suggested 
to the authors by Prof. R. V. Evans, of the Case Institute of 
Technology (private correspondence). 

thrO.ughout the transition table) and r takes values 
0,1,2, ... ,(Bi - fJi)/O. In other words, the quadru­
ple (ai' fJj, 'Yi, Bi) specifies the occurrence in the ma­
trix of elements with value ai at coordinates (fJi' 'Yi), 
(fJi + 0, 'Yi + 0), ... ,(Bi, 'Yi + (Bi - fJi»' Thus, the 
quadruple (ai, fJi' 'Yi, Bi) might represent the matrix 

'Yi 

~ 
o 

o 0 0 0 
o 0 0 0 

- 0 aiO 0 
o 0 0 0 

o 

o 

o 

o 

o 0 0 0 
000 0 
o aiO 0 
o 0 0 0 

o 

o o 

o o 

0 0 

o 0 0 0 
o 0 0 0 

0 o aiO 0 
o 0 0 0 

(7) 

and the matrices represented by the other quadru­
ples can be considered to be added to it to form A, 
or Q. If no repetition of the value ai occurs, the 
value of Bi will be equal to the value of fJi' 

. For this matrix storage scheme, it is possible to 
carry out a vector-matrix product very efficiently. 
Let 7ri denote the ith component of the kth iterate. 
Then each iteration (Eq. (6» is carried out in the 
following sequence: 

1. The vector to contain J!.k+l is initially 
zeroed. 

2. Set i = 1, j = O. 
3. Multiply ai by 7rfi+jo and accumulate 

into 7rk~Vo. 
4. Repeat step (3) for j = 1,2, ... , until 

(fJi + j 0) is greater than Bi. 
5. Resetj = 0, and repeat steps (3) and (4) 

for i = 2,3, ... , until all quadruples 
have been treated. 

SPEED OF SOLUTION-A COMPARISON 

For the simple power-iteration used in the RQA-l 
program, the number of multiplications required 
per iteration is equal to the number of nonzero 
elements in the matrix (A or Q). This is exactly 
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equal to the number of distinct pairs of states (!, m) 
which represent possible starting and ending values, 
respectively, of a jump in the stochastic process 
{:!tl (or {xd). Thus, if we average over alli the num­
ber of distinctly different values that can be reached 
in a single step from 1, and represent that average 
by the symbol E, then the number of multiplica­
tions per iteration is the product ES of the average 
"activity" E, and the number of states S. 

In order to compare the speed of solution of 
RQA-I with that of simulation in a continuous­
time case, we will estimate the relative error 11 in 
the computation of the equilibrium probability of 
some event. Let this probability have value 7r, and 
be the sum of any number of limiting state proba­
bilities. Let the absolute initial error, resulting from 
the choice of the initial iterate, be Eo. Then, it has 
been shown 10 that the convergence error of the 
RQA-I algorithm after k iterations is usually 

(8) 

where 11' I is the nonzero eigenvalue of the matrix 
Q having smallest modulus, v is the rate of occur­
rence of jumps averaged over all states, and it is 

known that.W < I. Thus, the number of itera-
v 

tions required to reduce the relative error to the 
order 0(11) is 

I = I log (11/110) I 
log (I - 1 ~ 11 

(9) 

where 110 = EO/7r. Further, the number of multipli­
cations required is of the order of 

M _ ES I log (11/110) I 
- log ~ - 1 ~ 1 ) 

(10) 

Of course, other operations are also required, but 
RQA-I holds the iteration time to about twice the 
multiplication time, and all tasks other than itera­
tion and output do not significantly increase this 
computation time. 

These figures are consistent with experience on 
the IBM 7090. Generally, for 100-state problems 
such as that reported by Fife and Rosenberg,3 about 
30 iterations per second were obtained, with com­
plete solutions (within 0.0001) in about two seconds. 
For 1000-state problems, three iterations per second 
is typical, with solution times on the order of 
20 seconds. 

In contrast, we now estimate the number of ran­
dom number generations required for simulation of 
the same models. It will be assumed that the limit­
ing probability 7r is estimated by calculating the per­
centage of total time that the system is found to be 
in the state i. Then the standard deviation s of the 
estimate of 7r can be approximated by the expression 

(11) 

where T is the duration of the simulation (T is in the 
time units of the system, as is also 1/1'). For the 
absolute convergence error, 117r, to be within two 
standard deviations of the estimate a duration of 
simulation of 

T = 8(1 - 7r) 

7r 11' I 112 
(12) 

is required. The number of random numbers gen­
erated (assuming one per jump) would need to be 

R = 8v(1 - 7r) 

7r 11' I 112 
(13) 

It should be observed that the typical time to 
generate a random number is much great.er than a 
"multiply-time," and that present simulators often 
take much more time for housekeeping than for 
actual generation of the random numbers. Thus a 
simple comparison of R with M is biased strongly 
in favor of simulation. Nevertheless, we proceed to 
make only a simple comparison. The ratio of R/ M 
is approximated by 

R 8(1 - 7r) 

ES 7r112 I log (11/110) I 
v log ~ - 41) 

11' I 
(14) - = 

M 

Typically b~ < < I, and the second factor is thus 
v 

approximately unity. Hence 

(15) 

Since the usual applications will be ones in which 
7r is not close to unity, we can usually also neglect 
the (1 - 7r) factor. The remaining function., 

8 
(16) 

which approximates R/ M, is plotted in Fig. 5 for 
110 = I (a fairly conservative choice). This figure 
graphically shows that the ratio R/ M incn~ases very 
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Figure 5. Illustrating the computational merit of the numerical 
. techniques. 

rapidly as more accuracy (smaller 11) is required, and 
decreases as the number of states, the activity E, or 
7r are increased. Thus for small enough 11 the num­
ber of random number generations required in the 
simulation can be very much larger than the number 
of multiplications required in the iterative process. 
This results from the fact that simulation error 
(from Eq. (11» normally decreases as the square 
root of simulation time, while iteration error (from 
Eq. (9» decreases exponentially with the number 
of iterations. Where repeatability and comparison 
of results are important, errors of the order of 0.001 
are not at all unreasonable. In such a case, even in 
an extreme problem having S = 5000, E = 20, and 
7r = 0.1, the iterative techniques will have an advan­
tage of two orders of magnitude over simulation. 
Add to this the much greater housekeeping involved 
in simulation, and the advantage is dramatic. 

A comparison for the discrete-time Markov chain 
solution would result in similar conclusions. 

CONCLUSIONS 

The purpose of the foregoing comparison was not 
to issue a call for everyone to abandon simulation 
for the analysis of computer systems. Rather, it was 
intended to point up a potential which should not 
be ignored. There are many difficulties incurred in 
the use of a program like the RQA-l which need to 
be overcome before it will be universally applied. 
The process of modeling systems by Markov chains 
is a relatively sophisticated one, and often requires 
a great deal more "cleverness" than does a Monte 
Carlo approach using G PSS or Simscript. Secondly, 

the representation of the model in the form of a 
matrix in the RQA format is. now a quite tedious 
process. (A coupling of an RQA-like procedure 
with a problem-oriented language can relieve this 
difficulty, and is currently ·under study.) Thirdly, 
although the Markovian models have much gen­
erality, there will always be problems which cannot 
be so modeled, and hence must be simulated (unless 
the expense is prohibitive). 

On the other hand, even one order of magnitude 
improvement in the time required to solve a system 
congestion problem with precision can make a man­
machine interactive exploration of system configura­
tions by a system "architect" practical when it 
might otherwise have been impractical. Also, with 
the current provisions in RQA-l for defining the 
transition matrices in literal form, so that param­
eters can ·be altered by a simple change of data at 
execution time, it is possible to obtain extensive 
sets of graphs describing functional relationships 
accurately and economically, as was done in Refs. 
2, 3, and 4. Using these features, all of Smith's 
published results 2 required less than 4 minutes of 
IBM 7090 computation. 
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SMPS-A TOOLBOX FOR MILITARY COMMUNICATIONS STAFFS 

Kathe Jacoby, Diana Fackenthal and Arno Cassel 
Franklin Institute Research Laboratories 

Philadelphia, Pennsylvania 

INTRODUCTION 

Many papers oriented to the computer user deal 
with programming languages. These languages may 
be either flexible or oriented toward a particular 
problem field, such as military information retrieval 
or simulation; however, they are languages requir­
ing the user to learn vocabulary, grammar, punctua­
tion, and spelling to translate his problem into the 
specific language. This is not easy and generally re­
quires considerable practice. 

An officer on the communications staff of a mili­
tary headquarters does not have time to study a 
language and learn how to express himself in it. In 
addition, he does not have the experience of an in­
dustrial engineer who is accustomed to flow-chart­
ing the operations needed to accomplish a function. 
Nevertheless, he needs to evaluate the effectiveness 
of his present methods and procedures and level of 
staffing under conditions which would occur when 
the workload might suddenly change because of 
world or local military or political events. He also 
needs to be able to determine whether any changes 
in methods, procedures, or staffing will improve the 
total response of the system. 

The prime criterion for evaluation of a com;" 
munication system is message transit time. Within 
this criterion are subcriteria to be chosen by the 
headquarters involved, which may specify: 

The maximum transit time for messages of 
a specific class shall be less than T min­
utes. 
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The percentage of messages of a specific 
class with transit time less than T minutes 
shall be greater than P percent. 

Transit time through a system depends on two 
factors: processing time and waiting time. Process­
ing time can be determined without the use of 
computers by observing the required time to per­
form specific tasks and by summing this time over 
all the tasks to be performed on a specific message. 
Waiting time is either batching or queuing time. 
Batching time is the time an operator waits after 
completing one task on a message before delivering 
it to the next task or operator, so that the first op­
erator can continue performing the same task on a 
number of messages; this time can be estimated. 
Queuing time can be mathematically estimated 
when only a few queuing points are involved. 
However, when many dynamically interacting 
queues must be considered, Monte Carlo simula­
tion techniques must be used to gather information 
about the formation of queues and the delays 
caused by queuing. This requires digital-computer 
simulation. 

The Franklin Institute Research Laboratories 
(FIRL) has developed two tools for officers on the 
communication staff of a military headquarters to 
use for system evaluation; these tools were de­
veloped as part of a study for the Department of 
the Army and the Defense Communications Agency 
to improve message processing operations within a 
headquarters. 1 One tool is a method called Auto-
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matic Flow Process Analysis (AFP A) which allows 
personnel without any flow-charting or system­
analysis experience to develop accurate flow charts 
by carrying out a set of procedures.2 The second is 
Simplified Message Processing Simulation (SMPS), 
with which the same personnel can prepare a simu­
lation model and message samples by following a 
set of simply stated procedures; SMPS does not 
require personnel to learn any programming 
language. 

With SMPS, members of a military communica­
tions staff can evaluate a message-processing system 
under dynamic conditions ,without requiring the 
services of, personnel experienced in computer 
technology or programming,. The SMPS toolbox 
contains building blocks and a framework with 
which a model of a message-processing system 
can be built. 

COMMUNICATIONS STAFF NEEDS 

The communications staff at a military head­
quarters needs to be continually aware of the capa­
bilities and effectiveness of their current message­
processing systems, not only with respect to current 
traffic but also with respect to crisis conditions 
which may occur. Figure I' shows an overview of 
the activities within a Message Communications 
Terminal oflice (communications center and staff 
message control) at a military headquarters. Within 
the limits of military regulations and command 

structure, this staff is able to suggest changes to 
improve system operation. However, changes 
should not be implemented unless there is assur­
ance that the total system operation will be im­
proved; therefore, methods for evaluation are re­
quired. Because of the differences in ne(~ds, n~gu­
lations, and traffic at different headquarters, only 
the staff at the individual headquarters (rather than 
a higher agency) can best evaluate its own syste:ms. 
The likelihood that these operational staff persoll1nel 
have programming background or inclination is 
very small. 

TOOL 1, AFPA 

AFPA permits the non-system analyst to c:on­
struct an accurate flow chart of the operation of his 
system. In the message-processing case for which 
AFP A was designed, the message passes along the 
flow of the chart through the tasks performed in 
the boxes of the flow chart. A task is called an 
event and specifies what personnel and equipment 
are involved (such as a communications-<!enter re­
ceive operator or a Xerox machine), what is done 
(such as tearing the message from the teletype' 
monitor), and how long the event takes (such as 30 
seconds). 

TOOL 2, SMPS 

Figure 2 shows a small fragment of a.n AFPA 
flow chart. A detailed simulation including all of 

I I 

~J HQ 

MESSAGE C(NIUHICATlOHS TERMINAl OFFICE 

Figure 1. Overview of activities within a message communications terminal office. 
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CHAINS 005 
125 
245 
365 

CHAINS 065 
185 
305 
425 

D OPERATION 

CJ TRANSPORTATION 

o INSPECTION 

205 
325 
445 

Figure 2. Fragment of an AFPA flow chart. 

the events on an entire AFPA flow chart, would 
take many hours to construct; however, Simplified 
Message-Processing Simulation permits the AFPA 
events to be grouped into broader tasks which may 
be matched directly to the SMPS building blocks. 
Thus, a simulation model may be assembled quickly 
and easily. The outlined area of Fig. 3 is the SMPS 
simplification of the outlined portion of the AFPA 
flow chart fragment shown in Fig. 2. 

A technical report, "SMPS-Simplified Message­
Processi~g Simulation,") instructs the user how to 
construct simplified flow charts from the AFP A 
flow charts, how to fill out task-description work­
sheets from the simplified flow chart, and how to 
match the SMPS building blocks to the tasks de­
fined. 

When the SMPS building blocks are matched to 
the tasks, the simulation model is essentially com-

plete. The SMPS report also describes how the 
input messages for the simulation may be prepared 
from a real traffic sample or from statistically gen­
erated messages. 

What SMPS Is 

SMPS is a language derived from the macro­
assembler capabilities of IBM's GPSS II. The 
building blocks of SMPS include a set of GPSS 
variables defined in terms of the parameters of a 
G PSS transaction, a set of functions for the gen­
eration of G PSS parameters from a deck of cards 
generated independently to describe a message sam­
ple, a few other G PSS system variables, and a set 
of G PSS macro instructions. SMPS relies heavily 
on the development of DMPS (Detailed Message­
Processing Simulation I) for the method of param­
eter construction and assignment. 
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K 005 
TEAR OFF 
MESSAGE FROM -TT RECEI VER ---.....,. , 

'" G J 010 H 
SET FLASH DECISION: NON 

SET 
PRECEDENCE ] PRECEDENCE FLASH OR NOT TO FIFO FLASH TO FIFO 

1 
B SECOND COpyO~5 F TRIM AND 11 

~ AJLMI N I S IBA- : SPLICE 11 - 01 nON COPY -~ MESSAGE 105 

1 
E DECISION 

ort ,. 
IMMEDIATE 
OR NOT 

1 
C ADMINIS- 065 D ADMINIS- 1? 

TRATI VE .IRAI.I VE .-;: 
P KOCESS I NG- - PROCm-ING- • 
LOW PRIORITY 105 IMMEDIATE 10 , , , 

A 
ROUTE TO 

140 

STAFF . 
AGENCIES 185 

Figure 3. Simplified flow chart fragment. 

UseojSMPS 
The simplified flow chart is derived from the 

AFPA flow chart of chains of events, which is in 
tree form. First, uninterrupted tasks are identified, 
and identical chains of tasks: are merged. The first 
worksheet describes personnel and equipment (Fig. 
4). The second worksheet; describes the tasks in 
the simplified flow charts in terms of personnel and 
equipment required, next tasks to be performed 
under what conditions, and processing time ex­
pected, either in numbers or' as a formula in terms 
of message characteristics (Fig. 5). The next task 
is the selection of SMPS b~ilding blocks. In the 
simplest cases, a SMPS build~ng block matches each 
task. However, if the task is complex or unusual, 

it may be necessary to divide it into several simpler 
tasks to find a match. 

In the case of communications-terminal process­
ing for which SMPS was designed, the us:ual tasks 
are decision-making, logging, routing, poking (tape 
cutting), tape reproduction, omine encryption/ de­
cryption, inspection, transmission, filing, refere:nce 
lookup, transportation or delivery betwe'en major 
staff areas of a headquarters, typing, reproduction, 
collation, distribution of copies, and additional 
administrative functions. 

The SMPS building blocks, called modules, are 
divided into six categories. The first category 
contains general-purpose modules which involve 
queue number, personnel or equipment identifica-
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Pers onne 1 Associated Unique No. Equi pment Associated Unique No. 
Code Code I denti ca 1 Code Coqe I denti ca 1 

SMC Inclerk 2 1 Xerox 4 1 

SMC Message .3 1 Multi 11th 5 2 

Controller 

Mult1l1th 5 - 1 
Operator 

~~ 
V 

~ 

~ 

Figure 4. Worksheet 1, personnel and equipment. 

tion, next module, and time factors; the time factors 
are for processing or batching. The second cate­
gory contains decision modules for usual decisions. 
The third category contains modules which repre­
sent transportation and contain facilities to record 
transit times within the GPSS simulation and for ex­
ternal statistical analysis. The fourth category con­
tains a set of modules to permit delivery at regular 
intervals. The fifth group contains the modules used 
to control the flow of the three types of messages 
into the model. The first type of message is the 
sample concerning which transit times are to be 
measured to evaluate system effectiveness; this is the 
group which is specified on a card deck generated 
independently of the model. The second type con-

cerns service and similar messages which are not 
being directly evaluated but which occupy both 
personnel and equipment within the communica­
tions facility; these are an integral part of the model. 
The third type of message does not represent actual 
traffic but is used to account for any other activi­
ties, such as breaks for personnel or downtime for 
equipment, which would impede the processing of 
significant message traffic by occupying personnel 
or equipment and making them unavailable. The 
sixth group contains flexible modules which allow 
most unusual tasks to be performed without re­
quiring knowledge of GPSS. 

Figure 6· contains the description of a few 
modules. 
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--
I I Headquarters: Staff Agency: 

Incomi nq I --A SMC I Outgoi n ~ 

Task Personnel and Process i ng Ti me Queue Output 10 Task Descripti on Equipment AFPA Event Sec. 
Next Task Di sci - Batched 

Code Needed pline 

K Tear off message from TT Reoeiver SMC Inolerk 005 33 J FIFO No 

J Deoision flash or not SMC Inolerk 010 1 GG it flash FIFO No 
H if not flash 

G Set queue disoipline to Preo FIFO - - 0 B None -
B Administrative prooessing flash message SMC Inolerk 015 ••• 105 41 A Preo No 

FIFO 

A Routing of Messages SMC Message Contro Her 140 ••• 185 109 Off ohart Preo No 
FIFO 

H Set queue disoipline to Preo FIFO - - 0 F None -
F Trim and splioe message SMC Inolerk 110 ••• 015 30 E Preo No 

FIFO 

E Deoision immediate or not SMC Inolerk 020 1 D if immediate Preo No 
C if not FIFO 

D Administrative prooessing immediate message SMC Inolerk 120 ••• 105 89 A Preo No 

Xerox oopier FIFO 

C Administrative prooessing low preoedenoe SMC Inolerk 065 ••• 105 24 A Preo Yes 
message FIFO 

Figure 5. Worksheet 2, task definition. 

-~ 

Name No. of Module Description 
Mean; ng of Variables 

Variables 1 2 3 4 5 6 7 8 

Al 5 ~ Queue Identity Next Time Time 

One individ1,l.a.l or pieoe 
No. of equip- Task Factor Factor 

of equipment 
ment or 1 2 

takes a message from a numbered 
personnel 

queue and prooesses it for a time 

speoified by two time faotors which 

desoribe either a reotangular dis-

tribution of time or speoifies a 
formula for time. The message is 

then passed to the next task. 

Bl 7 General Queue Identity Next Time Time Time Time 

No. of equip- Task Factor Factor Faotor Faotor 
Same as Al except two additional 

ment or 1 2 3 4 
time factors are available for 

hatching dela,y. 
personnel 

B2 8 ~ Queue Identity Identity Next Time Time Time TimEr 

No. of first of seoond Task FaotoI' Faotor Faotor Faotcrr 
Same as Bl except that a.dd1 tional 

equipment eqUipment 1 2 :3 -, 
equipment or personnel is I'equlred. 

or per- or per-

sonnel sonne 1 

--~ 
/~ 

~ 
~-

Figure 6. Selection of available modules. 
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I Staff Agency: I IncominQ I 
Headquarters: A SMC I Outgoing 

Task Module Variable Interpretation of Variable 

The cards representing the significant sample are 
prepared by a computer program to a form accept­
able by the simulation program; these cards con­
tain the identification and significant characteristics 
of each message. The computer program (written in 
FORTRAN) also prints these characteristics of 
each message in English (Fig. 9). This printout 
includes time of arrival in the system as day, hour, 
and minute, as well as the simulator clock time for 
arrival in total seconds. It also includes the identi­
fication number, which indicates whether the mes­
'sage is incoming or outgoing (those numbered over 
20;000 are incoming), precedence, classification; 
number of addresses, number of lines of text, num­
ber of communications channels required, number 
of pages, number of staff agencies on local distribu­
tion, number of local copies, whether otI-iine en­
cryption or decryption is required, special security 
categories, or other special characteristics involved. 

ID No. of Code 
Code Identity Module for use in thi s Task 

K Al 1 Queue 1 1 

2 SMC inolerk 2 

3 Task J next J 

If Time factor 1 mean 33 seo 33 

5 Time faotor 2 spread 3 seo 3 

J A17 1 o.ueue 2 2 

2 SMC inclerk 2 

3 Next task if flash - G G 

If Next task if not flash - H H 

G F3 1 Task B next B 

~~ 

V-L/ 
Figure 7. Worksheet 3, module assignment. 

Two programs are available to prepare a mes­
sage deck. 

Worksheet 3 (Fig,. 7) aids in the matching of 
modules to tasks. The function-definition work­
sheet (Fig. 8) aids in the construction of functions 
to define processing times in terms of message char­
acteristics. 

One program uses an actual message sample, in 
which case the message characteristics are de­
termined by examining a message. These char­
acteristics then are transcribed onto cards, which 
are used as data by this input-preparation program. 

If statistical generation of messages is desired, an 

GPSS GPSS 
Function Function Variable Variable Defi niti on in Multiplier 

Application Identity for Variable Definition GPSS Language (Time Factor 1 ) (Time 
Factor 2) Functi on 

Pony circuit FN10 v6 Number of lines Primary variable 7 or l~ 
Time 

MCPU time FNll V20 1.35 + 60 (number of channels) Kl.35 + K60 * V7 + Kl~O * vB 1 
+ 140 x (number of pages) 

Multllith time FN12 V21 (Number of copies)/2 x (number Vll/K2 * vB + K150 ~, vB + K10 1 

of pages) + 150 x (number of 

pages) + 10 

Poking time FN1.3 V22 67 + 4 • .3 x (number of addres- K67 + K4.3 * V5/KlO + K9 ~, v6 1 

sees) + 9 x (number of lines) 

~ 

~ 
V 

Figure 8. Function-definition worksheet. 
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o 9 
o 19 
o 20 
1 18 
3 3CJ 
B 41 
CJ 48 
9 4CJ 
9 50 
9 58 

10 4 
10 27 
10 79 
10 30 
10 5? 
10 53 
10 54 
10 55 
11 53 
11 53 
11 54 
11 56 
11 56 
11 56 
12 6 
12 22 
12 22 
12 23 
12 45 
12 46 
12 50 
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39180 
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Figure 9. Listing of input messages provided by input programs. 

alternative FORTRAN input-preparation program 
is available with which the message characteristics 
necessary for the run can be easily specified. A 
listing of these specifications and detailed diagnostic 
routines concerning card or logical errors is pro­
vided. The other outputs of this program are the 
same as those of the first input program. 

Relatively few items in the printout of the simu­
lation run are significant to this type of model. 
Hence, the volume of printout to examine is not 
excessive. 

The most important question in evaluating a 
model of a message-processing system is, "How 
long does it take a message to get through the 
system?" This information is most meaningful in 
terms of the cumulative distribution function of the 
total transit time through the system; however, it 
may also be important to know the time through 
major subsystems, as well as the time for messages 
with special characteristics. 

A major output of SMPS is a deck of cards, 
each of which contains all the characteristics of a 
message, a transit time either through the entire 
system or through a major portion of the system, 
and an Jdentifier specifying the meaning of the 
transit time given. Thus, this card deck can be 
processed manually, by EAM equipment, or by 

computer to select the messages with the character­
istics of interest and to determine the transit-time 
distributions for these characteristics. 

The other output of SMPS is the printout pro­
duced by the GPSS program. The portions of the 
output significant to the user include the tables 
which give the fraction of total number of mes­
sages with transit times less than each increment of 
an accumulating time scale, and the queue statistics 
which indicate where bottlenecks occur. 

RANGE OF APPLICABILITY OF THE 
PRESENT PACKAGE 

Although this application is based on AFPA flow 
charts, the technique does not require that AFPA 
be used. The .flow chart which describes system 
operation may be construc"ted independently; how­
ever, in this case, more skill may be required in 
defining the tasks of suitable size. Th,e basic con­
cept is that a task must be small enough that the 
personnel and equipment involved would not be in­
terrupted to perform any service for any other 
message. 

The basic structure of SMPS assumes that a mes­
sage has certain properties which are recorded in the 
simulation representation of the message-namely, 
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the G PSS transaction parameters. Two properties 
are not fixed and may be defined at each head­
quarters; however, these properties may have, at 
most, 10 values. The characteristics chosen are 
ones most meaningful to a variety of military head­
quarters. Hence, although the processing examples 
carried out thus far involved military terminal proc­
essing, SMPS should be useful for any processing of 
military or nonmilitary messages. Although such 
properties as off-line encryption or security classi­
fication are not apt to be meaningful for nonmili­
tary applications, any properties defined can be ig­
nored in a model. If the statistical input program 
is used, each specified characteristic must be ex­
amin~d to determine whether it can be ignored in 
creating the message sample. 

In its current form, SMPS can be used to simulate 
any message-processing application where the 
transit time for a message and its flow through the 
processing steps depend only on the message char­
acteristics defined in SMPS and on statistical 
variables. 

APPLICABILITY OF TECHNIQUE 
FOR OTHER USES 

The SMPS technique is not limited to dynamic 
analysis of message processing. Whenever a system 
can be looked on as consisting of processing units 
which can be described by a small number of char­
acteristics and where both processing time and 
batching time depend on characteristics of these 
units alone, a set of building blocks and a structure 
similar to SMPS can easily be constructed in a 
very short time by personnel with programming 
experience. 

Because most flow charts contain relatively few 
patterns of boxes and lines, it is possible to de­
scribe most systems by reusing a few modules with 
different variable values. For example, one general 
equipment- or personnel-use module can be used 
which includes as variables a queue number, three 
or four equipment/personnel identities, the next 

task, and several time factors. Two decision 
modules corresponding to two- and three-path 
branchings, will probably be sufficient. Decision 
modules have variables of relations (less than, equal 
to, greater than, for example), a number being 
tested by the relation, next task if true, and next 
task if false. A few special modules can be pro­
grammed to insert in the flow-process chart for 
priority assignments, tabulations, origination rates, 
and the like. With these types of modules, a model 
can easily be constructed. 

ADVANTAGES OF THE SIMPLIFIED 
MESSAGE-PROCESSING SIMULATION 

A "language" such as SMPS is easier to learn 
than a simulation or programming language: it 
has no grammar and little vocabulary. A model in 
SMPS can be constructed very quickly. Changes 
are readily made and alternatives are easily com­
pared. Because the level of abstraction is high, the 
model is easily understood in terms of activities 
which occur and of what is required for the activ­
ities. 
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DIGIT AL SIMULATION OF LARGE-SCALE SYSTEMS 

Robert V. Jacobson 
Advanced Systems Department, Space and Information Systems Division 

Raytheon Company, Sudbury, Massachusetts 

Over the past decade systems analysis teams have 
repeatedly demonstrated the feasibility of using 
general purpose digital. computers to simulate the 
operation of large-scale real-world systems. BAG, 
DECAP, INCA, STAGE, TEFORM and TEMPER 
are all representative examples. However, the 
process of developing and using these system simu­
lations has not always been entirely satisfying to the 
ultimate users. The purpose of this paper is to 
examine the process of simulating systems, and so 
to suggest some causes of dissatisfaction and their 
remedies. Because of the diversity of usage, it seems 
to be important to define the key words to be used. 

System Model is used to mean the interre­
lationships and logic which describe 
the system adequately for the task at 
hand. 

A Simulation is a mechanism based on a 
, model which operates "like" the sys­
tem. That is to say, a simulation is an 
operating version of the model. 

A Digital Simulation is a simulation in 
which the system quantities are repre­
sented by digits, and so is most easily 
implemented on a digital computer. 

This usage follows M. R. Lackner's paper "Digi­
tal Simulation and System Theory." 1 Note that 
the term computer simulation under these defi­
nitions would mean a simulation of a computer. 
Other writers 2 have used "computer simulation" in 
the samt? sense that "digital simulation" is used 
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here, but this author believes that clarity suffers as 
a result. 

The task flow diagram (Fig. 1) shows how a 
typical case moves from the problem statement to 
the final analysis. The figure shows five different 

SYSTEM 
ANALYSIS 

COMPUTEH PRINT-OUT 
(FOR ANALYSIS) 

DIGITAL SIMULATION 
a TEST DATA 

SYSTEM 
PROBLEM 

MODEL CONCEPT 
a SCENARIOS 

MODEL DESIGN 
a TEST DATA 

Figure 1. Task flow diagram of model/simulation construc­
tion and use. 
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people (or organizations) in the "loop;" while in 
fact a smaller number of individual people may be 
involved, the division of tasks into these five cate­
gories seems to be a useful one. 

The flow begins with the "customer" who states 
the problem to be analyzed to the systems analyst. 
(The customer is defined as the person or organi­
zation with a principal mission other than the proc­
esses to be described below.) Let us assume that 
the systems analyst determines that the problem 
can best be solved through the use of a digital simu­
lation and that he directs the model designer to 
design a system model. In many cases the systems 
analyst and the designer of the system model will 
be the same person or organization. The simula­
tion designer, bearing in mind the scenarios which 
are to be analyzed, designs a simulation which is 
based on the model. The system analyst uses the 
output data generated by the digital simulation to 
draw conclusions about the operation of the real­
world system, and reports them to the customer. 
Once a working computer program for the digital 
simulation has been constructed, the system ana­
lyst/model designer hopefully can deal directly with 
the computer with the help of the computer sup­
porting staff. 

With the above d,efinitions in mind let us consider 
first the information flow from the system analyst to 
the model designer. The model designer would like 
to identify and define the variables and constants 
which the system analyst considers significant, and 
to find expressions which adequately describe their 
interrelationships. Next he wants to develop a logic 
diagram which represents the flow (often with time) 
of events or processes in the system, and which ties 
together the interrelationships. Two problems often 
arise here. The system analyst would like to have 
"every" real-world variable included in the model, 
and would like relationships to be "completely ac­
curate." * In fact, the systems analyst probably 
doesn't know quantitatively the contribution made 
to the accuracy of the model by each of the param­
eters and variables which he can identify, or a com­
plete representation of their interrelationships. It 
is the author's view that the model designer can best 
serve the system analyst by urging the initial selec­
tion of variables and relationships which will most 
simply (rather than accurately) describe the real-

* The words "large-scale" are included in the title to exclude 
from this discussion systems which can in fact be completely 
simulated such as savings bank records or an airlines reservation 
system. 

world system, with the long-range objective that, as 
understanding of the operation of the model grows, 
complexity can be introduced. As an example of 
initial simplicity if one were to simulate detection of 
a target by a radar, one might compute the effect 
of each of the dozens of quantities which enter into 
the detection of a target. On the other hand" one 
might begin with a model which says that for a given 
radar, detection never occurs beyond a given range, 
but at lesser ranges detection always occurs for all 
targets. Oversimplified? Perhaps, but :indeed be­
cause received signal varies roughly as the fourth 
root of target range the approximation would not be 
significantly in error if, for example, one were 
modeling an air defense information processing 
system, and were not directly concerned with the 
sensors, in this case the radar, but rather with such 
things as data storage and correlation, data lirik 
saturation, and displays. The fact that a larg(~ air­
craft was "detected" at 75 miles instead of 80 miles 
as it would be in the real-world may contribute far 
less to the inaccuracies of the model than othe~r as- . 
sumptions which had been made by default so to 
speak, rather than explicitly. That is to say that the 
model designer may overlook factors having a far 
greater effect on accuracy. 

Since the very purpose of constructing the model 
and simulation is system analysis, it is implicit that 
the contribution to similitude, or accuracy of each 
of the model's elements is not known quantitatively 
at the beginning of the design effort. If the model 
designer can restrain the systems analyst's desire to 
model "everything," and rather model as little as 
possible initially, the result will be that the complete 
structure of the model will emerge at t.he earliest 
possible date and then can be quickly converted 
into a digital simulation. The systems analyst., and 
the model designer are now in a position to test the 
significance of each of the elements of their model 
in a systematic way. Continuing the example given 
above, they might like to make detection range a 
yes-no function of the target range, modified by 
a linear function of the nominal target cross section. 
If this elaboration yields a significantly different 
result, they might go a step further and try a model 
in which target cross section was a function of both 
nominal target cross section and target attitude 
relative to the radar. 

The important point is that as early as possible in 
the design cycle they have a model (and a computer 
simulation of it) which operates and generates out­
put. They have been forced to think through the 
entire system, as a result have gained a better under-
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standing of the system operation, and so have more 
accurately identified the really significant system 
parameters and variables. The level of detail to 
which the model will then be expended is far more 
likely to be uniform, and both have the assurance 
that something will come from their efforts, however 
much it may fall short of their original aspirations. 
Equally important, the systems analyst will have a 
clear image of the model's structure and so will be 
better able to evaluate its output. These points may 
be summarized as: 

The Model Designer's 
Role: To convert the significant elements 

of the real-world system into a unified 
mathematical/logical model. 

Objective: To maximize the utility of the 
mathematical model. 

Guidelines: Evolutionary model design to 
achieve a uniform level of detail, and 
systematic evaluation of the model de­
sign. 

The problems which the simulation designer must 
solve revolve around the conflict between the gener­
ality of the model and the explicit character of com­
puters. The model's logic and expressions must be 
stated in an explicit way, input data must be of a 
stated form and content, and the format of the out­
put data must be described in advance. On the 
other hand, the model designer can be expected to 
want to make changes during the design process, 
and each change will cost time and money. The 
simulation designer will be of greatest service to 
the model designer and systems analyst if he accepts 
this fact of life, and keeps in mind the thoughts sug­
gested below. 

The Simulation Designer's 
Role: To convert the mathematical model 

into a useful computer program. 
Objectives: To maximize machine inde­

dependence and to simplify the proc­
ess of changing the model/simulation. 

Guidelines: To serve the problem at hand, 
not the computer. 

The simulation designer should first take steps to 
minimize the impact of the particular computer to 
be used on the problem to be solved. That is to say 
the computer should serve rather than dominate the 
problem. Secondly through forward-looking design 
techniques, the simulation designer can often facili­
tate the changes which will inevitably be sought by 
the model designer after he has experimented with 

the first primative versions of the simulation. The 
resulting computer program should have the follow­
ing characteristics: 

• Inherent adaptability. 
• Complete labeling of output. 
• Careful source program record keeping. 
• User-oriented input and output, and 

operating documents. 
• Graphical outputs as appropriate. 
• Machine independence. 

As an example of adaptability the computer pro­
gram may call for a list to be scanned. In a FOR­
TRAN program this would probably be done with a 
DO-LOOP. If there is some uncertainty about the 
list size, the DO-LOOP upper limit can be an input 
parameter, so that it can be easily and universally 
changed if necessary. Likewise if a number of 
WRITE formats use a common list of labels which 
are subject to change, it might be better to input the 
labels rather than store them in the individual for­
mat statements. The important point is not so much 
these primitive examples themselves as the design 
objective of simplifying changes. 

Obviously the simulation designer should be alert 
to the effect of computer limitations on simulation 
design, and so model design. The size of memory 
core storage is the most obvious current limitation, 
but running time, turn-around time, and input/out­
put device selection are also significant. Depending 
upon his personal background the model designer 
may need little or considerable guidance from the 
simulation designer. However, the latter shouid 
resist the temptation to overwhelm the model de­
signer by detailing the prohibitions placed on the 
model design, but rather seek to minimize them. 
The impossible cannot be achieved, but imaginative 
thinking can often reveal clever solutions to the 
problem at hand. 

In many cases, the simulation design process will 
consume time and money comparable to if not 
greater than that devoted to operating the com­
pleted simulation. This fact focuses attention on 
the need for careful, systematic simulation design 
procedures. For example as a general rule the 
output should include an appropriate heading which 
adequately identifies the computer run. Adequate 
identification might include identification of the 
input base data used, the particular version of the 
simulation used (since it may be in a state of flux), 
the date, and some statement of the objectives of the 
run. Equally important is the proper and consistent 
use of such a heading. In the rush to meet a com-
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puter run submission d~adline while debugging, 
there is a temptation to bypass the process of up­
dating the heading data. However, this is one place 
where haste does indeed make waste, and sooner or 
later the time and money expended on at least one 
computer run of a series is lost because the printout 
has lost its identity. At best the run must be re­
peated; at worst wrong conclusions are drawn and 
additional runs wasted. 

It is equally important to keep careful records of 
changes to the program. It should always be pos­
sible to associate a given set of printouts with the 

_ specific program that produced it. This permits the 
model designer to track the evolving model design 
with the output of the simulation. Not uncom­
monly a change in the model (and its reflection as a 
change in the simulation) will produce an unex­
pectedly negative effect and the model designer will 
want to rescind the change. If he has failed to mark 
changes systematically, the simulation designer may 
have difficulty in retracing his steps. 

A technique has been evolved at Raytheon for 
using the field 73-80 of the standard FORTRAN 
punch card to record changes. Field 73-78 is coded 
with the name of the subroutine, for example 
SAMPLE. Field 79-80 holds the serial number of 
the change. Assuming subroutine SAMPLE were 
included in the first attempt at compilation, field 
73-80 for all punched cards would show SAMPLE 
Ol. If no more changes were made until say the fifth 
batch of compilations, the new and changed cards 
would be identified as SAMPLE 05. Furthermore 
the simuiation designer inserts a comment card at 
the head of SAMPLE which briefly identifies the 05 
changes to SAMPLE and assists the model designer 
in controlling the growth of the simulation. When 
subroutine SAMPLE has been completed the final 
punched card deck can have a short subroutine 
identifier, i.e., SAMP, and sequential serial numbers 
inserted in field 77-80 by a standard utility program. 

Finally the simulation designer makes a major 
contribution to the value of the model simulation by 
providing customer-oriented input and output 
formats, and straightforward and well-documented 
operating procedures. If he has done his job well, 
the completed simulation can be operated by the 
model designer directly as suggested by Fig. I. 
Hopefully the input format matches the normal 
practices of the system analyst. If he is accustomed 
to thinking of a quantity in nautical miles, he ob­
viously should not be required to input it in meters. 
Likewise output data should conform to and should 
be labeled in his terms, not computer program sym-

boIs. During the design and test of a simulation a 
variety of output formats will likely be developed 
for debugging. Since the specific data which the 
system analyst will want to see will vary with the 
purpose of the specific run, it is useful to be able 
to suppress specific output formats through the 
setting of control parameters. The analyst can con­
centrate on the subject of interest, and I/O device 
charges are minimized. Lastly, recognizing that one 
picture often is worth ten thousand words the simu­
lation designer should be alert for situations in 
which graphical output would be useful to thle sys­
tems analyst. Some languages such as DYNAM03 

specifically include graphical output. Generalized 
programs have been developed which will produce 
graphs on a line printer.4

, 5 Many computer systems 
now feature X-Y plotters, but conventional line 
printers can be used in a graphical mode, and can be 
assumed to be available at almost all computer in­
stallations. 

Figure 2 is a plot of aircraft and decoy positions 
relative to a surface-to-air missile (SATvI) site: gen­
erated by the DECAP model. Notice that all labels 
are designed for easy reading. Distances are shown 
in nautical miles East-West, and North-South of the 
site. The program was designed so that the SAM 
site is automatically located in the appropriate 
quadrant of the map, and the scales are adjusted 
to match. In the case illustrated the program slensed 
that the cloud of targets was roughly South-Wiest of 
the SAM site and so it located the SAM site in the 
North-West quadrant of the map. The symbols 
used for targets are defined at the right. The game 
and run are identified, and the specific time: and 
location depicted is noted. Figure 3 is. a plot of 
cumulative kill probability as a function of reentry 
vehicles used for each of four differe:nt attacks 
against a point target. It is part of the DACE model 
developed by Raytheon using the Bolt, Beranek, 
and Newman, Incorporated remote-acl:;ess, time­
share system, TELCOMP. The basic plotting func­
tion is a part of the system software. The simulation 
designer specified the headings, and s.cales, and 
modified the variables to be plotted to match the 
specifications of the PLOT function. Specifically 
the variable to be plotted may range from - 1 to + 1. 
In the case illustrated the variable to be plotted, 
cumulative kill probability, ranges from 0 to + l. 
The Instructions to transform and plot the variable 
take the following form: 

PK (A, B) = (PK (A, B) 

PLOT PK (A, B) 

- 0.5) *2 

ONNUM 
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Figure 2. A computer-generated map to show disposition of aircraft, and decoys. 

(A and B define the four different cases being 
studied and NUM is the number of reentry vehicles 
yielding the plotted kill probability.) The advantage 
to the simulation designer of the generalized instruc­
tion, PLOT, is that he can concentrate his attention 
on the problems of the specific simulation. Figure 3 
also illustrates a valuable feature of on-line com­
puting. The system analyst monitors the output 
from the simulation. When he obtains the desired 
results, he can interrupt the computation and go on 
to the next case. 

The same effect can be achieved on batch com­
puters by storing successive values of a variable on a 
scratch tape with appropriate tags. When the run is 
completed, the executive portion of the simulation 
can make use of an auxiliary program to provide 
appropriate headings and scales and to construct 
a plot of the variable as a function of the inde­
pendent variable with which each value was tagged. 
TEFORM, a central war model, computes counter-

force and countervalue potential ratios at each event 
cycle time and stores the values. These are brought 
back at the end of a game and converted into a time 
plot which follows the event initiated printout. 

Since the above implicitly has been stated in terms 
of the current family of high-speed batch processing 
computers, one might ask what changes the new 
remote-access, time-sharing computers will have. 
The author's own limited experience suggests that 
the model designer will appear to absorb the simula­
tion designer's job in large part because he will com­
municate directly with the computer directly 
through his remote console. In fact, it is likely that 
the simulation designer's function will remain but in 
a new form. First his role in a specific task will be­
come consultive. In looking over the model de­
signer's shoulder either literally, or figuratively, he 
will spot program needs which can be best met with 
techniques unfamiliar to the model designer, and 
suggest them. More Important, however, will be the 
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CUMULATIVE KILL PROBABILITY 
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Figure 3. A graph generated by a computer in real time. 

simulation designer's contributions to the pro­
gramming language. Being able to anticipate at 
least to some extent the things the model designer 
is going to do, he can seek out ways to adapt the 
programming language to the needs. The other area 
in which the simulation designer can contribute is in 
applications of mass memories. If the computer sys­
tem is capable of storing the input data and results 
from a large number of previous runs, the system 
analyst may want to be able to compare current 
runs with earlier runs. He may want to be able to 
repeat an earlier run with only one or few changes, 
and compare the results. Since the limitations on 
data links are not likely to be eased quickly, the 
remote-access, time-sharing system is probably 
going to be characterized by a low data transfer rate 
for some time to come. As a consequence the sys­
tems analyst will appreciate a programming lan-

guage which enables him to state his problem suc­
cinctly, and to receive only the answer desired 
without being distracted by unwanted output. The 
simulation designer will be challenged in the dec:ade 
ahead to bring to the systems analyst and the model 
designer the full power of on-line computing 
coupled to a mass memory. 

To summarize, system simulations are susceptible 
to two broad defects, lack of credibility, and lack 
of accessibility. The first is within the controll of 
the model designer. If he begins his design with the 
maximum simplicity rather than complexity, he can 
strive for uniformity of detail, and at the same time 
give the systems analyst a clear quantitative: measure 
of the effect of departures from "com plete ac­
curacy." By imaginative design of input and output 
formats, and operating procedures, the simulation 
designer can give the systems analyst a 4:;omputer 
program that is easy to operate, and adaptablt~ to 
the problem at hand. In the last analysis all of the 
above comes down to being customer··oriented. 
Each individual in the loop serves best when he 
adopts the viewpoint of the person preceding him. 
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INTRODUCTION 

Computer simulation has been used for some time 
in the analysis and design of dynamic systems. With 
recent advancements in computer performance, the 
field of dynamic simulation-long the exclusive 
domain of the analog computer-has begun to 
utilize digital methods. No less than a score of 
digital simulation programs have appeared since 
R. G. Selfridge's pioneering effort in 1955; and the 
number is ever-increasing. These programs offer a 
convenient method of simulating continuous sys­
tem dynamics employing well-known and easy-to­
use analog computer programming techniques. 
The common starting point for such simulation is 
the conventional analog block diagram, and the 
common approach is the breakdown of the mathe­
matical system model into its component parts or 
functional blocks. These blocks, having a near one­
to-one correspondence with analog computing ele­
ments such as integrators, summers, limiters, etc., 
usually appear as subroutines within the simulator 
program. Using one of the sim ulation packages, 
"programming" involves no more than merely in­
terconnecting the functional blocks by a sequence of 
connection statements according to the rules laid 
down by the input language. This interconnecting 
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of blocks is analogous to the wiring of the patch­
board on an analog computer. Therefore, these 
digital-analog simulation programs combine the 
best features of the analog and digital computers: 
the flexibility of block connection structure of the 
former and the accuracy and reliability of the latter. 

DSL/90 is a new digital simulation package for 
the 7090 family of computers. The program is avail­
able from the SHARE library (lWDSL No. 3358). 
Its development, from drawing board to production 
code, was guided by the following broad objectives: 

• To incorporate within it all the desirable 
and proven features of its predecessors; 

• To make this useful technique of digital 
simulation attractive to a group of users 
who are not analog-computer-oriented, 
yet retain the large following of analog 
programmers who are devoted to the 
building-block approach to system anal­
ysis; 

• Toprovide a "continuous system simu­
lator" program that is applicable to a 
broad range of continuous system anal­
ysisand not restrained by conventional 
digital-analog simulator techniques. 
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Some of the DSL/90 features are: 

• A library of DSL system blocks such as 
integrator, limiter, summer, etc.; 

• A simple nonprocedural applications­
oriented input language specifying the 
rules for connecting the library blocks 
together; 

• An input routine which permits quick 
and easy parameter entry and data 
changes; 

• Complete print output routines includ­
ing a graphical output facility; 

• Choice of numerical integration routines 
with or without error bounds using cen­
tralized or noncentralized integration 
schemes; 

• Automatic sequencing of input language 
statements (this is called "sorting" in 
programs such as ASTRAL and 
MIDAS); 

• Facility to add to the DSL/90 library 
any user-defined blocks in the form of 
subroutines (FORTRAN, MAP or 
binary decks); 

• Intermixing of DSL and FORTRAN 
language statements; 

• Repeatability of language statements 
(macro-generation); 

• Dynamic storage of data. 

Although DSL/90's input .language statements 
are block-oriented, they are not restricted solely to 
block notation. DSL/90 permits an intermixing of 
its input language statements (henceforth called 
DSL statements) and FORTRAN IV statements. 
Thus, the power of FORTRAN is made available 
to the problem solver. One far-reaching implica­
tion of this language feature is that simulation 
"programming" may begin anywhere from the 
analog block diagram formulation of the problem 
to the higher-level mathematical model in the form 
of ordinary differential equations. 

OPERATIONAL FEATURES 

Basic Language Features 

The DSL/90 language statements may be classi­
fied into three general categories: I) structure or 
connection statements which define the intercon­
nection of the functional blocks, 2) data statements 
which permit the entry of alphanumeric informa­
tion, and 3) simulation control statements. 

The Connection Statements. In the DSL/90 input 
language, the basic functional block is characterized 
by an output (outputs) that is functionally related 
to one or more inputs. Parameter names and initial 
conditions, if any, are also included in the statement 
which has the following general form: 

Outputs = Block name (Initial conditions, 
Parameters, Inputs) 

Below are examples of basic DSL connection or 
structure statements: 

1. OUTNAM = SQRT (TEMP) 

In the block diagram representation (Fig. 1), 
SQ R T is the name of the functional block. It has a 
single input called TEMP and the output is given 
the name OUTNAM. 

TEMP-~·I " ~-"""·~OUTNAM 

SQRT 

Figure 1. 

2. Y = INTG RL (lC2, YDOT) 

Figure 2 represents the block INTG RL which is 
the basic DSL/90 integrator block. IC2 and YDOT 
are its initial condition and input name respectively. 

IC2 

~ 

1 
YDOT ·1; ..... y 

INTGRL 
Figure 2. 

3. OUT1,OUT2 = VALVE (LEVEL, INHI, 
INMED, INLO) 

Figure 3 illustrates a user-supplied functional 
block named VALVE with two outputs OUT1 and 
OUT2. LEVEL is a unique parameter name se-

LEVEL 

:1 
l 

IN HI 
: OUT 1 INMED 

INLO 
OUT 2 

VALVE 

Figure 3. 
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lected by the user, and INHI, INMED and INLO 
are the names of the three input variables to the 
block. 

From the above illustrations, it should be evident 
that a functional block in the DSL/90 language is 
completely specified by the unique names assigned 
to the inputs and outputs of each block. The user 
is free to select names meaningful to his process 
simulation, the only restriction being that a name 
consists of no more than 6 alphanumeric characters, 
the first of which is alphabetic. User-supplied 
blocks may have any name following the same re­
striction above. However, the names of standard 

blocks supplied as part of the DSL/90 simulation 
package are preassigned. DSL/90 provides an ex­
tensive library of functional blocks which are listed 
in Table 1. 

The above format for characterizing functional 
blocks in DSL/90 is consistently adhered to. How­
ever, there are these exceptions: the basic operations 
of multiplying, dividing, summing and subtracting 
are replaced by the operators *, /' + and -, re­
spectively. To this list of operators we add ** for 
exponentiation. Let us illustrate one of these opera­
tions by simulating a multiplier output (Fig. 4), 

OUT = A·B. 

Table 1. Functional Description of Standard DSL/90 Blocks 

GENERAL FORM FUNCTION 

** Y = INTGRL (IC, X) Y=f~ X dt + IC 

Y(O) "' IC 

INTEGRATOR EQUIVALENT L.APLACE TRANSFORM • t 
* Y=MODINT (IC, PI' P2 , X) Y=Jot X dt + IC PI· I, P2 • 0 

Y·IC PI =0, P2 • I 
MODE-CONTROLLED INTEGRATOR y. LAST OUTPUT PI =0, P2· 0 

* Y = REALPL (lC, P, X) py + Y • X 
Y (0) • IC 

1ST ORDER SYSTEM (REAL POLE) EQUIVALENT LAPLACE 
I 

TRANSFORM I PS + I 

* Y = LEDLAG (lC, PI ' P2 ' X) P2 y + Y .. PI X + x 
Y(O)" IC 

PS+I 
LEAD- LAG EQUIVALENT L APL ACE TRANSFORM 1_1 __ 

P2S + I 

* Y = CMPXPL (IC I , IC2 , PI , P2, X) 
•• • 2 
Y + 2 PI P2 Y + P2 Y • X 

Y(O) ,. IC I 
y(O) ,. IC2 I 

2 ND ORDER SYSTEM (COMPLEX POLE) EQUIVALENT l.APLACE TRANSFORM I 

S2+2PI P2 S + P~ 

Y ,. DERIV (lC, X) Y = ~~ QUADRATIC INTERPOLATION 

Y(O) • IC 

DERIVATIVE EQUIVALENT L.APLACE TRANSFORM' S 

Y=DELAY (N,P,X) Y(t) = X(t-P) t = P 
P =TOTAL DELAY IN TERMS OF INDEPENDENT VAR. 

Y=O t < P 
N = MAX NO. OF POINTS DELAY 

DEAD TIME (DELAY) EQUIVALENT ·LAPLACE TRANSFORM' e -PS 

Y ,. ZHOLD (P, X) Y·X P·I 

Y (0) = 0 Y • LAST OUTPUT P·O 

ZERO-ORDER HOLD EQUIVALENT l.APLACE TRANSFORM I 1. ( 1- e-St ) 
S 

Y .. IMPL (lC, ERROR, FUNCT) Y"IC t • 0 FIRST ENTRY 

IMPLICIT FUNCTION y .. FUNCT (Y) t ~ 0 

IY- FUNCT(Y) ''-ERROR' lyl 



168 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

SWITCHING FUNCTIONS 

Y II FCNSW (P, XI , X2 , X3) y. XI P< 0 

y. X2 P-O 

FUNCTION SWITCH y. X3 P>O 

Y = INSW (P, XI' X2 ) Y - XI P<O 

INPUT SWITCH (RELAY) y. X2 P~O 

YI ' Y2 • OUTSW (P, X) YI • X, Y2 • 0 P<O 

OUTPUT SWITCH YI • 0, Y2 • X P~O 

Y = COMPAR (XI' X2) Y • 0 XI < X2 

COMPARATOR Y • I XI ~ X2 

Y :: RST (PI' P2 ' P3) y·O PI > 0 
Y • I P2 > 0, (PI " 0) 
y·O P3 > 0, Yn-I • I , (P2 ~ 0, PI ~ 0) 

RST FLIP- FLOP Y • , P3 > 0, Yn-I =0, 
II " 

* THESE FOUR BLOCKS EXIST AS BUILT-IN MACROS WITHIN DSL. IN-LINE CODE REPRESENTING 

AN EQUIVALENT INTE~RATOR CIRCUIT IS GENERATED FOR EACH USE TO PERMIT THE USE OF 

CENTRALIZED INTEGRATION SCHEMES WITHIN THE BLOCKS. 

* * INTGRL MUST BE THE RIGHTMOST TERM FOR EACH LEVEL OF USAGE. IF X IS A SINGLE VARIIABLE 

NAME THEN IT MUST BE UNIQUE WITHIN THE PROBLEM. IC MUST ALSO BE UNIQUE. (-IC IS 
NOT VALID). A LITERAL MAY BE USED FOR IC. ALSO SE E SECT. 5-1. 

We have decided not to use OUT = MULT (A, 
B), but simply OUT = A ~B. Let us summarize 
these ideas by considering a solution to Mathieu's 
equation: 

y + (1 + A cos t) y = 0 y (0) = 0, y(O) = YO 

As the DSL connection st41tements for this circuit 
follow a near one-to-one cqrrespondence with the 
functional blocks in Fig. 5, they may be written as: 

FCN A * COS (TIME) 
MULT FCN*Y 
Y2DOT - Y - MULT 
YDOT INTG RL (0., Y2DOT) 
Y INTG RL (YO, YDOT) 

(Note that TIME is a DSL system name represent­
ing the independent variable of integration. It may 
easily be renamed by the user.) , 

Observe that the DSL statements in the above 
example are also FORTRAN arithmetic statements, 

B 

A--..... x t---·OUT 

Figure 4. 

and the right-hand portions of the statements are 
merely FORTRAN expressions. Therefon;:, as such, 
their complexity is restricted only by the rules' 1that 
govern arithmetic expressions in the FORTRAN 
language. 

Furthermore, these expressions can serve as 
inputs to any functional block, regardless of 
whether it is a DSL/90 or user-supplied block. For 
example, the first three DSL structure statements in 
the problem above may be written as one statem1ent, 

Y2DOT = - Y - A * COS (TIME):+: Y; 

or perhaps as 

Y2DOT = - Y * (1. + A * COS (TU~E)). 

Y +( I + A cos t) y : O. y(O):O; yeo): Yo 

1-----1----_ Y 

MULT 

Figure 5. 
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FUNCTION GENERATORS 

GENERAL FORM FUNCTION 

Y·AFGEN (FUNCT. X) Y: FUNCT (X) Xo~X" .Xn 
LINEAR INTERPOLATION 

y. FUNCT (Xo) X< Xo 
ARBITRARY LINEAR FUNCTION GENERATOR Y=FUNCT (Xn) X> Xn 

Y·NLFGEN (FUNCT. X) y. FUNCT (X) Xo~X ~ Xn 
QUADRATIC INTERPOLATION (LA GRANGE) 

Y= FUNCT (Xo) X< Xo 
NON - LINEAR FUNCTION GENERATOR y. FUNCT (Xn) X> Xn 

Y·LIMIT (PI' P2• X) y. PI X<PI ¥ y. P2 X >P2 
LIMITER y·x PI~X~ P2 

~---.. X 

Y·QNTZR (P, X) y. kP (k-1/2)P<X~(k+ 1/2)P 

~x k=O,.:I:I. :2. :1:3 ..... 

QUANTIZER 

Y= DEADSP (PI' P2• X) Y·O PI ~X~ P2 P, Yf~/ y. X- P2 X> P2 
DEAD SPACE y. X - PI X< PI 

45 0Y· ~ X 

Y·HSTRSS (lC. PI' P2 • X) Y = X- PI (X -Xn-I) > 0 AND 

~ 
Yn-I~(X-PI) 

Y(O)·IC y. X - P2 (X-Xn_I)<O AND P2 PI 450
X Yn_I~(X - P2) 

HYSTERESIS LOOP OTHERWISE y. LAST OUTPUT / / 

Y= STEP (P) Y·O t. < P Y tl 
STEP FUNCTION y .. I t~P :P t 

~ I 

y .. RAMP (P) Y=O t<P 
Y! P 6 450 

RAMP FUNCTION Y =t-P t~ P 
t .. 

Y=IMPULSE (PI ,P2) Y=O t < PI 

Yb"'t:1 Y = I (t - PI) • k P2 I t y=o (t - PI) ~ k P2 ... 
IMPULSE GENERATOR k·O.I.2.3 ..... PI 

y. PULSE (P, X) y·o INITIAL 

~ 
Y=I Tk~t<(Tk+X) 1 X , 
Y=O OTHERWISE 

TI T2 t k=I,2,3 ..... 
PULSE GENERATOR WITH P AS TRIGGER Tk• t OF PULSE k. Pk 

Y • SIN E (PI' P2 • P3 ) v=o t<PI Y f P
'3

/P2 
P2=FREQUENCY IN RADIANS/SEC. V"SIN [P2·(t-PI )+P3] t~PI ~I~·~:--;i P3 = PHASE SHIFT IN RADIANS 
TRIGONOMETRIC SINE WAVE WITH I ""-/ 
AMPLITUDE. PHASE. AND DELAY 

V·NORMAL (PI' P2 • P3 ) Y= GAUSSIAN DISTRIBUTION lAy WITH MEAN. P2 • AND 
NOISE GENERATOR ·STANDARD DEV I ATION. P3 (NORMAL DISTRIBUTION) (PI = ANY ODD INTEGER) I ~ 
y .. UNZRPI (PI) y .. UNIFORM DISTRIBUTION 0 TO I If(Y) 

(PI= ANY ODD INTEGER) I Y 

o· flY) 1 r ~ 

V"UNMIPI (PI) V=UNIFORM DISTRIBUTION. 
-I TO +1 I I Y 

V = UNATOB (PI' P2• P3 ) Y= UNIFORM DISTRIBUTION. 
-I I ~ 

NOISE GENERATOR P2 TO P2 +P3 ·rtf)-' 
(UNIFORM DISTRIBUTION) Ip2 I'! 
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In addition, if the output, YDOT, of the first in­
tegrator is not a variable of interest, the two integra­
tors may be "nested" as follows: 

Y = INTG RL (YO, INTGRL (0., Y2DOT)). 

Finally, if the variable Y is the oRly one whose out­
put is desired, the problem may be described by a 
single DSL connection statement, namely, 

Y = INTGRL (YO, INTGRL (0., - Y * 
(1. + A*COS(TIME)))). 

The Data Statements. The subject of data entry was 
given prime consideration during the development 
of language features of DSL/90. The end result is 
free-form and symbolic specification of parameter 
values and initial conditions following a card identi­
fier label which is punched left-adjusted in the first 
six columns of a data card. For example, 

Co Is 1-6 
PARAM 

INCON 
CONST 

7-72 
A = 0.5, PARI = 62.4, 

PAR2 = 3.215 E + 4 
ICI = 0.2, XDOT = 1.3 
CIC = 7.3, C2C = 100., 

T = 46.25, 
EPSILN = 1.0 - 05 

The identifying labels begin in column one. The 
data items, separated by commas, may be placed 
anywhere in columns 7-72. Blanks are ignored. 
Three consecutive decimal points at the end of any 
statement indicate that it is to be continued on the 
next card. Continuation may begin anywhere in 
columns 1-72. Data statements may be inter­
mingled with connection statements. 

The Control Statements. The statements may be 
conveniently grouped into three types: 

1. Problem output control statements include 
print and plot requirements, title information and 
labeling of graphs, such as: 

PRINT .01, Y, Y2DOT 
PREPAR .005, Y, Y2DOT 
GRAPH 8.,6., TIME, Y, Y2DOT 
LABEL SOLUTION OF MATHIEU'S 

EQUATION 
RANGE DELT, X 

The above cards will cause the printing of TIME, 
Y, and Y2DOT at intervals of 0.01 units of time, 
and preparation of TIME, Y, and Y2DOT for 
graphing at intervals of 0.005 units of time. A 
single 8 x 6-inch graph properly labeled as directed, 
will be made with Y and Y2DOT plotted vs TIME. 
The maximum and minimum values attained by 
DELT and X will be printed at the end of the run. 

2. Problem execution control statem,ents are 
used to set error bounds and step size for integra­
tion routines, prescribe run cutoff conditions, and to 
specify other pertinent run information. Typical 
examples are 

CONTRL DELT = .05, FINTIM = 2.0 
ABSERR YDOT = 1.0 E - 5, Y = 5.0 E - 4. 

The simulation will be executed from 0 to 2.0 with 
an integration interval of 0.05. The error bounds 
on YDOT and Y will be held at 1.0 x 10-5 and 
5.0 x 10-4

, respectively. The latter bound will be 
applied to all other unspecified integrator outputs. 

3. System control statements provide the user 
with a number of options, the most important ones 
being choice of integration methods, bypassing the 
sequencing routine, and renaming of system vari­
ables. They also include an END card which sig­
nifies the end of a logical set of data ,cards, and a 
STOP card which ends the computer run. 

For example: 

CONTIN 
INTEG MILNE 
NOSORT 
RENAME TIME = X, DELT = DELX 
FINISH DIST = O. 

These cards cause continuation of the simulation 
from the last calculated point, selection of the Milne 
5th-order integration scheme, exercise of the no-sort 
option, renaming of two systems variables, and 
termination of the run when the value of DIST 
reaches zero. 

All data and control cards, with the exception 
of the END and STOP cards and certain logical 
groups of cards (such as continuation statements) 
may be intermixed with DSL structure statements 
and may appear in any order. Proper statement 
order is determined by an internal sort based on 
correct information flow. Table 2 shows a c:ompll~te 
list of DSL/90 data and control statements. Re­
turning to Mathieu's equation, a complete DSL/'90 
program for y + (1 + A cost) y = 0 may be written 
as follows: 

1-6 
TITLE 

PARAM 

INCON 
INTEG 

7-72 
SOLUTION OF MATHIEU'S 

EQUATION 
Y2DOT = - Y*(1.0 + A * COS 
(TIME)) 
A = 0.5 
Y = INTGRL (YO, INTGRL (0., 
Y2DOT)) 
YO = 20.0 
MILNE 
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TABLE 2 Summary of DSL/90 Data Statement Format, 

Label Function (By Example) 

COL. 1-6 7-72 

PROBLEM DATA I""PUT: 
PARAM 
CONST 
INCON 
AFGEN 
NLFGEN 
TABLE 

TAU ~ 25., PAR = 3.15BE3, C4 = 2.0 E-5 
CONI =45.3, PI=3.14159, K=3 
ICI = 20., A = 50.2, IC3 = 0 
FCN = 3.,25.,5.2,26.4,6.0,24., 7.5,21.3 
FY3 ~ 0.,850.,5., 1245.,8., 1.574E3, 12.4, 2.4E03 
PARI (8) = 4.5, INPUT(l-4) = 2.,2*8.6, 3.52E3 

PROBLEM OUTPUT CONTROL: 
PRINT 0.1, X, XDOT, VELOC 
TITLE MASS, SPRING, DAMPER SYSTEM IN DSL/90 
PREPAR .05, X, Y, XDOT 
GRAPH 10., 8., TIME, X, XDOT 
LABEL MASS, SPRING, DAMPER SYSTEM - 6/1/65 
RANGE X, XDOT, VELOC, DELT 

PROBLEM EXECUTION CONTROL: 
CONTRL DELT = .002, FINTIM = 8.0, DELMIN = I.OHO 
FINISH DIST=O., ALT=5000. . 
RELERR X = I .E-4, XDOT = 5.E-5 
ABSERR X = I .E-3, XDOT = I.E-4 
CONTIN 
INTEG MILNE 
RESET GRAPH, PRINT 

DSL/90 TRANSLATOR PSEUDO-OPERATION';: 
RENAME TIME = DISPL, DELT ~ DELTX 
INTGER K, GO 
MEMORY INT(4), DELAY (100) 
STORAG IC(6), PARAM (10) 
DECK 

SORT 
NOSORT 
PROCED 

ENDPRO 
MACRO 

ENDMAC 
END 
STOP 

CONTRL 
ABSERR 
PRINT 
END 
STOP 

X = FCN (A, B, PAR5, IC3) 

OUT = FCN2 (ICI, R, T, X) 

DELT = .02, FINTIM = 2.0 
Y2DOT = 1.0E-5, Y = 2.0 E-5 
0.05, Y, Y2DOT 

It should be apparent by now that the DSL input 
language is block-oriented, symbolic, and free-form. 
The use of FORTRAN is not limited to arithmetic 
statements. All FORTRAN library functions such 
as SQRT, SIN, COS, etc., are available. Under 
the rules which are clearly defined within DSL/90, 
a large subset of FORTRAN becomes available to 
the simulation user without sacrificing the ease of 
block notation programming. What this means to 
the engineer who is unskilled in FORTRAN pro­
gramming is simply this: he can still perform his 
process simulation with a simple language, follow­
ing a step-by-step building block approach. As he 
becomes more proficient, his programming becomes 
correspondingly more efficient and he may want to 
include elementary FORTRAN language features in 
his connection statements. Still later, as the com­
plexity of his problem increases, he may use to ad­
vantage the more powerful features of DSL and 
FORTRAN. 

Advanced Language Features 

There are a number of other DSL/90 language 
features which are especially useful for the simula­
tion of large or complex problems. We shall ex­
amine several of these. 

Procedural Statements. Recall that the order in 
which DSL statements are entered is unimportant 
because connection statements are separated from 
the rest and sequenced (or "sorted") by the DSL 
processor (unless a "no-sort" option is exercised). 
In other words, the DSL/90 language may be con­
sidered as nonprocedural. In contrast, FORTRAN 
is a procedural language since FORTRAN state­
ments are executed in the order in which they are 
written. Frequently, in a complex process simula­
tion, it is desirable to introduce procedural state­
ments within the simulation program. The purpose 
may be to control signal flow in certain portions of 
the program, or perhaps to compute a large number 
of parameter values once and only once. DSL/90 
uses a pair of pseudo:-operations, PROCED and 
ENDPRO, punched in columns 1-6, to designate 
the beginning and end of a block of procedural 
statements (they may be DSL or FORTRAN state­
ments). Input and output names may be specified 
on the PROCED card to allow the procedural state­
ments to be sorted as a block relative to other DSL 
statements. 

PROCED 

10 

20 
30 

ENDPRO 

For example: 

TEMP = BLOCKA (TEST, IN) 
IF (TEST) 10, 10,20 
TEMP = LIMIT (PARI, PAR2, IN) 
GO TO 30 
TEMP = IN + TEST 
CONTINUE 

During the sequencing of DSL statements, the 
above procedural statements will be treated as a 
single functional block with output TEMP and in­
puts TEST and IN, as illustrated in Fig. 6. The 
order of the statements within the procedural block 
remains unchanged. 

Macro-Generation. Pseudo-operations MACRO 
and ENDMAC, which are punched in columns 

IN 

:1 III TEMP 
TEST 

BLOCKA 
Figure 6. 
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1-6, are used to define a macro block. One may 
think of a macro as a repeatable procedural block 
with parameter variations. This is best illustrated 
by example. The following statements constitute a 
macro-definition: 

1-6 
MACRO 

ENDMAC 

7-72 
OUT = FILTER (VI, V2, K, IN) 
VI = (IN - V2)/K 
V2 = INTGRL (0., VI) 
OUT = V2 + O.5*VI 

During the definition of the macro, no language 
statements are produced. The name of this macro, 
FILTER, must be unique. However, the output 
name OUT and the input names, VI, V2, K, and 
IN, are dummy symbols which will be replaced by 
the actual names specified at the time when the 
macro is used. The subsequent appearance of the 
statement 

LINE 1 = FILTER (AI, A2, TAU,XIN) 

will cause the following three statements to be gen­
erated in-line: 

Al = (XIN - A2) /TAU 
A2 = INTGRL (0., AI) 
LINEI = A2 + 0.5* Al 

Just as in the case of the procedural block, these 
statements will be sequenced as a single functional 
block with LINEI as output and AI, A2, TAU and 
XIN as inputs (see Fig. 7). The statements within 
the block are not sorted. Both DSL and FOR­
TRAN statements may appear within a macro. 

At 

~I A2 LINEl 

TAU : 
.. 

XIN 

Figure 7. 

Implicit Function Block. DSL/'90 provides an im­
plicit function block called IMPL for the solution of 
an implicit equationf(y) = 0 expressed in the form 
of y = f(y). Clearly some iterative technique must 
be employed. These iterations must be performed 
within each integration interval until a convergence 
criterion is satisfied. The program for IMPL uses 
the direct iteration method developed by Wegstein. 
If there is no convergence after some preassigned 
maximum number of iterations, the simulation of 
the problem is terminated with appropriate diag­
nostic printout. 

To use the implicit function block, one writes t.he 
DSL statement, 

Y = IMPL (YO, ERROR, FOFY) 

followed by the set of DSL or FORTRAN (or bOllh) 
statements evaluating FOFY. Y, YO, ERROR 
and FOFY are symbolic names selected by the user. 
The DSL/90 system then sets up the necessary 
iterative loop. Let us illustrate by solving the im­
plicit equation 

C . (e Y - 1) 
y =-----

e Y 
(C is some constant) 

One simply writes: 

Y = IMPL (YO, ERROR, FOFY) 

A = EXP(Y) 

FOFY = C* (A - 1.0) / A 

The DSL/90 translator will automatically gener­
ate the following statements: 

30001 Y = IMPL (YO, ERROR, FOFY) 
IF (NALARM .LE.O) GO TO 30002 
A = EXP(Y) 
FOFY = C* (A - 1.0) / A 
GO TO 30001 

30002 CONTINUE 

Note that three statements, and only those three, are 
added to the ones written by the user. The first time 
the IMPL routine is entered, NALARM is set to 
one, and Y is given the initial guess YO. After eaeh 
calculation of f(y), program flow returns to the 
IMPL subroutine where the convergence criterion is 
tested. If satisfied, NALARM is set equal to zero 
and y assumes the most recently calculated value of 
f(y). Otherwise the iteration continues. 

User-Supplied Functional Blocks. Although DSL/ 
90 provides an extensive library of operational 
blocks, there are occasions when special blocks are 
required to simulate specific process elements. 
These special blocks are programmed by the user as 
subroutines either in FORTRAN or MAP and 
simply added to the data at the time the simulation 
run is made. The user may treat these special blocks 
like all other DSL library blocks, interconnecting 
them to build a complex system model. 

As an example of the use of special blocks, con­
sider the modeling of the analog-to-digital convertler 
shown as a nonlinear stepwise quantization in Fig. 
8. If no such general block existed in the DSL li­
brary, it would be difficult to construct such a char­
acteristic from the standard blocks available. How-
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--------------~~--------------~XIN 

Figure 8. 

ever, the quantization effect is easily modeled by the 
following FORTRAN statements: 

FUNCTION QNTZR (P, XIN) 
QNT = AINT (0.5 + ABS (XIN)/P) 
QNTZR = SIGN (p* QNT, XIN) 
RETURN 
END 

The parameter named P containing the value of the 
quanta step size is the only parameter supplied to 
the QNTZR block. This value of P is entered into 
the simulation program in exactly the same way as 
any other DSL parameter-on a PARAM card. 
Note also that the two blocks AINT (for truncation) 
and SIGN (for transfer of sign) are standard sub­
routines of the FORTRAN library. The above 
FORTRAN subprogram for the quantizer may be 
entered directly with the data cards for the simula­
tion run, or as an alternative, it may be compiled 
independently and the resulting machine language 
deck (binary deck) added to the data deck. This 
functional block may even be added to the perma­
nent DSL library by simply loading it on the library 
tape. In fact this was the case with the QNTZR 
block when we found it to be sufficiently useful to 
warrant a place in the DSL library. The ease with 
which a difficult nonlinearity has been modeled in a 
few lines of FORTRAN coding is quite apparent 
and typifies the flexibility of DSL/90 for handling 
nonlinear functions and special blocks. 

Arbitrary Functions. DSL/90 provides two func­
tional blocks, AFGEN and NLFGEN, for handling 
arbitrary functions of one variable. The x, y coor­
dinates of the function points are entered sequen­
tially following an identifying label and the symbolic 
name of the function, e.g.: 

1-6 7-72 
AFGEN FCI = -10.2,2.3, - 5.6,6.4, 1.0, 5.9, etc. 

Although the total number of data storage locations 
is necessarily fixed by machine size, there is no re­
striction on the number of points one may use to 
define any function. The only requirement is that 
the x coordinates in the sequence x\, YI, X2, Y2, .. ' 
are monotonically increasing. Any number of arbi­
trary functions may be defined, identified only by 
their symbolic names assigned by the user. As an 
example, the DSL statement Y3 = AFGEN (FC1, 
XIN) will refer to the function called FC 1. AFG EN 
provides linear interpolation between consecutive 
points, while NLFG EN uses a second-order La­
grange interpolation formula. 

Tabular Data. This feature of DSL/90 allows 
blocks of data to be tr"ansmitted to the UPDATE 
subroutine in tabular form. In the construction of 
a special block, the user may have to consider sets of 
initial conditions, history and input parameters. 
This DSL/90 feature will eliminate the need for a 
lengthy subroutine argument string. To illustrate, 
suppose we wish to build a special block called 
SPEC which requires two initial conditions and 10 
parameters. We begin by writing the following two 
DSL statements: 

1-6 7-72 
STORAG IC(2), PAR(10) 
TABLE IC(I) = 2.0,IC(2) = 0.0, PAR(l) 

= 4., PAR(2-10) = 9* 1.5 

The first statement instructs the DSL/90 system to 
assign a total of 12 locations-2 for the array IC 
and 10 for PAR. The second statement illustrates 
the manner in which numeric values are entered into 
these reserved locations. Now, when we subse­
quently use a statement such as 

YOUT = SPEC (lC, PAR, XINPUT) 

DSL/90 system will replace the names IC and PAR 
with the addresses of the first locations of the arrays 
IC and PAR respectively. Obviously, the user when 
programming his subroutine SPEC must realize that 
the first two arguments in SPEC are location point­
ers to his arrays. His subroutine could begin with 
the following: 

FUNCTION SPEC (LOCIC, LOCPAR, XIN) 
COMMON /CUR V AL/C(l) 
I = LOCIC 
J = LOCPAR 

CURV AL is the labeled common where the current 
values of all variables are stored, and I and J are 
indices referencing the first initial conditions IC 
and parameter values PAR. 



174 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

System Features 

DSLj90 System Organization~ The DSL/90 Oper­
ating System is separated into two major functions: 
language translation and model simulation. Each 
function operates independently under standard 
IBSYS control but as one continuous single-pass 
operating system. The transition is made by having 
the translator develop on an IBSYS scratch tape all 
the elements of a standard IBSYS job as well as the 
representation of the model to be simulated. This 
tape is then switched in as the standard IBSYS input 
for compilation and execution to complete the simu­
lation. Diagnostics are printed if errors are found 
in translation or simulation. Elements which may 
appearas input to the translator are: 1) DSL/90 
problem-oriented language sentences to describe the 
model, 2) data input to the model for parameter 
values and control of the simulation and output, 3) 
binary and BCD subroutines and functions supplied 
by the user for the simulation, and 4) appropriate 
controls to load binary or BCD subroutines and 
functions from a library tape. The entire system 
may be placed at any level of a standard batched 
IBSYS run. Three additional tape drives are re­
quired-two auxiliary and one for plotting. 

DSL/90 may be run as an independent program 
or it may be used as a subprogram of a conventional 
FORTRAN program for control purposes. 

Sort. A nonprocedural input language such as 
DSL/90 transfers the responsibility of establishing 
the execution sequence from the user to the pro­
gram. To accomplish this DSL/90 alters the se­
quence of input statements according to the rule: an 
operational element (or statement) is properly se­
quenced if all its inputs are available either as input 
parameters or· initial conditions or as previously 
computed values in the current iteration cycle. Un­
specified algebraic loops are identified and, if any, 
the run is halted. The result of this sequencing oper­
ation is a properly organized FORTRAN IV sub­
program. 

Main Program Control. DSL/90 provides for call­
irig the simulation routines from a MAIN program 
specified by the user. Hence the actual digital simu­
lation may be placed under control of a FORTRAN 
routine compiled at execution time. This feature 
allows for testing of response conditions, matching 
boundary values, and dynamic: alteration of param­
eters, initial conditions, or run control data between 
parameter studies. 

Centralized Integration. By use of the block name, 
INTG RL, a user may specify that centralized inte­
gration is desired. The translator sets up statements 
so as to compute all inputs to the integrators but 
bypass computation of outputs until the end of the 
iteration cycle. At this time, all integrator outputs 
are updated simultaneously. A choice can be made 
between the 5th-order Milne Predictor-Corrector, 
4th-order Runge-Kutta, Simpson's Trapezoidal, or 
Rectangular Integration methods. The first three 
allow the integration interval to be adjusted by the 
system to meet a specified error criterion, a factor 
which allows it to take large or small steps depend­
ing on the rate of change of one or more variabl(!s. 
There is provision in DSL/90 for the user to supply 
his own integration scheme, which mayor may not 
be centralized. 

Dynamic Storage Allocation. Data in DSL/90 is 
stored in a single vector including current values of 
structure variables and table values for function 
generators, integration history, error bounds, 
STORAG variables, etc. The storage is allocated 
dynamically (i.e., at execution time) according to 
what portions of the simulator are used and how 
many integrators, tables, and structure variables are 
in the simulation model. Standard DSL/90 blocks 
are loaded only if used. 

APPLICA TIONS 

Having illustrated operational features of the 
DSL/90 digital simulation program, we will now 
draw upon the previous introduction to show how 
DSL/90 has been flexibly applied to simulation 
problems. Three specific simulations will be con­
sidered: 1) a biomedical block notation problem 
involving a respiratory servomechanism; 2) a proc­
ess analysis problem involving the simulation IOf 
heat transfer dynamics of a recirculating furnace 
used in the glass industry; and 3) the simulation of 
the flight dynamics of a portion of the SATURN V 
booster rocket. 

DSL/90 provides special programming features 
such as different integration methods, sorting, 
special blocks, etc., which make it attractive to the 
user for continuous system simulation. Several of 
these features will be illustrated in the examples to 
follow. 

Application No. i-Respiratory Servo Simulation 

This problem involves evaluating the response of 
a proposed model for respiratory control of CO 2 



DSL/90-A DIGITAL SIMULATION PROGRAM 175 

partial pressure in the venous and arterial blood 
streams of a human. De Fares et al performed the 
original study on an analog computer and repre­
sented the basic CO2 control mechanism in respi­
ration by the three-compartment model shown in 
Fig. 9. Using the original study as a guide, this first 
example will illustrate the ease of handling conven­
tional analog simulation problems using DSL/90. 

LOCAL 

CO2 

Figure 9. C02 control model. 

The CO 2 control system operates as follows: The 
alveolar tissue in the lung serves as an exit sink for 
CO 2 production and possesses both CO 2 capacity 
and conductance characteristics. In a similar man­
ner, body tissue can be considered as having an 
equivalent CO2 capacitance and conductance. CO2 

produced by the body is partially stored in the local 
body tissue, raising the local body tissue partial 
pressure of CO 2 • The CO 2 produced is simulta­
neously diffused through the tissue and picked up by 
the blood stream (venous path). The CO 2 is then 
carried to the lung and subsequently diffused to the 
alveolar tissue, raising its CO 2 partial pressure. Si­
multaneously, CO 2 is produced in the region of a 
receptor (C02 detector) in the medulla. This CO 2 is 
similarly diffused and carried to the alveolar tissue 
through the venous blood stream. It can be shown 
that the basic controlled variable in this system 
model is the partial pressure of CO 2 in the receptor 
tissue located in the medulla. 

If CO 2 -enriched air is also brought into the lungs, 
it simultaneously affects the CO 2 diffusion and 
buildup in the alveolar lung tissue. De Fares et al 
have shown that the partial pressure of CO 2 in the 
receptor can serve as an effective mechanism for 
controlling diffusion of CO 2 from the receptor and 
from inspired air. In this study, the CO 2 partial 
pressures of mixed venous blood flow and body 
tissue will be assumed equal. Similarly, the CO 2 

partial pressures of arterial blood flow and alveolar 
lung tissue will be assumed equal. . 

By introducing disturbances in the CO 2 content of 
inspired air, the dynamics of such a control model 
may be studied. The objective of this model is to 
hold constant th~ partial pressure of the CO 2 in the 
receptor by controlling the diffusion conductance of 
CO 2 from the receptor area and of the inspired gas 
to the alveolar lung tissue. Thus, the CO 2 partial 
pressures of alveolar tissue and local body tissue will 
respond dynamically to changes in CO 2 content of 
the inspired air. 

Network Model. Because of the dynamic analogies 
existing between the gas dynamics of the CO 2 dif­
fusion model above and conventional circuit dy­
namics, it is convenient to represent the biological 
model by an equivalent circuit model. Figure 10 
shows three capacitors tied together with variable 
nonlinear conductances, which represent the dif­
fusion characteristics of the separate tissue/blood 
interface. The capacitors represent local tissue CO 2 

C02 RECEPTOR LUNG BODY TISSUE 

Figure 10. Equivalent network model. 

capacity, and the voltages become the respective 
CO 2 partial pressures. The voltage source E repre­
sents the partial pressure of CO2 -enriched inspired 
air and is defined by the following relation: 

E Fi (B-47) 

Fi % CO 2 content in inspired air 

where B = atmospheric pressure in mm Hg. 

Table 3 lists the electrical network parameters 
and variables together with their physiological 
equivalents. 

Digital-Analog Simulation. As a first example of 
DSL/90 application flexibility, conventional analog 
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Table 3. Electrical and Physiological Equivalents, Application No.1 

Elec. Physiological 

Symbol Qkantity ':'Units 

G I CO
Z 

conductance-air to lung tissue Liters (gas)/min/mm Hg (gas) 

GZ CO2 conductance-body tissue to lung Liters (COZ)/min/mm Hg (COZ) 

G3 COZ conductance-receptor to lung Liters (COZ)/min/mm Hg (COZ) 

C j 
Capacity of lung tissue Liters (gils)/mm Hg (gas) 

C z Capacity of body tissue Liters (COZ)/mm Hg (COZ) 

C 3 
Capacity of receptor tissue Liters (COZ)/mm Hg(COZ) 

-
VI COZ partial pressure of lung tissue mm Hg (CO

Z
) 

V 
Z 

COZ partial pressure of body tissue mm Hg (CO
Z

) 

V3 COZ partial pressure of receptor tissue mm Hg (CO
Z

) 

E Partial pressure of COZ in inspired air mm Hg (CO
Z

) 

14 Bony COz production Liters (COZ)/min 

IS Receptor COZ production Liters (COZ)/min 

II ~02 diffusion from inspired air to lung Liters (gas)/min 
tIssue 

I Z 
~OZ diffusion from body tissue to lung Liters (COZ)/min 
tIssue 

13 CO Z. diffusion from receptor tissue to 
lung tissue 

Liters (COZ)/min 

':'Units are liters BTPS, m. m. Hg, minutes 

block notation will be used to program the simula­
tion. Figure 11 represents a DSL/90 digital-analog 
simulation block diagram of the network model 
shown in Fig. 10. Since DSL/90 operations are in 
floating-point arithmetic, no problem scaling is re­
quired and the parameters may be entered directly 
in terms of their conductances are given by the fol­
lowing relations: 

where t/; is proportional to the slope of the experi­
mentally determined steady-state cardiac output 
versus CO 2 partial pressure curves-liters (C0 2 )/ 

min/mm 2 Hg (C0 2 ); and e == initial value of G, 
liters (COi)/min/mm Hg (C02 ), 

Using data from respiratory experiments, the fol­
lowing parameters and initial values hold for the 
simulation: 

VI (0) 
V2 (0) 
V3(0) 
t/;I 

40.0 
45.0 
45.0 
0.0038 

0.00344 
0.l7 
0.0008 
0.1648 

0.0025 
0.0002 
0.25 

0.0625 
0.0007 
0.001 

The DSL/90 statements which describe this sim­
ulator follow. 

TITLE RESPiRATjOI\ SERVO PROBLEM - ANALOG MODE SOLUTION 6-1-65 RUN 1 

::j,\=;:'-; i.-STEP( TDELAY)) 
hj)K2=E i ~~-Vl 
G;=PSll*V3-THETAl 
11=Gl*ADR2 
Vl=INTGRL(VlIC.(ll+12+13)/Cl) 
ADR4=V2-Vl 
G2=PSI2"V2-THETA2 

Connection 
Statements 

12=G2*ADR4 
V2=INTGRLlV2IC.( 14-12)/C2) 
ADR7=V3-Vl 
63 =PS I 3*V 3- THE T A3 
13=G3*ADR7 
V3-INTGRLlV3IC.( 15-13)/0) 

PARA'I CI-0.00344. C2=u.17. C3=0.000S.... i 
~~k ~:~ :g~ i~;s ~S i~~~ ~~~~: ~6~;; 3~~E ~~~~2 ~: ~~u 7. 6.21. 4 P:~~~ct,~:r. 

CO,'lST 14-0.25. 15=0.0(;1. TOELAY=20.0 
INCON VlIC=40.0. V2IC=45.0. V3IC.45.0 

CO,'lTRL FINTU'l=36.0. DELT-0.05 
RELERR Vl=O.OOl 
:NTEG MILNE 

} 
Run 

Control 

PRINT 001, Vb V2. V3' Gl. G2. G3. 110 12. 13 
PREPAR 0.05. Vl' V2. "3' G1. G2. G3. 11. 12. 13 
GRAPH 6.0. 4.0. TIME. \/lo V2. V3 Print and 
LABEL PAR PRESS 3.0 PRCNT C02 RUN 1 6-1-65 Plot Output 
GRAPH 6.0. 4.0. TIME. Gl' G2. G3 
LAtlEL CONDUCTANCE 3.U PRCNT C02 RUN 1 6-1-65 
GRAPH 6.0. 4.0. TIME. 110 12. 13 
LABEL C02 DIFFUSION 3.0 PRCNT C02 RUN 1 6-1-65 

END 
STOP 
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+ + + 

Figure 11. Digital-analog simulator block diagram. 

Figures 12 and 13 show nonretouched DSL/90 
plots of CO 2 partial pressures and tissue conduc­
tances. Inhaled air containing 3% CO2 was assumed 
for 20 minutes followed by a 20-minute span of 
normal room air with no CO 2 content. 

During the first 20 minutes, the receptor tissue 
(medulla), body tissue, and aveolar lung tissue all 
take up CO 2 • The second 20-minute span shows the 
nonlinear response during purging of body CO 2 • 
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LEGEND 

----- : 

VI 
V2 
va 

:+---~----r---~-=='==--'----, 
B. 16. 24. 

TIME 
32. 40. 4B. 

Figure 12. Par press 3.0% C02 run 1,6-1-65. 

Figure 14 shows part of the results printout and 
input data format. 

After the initial runs were completed, a change in 
the G 3 conductance characteristic was suggested by 
medical research personneL Instead of a linear re­
lationship between G 3 and receptor CO 2' partial 
pressure, a smoothwise increasing empirical func­
tion as shown in Fig. 15 was substituted. To do 

LEGEND 
GI 
G2 

.... G3 

~ CD 
.,; -

CD --------,: 
-N '-'" .-.~ 

N '? 
0 

~ B ,\ x '0 -8 " N ,\ 'N - I:. 

''I 
1\ 

r5 " '.:l \\ 

N .,; cO '.~.:.... ...... ...-.-...-.-- .. 

~ II> 

cD 
B. 16. 24. 32. 40, 48. TIME 

Figure 13, Conductance 3.0% C02 run 1, 6-1-65. 
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*** DSLl9D SIMULATION DATA *** 
TITLE RESPIRATOR'! SERVO PROBLEM - NETWORK MODE SOLUTION &-1-65 RUN 4 

this, it was necessary to redefine the G 3 conductance 
characteristic as the output of an arbitrary function 
generator block as follows: PARA!'. Cl~0.uiJ344') CZ·u.17. C3~u.Ov()8 •••• 

PSIl.O.0038. PSIZ.O.OuZ5. PSI3.0.00002 .... 

THETAI-v.lb41:1. THETA;<=".v&"~. THlTAj= v.vvv7. E·~1.4 

(ONST 14=0.Z5. 15'0.0()1. TDELAy z 20.0 

INCON VIIC'40.0. VZIC·45.U. V3IC'45.1. 

CONTRL FINTI""36.0. DELT.U.v5 

RELERR Vl·O.OOI 

INTfG "ILNE 

PRINT 0.1. VI. V2. V3. GI. 62. G3 

PREPAR 0.05. VI. V2. V3. 61. 62. 63 

LABEL PAR PRESS 3.0 PROH C02 RUN 4 6-1-&5 

6RAPH 6.0. 4.0. TIME. 61. 62. 63 

LAI:lEL CONDUCTANCE 3.U PRCNT C02 RUN 4 &-1-6~ 

FIlD 

T Figure 14a. DSL/90 simulation data. 

T I .~ E VI V2 
O. It.OO,)OE 01 4.5000E 

10.000:-02 1+.1'n7~ 01 4.5036£ 
:?OOOf:-Ql 1+ • (11 (} E 01 4.S0Q7E 
1.000~-01 If. ?"3 f)qE 01 It. 516~F 
It. 0 OOE - C 1 It-. 231.,6 r: 01 4.5225E 
I).OOOE-Ot (+.235'11: 01 4.5?8,st 
6.0f)f")E-,)1 4.2V')OE OL 4.")144E 
7.000~-,,)1 1 .... ?3 /.f")'= 01 4. 5/t-0 1 E 
:' • I) OOE-I) 1 4.2331E 01 4.1)45 'iF 
(}. 000!:-0 1 't. l3 ~ 1,= 01 4.1)t')01E 

1C.OOOE-01 4.~315f 01 4.5'557F 
1.100F: 00 1+.?30 Q ': 01 4.560SF 
1.?00E 00 I ... 2 }'J 1 E 01 4.56'>1': 
1.3001: Of) 1 ... 2295E 01 I t .56Qt)E 
1.400E 00 4.??~'-}E 01 I ... 573i3r: 
1.500~ 01) It. Z 2 g I ... E 01 4.S17QE 
!.600E 00 4.??7C)E 01 4.5819E 
1.700r- 00 1+ • 2271, r- 01 4.:857 C 

1.800E 00 4.227CE ')1 4.SWnE 
1.c)OOr: CO 't.?26 Cj,= 01 /+0 5 9? R E 
2.000E 00 4.~~f)?r:: 01 Ito ')062 f 

4.22 'j iJ E 01 4.5 Q c;/+;: 
~C:;J: 01 It .6f')?'1E 

~.c)00E r)l ~1' •. , " _ .... _ , .... ':>021E 
3.510C:: 01 l~ .00 ~l'=, 01 It. SO 2 3f 
':3. f) ZOE 01 It • C' O:.? :1 '= 01 4.5023E 
3.510r:: 01 14.00?:;~ 01 ' ... 50.::? 3E 
'3 • 51~ or: 01 It. 00 2 ~c:: 01 't.50?3E 
3.5,)f')C:: 01 4.f)0?,")r~ 01 1·.5023E 
1.S60E 01 It. OO? (~i: 01 (~ • (~O 2 3!: 
1.570r: 01 I • • OO? ;:) c 01 4.~0~3E 

1. c:; IV) ,') 1 I, • (' ()? ,~ 01 I •• r; 0 1. 3 f= 
~.['jC)n ()l I~ .(1) ) C\ ,: 01 4.I)O?'3E 
":\.f:,()0 f) 1 4.00~~': 01 1 •• 5021,E 

01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
rq 
01 
01 
Ot 
01 
01 
01 
01 
01 

'!l 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 

DSL/90 ~rJ.1lJlt\TrIJN r I ~1 E 13.1192 

G3 = AFGEN (F3, V3) 

where the G 3 characteristic is given in a sequence! of 
X and F(X) values. 

AFGEN F3 ~ 0.0, .0002,48., .0002,49., J)0021" '" 
50., .00023, 51., .00027, 52., .00031, 
53., .00035,... 54., .00039, 55., 
.00043, 56., .000465, 57., .00048" ... 
58., .00049, .59., .000495, 60., .0005, 
80., .0005 

In addition to the analog model approach shown 
here, two other methods were programmed in DSL/ 
90 involving the network equations directly and 

V3 Gl G2 G3 
4.,)000F 01 6.2000F-03 '5.00001:-02 2.0000'=-04 
4.S030E 01 6.31471=-03 5.0089E-02 2.0060E-04 
4.1)082E 01 6.51321:--03 5 • 0 2 It- 2 E - 02 2.0165~-04 
4.51~!3E 01 6.7232E-03 5.0404E-02 2.02' 751:-04 
It-s192E 01 6. '12 flltE-03 5.0562~-02 2.0:'1831:-04 
It-. !) 24/t-E 01 1.1.7.62E-03 5.0714E-02 2.0437:::-04 

' It-. I) 2 9 / .. E 01 7.3168E-03 5.0861f-02 2.0588!:-04 
4.53 4 2E 01 7.S003E-03 5.1002E-02 2 • 06 8 4 I: - 0 It 
4.5389E 01 7.676')E-03 5. 1137E"':02 2.0777E-04 
4.'1433E 01 7.8468'=-03 5.1267F-02 2.0A67f-04 
4.5 1 .. 76E 01 8.0103E-03 5.1392E-02 2.0953::-04 
I h 5518E 01 8. 16 76E-03 1).1511c;-02 .7..10361=-04 
4.'5558F 01 8.118<)E-03 5.1628E-02 2.11I'1E-04 
It .55S6E 01 e • 1.6 4 It C - 03 '5.1 '( 39:'=:-02 2 • 1 1 <; ~ r:- i) 4 
I •• 5 (>3 3 E 01 8.6043E-03 5.1846E-02 ?1265':-0/.,. 
I • • ') f~ f, P, E 01 r.7':\89f-03 I) • 1 ') I. () E - 0 ? ?1336E-(Y.,. 
I •• '5 -, 0 2 E 01 8 • 8 6 13 ,'t [ - 0 3 5.2047r:-02 1 • l't 0 4 r: - () It 
I • • », 3 5 F 01 8.99Zer::-03 5 • 2 1 It 2 ~ - 0 2 2 • 11.,. 70 r: - 0 It 
I .. • ') 766 E 01 9.11251:-03 '1.2233 c -02 2.1t)33E-04 
I • • 57 ') 7 E 01 9.2276f-03 5.23211:-02 2. I 593F-()/.,. 
4.SR26F= 01 9.1382E-03 '5.240C;~-02 2.1652':-04 
It. ~'" 't:::r::-03 5 • 2 It- 86 E - 02 2.1708E-/V. 

').2'61E-02 2· 1 -. 

...... ,,,,", ~ --

.• :Jut9E Ul, 

It. 501 9E 01 6.L. JU~~8E-u., 

It. 5 C 19 F. 01 6.271'5f-v~ "Co ?OO38E-04 
It. '501 q E 01 6.27!'3E-03 5.00'57E-02 2.0038~-04 

4.1)01<)E 01 6.2l14f-03 5.00'J7E-02 2.00~!3E-04 

lh 50 t 'H: 01 6.27L41:-03 5.1Y057~-02 2.00 ';!8 E-O/+ 
It. 5019 E 01 6 • :? 7 l't 1= - 0 3 5.0057f:-()2 2.0038(-04 
It. 50 19F 01 6.2713(-03 5.0057E-02 7..0038~-04 

1·.')019F 01 6.2713E-01 5.()()1)7E-02 2.()0"38F=-04 
4 • " () 1 'I f 01 6.2713~-03 5.0057f::-01. 2.00-::\A=-0/ .. 
4.S0I.CJE 01 6.2711[-03 5.0057E-02 2.00'l8~-04 

4."nlc)F 01 6.2lt?E-01 5.0057f:-0? 1.. 00 ~17~-04 
l ... '50 I (] F 01 6.?.7!2E--03 5.0057E-02 2.00:r/~-04 

SECONDS 

Figure 14b. Respiratory servo problem-network mode solution. 
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Figure 15. G3 conductance characteristic. 
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.00043 
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fundamental compartment models. This last ap­
proach has proven particularly attractive since the 
biomedical user can directly program his own simu­
lation problem without learning an artifax tool such 
as analog computer notation, network analysis, or 
FORTRAN programming. These techniques result 
in a major reduction in the user time required from 
initial problem coding to achieving final results. In 
addition, complete printouts and digital plots are 
available for each problem run, considerably simpli­
fying the simulation documentation problem. 

Application No.2-Glass Tank 
Recirculating Furnace 

This second example involves the analysis of the 
heat transfer dynamics of a recirculating furnace 
used for preheating combustion air on a glass tank. 
The problem illustrates the ease of using generalized 
block notation in DSL/90 for performing contin­
uous system simulations. In this case, the example 
was drawn from the industrial process control field. 
The technique, however, is broadly applicable to 
any continuous system analysis problem. 

As shown in Fig. 16, air is forced through a large 
preheating chamber, called a checker, filled with 
bricks cross-stacked to allow passage of the air 
around the brick surface, thereby preheating the 
cold air from the brick. The preheated air is then 
mixed with fuel, fired, and the resultant flame front 
melts the glass material in the tank. The hot com­
bustion gases are forced through another checker, 
heating up the cold brick, and finally forced out the 
stack. After a period of time, usually about 15 
minutes, the flow direction valve is reversed so that 
the cold checker that had been heated by the hot 
gases now becomes the preheating checker for the 
cold incoming air. Similarly, the previous hot 
checker that had been cooled by the cold input air 
now receives hot combustion gases which heat it up 

[] GLASS 
TANK 

REVERSING 
VALVE HOT 

CHECKER 

,Figure 16. Schematic diagram-reversing furnace. 

again. The object of the simulation is to study the 
heat transfer dynamics of the recirculation furnace 
during the heating and cooling cycles induced by 
air flow reversals. 

The first step ~as to divide each checker chamber 
into three blocks, as shown in Fig. 17, effectively 
breaking a continuously distributed system into a 

HOT 

CHECKER 

jTG~ 
~~I 
jTatJ 
~~ 
jTG~SI 
~RIKI 

TAIR 

GLASS 
TANK 

COLD 

CHECKER 

TBRIK6 

TGAS6 

Figure 17. Reversing furnace-end view. 
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sequence of lumped-parameter segments. The non­
linear heat transfer relationships for each block are 
given by Eqs. 1 and 2. 

d 
dt P2 V (TA T GAS = (TAF I TIN - (TAF I T GAS 

+ hA I (T BRICK - T GAS) 

+ K [(TBRICK + 460)4 

- (T GAS + 460)4] (1) 

:t M (T B T BRICK = hA 2 (T BRICK - T AMB) 

where (TA 

(TB 

V 
M 

P2 

FI 
Al 
h 
K 

.. 

TBRICK 

T GAS 

TIN 

- hA I (TBRICK - T GAS) 

- K [(TBRICK + 460)4 

- (T GAS + 460)4] 

CHECKER 

BLOCK 

Figure 18. Checker block. 

= specific heat of the gas, 
= specific heat of the brick, 
=: volume of the checker, 
= mass of the checker, 
=: gas density, 
= gas flow, 

(2) 

= heat-transfer surface area of brick, 
=: conductive heat-transfer coefficient, 
= radiation heat-transfer coefficient, 
= checker brick temperature, 
= checker gas tern perature, and 
=: input gas temperature to checker. 

These differential equations were programmed in 
FOR TRAN and used to define the characteristics of 
a checker-block, shown in Fig. 18. 

The following assumptions and approximations 
hold for Eqs. 1 and 2. 

Assumptions 
1. Heat transfer by radiation and convection. 
2. Temperature of checker is a function of time 

and space (I-dimensional). 

3. Checker temperature is uniform in any plane 
perpendicular to flow. 

4. Gas temperature is uniform in any plane per­
pendicular to flow. 

5. Brick thermal conductivity is infinite. 

Approximation 
1. Distributed temperature in each checker is rep­

resented by a lumped parameter system of three 
stages. 

The generalized block of Fig. 18 has one: input, 
the entering gas temperature, and two outputs, the 
exiting gas temperature and the internal brick 
temperature. Once the block has been programmed 
and checked out, the user can connect any numb(~r 
of these together to represent the system by simply 
using the DSL/90 statement: 

TGAS, TBRIK = CHEKR(TGIC, TBIC, TIN), 

where TGAS 
TBRIK 

TGIC 
TBIC 
TIN 

output gas temperature of checker, 
internal brick temperature of 
checker, 

= initial gas temperature, 
= initial brick temperature, and 
= input gas temperature. 

Figure 19 shows the block model of one complete 
checker. Three checker blocks have been used 

~GAS FLOW 

r----~ 

Figure 19. Block model of checker gas flow. 

together with three switching blocks that revers(! 
the flow direction through the blocks. 

Now if this block model is used as a model of 
each checker, the DSL/90 statements which repre,­
sent this system can easily be written by the user 
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in terms of the basic checker blocks as follows: 
.. ••• STRUCTuRE STATEMENTS 

* " •• ChECKER 5~'11 TCrlt:S 
C1 1:\= j,\S;'; I TRIGR.TAIR.TGAS2) 
C2: ~:o I.,Si/1 TR IGR. TGA:;1 .TGA:;3) 
C 3, r;. I 1';:;;\( T R I GR. TGAS2. TCOI~8) 
e,,: 1';0 I :-;,,;( (TR I GR. TCO:-l6. TGAS5) 
e 5 ,1';= ,1\5;': i TR IGR. TGAS4 .TGAS6) 
C6; 1';- iNS;" TR I (,R. TGAS5. TAl R) 
T R I GR.-O. 5+S TEP ( TREVRS) 

* ••• HOT CHECKER BLOCKS 
TGASltT~RiKI-CHEKR( TGI IC.TiH IC.Cl IN) 
TGAS.2. TbRI K2.CHEKR (TG2IC. TI:I21C .C21 N) 
TGAS3. TeRI K3-CHEKR« TG31 C. T831C. C31 N) 

* ••• COLD CHECKER BLOCKS 
TGAS". TtlR I K4.CHEKR (TG4IC. TB41 C. C41 N) 
TGASS. TI:lRI KS.CnEKR (TG5IC. TB51 C. C51 N) 
TGAS6. TI:!RI K6.CH!::KR (TG6IC. Te61 c. C6IN) 

* ••• DATA 

PARAM Fl-120000 •• SIGMAA-O.24. SIGMAB.0.24 •••• 
TAIR.360 •• TCOMB-2800 •• TAMB-120 ••••• 
M-IOOOOO •• AI-15000.. AZ-300 .... . 
K.4.5E-06. H-IO.. v-sooo .... . 
TiiEVRS-15. 

INCON TG1IC-850.. TG2IC-13i)() •• TG3IC-1800 .. 'OO 

TElllC-1600 .. TI:!ZIC-ZOOv •• T63IC-2501l .... . 
T(,4IC-Z300 .. TI,;5IC-1900 •• TG6IC-UOII .... . 
TtI4IC-1300 .. TtlSIC-I00u .. TB6IC-700. 

PRINT 0.1' TGASl' T(,AS2' TGAS3' TG"S4' TG"&5. TG"&6 •••• 
TBRIKI. TBRIK2. TBRIK3. TBRIK4. TBRIK5. TBRIK6. TRIGR. ClIN 

CONTRL F I NT IM-30 •• DELT-O.ul 

pr<~PAR 0.05. TGAS3. TG"S6. T6RIK3. TBRIK6.TG"Slt TG"&4. TdRIKlt TBRIK4 
GRAPH 6.0. 4.0. TIME. TGAS3t TflRIK3 
LABEL 3RD CHECKER BLOCK TEMP& RUN 4 
GRAPH 6.0. 4.0. TGAS6. TBRIK6 
LABEL 6TH CHECKER BLOCK TEMPS RUN II 
END 
STOP 

Note that the parameter and variable names are 
almost direct symbolic equivalents of the physical 
notation used for describing the furnace. 

Figures 20 and 21 show the actual plotted results 
of temperature variations at the outlets of the hot 
and cold checkers for a IS-minute flow reversal 
cycle. Advantages of this approach in addition to 
those already mentioned in example no. 1 include 
the ability to expand the simulation easily to include 
control system blocks and other system dynamics 
without disturbing the existing furnace simulation. 
This feature has proven particularly powerful in 
analyzing complex industrial processes. 

Application No.3-Saturn V Booster Rocket 

Vehicle Description. This study applies digital simu­
lation to the flight dynamics analysis of a large space 
vehicle booster. The problem illustrates the use of 
DSL/90 algebraic notation stat~ments. In this 
study, the system example was drawn from the aero­
space industry, but the use of DSL/90 algebraic 
notation can be applied to a broad range of prob­
lems including parts of the previous two examples. 

The vehicle used in this study was the SA TURN 
V launch vehicle for the APOLLO lunar mission. 
As shown in Fig. 22, the vehicle configuration con­
sists of three booster stages and the APOLLO 
spacecraft. The overall length is 360 feet and, fully 
fueled, the vehicle weighs approximately 6 million 
pounds. The first, or S-IC, stage is powered by five 
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Figure 20. Third checker block temperatures, run 5. 
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Figure 21. Sixth checker block temperatures, run 5. 

F-l engines, each of which provides a thrust of 1.5 
million pounds. The four outboard engines are 
swiveled and provide for thrust vector control 
during powered flight. The SATURN V vehicle has 
an independent inertial navigation and guidance 
system from that in the APOLLO spacecraft in 
addition to a control computer and required sen­
sors. 

Trajectory. This simulation is concerned with the 
analysis of flight dynamics from launch through 
first-stage burnout. The booster-stage flight profile 
is shown in Fig. 22 and consists of a gravity turn for 
150 seconds with separation occurring at approxi­
mately 60,000 meters altitude and a 2350-m/sec 
velocity. The rigid body equations of motion that 
were simulated form a perturbation set with respect 
to a rt!ference frame moving along the nominal tra­
jectory as shown in Fig. 23. 

Axes X), X 2 X3 form an orthogonal set, with X 2 

aligned along the nominal velocity vector and axes 
X), X 2 lying in the nominal boost plane. The fuel 
sloshing dynamics of the first stage propellants were 
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Figure 22. SA TURN V configuration and flight profile (from Ref. 5). 
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Figure 23. Reference frame axes (from Ref. 6). 

included as well as the dynamic effects of elastic 
bending along the booster longitudinal axis. The 
attitude control system was also included in the 
simulation, together with the dynamics of the gim­
balled thrust VECTOR control system and hydrau­
lic actuators for the engines, as shown in Fig. 24. 

Since the defining equations of vehicle motion are 
far too complex for the purposes of this paper, the 
reader is referred to the basic documentation for the 
complete problem description. To illustrate the 
features of DSL/90, only a small portion of the 
larger problem will be treated-the pitch axis con­
trol system. Figure 25 is an expanded description 
of the control system filters, together with actuator 
and engine dynamics. The command signal filte:r 
block processes the pitch command signal from the 
control computer prior to applying it to the engine 
gimbal hydraulic actuators. 

In order to investigate booster flight dynamics, a 
primary wind disturbance was applied to the vehide 
during the first stage of powered flight as shown in 
Fig. 26. Horizontal wind loading was assumed, 
with varying azimuth angles for wind heading. 

Referring to Fig. 25, the transfer functions for 
the command signal filter and engine dynamics can 
be expended in Laplace notation to yield the equiva­
lent linear operational equations: 

S2{j2 = K I {j21 u + K 2S {j2 + K 3{j2 (3) 
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S2P2 = (K32P~ - K 31 (2)S + (K34P~ .... K 33(2) 

1 + (K36 P2 - K 3S(2) S (4) 

Equations (3) through (5) can be directly pro­
grammed as DSL/90 statements as follows: 

where S is the conventional Laplace operator. 

* PITCH ATTITUDE CONTROL SECTION 
BET2CU == - (AO*(PH12+ PH12FP) 

+Al*(CH12D+PH12D 
+PH2DFR)) 

From Fig. 24, the expression for the unfiltered 
pitch command signal P~ I U becomes: 

P21 11 
= ..... [aO(cI>2 + cI>/P) + alex + ~2 + ~l')] (5) 

BET2CD = INtG RL(B2CDO, K 1 *BET2CU 
+ K2*BET2CD + K3*BET2C) 
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BET2C = INTG RL(BET2CO, BET2CD) 
BET2DD= K32*BET2CD - K31 *BET2D 

+ K34*BET2C ... 
- K33*BET2 + INTG RL(IC53, 
K36*BET2C - K35*BET2) 

BET2D = INTGRL(BET2DO, BET2DD) 
BET2 = INTGRL(BET20, BET2D) 

/32 

For the complete simulation, over 400 DSL/90 
statements were required, not including the function 
generators and data statements. Both block and 
algebraic notation were used for describing the 
simulation configuration. The above small portion 
of problem coding is an excellent example of the 
ease of using both algebraic and block statements 
in DSL/90. Note the use of symbolic names for 
variable and data names which closely resemble the 
actual names. This feature has proven particularly 
helpful for large simulations . 
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The SATURN V flight dynamics were simulatled 
for the first 120 seconds of powered flight. Figures 
27,28 and 29 show resultant DSL/90 plots for three 
of the system variables being studied. 

The SATURN V simulation demonstrated several 
important features of digital simulation. First, a 
complex nonlinear aerospace problem could be 
successfully solved in DSL/90 by engineers rela­
tively unskilled in programming. Second, many 
problems require both algebraic and block notation. 
The ability of DSL/90 to handle both of these re­
quirements was amply proved. Third, problem 
solutions could be obtained quickly with a minimum 
of setup time. The original programming I'equified 
approximately 16 hours of an engineer's time for 
problem setup. Each run of 120 seconds flight time 
required approximately 25 minutes of IB]\1 7094 
computer time. In addition to the above featuf(!s, 
DSL/90 allowed the user to model his problem in 
segments, checking out portions of the simulat,ed 
vehicle independently, and then to hook these se:c­
tions together. As an example, the trajectory equa­
tions form one section of the simulation, pro­
grammed in algebraic notation, of which the control 
system is another independent part programmed in 
block notation. 

___ ---- 75 m/s 

--------------~----~------~----~------------~-----,~ o 20 40 60 80 100 120 140 160 

TIME (SECONDS) 

Figure 26. Primary wind disturbance (from Ref. 5). 
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CONCLUSIONS 

Within IBM, DSL/90 has been used extensively 
in many different application areas including circuit 
design, mechanical dynamics, process analysis and 
control, servo design, aerospace flight simulation 
and biomedical modeling. Simplicity of the input 

language, clarity and completeness of both print and 
plot output, and the ease with which data is handled 
are some of the features which have made DSL/90 
attractive to an increasing number of problem 
solvers from both camps-analog and digital. In 
DSL/90 workshops, it was observed that engineers 
with hardly any analog or digital computer ex-
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perience successfully "programmed" in DSL/90 at 
the end of the first two-hour session. With this 
quick "shot" of confidence and further experience, 
many have proceeded to more difficult problems 
using the more advanced features of the language. 

The examples shown indicate only a few of the 
broad range of problem areas to which DSL/90 can 
be applied. In addition to the above examples, 
DSL/90 has successfully simulated the process 
dynamics and control system responses for a paper 
machine dryer section control system. In this study, 
actual process noise gathered at the plant site was 
introduced into the simulation through the MAIN 
routine. Several nonlinear process and control ele­
ments were successfully modeled using the external 
block features of DSL/90, including nonlinear 
process controllers and scanning moisture gauges. 
DSL/90 was recently used for the simulation of an 
ammonia reaction process involving two-point 
boundary value matching. In this case, severe simu­
lation problems were created by the fact that the 
system had two regions of time response, each 
governed by different differential equations and in­
terfacing through initial values. Both the features 
of the "MAIN" program and the ability to intro­
duce logical functions into the DSL/90 block struc­
ture were extensively employed. 

Many of these simulation areas previously han­
dled with analog techniques have long been troubled 
with problems of component reliability, accuracy, 

repeatability, and a lack of flexibility in modeling 
basic dynamic components and phenomena. In 
some respects, the trend toward digital simulation 
methods is a result of seeking answers to these;: 
problems. Some of the advantages of digital simu·· 
lation as observed in the above application studies 
can be listed as follows: 

1. Problem accuracy control. 
2. Elimination of problem scaling. 
3. Simulation run repeatability. 
4. Reliable digital simulation elements. 
5. Significantly reduced problem prepara­

tion time and simulation checkout timc~. 
6. Simple problem coding. The majority 

of detailed circuit knowledge for analog 
programming is unnecessary. 

7. Easy performance by the digital com­
puter of some operations which at best 
are only approximated by analog com­
puters. 

8. Effortless provision of positive docu­
mentation of silJlulation configuration 
and parameter values. 

To date, digital simulation techniques have shown 
themselves easy to learn, efficient to operate, accu­
rate, and extremely flexible. They provide the 
engineer with an easy and quick method of digitally 
simulating complex systems, familiar block notation 
concepts, and the power of digital compultation 
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methods. The result represents a significant new 
simulation tool for engineering analysis and design. 
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TECHNIQUES FOR REPLACING CHARACTERS THAT ARE 
GARBLED ON INPUT 

Gary Carlson 
Computer Research Center, Brigham Young University 

Provo, Utah 

With the rapid increase in the availability of mass 
storage, we now find that there is an increasing need 
for massive data input. This input is requiring in­
creasingly large volumes of data conversion to ma­
chine language. As this load expands, we find that 
we must pay more and more attention to the rigor­
ous control of errors on data creation. This study 
reports. the results of a computer technique to re­
duce error~ of input data. 

The standard techniques of key stroke and verify, 
or double punch and compare, are often prohibi­
tively expensive for very large file conversion. Any­
one faced with the problem of large file conversion 
must consider the possibility of using optical scan­
ning equipment. We are concerned with a poten­
tially very large file that is in nonmachine language 
and should be converted. We sought a better way 
to convert and then correct, or proofread, or verify 
the data. By a "better way" we mean that we 
sought a technique that would give acceptable ac­
curacy at a cost less than other techniques of con­
version. 

Any human involvement in the proofreading or 
verifying phase has a relatively high cost and still a 
moderate error. We wondered if we could use the 
computer to reduce the errors on input data. 

The basic nature of our records is genealogical, 
that is our records contain names of people, dates, 
and places. For the conversion to machine lan­
guage of the millions of records that we are con-

_ cerned with, we are considering the possibility of 
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using optical scanning equipment on the existing, 
typewritten, multi-font documents. However, most 
scanning equipment still seems to have some 2 to 
5% character error rate. Fortunately, this equip­
ment can usually indicate confusion on a given char­
acter which is not decisively read. In other words, 
the scanning equipment can say that it recognizes 
the first, third, and fourth characters but got con­
fused on the second character. The errors of am­
biguity offer the possibility of direct computer cor­
rection. 

The problem then is, given that a character is 
garbled,can we effectively replace the character. 
Later ori~ we hope to work on places or place 
names, and even dates. But to begin our study, we 
started on the materials available and of most in­
terest-English names. Specifically, then, the object 
of the study is to determine if we can replace gar­
bled characters in names. 

The basic plan was to develop the empirical fre­
quency of occurrence of sets of characters in names 
and use these statistics to replace a missing char­
acter. I am happy to report that we have developed 
such techniques-and in most cases a garbled char­
acter can be replaced with better than 90% accuracy. 

The basic technique was to develop programs to 
compile the required statistics, and then other pro­
grams to replace the character in question. All pro­
grams are written in COBOL, and have been run on 
the IBM 7040 tape system. 

The frequency of occurrence of trigrams (that is, a 
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string of three sequential characters) was first devel­
oped for a sample of 73,000 christening records 
from English parishes. 

Trigrams were used as the most parsimonious so­
lution. Single-character probabilities were tried 
and gave very poor replacement. Two-character 
strings also gave poor results. In some cases it 
may be necessary to consider four-character strings. 
Trigrams give generally good results with reason­
able processing times. 

We worked first with all names, that is, given and 
surnames combined, over 300,000 names. Ap­
proximately 78% correct character replacements 
were achieved with this set of data. We then de­
veloped separate trigrams for male given names, 
female given names, and then for surnames. This 
refinement greatly improved the accuracy of re­
placement. 

Additional information was obtained and used. 
This includes the location within the name of the 
first character of the trigram, e.g., the trigram MAR 
from the name MARY has a position of 1. The 
trigram AR Y from MARY has a position of 2. A 
final refinement that proved very useful was an 
indication of the trigram being at the END or NOT 
END of a name. The trigram AR Y from MARY 
is an END trigram. 

We separated the data into two halves, using the 
first half to develop the probabilities and basic data, 
and then tested the procedures against the first 
half and then against the second half. Our tech­
niques systematically delete the characters one at a 
time in each name and then replace the character 
using the trigram statistics. The basis for the choice 
to replace the missing character was the character 
from the trigrams that had the highest probability 
of occurrence. The percentage of correct replace­
ments is the measure of success. For example see 
Table 1. 

Here we see that the distribution of trigrams for 
the first three characters MA? clearly show MAR 
as the most probable. In this particular case, if the 
trigram is shifted to cover the next character posi­
tion, A?Y, it is again seen that ARY is by far the 
most probable. By combining these two, the choice 
for the missing character is the letter "R." The 
highly probable ARY trigram is also an END tri­
gram, indicating that the name is now complete. 

The second example of MA ?GARET uses the 
first MA? as well as the two shown. In this case, the 
probabilities do not appear to be quite as striking, 
but nevertheless are clearly decisive to select "R" 
as the missmg character. In fact, in this particular 

Table 1. 

Example-MA?Y 

MA? A?Y 

3rd Position Frequency 2nd Position Frequency 
Trigram of Occurrence Trigram of Occurrelllce 

MAB 5 ABY 
MAG 5 
MAL 5 A LY 4 

AMY 46 
MAR NE* 8,316 A RY End 6,466 
MAR End 5 A RY NE* 20 
MAS 22 
MAT 12 
MAU 2 
MAW 1 
MAY 4 

Example-MA?GARET 

A?G 
2nd Position Frequency 

Trigram of Occurrence 

AGG 

ANG 
ARG 
AUG 

6 

2 
802 

?GA 
1 st Position Frequency 

Trigram of Occurre:nce 

IGA 59 

RGA 616 

... NE means the trigram was not at the end of the name. 

case, "R" is the only possible character when all 
three trigrams are considered. For example, start­
ing with the first trigram set, there are se:veral pos­
sibilities: 

MAG 
MAR 
MAU 

AGG 
ARG 
AUG 

When the third trigram set is introduced, only 
MAR - ARG and RGA remain. This means that 
MARGA must be the sequence of letters that was 
seen by the scanner. 

The combined, or joint probability is similar to a 
precoordinated index, where only those items con­
taining a complete set of AND logical relations are 
accepted. Such a technique will make some mis­
takes for rare sequences of letters. 

What results have been achieved? Let us first ex­
amine in detail the first character position of the 
male given, female given, and surname (Table 2). 
Here we see that position 1 or the first character of 
names is, of course, the hardest one to replacc;~ cor­
rectly since there is only a blank preceding the char­
acter in question. At best, a trigram aJrfangt~ment 
uses information based only on the two characters 
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Male given name 
Female given name 
Surname 

Table 2. 

Position 1 

Tape I Tape 2 

Total Total 
Processed % Processed % 

51,629 94.24 51,629 94.23 
32,730 83.05 32,730 83.05 
73,684 42.24 (not yet available) 

following the first character. In Table 2, the num­
bers mean that there were 51,629 male given names 
used on tape 1 to develop the basic frequencies of 
occurrence. Then, using these as probabilities, we 
correctly replaced 94.24% of the first characters that 
were deleted in male given names. We then used the 
same probabilities and the same COBOL routine to 
process the second set of names, which were not 
used to develop the basic frequencies of occurrence, 
and came up with the almost identical percentage 
correct replacement. These numbers are not a typ­
ing error, these just happened in this particular po­
sition to come out identical for both tape 1 (used to 
develop the probabilities) and tape 2 (the new data) 
for each set of male and female given names. So 
you can see that we were developing the trigrams 
here on 51,629 names on the male, 32,730 names 
for the female, and 73,684 surnames. We are proc­
essing a large batch of names, developing the fre­
quency of occurrence of trigrams, then using this as 
a basis to predict the character that is missing in 
subsequent data. 

As we move away from the first character posi­
tion into the body of the name, it is possible to use 
three trigrams as is shown in Table 1 to make the 
computer estimate of what the character should be. 
As the processing moves further into the name, we 
find better results, and then taper off to a less strik­
ing correction possibility at the end of the name. It 
should be noted that in addition to recording the 
trigram frequency, we recorded a separate condi­
tion within each category of male, female, and sur­
name that indicates whether the trigram was an end 
or non-end trigram. The overall results are given 
in Table 3. 

This table indicates that we often get better than 
98% correct replacement of the garbled character. 
The specific effect on error reduction is impressive. 
If a scanner gives a 5% character error rate, the 
trigram replacement technique can correct approxi­
mately 95% of these read errors. The remaining 
error is thus 5% of the original 5%, or 0.25% over­
all. Such a low error rate is a fond hope of the very 
best verification procedures. 

Table 3. Percent Correct Character Replacement 

Male Given Female Given Surname 
Position of 
Character Tape I Tape I Tape I Tape 2 Tape I 

1 94.24 94.23 83.05 83.05 42.24 
2 99.56 99.45 99.29 99.18 73.23 
3 99.33 99.14 99.74 99.56 74.15 
4 99.45 99.25 99.14 97.99 72.66 
5 99.58 99.32 98.51 98.19 79.85 
6 99.11 98.94 95.63 95.32 81.05 
7 98.06 97.88 98.84 98.60 84.06 
8 99.03 98.28 98.97 98.82 87.99 
9 99.39 98.16 98.96 98.89 89.74 

10 99.54 98.16 86.56 83.07 92.12 
11 100.00 99.46 100.00 88.88 92.21 
12 100.00 87.50 96.77 
13 99.00 
14 100.00 
15 100.00 

Preliminary results on given names from a com­
pletely different set of data of English Parish reg­
isters gives 96.6% correct character replacement. 
This result indicates that the techniques are con­
sistent for comparable data. Such results imply that 
modern names can also be "corrected" if we de­
velop a new set of probabilities for modern names. 

What are the implications of this study? We find 
that there are at least three implications. One, a 
technique like this may, indeed, reduce the cost of 
verifying the mass of data input coming from scan­
ners. Two, techniques like this may also reduce the 
cost of verifying massive data conversion coming 
from conventional data input devices like key­
boards, remote terminals, etc. Three, techniques 
like this may be effective in other areas of linguistic 
manipulation, such as newspaper proofreading, or 
may even be developed to locate the error and then 
make the correction. 

What does this mean for the future, and what 
future research do we see that should follow from 
the work done to date? Some future research is in­
dicated: 

1. We should try to replace the characters in 
another data base using our existing trigram fre­
quencies. Preliminary work on modern American 
given names, using the English name probabilities, 
indicates a 30 to 50% correct character replacement, 
about 20 to 30% wrong replacement, and no re­
placement indicated in the remaining 30 to 40%. 
This last result came as a surprise, but seems to be 
holding. The implication is that if a different data 
base is used on a set of data, the present procedures 
give no basis for a decision in a large number of 
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cases. This no-decision is not as good as a correct 
decision, but is also decidedly better than a wrong 
replacement. Work is continuing to explore the 
ramifications of homogeneity of trigram develop­
ment data and garbled data to be corrected. 

2. We must experiment with other than trigrams, 
especially for the first and: last part of names or 
words. For example, we may have to go to a four­
gram or more at the end of words or names. This 
work is currently in process also. 

3. We need to try another body of words, other 
than English names. This might be newspaper or 
magazine material to see if the technique could be 
applicable there. This is yet to be done. 

4. Techniques must be undertaken to speed up 
the processing on the computer. These routines 
are fairly fast now, but with a tape system there is 
an excessive amount of sorting. 

5. There are other techniques that seem to bt~ in­
dicated from the data analysis. It is not clear that 
you should always take the most probable char­
acter as your choice. In fact, it may be that if the 
distribution of choices is a rectangular distribution, 
some heuristic type choice mechanism may give bet­
ter overall results than a straight maximum prob­
ability choice. We have begun work on this, but 
the results are not yet conclusive. 

6. Definite procedures should be developed to lo­
cate probable errors of character sequenc:e. These 
routines could be of value where scanning equip­
ment was not used, and thus the location of the 
error is not immediately obvious. This is yet to be 
done. 

It appears that this kind of analysis can b(~ of 
interest in reducing the cost of massive data con­
version. 
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INTRODUCTION 

ADAM is a computer program system built by 
The MITRE Corporation for use in the MITREj 
ESD Systems Design Laboratory as a tool to aid 
the design and evaluation of data management 
systems. ADAM operates on the IBM 7030 
(STRETCH) computer and has been operational 
since early 1965. 

Primarily, ADAM is a tool with which a system 
designer can simulate alternative proposed designs 
for his data management system. When ADAM .is 
run, the computer and its associated displays, type­
writers, and other peripheral equipment become an 
operating mock-up of the proposed system, with 
simulated or real users working on-line with the 
model. System designers may test, evaluate, change, 
and retest the model without the usual reprogram­
ming costs associated with changing a design· al­
ready embodied in a large computer program. The 
revised system models actually operate in real time. 

A secondary purpose is to provide a test-bed in 
which techniques of large-system design and pro­
gramming can be implemented, compared, and 
evaluated. To this end, partial models and new pro­
grams may be added to the ADAM framework and 
tests run on them. 

This paper describes some of the things ADAM 
can do, mentions some of the problems to which it 
has been applied, and conclusions reached, and 

*The material contained in this article has been approved for 
public dissemination under Contract AF19(628)-5165. 
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gives a few of the internal details of its operation. 
It is intended as a description of one of the operat­
ing resources of a laboratory devoted to experi­
mentation in the design of information systems and 
as the germ of a concept for a way to build large 
systems. 

FUNCTIONS 

To accomplish its purpose, ADAM incorporates 
generalized facilities for performing those functions 
which characterize data management systems: 

1. File generation and maintenance. 
2. Translation and processing of queries 

and file processing messages. 
3. On-line and off-line input and output. 
4. Report generation and formatting. 
5. Compilation and execution of sub­

routines. 
6. Dynamic allocation of computer re­

sources. 

These facilities are generalized in that the programs 
of ADAM operate independently of the form, 
format, or size of the data, of the input message 
language, and of the report formats required. 
Specifications of the particular characteristics of a 
model reside in the data-base files or dictionaries 
along with the problem-data itself. Thus, the defini­
tions of the data-base structure, message-languages, 
output-formats and problem-specific processes be­
come data, subject to modification and update with 
system procedures. 
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The user of ADAM specifies his data-base struc­
ture-how the data is to be organized, named and 
interrelated-·in file generation statements. He opts 
either to use available ADAM message languages 
and report formats or to specify his own. He pro­
grams whatever subroutines are required to accom­
plish complex or time-consuming calculations not 
suitable for specification in message languages. He 
adds this material to the generalized foundation 
which is the ADAM system, and is then ready to 
exercise and evaluate his model. To change his 
model, he need change only those components he 
has specified; these are only a small part of all the 
material of which the model is composed. This 
generalization of common functions is the essence 
of ADAM and leads to: 

• Its versatility-its ability to accept speci­
fications for many different data-man­
agement systems. 

• Its changeability-the ability to change 
data structure, report formats, etc., with­
out reprogramming, in a short time and 
in many cases on-line. 

• The wide range of its capabilities­
input/output which includes on-line re­
mote inputs is one example; file process­
ing which includes complex data index­
ing is another. 

DESCRIPTION 

The following material is a general descrintion of 
ADAM-its operation, data structures, file process­
ing, and provisions for user subroutines and format 
descriptions. A system as large as ADAM defies 
description in full detail-many capabilities (such 
as remote operation) can be only mentioned, others 
not treated at all; however a summary of ADAM 
capabilities appears below. 

Operation 

The operating ADAM system accepts messages 
from and sends output to on-line input/output 
devices, such as typewriters and display consoles, 
or operates with either off-line input, off-line output, 
or both. Messages may query the data contained in 
ADAM: add, .ehange, or delete data; or cause the 
operation of ADAM or user programs. 

All data in ADAM are contained in files; crea­
tion, maintenance, processing, and querying the 
files are major functions of the system. In addition 
to files of problem data, the system keeps files of 

subroutines (both problem-specific subroutines and 
the subroutines which constitute ADAM itsellf), 
language specifications, format specifications, and 
various other special-purpose files. Data for reports 
are initially made up as an output file, to be format­
ted before actual output. 

The file structure and data formats are elaborately 
described by a set of dictionaries cum directories 
called by the ADAM term rolls. As a di(!tionary, 
a .roll stores alphanumeric names of files, entries in 
files, data items, routines, formats, and so forth. As 
a directory, a roll stores the dynamically (:hanging 
information which describes: the current physi1cal 
location in the computer, the format, and the size 
of elements of the system-files, entries, data items, 
etc. 

ADAM message processing is shown in Figs .. 1 
and 2. As each message is received, the system is 
interrupted to determine its priority, to determine 
the language in which it is written, and to stack the 
message. 

Major message processing programs are the 
. Translator, Processor and Output Gemerator. 
When a message is unstacked, the Translator (with 
reference to the appropriate language specification 
from the Language File and to the rolls) translates 
the message into a list of things to be done, called 
a process table. The Processor executes the st(~PS 
specified in the process table interpretively, acce:ss­
ing or modifying the data base and operating amy 
routines specified. If output is produced, it its always 
in the form of a file. The Output Generator per­
forms any formatting required on the data from this 
file, as described by a format from the format file, 
then delivers the output to be stacked, pending 
availability of an output device. When processing 
of one message is finished, the next is unstac:ked. 

(With "time-sharing" so much in the vogue ll it 

: .... · .. 1 ROLLS 1 .......... : 

FILES ---- --- -- ----- ----
- DATA 
- SUBROUTINES 
- LANGUAGE DESCRIPTIONS 
- FORMAT DESCRIPTIONS 

: LANGUAGE 
: DESCRIPTION 

~O" 
INPUT MESSAGE TRANSLATED OUTPUT 

MESSAGE FILE 

Figure 1. Basic execution cycle. 
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Figure 2. Input-Execute-Output. 

cannot be ignored in the description of an on-line 
system. ADAM is an asynchronous system, but it 
does not swap tasks in and out of memory. Inputs 
come in at any time and are stacked, and outputs 
go out as fast as the equipment will take them. Both 
input and output are asynchronous with the basic 
execution cycle which, when it begins a task, runs 
the task to completion except for interruptions to 
receive inputs and send out outputs.) 

File Structure 
A file is organized as a series of entries, each of 

which has an identical structure, i.e., all entries in 
the file are characterized by the same properties. 
The actual data is stored as property values; the 
collection of property values for a single object con­
stitutes an entry in the file. The entries of a file may 
contain substructures called repeating groups which 
are collections of associated sets of properties, with 
repeated associated sets of property values. A re-

peating group may contain repeating groups, and 
any repeating group may have an arbitrary number 
of repetitions of sets of its property values. 

Figure 3 shows the structure of a file of commer­
cial airline flights organized as a file, with destina­
tion as entries. It illustrates an entry for Boston, a 
set of properties which characterize all entries, and 
the repeating groups "origins," "fares," and 
"flights." 

Property values, the actual data, are stored in 
various ways, depending on the declared property 
type. Property types presently available are: 

1. Numeric, signed integer, stored as 
binary number in a field long enough to 
contain its declared size. 

2. Numeric, floating point, stored as float­
ing-point number. 

3. Roll-valued, stored as the internal code 
for a name or other alphanumeric, with 
the actual characters stored in a roll. 
Alphanumerics in rolls may be multi­
word and arbitrarily long; their codes 
are automatically assigned by ADAM 
and are fixed-length. 

4. Raw, stored as a string of bits of arbi­
trary length. The length of a value for a 
raw property may vary from one entry 
to another, and may change dynami­
cally. Raw-type properties are used to 
store variable length, nonnumeric data, 
such as alphabetic text. 

~ ITIME 'ZONEl ~ ORI~INS 
~~--------~,------~,---------~ 
~ ITIME ZONEI FARES .fLIGHTS 

IcJsslldos~~ lDEPARTSllARRlvESllNR OF STopsl 

Boston EDT 1. 25 Worcester EDT F 6.55 MO-180 0920 0944 0 

M 5.00 MO-182 1252 1316 0 

NE-792 2015 2126 1 

Yarmouth ADT F 31. 00 TC-461 1235 1255 0 

Y 23. 00 

Chicago CST 3. 00 

-- and so forth --

Figure 3. Destination file structure. 
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5. Repeating group, stored as the repeated 
values of the properties in the group. 
Storage is used only for those repeti­
tions of groups which exist (e.g., if there 
is no defined tourist-class fare from 
Worcester to Boston, no space is left for 
it). The number of repetitions of a 
group may vary from entry to entry and 
from time to time during the operation 
of the system. 

As a consequence of the variability of the size of 
raw properties and the number of repetitions of re­
peating groups, entries in the same file may differ 
in length. The variability in entry size is dynamic­
entries and entry size may be changed during 
ADAM operation without rewriting or recopying 
the whole file. 

Each file has one roJI-yalued property whose 
values name entries. Data may be retrieved ran­
domly by direct access to a specified entry through 
the roll which contains entry names. This roll also 
contains the current location in the entry relative 
to the beginning of the file. (Another roll contains 
the current location in the computer of each file.) 
Alternatively, all entries in the file may be accessed 
serially. Within an entry, access to a specific repeti­
tion of a repeating group is always serial; the entry 
is selected and each repetition of the group exam­
ined until the required one is located. 

Rolls 

A roll is organized as a series of elements. Each 
element consists of one or more external names 
associated with a single numeric code used as the 
internal name. The several names associated with 
the same code are considered synonyms of one 
another. Thus, the roll in which values for a prop­
erty "city" were described might have both 
BOSTON and BOS equivalent to the same internal 
code, say the integer 5. All external references 
could then use either term; internally, 5 would be 
the unique name for Boston. 

In addition to the names and code, a roll element 
may contain subsidiary values which describe the 
thing named by the element. For example, if 
BOSTON were the name of one of the entries in the 
Destination file, its roll element (and those of the 
names of all other entries) would contain subsidiary 
values which gave the relative location in the file 
of the entry data. 

Each file has associated with it, but physically 
separate, an object roll which describes entries and 

their names; and a property roll which describes 
properties and their names and includes as sub­
sidiary values the type, field-size, location within 
an entry, and other characteristics of the property. 

Rolls are usually accessed implicitly and need not 
be handled by a user. A user may, however, specify 
in which rolls his roll-valued properties are to be 
defined, thereby providing a context for evaluating 
names-names and internal codes are unique only 
within the same roll. A user who wanted AST (the 
airline code for the city Astoria, Ore:gon) dis­
tinguished from AST (Atlantic Standard Time) 
would define the names in different rolls. This is 
one way the system can perform validity checks on 
data entered. 

File ProceSSing 
ADAM is fundamentally a file processing system. 

Because of its adaptability and the option available 
to include user-programmed machine-language sub­
routines, one could say that ADAM can do any­
thing any other program on the IBM 7030 can do. 
However, the interesting capabilities are those for 
which specific provision is made, without any pro­
gramming required. The examples below are pre­
sented in a file processing language dev,doped to 
help check-out ADAM itself. Although the lan­
guage has been found useful enough to be applied 
directly to models so far constructed in ADAM, 
language design is not a goal of the ADA1\1 pro~ect 
and the capabilities exemplified are more impor1tant 
here than the form in which they are stated. 

Messages may be queries about individual obj'ects 
and data items as in the first example of Fig. 4, 
in which the object Boston is accessed dir,ectly and 
the groups Origins and Flights scanned sl;!r,ially to 
find Flight AA123. Messages may change file data, 
as in the second example, in which the De:stination 
file is accessed serially and changed under the con­
dition "time zone equals EST." The third example 
shows the message for the generation of a report, in 
which the output file which is produced is f,ormatted 
according to the specifications in the (previously 
prepared) format F23, and the resulting output 
titled. 

In Fig. 5, a calculation to determine which are 
"short flights" is complicated by the possibility 
that a flight may begin just before midnight and c;md 
at an earlier time, producing a negative flight time. 
The next example shows a cross-file reference, with 
a decision made about what to print based on values 
of population from those entries in the City file 
which correspond to origin names in the Destina-
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FOR DESTINATION BOSTON.IF FLIGHT NAME EQ AA123,TYPE FLIGHT NAME,DEPARTURE TIME,ARRIVAL TIME. 

FOR DESTINATION. IF TIME ZONE EQ EST, CHANGE TIME ZONE TO EDT. 

FOR DESTINATION BOSTON. PRINT FORMAT F23 TITLE 'FLIGHTS TO BOSTON' ORIGIN NAME,FLIGHT NAME. 

Figure 4. File Processing Messages. 

FOR DESTINATION. FOR FLIGHT. IF ARRIVAL TIME - DEPARTURE TIME LS 60 AND GR-6~ CHANGE FLIGHT NOTE TO SHORT FLIGHT 

OR ELSE CHANGE FLIGHT NOTE TO LONG FLIGHT, PRINT FLIGHT NAME, FLIGHT NOTE. 

FOR DESTINATION BOSTON. FOR ORIGIN. IF CITY (ORIGIN NAME) POPULATION LS 10000, DISPLAY ORIGIN NAME, 

'POPULATION' OF ORIGIN=CITY(ORIGIN NAME) POPULATION, FLIGHTS. 

FOR DESTINATION. IF FARE CLASS EQ FIRST, 

SAVE ORIGIN, 'OVERNIGHT COST' OF ORIGIN = 2 ,'( FARE COST + CITY (ORIGIN NAME) AVERAGE HOTEL COST. 

NAME TRIPFILE. 

Figure 5. Mole File Processing Messages. 

tion file. The destination entry "Boston" is accessed 
directly, and the group origins serially. For each 
origin, a direct access is made to the City file entry 
with the corresponding name. 

Finally, the last example shows the creation of a 
new property, "overnight cost," which did not exist 
in either of the files from which the data for it was 
taken, and shows an example of an output file 
being saved and named instead of being deleted 
immediately after output. The new file-Tripfile­
is a standard ADAM file, subject to any future 
processing desired. 

A more detailed examination of the access tech­
niques and operations used in the creation of the 
Tripfile is given in Table 1. 

These example~ show only some of the file proc­
essing capabilities of ADAM-a list of these and 
other capabilities is given below. They show that 
an on-line interpretive language with a powerful 
system behind it can handle a wide range of proc­
essing tasks. But the range of capability required 
to perform the many other file processing tasks 
conceivable or already implemented in various 
systems is even wider than this. Extensions of 
ADAM intended but not yet implemented include 
file access and read protection, more extensive text 
handling, and more on-line interaction with a user, 
among many others. 

Table 1 

Structure Name Access Operation ----
file Destination Serial -fetch from 

file Tripfile Serial -create 
(output file) -store into 

group Fare Serial -fetch from 
-compare property 

"Class" 
-input property value 

"Cost" to arithmetic 

group Origin Serial -copy from input file to 
output file 

property Overnight -create 
cost -store into with data 

from Destination and 
City files 

file City Direct, -input property value 
indexed "Average Hotel Cost" 
by Ori- to arithmetic 
gin Name 
in Desti-
nation 
file 

File Generation 

File generation tasks in ADAM are treated in the 
same way as those specified by any other message 
inputs--a message which describes the file and the 
data which go into it is translated and processed 
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through the same procedure by which queries and 
other tasks are treated. The generation of files from 
data contained within files already in the system 
was described above, and involves saving and nam­
ing the output file produced by a query or report 
request. Generation of files from bulk data on cards 
or tape is specified in a different operator language 
than queries or other messages. As with the lan­
guage of the examples above, the language presently 
available in ADAM for checkout has been used in 
applications thus far, in preference to specifying 
another file generation language. 

Specifications for file generation include direc­
tions for reading-in data from cards or tape as well 
as a structural description of the resulting file. An 
example is given in Appendix B. The data may in­
clude fields out of order and variable-length fields, 
and separate fields may be subjected to user-sup­
plied or system standard conversion subroutines on 
the way in. 

Messages and Languages 

A designer modeling his system in ADAM has the 
choice of using a language already prepared and 
inserted in the ADAM language file (such as the 
language used in examples thus far) or preparing a 
language specification of his own. (The preparation 
of new languages is not treated here for lack of 
space. Suffice it to say that the ADAM translator 
is a syntax-directed translator of a type found in 
many compilers and that a new language is prepared 
by constructing a syntax-diagram and inserting it 
into the ADAM "language" file.) Regardless of the 
language(s) used, messages may be inserted on-line 
or off-line on cards. 

During ADAM on-line operation, a user has 
available a language change capability through the 
ADAM string-substitution facility, by which he 
may define the meanings of certain input words. 
Words defined by string substitutions are replaced 
by their defined equivalents before an input message 
is translated. String-substitution definition5 may 
specify that parameters (comprising the words fol­
lowing a use of the defin~d word) be inserted. Thus, 
for example: 

LET NONSTOP MEAN (IF NR OF STOPS EQ 
~). and 

LET SKED MEAN (FOR DESTINATION/2/./3/ 
TYPE ORIGIN/l/FLIGHTS) USING RE­
INSERT. 

define substitutions, and the message 
SKED BOSTON CHICAGO NONSTOP. 

would be transformed to 
FOR DESTINATION CHICAGO.IF NR OF 

STOPS EQ ~, TYPE ORIGIN BOSTON 
FLIGHTS. 

before translation. 

Problem-Spec(fic Calculations 

In order to handle problems which are not easily 
or efficiently stated in an on-line message language, 
ADAM includes a capability for incorporating sub­
routines specifically coded for a model. An ADAM 
compiler, called DAMSEL, compiles routines for 
inclusion in the routine file. Although th(~ DA1Vl­
SEL compiler constitutes the primary mc!ans for 
writing user-specific subroutines, other compilters 
maybe used. In particular, a set o(routinc!s cailled 
COMFORT (COMpatible FORTran routines) 
adjusts the output of specially prepared FORTRAN 
compilations to be compatible with ADAM. 

DAMSEL itself allows the usual comple;ment of 
arithmetic-assignment, conditional, and subroutine­
call statements, and includes a macro fadlity for 
extending the DAMSEL language. In addition, it 
provides statements specifically designed to create, 
augment, modify and retrieve from ADAM data 
structures. File-manipulation statements refer di­
rectly to files by name, or use names which the sub­
routine receives as input parameters from other 
routines or from a message input. In either case, 
statements in the subroutine are independent of the 
format of data referred to; data descriptions are re­
trieved from the rolls when a subroutine is compiled 
or executed. 

A routine in the system is called by a message 
such as 

DO OPTIMAL (DESTINATION ,BOSTON, 
ORIGIN,CHICAGO) 

or within a message as a function 
FOR DESTINATION.IF TIMECALC(CHI­

CAGO)GR~, ... 
(in which OPTIMAL and TIMECALC are hy­
pothetical user-coded routines). 

Output Formatting 

Output formatting in ADAM is the proc1ess of re­
arranging the data from an ADAM file into an 
order appropriate for output, translating names 
from their internal coded form to alphanumeric, 
and sending the resulting messages to an output 
scheduling program for actual output. The entire 
process is directed by a format specification, or for­
mat, from the ADAM format file. 
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Formats are typically prepared off-line with a for­
matting macro written for the purpose. A format 
specification describes margins; spacing; pagination; 
file data; titles; and, for display devices, vectors and 
points. The formatting program adjusts the output 
as required to conform to the physical characteris­
tics of the device to which the output is directed, 
without any necessary specification on the part of 
the user (who may, however, control the format on 
the basis of device, if he desires). 

SUMMARY OF CAPABILITIES 

ADAM, as an on-line system, provides for multi­
ple consoles used simultaneously, remote operation, 
cathode-ray tube output both character and picto­
rial, and light-pen, push-button, typewriter, and 
teletype input. As a file-handling system, ADAM 
incorporates most of the features found in the more 
advanced file handling systems available today. 

The file structure allows variable-size data fields, 
nested groups of sublevel fields, dynamically vari­
able file and entry size, and both dictionary and 
cross-file indexing. File data may be integer, float­
ing-point, alphanumeric, or coded. 

File generation may be from card or tape input, 
from data in existing files, or from data entered on­
line. Bulk file generation provides for fixed- or var­
iable-field input data, optional validity checks on in­
coming data, and the provision to define and use 
special conversion subroutines on data before it is 
stored in the newly genera.ted file. On-line file cre­
ation may restructure existing files or extract data 
from subsets or arithmetic combinations of data in 
existing files. Files generated on-line may include 
newly defined fields. 

File processing includes querying on logical or 
arithmetic criteria applied to any data items or com­
binations of data items, data updates or changes, 
operation of general or special-purpose subroutines, 
file sorting, and output. Subroutines may be pro­
grammed in FORTRAN or in DAMSEL, an 
ADAM compatible compiler. 

Output formatting provides for formats prepared 
off-line and selected and performed on-line, titles, 
routing to other terminals, and pictorial, as well as 
symbolic, outputs. 

Language variability includes, in addition to the 
provision for defining a completely new file proc­
essing language, provision for on-line definition of 
synonyms (for file names, field names, etc.) and for 
on-line definition of special-purpose words to be 
used at selected input terminals. 

EXPERIENCE 

Experience with ADAM since it became opera­
tional early in 1965 included five diverse applica­
tions: 

1. A system for scheduling resource use and ac­
tivities aboard a manned satellite. The model uses 
elaborate display formats of file data to present po­
tential schedules to analysts. 

2. A subsystem for the command and control of 
tactical forces through the use of an airborne sensor 
to locate friendly units. The application is a hybrid 
of real-time sensor inputs (which become frequent 
and voluminous file updates) and file retrieval re­
quests inserted on-line by operators. 

3. A study of a personnel and organization sub­
system devised by the System Development Corpor­
ation. This application involved the manipulation 
of file structures accomplished with query language 
inputs instead of programs. 

4. A system of inventory management which in­
volves a large data base, processing of items from 
several files at the same time with cross-file indexing, 
and reporting in formats appropriate to condensed 
output. 

5. A man-job-match model in which personnel 
qualifications for defined jobs were assessed and 
tentative personnel assignments made. This model 
used push-button and light-pen inputs to select pa­
rameters for user-prepared subroutines which per­
formed the specialized qualification and assignment 
algorithms. 

CONCLUSION 

From experience with building ADAM and ap­
plying it to a wide range of problems, a qualitative 
assessment of some of its principles can be made. 
No quantitative studies have been made yet. 

Generality is possible. The fact that ADAM was 
built and applied to the diverse applications de­
scribed previously shows that a general-purpose 
file-handling system can be made to work. 

Generality is expensive in computer time and 
space. The ADAM system serves its intended pur­
pose, as a design verification tool, but is hardly the 
wayan operational system would be built. ADAM 
compris(!s 90,000 instructions, representing a range 
of capability unlikely to be required in any single 
application. During ADAM operation, the effi­
ciency of the programs is reduced somewhat by 
their generality, but the cost is considered accept-
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able for ADAM purposes (in a laboratory environ­
ment) in the light of the capabilities offered. 

Generality saves implementation time. If a gen­
eralized data management system is alreCldy avail­
able, the time to implement a defined problem is 
considerably shortened, since functions required 
for problem solution already exist. In one case, a 
partial mode] of a subsystem to display pictorial 
information on satellite positions as viewed from a 
ground station was implemented concurrently in 
ADAM and a FORTRAN . program. With the 
query handling and display capabilities already 
available in ADAM, but required as new programs 
in FORTRAN, the job took nine times as long to 
implement in FORTRAN. 

ADAM, then, is a system which provides a 
modeling capability of general utility as a design 
tool. But, more importantly ~ ADAM represents a 
concept of generality, of potential application to 
large operational systems, and of demonstrated use­
fulness. 

Appendix A 

IMPLEMENTATION 

ADAM accomplishes its functions through a 
variety of well-known programming techniques, 
most of which have been used individually but 
which are not usually combined in a single system. 
The five major principles observed in the design of 
ADAM are: 

1. Keep as much of the model specification as 
possible in data, not in program-exemplified by 
the use of files to contain formats and language 
specifications, routines, and other components of 
the system being modeled. 

2. Make programs insensitive to change in the 
size and format of data-generally, through the dic­
tionaries and other mechanisms which make the 
ADAM system and models within it self-descriptive, 
and therefore able to vary dynamically. 

3. Make the system contain itself as data-for 
example, all ADAM routines are in a routine file 
and ADAM files and dictionaries are just like user 
files and dictionaries. 

4. Allow for handling exceptional cases and for 
expansion by including in all specifications the op­
tion "do a subroutine" - for example, in addition to 
the usual description of an input data field, an op­
tion for the person specifying file generation is "do a 

subroutine here," (presumably a special conversion 
he wrote) and similarly a format-specification writer 
can specify that an arbitrary subroutine can be exe­
cuted in the middle of the formatting process. 

5. Allocate compiler resources (memory) only as 
needed-through dynamic allocation programs. 

Environment 

Some of the specifications of the computer on 
which ADAM runs are given in Table 2. Primary 
storage is approximately 65,000 64-bit registers of 
core; secondary bulk storage is 4 million 64-bit 
words of disk; input/output channels are provided 
for on-line terminals including typewriters~, displlay 
consoles, teletypes, and printers. 

Table 2. Configuration of the IBM 7030 
in The MITRE/ESD Systems Design Laboratory 

WORD: 64 Bits = 8 characters 
CORE: 65K Words-520K characters 

Addressable by bit 
Access time 2 microseconds 

DISK: 4 million words = 32 million characters 
Rotation time 33 milliseconds 
Transfer time 4 microseconds 

I/O: 16 Channels 
3 Channels for 12 tapes 
1 Channel for 6 display-typewriter 

consoles 
1 Channel for 6 printers 
7 Channels for teletype or phone lines 
4 Channels for printer, punch, reader, 

operator console 

Jobs run on the computer operate under control 
of an operating and monitor system called MCP. 
ADAM is no exception; as far as MCP is concerned 
the entire ADAM system is a single-user program. 
The MITRE version of MCP time-shares ba'ck­
ground and foreground problem programs, which 
are operated completely independently of one an­
other. Thus, in addition to being a mUltiple-user 
system itself, ADAM operates in an environm'ent 
in which it shares the computer with other jobs 
(which may be independent copies of ADAM sys­
tems). 

System Control 

The system control philosophy of ADAM is to 
accept input messages as they arrive, recognize 
them, and place them according to a priority scheme 
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in a job queue. ADAM will recognize any input 
language whose recognition rules are given to the 
system. When processing of a single message is 
completed, the top of the job queue is examined and 
the appropriate routine is called (problem program, 
translator, etc.). When processing of a message is 
started, it runs to completion, being interrupted 
only for recognition and stacking of input messages, 
or to initiate output. 

Requests for output are handled immediately if 
the channel and peripheral gear are available; other­
wise, they are queued up and sent out when pos­
sible. All system routines (input/output handling, 
job scheduling, memory allocation, etc.) are sub­
routines and may call each other as needed. 

Allocation 

In ADAM, computer resources are allocated to 
the task at hand as the need arises during the proc­
essing of a message. Separate allocation programs 
handle the allocation of secondary storage, core 
storage assigned to data storage, and core storage 
assigned to routines and tables. Second-level alloca­
tion programs use these programs to allocate space 
for files, rolls, and an ADAM artifice for working 
storage called a stream. 

Disk Allocation 

The disk allocation algorithm operates by linking 
together pages of disk, into regions with the link 
table kept in core. The disk allocator program also 
handles all disk-to-core and core-to-disk transfers, 
relieving other programs of the responsibility for 
following the links and making all disk allocations 
appear to be contiguous. The linking procedure 
allows the size and location of allocations to change 
at almost any time. From time to time, the system 
performs a wholesale reallocation of disk to make 
regions contiguous-they can subsequently be read 
with fewer disk accesses per region. 

Core Allocation 

The two separate core allocators (programs and 
data) use opposite ends of memory; data is allocated 
from one end and programs from the other, so that 
the dividing line can move and the ratio of memory­
for-program to memory-for-data adjusts dynami­
cally as the situation requires (Fig. 6). 

For routine storage, the unit of allocation is the 
routine or table, with its size fixed at compile-time. 
Routines and tables are relocated when loaded into 
core from the routine file and may contain relo-

DURING MESSAGE 
PROCESSING, 
APPROXIMATELY 
25,000 WORDS 

(= 200,000 CHARACTERS) 
ARE AVAILABLE FOR 
PROBLEM ROUTINES 
AND DATA 

ROUTINES 

TABLES 

FILES 
ROLLS 

STREAMS 
AREAS 

IBM 7030 
UTILITY 
SYSTEM 

WORDS 
cb 

I 
50,688 

65,536 

Figure 6. Dynamic core memory allocation. 

catable addresses within themselves. Once loaded, a 
routine does not move in core. Each routine and 
table is accessed through a program allocation 
table, created and maintained dynamically by the 
program· allocator. 

Data allocations on the other hand may move in 
core at almost any time. The unit of allocation is 
512 words, the disk-arc size, to facilitate transfers 
from disk to core and back. A single allocation al­
ways remains contiguous so that it may be continu­
ously addressed and indexed. An instruction in the 
7030 repertoire: "transmit (any number of sequen­
tial) words from one core location to another" al­
lows the data allocator to dynamically change the 
size of an allocation and to move as much as neces­
sary of the remaining contents of memory to keep 
data allocations contiguous. Data allocations are 
addressed through index registers which are updated 
by the allocator whenever data moves. 

Stream Allocation 

A stream is a combined allocation of several 
levels (presently core and disk) of storage, used as 
a single-level continuously addressable store. 
Streams are used as temporary storage for, for ex­
ample, input and output queues. As it is made up of 
data-core areas and disk regions, it is allocated in 
units of 512 computer words, but the Stream Allo­
cator makes it appear to a using routine as a con-
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tinuous series of up to 218 single registers. The por­
tions of a stream in core at any time are called 
blocks; a stream may have an arbitrary number of 
core blocks attached at any time. The fundamental 
operation on a stream is "locate an address" which 
causes the allocator to insure that the desired ad­
dress is in a core block. The core blocks thus oper­
ate as separate movable windows through which a 
routine may look at registers in the stream. Any 
number of independent core blocks may be attached 
to a stream at the same time, or none may be at­
tached, in which case the stream is entirely on disk 
until core blocks are later attached. 

The allocator assigns disk space only for those 
pages of a stream which contain registers into which 
data have been stored. 

File Allocation 

File allocation involves assigning data core to in­
dividual entries from files, to lists of entries in ar­
bitrary order, or to an entire file. The allocation 
program assigns core space by an algorithm based 
on the size of the material requested (obtain from 
the rolls) and the amount of available core. A file 
allocation is always at least as big as the file entry 

ONCE - PER- FILE 
PROPERTIES 

ATLANTA 

----

BOSTON 

, 
" " " CHICAGO " \ 

" \ 

.........--~ 

A FILE 

- - -----------. 

" \ 
" " " 

STANDARD 
DATA 

FIXED-LENGTH 
DATA 

EXPANSION 
ROOM 

VARIABLE 
LENGTH DATA 

AN ENTRY 

being accessed, so that machine indexing can be 
used without interruption for input/output. The 
allocator automatically transfers file data from disk 
to core and core to disk as required. 

File Structure in Storage 

In main storage, all data for a file are contiguous. 
Figure 7 shows the appearance of file data in mem­
ory. A file may be discontinuous in secondary (disk) 
storage, but the allocator handles all discontinuities 
without requiring notice by any other program. 
Disk discontinuities may occur when the size of an 
entry or a file is changed during ADAM operation. 

Every entry of every ADAM file contains a set of 
standard properties which describe the entry and 
thereby provide for dynamic variability. One of the 
standard properties is "current size of this entry." 
Each entry is stored in four parts: the standard 
properties, fixed-length properties, variable-length 
properties, and an area between fixed and variable 
parts available for expansion by addition of new 
m~terial, either fixed or variable. When this area 
is used up, more is added here. Standard propertiles 
describe the sizes of the various parts. 
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All repeating group data appears in the variable 
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Figure 7. File data in storage. 
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GENERATE FILE, DESTINATION, CMDS. BEGIN OBJECT. part of an entry, to allow for variable numbers of 
repetitions in different entries. Groups are con­
ceptually structured as entries, with a fixed and 
variable part, but physically they differ from entries 
in that all their data are not necessarily contiguous. 

ROLLVALUED, 

ROLLVALUED, 

DECIMAL, 

BEGIN 
GROUP, 

ROLLVAWED, 

ROLLVALUED, 

IlEGIN 
GROUP, 

ROLLVALUED, 

DECIMAL, 

END 
GROUP, 

BEGIN 
GROUP, 

ROLLVALUED, 

INTEGER, 

INTEGER, 

INTEGER, 

END 
GROUP, 

END 
GROUP, 

END OBJECT. 

OBJECT NAME 
(CITY), LENGTH VARIABLE. 

SCAN TO NON' '. ALPHA. USE OBJECT ROLL. 

TIll! ZONE, LENGTH 1 COL. ALPHA. USE ROLL TIMES. 

TAXI 
(TAXI FARE), SPACE TO NEXT CARD. 

SPACE 25 COL. 
LENGTH 5 COL. NUMERIC.4 DIGITS. 

ORIGIN 
(ORIGINS) , TERMINATED BY '-'. 

SPACE TO NEXT CARD. BEGIN REPETITION 

NAME, LENGTH VARIABLE 
SCAN TO NON' '. ALPHA. USE OBJECT ROLL 

OF CITY FILE. 

TIME ZONE, LENGTH 3 COL. ALPHA. USE ROLL TIMES. 

FARES, TERMINATED BY '--'. 
SPACE TO NEXT CARD. BEGIN REPETITION 

NAME 
(CLASS) , SPACE 12 COL. 

LENGTH 2 COL. ALPHA. USE NEW ROLL 
CLASSES. 

COST 
(FARE), SPACE 12 COL. 

LENGTH 6 COL. NUll!RIC.5 DIGITS. 
END REPETITION. 

FARES, 

FLIGHTS 
(FLIGHT) , TERMINATED BY , - - - , 

SPACE TO NEXT CARD. 

NAME, SPACE 25 COL. 
LENGTH 5 COL. ALPHA. USE OBJECT ROLL 

OF FLIGHT FILE. 

DEPARTS 
(DEPARTURE TIME), SPACE BACKWARD 25 COL. 

LENGTH 5 COL. NIlMERIC.4 DIGITS. 

ARRIVES 
(ARRIVAL TIME), SPACE 4 COL. 

LENGTH 5 COL. NIlMERIC.4 DIGITS. 

NR OF STOPS, SPACE 21 COL. 
LENGTH 1 COL. NUMERIC. 1 DIGIT. 

END REPETITION. 

FLIGHTS. END REPETITION. 

ORIGINS. 

SPACE TO NEXT CARD. 

Figure 8. Message to generate destination file. 

Variable data, including· repeating groups, are 
accessed by pointers within the fixed-data section 
of the entry or group to which they belong. Prop­
erty descriptions reside within the property roll for 
a file, rather than in the file itself. 

Appendix B 

AN EXAMPLE OF FILE GENERATION 

A message to generate the Destination file is 
shown in Fig. 8. In this file generation language, 
spacing is not significant, so the message was spaced 
out for readability. The first column gives, for each 
property, the property type; the second column, the 
property name with synonyms enclosed in paren­
theses. The next column contains directions for 
reading input, in this case from cards. Variable 
length fields and fields out of order are handled 
here. The last column gives the type of conversion 
(e.g., ALPHA, NUMERIC, or the name of a user­
supplied conversion subroutine) to be applied to the 
input data as it is read in. 
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INTRODUCTION 

During the last few years a veritable explosion of 
study, effort and accomplishment by business, 
government, and university organizations has taken 
place in the realm of information retrieval and dis­
semination. Theoretical problems have been ex­
plored, new equipment and techniques" have been 
developed, and a number of successful operating 
systems have been implemented. 

This paper will look at the impact of such infor­
mation retrieval systems or cent~rs upon their most 
important clientele-the engineer-scientist or the 
technical professional. Who are these people? Let 
us define them as professionals, working in a scien­
tific or engineering discipline, and very likely in a 
research and development environment. Most of 
them share some basic information problems. They 
recognize that the rapid expansion of knowledge 
and data in their technical fields is taxing their time 
and memory capacity to the limit. There are in­
creasing pressures on them for more interdisci­
plinary knowledge. Technical obsolescence is a real 
problem, for they live in a fast-moving environment 
where today's research idea can be tomorrow's 
hardware. 

As a result of these problems and pressures, the 
engineer-scientist, sceptical at first, has been drawn 
toward a new source of help-the machine-oriented 
information retrieval and dissemination system, 
backed by the technical library . 

205 

To illustrate this new relationship between the 
technical professional and the information retrieval 
system, we will examine the philosophy and me­
chanics of the IBM Technical Information Retrieval 
Center. This particular system represents an inte­
grated approach to the storage, announcement, dis­
semination, and retrieval of technical information. 
It combines the best features of both machine proc­
essing and human information skills, and is appli­
cable to a wide range" of data bases and system 
activities. 

PHILOSOPHY AND APPROACH 

The IBM Technical Information Retrieval Center 
(lTIRC), located in Yorktown Heights, New York, 
was established to serve the IBM scientists and 
engineers in all their laboratory locations. A wide 
diversity of occupations are involved, ranging from 
physicist to circuit designer to programmer. ITIRC 
exists to supply the right information to the right 
person in the shortest possible time and at the least 
possible cost. This is no small undertaking when 
you consider the size of the company, the number 
of locations, and the tremendous range of interests 
in research, development, manufacturing, and sales. 
Add this complexity to the general information 
problems described earlier and the need for an in­
formation retrieval center becomes urgent. 

Regardless of need, however, an information 
retrieval system cannot be established until man-
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agement recognizes its value and is willing to set 
aside funds and manpower for its operation. Fur­
ther, this funding must cover a period long enough 
to permit a valid judgment about the value of the 
services rendered. How this valid judgment can be 
arrived at will be discussed later. 

Along with management and the staff of the in­
formation center, the individual engineer-scientist 
has certain responsibilities to the system. First, he 
must supply the system with a complete and accu­
rate description of his occupation and related in­
formation needs. Second, as his assignments or 
interests change, he must be alert in notifying the 
system about the changes. Finally, the information 
center looks to him for feedback-is he receiving 
pertinent material, is he missing significant infor­
mation, is he getting prompt service? The system 
has built-in techniques for making this feedback 
easier, but it still takes initiative on the part of the 
customer to supply complete and pertinent data. 

In parallel with the user's responsibilities, the staff 
of ITIRC accepts similar ones. We are committed 
to translate his interests into the retrieval and dis­
semination programs accurately and fully, to act 
promptly on his sugge.:>lions and complaints, and to 
follow up with him personally whenever significant 
questions arise. 

The ITIRC also has commitments to manage­
ment. Like every operation in a large business, we 
must frequently justify our existence, measure our 
services in tangible terms, and demonstrate growth 
and improvement in many ways. This, too, is not 
an easy task because information retrieval deals so 
often with intangible results-but it must be done. 

THE SCOPE OF THE SYSTEM 

Dissemination 

What we call the Current Information Selection 
program is one of the keystones of ITIRC activities. 
The engineer-scientist customer submits a textual 
description of his information needs and job re­
sponsibilities. This goes to an information retrieval 
specialist who is thoroughly familiar with the so­
phisticated machine-searching techniques that are 
used, as well as with the types of documents that are 
entering the system. He analyzes the user's specifi­
catio'ns and constructs an accurate profile for entry 
into the system. If necessary, he' goes back to the 
customer and obtains more detail or clarification. 

Once the profile is checked out and operating, it 
is compared several times a month with all of the 

current documents being processed into the infor­
mation center. Whenever the text of a document 
abstract matches the profile, a printed abstract is 
generated automatically and sent to the customer. 
He screens each notification and takes appropriate 
action-by telling the Center how relevant the 
document is, by reviewing it on microfilm, or by 
requesting a personal copy if he needs it. 

Retrieval 

Retrospective searching is another important 
function of ITIRC. All current document input is 
added to a set of master searching tapes, a file that 
now includes abstracts of over 125,000 documents. 
Search questions come in from customers through­
out IBM, often through the local IBM libraries. 
They are directed to the appropriate IR specialist, 
depending on which of the several classes of docu­
ments need to be searched. The specialist analyzes 
the request and formulates one or more machine 
search questions, using the various logicall tools at 
his disposal, as well as his broad knowledge of the 
data base to be searched. The output of abstracts 
that answer the question is reviewed by the specialist 
and sent to the customer. He may be satisfied with 
the answers, or request a deeper or'narrow(!r search, 
of ask for another search on a related topic that has 
been brought to light. In the latter case, the process 
is repeated. 

Retrospective searching is normally schl;!duled to 
yield answers within 48 hours. However, an emer­
gency question can be processed almost immedi­
ately. Also, to handle urgent re'quests from distant 
locations, the Center maintains two sat.ellites. at 
laboratories in San Jose, California, and LaGaude, 
France. These have the search programs and dupli­
cate sets of the master search tapes that are updated 
monthly. 

Announcement 

Supplementing the Current Information Selection 
program already described, ITIRC publishes 
monthly three series of announcement bulletins. 
These cover all current documents processed in the 
three major data bases-IBM reports, IBM Inven­
tion Disclosure material, and selected external (non­
IBM) documents and journal articles. These bul­
letins are made available to all IBM librari,es, report 
centers, and publishing groups. They are also dis­
tributed to selected individuals who have expressed 
a need for reviewing all current literature in the 
system. 



THE ENGINEER-SCIENTIST AND AN INFORMATION RETRIEVAL SYSTEM 207 

The bulletins contain abstracts of documents in 
order of accession, including titles, authors, sources, 
detailed abstracts, and descriptive index terms as­
signed by the IR specialists. Each issue also con­
tains a category index that offers the reader a quick 
way to scan the contents selectively. This section 
lists each document title under one or more of 23 
broad subject headings, with easy cross-reference 
by page number back to the abstracts. A second 
manual searching aid is an alphabetical subject in­
dex based on the descriptive terms assigned to each 
document. Each entry includes title, accession num­
ber, and page reference. Both indexes and abstracts 
can also direct the reader to a location on microfilm 
where the complete text of most documents is avail­
able for viewing. 

Supplementing the general-purpose bulletins are 
indexes designed for library and refe'rence use. For 
the same documents we publish monthly alpha­
betical author indexes, indexes of the original 
source numbers, and sequential listings of the ac­
cession numbers-all with complete titles. Any of 
these machine-produced indexes can be cumulated 
quarterly or as required. And, with the same ma­
chine programs, various special classes of docu­
ments can be pulled out and indexed. 

A specialized type of announcement medium is a 
monthly compilation of all the current research and 
development projects in the company; we call this 
an automated project file. Updated regularly, it 
contains descriptions of the projects and budget, 
manpower, and planning information. It is dis­
tributed to a controlled listing of management 
people as an information and control vehicle. 

Microfilm and Hard Copy 

To make the complete text of input documents 
as widely available as possible, ITIRC is operating 
a comprehensive microfilming program. Currently 
we are putting on film all the invention disclosure 
material, almost all the IBM reports, and as much 
of the external material as copyright and distribu~ 
tion restrictions will permit. 

The medium used is 100-foot reels of 16mm 
microfilm, with a capacity of about 2300 frames per 
reel. Depending on the equipment available, these 
are distributed in reel form or packaged in special 
cartridges. Most IBM library locations have com­
plete files of film going back several years and now 
covering over 24,000 documents. 

Thus, for complete copies of documents pro­
cessed by ITIRC, the system customer has two al-

ternatives. He can request them from his nearest 
IBM library, which has many current documents on 
hand or can order them if needed. Or he can go to 
a nearby microfilm reader to scan them. Some lo­
cations have reader-printers, in which case the user 
can make selective copies of pages or short docu­
ments. 

Admittedly, the problem of supplying hard copy 
to many customers is a constant challenge. How­
ever, the Current Information Selection program 
helps the situation by preselecting a relatively small 
percentage of the total documents for the user. All 
of the major system output-machine listings and 
publications-offers complete bibliographical data 
and detailed abstracts. This gives the customer a 
chance to do his own screening without having to 
order documents blindly. By the time he decides he 
wants a personal copy of an item, he is reasonably 
sure of its value. The screening process built into 
the system, combined with microfilm accessibility, 
tends to control the amount of hard copy requested 
and to assure its worth when requested. 

THE DATA BASE OF THE SYSTEM 

One of the major goals of ITIRC is to cover the 
pertinent scientific and technical literature, both 
inside and outside IBM, as completely as possible. 
Obviously we had to start with what we considered 
the most important types of data and expand from 
there. The following are the major classes of input 
documents now being processed: 

1. IBM Research and Engineering Project 
Files, mentioned earlier, are the official re­
porting medium for all R&D activities 
within the Corporation. 

2. IBM reports include formal technical 
reports, laboratory and testing reports, 
informal published memos, IBM papers 
cleared for external use, patents issued to 
IBM. personnel, reference and operating 
manuals, and a variety of miscellaneous 
documents. 

3. IBM Invention Disclosures are novel 
ideas submitted as Inventions to solve spe­
cific problems. The most promising are 
selected to be filed for patent. 

4. Non-IBM reports are selected docu­
ments of interest to IBM engineers and 
scientists. Typical examples are Defense 
Documentation Center reports, university 
reports, and technical journal articles. 
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5. IBM Suggestions. . Like many other 
large companies, IBM has a suggestion 
system that over the years has amassed a 
large number of sugge:stion reports cover­
ing proposed changes 'in products or pro­
cedures. These have been placed on a sep­
arate set of search tapes in a structured 
format. When the numerous new sugges­
tions are received they ·are matched against 
the data file to see whether similar ideas 
have been submitted 'in the past. If no 
match occurs, the s~ggestion is investi­
gated further by the 'Suggestion Depart­
ment to see whether it should be accepted 
and an award made for it. 

As new technologies dev~lop and new kinds of 
publications and reports ap'pear, the ITIRC staff is 
constantly evaluating them 'and expanding the data 
base of the system. 

THE SEARCH LOGIC OF THE SYSTEM 

One of the most important factors in the ITIRC 
system is the computer logic used for searching 
(both retrospective searching and current dissemi­
nation). It is a flexible technique for searching a 
normal text data base (in this case, the text of the 
abstract). It is not a simple technique to use, but an 
experienced IR specialist can achieve a high degree 
of precision with it. 

A fundamental point is inherent in the words 
"normal text." Since the data base contains the 
language of the original document (and author), 
we can phrase search questions or user profiles in 
the same kind of normal English or accepted tech­
nical language. We use not just single words but 
phrases and adjacent or associated words. We scan 
not only the abstract but the title, author, source 
information, and index tenns associated with a doc­
ument. With this in mind, let us look at the specific 
types of logic available. 

Single Word Logic 

Single words can be searched for individually. 

a) RETRIEVAL 
Families of single words can be searched with an 
OR technique, to cover variations in spelling,syno­
nyms, and the like. 

b) RETRIEVAL or RETRIEVING or 
SEARCHING or SEARCH or SEARCHES 

We can use AND logic to :search for combinations 
of associated single words, where two or more of 

the words must be present in the abstract to satisfy 
the request. 

c) INFORMATION and RETRIEVAL 
We can use OR logic within the AND logic groups. 

d) (INFORMATION or DOCUMENTS or 
DATA or LITERATURE) 

and 
(RETRIEV AL or RETRIEVING or 
SEARCHING or SEARCH or SEARCHES) 

And we can expand a broad, simple AND group to 
make it much more narrow and specific. 

e) (INFORMATION or DOCUMENTS or 
DATA or LITERATURE) 

and 
(RETRIEVAL or RETRIEVING or 
SEARCHING or SEARCH or SEARCHES) 

and 
(MEDICAL or MEDICINE or BIOMED­
ICAL) 

In the examples, a) and b) are very broad questions 
which would probably not be used to search a large 
file. Example c) is more specific, but would prob­
ably miss some of the documents that would be 
picked up by d). And e), which requires a match 
from each of three groups, is even more precise. 

A djacent Word Logic 

This is a powerful tool for searching the normal 
text of abstracts. Two normally related words may 
by their contextual positioning havt~ entirely 
changed meanings. To avoid such "false drops," 
we can search for them as adjacent words in a speci­
fied sequence. 

a) INFORMATION RETRIEVAL 
The above question would not match on RE­
TRIEV AL OF INFORMATION or any other 
contextual arrangement. Within these adjacent 
word groups, we can make allowances for spelling 
and synonyms by means of OR logic. 

b) (INFORMATION or LITERATURE) (RE-
TRIEV AL or SEARCHING or SEARCH) 

This would match on INFORMATION RE­
TRIEV AL or LITERATURE SEARCHING" etc. 
Also, we can look for related groups of adjacent 
words by lumping them together as a single: OR 
family. 

c) INFORMATION RETRIEVAL 
or 

SELECTIVE DISSEMINATION 
We can again use the AND technique to make a 
question more precise. One adjacent word group 
can be ANDed with another, or a single word. 
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d) INFORMATION (RETRIEV A L or 
SEARCHING or SEARCH) 

and 
MEDICAL (LITERATURE or DOCU­
MENTS or DATA) 

e) INFORMATION (RETRIEVAL or 
SEARCHING or SEARCH) 

and 
MEDICINE 

The adjacent word technique is particularly useful 
when we are searching for specific phrases that we 
know are likely to occur in pertinent documents. It 
makes it easy to look for "operations research," 
"numerical control," "time sharing," and the like. 

The Match Criterion 

This is simply a numerical designation of the 
number of matches required for the computer to 
register that a document answers a given question or 
satisfies a user's profile. Either a single word or a 
complete logical group (OR, AND, or adjacent 
word group) is considered as one logical unit. Rais­
ing this criterion beyond a match of one is a helpful 
device when a question involves two distinctly· dif­
ferent subject areas that we are trying to find in 
combination. For example, if we wanted docu­
ments about information retrieval and dissemina­
tion only when they related to medicine and medical 
literature, we could raise the match criterion to two 
and phrase the question as follows: 

INFORMA TION (RETRIEVAL or 
SEARCHING.or SEARCH) 

or 
SELECTIVE DISSEMINATION 

and 

} 

one 
logic~l 

umt 

MEDICAL (LITERATURE } 
or DOCUMENTS) one 

or logic~l 
umt 

MEDICINE or BIOMEDICAL 

Both logical units would have to be found in the 
document to satisfy the criterion of two. 

NOT Logic (Negative) 

If a user is interested in certain aspects of a given 
subject area but wishes to eliminate or bypass por­
tions of it, we can instruct the computer to ignore 
the documents matched if they contain specified 
words or phrases. For example: 

INFORMATION (RETRIEVAL or RETRIEV­
ING or SEARCH or SEARCHING) 

not SDI 
not SELECTIVE DISSEMINATION 

A bsolute YES Logic (Imperative) 

If a user wants to see all abstracts that contain a 
specified word or phrase or name, regardle~s of the 
rest of the document's content, this can be achieved 
by appropriate coding. The specified imperative 
will override all other logic, including the match 
criterion and NOT logic. If the NOT example just 
given also contained MEDICINE as an imperative, 
an answer would be printed out even if the abstract 
contained both MEDICINE and SDI. This tech­
nique is very useful for extremely specific words that 
we know will identify documents pertinent to the 
user's interests. 

The examples used to describe the search logic 
were necessarily brief and simple. Figures 1 to 3 
give a more complete illustration. They show how 
the original information supplied by the customer is 
converted into a working profile by the IR specialist, 
and how the profile actually matches against current 
input documents. 

HOW DO WE EVALUATE 
SYSTEM PERFORMANCE? 

Measuring the results obtained from a system like 
ITIRC is a challenge that increases as the system 
grows, the data base broadens, and the number of 
users expands. It cannot be done on a hit-or-miss 
policy of voluntary feedback, although spontaneous 
reports from users are very helpful. We have 
worked out more formal techniques. 

Each set of answers to a retrospective search re­
quest is sent out with a simple return card. The 
customer is asked to check off the following: 

- The following items were not specific 
answers to my question. 

- The following were not listed as answers 
but 1 believe should have been. 

"I am responsible for development and marketing of Information 

Retrieval appl ications across all industry lines. This includes feasibil ity 

studies of techniques of automatic indexing, abstracting; optical character 

recognition, type composition and editing; language translation, syntactic 

analysis; query languages; file organization, image storage ?nd retrieval; 

tra·nsmission of images; copyright problems; dissemination of information, as 

we II as mec han i zat ion of library operat ions. " 

(User also primarily interested in external sources) 

Figure 1. The original information supplied to the IR 
specialist by a user on his data sheet. 
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S;ngle Worth 

OCR ISR SOl MEDLARS 

not IBM CONFIDENTIAL 

Adjacent Words 

(INFORMATION or DOCUMENT or DATA or TEXT or IMAGE) 

followed by (STORAGE or STORING or RETRIEVAL or RETRIEVING 

or SELECTION N SELECTING or SEARCHING or 

SEARCH or SEARCHES or SELECTED "' ABSTRACTING 

or DISSEMINATION or DISSEMINATING or QUERIES 

or QUERY) 

SELECTIVE DISSEMINATION 

(AUTOMATIC or AUTO or AUTOMATED) 

follo_d by (ABSTRACTS or ABSTRACTING or COMPOSING 

or COMPOSITION or INDEX or INDEXING or 

ABSTRACT or ABSTRACTED or INDEXES or EDIT or 

EDITING or EDITED or TRANSLATION or TRANSLATING 

or CLASSIFYING or CLASSIFICATION) 

TYPE followed by (COMPOSITION or EDITING) 

(LANGUAGE or LANGUAGES)foliowed by (TRANSLATION or 

TRANSLATING or TRANSLATED) 

QUERY followed by (LANGUAGE or LANGUAGES) 

(OPTICAL or CHARACTER or PATTERN) followed by (RECOGNITION 

or RECOGNIZING or SENSING or READER or READERS) 

(SYNTACTIC or SYNTACTICAL) followed by (ANALYSIS or 

ANALYZING) 

GRAPHIC DATA PROCESSING 

(FILE or FILES) followed by (ORGANIZATION or ORGANIZING) 

(IMAGE or IMAGES) follo_d by (TRANSMITTING or TRANSMISSION 

or TRANSMITTAL) 

LIBRARY or LIBRARIES) followed by (MECHANIZING or MECHANIZATION 

or AUTOMATION) 

Match Criterion set at one -- thus no imperatives necessary. 

Figure 2. The completed profile created by the IR specialist from the information on the 
original data sheet. 

---The answer report proved satisfactory 
to my question. 

--Other comments. 

If the response is negative or if the search seems to 
be incomplete, the IR specialist concerned promptly 
goes back to the requester, by phone or letter, and 
offers further assistance. For example, he may run a 
revised search, based on added data supplied by the 
user. 

Records are kept of the number of searches, the 
processing time, the user's reaction to the answers, 
and whether any further action was required. 

Since the Current Information Selection program 
deals with over a thousand users on a recurring 
basis, a mechanized feedback system was in order. 
Accompanying each printed abstract sent to a 
customer is a matching Port-A-Punch response 
card. When he reviews the abstract, he simply 
punches out the appropriate box and returns the 
card. He has a choice of the following reactions to 
a document: 

1. Abstract 'of interest, document not 
needed. 

2. Send copy of document. 
3. Abstract of interest, have seen docu­

ment before. 
4. Abstract not relevant to my profile. 
5. Comments-written below. (Change of 

address, change to profile, etc.) 

The Port-A-Punch cards, into which the program 
has already punched user, document, and date 

identification, come back to ITIRC for processing. 
Document requests and comments are sorted out 
for immediate action. Then periodically the ac­
cumulated cards are run against a statistical pro­
gram. 

The statistical program supplies a complete 
analysis of the returns, for each individual user and 
for all users, with separate reports for each of the 
major data bases: 

1. Total notifications sent out. 
2. Number and percentage of response: 

cards returned. 
3. Number and percentage of interest 

(with a breakdown into each of the: 
three responses listed above). 

4. Number and percentage not relevant. 

In addition, the program gives us several special 
listings: 

5. Users who received no notifications in 
the current period. 

6. Any users who failed to return their re­
sponse cards within a specified period. 

7. A list of users whose "not relevant" re­
sponse exceeded a predetermined per­
centage. 

With the help of these statistics, the IR specialist 
can quickly identify any customers who do not seem 
to be getting satisfactory results from the system. 
He can then review the profiles and if necessary 
make personal contact with the users to revise or 
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AD-608~6~' UNGUISTIC TRANSFORMATIONAL ANALYSIS. OCTOBER 1964. 

THORNF. JP LYONS. J 
INDIANA UNIVFRSlTY 

AD-608747 RADC-TDR-64-200 
CONTR AF-30 (6021-2951 

THE CONTRACT WAS CONCERNED WITH THE FEASI&ILITY AND UTILITY OF 
A KERNELIZATION PROCEDURE FOR PURPOSES OF !iNFORMAtioN RETRiEvAu. THE 
LEADING SECTION DISCUSSES. IN GENERAL. THE PROBLEMS INVOLVED IN THE 
KERNELI ZAT ION OF COMPLEX ENGLI SH SENTENCES. THE REMIII NDER I SIN THE 
FOR"! OF APPENDICES. APPENDIX I CONTAINS A DETAILED REPORT OF THE 
KERNELIZATION PROCEDURE. APPENDiX II REPORTS ON A SERIES OF 
EXPERIMENTS. TO DETERMINE TO WHAT EXTENT' INFORMATION WAS PRESERVED IN 
KERNELIZED VERSIONS OF SENTENCES. APPENDiX I II REPORTS ON A FREQUENCY 
taUNT OF THE TRANSFORMATIONS EXHIBITED BY A STRETCH OF RUNNING TEXT. 
FINALLY. APPENDIX IV CONTAINS A LIST OF TRANSFORMATIONAL RULES WHICH 
HAVE ACTUALLY BEEN WRITTEN. WITH REFERENCES TO SIGNIFICANT PUBLISHED 
(A"ID ~OME UNPUBLISHEDI MATERIAL. 119P. 

23-MIsCELLANEOUS LANGUAGE DOCUMENTATION 
II NFORMAT I ON RETR I EVAI ! SYNTAX 
GRAMMAR~ 

65f\ 0040~-MFOO 1 

Figure 3a. A typical document match against the profile. This 
document matched on INFORMATION RE­
TRIEV AL. Note that there is also a relationship 
between SYNTACTIC ANALYSIS in the profile 
and LINGUISTIC ANALYSIS in the document. 

AD-608404. DESCRIPTORS AND COMPUTER CODES USED IN NAVAL ORDNANCE 
LAB()RATORY LIBRARY RETRIEVAL PROGRAM. DECEMBER 1964. 

OOC ' 

LIBERMAN. E U.S. NAVAL ORDNANCE LABORATORY 

AD-60840" NOL TR-64-20 

THE DESCRIPTOR AND COMPUTER CODES ARE LISTED SEPARATELY BY 
5UFlJECT. EQuIPMENT DESIGNATIONS (INCLUDING ACRONYMS. TRADE NAMES. 
CODF. NAMES. ETC. I AND CORPORATE AUTHORS. PERSONAL NAMES. AND 
GEOGRAPH I C PLACE NAME S. THE SE DE SCR I P TOR S HAVE BEEN DEVELOPED OVER A 
FOUR YfAR PERIOD. THEY PROViDE A SUBJECT APPROACH TO TECHNICAL 
REDORTS LITERATURE FOR USE W[TH IBM 1090 COMPUTER. THESE DESCRIPTORS 
COOl FORM T:J T HE ARE AS OF LABORATORY I NTERES T [N RESEARCH. DEVELOPMENT. 
TEST. AND EVALUATION IN ORDNANCE AND REbATED F[ELDS. 228P. 

,i~;~A~gT~~N~~~~ lFVALf
ESCR ~~~~~~I ES CODES 

656 00412-MFClOI 

Figure 3b. A typical document match against the profile. The. 
match here also occurred on INFORMA TION 
RETRIEV AL. In addition there is a close con­
nection between LIBRARY AUTOMATION in 
the profile and LIBRARY RETRIEVAL in the 
docilment. 

AD-608574. [S ,AUTOMATiC CLAssiFICATION/A REASONABLE APPLICATION OF 
STATI~T1CAL ANALYS[S OF TEXT. AUGUST 1964. 

!lDC 

DOYLE. L B SYSTEM DEVELOPMENT CORP. 

110-608';74 

THE CRUCIAL QUESTION OF THE QUALITY OF AUTOMATIC CLASSIFICATION 
Is TREATED AT CONSIDERABLE LENGTH. AND EMPIRICAL DATA ARE INTRODUCED 
TO SUPPORT THE HYPOTHESIS THAT CLASSIFICATION QUALITY [NPROVES AS 
MORE [NFORMAT[ON ABOUT EACH DOCUMENT [S USED FOR [NPUT TO THE 
CLASS[F[CAT[ON PROGRAM. SIX NON JUDGMENTAL CR[TER[A ARE USED IN 
TESTING THE HYPOTHES[S FOR 100 KEYWORD LISTS (EACH LIST REPRESENTING 
A DOCUMENT 1 FOR A !'-ER [ES OF COMPUTER RUNS IN WH I CH THE NUMBER OF 
WORDS PER DOCUMENT Is INCREASED PROGRESSIVELY FROM 12 TO 36. FOUR OF 
THE ~[X CR[TERIA INDICATE THE HYPOTHESIS HOLDS. AND TWO POINT TO NO 
EFFECT. DIlEVIOUS WORK OF THIS K[ND HAS BEEN CONFINED TO THE RANGE OF 
ONE THROUGH E[GHT WORDS PER DOCUMENT. F[NALLY. THE FUTURE OF 
AUTOMA T [C CLASS [F I CAT [ON AND SOME OF THE PRACT I CAL PROBLEMS TO BE 
FACED ARE OUTL INED. 34P. 

23-M [SCELLA~EOUS II NFORMAT I ON RETR i EVAU 
CLASSIFY[NG [NDExING FILE DOCUMENTATION 
CO,,!DUTERS 

65B OD420-MFOO 1 

Figure 3c. A typical document match against the profile. The 
match is on both INFORMATION RETRIEVAL 
and AUTOMATIC CLASSIFICATION. 

update their profiles. Thereafter he can monitor 
program results to make sure that the revisions are 
producing the desired effect. 

The overall statistics offer a good yardstick for 
measuring system performance. Such figures as 
number of notifications sent out, percentage re­
turned, current relevance percentage, and quantity 
of documents requested are all pertinent to evaluat­
ing how well the system is operating. 

HOW HAS THE SYSTEM PERFORMED 
TO DATE? 

Growth 

1. The data base described now includes abstracts 
of 125,000 documents, with current additions at the 
rate of approximately 10,000 per year. 

2. The number of IBM users of the system is in­
creasing steadily. From the pilot group of 500 
professionals participating in Current Information 
Selection early in 1965, we have expanded to 1700 
users. The rate of retrospective searching activity 
is now up to about 300 searches per month at York­
town and 100 searches at La Gaude, France, and is 
increasing. 

3. The satellite operation in La Gaude, France, is 
now offering full service to W orId Trade Corpora­
tion personnel in Europe, supplying both retro­
spective searching and Current Information Selec­
tion to more than 400 customers all over Europe. 

User Response Statistics 

After a statistIcal analysis of over 100,000 CIS 
response cards, we found that the overall proportion 
of relevance was 79.1 % of the returns. This figure 
was 77% in the first 6 months, and increased to over 
80% in the third quarter. ·Much of the improvement 
was due to the rewriting or revising of the initial 
profiles. 

Operating Results 

1. As expected, the first several months of actual 
operating experience showed us numerous avenues 
of improvement, since this was the first effort to 
correlate user profiles with a natural text searching 
program. The group had prior experience in writing 
retrospective search questions. However, we found 
a noticeable difference in practical strategy between 
searching a large data base with a few questions and 
searching a relatively small data base with over a 
thousand questions (profiles). When we set up the 
European satellite in September with this experience 
in back of us, we found that most of the earlier 
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start-up problems virtually disappeared. The initial 
statistical results from Europe were very similar to 
our current domestic figures. 

2. Overall, between 12 and 13% of the CIS re­
turns were requests for copies of the complete docu­
ments. A much higher percentage of requests (15 
to 20%) came rrom the Data Processing Division 
and World Trade personnel who were scattered in 
small locations without direct IBM library facilities. 
For our largest single group of users in a major 
IBM complex with library facilities, this figure 
dropped to about 10%. 

3. Only about 5% of the total responses were 
"Relevant, but have already seen the document." 
This can be viewed as an encouraging comment on 
the timeliness of the announcements, as well as the 
nonavailability of some documents from any other 
source. 

4. The highest percentage of relevance was re­
turned for the data base containing IBM internal 
documents (technical reports and the like), which 
was to be expected. 

The Importance of Personal Contacts 

Even though we are talking about a highly 
mechanized dissemination system with 1500 custo­
mers, we have found that the "personal touch" is 
extremely important. With a small staff serving so 
many, it is obviously not possible to talk directly to 
every user every month. However, the personal 
conversations and letters that we do have time for 
have paid dividends in terins of customer satisfac­
tion and participation. 

The quarterly statistical run selects and prints out 
a "trouble-shooting" list. On it are all the users 
who during the quarter (a) had a high percentage of 
irrelevant notifications, (b) received none at all, or 
(c) returned none of their response cards. With this 
list, the information retrieval specialists look at the 
operating profiles and often are able to adjust them. 
If not, they go directly to the users, by telephone 
if possible. The ensuing discussions usually pin­
point the trouble-a profile needs changing, a user 

did not realize the function of the response cards, 
etc. 

On a daily basis, all response cards are scree:ned 
and these with "Comments" punched are sorted out 
for immediate handling. Some of thes,e request 
profile changes, or ask questions about the abstracts 
they have received. Again, the information retriteval 
specialist checks out the current profile and goes 
back to the user to make necessary revisions. 

The net result of this personal contact is to im­
prove the caliber of the profiles, particularly the 
problem cases. Each call also has the effect. of assur­
ing the user that he is not merely a number in an 
impersonal computer system. He knows that he can 
get help to change his profile as needed, that his 
responses to the system are being monitOired by a 
group of specialists, and that if he has complaints 
or suggestions they will be acted upon. 

CONCLUSIONS 

What is ITIRC accomplishing now, and what are 
the future possibilities? First, it is in full operation, 
serving many hundreds of users throughout the 
Corporation. Second, the data base is a broad one, 
now covering the most critical areas and capabl<! of 
unlimited future expansion. Third, a single manipu­
lation of input data produces output tailored fOir a 
variety of needs-dissemination, announcemc;mt, 
searching, and microfilm. Fourth, the normal tC!xt­
searching logic that we have developed is an effec­
tive technique today-and will be readily adaptable 
to future developments that can put the entire text 
of a document into a computer automatically. 

Up to now, our efforts have been concenltrated on 
operating a practical system to meet the immediate 
needs of the IBM engineer-scientist. However, we 
have not lost sight of the future. Both within and 
outside IBM, the field of information retrieval will 
continue to require constant study, research, and 
development. For these activities, one of the best 
environments may well be within the framc!work of 
a live operating system. 



EFFECTS OF QUANTIZATION NOISE IN DIGITAL FILTERS 

Bernard Gold and Charles M. Rader 
Lincoln Laboratory, * Massachusetts Institute of Technology 

Lexington, Massachusetts 

GENERAL EXPRESSIONS FOR 
QUANTIZATION NOISE 

If a discrete time linear system, hereafter called a 
digital filter, is programmed on a digital computer 
or realized with digital elements, computational 
errors due to finite word length are unavoidable. 
These errors may be subdivided into three classes, 
namely, the error caused by discretization of the 
system parameters, the error caused by analog to 
digital conversion of the input analog signal, and 
the error caused by roundoff of the results which are 
needed in further computations. The first type of 
error results in a fixed deviation in system param­
eters and is akin to a slightly wrong value of (say) 
an inductance in an analog filter. We shall not treat 
this problem here; it has been treated in some detail 
by Kaiser. 1 The other two sources of error are more 
complicated but if reasonable simplifying assump­
tions are made they can be treated by the techniques 
oflinear system noise theory.2 It is our aim to set up 
a model of a digital filter which includes these two 
latter sources of error and, through analysis of the 
model, to relate the desired system performance to 
the required length of computer registers. 

Both analog to digital conversion and roundoff 
may be considered as noise introducing processes, 
very similar in nature. In each case a quantity 
known to great precision is expressed with consider-

*Operated with support from the U.S. Air Force. 
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ably less preCISIon. If the digitized or rounded 
quantity is allowed to occupy the nearest of a large 
number of levels whose smallest separation is Eo, 
then, provided that the original quantity is large 
compared to Eo and is reasonably well behaved, the 
effect of the quantization or rounding may be 
treated as additive random noise. Bennett 3 has 
shown that such additive noise is nearly white, with 
mean squared value of E5/12. Furthermore the 
noise is reasonably '.lssumed to be independent from 
sample to sample, and roundoff noises occurring 
due to different mUltiplications should be inde­
pendent. It is possible to show pathological ex­
amples which disprove each of these assumptions, 
but they are reasonable for the great majority of 
cases. Ultimately our results must rest on experi­
mental verification, of course. 

Since the noise of A-D conversion is assumed 
independent of the noise created by roundoff, we 
can compute the output of any filter due to either 
excitation alone, or due to the signal alone, and 
combine them to get the true filter output (of course 
the noise terms are known only statistically); there­
fore, we will begin by finding an expression for the 
mean squared output of an arbitrary filter excited 
by a single noise source. Let the filter function be 
H(z); it is understood that H(z) is the transfer func­
tion between the output of the filter and the node 
where noise is injected; H(z) may thus be different 
from the transfer function between the filter's 
normal input and output. Let us thus consider the 
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e <_n T_)-....t __ ~I'---H_( Z_> :-_f (~n ~ .. ) 
Figure I. Random noise applied to a filter. 

situation of Fig. 1, where a given noise sequence 
e(nT) is applied to H(z), resulting in an output 
noise sequencef(nT). 

We can conveniently examine this model using 
the convolution sum. Thus, 

n 

f(nT) = L h(mT)e(nT - mT) (1) 
m=O 

where h(mT) is the inverse z transform of H(z). 
The input noise e(nT) is presumed to be zero for 
m < 0 and the system is initially at rest. Squaring 
Eq. (1) yields 

n n 

J2(nT) = L L h(mT)h(lT) 
m = 0 1=0 

x e(nT - mT)e(nT - IT) (2) 

Now, if e(nT) is a random variable with zero 
mean and variance u 2

, and recalling our assumption 
that e(nT) is independent from sample to sample, 
the st~tistical mean of Eq. (2) reduces to 

n 

E[f2(nT)] = u 2 L h2(mT) (3) 
m=O 

For a system for which the right side of (3) con­
verges, the steady state mean squared value of f(nT) 
can be obtained by letting n approach infinity. For 
this case, a formula which is usually more con­
venient can be obtained in terms of the system func­
tion H (z). Noting the definition. 

H(z) = L h(mT)z-m (4) 
m=O 

Either the right- or left-hand side of (5) may be 
used to evaluate the steady state mean squared value 
ofJ(nT). 

EXAMPLE-FIRST ORDER SYSTEM 

As an example, consider the first order system of 
Fig. 2. Let the analog-digital conversion noise 
el(nT) have variance u~ and the roundoff noise 
e2(nT) have variance ut The system functilon H(z) 
of Fig. 2 is given by 1/(1 - Kz- 1 ) and h(mT) = 

Km. The output y(nT) can be expressed as the sum 
of a signal term yo(nT), caused by x(nT), and a 
noise termf(nT), whose mean squared value can be 
written, from (3), as 

n 

E[.f(nT)] = (u~ + un ~ (Km)2 (6) 
m=O 

from which the steady state value can be instantly 
written as 

u~ = lim E(.f(nT» = (u~ + u!) 
n-+ao 1 - K 

(7) 

The implications of Eq. (7) are tricky. The mean 
squared value of the noise clearly increases as K ap­
proaches unity. The maximum gain of the fHter also 
increases (the gain of the system of Fig. 2 at de: is 
(1/(1 - K». For this filter with low frequency 
input the signal power to noise power ratio (S2/ N 2) 
is proportional to (1 + K) / (1 - K) which ap­
proaches infinity as the pole of the filter approaches 
the unit circle. This is a general result. However, 
with a finite word length, the input signal must be 
kept small enough that it does not cause overflow 

y(nT) 

~--------------~ 

of the z transform, we can form the product H(z) 

H ( ! )z -I and!. by performing a closed contour inte-

gration in the z plane within the region of conver- K 
gence of both H(z) and H~! ). arrive at the identity 

(5) 
Figure 2. Noise mode for first order system. 
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in the computation. Thus, the obtainable signal­
to-noise ratio decreases as K approaches unity. 
Clearly, each case deserves its own considerations, 
as the signal-to-noise ratio in the filter depends very 
much on the actual conditions of the use of the 
filter. 

Finally, we comment that the cases K = 0, K = 
1, in Eq. (7) are unique because U2 becomes zero 
since no multiplications are performed. 

EFFECT OF DIFFERENT REALIZATIONS 
OF THE SAME FILTER 

There are a variety of ways of programming a 
second order digital filter (or in general a filter with 
more than two singularities). Suppose a particular 
system function H(z) is desired. If quantization is 
ignored, then only the relative speed and memory 
requirements of the different methods are of interest 
in deciding which way to use. However, Kaiser's 
work shows that the truncation of system constants 
affects different realizations differently, and may in 
fact lead to instability in some realizations. The 
noise effects described here also yield different re­
sults for different programming configurations. The 
point is illustrated through the examination of the 
two systems of Fig. 3. Fig. 3a represents a noisy 
programmed realization of the difference equation: 

y(nT) = 2r cos bTy(nT - T) - r2y(nT - 2T) 

+ x(nT) - r cos bTx(nT - T) (8) 

and Fig. 3b represents the pair of simultaneous dif­
ference equations: 

w(nT) = x(nT) + 2r cos bT w(nT - T)} 
- r2 w(nT - 2T) (9) 

y(nT) = w(nT) - r cos bT w(nT - T) 

Both systems have the transfer function 

H(z) = 1 - rcosbTz-
1 

1 - 2r cos bT z -I + r2 Z-2 

By examination of the poles and zeros of H(z) in 
Fig. 4, we see that our network behaves as a reson­
ator tuned to the radian center frequency b for the 
sampling interval T. 

In Figs. 3a and 3b, X (nT) represents the noise­
less input to the filter, el (nT) represents the noise 
due to A-D conversion of the input, and e2(nT) 
represents the noise added by rounding. The 
roundoff noise can be caused either by a single 
roundoff after all products are summed, or by the 
sum of the roundoff error due to each of the multi-

-r cos bT 

~--~~y(nT) 

Figure 3a. Noise model for second order system-direct 
realization. 

Figure 3b. Noise model for second order system-canonical 
realization. 

plications. It is simpler to program the latter, but 
more noise is created. Note that, while in the 
realization of Fig. 3b the noise terms el (nT) and 
e'2(nT) are injected into the filter at the same place 
as the input X(nT) and thus see the same transfer 
function H(z), in Fig. 3a the noise term e2(nT) is 
injected in a different part of the filter and sees a 
different transfer function: 

1 
HI (z) = 1 _ 2r cos bT Z-I + r2z-2 (10) 

Thus we can expect that the noise due to e2(nT) 
will be different for the filters of Figs. 3a and 3b. 

Considering first the realization of Fig. 3a, we 
can, after some manipulation, obtain the result, 

u~ = ui UI (r,bT) + u~ u2(r,bT) (11) 
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Figure 4. Pole zero representation of Eqs. (8) or (9). 

where O"I and O"~ are the variances of el (nT) and 
e2(nT), and with 

1 + r2 
U2 = 1 _ r2 x r4 + 1 _ 2r2 cos 2bT 

and 

UI = __ 1_1 [1 _ r2 sin2 bT( 1 + r2) ] 
1 - r2 r 4 + 1 - 2r2 cos 2bT 

More insight can be obtained into these results 
by letting r = 1 - € and allowing € to be quite 
small, of the order of 0.05 or less. Then (11) re­
duces to the simple form 

(12) 

Carrying through a similar computation for the 
realization of Fig. 3b yields 

(13) 

which can also be reduced, for small values of f, to 

2 1 [2 2 
O"n = 4f 0"1 + 0"2] (14) 

Several important facts can be deduced from Eqs. 
(12) and (14). First, the so-called "straightforward" 
realization of Fig. 3a leads to increased noise for 
low resonance frequencies whereas the "canonic" 
realization of Fig. 3b does not. Physically, this re­
suIt can be explained by noting that, in the straight­
forward realization, the noise "passes through" only 

the poles of the filter, so that at low frequendes, 
the complex conjugate poles interact to form a low 
pass filter. In the "canonic" realization the noise 
is also filtered by a zero which is close to de and thus 
the output noise is of a band-pass nature and less 
total energy is able to pass through the fillter. 
Second, we note that Eqs. (13) and (14) have the 
same functional dependence on pole positions, 
namely, that the mean squared output noise is in­
versely proportional to the distance from the pole 
to the unit circle and therefore directly proportional 
to the gain of the filter. 

From these results one can, for example, estimate 
the word length needed for a simulation requiring 
many filters. One such system is a vocoder synthe­
sizer shown in Fig. 5. Typically, a vocoder syn-

SPECTRAL 
COEFFICIENTS 

I 
I 
I 
I 

VOCODER SYNTHESIZER 

Figure 5. Vocoder synthesizer. 

SYNTHESIZED 
SPEECH 

thesizer wi1l contain about 100 resonators. Assum­
ing that the noise from each resonator is additive to 
the noise from all other resonators and picking an 
effective average € of 0.01, we arrive at a total noise 
output of about 7 or 8 bits. It is clear that word 
lengths of at least 20 bits are needed to avoid audi­
ble noise outputs superimposed on the vocoder 
generated synthetic speech .. 

EXPERIMENTAL VERIFICATION FOR 
FIRST AND SECOND ORDER FILTERS 

The results of the preceding computations wc;!re 
experimentally verified by programming various 
realizations of first and second order difference 
equations on the TX-2 digital computer. To p,er­
form a measurement of output noise for a given 
digital filter, the computations were performed with 
rounded arithmetic using a 36-bit word, and simul­
taneously, using rounded arithmetic with a shorter 
word and exactly the same input. The outputs of 
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the two filters were subtracted, squared, integrated 
and divided by the number of iterations of the 
equation. The inputs to the filters were random 
noise or sampled sinusoids. The filters were pro­
grammed using the PATSI 4 compiler, and the var­
ious waveforms of interest, including the mean 
squared output noise, were displayed during the 
computation. The measurement was taken when 
the mean squared output noise seemed to reach a 
steady value, or in the case of the very high gain 
filters, when the patience of the observer was ex­
hausted. As we shall see below, the necessary ob­
servation time for confidence in such a measurement 
is highly dependent on the gain of the filter. 

Figure 6 shows the predicted and measured out­
put noises for some one-pole filters, as Eq. (7), with 
tTr = O. The horizontal axis is the pole position and 
the vertical axis is the mean squared output noise 
normalized to tT~. Table 1 gives the predicted versus 
measured output noises for several two-pole filters 
(no re~l zeros) with various pole positions, along 
with the measurement error. All of the results seem 
to confirm the theory. 

It is advisable to determine, on a statistical basis, 
the measurement time required before the variance 
of such statistical observations is sufficiently small. 
Thus, consider a random variable q defined as 

1 n 
q = - L f2(nT) 

n m=O 

(15) 

where f(nT) is an output noise signal as indicated in 
Fig. 1 due to a set of mutually independent input 
noise samples e(nT). 

Assumingf(nT) to have zero mean, we can im­
mediately perceive that the mean value o-f the meas­
urement q is given by 

E[q] = tTl (16) 

10 
9 
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Figure 6. Predicted vs measured quantization noise for first 
order system. 

Table 1. Two-Pole Filter Noise Measurement 

Mean Squared Output Noise Error Pole 
Predicted Measured % Positions 

204 203 0.49% .5 ± .5j 
289 297 2.77 .5 ± .707j 
508 520 2.36 .5 ± .778j 

1011 1058 4.65 .75 ± .56j 
2824 2880 l.98 .875 ± .332j 
5553 5933 6.40 .90625 ± .235j 
5553 5503 0.90 .90625 ± .235j 

11014 11450 3.96 .921875 ± .169j 
11014 11079 0.59 .921875 ± .169j 
3306 3740 13.12 .75 ± .654j 
3306 3359 l.60 .75 ± .654j 
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where aJis the variance of the (stationary) random 
variablef(nT). Now assuming thatf(nT) is a set of 
stationary Gaussian variables with correlation co­
efficient p(rT), then it can be shown that 5 

E[f2(mnf2 (IT)] = ul + 2R2(mT - IT) (17) 

where R2 is defined as the covariance between 
f(mT) and f(lT). From Eqs. (16) and (17), we ar­
rive at the expression for the variance of q, 

O"~ = E[q2] - E2 [q] 

This can be evaluated for first order system of 
Fig. 2. For that case R (mT - IT) = K21m - ~ and, 
for large n, Eq. (18) reduces to 

(19) 

where u; is the variance of the input e(nT) as in Fig. 
1. Of major interest in determining the time needed 
to perform the measurement is the ratio of the 
standard deviation to the mean of q. Using an argu­
ment similar to the one that leads to Eq. (7) we can 
for the first order system relate u; to U] by the for­
mula u} = u;/(1 - K2), which combined with Eqs. 
(19) and (16) yields 

E[q] = (1 - K2) Vn 
2 

(20) 

Thus, for example, if K2 = 0.99, we need 108 

terms in the measurement of Eq. (15) in order to 
reduce the standard deviation of the measurement 
to 2% of the mean of the measurement. Assuming 
that an iteration could be done in 100 /lsec, 104 

seconds would be required for such accuracy. 

NOISE CONSIDERATIONS IN 
PROGRAMMING ITERATIVE SINE 
WAVE GENERATORS 

One must be especially attentive to noise con­
siderations in the programming of iterative sine 
wave generators. Various efficient routines exist to 
compute the sine or cosine of a random argument 
rapidly, but for instances where the argument is 
nT for successive integers n, the most efficient way 
to generate sinusoidal functions is by the use of 
iterative difference equations. These are, of course, 
digital filters with poles directly on the unit circle, 
inputs equal to zero, and initial conditions which 

specify the magnitude and phase of the output. 
Since the poles of the filter are directly on the unit 
circle, the noise, according to Eq. (12) Q1r (14) be­
comes infinite. This is indeed the situation.* The 
saving feature is the gradual increase of the noise 
term, so that if one runs the program for a limited 
time, or periodically resets the initial conditions, 
catastrophe can be avoided. To study this problem 
theoretically, consider the simultaneous differ,ence 
equations 

y(nT + T) = cosbTy(nT) 1~ 
+ sin bT x(nT) 

(21) 
x(nT + T) = - sin bT y(nT) 

+ cos bT x(nT) 
~ 

with initial conditions x(O) 1, y(O) = O. The 
"circuit" is shown in Fig. 7. 

)----...... --... , .. Y (n T·f- T) 

cos bT 

sinbT 

)----...... ~-.,. X (n T + T) 

Figure 7. Iterative sine and cosine generator. 

The z transform X (z) of one output x(nT) can be 
written 

X(z) = 

Z2 - zcosbT + zE2(z) - cos~bT E2(z) - sinbTE1 (z) 
z2 - 2z cos b T + 1 

(22) 

We see that the first two terms of the numerator 
correspond to the signal and the remaining terms to 
the noise, E, (z) and E2 (z) being respectively the. z 

*Various nonlinearities can be introduced to keep the noise 
finite. This is adequate for many applications since thle selectivity 
of the filter can be relied on to keep the output spe(:trally pure 
even if the phase of the output is unpredictable. 
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transforms of the added noises el (nT) and e2(nT), 
both introduced by roundoff error. 

Defining: 

Z 1 { Z - cos b T } h (nT) - -
1 - Z2 _ 2z cos bT + 1 

Z I{ -sin bT } h (nT) - -
2 - Z2 _ 2z cos b T + 1 

(23) 

where Z -I is the inverse z transform, we can from 
Eq. (3) write the total noise as 

n 

£(f2(nT)) = ut L htcnT) 
m=O 

(24) 
n 

+ u~ L h~(nT) 
m=O 

Solving Eq. (23) explicitly and letting ut u~ 
£2 
_0 we arrive at the result 
12 

} 
£2 

+ sin 2(nbT - bT) = 1; n (25) 

Notice that is was impossible to use Eq. (5), since 
the result obtained would be infinite and thus no 
time-dependent result could be formulated. Equa­
tion (25) tells us that the noise increases linearly 
with the number of iterations of the difference equa­
tions. For example, after 106 iterations, the noise 
is about 10 bits. Assuming that one iteration is 
performed in 100 !J.sec, several minutes could cer­
tainly pass, even in an 18-bit machine, before the 
generated sine and cosine waves begin to look noisy. 

Another program for generating a cosine wave is 
expressed by the iteration 

y(nT + 2T) = 2 cos bT y(nT + T) - y(nT) (26) 

with initial conditions yeO) = 1, y (T) = cos bT. 
Noise analysis of Eq. (26) leads to a functional de­
pendence of the mean squared noise, of the form 

_._n __ ; thus appreciably greater quantities of noise 
sm 2 bT 
are generated at low frequencies, and fewer itera­
tions are available before the program becomes 
unusable. 

The comparison of Eqs. (21) and (26) was per­
formed qualitatively on TX-2 by programming 
identical sine wave generators using both methods. 
For all frequencies, the method of Eq. (21) pro­
duced sinusoids of more nearly constant amplitude 
than the method of Eq. (26), but this difference in 
behavior was negligible for frequencies greater than 
one fourth of the sampling frequency, and, using 
36-bit arithmetic, the distortions were almost unob­
servable for these frequencies. For low frequencies 
(of the order of one thousandth of the sampling 
rate) the method of Eq. (26) was completely unus­
able, with the generated sine wave being terribly 
distorted in the first period. 

REFERENCES 

1. J. F. Kaiser, "Some Practical Considerations 
in the Realization of Linear Digital Filter," 3rd 
Allerton Conference (Oct. 20-22, 1965). 

2. J. B. Knowles and R. Edwards, "Effect of a 
Finite-Word-Length Computer in a Sampled-Data 
Feedback System," Proc. IEEE, vol. 112, no. 6, 
(June 1965). 

3. W. R. Bennett, "Spectra of Quantized Sig­
nals," Bell System Technical Journal, vol. 27, pp. 
446-472 (July 1948)~ 

4. C. M. Rader, "Speech Compression Simula­
tion Compiler," J. Acous{. Soc. Am. (A), June 1965. 

5. J. L. Lawson andG. E. Uhlenbeck, Threshold 
Signals, MIT Rad. Lab. Series 24,McGraw-Hill, 
New York, 1950. 





A REAL-TIME COMPUTING SYSTEM FOR LASA 
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Lexington, Massachusetts 

PHYSICAL DESCRIPTION OF LASA 

The Large Aperture Seismic A.rray (LASA) con­
sists of 525 vertical motion seismometers installed in 
an area of approximately 10,000 square miles in 
eastern Montana. Each seismometer is located at 
the bottom of a 200-foot borehole to reduce noise 
generated by wind, traffic, and livestock. The seis­
mometers are grouped in clusters (subarrays) of 25 
seismometers each, and the 21 subarrays are ar­
ranged in a series' of successively inscribed squares 
(see Fig. 1) to produce a logarithmic density taper. 

The data from each subarray of 25 seismometers 
are collected in a buried vault at the center of the 
cluster where they are low-pass filtered to avoid 
aliasing and are digitized at 20 samples per second. 
The frequency passband of the seismometers, well­
head amplifiers, and low-pass filters is approxi­
mately 0.5 to 5 cycles per second. Figure 2 shows 
the inside of one of the buried vaults including the 
rack of equipment for filtering, mUltiplexing, and 
digitizing the signals and a second rack containing 
digital phone-line modulating equipment used to 
transmit the digital data over open wire and micro­
wave links to the LASA Data Center (LDC) in 
Billings, Montana. 

The Data Center, shown in Fig. 3, contains gen­
eral purpose and special purpose digital processing 
equipment which is used for recording and process-

*Operated with the support of the U.S. Advanced Research 
Projects Agency. 
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ing data from the entire array. The data is recorded 
on standard Y2-inch 7-channel digital tape in a 
format that is compatible with most commercially 
available processing equipment. The data rate is 
such that a full 2500-foot reel of tape is written every 
6 minutes. In order to reduce the array output to 
a manageable level, it is imperative that some on­
line processing be done. Since significant seismic 
events appear at the array as discreet bursts of 
energy lasting from one minute to several hours 
spread throughout the day, this on-line data reduc­
tion for LASA consists of selecting those sections of 
recordings which contain data from interesting 
seismic locations. Thus, the on-line processing, part 
of which takes place in the same general-purpose 
processor that is used for formatting and recording 
the digital tapes, consists of 1) predetection process­
ing to improve the signal-to-noise ratio for detec­
tion, 2) detection of teleseismic events, 3) source 
location of detected events, and 4) testing various 
remote components in the system. Events occurring 
within preselected regions are then further processed 
off-line either on-site or at remote processing cen­
ters. ln this paper, we will be primarily concerned 
with the first two steps in the on-line processing; 
predetection processing and detection. 

PREDETECTION PROCESSING TECHNIQUES 

Predetection processing uses the LASA as a wide­
band phased array antenna to improve the signal-



222 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

/' 

/@ 
/ 

/ 
I , 
\ 
\ 
\ 
\ 

''{§) , 

--",. 
./ 

---....., 
......... 

" 

@ 

....... ./ 
""'" ",. '-----.,.,. 

14------- 200 km ------... 

Figure I. 

to-noise ratio for detection of small teleseismic 
events_ In a' conventional phased array, this is 
accomplished by appropriately delaying (phasing) 
and adding the signals from each element in the 
array. The phasing delay is adjusted so that the 
signals add coherently and the noises add inco­
herently. Delaying the data from the elements of 
the array is equivalent to pointing a conventional 
antenna in a certain geometric ditection in space. 
Since seismic noise tends to come from discrete 
sources with discrete velocities, the processing can 
be further improved; strong noise sources can be 
suppressed by selecting gains or amplitude weights 
(the antenna "taper"), which place nulls of the an­
tenna sidelobe pattern in the proper direction. Thus 
the noise does not add with random phase but with 
a controlled anti-phase. If the noise is allowed to 

add with random phase, the antenna gain in signal­
to-noise ratio should be approximately the sq~are 
root of the number of elements, but this gain may 
be much greater if the strong sources of organized 
noise can be specifically rejected. 

Since the LASA is designed to receive: wideband 
signal energy (the passband includes more than an 
octave) and since many seismic noise sources emit 
energy over much narrower bands in frequency, 
additional signal-to-noise gain can be obtained by 
optimum frequency filtering. In fact, one of the 
most powerful techniques for combining data from 
the elements of a seismic array involves employing 
a different set of amplitude weights (a different 
taper) at each of several frequencies in order to opti­
mize the use of sidelobe nulls at each frequency. 
Varying the amplitude gain on a single eleme:nt as 
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Figure 2. 

a function of frequency is the same as filtering the 
data from that element. It has' been shown that the 
optimum design for combining data from the ele­
ments of an array of seismometers consists of apply­
ing a different filter and time delay to data from 

each element and· adding the resulting data from all 
the elements. Most other linear processing tech­
niques are degenerate forms of this "filter, delay 
and sum" processing. For the detection of seismic 
signals it is often advantageous to further filter the 
data through a narrow bandpass filter. On-line 
processing for the LASA involves the use of both 
convolution and recursive digital filtering and will 
be described in more detail in a later section of this 
paper. 

ON-LINE PROCESSING FOR THE LASA 

We now turn our attention to the specific imple­
mentation of the processing concepts described 
above. The functions to be performed by the on­
line processing facility are: 

1. Read data into memory. 
2. Write data onto magnetic tape. 
3. Form 10 beams. 
4. Make eight event detectors. 
5. Locate source of events. 
6. Test components in the system. 
7. Output data for monitoring. 

First, all the data is read into core memory of the 
general-purpose computer. That is, every sampling 
interval (50 msec), each seismometer waveform is 
digitized, multiplexed, and transmitted to the core 
memory. 

Second, all this data is written onto magnetic 
tape. Each record on tape contains two samples 
from each sensor (100 msec of data). 

Third, approximately 10 processed outputs are 

Figure 3. 
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formed. Five of these are formed using the delay­
and-sum method to steer the entire array to monitor 
five predetermined locations. The other five are 
formed using the more powerful filter-and-sum 
method on up to 25 channels to produce five over­
lapping beams to monitor the entire region of the 
world from approximately 20° distance to 100° dis­
tance. All these beams have a pr"detection signal­
to-noise ratio improvement wb .,_ ~ allows detection 
of weaker events in the areaS being monitored. 

Fourth, several independent event detectors are 
connected to selected channels from widely sepa­
r~ted sensors or beam outputs. The event detectors 
uutput the GMT time of any event occurring in 
their input waveforms. 

Fifth, the outputs from event detectors connected 
to widely separated sensors are put into a source 
location program which determines where the event 
originated. On the basis of the location of detected 
events, a decision to save Qr reuse the tapes is made. 

Sixth, the general-purpose computer periodically 
tests each component in the system and types out 

its status so that maintenance teams can bt~ dis­
patched to repair faults as they occur. 

Seventh, the computer provides seve:ral on-line 
analog outputs for monitoring the system perform­
ance. 

Figure 4 shows the equipment configuration used 
to accomplish these tasks on-line. The two general­
purpose computers are identical machines. Each 
machine has a 16,384 eighteen-bit word memory 
with a 1.75 microsecond cycle time. The! tape units 
shared by the two machines are standard seven­
track IBM compatible drives operating at 75 inches 
per second with character density of 800 characters 
per inch. The special-purpose processor (usually 
referred to as the "Multi-Channel Filter" or l\.1CF) 
is designed to perform filter-and-sum proc,essing 
with 25 input channels and up to five processed out­
put channels. The data displays indicated in the 
diagram provide the on-line monitoring of the sys­
tem. 

Now we shall discuss in more detail how these 
points are accomplished. The real-tim'e program-
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ming system is timed by an interrupt pulse which 
occurs every 50 msec whenever a new set of data 
samples is ready to be read into the memory. At 
this time the program starts a block transfer which 
automatically reads the data into 651 consecutive 
locations. When the next data ready interrupt 
comes, the computer reads the data into the next 
651 consecutive . locations and starts another block 
transfer which writes out onto magnetic tape the 
data stored from the start of the first block to the 
end of the second block. The data rates of the input 
and output are just right so both these data transfers 
interleave without running into each other. 

While the data are being transferred into core and 
onto tape, the main program is processing the data. 
All the processing is subject to the following con­
straints: It must operate on each data sample as if 
comes in; the total time for all the processing must 
be less than 50 msec; and everything must fit into 
the remaining memory not used for input/output 
buffering. 

The first waveform processing we do is to form 
five delay-and-sum beams. This is shown in Fig. 5 
where the h(t)'s represent simple delay lines. A 
teleseism from an interesting area of the world can 
take up to 15 seconds to propagate across the array 
so the simple minded method of putting 15-second 
delay lines (300 locations) for each data channel 
would take all the remaining core memory. Instead, 
the delay for each particular channel is used as an 
index to tell into which sum box each data sample 
is to be added. This way only 300 locations are 
used for each beam, and each data sample is only 
used once. This program takes 5 msec (about 3000 
cycles) and occupies about 2400 locations in core. 

The other five processed outputs are formed by 
filter-and-summing in the MCF special purpose 

Figure 5. 

computer. Figure 5 also shows this processing, but 
here the h(t)'s represent linear filters. Each output is . 
formed by passing each of the 25 input channels 
through a different filter and summing the filtered 
waveforms. The 25 input channels for the MCF can 
come directly from a single subarray of seismom­
eters via the phone-line interface, or from the gen­
eral-purpose computer which can form clusters of 
widely separated seismometers. The MCF inter­
ruptS the program in the central computer each time 
an output sample is ready. The interrupt answer­
ing program accepts the sample, stores it in core 
memory, and clears the interrupt. 

The actual operations of this special-purpose 
computer are: 

25 78 

In = L L hi.j!n-i,j 
j= I i=O 

where In = the output at time n, 
!n-i,j = the ith most recent data input from the 

jth channel, and 
hij = the impulse response for the jth channel. 

Each filter is a 78-point convolutional filter. That 
is, the last 78 data samples from each input are 
stored in memory and every sampling interval (50 
msec) there are 78 multiplications between these 
data and 78 presto red "filter constants" with the 
accumulated sum of the product pairs being the out­
put sample of one filter. Then the 78 inputs are 
pushed down with the new data sample being stored 
at the head of the list and the 78th one dropped. All 
this is repeated 25 x 5 or 125 times, making a total 
of 9750 multiplications and 9875 additions. A trick 
is used to get all these operations done in 50 msec. 
The memory cycles that get the filter points are 
standard read-restore cycles, but the cycles that get 
the data points are read-save-restore-previous-data 
sample, so that the "push down list" can be done in 
essentially no extra time. Phasing delays can be in­
troduced by using filter response functions less than 
78 points long and adding appropriate number of 
zeros at the beginning and end of each response 
function. 

The next processing step consists of event detec­
tion on selected channels. Figure 6 shows a block 
diagram of one event detector. First, the input 
waveform is passed through a bandpass filter and 
the output energy is measured. If this energy should 
suddenly increase over what it had been, the detec­
tor decides there has just been an event and the cur­
rent GMT time is typed out, along with the channel 
number that triggered the detector. 
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Each pole in the bandpass filter is of the recursive 
type as opposed to the convolutional type described 
earlier. This is shown in Fig. 7. To synthesize a 
transfer function with two: complex conjugate poles 
and a zero at the origin of the S plane (a RLC filter), 
we use a recursion formula where the present value 
of the filter output is a linear combination of the two 
previous filter outputs and: the first difference of the 
input waveform. The difference equation is shown 
in the figure. This has the advantage of requiring 
only 15 registers in memQry for the constants per 
pole, independent of the ringing time of the filter. 

If we look again at Fig.! 6, we see that the event 
detector uses three rec~rsive filters in cascade in 
order to provide v~ry rapid attenuation of low fre­
quency microseismic noise energy. The three poles 
are synchronously tuned ,to res

4

0nate at the same 
frequency so that the shape of the filter makes an 
approximate match to the spectrum of the energy of 
a teleseism. This is done in order to maximize the 
signal-to-noise ratio at point B. 

The passband of the filter is 0.95 cps to 1.45 cps 
because our investigations! of many weak teleseisms 
showed this to be the frequency where the energy 
lies for short-period vertical seismometers. This 
passband is very effective in eliminating local events 
which have energy at frequencies much higher than 
this. 

This filter output is then rectified so that the sig­
nal at point C is an appro~imation to the power of 
the signal at point B. The waveform is rectified 
instead of being squared for two reasons. First, it 
takes less time to compute, and second the dynamic 
range that the following blocks require is consider­
ably reduced. 

Now, following the lower path, the signal is 
passed through a low-pass filter whose: time con­
stant is 30 seconds. This is long enough to smooth 
the fluctuations caused by the seismic signal, yet 
short enough so that it will accurately follow any 
long-term variation in the noise power and system 
calibration. Thus, at point D we hav4! a slowly­
varying signal which is proportional to the back­
ground noise level in the input seismic signal. This 
signal is then passed through a 60-second delay line 
such that its output at E is simply the signal at D 
delayed in time by one minute. 

Now, the signal at C, which is proportional to the 
energy in the frequency band 0.95 to 1.45 l~pS is 
divided by the average background noise energy in 
the same frequency band one minute earlier. We 
say there is an event if this ratio exce<;:ds a given 
threshold; otherwise there is no event. The reason 
for the 60-second delay line becomes dear if you 
consider what would happen if it weren't there and a 
slowly emerging event should come in. Both the 
signals at C and E would rise together and their 
ratio would stay constant. Clearly, putting a delay 
line in circumvents this problem. 

If the threshold is set too low, the event detector 
will have a high false alarm rate-that is, it will be 
constantly triggering on every little nois1e pulse that 
comes along. On the other hand, if the threshold is 
set too high, only very strong events willl trigger the 
event detector. We have varied the threshold and 
empirically decided to make it 5.82. With this value 
and pure gaussian noise as an input, seven false 
alarms are registered per day on the average" Ac­
tually, however, the seismic signals we use are not 
gaussian noise, but have many small local man-
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made events in them; so in practice, the false alarm 
rate with a threshold of 5.82 is about four per hour. 
Using eight independent event detectors, the pro­
gram takes 10 msec and occupies 1300 registers in 
core. 

The main disadvantage of this event detector is 
that it cannot discriminate between a strong local 
event or a noise burst in the data line or a teleseism. 
Anything that has sufficient energy around 1 % cps 
will trigger this event detector. We have found that 
for our data about one event in 10 is a genuine 
teleseism, the other nine being local events of one 
sort or another., We get around this by having more 
than one event detector connected to seismometers 

separated by several kilometers. Then, whenever 
several event detectors trigger within several seconds 
of each other, we say a teleseism has been received. 
The small local events are too weak to register on 
several event detectors, or else take a longer time 
due to their lower horizontal velocity. This screen­
ing effectively reduces the false alarm rate from 90% 
to about one per day. 

When a teleseism has been detected, the program 
examines the relative arrival times at the various 
sensors and, since these determine the origin of the 
teleseism, the program looks to see if this location 
is in an area that it has been told is interesting. If it 
is, the program tells the operators to save the rele-
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vant data which has been recorded on magnetic 
tape. Thus, the tape recorders have been acting as 
mass buffer storage for the d~ta. 

In order to save the data that has teleseisms that 
are too weak to be detected by the automatic event 
detector, one points a beam at the selected area and 
puts an event detector on hs output, and if this 
single event detector triggers, the data is saved. 

In conclusion, we have described a system with a 
real-time program directing the overall op{~ration­
from routine testing to selecting the data fOir further 
off':'line processing. These operations are done on 
the basis of real-time waveform processing. With­
out automating these tasks, the Large Aperture 
Seismic Array would be quite impractical to operate 
because of its large size, both in data which accumu­
lates and remote transducers which periodically fail. 



HIGH-SPEED CONVOLUTION AND CORRELATION* 

Thomas G. Stockham, Jr. 
Massachusetts Institute of Technology, Project MAC 

Cambridge , Massachusetts 

INTRODUCTION 

Cooley and Tukeyl have disclosed a procedure 
for synthesizing and analyzing Fourier series for dis­
crete periodic complex functions. t For functions of 
period N, where N is a power of 2, computation 
times are proportional to N log2 N as expressed in 
Eq. (0). 

(0) 

where k ct is the constant of proportionality. For 
one realization for the IBM 7094, k ct has been 
measured at 60 JLsec. Normally the times required 
are proportional to N 2

• For N = 1000 speed-up 
factors in the order of 50 have been realized! Eq . 
. ( 1 b) synthesizes the Fourier series in question. The 
complex Fourier coefficients are given by the analy­
sis equation, Eq. (la). 

N-l 

F(k), = L: f(j)W-ik 

j=O 

N-l 

f(j) = ..!.. L: F(k) Wik 

N k=O 

(la) 

(lb) 

where w = e27fI
/

N
, the principal Nth root of unity. 

The functions f and F are said to form a discrete 

·Work reported herein was supported (in part) by Project 
MAC, an M.I.T. research program sponsored by the Advanced 
Research Projects Agency, Department of Defense, under Office 
of Naval Research Contract Number Nonr-4102(Ol). 

tTo be able to use this procedure the period must be a highly 
composite number. 
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periodic complex transform pair. Both functions 
are of period N since 

F(k) = F(k + 'cN) (2a) 

and 

f(j) = f(j + cN) (2b) 

TRANSFORM PRODUCTS 

Consider two functions g and h and their trans­
forms G and H. Let G and H be multiplied to form 
the function C according to Eq. (3), 

C(k) = G(k) x H(k) (3) 

and consider the inverse transform c(j). c(j) is 
given by Eq. (4) 

N-l 

c(j) = ..!.. L: g(J)h(j - J) 
N J=O 

N-l 

= ..!.. L: h(J)g(j - J) 
N J=O 

(4) 

as a sum of lagged products where the lags are per­
formed circularly. Those values that are shifted 
from one end of the summation interval are circu­
lated into the other. 

The time required to compute c(j) from either 
form of Eq. (4) is proportional to N 2

• If one com­
putes the transforms of g and h, performs the multi­
plication of Eq. (3), and then computes the inverse 
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transform of C, one requires a time given by Eq. (5) 

l~irc = 3 kCI Nlog2 N + kmN 

= k circ N(lOg2 N + Il) (5) 

where k circ = 3kcl , Il = km/ kf(:irc, and kmN is the time 
required to compute Eq. (3). Of course this assumes 
N is a power of 2. Similar savings would be possible 
provided N is a highly composite number. 

APERIODIC CONVOLUTION 

The circular lagged product discussed above can 
be alternately regarded as a convolution of periodic 
functions of equal period. Through suitable modifi­
cation a periodic convolution can be used to com­
pute an aperiodic convolution when each aperiodic 
function has zero value everywhere outside some 
single finite aperture. 

Let the functions be calledd(j) and s(j). Let the 
larger finite aperture contain M discrete points and 
let the smaller contain N discrete points. The result 
of convolving these functions can be obtained from 
the result of circularly convolving suitable aug­
mented functions. Let these augmented functions 
be periodic of period L, where L is the smallest 
power of 2 greater than or equal to M + N. Let 
them be called da(j) and sa(j) respectively, and 
be formed as indicated by Eq. (6). 

fa(j) = f(j + io) 0 ~ j ~ M - 1 

= 0 

= fa(j + nL) 

M~j~L-I 

otherwise 

(6) 

wherejo symbolizes the first point in the aperture of 
the function in question. The intervals of zero 
values permit the two functions to be totally non­
overlapped for at least one lagged product even 
though the lag is a circular one. Thus, while the re­
sult is itself a periodic function, each period is an 
exact replica of the desired aperiodic result'. 

The time required to compute this result is given 
in Eq. (7). 

Taper = k circ L(log2 L + Il) (7) 

where M + N ~ L < 2(M + N). For this case, 
while L must be adjusted to a power of 2 so that the 
high-speed Fourier transform can be applied, no re­
strictions are placed upon the values of either M 
orN. 

SECTIONING 

Let us assume that M is the aperture of d(j) and 
N is that of s(j). In situations where M is con-

siderably larger than N, the procedure may be 
further streamlined by sectioning d(j) into pieces 
each of which contains P discrete points where 
P + N = L, a power of 2. We require K sections 
where 

K = least integer ~ M / P (8) 

Let the ith section of d(j) be called d;(j). Each sec­
tion is convolved aperiodically with s(j) according 
to the discussion of the previous section, through 
the periodic convolution of the augmented sections, 
da;(j) and sa(j). 

Each result section, r;(j), has length L ,= P + N 
and must be additively overlapped with its neigh­
bors to form the composite result r(j) which will 
be of length 

KP + N ~ M + N (9a) 

If ri(j) is regarded as an aperiodic function with 
zero value for arguments outside the range 0 ~ j 
~ L - 1, these overlapped additions may be ex­
pressed as 

K-l 

r(j) = L r;(j - iP) j = 0,1, ... KP + N - 1 
i=O 

(9b) 

Each overlap margin has width N and there are 
K - 1 of them. 

The time required for this aperiodic sectioned 
convolution is given in Eq. (10). 

T sect = kcl(P + N)log2(P + N) 
+ 2Kkcl (P + N)log2(P + N) 
+ Kkaux(P + N) 

= k ct (2K + 1) (P + N)log2(P + N) 
+ Kkaux(P + N) 

~ k cl (2K + 1) (P + N) [log2(P + N) + ~~I] 
(10) 

where Il' = kaux/2kcl. Kkaux(P + N) is the: time re­
quired to complete auxiliary processes. These 
processes involve the multiplication~ of Eq. (3), the 
formation of the augmented sections daj(j), and the 
formation of r(j) from the result sections r;(j). 1For 
the author's realization in which core memory was 
used for the secondary storage of input and output 
data, Il' was measured to be 1.5, whkh gives 
kaux = 3k c1 ~ 300 Ilsec. If slower forms of auxiliary 
storage were employed, this figure would be en­
larged slightly. 

For a specific pair of values M and N, P should 
be chosen to minimize T sect. Since P + N must be a 
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power of 2, it is a simple matter to evaluate Eq. (10) 
for a few values of P that are compatible with this 
constraint and select the optimum choice. The size 
of available memory will place an additional con­
straint on how large P + N may be allowed to be­
come. Memory allocation considerations degrade 
the benefits of these methods when N becomes too 
large. In extreme cases one is forced to split the 
kernel, s(j), into packets, each of which is con­
sidered separately. The results corresponding to all 
packets are then added together after each has been 
shifted by a suitable number of packet widths. For 
the author's realization N must be limited to occupy 
about VB of the memory not used for the program or 
for the secondary storage-of input/output data. For 
larger N, packets would be required. 

COMBINATION OF SECTIONS IN PAIRS 

If both functions to be convolved are real instead 
of complex, further time savings over Eq. (10) can 
be made by combining adjacent even and odd sub­
scripted sections da;(j) into -complex composites. 
Let even subscripted da;(j) be used as real parts and 
odd subscripted da;+ I (j) be used as imaginary parts. 
Such a complex composite can then be transformed 
through the applicatitm of Eqs. (la), (3), and (lb) 
to produce a complex composite result section. The 
desired even and odd subscripted result sections 
r;(j) and rl+ I (j) are respectively the real and imag­
inary parts of that complex result section. 

This device reduces the time required to perform 
the convolution. by approximately a factor of 2. 
More precisely it modifies K by changing Eq. (8) to 

K = least integer ~ M / 2P (11) 

For very large numbers of sections, K, Eq. (10) 
can be simplified to a form involving M explicitly 

instead of implicitly through K. That form is given 
in Eq. (12) 

Tfast ~ k ct M«P + N)/P) [log2 (P + N) + #t'l (12) 

Since it makes no sense to choose P < N, for simple 
estimates of an approximate computation time we 
can write 

EMPIRICAL TIMES 

The process for combined-sectioned-aperiodic 
convolution of real functions described above was 
implemented in the MAD language on the IBM 
7094 Computer. Comparisons were made with a 
MAD language realization of a standard sum of 
lagged products for N = 16, 24, 32, 48, 64, 96, 128, 
192, and 256. In each case M was selected to cause 
Eq. (11) to be fulfilled with the equal sign-. This step 
favors the fast method by avoiding edge effects. 
However, P was not selected according to the op­
timization method described above (under "Section­
ing Convolution"), but rather by selecting L as 
large as possible under the constraint. 

In L ~ PIN (14) 

This choice can favor the standard method. 
Table 1 compares for various N the actual com­

putation times required in seconds as well as times 
in milliseconds per unit lag. Values of M, K, and L 
are also given. 

Relative speed factors are shown in Table 2. 

ACCURACY 

The accuracy of the computational procedure 
described above is expected to be as good or better 

Table 1. Comparative Convolution Times for Various N 

N 16 24 32 48 64 96 128 192 256 

M 192 208 384 416 768 832 1536 1664 3584 
K 2 1 2 1 2 1 2 1 1 
L 64 128 128 256 256 512 512 1024 2048 

Time in seconds 

Tstandard 0.2 0.31 0.8 1.25 3.0 5.0 12 20 48 
T fast 0.3 0.4 0.6 0.8 1.3 1.8 3.0 3.8 8'.0 

Time in milliseconds per unit lag 

Tstandard/ M 1.0 1.4 2.0 3.0 3.9 6.0 7.8 12.0 13.3 
Tfast/M 1.5 1.9 1.5 1.9 1.6 2.1 1.9 2.2 2.2 
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Table 2. Speed Factors for Various N 

N 16 24 32 48 64 96 
Speed factor i .a. .i 1.5 2.3 2.8 4 3 

* Estimated values. 

than that obtainable by summing products. Specific 
investigations of the accuracy of the program used 
to accumulate the data of Tables 1 and 2 are in 
process at the time of this writing. The above ex­
pectations are fostered by accuracy measurements 
made for floating-point data on the Cooley-Tukey 
procedure and a standard Fourier procedure. Since 
the standard Fourier procedure computes summed 
products, its accuracy characteristics are similar to 
those of a standard convolution which also com­
putes summed products. Cases involving functions 
of period 64 and 256 were measured and it was dis­
covered that two Cooley-Tukey transforms in cas­
cade produced respectively as much, and half as 
much, error as a single standard Fourier transform. 
This data implies that the procedures disclosed here 
may yield more accurate results than standard 
methods with increasing relative accuracy for 
larger N. 

APPLICATIONS 

Today the major applications for the computa­
tion of lagged products are digital signal processing 
and spectral analysis. 

Digital signal processing, or digital filtering as it 
is sometimes called, is often accomplished through 
the use of suitable difference equation techniques. 
For difference equations characterized by only a few 
parameters., computations may be performed in 
times short compared to those required for a stand­
ard lagged product or the method described here. 
However, in some cases, ·the desired filter char­
acteristics are too complex to permit realization by 
a sufficiently simple difference equation. The most 
notable cases are those requiring high frequency 
selectivity coupled with short-duration impulse 
response and those in which the impulse response is 
found through physical measurements. In these 
situations it is desirable to employ the techniques 
described here either alone or cascaded with dif­
ference equation filters. 

The standard methods for performing spectral 
analysis 2 involves the computation of l~gged prod­
ucts of the form 

N-j-l 

F(j) = L x(.()y(J + j) (15) 
}=o 

128 192 256 512 1024 2048 4096 
4.0 5.2 6 13* 24* 44* 80* 

which, in turn, after weighting by so-callc!d spe:ctral 
windows are Fourier transformed into power spec­
trum estimates. Speed advantages can be gained 
when Eq. (15) is evaluated in a manner similar to 
that outlined above (under "Aperiodic Convolu­
tion") except that in this case L is only required to 
exceed N + 0 where 0 is the number of lags to be 
considered. This relaxed requirement on L is pos­
sible because it is not necessary to avoid the effect 
of performing the lags circularly for all L lags but 
rather for only 0 of them. An additional constraint 
is that 0 be larger than a multiple of log2 L. The 
usual practice is to evaluate Eq. (15) for a number of 
lags equal to a substantial fraction of N. Since! the 
typical situation involves values of N in the hun­
dreds and thousands, the associated savings may be 
appreciable for this application. 

Digital spatial filtering is becoming an increas­
ingly important subject.3

•
4 The principles discussed 

here are easily extended to the computation of 
lagged products across two or more dimensions. 
Time savings depend on the total number of data 
points contained within the entire data space in 
question, and they depend on this number in a 
manner similar to that characterizing the one­
dimension case. 
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A COMPUTER PROGRAM TO TRANSLATE 
MACHINE LANGUAGE INTO FORTRAN 

William A. Sassaman 
TR W Systems, Inc. 

Redondo B'each, California 

This paper describes a computer program which 
translates machine language into FORTRAN. The 
program was developed at TRW, Inc., to aid in the 
conversion process from our existing equipment to a 
third generation computer. The translator was 
written to be a real help to people personally in­
volved in conversion, and is intended to be an op­
erational program rather than a pure research 
project. 

As the title of this paper indicates, the output 
language is FO R TRAN . Since the translator de­
sign is not very dependent upon output language, 
this appears to be arbitrary. FORTRAN was 
chosen since it is a standard. It is well defined and 
runs on both our second and third generation com­
puters. It has deficiencies but they are known. It 
was desired to' go to a problem-oriented language 
to increase future human productivity and therefore 
machine language output was not encouraged. In 
addition, compiler writers expand considerable ef­
fort to obtain efficient machine language codes and 
duplicating this effort appears a waste. Anyone who 
really wants machine language can get it as a by­
product of the FORTRAN compilation and hand­
massage it to any degree of perfection he desires. 
If the problem is so complex that no FORTRAN 
translation is possible, then a completely human 
effort appears in order. 

The input is symbolic assembly language for the 
IBM 7000 series computer operating under a pri-
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vately developed execution supervisor. The sym­
bolic media was chosen over the binary machine 
language since the symbolic cards make it easier to 
distinguish between the various types of data, allow 
macro identification and contain otherwise useful 
information. Since continuity of usage is expected 
between the original and translated versions of the 
program, it appears highly desirable to maintain 
much of the symbolic notation. 

In my original thinking of the translational proc­
ess, I was impressed with the concept that actual 
translation was, in general, a clerical process rather 
than an inventive one. That is, the programmer fol­
lowing the assembly listing figures out from it (and 
any documentation) what the original programmer 
was doing and codes this in the appropriate lan­
guage for the new machine. Although often it is 
necessary to have a knowledge of the problem being 
solved, much of the time the translating program­
mer operates as a clerical symbol manipulator. It 
is true that the rules for the symbol manipulation 
are complex, but the task is basically clerical and 
therefore subject to automation. In the translator 
I have tried to assign these simple clerical tasks to 
the machine and allow the human more time to per­
form in the areas where he can contribute the most. 

From a technical viewpoint, it is probably im­
possible to write a program which will translate all 
of one computer program into a similarly efficient 
program for a second computer. However, as with 
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many mathematical processes, it is feasible to ap­
proach the solution as a limit, such that a maximum 
automated transfer of source programs may be ef­
fected with minimal cost and human intervention. 
The task of writing a translation program has as its 
major obstacles the definition of the rules for trans­
lation. It would seem unlikely that anyone could a 
priori define all the rules. Therefore a learning ap­
proach has been defined to allow the development 
of the model as experience is gained in translation. 

I did not try to design for a 100% translation. 
Input/output, functions, subroutines, standard­

ized routines, etc., need not be translated. Further 
the conversion effort is not by nature one that may 
be completely automated. During the process of 
converting a program, decisions are made as to the 
plan of attack during conversion, i.e., the human 
programmer, who has cognizance of the physical 
problem being solved and the capabilities and short­
comings of the program, decides which areas are to 
be rewritten, which areas are to be deleted, which 
areas will be replaced by system subroutines or 
standardized routines, and finally the remainder is 
to be translated (or transliterated if you wish). It 
is rather apparent that these decisions are probably 
not the sort to be made by the computer. Further, 
the rewriting or regrouping of computations must 
also be performed by humans. The remaining area, 
translation, is a potential area for automation. Of 
course, I try to do a good job' in that which is trans­
lated; however, the law of diminishing returns dic­
tates that the translational rules limit one to about 
90% of the code. 

Further, I concluded that the source machine lan­
guage program contains a great deal of information 
and the translator, retrieving and organizing this 
information could perform a very valuable service 

. in documentation as well as· aiding the conversion 
effort. 

The translator during translation attempts to op­
erate as the human does. The. programmer in trans­
lation recognizes in coding not only the individual 
instructions but also, and more specifically, prob­
lem-oriented functions, which may be one or more 
machine language instructions. It is the purpose of 
the translator then to recognize these functions with 
their terminals as well as to gather and organize the 
program information pertaining to the translational 
rules. The functions are gathered into statements 
as appropriate before output. 

Many of these functions are easily recognizable in 
the machine language code. A simple example of 
machine language instructions which are easily 

recognizable as functions are arithmetk codes. 
These may easily be built up into larger statements. 
One of these arithmetic statements consists of a 
string of functions appropriately connectl!d. The 
translator inserts a right parenthesis prior to each 
multiplication or division, and a left parenthesis 
following each square root or other function. A 
similar left or right parenthesis must be entered at 
the start of the statement. The statement is nor­
mally terminated by a store instruction. The ad­
dress of this store instruction is obviously the left 
side of the FORTRAN statement and followed by 
an equal sign. The method of translating addresses 
illustrates the buildup of rules for translation. Con­
sider the coding: 

l.) CLA A 
2.) AXT 10,4 
3.) 0 FAD A + 1 
4.) FOP B,4 
5.) STQ C + 10,4 
6.) TIX 0,4,1 

The first A is obviously translated as A. Since A 
A (1), A + 1 must be translated as A (2). Instruc­
tions three through six are translated as a DO 1000p 
using the dummy variable NO X 4. Since it is 
subject to index register modification and has no ad­
ditive address, the B is assumed to be a vector run­
ning backwards in storage and is translated as a [.or­
ward running FORTRAN array B (NO X 4). The 
C is assumed to be forward running and is trans­
lated as C (NO X 4 + 10 - 10), where the tc!ns 
cancel out leaving C (10). Obviously the 0 is trans­
lated as a FORTRAN numeric statement number. 
Functions may be more complex and require more 
complex rules for translation. A good example of 
these are the programmer tricks of using instruc­
tions for something the manufacturer never in­
tended; for the IBM 7000 series, a PXO 0, 0 will 
clear the accumulator; a LRS of zero will impose 
the sign of the accumulator into the ~Q, etc. Such 
translation is analogous to the handling OIf idiOims 
and slang in human language outside of a word for 
word grammatical translation. 

The last bit of philosophy in the design of the 
translator is the target. The programs to be con­
verted are engineering applications involving alge­
braic algorithms. These algorithms are easily de­
fined and form the basis of the translator rule set. 

As a result of these thoughts, the translator was 
designed to intimately interface with and operate 
under the supervision of the human us(~r. The 
human describes the rules for the particular pro-
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gram involved via control cards, defines areas to be 
translated and criteria for recognition of areas of 
coding to be translated as FORTRAN subroutines. 
Operating with these rules and the basic set, the 
computer then performs any initial translation. 
This initial attempt normally tells the user what 
tasks cannot be handled in FO R TRAN, indicates 
the need for additional rules such that the translator 
will give a better translation. The deck is then re­
submitted to the computer. The human examines 
the computer output and either edits it to achieve 
the desired code or redefines the rules or control 
cards and translates over again. This learning proc­
ess and human interface dictates the need for a 
system to afford maximum convenience and ease of 
communication to the user. Although this would 
appear to be an ideal on-line application, the sched­
ule, hardware and manpower available dictated the 
utilization of a typical centralized large-scale com­
puter. 

OPERATION 

The translator's functions are to retrieve informa­
tion from the source deck, organize this informa­
tion, merge it with other data, apply the rules for 
translation and provide interfaces with the human 
during the process. This is not done on-line, al­
though the nature of the problem indicates an on­
line solution might enhance the process. In order 
to accomplish these functions, the translator is de­
signed in six separate (and recoverable) phases. 
The main task of each of these phases is: 

Phase I Separate the program into log-
ical groups. 

Phase II Handle parameters - data 
types, dimensions, COM-
MON, initial values. 

Phase III Core map of symbol alloca-
tion and overlay. 

Phase IV Translation of macros. 
Phase V Translation into FORTRAN, 

routine by routine. 
Phase VI Editing and merging. 

Although these are the main functions, the phases 
have additional tasks because of convenience of 
execution. In order to explain the process, I will go 
through it phase by phase, explaining what is done 
and where the information comes from. 

Phase I is the initial phase whose primary task is 
to divide the program into logical groups of man-

ageable size. The input to the translator is the 
source symbolic card deck, or a tape containing the 
card images. The input is read, basically a card at a 
time, and broken into the following categories. 

• Areas to be treated as FO R TRAN sub-
routines (tape) 

• Data and parameters (tape) 
• Symbolic equivalence (core/cards) 
• Macro skeletons (tape) 

In order to make these distinctions, the translator 
must know the algorithms for separation. The 
BEG IN pseudo operation is recognized as the start 
of a routine and the terminus of a previous routine. 
Origin and transfer cards are assumed to signal the 
end of a routine. Decimal, octal and Hollerith data 
are presumed to be in the data domain unless they 
appear to be in a routine and do not have a sym­
bolic location assigned to them. The programmer 
is allowed to enter control cards in the data stream 
to allow the programmer to label name COMMON 
in the output stream. Each card included in a sub­
routine area is assigned a FORTRAN location 
number. 

In order to build up an initial table of floating 
point (real) symbols, the address of each floating 
point instruction is saved as well as the address of a 
loading instruction immediately before it or a stor­
ing instruction immediately following it. Each sym­
bolic name is saved, in sequence, with all origin, 
intermediate transfer cards and the final end card. 
The address of the first intermediate transfer card 
(if none, the address of the end card) is saved as the 
point at which computation will be initiated. 

Phase II is designed to handle data and param­
eters. The list of floating point symbols generated in 
Phase I is organized and checked for redundancy. 
The translator then reads the data and parameter 
tape and compares the parameter symbolic name to 
the built up symbol table equivalences. The symbol 
is then checked to see whether it is an allowable 
FORTRAN symbol (alphanumeric, initiated, by a 
letter), what the type is, and what the dimension is. 
The translator tries to define a new symbolic refer­
ence for illegal symbols, expands the symbol table of 
equivalences and builds up a table of real and 
integer symbols not conforming to the FORTRAN 
rules. Every attempt is made to keep the original 
symbol as it is assumed to be mnemonic. From the 
contents of the data card. image, a data statement is 
generated if initial values are assigned to the pa­
rameter. The name and dimension are included in 
the name COMMON block as assigned by the 
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translator or the programmer if he has such input 
information. Upon termination of a name COM­
MON block, the card images are saved on an inter­
mediate tape with the images of the type statements. 

Upon processing all datq cards, the translator 
calls the computation, using:the address of the end 
card (or first intermediate transfer card). A listing is 
then made of all parameters with their original 
symbolic name, the corrected name, if any, and the 
comments from the data card. 

Phase III (storage allocation core map and over­
lay structure). The program reads the tape con­
taining the above information, compares it to the 
equivalence table and breaks it ino n strings. These 
strings are then printed in n columns with origins 
matched on the vertical scale. 

Phase IV (macro translation). Macros are cur­
rently translated as functions, if they can be, or are 
ignored. Details of translation are similar to the 
translation of subroutines. 

Phase V (translation into FORTRAN subrou­
tines). This is what most people consider the heart 
of translation. The card images of the area to be 
converted an! read into core from the tape storage. 
Each card is assigned a sequential external formula 
number. Those which are not used will be sup­
pressed at output time. An initial pass is made to 
find the address of all transfer instructions and to 
save the concomitant FORTRAN numeric loca­
tion. Locations which are transfers, or transferred 
to, are appropriately flagged. New numeric loca­
tions are assigned for undefined transfer addresses. 
Special flags are set for the addresses of TIX instruc­
tions, TXI and TXH (under: certain circumstances 
index loading instructions, address modification, 
etc.). 

The actual translation is now begun. The transla­
tor is broken into two alternate paths here: the first 
being a search for instructions or functions that 
initialize a statement (a statement being merely a 
string of appropriately connected functions); the 
second being a search for functions that sustain or 
terminate a statement. In general, the translator 
scans the coding until it recognizes the start of a 
statement; then it switches to the terminal branch 
where it builds up the function into a statement 
until some terminating condition is reached. If on 
the initial scan, a sustaining type instruction were 
encountered, the translator initiates an appropriate 
function to start things off and transfers to the 
terminal branch. Similarly if in the terminal branch 
the translator finds an initiating statement, it sup­
plies a terminal function to complete the statement. 

being processed, tries to search out particular pro­
grammer tricks since something "different" is hap­
pening, and then transfers to the initial branch. 
Loading, storing and transfer instructions, and in­
structions which are transferred to, are samples of 
what are considered to start or end a s1tateml~nt. 

CALL type instruction (TSX) are considered to 
start or end a previous statement and start a new 
one unless the translator can determine that they are 
replaceable by a built-in arithmetic function or 
other- functions, in which case the function is in­
cluded in the statement being processed and the 
translator continues on the terminal branch. Ar­
bitrarily terminated or initiated statements are 
stored in or picked up from "dummy" accumulaltor, 
MQ, registers, etc. 

The translator on either branch attempts to 
search out TIX loops, where a register is counted 
down from n to 1 or TXI loops where a register is 
incremented from 0 to n and translates as DO 
loops nested to a level of 7; if all 7 index registers 
are used and the index registers are not saved in­
ternally. A DO statement is inserted just prior to 
initiation of the loop. The loop is terminated by a 
dummy CONTINUE. The pseudo symbol NOXA 
is used to represent index register A. The algo­
rithm for conversion of parameter addresses while 
in a TIX loop deducts the initial value of the index 
register from any associated address. Note: there is 
a difference in the assignment of vectors in ma­
chine language programs and FO R TRAN, each 
considering the other backward. The algorithm 
attempts to cover the difference. 

As previously mentioned, the easiest instructions 
to translate are the arithmetic instructions where 
each operation and address is added to the right­
hand end of the statement being generate:d. For 
multiplication and division a pair of parentheses 
must be added, one at each end before the operator 
and operand are saved. For functions, a simHar 
pair of parentheses must be added except of course, 
the functions appear on the left, before the initial 
parenthesis. A storing type instruction adds an 
equal sign on the left and the address of the operand 
to the left of that. Translated output statements 
are built up in a table, word by word, until a 
terminating condition is reached. The statement is 
compacted by reducing spurious blanks, continua­
tion numbers are assigned if more than one card 
image is required; and the images are written on a 
blocked output tape with an alter number for each 
card image. If it has been referenced, th,e FOR­
TRAN numeric location is also written out on the 
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first card image. At this point an almost side by side 
listing of the original coding and the translated 
code are printed for the user. 

By actually scanning, ins~ruction by instruction, 
while the whole subroutine is in core, the translator 
can look for particular sequences of coding which 
represent a special case. Much of the detail coding 
to effect these rules is lengthy and tends to be repeti­
tive so that many subroutines are used in the areas 
of duplication. The coding of the translator is all 
very straightforward, and often tedious. 

Phase VI allows the user to edit the translator 
output from the previous phases which consisted of 
an almost side by side listing of the original and 
translated coding. Also used is the tape which con­
tains all of the previous translation including the 
alter numbers. It is the purpose of Phase VI to al­
low the editing of this tape by use of the alter num­
bers and to produce a new tape and/or a new listing 
and/or a punched card deck. The editing is per­
formed by a series of control cards which allow the 
user to add or delete cards from the tape or to juggle 
large blocks from one place on the tape to another, 
without actually shuffling through the cards. 

To maximize usefulness, the output tape may be 
fed into the FORTRAN compiler at this time with­
out the submittal of a separate run or punching 
the cards. 

USER INPUTS 

The recipe for elephant stew traditionally starts 
with "clean one freshly killed elephant." Similarly 
the user's input starts with the program to be trans­
lated. This may be in the form of symbolic source 
cards or blocked card images on a tape. In gen­
eral, the areas for which translation is not desired 
are deleted from the deck. This deck is preceded 
by a control card that tells the translator whether 
this is a SMASHT, SCAT or IBMAP deck and 

whether cards or tape is expected. A number of 
EQU cards may be input by the user to assign 
names to illegal symbols, rather than accept the 
translator's naming. REAL and FIXED define 
the type of data these operations refer to when the 
translator has insufficient information to arrive at 
the appropriate conclusion. Control cards define 
the subroutines of function calling sequences for 
translating the TSX address. The rules for separa­
tion of areas into subroutines may be defined either 
by special coding in the translator or insertion of 
dummy control cards. Special algorithms for 
translational rules are coded into the translator at 
this time. The run is now ready for submittal. 

Upon return of the run, the data previously fur­
nished may be modified and the appropriate proc­
esses repeated or the user may desire to continue 
into the editing phase and obtain an output deck. 

SAMPLE TRANSLATION 

Translation is such a complex functiDn that no 
all-encompassing sample is feasible in such a short 
period of time. 

CONCLUSION AND SUMMARY 

The translator described here is not a perfect tool 
- it does not translate everything nor" is everything 
it translates perfect. It does not handle dynamic 
programming, i.e., where coding is actually charged, 
nor does it handle indirect addressing. Patently it 
does not translate into FORTRAN those things 
FORTRAN cannot do. Complex and double pre­
cision arithmetic are not attempted. It is designed 
to relieve the programmer of much of the clerical 
task of translation and to allow the user input into 
the translational process and absolute control of the 
final output. For those applications we have used it 
for, it has performed rapidly and effectively. 
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INTRODUCTION 

Implementing a compiler, as everybody knows, is 
not an easy task. There have appeared in the past 
few years a number of compiler writing systems.1

-
3 

One of these is Feldman's "Formal Semantic Lan­
guage" (FSL}.4,5 In Feldman's thesis the assertion 
is made that FSL is potentially a powerful compiler 
writing system. The Formula Algol compiler6 is a 
large, nontrivial compiler incorporating several new 
language features, and the use of FSL to implement 
it constitutes the first significant test of the power 
of FSL. We find Feldman's assertion is justified, 
and the ideas he set forth in theory have been found 
to be successful in practice. 

Some of the more important advantages of FSL 
that we have found are as follows. 

First, the amount of time and programming effort 
required to implement a compiler such as the 
Formula Algol compiler is reasonably small (on the 
order of a man-year). 

*The research reported here was supported by the Advanced 
Research Projects Agency of the Department of Defense under 
Contract SD-146 to the Carnegie Institute of Technology. 
R. Iturriaga is partially supported by the National University of 
Mexico and the Instituto Nacional de la Investigacion Cientifica. 
T. A. Standish is a National Science Foundation graduate 
fellow. 
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Second, because FSL is a high-level language in­
corporating certain power of expression, the task of 
describing compiling processes is sufficiently man­
ageable and easy that experimental flexibility is 
achieved. By this we mean that we were able to 
experiment with a variety of organizations of parts 
of the compiler in order to select those with desired 
properties. In particular, we were able to experi­
ment with the syntax of Formula Algol without 
appreciably changing its semantics. We could also 
change its semantics without appreciably changing 
the syntax. Thus we were able to use FSL as a tool 
to improve the source language and at the same time 
to improve its implementation by finding the best 
compilation techniques. In contrast to the case of a 
hand coded compiler, we were not forced to make 
any organIzational commitments which were of pro­
hibitive expense to change. This is the essential 
reason underlying the property of flexibility, and 
flexibility makes FSL a good tool for a program­
ming language designer. 

A third feature of using FSL to write a compiler 
is that it is a rare counterexample to the familiar 
tradeoff between efficiency and generality. The use 
of the Floyd-Evans production language 7,8 permits 
one to write an efficient syntax analyzer with 
sophisticated error recovery, and a compiler written 
in FSL not only is reasonably efficient but if written 
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properly can produce efficient object code. For ex­
ample, the Formula Algol compiler produces for 
some classes of expressions more efficient code than 
the current handwritten Algol compiler in use at 
Carnegie Tech. 

A fourth feature of FSL is, that it is a language 
sufficiently general to allow several of the better­
known useful compiling techniques to be expressed 
and utilized. For example, THUNKS9 were used to 
implement parameter calls In procedures, dope 
vectors 10 were used to implement array storage and 
accessing, and the use of symbol table techniques 
was made easy by the fact that tables are primitive 
in the language. The reason; for this generality is 
that FSL contains a powerful set of primitives that 
permit a user to express a large variety of compiling 
mechanisms directly by combination of these primi­
tives. This feature also permitted us to invent sev­
eral new variations on known 'compiling techniques 
which were well adapted to the problem at hand. 

A fifth property for which, at present, we can 
produce no real evidence attes~ing to its usefulness, 
is that a compiler written in FSL is given a formal 
description. This means that in contrast to hand­
written compilers we are provided with a framework 
in which we can begin to approach the problems of 
proving that compilers recognize given source lan­
guages correctly or that they compile correct code. 
In the case of handwritten compilers these questions 
are unthinkable. As an example of the kind of ap­
proach that can be made once. a formal description 
is given we cite a doctoral thesis by Evans, II in 
which certain properties of the production language 
are proven. 

Finally, the activity~ of implementing Formula 
Algol had a feedback effect on the design and im­
plementation of FSL itself.12 Modifications were 
made easy by the fact that FSL is in effect compiled 
in itself and thus possesses the ~ame organization as 
the compilers it produces. For example, an accumu­
lator symbol was introduced as a variable to allow 
the user to deal formally with the use of the accumu­
lator. This represents a small change in the original 
philosophy of FSL, which waS designed with ma­
chine indeperidence in mind. It is, however, a small 
change with far-reaching consequences. 

With the exception of the property of the useful­
ness of formal descriptions of compilers, we will 
present later in this paper concrete evidence sup­
porting each of the claims we have made in this 
introduction. Our first task, however, is to explain 
briefly the operation of the compiler writing system. 

A BRIEF EXPLANATION OF 
THE COMPILER WRITING SYSTEM 

The compiler writing system uses two formal 
languages to describe a compiler. First, a syntax 
analyzer for the source language is written as a pro­
gram in the production language. This program is 
processed by a translator called the production 
loader producing as output a set of driving tables 
which are stored for later use. Second, a collection 
of semantic routines is defined by writing a program 
in the formal semantic language. Another translator 
called the semantic loader then translates this collec­
tion of routines into a set of tables and a block tDf 
code, which code is compiled for use as a part of the 
compiler itself. This output is also intermediate and 
is stored for later use. 

The compiler itself (Fig. 1) is another program 
which reads in both the syntax tables and the 
semantic tables and code, and by using thesl~ trans­
lates a source language program into an objt!ct pro­
gram. For the sake of efficiency a preliminary 
lexical transformation is performed on source lan­
guage text as it is read in by a routine called the 
subscan. This routine recognizes the primary units 
of the language which are operators, fI~served 

words, identifiers, and constants. These primary 
units of the source language are not fixed by the 
system but are declared in the production languagc~. 
The subscan is a closed routine called by statements 
in the production language. Each time it is called it 
returns with the next primary unit in the source 
language string. As each identifier is recognized by 
the subscan its print name is stored in a table unless 
it has been entered previously, and an integ,er rep­
resenting its relative address in the table of print 
names is transmitted. This integer functions from 
that time on as the internal name of the identifier. 
Abbreviations of reserved words and of opc~rators 
are transmitted directly, and constants whil:!h arle 
too long to transmit directly are saved in at tabl.~ 

and their locations are transmitted instead. 
The fundamental mechanism in the compiler is a 

push-down stack of ordered pairs (a, fJ) where a is, 
a primitive syntax unit and where fJ holds semantic; 
information and is called the "description of a." 
Syntactic analysis of the source language proceeds 
by a sequence of manipulations of this stack.. Tht! 
production language is used to define these manipu .. 
lations and it consists of a sequence of productions 
of the following form: 



THE FORMAL COMPILER WRITING SYSTEM FSL TO IMPLEMENT A FORMULA ALGOL COMPILER 243 

PRODUCTIONS DIFINING 

SYNTAX ANALYZER OF 

SOURCE lANGUAGE 

PROCESSED BY 

PRODUCTION 

LOADER 

SYNTAX 

TAILES 

~OURCE LANGUAGE INPUT) 

(SU8SCAN 

COMPILER 

EXECUTIVE 

THIS lOX IS 

THI COMPILER. 

... ", ____ J 

SEMANTIC 

SEMANTIC ROUTINES 

WRITTEN IN 'SL. DIFINING 

SEMANTICS O. 

TAlLES 

AND 

I-----------t-. COMPILED 

PROCESSED BY 

SEMANTIC 

LOAD.II 
SOURCE LANGUAGE 

( OIJECT PIOGRAM INPUT 

~ 

CODE 

.OR 

COMPILE 

TIME 

ROUTINES 

I 
I~---___ --~------.--\-( OBJECT CODE OUTPUT) 

O~~:CCTUT;::G::M I 
LOADED IEFORE 

• OIJECT PROGRAM 

(OlnCT PROGRAM OUTPUT 15 EXECUTED 

RUN TIME 

ROUTINES 'OR 

SOURC, LANGUAGE 

Figure 1. Flow of systems. 

LABEL L5 L4 L3 L2 L I I -- R3 R2 R I 
I ACTION *LINK 

where the appearance of everything except L I and 
the two vertical bars is optional. Each production 
tests for the presence of a particular configuration 
among the topmost syntactic units in the stack by 
attempting to match the pattern given by L5 L4 L3 
L2 LI against them. If a match. is found and if 
-- R3 R2 RI occurs in the production then the 
configuration matching L5 L4 L3 L2 L I is trans­
formed into the configuration represented by R3 
R2 Rl. Then the ACTION is executed. If -- R3 
R2 R 1 is absent and a match is found then the 
ACTION is executed and no transformation is per­
formed. The only three actions we will discuss in 

this paper are the actions EXEC, SUBR, and RE­
TURN. The actions SUBR and RETURN will be 
explained later. The action EXEC N, with param­
eter N, is a call to the semantic routine numbered N. 
This semantic routine may, among other things, 
alter the descriptions of the syntactic units involved 
in the stack transformation described by the pro­
duction. For example, the description of an identi­
fier may consist of the address of the run time loca­
tion assigned to the variable that identifier repre­
sents. The description may also bear type bits tell­
ing the type of the variable (e.g., real, integer, 
formula}. After the action is executed the link is 
examined to see ifit is prefixed by a *. If it is then 
the subscan is called" and the next primary syntactic 
unit in the source language string is recognized and 
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placed on top of the stack .. Then control passes to 
the production whose label is given by the link. If 
a * does not precede the link then subscan is not 
called and control changes as in the previous case. 
In the event that the pattern L5 L4 L3 L2 Ll did 
not match the configuration of syntactic units at the 
top of the stack control passes to the next produc­
tion in sequence. Also if the link is blank the action 
on the next line is executed and this process repeats 
until a nonblank link is found. 

A sequence of productions may be organized into, 
a closed subroutine by use of the actions SUBR and 
RETURN. The first production in such a sequence 
must be labeled and its label, say L, is the name of 
the closed subroutine. To call the closed subroutine 
starting at label L we execute the action SUBR L. 
When we wish to return from the subroutine we 
execute the action RETURN and control returns to 
the link of the production that called the subroutine 
originally. The control mechanism contains a push­
down stack permitting recursive calls on the closed 
subroutines. 

The general structure of the syntax analyzer for 
Formula Algol is as follows. The major units of the 
source language, such as statements and expres­
sions, correspond directly to subroutines in the pro­
duction language, which s~broutines analyze the 
given major units. For example, there is a produc­
tion subroutine called the "statement scanner," 
which is called every time a statement is expected in 
the source language. There is also a production 
subroutine called the "expression scanner," which 
processes expressions of all types and which is called 
every time an expression is expected in the source 
language. The statement scanner may call the ex­
pression scanner and, in fact, corresponding to the 
occurrence in the source language of statements 
which contain other statements as parts, the state­
ment scanner may call itself. The flow of control 
through the syntax analyzer is governed by the 
structure of the source language program being 
analyzed. It is roughly true. that the structure of 
such large production subroutines as the statement 
scanner and the expression scanner is the following. 
Upon entrance to the subroutine the first few char­
acters of an expected source language construction 
are subjected to a sequence of tests which separate 
the various possible classes of constructions that 
may be encountered into cases. Corresponding to 
each case a transfer is made to a part of the routine 
which treats that case specially. This basic scheme 
of organization was first introduced by Evans in the 
writing of the Carnegie Tech: Algol compiler8 and 

the structure of the syntax analyzer for the Formula 
Algol compiler is basically an extension of ilt. 

Because the flow of control in the syntax analyzer 
is directed by the constructions· encountered in the 
source language it will be possible to use the follow­
ing technique to explain various mechanisms found 
in the compiler. We will focus our attention on a 
critical subset of productions responsible for plroC­
essing a given type of construction. This critical sub­
system will always be embedded in a larger context 
but- since the flow of control will never involve that 
contex,t we may isolate the critical subsystem for 
study. This subsystem will involve calls on a set of 
semantic routines, and these semantic routines will 
be solely responsible for the compilation corre­
sponding to the constructions which the critical sub­
system processes. 

An explanation of the primitives in the formal 
semantic language is given in Refs. 4 and 5. A com­
plete summary of those primitives is not given in 
this paper, but the subset of primitives used below 
are accompanied by explanations in order to make 
the treatment self-contained. 

A DETAILED EXAMPLE 

Let us consider an example of the compilation of 
the assignment statement X +- A + B xC;. As 
we begin to process this statement control in the 
productions will be transferred to the statement 
scanner at label Sl where at entrance to the: scanner 
the first character X has been recognized by the 
subscan and has been stacked as a syntactic unitt I 
on top of the push-down stack. Furthermore, sub­
scan sets the description of I to be the integer which 
is the relative address of its print name. The critical 
productions in the ~tatement scanner which tr,eat 
this case are as follows: 

SI 

S2 I 
I 

I 

+- --
*S2 

E +-+- I EXEC 19 *El 
I EXEC 91 *Sl 

The first production at S 1 matches all statements 
which start with an identifier, and control is trans­
ferred to S2 after scanning the next character. At S2 
a discrimination is performed on the second char­
acter and in the case of assignment statements the 
initial identifier I is changed to an E and control is 
transferred to EXEC 9 where a look-up in the sym­
bol table is performed using the integer in the 
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description of I. This causes the retrieval of the 
location of the variable X which was assigned pre­
viously and stored in the symbol table while process­
ing the declaration of X. It is conceivable that X 
was not declared and thus not stored in the symbol 
table. The table look-up procedure sets a signal in 
the event that it fails to locate an object during a 
table look-up and a test on this signal enables us to 
write a semantic error exit corresponding to the 
case where a variable is used but not declared in a 
source language program. Upon finding the entry 
corresponding to X in the symbol table the run time 
location of X, and its type (real, formula, etc.) are 
retrieved and the description of E in the stack is set 
to contain the run-time address, the type bits, and 
a bit to denote that the location rather than the 
value of X is desired. This description will be car­
ried along as the associate of E until code is com­
piled to perform the assignment. Thus the FSL 
code for EXEC 9 looks as follows: 

9 i MARKJUMP [FIND]; 

"FIND" 

SIGNAL --
RIGHT2.- KEY + MODEO 

+ TYPE + RELOC: 
FAULT 9 $ i 

KEY .- SYMBOL [LEFT2 , $ , 
TYPE.- SYMBOL [0 , , $ , ] 
RELOC .- SYMBOL [0, , ,$] ; 
JUMP[ < FIND> ] 

Upon entrance to EXEC 9 we execute a mark 
transfer to a closed subroutine called FIND which 
performs the symbol table look-up using the integer 
given in the description in the LEFT 2 entry (same 
as L2 position defined above) in the push-down 
stack. LEFT2 is a variable whose value is this 
description. It is used in the statement KEY 
.- SYMBOL [ LEFT2, $ , , ] to locate the entry 
in the symbol table named SYMBOL which begins 
with the integer given by the value of LEFT2. Each 
line in the symbol table is of the form [integer, loca­
tion, type, relocation base]. The relative position of 
the dollar sign $ among the commas indicates which 
of the entries in the located line we wish to extract. 
Hence the statement KEY .- SYMBOL [LEFT2, 
$ , , ] extracts the location assigned to the variable 
whose internal integer is the value of LEFT2, and 
assigns this location to be the value of the variable 
KEY. If a zero occurs in place of LEFT2, as in the 
statement TYPE.- SYMBOL [ 0 , , $ , ] , the 
extraction defined uses the line previously selected 

saving the cost of an additional identical look-up. 
Thus for our example the routine FIND simply 
sets the KEY to the location of X, TYPE to the type 
of X, and RELOC to the relocation base of X (the 
relocation base is used to implement recursion and 
is too complicated to explain here). The statement 
JUMP [ < FIND > ] is a return to a mark transfer 
call. Returning now to the consideration of EXEC 9 
we assume we have executed a mark transfer to 
FIND and have returned with either the signal set 
false to denote that the table look-up was a failure, 
or the signal set true and the variables KEY, TYPE, 
and RELOC set with the extracted values. The 
statement SIGNAL -- RIGHT2.- KEY 
+ MODEO + TYPE + RELOC : FAULT 9 $ is 
equivalent to the Algol statement if SIGNAL 
= TRUE then RIGHT2.- KEY V MODEO 
v TYPE V RELOC else PRINT ('SEMANTIC 
FAULT 9') where MODEO is a variable containing 
a bit denoting that a location rather than a value 
will be used. Executing this statement causes the 
logical union of the values of the variables to be 
stored as the description of the element in the R2 
position of the stack in the event that the signal 
was true, and it causes a semantic fault to be printed 
otherwise. 

At this point in the consideration of our example, 
control is returned from EXEC 9 back to the pro­
duction that called it. This in turn causes another 
character to be scanned and control to be trans- . 
ferred to E 1 which is the beginning of the expression 
scanner. The expression scanner contains two main 
parts, one starting at E 1 which expects an operand, 
as would be the case, for instance, at the beginning 
of an expression, and the other starting at E2 which 
expects an operator or separator. Thus upon trans­
ferring control to El we will find the following set 
of productions: 

El I E EXEC 7 *E2 

E2 <OP> SUBRCOM *El 

At El the first production matches and control is 
transferred to EXEC 7 with the syntax units in the 
stack looking like E -- E I . EXEC 7 is roughly the 
same as EXEC 9 the main difference being that the 
description of the E in the RIGHT 1 position is set 
to contain a bit denoting that the value rather than 
the location of the variable is desired. So far 
X .- A has been scanned and converted to E -- E. 
We now scan the operator + and transfer control to 
E2 in the productions. The expression < OP > 
stands for a class of binary operators including the 
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ROUTINE FOR COMPilATION E)(E:C U? "OM 
COM l I 1 IoIJ8 .J NG (SIl) 1 .. <S6) 1 E)(EC 100 

·1 (UN) 1 10136 E)(E:C 12n "0M 

·2 . 1 IoIJ6 .4 (SIl) 1 .. <86) 1 E)(EC 10n 

.J t 1 10134 E)(EC 121 "0M 
+4 NG" 1 10132 +5 (SG) 1 .. <SG) 1 E)(EC 187 

+5 1 10130 E)(EC 122 !':OM 

+6 1 w30 >12ft (SIl) 1 .. <S6) 1 E)(EC 100 ., 1 10128 E)(EC 123 "0M 
+1\ 1 w28 +1 (SIl) 1 .. <Se.;) 1 E)(EC 10n 

+9 (RE> 1 H26 
+10 1 10124 E)(E(I 124 OOM 

+11 1 10122 >130 (SIl) 1 .. <SG) 1 E)(EC: 10n 

+12 1 w20 E)(E(: 125 COM 

+13 ClSO 1 lolA 1 +1 (SG) I .. <SG) 1 ExEC: 10n 

+14 (PN) 1 \.119 E)(EC: 126 "OM 
"15 (aT) 1 loll 6 >132 NG· E (SG> 1 .. (5G> 1 E)(EC: 107 

H16 (SIl> 1 <SG) E)(EC 112 .. ET E)(EC: 127 COM 

+1 (SG) 1 <S6) ExEc 112 H34 (SG) 1 .. <SG) 1 ExEC! 1 0 0 
ExEC 113 "0M ExEC: 128 "0M 

+2 INSE E I L (SIl> 1 .. <56) E)(EC 63 .. ET >136 SIGN E (SG> 1 .. <SG) 1 E)(EC! 107 

+3 Al TE E To (5G) 1 .. <SG) E)(EC 62 IIET E)(EC 129 "OM 
+4 I" (SG) 1 .. I .. <9e.;) E)(EC 197 ·1 ENT I E (SG) 1 .. <SCi) 1 E)(EC 107 

E)(EC ~n7 IIET E)(EC 130 COM 

"5 (SIl) 1 .. <S6) ExEC 19~ +2 ARCT r: (SIl) 1 .. <SG) 1 E)(EC 107 
ElIEC :>07 ~ET E)(EC 131 COM 

+6 E IS NoT E (SIl) 1 .. <5e.;) E)(EC 1 O~ IIET +3 SORT E (SIl) 1 .. <SG) 1 E)(EC 107 

.7 E IS ALSO E (SIl> 1 .. (9G) ExEC 1 n~ IIET ExEC 132 COM 

+8 E Is E <SG) 1 .. <SG) E)(EC 176 RET +4 ExP E (SG> 1 .. <BG) 1 E)(EC 107 

>119 E INST E (SIl) 1 .. : E <SG) ElIEC 1\5 r.OM ' E)(EC 133 "0M 
HAl E eLSa E (SIl> 1 .. : E <SG) ElIEC 77 r.OM +5 L.N (SG) 1 .. <SG) 1 E)(EC 107 

+1 ClSO E (SG) 1 .. E <9G) E)(EC AU COM ExEC 134 !':OM 
>120 E (SIl) 1 .. , E <5G) E)(EC 105 ·6 CoS E (SG) 1 .. <5G) 1 E)(EC 107 

ExEC 114 !':OM E)(EC 13~ ~OM 

H22 (SIl> 1 .. <SG) 1 El(EC 105 .7 SIN E (SG) 1 .. <Se.;) 1 E)(EC 107 
ExEC 11~ ~OM E)(EC 136 !lOM 

>124 (SG) 1 .. ' E <5e.;) EIIEC 116 !lOM .8 ASS E (SG) I .. <SG) 1 ExEC 107 

H26 (51l) 1 .. E <SG) ExEC 10n ExEC j37 COM 
E)(EC 117 ~OM I ., (SG) 1 .. <Se.;) 1 , E)(EC j07 

+1 (SIl> 1 .. E <9G) 1 E)(EC 100 ExEC: 13S !':OM 
ExEC US COM 

, H~~ L.I <SG) 1 .. <SG) EIIEC 87 r:OM 

+2 Nl (5G) 1 .. :E <SG) 1 EIIEC 10n <SG) 1 RETURN 

Figure 2. Subroutine COM. 

plus sign so the production at E2 matches the + sign 
on top of the stack and control is transferred to the 
production subroutine labeled COM. This sub­
routine is given in Fig. 2. Notice that the expression 
< SG > in the LEFTI posit~on matches any arbi­
trary character. 

Subroutine COM is equipped with an operator 
precedence comparison mecJtanism for sorting on 
the hierarGhies of operators: so that, for example, 
in the expression A + B x C, code is compiled to 
perform the multiplication first· and the addition 
second even though the order in which these opera­
tors are encountered in the syntax stack is the re­
verse. As we enter subroutine COM, production 
COM+7 matches and a transfer to H28 occurs. 
Nothing matches from H28 until the end, so control 
returns to the expression scanner which recognizes 
the next two characters and: returns to subroutine 
COM with E -- E + Ex I: in the syntax stack. 
Then production COM+5 matches the stack, con­
trol passes to production H30, nothing matches 
until the end of subroutine COM, control returns 
to the expression scanner, two more characters are 
recognized, and a final transfer is made back to sub-

routine COM. At this point the configuratilon of the 
syntax stack is 

E--E+ExE;1 

Here the expression < OT > matches the semicolon 
on top of the stack at production COM+ 15 and 
control passes to production H 16. The firs1t produc­
tion to match the stack is production H30. This 
leads to the first instance of object code compilation 
in the processing of the statement. All previous 
actions up until this point have consisted of post­
ponements. The compilation is accomplished by 
transfers to EXEC 100 and to EXEC 125 which 
compile code to mUltiply Band C. In the case: of 
arithmetic operands CLA B is constructed. In the 

MPYC 
case of formula operands, code is produced to con-
struct when executed the formula tree x 

B/ ,·C 

The semantic routines used to accomplish this test 
the types of the operands, which types have been 
stored in the descriptions assigned by EXEC's 7 and 
9, and they compile the appropriate code. At the 
completion of this compilation the syntax stack is 
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altered to look like E -- E + E; I because the 
terminal Ex E has been replaced by a single E as 
is seen by inspecting production H30. The semantic 
routines also set the description of the topmost 
(rightmost) E to contain the type of the expression 
and the fact that the code compiled leaves the value 
of the expression in the run-time accumulator. Con­
trol now passes back to the beginning of subroutine 
COM for another iteration of the process. Sub­
routine COM will be seen to reenter itself iteratively 
until the entire expression is consumed, until code 
for it has been compiled, and until its external rep­
resentation in the syntax stack has been replaced by 
E in the case of pure expressions and nothing in the 
case of assignment statements. We are now at the 
point where the syntax stack looks like E -- E 
+ E; I and where we have reentered COM. On this 
pass production COM+ 15 matches and passes con­
trol to H 16 where successive productions fail to 
match the syntax stack until production H28, at 
which point E + E is compiled by EXEC 100 and 
EXEC 123. The compile-time routines responsible 
for producing code detect the fact that code has 
been compiled leaving the value of the second 
operand in the run-time accumulator. Thus the 
code compiled is ADD A. Again the semantic 
routines analyze the types of LEFT2 and LEFT4 
to determine whether code should be compiled to 
add numerical expressions or to add formula ex­
pressions. After compiling ADD A the stack con­
figuration is changed to E -- E; I and control 
passes back to the beginning of subroutine COM. 
On this final trip through subroutine COM pro­
duction H 16 constructs code to perform the assign­
ment of LEFT2 to LEFT4 and subroutine COM is 
exited with only the semicolon remaining in the 
syntax stack, the assignment statement having been 
consumed entirely. In the case of expressions, 
rather than assignment statements, an E is left upon 
exit in the RIGHT2 position with its semantic 
description set to contain its type and the fact that 
it resides in the run-time accumulator. 

The strategy of subroutine COM comes from a 
well~known compilingJechnique for which no claim 
to originality is made. Both Floyd and Evans have 
used similar techniques in their Algol compilers. 

FLEXIBILITY OF THE SYNTAX ANALYZER 

We will now present examples showing how we 
can experiment with, extend, redesign or improve 
the syntax of the source language. 

Suppose we want to add a new type of binary 
logical operator NOR (equivalent to the Pierce 
operator familiar to logicians and electrical en­
gineers) and suppose we choose to denote it by the 
pair of characters - v in the source language. Let's 

. agree that in the expression - A 1\ B - v C 
V D the NOR operator binds less tightly than 
;.... ,1\, and v so that fully parenth(!~ized the ex­
pression looks like ( ( (--- A) "B ) ...., V 

(C v D)). We need to do four things to add this 
operator to the source language: 1) we declare the 
character pair ~ v to be a primary syntactic unit 
for subscan; 2) we expand the definition of the class 
of operators < OP> to include :.0;., v so that the pro­
duction labeled E2(above) will detect the presence 
of this new operator and will pass control to sub­
routine COM. The last two steps are additions to 
subroutine COM itself: 3) we insert the production 

- v i HNOR 

after production COM+ 12 (cf. Fig. 2); and finally 
4) we insert the production 

HNOR 'E --- v E < SG > I - E < SG > 
I EXECK COM 

after production HAl + 1 (cf. Fig. 2). Here EXEC 
K must compile code for Boolean expressions using 
the NOR operator and it looks as follows: 

K ~ TEST[LEFT4, BOOLEAN] 1\ TEST[LEFT2, 
BOOLEAN] - CODE ( RIGHT2 -- -
(LEFT4 v LEFT2)): FAULT K ~ 

This is our first example of the use of the code 
brackets CODE ( . . . ) . An expression con­
tained in code brackets describes code to be gen­
erated and inserted into the object program. The 
test commands test the descriptions in the LEFT4 
and LEFT2 positions to see if they contain bits de­
noting the type BOOLEAN. 

From this example we see that we can 1) add op­
erators and choose their hierarchies at will, 2) 
change the hierarchy of an operator without chang­
ing the operator itself, 3) by redefining an EXEC 
routine, change the meaning of an operator without 
changing its syntax, and 4) delete operators at will. 
This exemplifies the kind of experimental flexibility 
available to users of the FSL system. 

The organization of the compiler is such that 
other kinds of additions, deletions and alterations 
may be performed in the syntax analyzer with ease. 
For example we may add a new type of variable by 
adding its declarator to various lists, by inserting a 
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production in the production subroutine that 
processes declarations, and by inserting tests and 
consequent compiling actions; in the semantic rou­
tines which are called corresPQnding to expressions 
and statements using the new ~ype of variable. It is 
also easy to add new types of statements to the state­
ment scanner and to add new types of expressions 
to the expression scanner. The implementation of 
the list processing part of the Formula Algol lan­
guage demonstrated to us the ease with which it was 
possible to extend the compiler. Unfortunately, 
space precludes an adequate description of this ex-
tension. . 

As a last example of a notational change we con­
sider the evolution of the notation for formula 
patterns F INST P as defined; in the first Formula 
Algol paper}3 F INST P is, a Boolean primary 
which tests whether the formuia F is an instance of 
the formula pattern P. Later this notation was 
changed to F = = P and an additional type of test 
was added of the form F » P tb test whether F con­
tains a subexpression which is :an instance of P. In 
the case of changing INST to := = one merely had 
to substitute = = for INST in the productions. 
When »was added it was possible with a minor 
correction to share the productions for = = to 
process ». This correction consisted essentially of 
substituting a class symbol representing the set 
{ = =, »J for occurrences of == in certain produc­
tions. The semantic routines associated with these 
productions were also altered 'to compile different 
code for the two different cases. 

FLEXIBILITY OF THE 
SEMANTIC ROUTINES 

Having treated some exampl~s of the ftexibi~ity of 
the syntax analyzer we now ttirn our attention to 
corresponding properties of t~e semantic routines. 
The following example is intended to demonstrate 
the kind of experimentation that can be done with 
the compiling processes in order to improve both 
the compile-time efficiency and ithe parsimony of the 
formal description of the compiler. 'The example 
deals with a type discrimination problem en­
countered in the compilation of expressions involv­
ing unary and binary operators, For instance, when 
code is generated for A + B, the types of A and 
B must be checked. 

REAL + REAL is w~ll defined, the op­
erands are already com­
plete, : and the result is of 
type REAL. 

REAL + BOOLEAN 
FORMULA + REAL 

is an illegal construction. 
is well defined, but the 
right-hand operand must 
be made into a formula 
data term using a cell 
from linked list memory 
before a formula repn!­
senting the sum can be 
constructed, and thli! result 
is of type FORMULA. 

We shall describe two methods of implementing this 
type discrimination (which is the function of EXEC 
100). The first is the most recent obsolete method 
and the second is its successor. 

In the former method the' set of operators was 
partitioned into a small number of equivalence 
classes. Two of these are the arithmetic op'erators 
+, -, x, =, >, . . . and the Boolean op,erators 
v, 1\, -, . .. . For arithmetic operators, EXEC 
100 checks the types of the operands for compatii­
bility and sets a switch (MACHINE) to 2 if eithe:r 
operand is of type FORMULA, and to 1 if both 
operands are arithmetic. In the following version 
of EXEC 100, X7 is an address extractor. 

100 ~ TEST[LEFT4, BOOLEAN] v TEST 
[LEFT2, BOOLEAN] -- FAULT ]loo: 
RIGHT2 -- RIGHT2 1\ X7; 

TEST[LEFT4, FORMULA] v TEST 
[LEFT2, FORMULA] -- MACHINE 
-- 2; 
- TEST[LEFT4, FORMULA] 

-- CODE( CONSTRUCT FORlvlULA 
[LEFT4]) $; 

--- TEST[LEFT2, FORMULA] 
-- CODE ( CONSTRUCT FOR·· 
MULA[LEFT2]) $ 

MACHINE -- 1 ; 
TEST[LEFT2, REAL] v TEST[LEFT4, 

REAL] -- SET[RIGHT2, REAL] : 
SET[RIGHT2, INTEGER] $ $ $ 

As more operators and data types are added to a 
language this method becomes complex and ineffi­
cient both with regard to the space required to ex­
press the sequence ~f tests and the average timle 
required to execute such a sequence. Therefore wle 
have invented a successor to the above method. 

The successor is described as follows. It is based 
on a single four-column table (DISCR) which may 
be preloaded. The first entry in a row of this tabl'i! 
is a coded word which has three fields: 

[TYPE1, OPERATOR, TYPE2] 
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Any combination of two types and an operator may 
be described in a single word. Unary operators 
have one of the two types fixed. The second entry 
indicates a compile time routine to be executed 
which makes the operands compatible. The third 
entry points to a compile time routine which 
actually compiles code for the expression. The final 
entry is the type of the result. DISCR may be 
initialized as follows: 

REAL + REAL none ADD REAL 
REAL + INTEGER none ADD REAL 
FORMULA + REAL CONS2 FADDFORMULA 
FORMULA v BOOLEAN CONS2 OR FORMULA 
NONE ~ BOOLEAN none NOT BOOLEAN 

When the syntax stack matches any production of 
the form 

E <OP> E <SG> 1 - E <SG> 
1 EXEC 189 COM 

then the following code is executed: 

189 ~ 
COMB -- (LEFT4 xL12 + LEFT 3) 

x L6 + LEFT2; 
R -- DISCR[ COMB, $ , , ] ; 
~ SIGNAL - FAULT 189 : 
FINAL -- DISCR [ 0, , $ , ]; 
TYPE -- DISCR [ 0 '" $ ] ; 
R ¥= 0 - MARKJUMP [R] $ ; 

JUMP[FINAL] $ ~ 

Here L12 and L6 are shift constants, and LEFT3 
contains a small but unique integer representing the 
operator. 

In some cases we may experiment with the organi­
zation of compile-time processes to improve the 
quality of the object code produced, by which is 
meant we can reorganize some processes so that 
they produce less code which is more efficient. A 
small example of this is as follows. Certain patches 
of object code may be defined as nonexecutable 
because the flow of control may not enter them 
directly. For example, control must bypass a pro­
cedure declaration which may be entered only 
through a procedure call. If there are several ad­
jacent procedure declarations then one may jump 
around each of them in turn or, preferably, one may 
jump around all of them simultaneously. The latter 
scheme is preferable because the object code re­
quires less machine space, it runs slightly faster, 
and it looks less complex to the programmer trying 
to debug the system. The actual scheme for com­
piling these jumps has changed several times be­
cause we were able to try one method, tear it out, 
and try another both in the same day. 

ORGANIZATIONAL EFFICIENCY 
IN THE COMPILER 

When planning the structure of a compiler written 
in FSL we can take advantage of an organizational 
principle commonplace in programming, which 
states that when performing a class of operations 
which have certain common processing require­
ments we should, if possible, make a division of 
labor allowing the common processing requirements 
to be treated by a single shared routine. It is easy 
to apply this principle when writing EXEC routines 
since we can write a single EXEC routine perform­
ing labor common to several different compilation 
processes and we can share it in conjunction with 
other EXEC's to perform each separate process re­
quired. An example of this is EXEC 100 which is 
shared in the compilation of arithmetic expressions 
as is seen by looking at subroutine COM (Fig. 2). 
Another example is EXEC 160 which does every­
thing common to procedures and blocks. 

Production subroutines may also be shared. It 
may occur that certain syntactic constructs are used 
in different places in the source language with dif­
ferent semantics. For example, a list of identifiers 
can be used as a variable list in a declaration, as an 
array name' list, as a formal parameter list, as a 
value list and as a specifier list. The productions 
in the syntax analyzer are written so that all identi­
fier lists, no matter the context in which they occur, 
are processed by a common subroutine of the form: 

ID 11- EXEC 190 * AID 

<SG> 1 - ERROR 190 AID 
AID 1- * ID 

<SG> 1 - RETURN 

As is seen, this production subroutine transfers 
control to EXEC 190 with the integer corresponding 
to the identifier on top of the stack. It does this 
for every identifier in the identifier list. In each of 
the different contexts of an identifier list it is neces­
sary to process the identifier list in a different 
manner. To accomplish this, EXEC 190 is made 
into a variable capable of containing transfers to 
other EXEC's. For example, when, in FSL, the 
statement XEQ 190 -- XEQ 2 is encountered, it 
means the next time EXEC 190 is called, EXEC 2 
will be executed. This will cause an identifier list 
to be processed as a variable list by the semantics. 
Similarly the statement XEQ 190 -- XEQ 3 will 
cause EXEC 190 to call EXEC 3 thus allowing an 
identifier list to be processed as a list of array names. 
By this mechanism one can treat the same syntactic 
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construct differentially in the semantics on the basis 
of context. 

The addition of the XEQ construct to FSL is an 
example of the effect of feedback from the process 
of implementing Formula Algol on the design of 
FSL. 

FORMULA MANIPULATION 

It was decided to represent formulas inside the 
computer as trees or list structures built from cells 
taken from an available space list in a standard 
linked list memory. To add fbrmula manipulation 
to the source language formula variables were intro­
duced. In most cases _ the syntax already existing 
for numerical Algol was shared for formula manipu­
lation. While no changes in the productions were 
necessary for this shared syntax, tests had to be 
added to the semantic routines to discriminate be­
tween numerical and formula compiling operations. 
For the new constructions added to the source lan­
guage such as EV AL, = =, > > , and the extraction 
operator in patterns, additions were made to the 
productions and semantic routines were defined for 
them. Because most actions involving formulas are 
either interpretive at run time or involve manipula­
tions which cannot be compile<;l into the object code 
as macros due to the size of the code involved, a set 
of run-time routines were constructed in machine 
code. These run-time actions constitute, more or 
less, a basic order code for formula manipulation. 
In effect, the compiler produces code for two ma­
chines, one an interpreter accomplishing formula 
manipulation and the other the hardware accom­
plishing numerical manipulation. For example, we 
saw (Fig. 2) that in subroutine COM EXEC 100 and 
EXEC 123 are called in seque~ce when we compile 
code to add two operands together, E + E; As we 
have seen previously EXEC 100 checks the types of 
the operands and sets a switch (MACHINE) speci­
fying the machine for which we, are to compile code. 
The structure of EXEC 123 is as follows: 

123 ~ MACHINE = 1 -+ qODE (RIGHT2 
-- LEFT2 + LEFT4): 

CODE (Xl -- LEFT2; RO __ '+'''; 
ACC -- LEFT4; 

MARKJUMP[CONSTRUCT 
FORMULA]; RIGHT2--ACC) 
$ ~ . 

Here the routine CONSTRU(::TFORMULA is a 
basic operation of the formula manipulation ma­
chine which expects a right operand in Xl, a left 

operand in the accumulator, and an operator in RO. 
Using cells from the list of available space it con­
structs a tree structure representing the sum of the 
operands and leaves the address of the head of this 
tree structure in the run-time accumulator. 

The reader can now see how we could implement 
complex arithmetic by defining yet a third machine, 
which performs complex operations, and by extend­
ing the compiler by the same process used to accom­
plish the formula manipulation extension. 

LIST PROCESSING 

We will consider one example of list processing to 
try to convey some of the flavor of the mechanisms 
involved. Consider the statement INSJ;:R T [A, 13, 
C] (AFTER LAST, BEFORE FIRST T) OF S. 
Here we assume that S contains a list (represented 
by a chain inside the computer). For the sake of 
specificity let S contain the list [ V, T, V, V] where 
V and T have been declared of type SYIVfBOL. 
After the insertion statement is performed the list 
is to look like [ V, A, B, C, T, V, V, A, B, C]. In a 
manner similar to that for formula manipulation a 
list processing machine is defined with an order code 
represented by a set of run-time routines. The com­
piler compiles a sequence of list processing instruc­
tions chosen from this order code corresponding to 
each list processing statement. Basic to the opera­
tion of the list processing machine is a push-down 
stack extant at run time called the chain accumula­
tor. Most of the run-time list processing operations 
consist of manipulations on chains stored in the 
chain accumulator. The code produced by the com­
piler corresponding to the statement INSERT 
[A, B, C) (AFTER LAST, BEFORE FIRST T) 
OF S is a sequence of list processing operations 
whose mnemonics are as follows: 

Instruction Comment 

STACK A (on top of the chain ac:­
cumulator) 

STACK B (on top of the chain ac:-
cumulator) 

CONCATENA TE (the top two chains in the 
chain accumulator) 

STACK C (on top of the chain ac-
cumulator) 

CONCATENATE (the top two chains) 
GO TO () 

p: CLA symbol to denote last 
FIND POSITION (this routine locatc~s the! 

last element of the chain 
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PERMUTE 

CLA T 
FIND POSITION 

MINUS ONE 

PERMUTE 

PERFORM 
INSERTIONS 

GO TO X 

(): STACK S 

X: 

TAKE 
CONTENTS 

GO TO p 

on top of the chain ac­
cum ulator and stacks a 
pointer to this element on 
top of the chain accumula­
tor) 
(we change the order of 
the elements in the chain 
accumulator so that the 
pointer is moved into the 
third position) 

(locate the position of the 
cell in the chain on top of 
the chain accumulator 
which occurs direcflybe­
fore the first occurrence of 
T in that chain; stack a 
pointer to that position on 
top of the chain accumu­
lator) 
(as before, change the 
order of the elements in 
the chain accumulator so 
that the pointer is moved· 
into the third position) 
(this routine performs in­
sertions using information 
sa ved in the chain ac­
cumulator) 

(on top of chain accumu­
lator) 
(replace S with the chain 
that occurs as its contents) 

Let us now trace the effect of the execution of this 
code on the chain accumulator. We will adopt the 
symbolism that I 4> represents the state of the chain 
accumulator before we start to execute the code. As 
we enter the code we build up the list [A, B, C] and 
stack it on top of the chain accumulator. This pro­
ceeds in the following steps. First we stack A on top 
of 14> producing A 14>. Then we stack B on top of 
this producing B I A 14>. Then we concatenate the 
top two chains on the chain accumulator producing 
A n B I 4>, where n has been used as a symbol for 
the concatenation of chains. Next we stack C pro­
ducing C I A n B I 4>, and then we concatenate 
again producing A n B n C I 4>. At this point the 
construction of the chain [A, B, C] is complete and 
control transfers to location () in the code where 
we stack S producing S I A n B n C I 4> and take 

its contents producing V n T n V n V I A n B 
n C I 4>. Control now returns to p where we com­
pute an9 stack a pointer to the last element· of the 
contents of S giving' 0, I V n Tn. V n .,.V I A 

n B n C I 4>. This pointer is moved to the third 
position in the chain accumulator producing 
V n T n V n V I A n B n c.1 0 I 4>. A sec-

I( . . I 

ond pointer is now computed and stacked. It points 
to the position before the first T in the chain on top 
of the chain accumulator o~V n T n V 

n V I A n B n C I' 0 I 4>. This pointer is also 
It I 

moved into the third - position in the stack giving 
~n T n V n \ I A n B n C 1,0 1

/
0 14>. We 

could continue in this fashion computing and stack­
ing a's"many pointers as we wish, each pointer cor­
responding to a place where an insertion is to be 
performed. We now transfer control to a routine 
which actually performs the insertions. This routine 
pops the chain V n T n V n V from the top of 
the chain accumulator and inserts a copy of the 
chain A n B n C after the position given by each 
pointer in the chain accumulator looping until all 
pointers in the chain accumulator are exhausted. 
The state of the chain accumulator after the execu­
tion of this statement is I 4>. Control in the code 
now passes to X where the execution of the program 
continues. The reason for the existence of transfers 
in the code sample given is because the order of 
recognition of syntactic constructions in the inser­
tion statement in the source language is the reverse 
of the order in which we utilize these constructions 
in the computation expressed by the code. Spe­
cifically we must stack S and compute its contents 
before we compute any pointers locating positions 
in the contents where insertions are to be per­
formed. However, the constructions telling us 
where to make insertions are encountered in the 
source language before we encounter the expression 
telling us the object on which the insertions are to 
be performed. Floating addresses are used in the 
compiler to implement such reversals. 

Since the semantics of the source language de­
mands that all insertions be performed simul­
taneously we are forced to compute all locations 
where insertions are to be made before performing 
any insertions. 

CONCLUSIONS 

In this paper we have outlined the broad organi­
zation of the Formula Algol compiler. We have 
also presented examples exhibiting various proper-
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ties of the FSL compiler writing system. We have 
not described completely or, in some cases at all, the 
implementations of declarations, switches, arrays, 
for statements, recursive procedures, block admin­
istration, formula manipulation or list processing. 
For a complete and detailed treatment of these the 
reader is referred to another paper by the authors, 
"The Implementation of Formula Algol in FSL."14 
The subject matter was chosen to reveal what we 
feel to be interesting techniques involving the use 
of a formal compiler writing system. 
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A PROPOSAL FOR A COMPUTER COMPILER* 

Gernot Metze and Sundaram Seshu 
Coordinated Science Laboratory and Department of Electrical Engineering 
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INTRODUCTION 

In recent years digital computers have been ap­
plied, with great success, to the automation of an 
increasing variety of tasks in the design of digital 
systems, from the printing of wiring tables and the 
drawing of logical diagrams to the optimization, ac­
cording to certain criteria, of the layout of com­
ponents and wiring, and even the actual computer­
controlled production of subassemblies such as 
printed circuit boards or integrated circuits. Sim­
ilarly, the design of circuits, especially those involv­
ing nonlinear elements, has been made easier by 
computer programs (e.g., which perform tolerance 
analyses). On the system level, the use of digital 
computers has been limited to tasks which are 
equally mechanical, such as programs which check 
for violations of fan-in, fan-out, and cascading 
rules. 

More recently, languages have been developed 
which permit the simulation of a proposed system 
on an existing digital computer. Alternative system 
designs can be evaluated not only on the basis of 
performance statistics produced by the simulator, 
e.g., timing and utilization of machine com­
ponents, but also by permitting the execution of 
programs written in the instruction language of the 
system being simulated.) 

*Supported in part by the National Science Foundation 
under Grant GR-32 and in part by the Joint Services Elec­
tronics Program under contract number DA 28 043 AMC 
00073 (E). 
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The system designer, however, needs a language 
which is powerful enough to permit the description 
of the macroscopic structure of the system inde­
pendent of the microscopic structure of its com­
ponents. While the description of the system in this 
language may also be used for simulation purposes, 
the primary objective is the description of the re­
lationships between system components in such a 
way that a compiler program can supply the de­
tailed structure of the components, guided by cer­
tain design and optimization criteria which are 
stated explicitly or built into the program. Thus, 
the program should be a true compiler, and the sys­
tem design language should permit a description of 
the system on a higher level than the languages 
proposed by Proctor,2 Schlaeppi,3 and Schorr.4 

The linguistic aspects of a system design lan­
guage, while interesting, have not been considered 
here, except that the language was developed in 
close analogy to the programming language FOR­
TRAN, reflecting the feeling that computer pro­
gramming and computer design are related fields. 
In particular, concepts such as modularity (sub­
routine structure), interfaces (subroutine argument 
linkages), parallel operations (multiprogramming), 
flow diagrams, etc., pervade both philosophies. 

Just as FORTRAN translates arithmetic state­
ments written in near-human language into a com­
puter program, the computer compiler will translate 
a system description, given essentially in the near­
human language of the programmer's manual, into 
a description of the hardware, e.g., ANDs, ORs, 
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NOTs, and FLIPFLOPs, and their interconnec­
tions. 

GENERAL DESCRIPTION OF THE 
COMPILER 

In comparison to manual approaches, the design 
of a digital system by compiler methods can be 
expected to be much fastqr and much cheaper, 
making it possible to examine (either externally or 
within the compiler itself) many alternative designs 
and select the one that is best according to some 
criterion. In particular, one could automatically ex­
amine the design for such features as speed, cost, or 
maintainability. If the input language is sufficiently 
powerful, the effect of adding special features such 
as buffered input/output, look-ahead controls, etc., 
can be examined with a minimum of changes to the 
specifications. Perhaps most important is the pros­
pect that one good system designer can design the 
entire system, leading to a more uniform and more 
balanced result. 

It is convenient to break the computer compiler 
program into two parts: a' hardware-independent 
system compiler which reads the input language and 
produces an intermediate language output, similar 
to the assembly language output of most compilers, 
and a hardware-dependent logic compiler which 
reads the intermediate language and produces a de­
tailed machine description in terms of the basic 
building blocks specified. 

The system compiler incorporates several stand­
ard assembler features, such as "macro," "repeat," 
and "library," as well as the facility of interspersing 
intermediate language statements if desired. The 
intermediate language output is a microinstruction 
string for each subprogram (subcontrol), optimized 
according to a specified measure. Although the sys­
tem compiler is otherwise hardware-independent, 
this measure may involve ,hardware cost. The 
microinstruction string output of the system com­
piler includes a specification of the time-hierarchy 
and is thus equivalent to a flow chart. 

The intermediate language may also be used to 
drive a simulator program which permits experi­
mental programming in the ~nstruction language of 
the proposed system. 

The specification and the development of the 
logic compiler is fairly straightforward concep­
tually. The Boolean minimizations required intro­
duce bookkeeping problems but no other diffi­
culties. The logic com pi let; is not discussed any 
further in this preliminary report. 

The concept of a library subroutine emters the 
discussion of a computer compiler in two distinct 
ways. The conventional notion is similar to that of 
a subcontrol (e.g. arithmetic control, I/0 control), 
but in addition open subroutines ("built-in func­
tions" in FORTRAN terminology) may be used, 
such as algorithms for arithmetic operations. How­
ever, one could now have several algorithms which 
are equivalent in their final answers, say for divi­
sion in two's complement representatipn, and ask 
the compiler to choose the algorithm which fits best 
with the rest of the design. Thus one may want to 
call for any subroutine from a class of subroutines 
which is identified by a class name. With a suffi­
ciently rich library one could conceive of "dime a 
dozen" designs that one could choose from. 

The proposed compiler is also a good research 
tool. Since designs can be produced simply, one 
could produce examples rapidly to study n4~W design 
ideas. Finally, the concepts generated h(!re might 
well suggest procedures for the synthesis of non­
computer systems thus providing a formal basis for 
"systems engineering." 

THE INPUT LANGUAGE 

The description of a digital system involves two 
aspects: the global description, and the subcontrol 
(subprogram) description. The subdivision of the 
system into subcontrols is similar to the subdivision 
of a program into subprograms, and must: be done 
by the system designer. (Thus we implicitly seek 
modular designs.) However, in contrast to con­
ventional programming, subcontrols may operate in 
parallel, i.e., simultaneously, thus giving rise to the 
need of a global description of the system. Counter­
parts to these concepts will become necessary when 
multiprogramming compilers are written. 

Global Description 

The global description carries the special ide:nti­
fier 

MACHINE xxxx 

followed by the following types of global hleaders: 

1. Definitions of global constants by the op1era­
tion SYN (see register declarations below) which 
define word length, memory size, etc. 

2. Declaration of subcontrols which may operate 
in parallel. 

3. Information necessary for optimization, such 
as cost, time and other measures. 
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There are no program statements in the global 
description. 

Subcontrol Description 

Each subcontrol description has an identifier and: 
the necessary header statements followed by the 
instruction statements, i.e., the program, which 
describe the subcontrol: 

1. The identifier is a statement of the type 

SUBCONTROL ARITH 

where ARITH isa name chosen by the designer. 
(The subroutine linkage mechanism is further dis­
cussed under Subroutine CALLs below.) 

2. Register Declarations are analogous to DI­
MENSION and COMMON statements in FOR­
TRAN except that 'we follow the machine language 
convention and demand that even single bit regis­
ters be declared. There are five statement types in 
this category: 

a) REGISTER A(L) defines a register A of L bits 
where L is an integer or a previously defined symbol. 
Individual bits in the register are referred to by sub­
scripts which normally range from ° to (L - 1). 
Other ranges of consecutive SUbscripts must be 
specified explicitly, as for example in 

REGISTER A( -1, ... ,L - 2). 

b) SYN (F,N) assigns the value N, which must be 
a positive integer, to the symbol F, which may then 
be used in register definitions and subscripts. 

c) CONNECT (EAQ(-I, ... ,38» = ES.A 
(0, ... ,19). Q( 1, ... ,19) permits the concatenation 
of registers. The registers on the right must have 
been previously defined but need not be full regis­
ters. In the example above, Q(O) is not part of the 
extended AQ register. 

d) EQUIV (FNCTN(O, ... ~9) = IR(3, ... ,13» 
labels (a part of) a register by another name and is 
thus the inverse of CONNECT. 

e) INTERFACE (ARITH) M,A,Q defines regis­
ters M, A, Q as interface registers in common be­
tween the current control and the subcontrol 
ARITH. The INTERFACE statement is similar 
to the FORTRAN COMMON statement but differs 
from it in two respects. First, several subcontrols 
in a machine may be operating simulataneously, 
which is not the case in present programs. Since the 
compiler would normally try to use existing registers 
for temporary storage, it must be aware of the inter­
face registers which may be used by parallel con­
trols. Secondly, for the convenience of the logic 

compiler as well as for readability, the alternate 
control with which the register is shared should be 
identified. Interface registers must be dimensioned 
by REGISTER, CONNECT, or EQUIV state­
ments, and must be referred to by the same names, 
in each of the subcontrols which share them. How­
ever, the order in which they are listed in the IN­
TERF ACE statement is not important. 

3. Instruction Decoding. The assignment of bit 
configurations for the various instructions is a task 
that is best left to the logic compiler. We therefore 
allow the design engineer to use mnemonics for in­
structions. There are two types of instructions 
involved. First we have the instructions that are to 
be decoded and obeyed by the current subcontrol. 
'Second there are instructions to be given to other 
subcontrols (for example, main control may request 
a memory subcontrol to read or write a word). In 
the first case, we need to decode and jump to the 
appropriate control sequence. In the second case, 
we need only set up a configuration of bits in an 
appropriate register. In both cases, the function is 
undefined. We must, however, specify (to the logic 
compiler) the bits that are to be used to define the 
function. 

a) The format of the decode and jump statement 
is 
DECODE (IR(O, ... ,9» 

HLT, LLS, LRS, JMP, JAN, ... 

where IR(O, ... ,9) is (part of) a previously defined 
register and HLT, LLS, etc., are mnemonics which 
must appear as location field symbols in the main 
program. The DECODE statement is itself part of 
the main program since it serves as a multi-way 
branch, analogous to a computed GO TO. 

b) The format ofa translation (or decoder) state­
ment is 

UNDF (IR(O, ... ,9» RM, WM. RMW 

Here IR is a previously defined register and RM, 
WM and RMW are' instructions to be passed on to 
other subcontrols. The system compiler generates a 
decoder for each such UNDF statement. Each 
decoder is defined in detail by the logic compiler. 
UNDF is a header statement. 

The mnemonics on the right of the parentheses 
in both statements must be single-valued Boolean 
functions of the bits that are enclosed within the 
parentheses. For example, consider the execution of 
the instruction REPLACE ADD MEMORY, which 
replaces the contents of the memory cell by the sum 
of the previous contents and the contents of the 
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accumulator. We need to set up first a READ 
MEMORY (RM) instruction and then a WRITE 
MEMORY (WM) instruction in the instruction 
register. of the memory subcontrol. If FN is the 
function part of the main instruction register, we 
cannot write 

UNDF (FN), RM, WM 

for RM and WM are not single-valued functions of 
FN alone. Some control flip-flop is also involved 
and must therefore be defined as 

REG ISTER CN (1) 

UNDF (FN, CN) RM, WM 

The symbols that are used on the right must appear 
exactly once in the DECODE statement of another 
subcontrol to permit correlation by the logic com­
piler. 

4. Program Statements, which may contain a 
label, include the following types: 

a) Register Transfers. Tije gating of information 
from a register A to a register B is specified by 

B = A. 

The symbol on the right· must either be a register 
or an undefined function. Partial register transfers 
are indicated by subscripting. Gating is assumed 
to be parallel. 

b) Branch Statements. 

i) DECODE, the counterpart to a com­
puted GO TO, has been discussed in 
the preceding section. 

ii) An unconditional branch is indicated 
by simply writing the symbol (with­
out the words GO TO). 

iii) A conditional branch is indicated by 

IF (A(O) = 1) JMP 

where the true exit is the statement 
labeled JMP, the false exit the next 
statement. The condition must be 
based on a single bit being 0 or 1. 

iv) The WAIT statement is similar to the 
IF statement, except that the true exit 
is the next staterpent, and the false 
exit is the WAIT statement itself, e.g., 

WAIT (RQ = 1) 

permits the subcontrol to go on to the 
next statement only after RQ has 
been set to 1. 

c) SET and CLEAR permit individual bits, or 
entire registers, to be set to 1, or cleared to O. Sub:­
scripts are allowed. 

d) SUBROUTINE INSERTIONS a fie accom­
plished by writing the name of the subroutine, with 
the argument list in parentheses. Both library sub­
routines and programmer-defined subroutines are 
treated as macros. Subroutines may be called by 
their class name if the choice of the particular sub­
routine is to be left to the compiler. 

e) Subcontrols call other subcontrols through the 
statement CALL. Since subcontrols may be parallel 
or sequential (see the following section), and one 
would like to be free to define them either way by 
means of global headers, we provide thre:e formats 
for the CALL statement: 

CALLS SUB(RQ) 

CALLP SUB(RQ) 

CALL SUB(RQ) 

By convention the argument in parenthes,es (RQ) is 
the name of the request flag. The terminalls Sand P 
designate the CALL as sequential or parallel and 
override the global definition. In the simple CALL, 
the global definition prevails. In each case a string 
of statements which load interface registers follows 
the CALL statement, terminated by an ENDC. 
Consider the following example of a main control to 
core control CALL (Store Accumulator instruc­
tion): 

CALL CORE (MCRQ) 

MCAR = ADDR 

M=A 
MCIR = WM 

ENDC 

If the memory control is defined as sequential in the 
. global headers the compiler produces the micro­

instruction string 

GATE MCAR = ADDR 

GATEM = A 

DECODER 2 = WM 

CONNECT DECODER 2 to MCIR 

SET MCRQ 

WAIT (MCRQ = 0) 

If on the other hand the global definition states that 
the memory control operates in parallel with main 
control, the following microinstruction string 
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results: 

WAIT (MCRQ = 0) 

GATE MCAR = ADDR 

GATEM=A 

DECODER 2 = WM 

CONNECT DECODER 2 to MCIR 

SET MCRQ 

5. The Slash Notation. One of the most common 
operations in a computer is to read a word from 
memory into a register or store a word from a regis­
ter into memory. Therefore we invent a special 
shorthand notation for this purpose. The notation 
/REG / refers to the memory location whose ad­
dress is in register REG. Thus 

IR = /P/ 

states that the word whose' address is in the program 
counter P is to be read and loaded into the instruc­
tion register IR. Similarly 

/ADDR/ = A 

states that the contents of A are to be stored in the 
memory location whose address is in register 
ADDR. 

Naturally the compiler must be given the inter­
pretations of the two statements by means of macro 
definitions. This macro is given the special name 
MEMORY. Since the memory address and buffer 
registers are unique to the calling program, this 
memory definition must be part of the calling pro­
gram. Alternatively it may also be defined in detail 
in the global headers as a macro with a local macro 
MEMORY (calling the global one) defining the 
interface registers. 

PARALLEL AND SEQUENTIAL 
SUBCONTROLS 

As remarked earlier, a subcontrol is similar to a 
subprogram. Thus one intuitively expects to use 
some type of LINK JUMP (or RETURN JUMP). 
Since a subcontrol may be called from several places 
(in the same or different controls) it appears in­
tuitively necessary to store the calling address in 
some register. If such a procedure were followed, 
the subcontrol would have to interpret the contents 
of this register and return to the calling point. The 
FORTRAN analog is the ASSIGNED GO TO. 
This technique is aesthetically unappealing since the 
subcontrol has to know the various points from 

which it can be called-an impractical procedure 
for library routines. Also the notion of a parallel 
subcontrol has no exact analog in subroutines. An 
interrupt subroutine comes close but a more exact 
analogy is the communication betweerr'two com­
puters. In both of these cases, the standard com­
munication technique is the use of flags rather than 
LINK JUMPs. 

Thus parallel subcontrols must be initiated into 
action by means of a flag flip-flop and must simi­
larly indicate the completion of the action by a flag 
flip-flop. There appears to be no reason why these 
two flip-flops could not be the same. We label it 
the REQUEST flip-flop. By convention the CALL 
sets the REQUEST and the subcontrol clears it 
when it is through. 

One would like to be able to write library sub­
routines (subcontrols) with the parallel/sequential 
consideration. The executive program (or in our 
case, the global headers) should decide whether the 
subcontrol is to be used as a parallel or a sequential 
subcontrol. The REQUEST convention permits 
one to achieve this objective. 

There is one further distinction between parallel 
and sequential usage which must be mentioned. If a 
parallel subcontrol can be called from two (or more) 
other subcontrols t~en it should have two (or more) 
sets of interface registers and request flip-flops. If 
RQ 1, RQ2, ... are the different request flip-flops, 
then a subroutine can serve a fixed hierarchy of 
requests by the statement 

WAIT (RQl + RQ2 + = 1) 

where + denotes the Boolean OR. Similarly, a 
scanning procedure can be arranged by using a 
string of IF statements. In order to make it pos­
sible to write library subroutines independent of the 
number of requests, a simple extension of the 
INDEFINITE REPEAT feature of macro com­
pilers may be used, with the necessary information 
carried in the library call. 0' 

In a sequential subcontrol multiplicity of inter­
face registers is not necessary. It may be used 
without harm, of course. 

We may finally note one distinction between 
intercomputer communication and parallel sub­
controls. If two computers are tied together, either 
computer may request action by the other (and con­
flicts are somehow resolved). In our case, however, 
the standard hierarchical structure of programming 
must be observed. If subcontrol A can call on sub-
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control B, subcontrol B may not call on subcon­
trol A. Thus the problem is simpler. 

TIME AND CONTROL HIERARCHIES 

We have implicitly noted that there are two no­
tions of hierarchy among. subcontrols. The dif­
ferent subcontrols form a partially ordered set under 
the relation of extended CALL. As in conven­
tional programming we insist that this relation 
define a true partial ordering. Beyond this fact, 
however, we ar~ not too concerned with this logical 
hierarchy. 

A second partial ordering, which is not ab initio 
a partial ordering but may be converted into one, is 
by time of operation. If two subcontrols may oper­
ate at the same time they are at the same level in this 
partial ordering independent of the logical hier­
archy. They are parallel subcontrols in our earlier 
terminology. Consider for example a main control, 
a buffered input/output subcontrol and a memory 
subcontrol. Since I/O is buffered, it may operate at 
the same time as main control. Since the I/O sub­
control may call on memory subcontrol, the 
memory subcontrol may operate at the same time as 
main control. Thus the logical hierarchy is that 
shown at the left in Fig. I, :while the time hierarchy 
is the one shown at the right. 

Figure 1. Hierarchy of subcontrols (Hasse diagrams): Logical 
(left); Time (right). 

(Formally, "parallel" is a binary relation which 
we extend by transitivity. The partial ordering rela­
tion in the time diagram is "not parallel, and below 
in logical ordering.") 

THE LIBRARY 

The library material for the compiler should con­
tain two classes of programs: subroutines and sub­
controls. A subroutine is an "open" subroutine or 
a macro. Algorithms for arithmetic operations, 
incrementors, etc., come under this category. These 
algorithms are divided into- types and are called by 
type names; the detailed choice is left to the com-

piler. Subcontrols are complete subprograms but 
are processed according to macro conventions, that 
is, they are stored in source language with dummy 
dimensions and dummy register names. They may 
contain such macro features as "indefinite repeat," 
"If True," "If False," etc. An example of the li­
brary call for such a library subcontrol is 

ARITH LIB AC5(A, Q, OV, N) 

where AC5 is the identifier of the library routine, 
ARITH is the name assigned in the machine, A, Q 
and OV are registers and N is the dimtmsion (de­
fined in global headers). 

It is sometimes necessary to label the "next state­
ment while using the indefinite repeat directive. An 
example is a "scanner" which services requests in 
sequence. For this purpose we introduce the 
CONTINUE statement. An example follows: 

C! 

SUBROUTINE CORE (RQ, Ml, MAD, MI, ct, AL. WL) 

REGISTER MAR (AL). MBR (WL) 

IRP (RQ, MI, MAD, lIT, Cl) 

REGISTER RQ(!). M(WL). MAD(AL). MI(!) 

IF (RQ • 0) C! 

DECODE (MI) RD. WR 

MAR. MAD 

HI - MBR 

• CLEAR RQ 

C! 

MAR' MAO 

MBR - HI 

CLEAR RQ 

If there are three controls which wish to use~ this 
memory control in parallel, one may use the library 
call 

LIB CORE «RQI, Ml, MAl, MIl,), 

(RQ2, M2, MA2, MI2,), 

(RQ3, M3, MA3, MI3,), AL, WL) 

In the subroutine, .CORERD and .COREWR are 
library subroutines which set up the signals for 
reading and writing core memory . We note that C I 
is a repeated argument which has not been specified 
in the library call. Hence it becomes a cn~ated 

symbol, a different symbol for each repetition. On 
the other hand, STM is not an argument. Hence 
this symbol is assigned to the first occurrence. The 
repetition IRP uses simultaneous substitutions for 
all arguments. (This is the simple extension ref,erred 
to earlier.) The CONTINUE statement is not 
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translated; its label is assigned to the "next" micro­
instruction. 

It is easily verified that the "IF, CONTINUE" 
arrangement in the subroutine is in fact a scanner. 

THE MICROLANGUAGE (OUTPUT 
LANGUAGE OF THE SYSTEM 
COMPILER) 

The output of the system compiler is a preamble 
followed by a string of microinstructions. The pre­
amble contains the information necessary for the 
logic compiler. Wherever possible, one would like 
to perform microoperations in parallel. For this 
purpose the system compiler will associate an 
ordered-pair level index with each microinstruction 
and specify in the WAIT field the ordered pair 
indices of the microsteps which must be previously 
completed. Thus the output becomes a description 
'of the flow diagram. 

The micro language is permissible in the source 
program as well (without the ordered-pair indices, 
of course). In fact, arithmetic algorithms have to 
be written in microlanguage. In the source program 
a switch to the micro language is initiated by 

-MICRO 

and terminated by 

-COMPILE. 

All arithmetic operations in the microlanguage 
are Boolean. The conventions are 

A+B 

(-A) 

A *B 

A(+)B 

A OR B 

NOT A (outer parentheses essential) 

A AND B 

A EXCLUSIVE OR B 

Other operations can be added later. Subscripts 
are allowed, and the RANGE of symbolic sub­
scripts may be specified. 

An equality sign denotes a definition. If the vari­
able on the left is a flip-flop, the quantity on the 
right decides whether the flip-flop is set (1) or 
cleared (0). Otherwise the equation is taken as a 
signal definition (decoder output for example). 

Other microoperations (all self-explanatory) are: 

1. GATE RA = RB 

2. IF (BIT = 1 (or 0)) LABEL 

3. OFF GATE 

4. STOP 

SAMPLE DESIGN OF A SMALL 
DIGITAL SYSTEM 

In order to demonstrate the versatility and power 
of the input language, we present here the system 
design of a small digital computer with a sequential 
arithmetic subcontrol and a parallel input/output 
subcontrol which handles one-word transfers to and 
from memory. 

The card format is essentially that of FORTRAN. 
A detailed discussion of the example will be found 
in the foHowing section. The register layout and 
data paths are shown in Fig. 2. 

Data from· 
ext devices 

ARITH II 

Figure 2. System layout and data paths in the sample computer. 

MACHINE CSLIAC 

* GLOBAL HEADERS 

SYN (WL,20), (DWL,39) , (AL,IO), (FL,IO), (AAL,5) , (AFL,3) , 

(IOFL,I), (CFt,I) 

• LENGTHS OF REGISTERS ARE DEFINED AS FOLLOWS: 

* WI.. SINGLE WORD, DWL. DOUBLE WORD, At • ADDRESS, FL • FUNCTION, 

* AAL • ARlrnHETIC ADDRESS, AFL. ARI'rIDIETIC FUNCTION. 

* IOFL. INPUT/OUTPUT FUNCTION, CFL • CORE MEMORY FUNCTION 

PARALLEL (MAIN, 10), (MAIN, CORE), (IO, C<JtE) 

* MEM'lRY READ DEFINITION 

MACRO MEHRD (X,Y,AD,M',lR,IlQ) 

* X IS SOORCE REGISTER FOR IIEI!ORY ADDRESS. Y IS DESTINATION REGISTER FOR 

• CONTENTS (OPERAND OR INSTRUCTION), AD IS INTERFACE ADDRESS REGISTER, 

* DT IS INTERFACE DATA (OPERAND OR INSTRUCTION) REGISTER, IR IS INTERFACE 

* MEMORY INSTRUCTION REGISTER, RQ IS REQUEST FLAG. 

* NAME OF HEH<JtV CONTROL IS C<JtE. 

CALL CORE (RQ) 

AD· X 

ENDC 

IFF (y. D1') 

HElDtY WRITE IlEFINITION. SAME ARGUMENT LIST 

MACRO HEMWR(X,Y,AD,DT,IR,RQ) 

CALL CORE (RQ) 
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AD' x 

IFF (y. DT) 

DT· Y 

ENDC 

END 

CONTROL MAIN 

REGISTER IR( WL). P(AL). RUNSW(I). CN(I). 

H(WL). A(WL). Q(WL). ACTR(ML). AIR(AFL), ARQ(I). OY(I). 

H1AD(AL). MIIR(IOFL), MIRQ(I). 

HCAD(AL). HeIR(CFL). HCRQ(I) 

INTERFACE(ARlnt) M, A, Q. ACTR, AIR, ARQ. (]V 

INTERFACE (10) MIAD. MIIR; H1RQ 

INTERFACE (CDRE) M. HeAD. HeIR, HCRQ 

DEFINE RIGHTMOST AL BITS OF INSTRUCTION AS ADDRESS PART 

EQUIV (ADDR. IR(WL·AL ••••• WL·I)) 

DEFINE LEFTMOST FL BITS OF INSTRUCTION AS FUNCTIOII PART 

EQUIV (FNCTN· IR(O ••••• FL·I» 

ARITllHETlC FUNCTIONS 

UNOF (FNCTN) ALL8, ALRS, MOD, ASUB, AMUF, AWP 

1/0 FUNCTIONS 

UNOF (FNCTN) lORD. IOWR 

CORE FUNCTIONS 

UNDF (FNCTN, eN) ReM, WCM 

SLASH NOTATION DEFINITION 

IIEHORY Y • IXI 

HEHRD(X, Y ,HCAD,H,MCIR,HCRQ) 

MEMORY Ixi • Y 

KEMWR(X, Y .MCAD,H,MCIR,MCRQ) 

INCR (P.P.AL) 

BEGIN IR· IP I FETCH NEXT INSTR 

XEQ CLEAR CN 

JMP 

JAN 

STA 

LDQ 

STQ 

LJP 

DECODE (FNCTN) HTR., Lt8, LRS, JMP, JAN, LOA, STA, LOO, STQ" SAD, 

UP. JOV. ADD, SUB, MUF, DVF, tNP. OUT. JI0 

WAIT (RUNSW • I) HALT TRANSFER 

CALL ARITH (ARQ) 

AIR • ALL5 LONG (ARITH) LEn SHIFT 

ACTR. ADT1A (AL-ML ••••• AL-l) 

ACTR USES RIGHTMOST AAL BITS OF ADDRESS 

CALL ARITH (ARQ) 

AIR. ALRS LONG (ARITH) RIGHT SHIFT 

ACTR • ADDR (AL-ML ••••• AL·I) 

EXIT 

P • ADDR JUMP (UNCONDITIONAL) 

IF (A(O) • 0) EXIT JUMP ON A NEGATIVE 

A· IADT1A1 LOAD ACCUMULATOR 

IADDRI • A ST<IlE ACCUKJLATOR 

EXIT 

Q • IADMI LOAD Q 

EXIT 

IADMI • Q ST<IlE Q 

EXIT 

M· IADTJaI SUBSTITUTE ADT1AtsS 

H(WL·AL •••• ,WL·I) • A(WL-AL ••••• WL·I) 

SET CN 

IADT1A1 • M 

.INCR (P. p. AI,) 

H. IADDRI 

LINK JUMP 

H(WL-AL ••••• WL·I) • P 
SET CN 
IADT1A/. M 

PLANT CONTENTS OP P IN RlGHTHOST AL BITS OF MEMORY WORD 

.INCH (APDR •• P. AL) 

BEGIN 

IF (OY • 0) EXIT 

JMP 

CALL ARITH (ARQ) 

AIR. MDD 

M • IADDRI 

ENDC 

EXIT 

CALL ARITH (ARQ) 

AIR • ASUB 

M· IADT1A1 

ENDC 

CALL ARITH (ARQ) 

AIR • AMUF 

M· IADT1A1 

CALL ARITH (ARQ) 

AIR· AI1VP 

H· IADT1A1 

CALL 10(HIRQ) 

MIlR • IOIlD 

OUT CALL IO(HIRQ) 

IP (MIRQ • 0) EXIT 

SUBCONTROL ARITII 

JUMP ON OIIERFLOW 

HlJLTIPLY A BY H (FRAC) 

DIVIDE (FRAC) AQ/H 

INPUT VIA 10 

OUTPUT VIA 10 

REGISTER H(WL). A(WL). Q(WL). ACTR(ML). AIR(AFL). 

ARQ(I). 011(1). ES(I) 

INTERFACE (MAIN) H, A. Q, ACTR, AIR, AltQ, (N 

CONNECT (EAQ(-I ..... OWL-I) • ES.A.Q(I ••••• WL-I)) 

EQUIV (AQ • EAQ(O ••••• OWL· I» 

WAIT (ARQ. I) 

DECODE (AIR) ALI.S. ALRS, MOD. ASUB. AMUP. ADVF 

IF (ACTR • 0) EXIT 

.DECR (ACTR. ACTR. ML) 

EAQ(·I ••••• OWL·Z) • EAQ(O ••••• OWL·I) 

EAQ (OWL· I) • 0 

ALLS 

IF (ACTR • 0) EXI T 

.DECR (AC'l'R, AC'I'R. AAL) 

EAQ(I ••••• OWL·I) • EAQ(0 ••••• OWL·2) 

LEAVES POSITIONS 0 AND IS UNTOUCHED 

.ADD2 (A.M,A.OV.WL) 

EXIT 

.SUB2 (A,M.A,OV.WL) 

AMIJr .N.J'2 (A,M,AQ,CW}WL) 

EXIT 

.NDIIF (AQ.M.Q.A.av,WL) 

InT 

EXI T CLEAR ARQ 

8mT 

END 
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SUBCONTROL 10 

REGISTER lOBFR (WL), 

MIAD (AL) , MIlR(CFL), MIRQ(I), 

ICAD(AL), ICIR(CFL), ICRQ(I) 

ICRQ IS REQUEST FROM 10 TO CORE, HIRQ IS REQUEST FROM MAIN TO 10 

INTERFACE . (MAIN) HIAD, HIIR, HIRQ 

INTERFACE (CORE) IOBFR, lCAD, ICIR, ICRQ 

UNDF (ICIR) IRC, IWC 

START WAIT (HIRQ' I) 

DECODE (MIIR), lORD, IOWR 

IOBFRRD (IOBFR) 

CALLS CORE (ICRQ) 

lCAD· HIAD 

ICIR • IWC 

ENDC 

CLEAR MIRQ 

START 

GATES INTO BUFFER FROM EXT. DEVICE 

IOWR CALLS CORE (ICRQ) 

lCAD· HIAD 

ICIR • IRC 

CLEAR HIRQ 

.IOBFRWR (lOBFR) GATES FROM BUFFER TO EXT. DEVICE 

START 

REGISTER MBR(WL) , MAR (AL) , 

M(WI.), HCAD(AL), HCIR(CFL), HCRQ(l), 

IOBFR(WL), lCAD(AL), ICIR(CFL), ICRQ(I) 

INTERFACE (MAIN), M, HeAD, MCIR
I 

HCRQ 

INTERPACE (10), IOBFR, lCAD, ICIR, ICRQ 

START WAIT (HCRQ + ICRQ. I) 

IP(ICRQ • I) IOD 

DECODE (MeIR) RQ{, WCH 

DECODE (ICIR) RCI, WCI 

RCH MAR • HCAD 

Rct 

'IICl 

.CORERD 

CLEAR HCRQ 

START 

MAR· HeAD 

MBR. H 

CLEAR HCRQ 

.COREWR 

START 

MAR • ICAD 

.CORBD 

IOBFR· HBR 

CLEAR ICRQ 

MAll. I CAD 

HBR' IOBFR 

.COl\BWl\ 

CLEAR ICRQ 

START 

SUBROUTINE .RIPLADD (X,Y,Z,OPL,WL), CLASS .ADD2 

x • AUGEND, Y • ADDEND, Z • SUM, on • OVEllPLOW PLAG 

RADIX COMPLEMENT ADDITION WITH RIPPLE GARRY 

REGISTER X(WL) , Y(WL) , Z(WL) , OPL(I), 5X(I) , 5Z(l) 

1FT (X. Z) 

REGISTER n(WI.) 

IPP (X. Z) 

EQUIV (TX • Z) 

-- MICRO 

C(WL-I) • 0 

D(WL-l) • 1 

RANGE I • 0, WL .. 1 

C(l-I) • X(I)*Y(I)*D(I) + (X(I)+Y(I»*C(I) 

0(1-1) • (-X(I»*(-Y(I»*C(I) + «-X(I» + (-Y(I»)*D(I) 

WAIT (C(-I) + 0(-1) • 1) 

ASSERT (C. (-D» 

SCI) • XCI) (+) VII) (+) C(I) 

OVS • C(O) (+) C(-I) 

GATE OFL • OVS 

1FT (X. Z) 

GATE X • TX 

-- COMPILE 

END 

DISCUSSION OF THE EXAMPLE 

The purpose of the global header subprogram 
with' the identifier "MACHINE" is to provide maxi­
mum flexibility in the system design. One can 
change word length or memory size simply by 
changing one synonym. One can change from buf­
fered I/0 to sequential I/O by removing one state­
ment. One can change from one type of memory to 
another by changing macros MEMRD and 
MEMWR. We note incidentally the convention 
ENDM as macro termination and the use of macros 
within macros. 

The statements IFF and 1FT mean "IF FALSE" 
and "IF TRUE" and cause conditional compilation 
of the next statement (MAP convention). All sub­
routines whose mimes start with a period are as­
sumed to be library subroutines (or classes of them). 
The subroutines used· have the following interpreta­
tions: 

.INCR (SOURCE, DESTINATION, 
LENGTH): DESTINATION = 
SOURCE + 1 

.DECR (SOURCE, DESTINATION, 
LENGTH): DESTINATION = 

SOURCE - 1 
.ADD2 (OPERAND 1, OPERAND 2, 

DESTINATION, OVERFLOW, 
WORD LENGTH): 2's complement 
addition. 

.SUB2, .MUF2, .NDVF2 have the same 
arguments as .ADD2 and refer to 2's 
complement subtraction, multiplica­
tion and non-restoring division. 

.IOBFRRD AND .IOBFRWR are subroutines 
to activate external I/O devices to read into and 
write out of the 10 buffer register, respectively. 
Similarly .CORERD and .COREWR generate sig­
nals to read from and write into the core memory. 

Since we have adopted the IPL V execution con­
vention for GO TO, certain statement tags are not 
admissible. These are: DECODE, CALL, MACRO, 
ENDC, ENDM, IF, IFF, 1FT, IRP, END, WAIT, 
CLEAR, SET, REGISTER, INTERFACE, 
PARALLEL, etc. 
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Special Points to be Noted 

Main Control: ACTR is a counter register for 
arithmetic control. RUNSW is a flip-flop controlled 
by console switches. When it is off (RNSW = 0), 
the instruction HTR stops the main control. How­
ever, the I/O and memory controls may continue to 
run. In SAD and LJP we could have used a 
read/modify /write procedur~ if the memory control 
had such capability. For example, if RMW is the 
appropriate core memory instruction, the appropri­
ate string for SAD is: 

CALL CORE (MCRQ) 

M=A 

MCAD = ADDR 

MIR = RMW 

ENDC 

One would define such a string by a macro in the 
global description. 

Note that register M appears in the interface 
between MAIN and ARITH, as well as in the inter­
face between MAIN and CORE. This is permissible 
in this case since MAIN calls ARITH sequentially. 

A rithmetic Control: We should note the forma­
tion of the long EAQ register by the use of CON­
NECT. The sign bit of Q is excluded in this long 
register and the sign bit of A is extended by one 
bit (ES). 

[0 Control: We note the use of CALLS when 
subcontrol CORE is called. In the global definition, 
10 and CORE have been defi~ed as parallel as they 
could operate at the same time. However, when 
CORE is called by 10, we have to wait for the 
CORE control to finish. In reading from an 10 
device, we have to signal MAIN that the word has 
been written into memory; in writing to an 10 
device, we need the word from memory to write. 
Thus in both cases aWAIT. (ICRQ = 0) is neces­
sary after the initiation of a memory request. If a 
simple CALL were used, the ENDC would have to 
be followed by such a wait, whereupon the first 
WAIT (ICRQ = 0) produced by the compiler be­
comes redundant. (Incidentally, in such a case the 
.IOBFRRD must be inside the CALL string.) We 
also note that the 10/CORE interface register 
10BFR is being used also as 10/EXTERNAL 
DEVICE interface. While the compiler itself will 
never use an interface register between parallel con­
trols for any other purpose, the programmer may 
choose to do so. The compiler will bring this fact 
to the attention of the programmer but will not 
label it as an error. 

Core Control: We note that the initial wait string 
assigns a higher priority to 10 than to main control. 
If a scanner type of arrangement is desired we 
should replace the first two statements by 

START 

STRTI 

IF (ICRQ = 1) 10D 

IF (MCRQ = 0) START 

and return to STRTI instead of START after RCI 
and WCI. Clearly one could, by additional IF 
statements, permit more complicated scanning pro­
cedures (such as a 2: 1 priority for 10 over MAIN). 
Also we could have saved some writing through the 
use oflRP. 

Library Subroutine Usage: An example of a 
library subroutine is shown under .RIPLADD. The 
subroutine belongs to the class .ADD2 and is called 
by that class name in the subcontrol ARITH. The 
class definition is contained in a table within the 
library directory. We note a new statement 
ASSERT. This statement is an assertion known to 
the programmer but difficult to detect by program. 
The assertion is passed on to the logic compiler for 
its use. 

CONCLUSION 

The purpose of this paper was to present a pro­
posal for a computer compiler system of programs. 
As of the time of writing this paper, the system of 
programs is not available and hence no experimen­
tal data can be provided. The example giv'en estab­
lishes the following facts: 

1. The input language is simple and ver­
satile. 

2. The input language is complete. That 
is, one can describe any existing com­
puter unambiguously in this language. 

3. The language is translatable. That is, 
there appear to be no conceptual rea­
sons why the input cannot be algorith­
mically translated to produce optimized 
hardware designs. 

The basic concept proposed here is not entirely 
new. Similar work has been reported earlier by 
Proctor2 and Schorr.4 The present papt!r differs 
from the earlier proposals in several respects. First 
the philosophy is different. The basis of each deci­
sion has been user convenience rather than linguistic 
structure. In fact we have chosen to disn:gard the 
linguistic aspects. By the same token, the user is not 
required to specify any more information than he 
absolutely has to. For example, no registers that 
are not directly referred to in the input need be 
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defined. MACRO, SUBROUTINE, LIBRARY 
and conditional compilations are new features (an 
elementary MACRO was used by SchlaeppP). The 
use of global headers and the notion of parallel/ 
sequential CALLs to subcontrols introduces a flexi­
bility that was not previously available. 

The compiler (when completed) will optimize 
more extensively than is humanly possible, main­
taining the modularity specified in the input. Thus 
the system compiler will attempt to merge micro­
instruction strings both between instructions (of the 
object machine) and within an instruction, inserting 
conditional branch statements where necessary. The 
hardware compiler will attempt as much Boolean 
minimization as practical. The assignment of bit 
configurations to instructions and the combination 
of different decoders (within one subcontrol) are 
places where substantial gains are expected. 

One last distinction which is conceptually trivial, 
but to us important, is that our designs will be 
asynchronous. It is our claim that asynchronous 

computers are faster and more reliable in addition 
to being more maintainable. Design difficulty, 
which has in the past been the main disadvantage, 
is eliminated by the computer compiler. 
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A BUSINESS-ORIENTED TIME-SHARING SYSTEM 

G. F. Duffy and W. D. Timberlake 
International Business Machines Corporation 

Systems Development Division, Poughkeepsie, New York 

INTRODUCTION 

The purpose of this project was twofold. First, 
to gain systems and operating experience with a 
remote terminal, time-sharing system. This would 
help to define the needs of future time-sharing ap­
plications. Second, to achieve productive use of 
time-sharing in some of IBM's current operations. 

In general, man attempts to solve complex pro~­
lems in a step-by-step manner, basing his next step 
on the results of the preceding step. Problem solvers 
have continually sought tools to aid them in their 
tasks. Several decades ago most of these tools (slide 
rules, calculators, etc.) were under direct control of 
their users (see Fig. 1). Because turnaround time 
was not excessive the problem solver could essen­
tially devote his entire energies to the situation at 
hand in real-time. Unfortunately these tools were 
not powerful enough. 

The computer emerged as an extremely powerful 
tool; however, it was too fast and expensive to be 
used efficiently by one individual in a real-time 
mode. Thus, the jobs had to be processed sequen­
tially by the computer. Tut:naround time increased 
and the problem solvers had to time-share their 
efforts among several tasks. This tends to be an 
inefficient use of human talents. This inefficiency, in 
part, has led to the current interest in time-sharing 
-whereby the computer serves multiple users 
simultaneously. 

The early development in time-sharing was ori-
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ented to the scientific, rather than the business user. 
This was due, in part, to a lack of knowledge and 
consequently a lack of interest by potential business 
users. In spite of this, the Systems and Procedures 
Department was interested in fostering the use of 
time-sharing by business users. 

In 1962, we learned of the Administrative Ter­
minal System that was being developed by IBM's 
Advanced Systems Development Division, San 
Jose, California. Since this system seemed suitable 
for our use we started making plans to install A TS 
in the IBM Systems Development Division Labora­
tory in Poughkeepsie. 

Two approaches were possible: select one major 
application area or select different application areas. 
Although the former alternative would have been 
easier to implement the latter course of action was 
chosen for the following reasons. More experience 
would be gained. Initial acceptance would tend to 
be enhanced by a more modest beginning in each 
area. The system application could be easily ex­
panded at a later time by the addition of more ter­
minals. Finally, failure of a given application would 
not significantly impact the entire system. 

The task of selecting different application areas, 
and justifying the system was simplified because we 
were able to obtain three prototype terminals for ex­
perimentation and demonstration. The benefit of 
having something tangible to show to potential 
users of time-sharing cannot be overemphasized. 
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PERIOD BEFORE 
LARGE-SCALE 
PROCESSORS 

PERIOD OF REAL-TIME ENVIRONMENT 
PLUS BATCH - PROCESSING 

(LARGE-SCALE PROCESSORS) BATCH - PROCESSI NG 

LARGE COMPUTER 

UNIT RECORD 
EQUIPMENT 

LESS 

LARGE OR 
SMALL COMPUTER 

/QO 
1. ~ CALCULATOR 

Ii. '" ~ SLIDE RULE 

CLOSE CONTROL 

LOW RATE OF 
OUTPUT 

DIRECT CONTROL LIAISON: MAXIMUM CONTROL 

HIGH RATE OF 
OUTPUT 

HIGH RATE OF ( SYSTEMS AND) 
OUTPUT PROGRAMMING 

D 
MANUAL 

PROCESSING 

~* 1. QUEUEING 'A' PROBLEM 

APPLICATION AREA 

REMOTE: TERMINj,LS 
ON-LINE 

Figure I. Man-machine relationship. 

SYSTEM DESCRIPTION 

A TS is a real-time, multiprogrammed, time­
shared, remote terminal system that can be run on 
either a 1440 or 1460 IBM computer (see Fig. 2). 
The hardware consists of a processing unit, disk 
storage, multiplexor channels, typewriter terminals, 
magnetic tape drives, card reader and punch, and 
on-line printer(s). 

The system permits many operators to simul­
taneously perform different data processing tasks. 
These tasks inch.ide data (or text) entry, immediate 
correction, storage, retrieval, updating, formatting, 
and transmission. 

At entry time a backspace-correction feature can 
be used to ensure that error-free data is retained in 
storage. This is done by backspacing over incorrect 
keystrokes and re-keying the correct strokes. Data 
can be updated by using add, replace, and delete 
functions. Text can be formatted at output time 
into various specified formats. (This paper was pre­
pared with the help of A TS.) Figure 3 is an example 
of text as it was entered into ATS, and as it was 
subsequently formatted and printed. 

Data can be transmitted or recorded on various 
output devices. These include the originating ter­
minal (or any other terminal on the system that 

provides a message transmission capability), on-line 
printer, on-line card punch, or magnetic tape. The 
on-line printer may be standard or supplemented 
with the upper and lower case print feature. The 
data recorded on magnetic tape can be used for 
further processing (off-line in regard toA TS), off­
line printing (standard or with upper and lower 
case characters), or off-line card punching. (See 
Fig. 4.) 

Input media into the system come primarily from 
the remote terminals, but punched cards or mag­
netic tape can also be used. 

The software consists of a core resident control 
program and various disk resident service programs. 
In addition to accepting data from, or transmitting 
data to, one' or all terminals, the control program 
maintains lists of work in progress, calls lthe service 
programs into core as necessary, and handles all 
disk I/0 operations. 

Core storage is used for various lists and tables 
used by the control program and also as core buffer 
areas for terminals. Core storage allocation consists 
of 5900 positions for control program and system 
subroutines, 2700 positions for active service pro­
grams, 1400 positions for tables and lists, and up to 
6000 buffer positions (see Fig. 5). 

As an option, some portion of upper memory 
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PLANS 
AND 

CONTROLS 
NETWORK 

PLANS AND 
CONTROLS - POK ( 1 ) PERSONNEL (1) 

PRINTER 

SYSTEMS AND 
PROCEDURES ( 1) 

CHQ-MGMT. 
SYSTEMS (1) 

LIBRARY 
NETWORK 

Figure 2. Configuration of the system. 

can be used to contain an active peripheral pro­
gram. Thus ATS can perform an additional task: 
that of providing a peripheral operation (e.g., tape­
to-printer or card-to-tape) concurrent with terminal 
activity. 

Data flows from a terminal into core blocks (100 

characters long) that are dynamically assigned at 
the time of need. When the core block is filled it is 
written onto disk "working storage" and the core 
block is released for further assignment. Working 
storage is defined as that portion of disk containing 
documents currently being prepared or updated. A 
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TEXT AS ENTERED INTO ATS 

uc 
UNCONTROLLED MODE~ 

SYSTEM DESCRIPTION 
a 
AUTOMATIC MODE 

ATS is a real-time, multiprogrammed, time-shared, remote 
minal system that can be run on either a 1440 or 1460 IBM 

computer (see Fit~re 2).~ 

The hardware consists of a processing unit, disk drives, multiplexor 
channels, typewri ter terminals, magnetic tape drives, card readier 

nd punch, and, on-line printer(s). 

The system permits many opirators to simultaneously perform 
different test processing tasks.-,® 

These tasks include data (or text) entry, immediate correction, 
storage, retrieval, updating, formatting, and transmission. 

n 
NEXT NUMBER -- 10 

8 test teJt~ 
The system permits many operators to simultaneously perform 

different text processing tasks. 

TEXT AS CORRECTED, FORMATTED AND PRINTED 

SYSTEM DESCRIPTION 

ATS is a real-time, multiprogrammed, time-shared, 
remote terminal system that can be run on either a 1440 or 
1460 IBM computer (see Figure 2). The hardware consists of 
a processing unit, disk drives, multiplex0r channels, 
typewriter terminals, magnetic tape drives, card reader and 
punch, and on-line printer(s). 

The system permits many operators to simultaneously 
perform different text processing tasks. These tasks 
include data (or. text) entry, immediate correction, storage, 
retrieval, updating, formatting, and transmission. 

KEY x-= The "uc" request will center text automatically. 
B - Double carrier return established "end of uni~" 
C - Tabbing of units established indented paragraphs. 
D - Indicates automatic data correction while entering. 
E - Error in unit 8 corrected, and unit automatically outputted. 

~------------------------------------------------------------------------_,------
Figure 3. 
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Figure 4. Administrative terminal system - Work-flow 'schematic. 

document in this part of storage is essentially pri­
vate toa given terminal. 

In contrast, a document in "permanent storage" 
can be copied into private working storage by any 
terminal operator who has the requisite identifying 
iI?-formation. Thus a document can be created in 
working storage from any terminal, stored in per­
manent storage from the same terminal, and later 
copied from permanent storage into the working 
storage of any terminal. 

The operation of the terminal is relatively simple. 
Many commands are designated by as few as two 
keystrokes. A list of the common A TS functions 
follow: 

• Clear working storage. This erases 
working storage. 

• Delete stored document. 

• Erase line(s) of data from working stor­
age. 

• Erase characters in current line of data 
in working storage. 

• Retrieve document from permanent 
storage. 

• Retrieve a previous line of data from 
working storage. 

• Insert a line into working storage. 
• Substitute one phrase with another. 
• Move line(s) from one portion of work­

ing storage, to another. 
• Print working storage. (This command 

can take several forms. The printing can 
be performed on either a printer or a ter­
minal. It can be formatted or unfor­
matted.) 
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o *********************************** 

* * 
* * 
* * 
* Control Program and * 
* System Subroutines * 
* * 
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* * 
* * 

5,900 *********************************** 
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* 

Overlay Area­
Service Programs 

* 
* 
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* 
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* 
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* 
* 
* 
* 
* 
* 

*********************************** 
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* 

* 
* 
* 

16,000 *********************************** 

Figure 5. Core stor~ge allocation. 

• Store a document. 
• Transfer a document to/from magnetic 

tape or cards. 
• Receive a message sent from another ter­

minal. 
• Transmit a message to another terminal. 

In addition to the common functions, some pro-
visions available for automatic formatting are: 

• Page length specification. 
• Page width specification. 
• Right margin justification. 
• Automatic page numbering. 
• Line centering. 
• Line skipping. 
• Heading/footing. (Automatically gener­

ated at top/bottom of each page.) 
• Page skipping. 
• Keep specified portion of text together 

on a page. 

APPROACH TO SYSTEM IMPLEMENTATION 

The events leading to actual system implementa­
tion include the following. 

Original Proposal 

As a result of "hands-on experience" gained from 
the initial 3 terminals, which were demonstrated to 

more than 25 different areas, we proposed installa­
tion of 17 terminals within 11 application areas. 

In order to minimize cost, A TS was to sharle a 
1460 computer, which was originally intended for 
peripheral printing only. Consequently, the initial 
proposal estimated ,a cost and time savings that 
would more than cover the cost of the purchased 
equipment. 

In retrospect, the decision to install A TS in many 
areas, rather than one large one, appears to have 
been sound. Each application presented new prob­
lems, new benefits, and ideas for future system ex­
perimentation. 

The proposal was accepted by management and 
the equipment order was placed. See overall ATS 
schedule (Fig. 6). 

Planning and Training 

As shown on the A TS schedule (Fig. 6) it was 
necessary to start in-depth systems analysis approx­
imately four months prior to installation of the 1460 
ATS. The three original terminals were tied to a 
"borrowed" computer and were used as much as 
possible during this initial analysis. 

The objectives derived from the first analysis in­
cluded: 

• Train terminal operators in those areas 
receiving terminals. 

• Define goals for each A TS application. 
• Write procedures and design forms for 

jobs to be done after installation of the 
system. 

• Train computer operators to operate! an 
ATS system. 

• Determine storage allocations for each 
terminal. 

After installation of the 17-terminal 1460 Ad­
ministrative Terminal System, the feasibility phase 
of the systems analysis began. A target date of 
three months for concluding feasibility studies was 
set. Questions to be answered included: 

• What type of applications are best suited 
to ATS? 

• Which jobs could A TS best perform with 
respect to reduced turnaround time, cost 
savings, and manpower savings? 

• What human factors must be considc;!red 
in operating in a real-time environment? 

• What additional procedures are needed 
to operate a real-time system? 

• What is the future potential of A TS in 
the areas studied? 
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Figure 6. A TS implementation schedule . 

• How much off-line effort will be gener­
ated from ATS activity? 

• Which direction should A TS expansion 
take relative to system configuration, 
programming subroutines, hard-copy vs 
displays, etc.? 

After installation of the equipment, the feasibility 
studies began, and a "Users Conference" was held 
to review ground rules and operating procedures. 

Coordination 

An important aspect of system implementation 
was the type of coordination and control required 
to operate a remote terminal system. Close com­
munication was essential among the following areas: 

Computer Center: ATS computer operators, 
and off-line equipment op­
erators 

Customer Engineering: terminal customer engi-

Telephone Company: 

Application Areas: 

neers, and system cus­
tomer engineers 
maintenance of lines be­
tween terminals and Com­
puter Center 
17 -terminal operators, and 
operating management in 
each area 

Systems & Procedures: systems man for each 
operating area 

Computer operators had to become accustomed 
to dealing with many customers via the terminal 
and telephone. They also had to learn that operat­
ing in a time-shared environment does not permit 
arbitrary manual intervention, such as pushing the 
stop button without advance warning. Requests for 
on-line or off-line processing had to be clearly de­
fined by the terminal operator so that each request 
could be satisfied. The computer operator also had 
to act as a clearing agent for all customer engineer 
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calls. Terminal operators and their managers had 
to adjust to the condition of being on-line with a 
computer. The insulation previously provided by 
the systems analyst and/or programmer was con­
siderably reduced. 

A Terminal Operator's Guide was written to de­
fine all personal contacts involved, and "what-to­
do" in various situations, such as requesting off-line 
processing of A TS documents, asking for A TS time 
after prime shift, etc. 

Communication breakdowns were frequent dur­
ing the first months of operation, but by the end of 
the feasibility phase communications between the 
various areas was no longer a problem. It was then 
that the applications people recognized that (from a 
user viewpoint) real-time systems afford better com­
munications and control than was possible under 
the batch-processing mode of operation. 

TYPICAL APPLICATIONS OF ATS 

A summary of the specific areas selected, the 
tasks p~rformed, and the benefits derived by each 
user of ATS is discussed in this section. 

Engineering Design Services 

This area is responsible for the release, and status 
control, of Engineering Changes (E/C's). In addi­
tion to preparing tabular-type data on E/C's, this 
group prepares Installation Instructions for each 
release. The use of A TS has decreased turnaround 
time between receipt of paperwork and drawings 
from the Engineer, and the release of formal Engi­
neering Changes. 

Task Performed 
Weekly status reports (on System/360 E/C's). 
E/C status histories. 
Design automation cycle time reports. 
Systems installation instructions. 

Benefits Derived Using A TS 
Reduced turnaround time for review of E/C's, 

and provided faster release of formal 
ch(1'nges. 

Reduced time to update documents and re­
ports. 

Eliminated keypunching, card-handling, and 
1401 processing. 

Produced cost and manpower savings. 
Potential Uses of A TS 

Maintain development machine structure, and 

switch to production records after release. 
(P /N's, Qty, Descrip., where used, etc.) 

Engineering Proposals 

Requests for price quotes (RPQ) from IBM cus­
tomers presents two problems. The RPQ workload 
is high at irregular times, and the requested due 
dates usually allow the minimum time for preparilng 
a proposal. A TS has allowed the Engineering 
groups to manipulate stored text into the;: unique 
form required for each RPQ proposal. After mak­
ing minor changes to the standard text, and inse:rt­
ing special information reque~ted by a particular 
customer, a finished manuscript can be obtained. 

Task Performed 
Prepare "Boilerplate" proposal-standard SC;!C­

tions stored for easy retrieval and revision. 
Prepare "Unique" proposals-generate unique 

portions of text, and bring in standard sec­
tions as required. The standard portion of 
each proposal represents about 75% of total 
text. 

Benefits Derived Using ATS 
Reduced typing and editing-only changed 

portion of standard text requiring editing, or 
retyping. 

Increased accuracy of proposal data. 
Reduced turnaround time for proposal re­

sponse to customer, because of the rapid 
method of updating and editing existing 
copy. 

Provides camera-ready output. 

Library Services 

This application involves converting library con­
trol processes to a real-time situation. In addition, 
the feasibility of a library network is being e:xplon~d 
for the purpose of centralizing the common library 
functions of several facilities. Two terminals are 
now being used for this purpose. 

Task Performed 
Book order processing-after data is lentered, 

the book order is printed on the tt!rminal, 
the total order list is updated, and a status 
report output is generated. 

Book. holdings-master file by shelflist,. title 
and author. 

Benefits Derived Using ATS 
Eliminated keypunching, card-handling~, etc. 
Permitted rapid access to central files. 
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Reduced turnaround time on processing orders 
and answering inquiries. 

Produced cost and manpower savings. 
Proved feasible for use in larger-scale library 

networks. 
Potential Uses of A TS 

Library announcements. 
Subscription control (e.g., periodicals). 
Library procedures. 
Cataloging and subject index. 
Book circulation cards. 

Plans and Controls and Documentation Controls 

The Plans and Controls (P&C) area is responsible 
for project planning, control processes to measure 
plans vs performance, and for issuing of status re­
ports. 

Because of the shared responsibility for systems 
design at various IBM laboratories, and the exis­
tence of an overall P&C manager at divisional head­
quarters, the feasibility of an ATS network for com­
mon P&C needs is being explored. 

The Documentation Control area is responsible 
for the distribution and status of Engineering Speci­
fications. The status of specifications, i.e., approval 
or disapproval, is maintained through ATS. 

Task Performed 
Prepare engineering specifications. 
Prepare functional and performance specifica­

tion status reports. 
Perform keypunch simulation (project plan up­

date). 
Establish communication network for: 

SDD Laboratory-IBM Poughkeepsie 
SDD Laboratory-IBM Kingston 
SDD HQ-IBM Harrison 

Prepare "hot" exception reports (e.g., systems 
status). 

Prepare "hot" manpower status reports. 
Benefits Derived Using ATS 

Established central files that are easily re­
trievable in hard-copy form. 

Maintained control files on a real-time basis. 
Provided rapid communication of critical re­

ports to SDD HQ. 
Proved feasibility of larger SDD communica­

tion network for facility control functions. 
Resulted in a high degree of accuracy. 
Minimized turnaround time between final up- . 

date and transmittal of reports and specifi­
cations. 

Reduced manpower and cost for the prepara­
tion of control documents and specifications. 

Divisional and Corporate HQ-Procedures and 
Planning 

Task Performed 
Preparation of, and file maintenance on: 

Procedures 
Procedures Distribution Lists 
Organization Directory 
Document Index 
Card-Image Input for Off-line Processing 
General Memoranda 

Benefits Derived Using A TS 
Provided rapid access to stored data. 
Minimized turnaround time to update and out-

put new files. 
Elimination of keypunch, card-handling, etc. 
Reduced typing and editing. 
Increased accuracy. 

Potential Uses of A TS 
Systems and procedures programming. 
Legal department documentation. 
Corporate policy revisions. 
Contract preparation. 

CONCLUSIONS 

This section discusses the problems encountered 
in implementing a time-sharing system, an overall 
summary of significant benefits experienced by A TS 
users, most promising applications of A TS, and 
summary d: 'accomplishments. 

. Problems Encountered in Implementing A TS 

A list of the common problems encountered in 
implementing A TS follows: 

I. Human factors, habit patterns, etc., have to be 
considered with respect to both operation of the 
terminal and designing new procedures. 

2. It was found that storage requirements ex­
ceeded available storage. A larger disk file is 
planned to increase each terminal's storage alloca­
tion to at least one million characters. 

3. Systems analysis of terminal applications has 
to be very flexible, in order to permit changing of 
existing procedures and formats. 

4. Close coordination and control is required, 
especially during the first several months, between 
the critical areas involved in system implementa­
tion, i.e., Computer Center personnel, customer 
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engineers, operating managers, terminal operators 
and systems analysts. 

5. The selection and training of terminal opera­
tors requires special techniques. Efficient terminal 
operation for most applications is facilitated by a 
combination of secretarial skills and a logical 
thought process. 

6. While reductions in turnaround time can be 
readily defined, a better means is required to define 
cost and manpower savings. This is because these 
savings usually overlap service-type departments. 

Summary of Significant A TS Benefits 

The following is a list of benefits experienced by 
one or more of the various A IS users: 

1. Proved to be a flexible means of entering text, 
tabular and card-image data into the system, with 
minimum time required to maintain up-to-date files. 

2. Provided real-time access to updated files. 
3. Provided the ability to establish common func­

tion networks for constructing central files from 
various sources, and also allowing rapid communi­
cation of critical memoranda. 

4. Reduced turnaround time between keyboard 
entry and desired output. 

5. Provided a flexible means of obtaining output 
data, i.e., on-line or off-line. 

6. Provided the ability to capture data in ma­
chine readable form for large-scale processing. 

7. Eliminated transcribing, keypunching, card­
handling and card-to-tape operations. 

8. Increased accuracy of text or tabular data, 
since unchanged portions are not subject to retyping 
errors. 

9. Reduced editing time. 
10. Cost savings as a result of reducing repetitive 

operations as well as reducing intermediate steps 
(e.g., control points, delivery, distribution). 

Most Promising Type Applications of ATS 

The most successful applications of A TS are those 
that take advantage of the greatest number of the 
following ingredients, especially when overlapping 
the three categories listed: 

1. Need for capabilities such as: 
a) File maintenance on a "real-time" 

basis, at frequent intervals. 
b) Information retrieval on a "real-time" 

basis. 

c) Hard-copy requirement, either on·-line 
or off-line. 

d) Minimum turnaround, entry-to-output. 
e) Card-image preparation for batch 

processing. (keypunch simulation). 

2. Network of common function terminals. 
a) Access to central files from various fa­

cilities. 
b) Rapid hard-copy communication be­

tween facilities. 
c) Merging of various facility files for ac­

cess or processing. 

3. Bonus items. 
a) Form letters and normal correspon­

dence. 
b) Frequently changing lists, tables, man­

power charts, etc. 

Summary of Accomplishments 

Six months of operating experience proved ATS 
to be feasible in 8 of the 11 application areas. Some 
terminals have been reassigned with increased em­
phasis on proved production applications. 

Although ATS can be justified for many '''single'' 
functions, it is more easily justified when it. can be 
used for various functions within an area. 

As expected, much learning has taken place. Our 
Computer Center is in a better position to operate 
a time-sharing system. A number of people have 
been exposed to A TS and the concept of time­
sharing. Others have had considerable terminal 
operating experience. 

Extremely important is the fact that our systems 
people have increased their knowledge of time­
sharing immeasurably. We can now avoid many of 
the earlier mistakes we made in planning, ordering, 
installing and operating ATS. For example, we 
would now expect new terminal operators to be 
apprehensive when first exposed to the system. But 
we would also expect the majority of them to be­
come enthusiastic supporters in a short p(~riod of 
time. 

We would expect operating management to be 
somewhat negative when time-sharing is first pro­
posed to them. Generally this position changes to 
one of expectation that time-sharing can cure all 
problems. Certainly it cannot do this, but we can 
anticipate the attitude. 

We are now in a better position to specify to de-
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signers of future systems what was good about ATS. 
We can also specify improvements that became ap­
parent to us during this period. 

As a forerunner of things to come A TS has served 
in an outstanding fashion. We are presently plan­
ning for the next system which will be superior to 
A TS partially because of the experience gained from 
ATS. 

In summary, our experience with A TS has solidi­
fied our previous conviction that time-sharing sys­
tems can, and will in the future, assume a major 
role within data processing. If current interest (as 
expressed by word of mouth, publications, and 
computer manufacturers' plans) are any indication, 
this major role is fast approaching. 
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"NEVER-FAIL" AUDIO RESPONSE SYSTEM 

Bruce Dale 
Honeywell EDP Division 

Wellesley Hills, Massachusetts 

INTRODUCTION 

The Northwestern Bell Traffic Rating System is a 
real-time audio response dual computer system 
which must be on-line continuously. The system 
allows any Northwestern Bell long-distance opera­
tor to interrogate a remotely located computer sys­
tem for a long-distance toll rate. The 3000 operators 
are widely scattered over an area covering 10% of 
the country. The toll message response consists of 
an amount, plus a word denoting whether the rate is 
for a "station-to-station" or "person-to-person" 
call. These conditions are ideal for using audio re­
sponse for the remote display of information, rather 
than any of the commonly used hardware terminals. 

The Traffic Rating System concentrates an opera­
tion that was formerly done by widely dispersed 
Rate Operators. This concentration has a disadvan­
tage in that the operation is now vulnerable to the 
single failure of any part of the computer system. 
To keep the operation going continuously, a Sys­
tems Monitor is necessary to 1) detect failure of the 
on-line operation, and 2) transfer the operation to a 
standby computer system. In this way the system 
"heals itself" without recourse to human interven­
tion. The necessity for such a capability is becom­
ing widespread as more computer systems are in­
stalled which must be on-line all the time. 

The building and installation of a real-time sys­
tem requires special procedures to deal with the 
unique problems involved. Some of the problems in 
putting tog~ther the Traffic Rating System were: 

277 

1. Liaison between the customer and the 
manufacturer over a distance of half the 
country. 

2. Development of two completely new 
units for the system-one from a sub­
contractor who was also a great dis­
tance from the manufacturer. 

3. The system had to be in operation less 
than a year after the contract was 
signed, resulting in the parallel debug­
ging of new hardware along with the 
software. 

4. Once on-line, the system had to operate 
continuously. It could not be taken off­
line for any reason, and so no long 
shakedown of the system was possible. 

These and many other problems had to be solved, 
through close liaison, careful planning, and tight 
scheduling. The successful installation of the sys­
tem was the one purpose of the project. Of poten­
tially greater value was the gaining of experience 
which will provide the capability to meet the grow­
ing demand for this type of system. 

PURPOSE AND OPERATION 
OF THE TRAFFIC RATING SYSTEM 

Manual Rate Quotation 

. When a long-distance call is made from a tele­
phone booth,'the operator must determine the ini-
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tial deposit--the rate for the first three minutes. To 
do this, she calls a Rate Operator and gives her the 
first six digits of each of the two 10-digit telephone 
numbers involved. The Rate Operator then goes 
through the following procedure: 

1. Using the six digits, she looks up in a 
table the Vertical and Horizontal Co­
ordinates for the call's origin and ter­
minal points. These are grid coordi­
nates, similar to latitude and longitude. 

2. She then calculates the differences be­
tween the two Vertical Coordinates, 
and the difference between the two 
Horizontal Coordinates. This gives her 
a measure of the two legs of the right 
triangle whose hypotenuse connects the 
two locations. 

3. Another table enables her to find the 
airline distance between the two loca­
tions. 

4. Finally she enters the appropriate rate 
table with the distance, and gets the ini­
tial rate, which she relays back to the 
operator handling the call. 

The above process occupies two operators, their 
positions and the connecting -circuit for an average 
of 45 seconds. Times as long as two minutes have 
been recorded. In an effort to improve the service 
while at the same time reducing the costs involved, 
telephone companies are investigating ways of auto­
mating the rate quoting process. 

Automatic Rate Quotation 

The Northwestern Bell Telephone Company 
serves an area in the Upper Midwest that covers ap­
proximately 10% of the United States (Fig. 1). Late 
in 1964, the company requested bids on a real-time 
computer system which would: 

1. Be accessible to any of the 3,000 opera­
tors in the Northwestern Bell territory 
who handle calls requiring an initial 
rate quotation; 

2. Accept rate inquiry digits from an oper­
ator; 

3. Calculate the rates, using information 
previously put in memory, such as Ver­
tical and Horizontal Coordinates, loca­
tion time zones, rate tables, etc.; 

4. Inform the operator of the resultant 
rate; 

5. Operate continuously without fail; and 

Figure 1. The Northwestern Bell Traffic Rating System in 
Omaha serves 3000 operators in five states. 

6. Handle the peak hour load of 5,000 in­
quiries over 24 trunks with less than 
60% of the total central processor ca­
pacity. 

System Input 

Input to the automatic system would come from 
keysets which were already an integral feature of 
the operators' positions. These keysets send digits 
in a form which are received and decoded by a 
Multi-Frequency Receiver. The computer systt!m 
would interface with 24 trunks, each having a Multi­
Frequency Receiver. (See Fig. 2). 

System Output 

The answer to an inquiry would consist of an 
amount in nickel increments from $0.00 to $3.00 
and/ or control or information words. In all, the 
replies could be made up from less than twenty dif­
ferent words. 

The possible output devices were cathode-ray 
tubes, teleprinters, or audio response units. Each 
device had certain advantages, as shown by Table 1. 
The slight disadvantages of limited vocabulary and 
low speed of the Audio Response Unit were more 
than offset by its negligible cost and minimum 
maintenance requirements. With audio rc!sponse, 
the system responsibility of the computer systt::m 
manufacturer would be concentrated in one loca­
tion, and not be spread among 3000 remote sites. 
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Figure 2. Diagram of Traffic Rating System. 

Table 1. Ratings of Terminal Output Devices 

Device Cost Vocabulary Speed Installation Maintenance 
Human 
Factors 

Cathode-Ray 
Tube High Unlimited High Difficult Moderate Excellent 

Teleprinter Medium Unlimited Medium Difficult Moderate Poor 
Audio 

Response 
Unit Very low* Limited 

·Cost is that of central site audio equipment divided by 3000. 

Traffic Rating System Operation 

In November of 1964, Honeywell proposed a 
Traffic Rating System to meet the requirements set 
forth by the Northwestern Bell Telephone Company 
in their bid request. 

To obtain an initial rate from the proposed sys­
tem, an operator performs the following steps. 

1. She keys in a three-digit access code, thus ty­
ing her position to one of the 24 trunk.s in Omaha. 

Low None None Good 

The system recognizes that the trunk has been 
"seized." and returns a "beep-beep" tone from the 
Audio Response Unit to the operator. 

2. Upon hearing the beep-beep tone, she keys in 
the 12 digits, plus a 13th digit to signify whether the 
call is station-to-station or person-to-person. The 
system calculates the rate in less than 0.1 second--a 
procedure that took a Rate Operator 45 seconds. 
The Central Processor then sends the audio track 
addresses for the reply to the trunk's Phrase Selec-
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tion Matrix. At intervals ot U.) seconds, the matrix 
directs the chosen words to the output trunk, and 
the reply goes to the operator. 

3. The operator hears the reply, such as "eight­
five-station-eight-five." The reply states the re­
quested rate, confirms the rate through repetition in 
case the operator did not understand it the first 
time, and confirms that the rate is for a station-to­
station call. This form of reply reduces the chance 
of operator error or misunderstanding. 

Benefits of the Traffic Rating System 

A comparison between the manual quotation 
procedure and the automated system shows the fol­
lowing advantages of the Traffic Rating System: 

1. Service. The customer waits 15 seconds 
or less instead of 45 seconds. 

2. Cost. The Rate Operators and their po­
sitions are available for other tasks. 
This saving is partially offset by the 
Traffic Rating System rental, and by the 
cost of equipment to handle the addi­
tional long-distance traffic coming to 
Omaha. 

3. Accuracy. The chances for error in de­
termining the rate are greatly dimin­
ished. 

On the cost basis alone, the system will justify itself 
many times over. While the other advantages are 
difficult to assess quantitatively, they are highly sig­
nificant to an organization which must answer to 
the general public in its function as a public utility. 

The basic advantage of the Traffic Rating System 
is the concentration of the widespread manual rate 
quotation operation into an efficient centralized 
activity. Efficiency implies the reduction of redun­
dancy. A system without redundancy becomes ex­
tremely vulnerable to failure. A singI'e mishap to 
the Traffic Rating System destroys the rate-quoting 
capability for the entire Northwestern Bell area. 
Such an event must be guarded against at all cost. 
The Traffic Rating System must "never fail." 

"NEVER-FAIL" SYSTEM REQUIREMENT 

The financial justification for installing the Traffic 
Rating System is the availability of the Rate Opera­
tors and their positions for other tasks. This means 
that no manual backup would be available in case 
any component of the system malfunctioned. The 
real-time system must also be a full-time system, 
on-line 24 hours per day and 7 days per week. 

The Traffic Rating System requires the function­
ing of all four major components: Communications 
Control Unit, Central Processor, Random Acc:ess 
Drum, and Audio Response Unit. The Phrase 
Selection Matrices, Communication Adapter Units, 
and associated telephone company equipment are 
all modular-one unit for each of the 24 trunks 
served. A malfunction in a modular unit affects 
only one trunk, while a malfunction in a major com­
ponent cripples the entire system. Therefore each 
of the major components is duplexed. Switches 
enable any component to be switched into or out of 
the system almost instantly. This capability prote:cts 
the system from failing from any single malifunction. 

This capability solves one problem, but brings in 
more problems. Now that the switches are avail­
able, these questions arise: 

• When should a switch be thrown? 
• Which switch is thrown? 
• Who (or what) throws the switch? 

Obviously a switch is thrown when the syst1em 
comes to an unprogrammed halt. Still, th,e system 
could be running when only a portion of the syst1em 
malfunctioned. Numerous transient errOlrs could 
occur which, while individually correctabk, collec­
tively indicate an incipient malfunction. Therefore 
the running of the system is not the only criterion 
which determines when a switch should be thrown. 

Which switch is thrown depends on which of the 
major components malfunctioned. If this is not 
immediately apparent by a control panel display, 
then additional time must be spent in either finding 
the bad unit, or trying each switch in turn to see if 
the system resumes operation. As an alternative to 
these procedures, all switches may be thrown for 
any malfunction, thus replacing all major units in 
an effort to get the system back on the air as quickly 
as possible. Should another malfunction olccur be­
fore the first one is remedied, then which units are 
malfunctioning must be determined. 

The Traffic Rating System operates in am unat­
tended environment, since none of the usual data 
processing personnel are necessary for its operation. 
Other personnel are located too far from the syst(;:m 
to be of timely assistance. Therefore, the throwing 
of the switch must be done automatically, acting 
upon information as to the status of the major units 
of the system. 

Neither of the Central Processors are used! to p(!r­
form the status evaluation and activate the switch, 
since they are part of the system which could fail. 
An independent judgment is necessary to de:termine 
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whether a system has failed. This requirement is 
fulfilled by the System Monitor, which also has the 
capability of activating the switch to bring in all the 
standby components. 

Design of the System Monitor 

The primary purpose of the System Monitor 
(Fig. 3) is to detect malfunctions. The degree of 
monitoring could be as simple as the detection of a 
system halt, to the complex sensing of all circuits of 
a unit (as on the engine of a Saturn rocket). The 
more complex a System Monitor becomes, the 
greater the probability that: 1) the System Monitor 
interferes with the efficiency of the system that it 
monitors; and 2) the System Monitor itself mal­
functions. Considering also the high cost of increas­
ing monitor complexity, the development concen­
trated on the simpler design concepts. 

The design was also affected by the purpose and 
operation of the Traffic Rating System. These were 
considered in finding answers to the following ques­
tions: 

• Does all information in the system have 
to be saved or transferred from the on­
line Central Processor when it is switched 
to off-line? 

• How are malfunctions detected which do 
not halt the system? 

• What is the allowable interval between 
the occurrence of the malfunction, and 
detection? Does the detection have to be 
instantaneom;? 

When a system requires that all information that 
has entered the system be saved, the usual procedure 
is to have two computers receive and operate on all 

Figure 3. The System Monitor. 
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incoming data. An example of this operation is the 
New York Racing Association Tote System, where 
both Honeywell computers receive real-time infor­
mation on every bet made at the Aqueduct, Bel­
mont, and Saratoga Tracks. However, in the Traffic 
Rating System each inquiry is independent and 
complete-it has no connection with any other in­
quiry before or after it, and the receipt of the reply 
completes all processing for that inquiry. If an 
operator does not get a reply within seconds after 
keying her input, or if she does not understand the 
reply for any reason, all she has to do is disconnect, 
and re-initiate the inquiry. Since only one computer 
is necessary for input to the Traffic Rating System, 
the back-up computer could be used for regular 
data processing. 

Malfunctions which do not halt the system could 
be found while running dummy inquiries through 
the system, testing all possible program loops, and 
ascertaining the correctness of the replies. This 
check should not be run too frequently, since it 
might degrade the system's capability to handle live 
inquiries. Transient errors sometimes indicate that 
the system is close to a marginal condition, and 
should be "peaked up." A cumulative record of 
such events as correctable drum read errors will 
provide for the detection of incipient malfunctions. 

The interval between the occurrence and detec­
tion of a malfunction was balanced against the time 
required to execute the switching procedure. This 
time was variable over a small range, since it de­
pended upon the state of the system which was to 
go on-line. Since instantaneous detection of a mal­
function was not required, a query-response scheme 
rather than a continuous signal method was ad­
vocated. This required the system being monitored 
to send a periodic response in reply to an outside 
query, rather than passively send a continuous 
signal. 

System Monitor Operation 

The System Monitor is designed to perform the 
following functions: 

1. It sends a Check character to both Cen­
tral Processors at regular time intervals. 

2. It expects to receive an 0 K character in 
return, before a new Check character is 
due to be sent. 

3. If the System Monitor does not receive 
theOK character from a system in time, 
it sounds the visual and audio alarms. 
It may initiate the switching procedure, 

depending on whether the on-lim! or 
back-up system has the malfunction. 

4. If the back-up system is to be brought 
on-line, the System Monitor sends a 
message to that system, so that it may 
be prepared to accept the trunks when 
they are switched. After a short time 
interval, it switches the trunks. 

A Monitor program in each of the Central Pro­
cessors works with the System Monitor. This pro­
gram returns the 0 K character within the: alloted 
time span, unless it is blocked from doing so by a 
system malfunction or through its own inte:nt. Op­
tional variations to improve the quick detection 
and remedy of malfunctions are listed below: 

1. The program does not return the 0 K char­
acter immediately, but holds it up until ne;arly the 
end of the interval. Should a malfunction occur 
during this time, the System Monitor detects the 
nonreturn of this OK character rather than the 
next one. With this variation, the detection time 
is 50% of what it would be otherwise. 

2. The Monitor program runs a dummy inquiry 
through the system, testing all the major com­
ponents except the Audio Response Unit. If the 
result differs from that previously computed, the 
program blocks the return of the OK character. The 
frequency of the dummy inquiry check is ,either a 
function of the current traffic load or a constant. 
In either case, care is taken to make sure that the 
system capability is not affected by running the 
dummy inquiry too frequently. 

3. The Monitor program ascertains that the Sys­
tem Monitor is sending the Check characte:rs peri­
odically. This closes the loop to make sure that the 
System Monitor is functioning correctly. If a Check 
character is not received, the Monitor program dis­
plays this information on the teleprinter attached to 
the system. 

4. When an OK character is d~liberately blocked 
from being sent to the System Monitor, the ~v1onitor 
program displays the reason for its action on the 
teleprinter. This enables the malfunction to be more 
readily identified. 

5. The program causes a time signal to be printt!d 
on the teleprinter periodically. This evidence of 
operation is reassurance that the system has not 
somehow malfunctioned' without giving any alarm. 
Should a malfunction occur, the printed record 
gives the most recent time at which the system can 
be presumed to have been operating correctly. 
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The Monitor program in each Central Processor 
thus provides a great amount of flexibility in the 
detection and identification of malfunctions. This 
flexibility would be difficult and expensive to achieve 
with additional System Monitor hardware. 

Secondary System Capabilities 

The primary back-up capabilities are handled by 
the System Monitor when it switches all off-line 
major components to the on-line system in case of 
any malfunction. During the period while the mal­
function is being repaired, a second malfunction 
could occur in the (new) on-line system. There are 
manual switches which allow a functioning Traffic 
Rating System to be assembled, assuming that the 
malfunctioning components can be identified and 
the two components are not identical. These 
switches are located on the, System Monitor Control 
Panel. The Panel also displays the current status of 
all components-which system it is that controls 
each componenL 

Audio Response Unit Monitor and Switch 

The output on each of the 20 tracks of the two 
Audio Response Units is continuously monitored. 
If a track output falls below a given threshold, 
audible and visual alarms on the System Monitor 
are activated. If the malfunctioning unit is on-line, 
the back-up unit is automatically cross-switched 
with it. 

Power 

The one element that affects every portion of the 
Traffic Rating System is the power supply. The 
threat of power failure is eliminated through the 
following steps: 

1. A motor-generator unit is installed to assure 
uninterrupted power to the Traffic Rating System in 
case of outside power failure. 

2. The power supplies within the system are 
either duplexed and automatically swit~ed, or else 
they can be switched manually. That portion of the 
system which must always be available is fed by two 
pairs of automatically-switched power supplies (one 
pair for the Audio Response Units and the Phrase 
Selection Matrices, and the other pair for the re­
mainder of the modular units, plus the System 
Monitor and the switches). A regular power supply 
is normally connected to each of the two groups of 
major components, each group consisting of a 
Communications Control Unit, a Central Proces­
sor, and a Random Access Drum. 

3. A power switch allows any identical pair of 
major components to be cross-switched between the 
two regular power supplies. With this switch, two 
nonidentical malfunctioning major units from dif­
ferent groups can be fed from one power supply, 
while the other supply handles the functioning sys­
tem. A power supply is handled as a major com­
ponent, being able to be switched back and forth 
between systems as the need indicates. 

4. Each cabinet in the system, and each of the 
drawers in the cabinet is provided with interlocks 
to enable them to be isolated from the rest of the 
system when undergoing repairs. 

Other modifications are made to break up the 
system so that the effect of any malfunction is iso­
lated, and not propagated throughout the power 
supply network. 

Future Applications 

The computer state-of-the-art is heading toward 
a level of sophistication in which large electronic 
systems will monitor their own operation, detecting 
malfunctioning components and replacing them 
without human intervention. The System Monitor 
and duplexed components of the Traffic Rating Sys­
tem makes it one of the systems which is leading the 
way toward this goal. 

IMPLEMENTATION OF THE TRAFFIC 
RATING SYSTEM 

Planning 

Immediately after Honeywell signed the contract 
for the Traffic Rating System, an organization was 
created to handle the projecL An Engineering 
Project Director was appointed to coordinate all the 
activities relating to the subcontracting, building, 
and testing of the complete system. Coordination 
between the customer and the Engineering Project 
Director was the responsibility of the Project Man­
ager, who was appointed from the marketing home 
office. The Project Manager was the center of a 
network of communication lines. It was his job to 
collect and interpret the needs of the customer, ex­
amine the effects of different system approaches, 
expedite the paperwork, issue progress reports to 
interested parties, and in general be informed on all 
aspects of the projecL 

Scheduling 

The initial phase of the project included the set­
ting up of a master schedule, which would end at the 
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cut-over date. Progress toward determining that 
date was made from three directions simultaneously 
-merging the requirements of the Northwestern 
Bell management with the capability of their pro­
gramming staff and of Honeywell's Engineering De­
partment. The software was PERT-charted, the 
hardware development was scheduled in detail, and 
a cut-over date was agreed upon. This date was 
less than a year after the contract for the Traffic 
Rating System was signed. 

Design and Test of New Equipment 

When the project started, the Audio Response 
U nit and the System Monitor had been functionally 
specified. The responsibility for any additional de­
sign work necessary for the Audio Response Unit 
was given 'to the subcontractor. The System Moni­
tor was designed and built by Honeywell. 

When each equipment prototype was ready, a 
series of component tests were run on the individual 
units. Only when these were passed was the unit 
connected to other components for system test. 

The recording for the Audio Response Unit pre­
sented a unique problem. There was no quantitative 
way to determine whether the quality of the voice 
recording was satisfactory. Can a high voice be 
understood better than a low voice? Should the 
voice be that of a telephone operator, or that of a 
professional voice specialist? Should the phrases be 
spoken in a fiat voice or with a rising or falling in­
flection? Even spectral contour plots were used to 
determine the solution to such dilemmas as these. 

The System Monitor also had its share of prob­
lems. A complex program was written to test the 
effect of all possible inputs to the System Monitor. 
Timing intervals were measured, changed, -and 
measured again. Concurrent with this test, the 
Monitor program was being written and debugged. 
Through close cooperation among the two pro­
grammers and the engineers, the final checkout of 
the System Monitor hardware and software was 
done in parallel. 

System Test 

The complete traffic Rating System was assem­
bled and tested at the Honeywell plant. The system 
was arranged in exactly the same way that it would 
be installed at Northwestern Bell. Twelve of the 24 
trunks were installed to test the interface of the sys­
tem, and to allow live multiple input and output. By 

setting up the complete system at the Honeywell 
plant, there was little chance of an oversight occur­
ing at a place and time in the future which could be 
more difficult to handle by Honeywell engineers. 

As quickly as possible, one of the two systt:ms 
was made available to the Northwestern Bell pro­
gramming staff, who used it to debug their. pro­
grams. They had planned their program writing so 
as to parallel the engineering schedule--working 
from the "inside out" by first doing that portion of 
the inquiry program involving only the central pro­
cessor, and ending with the complex control pro­
gram which handles a variety of inputs and outputs 
to the central processor. Thus, through detailed 
program planning and some extra effort at a time 
when it could be spared, the final operating program 
was completely debugged on the entire system only 
a week after the system itself had been debugged. 

Acceptance 

A total of 12 Multi-Frequency Receivl:!rs were 
connected to the system. Each receiver was con­
nected to a keyset, and the 12 keysets beeame 12 
telephone operator positions. (Actually, each Multi­
Frequency Receiver could simulate two trunks to 
the computer-so the complete environment could 
be simulated.) 

After the system was turned over to the N orth­
western Bell programming staff for their :final de­
bugging, an extensive series of tests commenced for 
checking both hardware and software. These con­
sisted of 2 million rate computations that had al­
ready been calculated as part of a regular batch 
process run on a computer. This was followed by a 
series of inquiries which were put in simultaneously 
on the 12 keysets, with the results being checked 
against precalculated answers. When both tests 
were completed to the satisfaction of NWB man­
agement, the system was shipped and reassembled 
on site in Omaha, where the same tests were run 
through the system again. 

SUMMARY 

Despite the difficulties imposed by distance, time, 
and new equipment, the Northwestern Bell Traffic 
Rating System began operating on schedule on No­
vember 15, 1965. It has been in continuous opera­
tion since that time, 24 hours a day, 7 days a week. 
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INTRODUCTION 

It is a practical philosophy of many industrial 
advertisers to direct promotional material and prod­
uct information to customers and prospects on a 
selective basis. This selectivity entails direction of 
mail to recipients so that each receives literature in 
accord with his established needs and interests. Se­
lectivity affords a considerable reduction in mate­
rial, addressing and postage costs, and insures that 
the right information is sent to the right person at 
the right time. In addition to ·'enhancing the per­
sonal touch in the process, the likelihood is in­
creased that the recipient will study and retain every 
mailing sent to him because he recognizes that these 
are about subjects in which he is likely to have an 
active interest. 

The size, complexity, and number of mailing lists 
are rising in proportion to the population growth, 
market changes and new product development. The 
economics of keeping abreast of this rise, while 
validating current lists and accommodating changes, 
demand a direct mail program in which one of its 
essential features is the maintenance of accurate and 
complete mailing lists at minimum cost and maxi­
mum efficiency. Industrial advertisers are becoming 
acutely aware of the need for having at their dis­
posal a large set of combinations of criteria for 
selecting the audience to which they wish to com­
municate. This essential feature must be provided 
by a direct mail program having inherent simplicity 
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and very high speed. In addition, a well-designed 
mailing program can relieve the industrial adver­
tiser from demanding deadlines and tight schedul­
ing, and provide him with a facility for consolidat­
ing large, independent mailing activities. 

For many industrial advertisers, a mechanical 
maintenance and search mailing program does not 
have the capacity nor capability to handle large 
mailing lists efficiently or economically. The situa­
tion has prompted these organizations to consider 
electronic data processing and printing as a solution 
to their direct mail problem. 

A computerized marketing communications di­
rect mail system, whose shape and form is based 
upon a current application of information retrieval 
techniques, has been developed to satisfy the in­
formation dissemination requirements of large in­
dustrial advertisers. 

MARKETING INFORMATION 
DISSEMINATION SYSTEM REQUIREMENTS 

The essential phases of current direct mail pro­
grams are the collection and processing of input 
data, updating and searching of the data file, and 
labeling or imprinting, gathering and distribution of ' 
publication material. It is helpful to view this mail­
ing cycle as a closed-loop system. 

The mailing cycle is initiated by the field salesman 
in response to a customer's need and interest for 
information regarding one or more of the com-
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pany's products, services and policies. The field 
salesman prescribes the input data and enters an 
order form for a new customer, or he enters a 
change notice for a customer presently being ser­
viced, but who requires a change in status. The 
forms are forwarded to a control center where the 
input data are translated and entered on a visual, 
mechanical or electronic data file. The file is in­
terrogated when a mailing is desired, and the re­
sultant answer set is usually a list or lists of mailing 
labels. Each label is affixed to or imprinted on an 
envelope which in turn is manually or mechanically 
packed with the specified literature. The envelopes 
are weighed, proper postage is applied, and distribu­
tion is made through regular mailing channels. 

In reviewing the mailing cycle, certain basic con­
siderations become evident: 

1. The format design of the order and change 
notice forms requires careful attention to details. 
The salesman's participation in completing the 
forms must be minimized. Any instructions on the 
forms must be precise, since it is not possible to 
contact every salesman personally to explain their 
functions. In addition to being simple and economi­
cal, the forms must easily accommodate new data 
entries. 

2. A control center must serve as the coordinat­
ing and control body of the mailing program. The 
personnel should be familiar with all phases of the 
mailing cycle. The center's functions should include 
the translation of input data, preparation of search 
specifications, scheduling of production runs, vali­
dation of errors and changes, and administration of 
the labeling or imprinting, gathering and distribu­
tion processes. 

3. The update procedure must be economical, 
simple, and must provide a means of validating the 
update entries to maintain accurate lists. 

4. A large set of combinations of criteria for 
selecting the customers to which a particular mar­
keting effort is to be directed must be provided. 
The search specifications must be in natural lan­
guage notation to permit anyone with minimal 
training to produce a finished set of query state­
ments. 

5. The data file must be structured to easily ac­
commodate additional mailing lists. 

6. Mailing lists must be sorted by zip code to 
comply with postal regulations. 

7. The answer set is usually a list or lists of 
mailing labels. However, the facility must be pro­
vided in which the answer set may be counts, partial 

lists, and lists which reveal all the data on each 
customer in the data file. 

The above considerations suggest the use of an 
electronic computer as the catalyst of a direct mail 
program. In fact, the value of a computerized sys­
tem in today's complex mail scene is that it sub­
stantially improves the speed, economy, llexibility, 
generality and capability of a direct mail program 
in comparison with visual or mechanical systems. A 
computer-based mailing program can promote 1I1ew 
concepts of marketing possibilities. The idea here 
is that a properly designed computer package can 
provide the industrial advertiser with the ability to 
communicate with all intermediate points between 
the company and its audience, and internally within 
the company. In this light, the direct mail program 
now becomes a marketing information dissemiina­
tion system'. 

A marketing information dissemination system is 
characterized by the present and future mailing re­
quirements, computer retrieval logic, the company's 
policies and practices, and the amount of capital 
investment. Industrial advertisers demand that a 
marketing information dissemination system satisfy 
three basic requirements which are input compati­
bility, file generality and output versatility. These 
are described as follows: 

1. Input Compatibility. Provision of a commun­
ication channel for use by anyone in the organiza­
tion with a legitimate need to reach employees, 
distribution outlets, customers, and prospects or 
potential customers. To meet this requirement, the 
system must provide: 

a) An input data recording scheme which 
is flexible, logical, economical, conven­
ient and easy to administer. 

b) Addition, cancellation and mainte­
nance of names and descriptions of re­
cipients from a variety of sources. 

c) A coordinating and control group 
whose responsibility is to process input 
data, prepare search specifications, 
schedule and conduct query and main­
tenance computer runs, and validate 
errors and changes. 

d) Classification and coding schemes for 
the recipient's industrial and functional 
roles, and for the organization's prod­
ucts, discount and commission sched­
ules, renewal parts, and special publica­
tions, and so on. It is essential that 
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some accommodation of the existing 
schemes be made with minimal require­
ments for technical reevaluation. 

2. File Generality. Automation to the extent 
permitted by technology and economics. The sys­
tem must provide: 

a) Complete and readily accessible mail­
ing lists for employees, distribution 
outlets and customers. 

b) Expansion capability for accommoda­
tion of marketing information dissemi­
nation requirements for other locations 
within the organization. 

c) Retrieval of mailing label lists or other 
answer sets by any combination of cri­
teria as specified. 

d) Zip code and other special sorting on 
all lists. 

3. Output Versatility. Preparation of reports to 
meet the marketing information dissemination re­
quirements for buying data, sales promotion mate­
rial, renewal parts, discount and commission sched­
ules, and special publications. The system must 
provide: 

a) Variety of computer output displays in 
prescribed formats to include mailing 
label lists, lists with gathering instruc­
tions, lists displaying selective data, and 
list counts. 

b) Labeling, gathering and distribution 
facilities. 

A MARKETING INFORMATION 
DISSEMINATION SYSTEM 

The general model of a marketing information 
dissemination system is illustrated in Fig. 1. The 
model is divided into three phases: 

• Phase I is the collection and processing 
of input data and queries. 

• Phase II is the updating and searching 
of the master file. 

• Phase III is the labeling or imprinting, 
gathering and distribution processes. 

Phase /-Collection and Processing 

Input Data. One of the most positive ways to as­
sure regular list maintenance is to require some in­
dividual to "sponsor," or be accountable for, every 
name added to a mailing list. In most organizations 
the sponsor is usually a field salesman; however, 
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Figure I. Dissemination system model. 

there is a requirement that anyone with a legitimate 
need should have the ability to enter a name to the 
mailing list. The sponsor reviews his list of names 
periodically and submits an order form for any new 
subscriber who has expressed a need for information 
regarding one or more of the company's products, 
services and policies. In addition, he submits a 
change notice form for every subscriber presently 
serviced by him, but who requires some change in 
status. A subscriber, in this context, is a recipient 
of literature through the mailing program and is, 
specifically, either an employee, distributor, cus­
tomer or prospect. 

The input data are divided into five categories: 

1. Identification 
2. Classification 
3. Profile 
4. Address 
5. Key 

The embodiment of these categories for a particular 
subscriber originates a record for that subscriber as 
illustrated in Fig. 2.1 Each category is described 
by one or more terms and each term is composed 
of an attribute which relates to one member of a 
class of descriptions, and a value which particular­
izes the description. 
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Figure 2. Input data and inquiry structure. 

The identification consists of a unique numeric 
term which identifies a particular subscriber's 
record. This number remains unchanged through­
out all subsequent dealings with him, and its coding 
structure is dependent upon the expected number 
and natural grouping of records. The classification 
consists of terms such as sponsor, industry, func­
tion, and any other which may be included in search 
specifications. For example, persons of interest may 
be all customers who belong to the textile industry 
and who function in the role of vice-president. 
"Textile Industry" and "Vice:-President" are, then, 
values of the classification. The profile reveals the 
subscriber's pUblication needs and interests. It is 
composed of numeric terms selected from existing 
publication groups to include customer discount 
schedules, distribution outlet agent commission and 
discount schedules, handbooks and other special 
publications, renewal parts data, and product in­
formation. Each term in the profile is structured 
on a mail code-category basis. A mail code is a 
numeric representation which uniquely identifies a 
company's product, service or policy, and its cate­
gory is a numeric representation which particular­
izes the kind of information such as a price list, 
descriptive bulletin, dimension s.heet, selling policy, 
application data, or sales promotion piece. The 
address is composed of terms such as firm name, 
individual's name and title, street address, city, state 
and zip code. The key consists of the identifica-

tion term and selected classification terms, and is 
included in the mailing label. One of its primary 
roles is to link the mailing label with the subscriber's 
record. 

The medium for reflecting new subscriber input 
data is the mailing list order form, which is a sim­
ple, single-part form. This is designed primarily to 
present a clear and logical format to the sponsor to 
minimize his participation in its completion. In 
addition, the form features a nonrigid format in 
which new data entries can be easily accommodated. 
The fact that a specific effort is required to enter 
profile data should encourage the sponsor not to 
oversupply the recipient with literature. The spon­
sor submits a change notice form to report .a change 
in status of a subscriber currently being serviced 
by him. This form differs from the order form in 
that the identification number is entered on the 
change notice form by the sponsor whereas this 
number is preprinted on the order form. The 
change notice form reflects both the addition and 
deletion of terms. 

A catalog assists the sponsor in entering the 
proper data values on either the order or chall1ge 
notice forms. The catalog is prepared in a lan­
guage natural to the sponsor and provides an op­
portunity for adequate explanation and instructions. 
Since the catalog is separate from the forms, pe­
riodic reissues of the updated version of the catalog 
can be made without disturbing their format. A 
typical catalog consists of codes for: customer in­
dustry and function, customer discount schedule, 
distribution outlet classification and function, dis­
tribution outlet discount and commission schedule, 
employee function, products, renewal parts and s.pe­
cial pUblications. 

The implementation of a marketing information 
dissemination system to replace an obsolete visual, 
mechanical or electronic file system poses a few 
problems with regard to the initial input data. In 
most cases, it is desirable to require that the spon­
sors resubmit new input data rather than convert 
data on a current file system. The cost of the latter 
is usually prohibitive and, in addition, the question 
arises as to whether the data on the current file sys­
tem are accurate or complete, especially if the com­
pany's sales organization has recently been re-struc­
tured. The fact that the data resubmission program 
is imminent invariably disheartens the field sales­
man since his available time is usually at a premium. 
However, once he is convinced, and some are never 
convinced, that the new system will assist him in 
better serving his present customers and providing 
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him with new prospects, then the field salesman is 
more willing to contribute his time and effort. In 
addition, he now has a golden opportunity to rid 
his list of nonproductive names. It is imperative 
that the sponsor be required to submit his order 
forms within a specified time interval to minimize 
data obsolescence. Futhermore, once the sponsor 
is informed of the new system, he becomes less at­
tentive to the old system's maintenance program, 
and the timing aspect becomes even more critical. 

A mailing list control center is established to 
coordinate and control the new system's operations. 
Its role during the initial input data phase is to 
check the incoming order forms for accuracy and 
completeness and to batch the forms in groups 
which are specifically numbered to control them. 
The forms are keypunched by an outside service 
since they have the capacity to perform this task 
in the shortest possible time. As soon as sufficient 
keypunched data becomes available, a test file is 
established to assist in the training of the center's 
personnel in all phases of the new system. This is 
an important step since, in most cases, their ex­
posure to computer operations has been very lim­
ited. The personnel selected to supervise the cen­
ter's functions should have a natural affinity for 
"system" concepts. 

After the initial data file is established, the new 
system is run concurrently with the old system until 
debugging of the new system is completed. At some 
point in time, the new system is declared operational 
and the old system is eliminated. The mailing list 
control center activity now enters Phase I of the 
marketing information dissemination system. The 
center's functions in Phase I include the transferring 
of data from the order and change notice forms to 
punched cards, preparing and batching queries, and 
scheduling computer runs. 

The logical requirements for file maintenance 
consist of three update events: 

1. Insertion of a new file record 
2. Changes in an existing file record 
3. Cancellation of an existing file record 

A new file record is initiated by receipt of an order 
form at the mailing list control center. The data is 
transferred to punched cards in prescribed field lo­
cations, and the number of cards is primarily a 
function of the number of profile terms entered on 
the form. Each card is assigned a predetermined 
set of codes. A change to an existing file record 
is initiated by receipt of a change notice form which 
reflects new values for those terms to be altered. 
These values, together with the subscriber's identifi-

cation number and pertinent codes, are keypunched 
in the prescribed field locations. It is important 
that field locations be a natural consequence of the 
order and change notice format designs. 

A cancellation of a record is effected by simply 
writing the word "cancellation" across the face of 
the order form. A single card is keypunched with 
the subscriber's identification number, pertinent 
codes, and the word "cancellation." 

Queries. A question may be posed by anyone who 
has an interest in obtaining any logical or arithmetic 
implication of the file content. A question is inter­
preted as a request to locate and retrieve a reference 
to or data about a record or collection of records, 
and is composed of a narrative and a set of state­
ments. The narrative expresses the logic of the 
query in a language natural to the user or ques­
tioner, and the set of statements prescribes the search 
and report specifications. The intent is to provide a 
medium whereby an occasional user can reliably ex­
press his desires or comprehend what is meant if 
they were formulated by a professional logician. 

The nature of the data and its intended use set 
the basis for a marketing information dissemination 
system design, and the retrieval logic must be modi­
fied somewhat to obtain the best results within this 
framework. A reference retrieval package has been 
developed and is currently being applied to a mar­
keting information dissemination system. The re­
trievallogic provides an unusually fast and efficient 
scheme, and features a flexible multilevel query ca­
pability. The query notation is. designed to allow 
the expression of the search specifications in such 
form that minimal training is needed to permit the 
user to produce a finished set of statements for 
routine query processing of the master file. The 
language permits queries of great depth and pro­
vides output reports which are flexible and com­
plete. The reports may be in the form of simple 
counts, list of mailing labels or lists with selected 
data. 

A query postulates the existence of terms or at­
tribute-value combinations, for example, mail code­
category (attribute)-1201-1 (value), or sponsor-
53468, function-B24, and so on. It also requests 
that a search be conducted to locate any record 
which responds to the logic of the query. The 
language consists of a set of primitives or elemental 
query statements used to manipulate data. The 
primitives are: 

1. Search Primitives examine each record in the 
master file to determine the relation of the record 
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values to those values or arguments cited in the 
search specifications, as: 

a) EQUAL-search for equal value. 
b) PICK-search for equal value. (This is 

a special primitive which is ex­
plained later.) 

., c) NOTEQ-search for unequal value. 
d) EQGR-search for equal or greater 

value. 
e) EQLS-search for equal or lesser 

value. 
f) G R --search for greater value. 
g) LS--search for lesser value. 

2. Result Primitives move partial answers from 
level to level and designate final answers, as: 

a) TEST -move partial answer to next 
higher level. 

b) CLEAR-erase previous result. 
c) ANSWER-designate result for out­

put. 

3. Output Primitives initiate the desired counts 
and lists, as: 

a) COUNT -accumulate a count of 'hits.' 
b) LIST-list respondents of 'hits.' 
c ) POST-output special information 

with list respondents. 
d) SELECT-select particular terms of 

'hits.' 
e) DUMP-list all terms for every record. 
f) NOTE-explanatory comment ignored 

by logic system; 
g) END-end of search and output logic. 

There are six different levels at which query 
search and result primitives, except PICK, may be 
entered; 1 is the highest and 6 is the lowest level. 
Odd numbered levels are designated AND levels 
and even numbered levels are called OR levels. The 
levels are provided to permit the development of 
complex logic which may span the entire level range, 
or any partition, from the lowest to the highest 
level designation. The PICK primitive and the 
output primitives do not require a level designa­
tion. A few examples will be considered to illustrate 
the form of the query narr&tive and the structure of 
the query statements.2 

In the first example, the following query is posed: 
List all customer mailing labels whose records men­
tion either mail code-category 2181-3, or 1882-1 or 
1924-2, and industry 487 and function B38. The 
search specifications responsive to this narrative are: 

PRIMITIVE LOGIC LEVEL ATTRIBUTE VALUE 

EQUAL OR 2 PROFILE 2181-3 

EQUAL OR 2 PROFILE 1882-1 
EQUAL OR 2 PROFILE 1924-2 
TEST 2 
EQUAL AND INDUSTRY 487 
EQUAL AND FUNCTION 838 
ANSWER 
LIST 
END 

The values of 2181-3,1882-1,1924-2,487 and B38 
denote the arguments of the search specifications. 
The TEST routine evaluates the OR results; 
ANSWER prepares the final results for use as out­
put; and LIST calls for the preparation of refere:nce 
citations which are, in this case, a list of mailing 
labels. The remainder of the search specifications 
are rather self-evident. The key point in the ex­
ample is that the user has the ability to reach a 
customer, or any subscriber for that mattc!r, by his 
industry, function and product interest or any com­
bination thereof. 

In actual practice, each specification line consists 
of additional information which includes a sequ<!nce 
number, query number, record group code and the 
user's initials. The query narrative and statements 
are entered on separate forms which are designed 
for easy translation of data from the form to cards. 
The narrative and search specifications are printed 
at the beginning of each separate output listing. 

In the above query the resultant answter set is a 
list of mailing labels. In addition, there is a require­
ment to output a mailing label and its correspond­
ing profile values which match the set of profile 
arguments cited in search specifications. The collec­
tion of profile values displayed with a mailing label 
is called a 'pick' list which permits a simplification 
of the gathering process. The primitive called upon 
to produce the pick list output format is the PICK 
primitive, which is similar to the EQUAL primitive, 
except that it allows a more rapid interrogation of a 
record profile and provides a more convenient pro­
cedure for structuring the output data. 

To illustrate the use of the PICK primitive, con­
sider the following query: List all customer mailing 
labels whose records mention mail code-catt!gory 
1418-1,1806-2, 1401-1, and/or 1204-2. The sc!arch 
specifications become 

PRIMITIVE ATTRIBUTE VALUE 

PICK PROFILE 1418-1 
PICK PROFILE 1806-2 
PICK PROFILE 1401-1 
PICK PROFILE 1204-2 
END 
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There are many occasions where special publica­
tions, which are not listed in the catalog, must 
appear as members of the pick list for convenient 
gathering. The POST primitive is especially suited 
to perform this function. To illustrate its use, con­
sider the following query: List all customer mailing 
labels which mention industry 311 and function 
A46 and post cover sheet CS-l. If industry 311 
and function A46 and sponsor 21346 are mentioned, 
then post CS-l and additional instructions INST -I. 
The search specifications responsive to the narrative 
are: 

PRIMITIVE LOGIC LEVEL ATTRIBUTE 

EQUAL AND 
EQUAL AND 
ANSWER 

INDUSTRY 
FUNCTION 

VALUE 

311 
A46 

POST CS-l 
EQUAL AND SPONSOR 21346 
ANSWER 
POST INST-l 
END 

In this example, either CS-l or CS-I and INST-l 
would appear as members of the pick list for each 
mailing label in the answer set. 

Even though the internal logic is intricate and 
detailed as necessary for the exploration of the 
master file, one can observe from the 'examples 
i;ited that the external language is quite direct and 
intelligible. 

Phase II-Updating and Searching 

File Characteristics and Organization. The totality 
of subscriber records composes the master file. 
Each record in the file is structured identically which 
permits the addition of new records to be a matter 
of routine. 

The number of subfiles within the master file is 
primarily determined by the natural grouping of 
records. As mentioned earlier, publication material 
may be directed to anyone of three classes of recip­
ients, these being employees, distribution outlets, 
and customers or prospects. Hence, the master file 
is logically organized into a base structure consist­
ing of these three subfiles; however, the capability 
is provided for the addition of any other subfiles. 
The establishment of a new subfile or its incorpora­
tion into the base structure is primarily an economic 
consideration and depends upon the subfiles' antici­
pated frequency of use. Each subfile is identified by 
a file number and its records are ordered by sub­
scriber serial number. The file number and the 
serial number form the record identification num­
ber. 

The number of records in the customer subfile 
usually far exceeds the number of records in either 
the employee or the distribution outlet subfiles by 
an order of magnitude. However, the employee 
and distribution outlet files are usually interrogated 
more frequently than the customer file by an order 
or magnitude. Hence, it is more economical to 
combine the employee and distribution outlet sub­
files on one tape and maintain the customer subfile 
On another. 

Record Format. The subscriber's record format, 
illustrated in Fig. 3 consists of a matrix record and 
an address record. The records are maintained 
separately to provide for the most effective use of 
storage locations. All terms which are contenders 
for search specifications are structured in the matrix 
record, whereas all the terms descriptive of a mail­
ing label are maintained in the address record. 

The matrix record consists of the identification, 
classification and profile descriptions. The primary 
role of the identification term is to uniquely identify 
a particular subscriber record. The number is com­
posed of the sub file number, which permits the in-

SUBSCRIBER RECORD 

MATRIX RECORD 

I 
ADDRESS RECORD 

I 
Identification Key 

ClaSSification Address 

Profile 

Figure 3. Subscriber record structure. 
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terrogation of a subfile on a selective basis, and the 
subscriber's unique serial number. The number 
appears in the address record where it serves to key 
the address record to the corresponding matrix 
record. 

The classification consists of terms such as spon­
sor, function, industry and any other term which 
may be a contender for search specifications. The 
organization's requirements for obtaining specified 
implications of the data file prescribe the kind of 
terms to be incorporated in the classification. Each 
term may be single- or multiple-valued and is as­
signed a particular alphabe~ic or numeric code for 
querying. It is essential that existing schemes be 
accommodated to minimize the organization's re­
quirements for technical reevaluation. 

The profile comprises mail code-category terms. 
The mail code and category values are numeric and 
their range of values depends upon the organiza­
tion's product, service and policy classification 
schemes. Whether the master file is being updated 
or queried, each profile value being processed is 
converted by a simple algorithm to a binary repre­
sentation (L-pattern length) which is slotted into 
a particular matrix location (Y -matrix location) 
with a particular pattern (P-pattern characteriza­
tion). Consequently, there exists a unique pattern 
length, characterization and location, or YLP, for 
each profile value. 

The address record consists of the address and 
key, and is called a mailing label when it is printed 
out as a member of an answer set. A typical mailing 
label is illustrated in Fig. 4. The first line represents 

Identification I I Sponsor I I Number of 
Number NUMber CODie! 

Firm Nome 

Individual's Nome and Title 

Street Address 

City I I State, I I Zipcode 

Figure 4. A typical mailing label. 

the key terms and the last four lines show the ad­
dress terms. The key terms are dependent upon the 
requirements of the organization, but should in­
clude terms which link the· matrix record with the 
address record, identify the subscriber's sponsor and 
provide useful gathering data. All terms in the 
address record are single-valued. 

Updating. As mentioned earlier, an update event 
may originate one of three file maintenance require­
ments, these being: addition of a new record, dele­
tion of an existing record, or changes in an exist­
ing record. Each update event may initiateon(: or 
more of four basic update routines depending upon 
the nature of the update data, as: 

1. Cancel a record. 
2. Delete a term. 
3. Add a term. 
4. Overlay a term. 

The second and third routines are particularly 
suited to handle updating of the profile terms and 
to accommodate multiple-valued terms in the classi­
fication. Figure 5 illustrates a method of portraying 

Moll Code 
Cotegory Category Category Categl) 

I 2 3 4 

1501 A 0 A 

Figure 5. A method of portraying profile update data on a 
change notice form. 

profile update data on a change notice form. The 
data are interpreted as: Add (A) profile values 1501-1 
and 1501-4, and delete (D) profile value 1501-3 from 
the subscriber's record. This scheme r,equin:~s a 
minimum effort on the part of the sponsor prepar­
ing the form, facilitates keypunching, and relegates 
the conversion of the category description to a digit 
by the most natural medium-the computer. The 
fourth routine is designed to update all single-vallued 
terms in the subscriber record, except the profile 
terms. 

The file is updated before it is searched so that 
the answer sets reflect current information. A list 
of card errors is automatically prepared during the 
updating process. After these cards are validated 
at the control center, the input data forms an:: re­
turned to the respective sponsors. The sponsor dis­
cards the carbon cop'y which he had retained as a 
temporary record and replaces it with the original 
input data form. In addition to the list of Icard 
errors, a list of changes is automatically prepared 
so that the control center can make a one-to-one 
correspondence between the changes which were to 
be made and those which had actually occurred. 

Searching. The control center prepares the qu'eries 
and schedules the computer runs. The matrix 
records which satisfy the search specifications are 
matched with their corresponding address records, 
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and the resultant answer set may be a list of mailing 
labels, list of counts, list of mailing labels with cor­
responding pick values, -special list with selected 
data, or any combination of these answer sets. The 
capability to prepare as many as 10 separate lists 
during one computer run is provided to yield an 
economical scheduling program. The batching of 
queries and scheduling of computer runs play an im­
portant role in decreasing query cost as query 
activity within the organization increases. A charg­
ing rate for any query may be established by auto­
matically assigning a numerical weight to each 
primitive in the search specifications, summing up 
the total weight, mUltiplying this figure by a pre­
determined number of dollars, and then multiplying 
this dollar value by a factor which varies directly 
as the number of labels in the answer set. This 
provides a convenient means for justifying the cost 
of the query to the user. 

It is advisable to supplement regular queries with 
statistical queries to obtain information which is 
useful in improving operations and in anticipating 
future needs. For example, a count of the number 
of profile entries having a specified value would be 
useful in controlling the number of corresponding 
publications to be printed at a future date. 

Sorting. Since companies with large mailings are 
required to sort their lists by zip code, it is impor­
tant that this facility be incorporated into the sys­
tem. In addition, the system must have the facility 
to sort on other fields such as the sponsor's number 
and the subscriber's last name. For example, pros­
pects responding to the company's ads or releases 
are candidates for its product information and pro­
motional material. Every three months a list may 
be extracted from the customer's subfile by last 
name, first two initials and firm name. This list is 
sorted by the customer's last name, arid the names 
of the verified prospects are matched against the 
list manually, weeding out duplicates. The option 
for adding the remaining prospect names to the 
customer subfile is then initiated by informing the 
appropriate sponsors to contact the pI.'ospects. If 
a prospect shows interest in the company's prod­
ucts;services and/or policies, then the sponsor will 
prepare an order form in his behalf. The procedure 
is economical and provides a linking of the com­
pany's marketing information dissemination system 
with its inquiry program. 

Output. Since the number of mailing labels in the 
answer set ranges from several hundred to tens of 

thousands, depending upon the search specifica­
tions, the computer printout format must be de­
signed to minimize printing cost and yet be com­
patible with the labeling, gathering and distribution 
processes. Three types of formats will be presented, 
but these are by no means exclusive. The type I 
format is a list of mailing labels, and the type II and 
III formats are lists of mailing labels with corre­
sponding pick values. In the illustrations to follow, 
each format appears on a standard printout sheet 
which is perforated into four equal horizontal strips 
to permit universal and economical usage of each 
sheet. 

An example of a type I format is illustrated in 
Fig. 6. The maximum number of horizontal mailing 

· I 
~==::: 

· L===: L I ----------C I 
~ C I 
· C::::::=::=="" 

I I . 
I I : 
I I . 
~. 

Figure 6. Type I of printout format. 

labels is primarily determined by the number of 
printer keys, type of printout paper and the labeling 
or imprinting process employed. In this example, 
nine mailing labels may be accommodated on each 
strip or, in total, 36 labels on each sheet. The type I 
format is applicable to either the employee, distri­
bution outlet or customer subfiles. 

Figure 7 depicts an example of a type II format. 
This format is responsive to the answer set gen­
erated by interrogating the customer subfile with a 
PICK primitive having a large number of argu­
ments. The pick list and the corresponding mailing 
label are printed in a prescribed arrangement on a 
strip. This arrangement, which is designed in con­
junction with the characteristics of a window en­
velope, has advantages which will be discussed later. 
The number of pick values which can be listed on 
each strip depends on the dimensions of the strip, 
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Figure 7. Type II of printout format. 

the size of the window envelope, the readability 
of the pick values and the practical limitation of 
'stuffing' the envelope, that is, whether there is more 
publication material than the envelope's design 
permits. If the number of pick values exceeds the 
strip's capacity, then the mailing label is repeated 
on the next strip and the pick list is continued. 

An example of a type III format is shown in 
Fig. 8. This format is responsive to the answer set 
generated by interrogating the employee or distribu­
tion outlet subfiles with a PICK primitive having a 
small number of arguments. The pick list is printed 
under the corresponding mailing label in the ar­
rangement illustrated. If the pick list exceeds the 
allotted number of possible pick values, then the 
mailing label is repeated on the next strip and the 

L--__ --J, . 

- ------------ - ---------------- ---------

Figure 8. Type III of printout format. 

pick list is continued. The type III format has the 
advantages which will be discussed later. 

Each sheet of each of the types is headed by a 
numeric code which portrays the list and page num­
bers. This is useful information when multiple lists 
are to be printed. In addition, the query narrative 
and statements are printed at the beginning of each 
list along with a count of the number of labels in 
that list. 

Phase III-Labeling, Gathering and Distribution 

Labeling or Imprinting. There are several excellent 
processes for affixing or imprinting labels from the 
computer printout to an envelope or a publication. 
A labeling machine performs the first operation, 
and a heat transfer machine effects the second; in 
more recent machine designs, one machine performs 
both functions. Imprinting offers a more pro­
fessional result than labeling; however, the imprint­
ing requires special heat transfer printout paper 
which is about three times the cost of printout paper 
used in the labeling process. The machine c:;an 
label at a rate of 15,000 units per hour and imprint 
at a rate slightly less than this. Even considering 
the machine setup time, it is unlikely that the label­
ing or imprinting process will be a bottleneck in the 
total system's operations. The labeling or imprint­
ing process is applicable only to the type ][ listings. 
Type II and III listings are initiated in the gathering 
process which, of course, is also applicable to type I. 

Gathering. The gathering process may be! manual 
or mechanical, and the selection of one or the other 
depends primarily upon economic considerations. 
For subscriber files less than 100,000 records, the 
cost of a mechanical gathering machine is usually 
prohibitive. The manual gathering process will be 
discussed in this section. 

The customer type I listing usually consists of 
more than one list. Each list of mailing labels is 
responsive to search specifications in which the 
EQUAL primitive has one profile argument which 
relates to, in general, a sales promotion publication. 
Gathering of this publication is accomplished by 
mechanically inserting the piece in an envelope 
which has been labeled or imprinted with one of the 
mailing labels on the list. If the recipient is to re­
ceive two different sales promotion pUblications, his 
mailing label appears on two lists, and he will re­
ceive literature under two separate cove:rs. The 
reason for this procedure is that the field salesman 
wants to direct specific material to a customer under 
individual covers to promote the personal touch. 
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The employee and distributor outlet type I listings 
are treated in the same manner as the customer type 
I listing except that the mailing label is affixed to or 
printed on a pUblication rather than an envelope. 
The pUblication is then manually placed in a par­
ticular bin which is the collection point for all pub­
lications to be distributed in bulk to a location 
within the organization. This scheme permits an 
economical distribution of literature. 

The type II listing is put through a bursting ma­
chine which stacks the strips and maintains the zip­
code order. Each strip is affixed to a standard cover 
letter which introduces the contents of the packet. 

The publications to be gathered, sometimes re­
ferred to as buying data, are stacked separately by 
profile value. These stacks are in the same order as 
the PICK primitive arguments in the search specifi­
cation. The publications corresponding to the pick 
values on the cover letter are manually gathered and 
inserted into a window-envelope. The scheme elim­
inates any labeling or imprinting process, provides 
a record of publications contained in the envelope 
for tracing purposes, and reduces confusion in the 
gathering process. For example, the matching of 
the pick list label to an envelope label is eliminated. 
In addition, the cover letter adds a professional 
touch to the customer's packet. 

The type III listing is put through a bursting ma­
chine which stacks the strips. The stacks of strips 
are then slit, resulting in three separate stacks of 
mailing labels and corresponding pick lists. The 
publications corresponding to the pick values on 
each gathering slip are manually gathered and sta­
pled to the slip. This packet is then placed in a par­
ticular bin and distributed, with other packets, to a 
location within the organization. 

Distribution. The envelopes and bulk shipments 
are weighed and the proper postage is applied. 
Mailings are made through regular channels. The 
recipient reviews the literature he has received and 
contacts the sponsor if he desires additional service. 

CONCLUSION 

A marketing information dissemination system 
has been proposed to meet the information and 
communication requirements of large industrial ad­
vertisers. 

Such a system is in current operation at the West-

inghouse Electric Corporation at a cost reduction of 
two to one over the previous direct mail system. 
The file was established and is maintained under 
the Reference Retrieval System, also developed by 
Westinghouse.3 The IBM 7094 computer configura­
tion serves as the catalyst of the system and IBM 
360-30 computer provides the output medium. The 
master file consists of 60,000 customer, 5,000 dis­
tribution outlet and 8,000 employee records. These 
can be analyzed and specific mailing lists prepared 
at an equivalent search rate of 100,000 records per 
minute. The equivalent search rate is derived by 
considering that a certain number of queries can 
interrogate the file in the time it takes to pass the 
file tape. If these queries were supplemented with 
an additional simple query, which is defined as an 
EQUAL, ANSWER, and LIST logic structure, then 
the system is no longer tape bound. It is this addi­
tional query that establishes the incremental query 
rate which specifies the equivalent search rate. 

Large industrial advertisers are becoming increas­
ingly aware that electronic data processing and 
printing are the solution to their information dis­
semination requirements. The computerized system 
discussed in this paper improved the speed, 
economy, flexibility, generality and capability in 
comparison with visual and mechanical systems al­
ready in use by approximately 100 percent. 
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A NEW LOOK IN A PERIPHERAL EQUIPMENT DESIGN APPROACH 

Earl Masterson 
Terminal Equipment Group, Honeywell EDP 

Waltham, Massachusetts 

DEVELOPMENT PROGRAM OBJECTIVES 

The initial work of the development group was to 
produce a basic line of peripherals which would be 
a major step in freeing the company of its depend­
ence upon vendors. The first product was to be a 
line of high-speed printers, the second a card reader, 
and the third a card reader/punch. An Optical Bar 
Code Reader was in parallel development under a 
contractual commitment. This machine later de­
veloped into a line of machines which, strictly 
speaking, cannot be considered basic peripherals. 

Each machine's specifications were written to at 
least equal competitor's specifications. Rather than 
try to exceed the functional specifications, it was 
decided to place a great deal more emphasis on 
reliability and serviceability. 

It was felt that every effort should be made to 
make a reliability breakthrough. The great ad­
vances made in solid-state circuits, particularly with 
regard to reliability, has caused an unbalanced con­
dition between the central processor and the periph­
eral equipments. 

Because of an ever-increasing rate of computer 
systems sales, the importance of company inde­
pendence in the peripheral area became more im­
mediate. 
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CONSIDERATIONS LEADING 
TO THE FORMULATION OF 
A DESIGN APPROACH GUIDE 

The importance of a successful development pro­
gram depends upon many factors, and the implica­
tions of these many factors must be carefully 
weighed before a satisfactory design approach can 
be stated. For example, there is probably no one 
best design for a given product. The design must be 
considered in the light of its total environment. 
Described below are a number of factors that went 
into the formulation of our design approach guide: 

Machine Specifications. The machine specifica­
tions were the only factor in our favor at the start 
of this program since they did not dictate a major 
breakthrough in speed or other functional perform­
ance. This left us free to choose between the design 
approaches of our competitors and something al­
together different. In the following paragraphs we 
will show why we chose the second alternative. 

Development Time Cycle. The short overall pro­
gram schedule required that serious consideration 
be given all methods which could possibly lead to 
shortening the overall development and manufac­
turing start-up cycle. One of the very time-consum-
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ing development problems typical of electro­
mechanical design is that of the rather lengthy cycle 
of design, life test, redesign, life test, etc. Some 
method of reducing this time had to be found. The 
successful search for ways to eliminate moving parts 
and to use more "off-the-shelf" mechanical and 
electro-mechanical components was a great help in 
this area. 

Engineering Background. Assignment of this 
rather large development program to our group also 
had its effect on other parts of the engineering or­
ganization. For example, while a few of our asso­
ciates in the circuits, logic, systems, and software 
groups had worked with our tape drive development 
group, most were more accustomed to working 
within the fixed restrictions of vendor devices. This 
involved the selection of the vendor equipment, 
studying its characteristics which were normally 
fixed and known, and then designing the necessary 
interfacing software and hardware to work effec­
tively with the device. We were now forced to im­
pose on the other groups within engineering the 
problem of design where initially nothing is fixed or 
known and where every separate approach or 
change has far reaching and interacting results. 

Manufacturing Considerations. Our manufac­
turing organization had extensive experience in the 
production of large quantities of electro-mechanical 
tape drives and had an even more substantial back­
ground in the production of electronic equipment. 
In view of this, we felt the time was not inappro­
priate to emphasize an electronic rather than the 
traditional highly mechanical peripheral equipment 
design. 

Field Service Background. Because of the com­
plexity of the electronics involved in modern high­
speed computers, Field Service personnel with 
heavy emphasis on an electronics capability have 
been and will continue to be employed. We felt that 
the Field Service personnel would have fewer prob­
lems in familiarizing themselves with our new equip­
ments in view of the accent on electronics. 

Reliability Breakthrough. Electro-mechanical 
peripheral equipment is an important part of all 
computer systems and is becoming an even larger 
part each year. (See Fig. 1.) While thousands of 
successful computer systems are in operation with 
many thousands of electro-mechanical peripherals, 
it is doubtful that anyone would agree that the re­
liability of the peripherals has reached the point 
where they are balanced with the reliability of the 
modern solid-state central processor. Computer 
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Change in data processing systems. The chart indi­
cates the shift in importance of peripherals in the 
average system in a five-year period in our company. 

circuit developments have progressed in a relativdy 
short period from a time when a single flip-flop re­
quired four vacuum tubes to a point where sixteen 
flip-flops can be produced on a single tiny chip. 
Component development in the area of electro­
mechanical design has not had this kind of improve­
ment. It often seems that the typical design ,engineer 
errs in the direction of overconcern for manufac­
turing costs, not reliability. Where so much of our 
equipment is on rental, reliability is even more im­
portant and it seemed that a new evaluation should 
be made in developing the design approach. We 
realized that this program provided the once-in·-a­
lifetime opportunity to make a breakthrough in a 
design approach for reliability because there was no 
requirement to "warm over" an old product line. 

It might appear that a study of other successful 
electro-mechanical ip.dustries could provide a design 
approach guide which would make a major im­
provement in peripheral equipment. While this 
study did not uncover an industry with an equiva­
lent design requirement, it did prove to be a ve:ry 
worthwhile appraisal; and while it may not have 
shown a direction to proceed, it did show directions 
that should not be pursued. 

The automotive industry appears to be based on a 
very successful application of what might be called 
an electro-mechanical design approach. It might 
seem that hiring automotive engineers and adopting 
automotive design principles would be a way to in­
sure development of a successful line of electro­
mechanical peripheral equipment. Our study in­
dicated that this would be far from a wise decision. 
For example, it appears that the average automobile 
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is in operation somewhere between 5 and 10% of the 
time, whereas many of our peripheral devices are in 
use two and three shifts a day, six days a week. 
The average car in the United States is driven ap­
proximately 12,000 miles per year. One indication 
that this is accumulated on a very low duty cycle 
rate can be seen by the fact that if one were to drive 
at a rate of 60 miles per hour for only 872 days, it 
would accumulate 12,000 miles. This rather dra­
matic difference in use factor shows that the adop­
tion of automotive design principles would be very 
unwise. In other words, while automobile troubles 
and maintenance requirements seem to occur very 
infrequently, they would occur 10 to 20 times as 
often if the same principles were used for peripheral 
equipment operating on a three-shift basis. 

DESIGN APPROACH OBJECTIVES 

The foregoing was weighed and considered in 
developing a design approach guide which would be 
readily understood and used to advantage by the 
many individuals contributing to the program. 
Some of the objectives may sound as though we set 
the goals too high. A later summary will indicate 
that achievement of these goals was surprisingly 
complete. 

Fewer Moving Parts. One of the obvious ways to 
eliminate manufacturing and maintenance problems 
with electro-mechanical equipment, and to achieve 
reliability is simply to eliminate moving parts. It 
was surprising with this as a goal, how many parts 
were eliminated compared to the typical approach 
for similar machines. Engineers received much 
more credit for simplifying a design than for solving 
problems in a complex design. 

Less Mechanical, More Electrical. When con­
sidering a design approach, it can be seen that a 
particular function can in many cases be performed 
either electrically or mechanically. When only 
manufacturing cost is considered, the decision is 
quite often made to use a mechanical approach. 
However, when we considered such other key fac­
tors as production quantity, tooling, life testing, the 
electrical-electronic capability of the organization, 
the machine reliability, and the expanding state-of­
the-art in electronics, it became quite apparent that 
we should use nonmechanical techniques as much 
as possible; and to our pleasant surprise, the manu­
facturing costs were found to be comparable. 

Choice of Moving Parts. If a particular function 
cannot be performed electrically, and must be done 

mechanically, there is also a good decision and a 
poor decision as to the kind of moving parts that 
should be used. We established a scale of desirable 
types of movements and believe that of all the types 
available, flexing is perhpas the most trouble-free 
and gives the longest life. For example, a quartz 
crystal in an oscillator circuit actually changes its 
physical shape every cycle; in other words, a me­
chanical flexing occurs that may take place millions 
of times per second and may run trouble-free for 
many years. 

Another example is found in loudspeaker design 
where motion may be a sizeable fraction of an inch 
and occurs thousands of times per second. This 
indicates that a flexure spring operating well within 
its design limits should provide a very satisfactory 
answer to the need for reciprocating mechanical 
devices. 

Reasonable-speed rotary motion appears to be 
the next lower level of desirable form of mechanical 
motion and very satisfactory bearings can be pro­
vided at least for the life of the subject equipment. 
Perhaps the next lower level of satisfactory mechan­
ical motion could be termed pulsating rotary mo­
tion. This can be thought of as having some of the 
characteristics of both of the first two motions, but 
imposes an additional problem of bearing design. 
The next type of mechanical motion, as we go down 
the scale of desirable motions, is a sliding or rubbing 
motion. This in general, is not a very desirable 
motion from a trouble-free life standpoint. It is 
usually very dependent upon a satisfactory solution 
of many physical guiding, metallurgical, and lubri­
cation problems and, even then, does not generally 
lead to a life quite satisfactory for our needs. 

The least satisfactory of all moving parts, per­
haps, are those that impact with each other. Here, 
two or more surfaces are brought together under 
shock conditions and satisfactory operating life will 
vary greatly depending upon many factors. Later 
examples will show that by establishing design ob­
jectives, the more desirable types of mechanical 
motion can usually be employed. 

"Off-the-Shelf' Mechanical Components. When 
a mechanical design became mandatory, we at­
tempted whenever possible to use standard "off-the­
shelf" components such as sealed ball bearings. 
This was done for all simple rotary applications and 
also for primary elements in eccentric systems as 
substitutes for cams and followers. This change 
from the typical approach greatly reduces the 
amount of life testing required; lowers the product 
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cost; requires less tooling for manufacturing; and 
in general, shortens both the development and 
manufacturing times. 

Elimination of Field Lubrlcation. Early in the 
development of our new design approach, it ap­
peared that our objectives would make possible the 
elimination of field lubrication. Although some 
may argue that this is not an important objective, 
experience tells us that devices that do need lubri­
cation inevitably receive too much, too little, or the 
wrong kind of lubrication. In addition, lubrication 
in the presence of dirt, in particular card or paper 
dust, can create a very abrasive mud. Therefore, it 
seemed not only important but mandatory to pursue 
this as a design objective. 

List of 27 Don'ts. Reproduced below is the list 
of "27 Don'ts" which was given to each designer 
engineer. It was written early in the program and 
used as a guide for developing equipment to be 
manufactured for service and use in the total en­
vironment found in the data processing business. 
Most items were listed because of concern about 
reliability, development time, maintenance cost, 
manufacturing cost, and quality control. Some were 
listed to eliminate design decisions based on the 
emotional "we did it this way before," and to insure 
pursuit of more challenging and imaginative routes. 
In either case, the list was provided as a guide and 
people were cautioned that if a rule had to be 
broken, it should be done with the full knowledge 
that difficulty might develop. 

"As a matter of last resort in a data processing 
machine design, use:" 

1. Field lubrication 
2. V belts 
3. Miter or bevel gears 
4. Worms and gears 
5. Helical gears 
6. Chain drives 
7. Three or more bearings in line 
8 . Needle bearings 
9. Motors with centrifugal starting 

switches 
10. Linear ball or roller bearings 
11. Bearing length-to-diameter ratios of 

less than 5: 1 
12. Switches in low-level circuits 
13. Shims 
14. Surface plate and height gauge as­

sembly techniques 
15. Slides requiring parallel ways 

16. Ball bearings in short-stroke oscillat­
ing applications 

17. Low-force interposer or actuator parts 
depending on side guiding 

18. Cams and followers 
19. Long com pression springs 
20. Cap screws everywhere 
21. ABEC7 bearings everywhere 
22. Glue, cement, paste, and tape 
23. Tight tolerance on sheet metal parts. 
24. Trapped belts 
25. Open switches 
26. "Ship in bottle" assembly techniqm~s 
27. Interacting adjustments 

Our design engineers' first reaction, as can be e:x­
pected, was that their hands were completely tiled 
and they had nothing to work with. It was soon 
shown by means of frequent design review meetings 
that for every "Don't" there. was a very satisfactory 
substitute. 

EXAMPLES OF MORE DESIRABLE 
ELECTRO-MECHANICAL COMPONENTS 

The following examples are for dynamically op(~r­
ating components and do not necessarily apply to 
more-or-Iess static devices such as operator con­
trols: 

Flexure vs Pivots 

A flexural member operating well within its stn::ss 
limits, as mentioned previously, seems to be;: one of 
the longest-lived mechanical elements known. An 
excellent substitute for pivot bearings in a recipro­
cating mechanism, therefore is a protected flexure 
spring. It has the very desirable characteristics that 
it requires no lubrication, is not sensitive to dirt, 
paper, or card dust, has substantially no friction, 
and does not generate heat. It does have a spring 
restoring action, but this is usually of no conse­
quence and sometimes may even be desirable. It 
seems almost a paradox that a spring is rated so 
highly when everyone has seen broken springs. 
Broken springs are inevitably the result of improper 
design, improper manufacture or improper use, all 
of which can be controlled. The stresses in a spring 
can be readily calculated in most cases, and, in all 
cases, can be life-tested. Proper manufacture can 
be controlled by normal quality control pr04:;eduf'{!s. 
Improper use can be controlled by proper design. 
For example, we have a rule which states that ea4:;h 
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flexure spring system must have limit stops which 
prevents accidental overstressing. In many cases, 
the rule has even been extended to flexure subas­
semblies to further insure against accidental dam­
age. Figure 2 shows how a flexure spring can be 
substituted for a pivot and how simple limit stops 
can be designed to 'prevent overstressing. 

I 
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However, while this system provides essentially 
parallel motion, it does not produce pure straight 
line motion; in many cases though, the deviation is 
so slight that it may be ignored. For example, in 
our card punch, the, interposing system is carried 
on four two-inch flexure springs. The total stroke 
of the interposer system is 0.1 inches and the result-

INPUT 
CARD 

DECK 

SELF LEVELING 
PICKER KNIVES 

FLEXURE 
ASSEMBLY 

DETAIL 

PIVOT 
ASSEMBLY 

Figure 2. Flexures vs pivots. Comparison of flexure springs and pivots applied to the same card feed picker knife assembly. 

Parallel Motion Flexure vs Slides 

Mechanical elements which normally require 
slides to provide parallel motion can be greatly im­
proved by using parallel motion flexure springs. As 
noted previously, slides are not very high on the pre­
ferred list of mechanical motion. It is very difficult 
to prevent metal-to-metal rubbing contact and the 
system is usually very dependent upon lubrication. 
By using parallel flexure springs (Fig. 3) it is pos­
sible to completely eliminate sliding friction, lubri­
cation, and heat. In addition, the system will never 
develop play or clearance during its operating life. 

ing deviation from a true straight line motion is 
0.002 inches. 

Sealed Ball Bearings vs Sleeve Bearings 

Sealed ball bearings usually result in a higher 
product cost than simple sleeve bearings. It is our 
belief that this additional cost is easily offset by 
reduced maintenance. The total cost of the down­
time for a failed bearing will probably pay for the 
additional cost of providing ball bearings through­
out a machine. Sealed ball bearings in most appli­
cations have the added advantage of requiring no 
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Figure 3. Parallel motion flexures vs slides. Comparison of two methods of supporting and guiding an assembly which is in reciprocat­
ing motion. 

field lubrication, having very low friction, producing 
very little heat and possessing constant characteris­
tics throughout their life. Sealed ball bearings are 
good examples of "off-the-shelf" mechanical com­
ponents in which a solution to all the problems of 
metallurgy, surface finish, and lubrication required 
for a predictable life has already been found by the 
bearing manufacturer. 

Eccentrics vs Cams and Followers 

Cams and followers (Fig. 4) have the desirable 
characteristics of being able to convert rotary 
motion into controlled reciprocating or linear 
motion. Cams and follower systems in our applica­
tions, unfortunately, have many undesirable char­
acteristics. For example, since the basic shape of 
cams and followers is cylindrical, the contact be­
tween the two is essentially a line contact. While 
this is somewhat modified in practice by the elastic­
ity of metals, the fact remains that the unit pressure 
can be exceptionally high. A single cam and fol­
lower provide positive drive in one direction only 
and must rely on a return spring for drive in the 
opposite direction. A system with two cam surfaces 
to provide drive in both directions may eliminate 
the return spring, but in so doing must become a 
very precise assembly. Other:disadvantages of cams 
and followers are that they require lubrication, and 

bearing problems sometimes develop because of the 
exceptionally high speed of the rather small di­
ameter cam follower. To date, we have found it 
possible to provide all our reciprocating drive needs 
by using sealed ball bearings in eccentric drive sys­
tems. This allows designs with no lubrication, no 
return spring, low unit forces and "off-the shelf" 
package assemblies. The time displacement curve 
of an eccentric system is normally very close to a 
sine wave. In our applications we have found this 
potential disadvantage to be a very minor price . 
to pay for the many advantages. 

Flat Belts and Pulleys vs Gear Trains 

Gear train power transmission systems providing 
rotary motion to a number of shafts characteristic­
ally have the disadvantage of requiring vt~ry accu­
rate shaft center locations, lubricants and relatively 
high-cost components. Modern, thin, flat nylon 
belts running on smooth pulleys (Fig. 5) solve many 
of these problems. The cost of the entire system is 
much lower, center locations are much less criti1cal, 
the system requires no lubrication, and problems of 
tolerances of all kinds can be absorbed in one 
spring-loaded belt-tightening idler. The life of a 
properly designed system of this type is exception­
ally long. The reason for this is that the be:lt is very 
thin and pliable and readily wraps around the var-
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Figure 4. Eccentrics ys cams and followers. Two methods of applying controlled driving power to a reciprocating assembly. 

GEAR TRAIN 

IDLER 
GEARS 

Figure 5. Flat belts and pulleys vs gear trains. Shown on the left is an actual fiat belt system used to drive rolls in a card transport 
system. A possible gear train drive is shown on the right. 
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ious pulleys. It can be guided by one or more crown 
pulleys, and therefore, is not in rubbing contact 
with any element. A drive system of this type, it 
might be argued, has the disadvantage of not being 
synchronous., One answer to this is to make the 
entire machine asynchronous-which is no handi­
cap. If this cannot be done, a timing belt can be 
employed as discussed below. 

Timing Belt vs Gear Trains 

Toothed belts or timing belts are a very satisfac­
tory substitute for gear trains when it is necessary 
to rotate two or more shafts in synchronism. While 
the timing belt may not be as precise as certain high­
quality gear trains, it appea'rs that they are com­
pletely adequate in our applications. The timing 
belt has many of the same advantages over gear 
trains as does the flat belt. For example, it does not 
require lubrication, it is not sensitive to wide toler­
ances on shaft centers, and all tolerances can be 
absorbed by a single spring-loaded or adjustable 
idler. 

Moving Coil Motors vs Clutches and Brakes 

The introduction of moving coil motors has per­
haps been as close to a breakthrough in the electro-

UPPER PAPER 
.... ~ ...... ---

FEED SHAFT 

mechanical component field as anything known. 
This is a DC motor in which the rotor consists of 
a very-low-inertia copper coil. The coil can be 
either a disk or a cylinder. This type of motor has 
many desirable characteristics: very high torque .. to­
inertia ratio, low inductance, does not saturate (air 
core), operates on low voltage and is very compati­
ble with solid-state driver systems. Also, bc!caust: of 
low voltage and inductance, it produces very little 
brush commutator arcing. We have founcl that all 
functions normally provided by a clutch and brake 
system can be easily accomplished by one or more 
of these motors in a servo system. The degree of 
servo sophistication depends entirely on the appli­
cation. A motor in this application has many de­
sirable characteristics such as no high-friction suf­
faces, no impact of mechanical parts, no change: in 
operating characteristics throughout life. In addi­
tion, it provides its own power. Figure 6 shows the 
simple paper-feed drive system that can be used in 
a high-speed printer in place of the typical clutch 
and brake. Depending on the servo system, it can 
provide not only start and stop functions, but also 
variable speed and can operate in either direction. 
This is one of the prime examples of the way in 
which it is possible to exchange typically trouble­
some electro-mechanical elements with their many 

LOWER PAPER 
FEED SHAFT 
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! 
LMOVING COIL 

MOTOR 

TACHOMETER 

DRIVE MOTOR 
,I 

DRIVE BELT ~ 
a PULLEYS 

CLUTCH a 
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Figure 6. Moving coil motors vs clutches and brakes. Two drive bystems to supply controlled drive to the paper feed section of a 
high-speed printer. 
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moving parts to a highly electronic system which 
has only one moving part-a simple low-inertia 
armature operating in simple rotary motion on 
sealed ball bearings. 

Moving Coil Motors vs Indexing M echanis,ms 

The same moving coil motor discussed in the pre­
ceding paragraph can also be used to great advan­
tage as a substitute for very complex indexing 
mechanisms which require very long development 
times because of the many problems of metallurgy, 
surface finish, and lubrication. Even if the complex 
mechanism problems are reasonably well solved, 
providing a device with a trouble-free life, it would 
still leave something to be desired. A moving coil 
motor can frequently provide the same indexing 
function with the additional advantage of very long 
trouble-free life, plus additional control features 
such as interruptions of the indexing function for 
indefinite periods and the substitution of continuous 
motion at various speeds, even in a bidirectional 
mode. 

EXAMPLES OF GOOD DESIGN PRACTICES 

Following are a few examples of good design prac­
tice rules which have been applied: 

Subassembly vs Ship in Bottle. It is our general 
rule to make a subassembly of critical inter-related 
parts so that they can be bench, assembled, bench 
tested, or bench repaired. This may seem like a very 
obvious design goal, but, unless it is stated, it some­
times becomes obvious too late. 

Multi-Motor vs Complex Drives. We have found 
that it is very often desirable to use several drive 
motors in a single machine rather than develop a 
very complex drive to transmit power over large 
distances. This is perhaps somewhat analogous to 
the change in power distribution in a manufacturing 
plant since the days of a system consisting of over­
head line-shafts with the power coming from a 
single large steam engine. Today, this job is ac­
complished by small individual motors added to 
each device requiring power. Because of the mass 
production of fractional horsepower motors, we 
have found it possible to buy motors for less cost 
than that of custom-made hardware to transmit 
power over distances or around corners. The multi­
motor drive of a machine also provides the oppor­
tunity for a more flexible control during start up, 
shutdown, or test modes. 

Avoid the use of Glue, Cement, and Tape in Assem­
blies. This may sound like a very odd recommenda­
tion in this age when so many successful products 
make extensive use of these techniques. Again, it 
must be stressed that this guide is recommended for 
the design of equipment to be manufactured, serv­
iced, and used in a data processing environment. 
The successful application of modern cementing 
techniques is a very specialized business and can 
only be accomplished if everyone is fully aware of 
the critical quality control problems. Another way 
of stating the problem is that because of the limited 
production quantity and the multitude of parts and 
assembly problems that must be solved, it is very 
dangerous to assume that the quality control aspects 
of an assembly requiring cementing will get proper 
attention. 

A void Trapped Belts. Since we have eliminated 
gear trains and have gone to the use of belt drives, 
our machines will characteristically have several 
fairly complex belt drives. We have found without 
exception, that if the design is started with the idea 
in mind that the design should avoid trapped belts, 
it can be accomplished. In all of our machines, any 
belt can be replaced without tools. 

SUMMARY 

Four Product Lines 

The success of the program can be stated very 
simply. We have in quantity production four new 
product Jines. Three are considered basic periph­
erals. This nOw permits our division to ship com­
plete computer systems with all units manufactured 
in-house. 

Success of Design Approach Rules 

The tabulation of Fig. 7 shows the degree of suc­
cess in both eliminating moving parts and in doing 
more things electrically and fewer thingsmechan­
ically. The chart lists a number of machine elements 
and discusses the typical solution vs our method. It 
is difficult to do this comparison in a completely 
unbiased way. We believe that the chart shows a 
significant difference resulting from our design ap­
proach decisions. 

Sometime after we had made the decision to use 
an "expensive" moving coil motor system in the 
paper feed area of our high-speed printer, we noted 
that the parts costs were being reduced and that 
with continuing development work, the entire sys-
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tern was being simplified. Finally, we decided it 
would be interesting to make a cost comparison 
between the new moving coil approach and our old 
clutch and brake design. To our very pleasant sur­
prise, the parts costs turned out to be almost iden­
tical and because of the mechanical simplicity of the 
moving coil motor system assembly, labor cost was 
actually lower. 

In summary, then, the effect of the rather high 
design approach goals can be stated as follows: Of 
the four peripheral product lines presented, none of 
the machines contains operating gears, * cams or 
followers, clutches or brakes, mechanical indexing 
mechanisms, trapped belts, linkages, and none of 
the machines requires lubrication. 

A ttainment of Specifications Goals 

Each of the four product lines fully met or ex­
ceeded the specification goals because of the more 
flexible design approaches. In some cases, the speci­
fications can still be revised upward. It is also pleas-

1 ant to note that, again because of the flexibility of 
the design approach, future additional improvement 
in performance can be obtained from each of the 
machines by a relatively small additional develop­
ment effort. 

Reliability Goals 

The story of the success or failure of reaching the 
reliability goals is still being written. There is noth­
ing to date to indicate that any of the design ap-

• At the present time, some "off-the-sheIP' small, sealed gear 
head motors are in use. They do not require field lubrication. 

CARD PUNCH ELEMENTS 

ACTIVE COMPONENT 
I SUMMARY COMMENTS ON HONEY 
• COMPETITIVE PUNCHES PUNCH 

WELL 

GEARS 
ALL HAVE GEARS. ONE KNOWN MAKE 0 HAS AS MANY AS 43. 

CAM a FOLLOWER ALL HAVE CAM a FOLLOWER SYSTEMS 

SYSTEMS 
SOME AS LOW AS TWO, UP TO AS 0 
MANY AS 26. 

CLUTCH a BRAKE 
RANGE FROM ONE TO TWO. 0 

SYSTEMS 

MECHANICAL INDEXING THE COMMON METHOD OF INDEXING, 0 SYSTEMS A CARD FOR PUNCHING. 

SLIDING ELEMENTS THE COMMON SOLUTION IN PUNCH 
(IN ADDITION TO PUNCHES BAIL, STRIPPER BAIL, CARD FEEDINCI, 0 
IN GUIDES) AND OTHER AREAS. 

PIVOTS a LINKS IN GENERAL USE THROUGH-OUT. UF' 

(IN ACTIVE OPERATION) 
TO FOUR PER INDIVIDUAL PUNCH 0> 
INTERPOSER SYSTEM. 

BELTS 
RANGE FROM NONE TO A DOZEN 

4-WITH SOME TRAPPED. 

FLEXURES RANGE FRON NONE TO A FEW. I( 

SERVO SYSTEMS NONE KNOWN .2: 

RANGE FROM AN OIL BATH CRANK-' 
LUBRICATION AREAS CASE TO 30 AREAS SOME OF WHICH 0 

ARE IN SETS OF 80. 

TRANSISTORS RANGE 300- 500 80 o 

Figure 7. Comparison of card elements, showing effect of de­
sign approach. 

proach decisions were anything except extremely· 
sound. 
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A SERIAL READER-PUNCH WITH NOVEL CONCEPTS 
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Honeywell ED P, Terminal Equipment Group 

Waltham, Massachusetts 

INTRODUCTION 

A card punch traditionally has been looked upon 
as a machine which is composed of many complex 
and ingenious mechanisms because of the complex 
task that it must perform. Complex mechanisms, 
however, have an ingenious way of making noise, 
being unreliable and difficult to service. . 

An attempt has been made to break away from 
the historical approach, by taking a new look at 
the real requirements and producing a design using 
novel electromechanical and electronic components 
which avoid many of these difficulties. Some of the 
design considerations are presented here. While the 
total engineering program capitalized to a large 
extent on a concurrent card reader development, 
this reader-punch development included all en­
gineering phases from feasibility study through pro­
duction models and reliability studies. The success 
of the program can be attributed in large measure to 
the use of "off-the-shelf" mechanical components 
with known life and reliability, and the use of solid 
state electronics and new motive devices and actua­
tors to perform functions formerly satisfied only by 
mechanical devices. 

THE SERIAL READER-PUNCH 

The Honeywell 214 Serial Reader-Punch reads at 
400 cards per minute or reads and punches at 100 to 
400 cards per minute depending upon the number of 
columns punched. See Fig. 1. 

307 

Figure 1. The Honeywell 214 Reader-Punch 

The basic card transport, input hopper, read sta­
tion, and stacker of this machine are modeled after 
and use parts common to the Honeywell high-speed 
card reader which was under development at the 
same time. 

A card is picked from the input hopper, and fed 
broadside into a wait station. From here it is fed 
serially through a read station, then through the 
punch to a cornering station where it is kicked 
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Figure 2. Transport with punch head removed. 

"on-the-fly" into rollers for broadside power stack­
ing. Figure 2 shows the transport with the punch 
head removed. Card motion is left to right. 

Inp~t Hopper 

The input hopper has a capacity for 1200 cards 
and is tilted slightly away from the operator com­
pletely exposing the front side for easy card loading. 
Cards are selected or picked on demand (asyn­
chronously) by a flexure-mounted picker knife 
under the control of a high performance servo 
system in lieu of the conventional clutch. The 

Figure 3. Picker knife and drive system. 

picker knife system is shown in Fig. 3. Use of 
flexures for articulating the knives, pivoting the arm, 
and connecting to the drive crank should be noted. 
Sealed bearings are used at the crank pin and in the 
moving coil servo motor. Motor acceleration and 
deceleration are controlled by an SCR reversing 
bridge, via a tachometer generator and differential 
amplifier. The rest position of the picker knivf:s is 
determined by photoelectric detection of the motor 
shaft position. 

Cards enter feed rolls and are driven into the wait 
station. These continuously running feed rolls and 
all others associated with the transport are powered 
by nonsynchronous induction motors through non­
captive flat belts thus eliminating the need for gear 
trains and lubricants as well as the close tolerances 
associated with fixed-center shafts. From the wait 
station, card motion in a serial or column by 
column manner is initiated by a solenoid actuated 
pinch roll operating against a continuously running 
capstan. 

Read Station 

Additional feed rolls continue the card through 
the read station at 44 inches per second. These are 
belt driven and are part of the read station sub­
assembly. The read station consists of 12 solar cells 
for reading the data and additional cells for strobe 
generation from the trailing edge of the card. A 
single projection lamp provides nearly uniform 
illumination over the entire surface of the card. 

As the trailing edge of the card uncovers aper­
tures over the strobe cells, a staircase waveform is 
generated corresponding to the column llocations. 
Since the trailing edge is continuously referenced, 
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strobe pulses are unaffected by minor changes in 
card velocity resulting from slippage or eccentricity 
of drive rolls and tolerances are noncumulative. To 
allow for scored cards, that is cards perforated for 
later separation, a continuous strip cell for all 80 
columns is not used, but rather is divided into 8 
segments, each with 10 apertures, arranged to 
become active sequentially under the control of an 
associated gate or guard cell ~hich is wide enough 
to be unaffected by the score in the card. A wide 
variety of trailing edge cuts are accommodated by a 
mechanical shutter that switches active apertures 
between card rows 6 and 7, and 7 and 8. 

Stacking 

From the punch station which is described below, 
the card is transported via a flat belt to a second 
cornering station where it is sensed by photocells 
for regular or offset stacking. The card is kicked 
"on-the-fly" into broadside stacker rolls. Figure 4 
shows a card leaving the punch station, and another 
entering the broadside stacker rolls. 

The kicker is an armature type solenoid with a 
self-damping multiple layer flexure plate attached. 
The design keeps the operating air gaps short while 

Figure 4. Punch and stacker area. 

providing %-in throw at the card. A complete ex­
cursion occurs in 30 msec. Card edge damage is 
negligible because the accelerating force is applied 
gradually to the entire length of the card. 

Since the transport is asynchronous, the card 
itself is constantly tracked by photocells, and logic 
conditions are established to determine the next 
operational sequence or error conditions. For in­
stance, failure to stack, in either the normal or reject 
modes allows the card to travel to the end of the 
transport where it signals an error condition and 
the transport shuts down before a jam occurs. 

Punch and Drive 

The punches are driven by an eccentric shaft con­
tinuously rotating at 4800 rpm. The shaft is flexure 
coupled to a flexure mounted bail imparting nearly 
linear motion to the punch interposer carried by the 
bail. See Fig. 5. 

Figure 5. Punch head. 

This eliminates cams, cam followers, and rotary 
pivots. It is estimated that if a cam and cam fol­
lower were used in this system, the follower would 
rotate at speeds in excess of 25,000 rpm, or if a 
sliding follower system were used a lubricant would 
be necessary. Every effort has been made to elim­
inate the need for lubricants throughout this device, 
including the area subject to most sliding motion 
and wear and the collection of abrasive paper dust 
-the punch and die itself. 

A two-column punch has been designed in order 
to keep the speed of the eccentric shaft at half of 
what it would be for a single column punch with 
the same throughput and little additional com­
plexity elsewhere. Flexure spring pivots are used 
throughout to eliminate rotary pivots which are 
susceptible to fretting corrosion when experiencing 
small oscillatory motions (Fig. 5). A properly de-
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signed flexure spring for this application has a 
fatigue life of billions· of cycles. This is borne out 
by representative samples of these flexures tested 
for over 1 Y2 billion cycles without failure, exceeding 
by faT the expected useful life of the machine, under 
average operating conditions. 

Stripping Mechanism 

After punching, selected punches must be with­
drawn and returned to a rest position. The device 
which does this is known as a stripper. A precise 
timing relationship must exist between the punching 
and stripping actions. While this can be accom­
plished by the use of gears and cams, this design has 
avoided these components by making the stripper 
an integral part of the eccentrically driven punch 
mechanism. On the downstroke, the eccentric 
drives only the selected punches through the card. 
On the upstroke, the common stripper simul­
taneously withdraws all previously selected punches. 
Thus proper timing is achieved automatically and 
phasing adjustments are not required. (Fig. 5). 

Punch Selection Mechanism 

The heart of the punch selection mechanism is a 
simple flexure spring which serves as both the arma­
ture of the selecting solenoid and the mechanical 
punch interposer. There is one for each of the 24 
punches. This interposer is mounted on the stripper 
bail between two preformed beams (Fig. 5). In the 
nonpunching position, it rests against the outside 
preform where it cannot contact the top of the 
punch. In the selected or punching position, it 
moves to the inside preform where, on the next 
downstroke, it makes contact with the top of the 
punch (Fig. 6). As punching load is applied, the 
thin interposer is reinforced by the stiff inside pre­
form. The flexure thus acts like a rigid column and 
transmits the required punching force without buck­
ling. Since both preforms and the flexure have a 
common point of attachment, there can be no rela­
tive sliding motion between them and therefore no 
wear. The deflected beam preforms are used here to 
avoid the manufacturing problems inherent in con­
toured machined parts. Since the interposer is car­
ried by the reciprocating assembly and selection is 
done magnetically, the relative motion which nor­
mally exists between the reciprocating and fixed 
members and results in mechanical wear has also 
been eliminated. The interposers are held in a nor­
mally nonpunching position by a permanent mag­
net. Because of their initial preload, the interposers 

PUNCH SELECTION MECHANISM 
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Figure 6. Punch selection mechanism. 

move to the punching position, when the fi'eld of the 
permanent magnet is reduced by an electromagnet. 
This punch selection system has only one moving' 
part, the interposer, which does not slide, pivot, or 
impact. The change of the interposer from the non­
punch to the punch condition occurs at the top of 
the stroke when a clearance is established between 
the punch and the interposer. There is no impact 
between the interposer and the punch because the 
action occurs very near the top of the stroke where 
the velocity is essentially zero. 

Punch Head Accessibility 

The punch head mechanism can be opened by an 
operator to clear card jams in a matter of seconds 
(Fig. 7). This feature is provided by splitting the 
punch head at the junction of the die and punch 
guide. In this case, the increased manufacturing 
cost of splitting the head is justified on the basis of 
reduced maintenance cost and increased uptime and 
throughput. 

Punch Check 

In a punch of this type a means is generally pro­
vided for verifying that correct punching has oc­
curred. Short of reading the card immediately after 
punching, which is an unwarranted expens1e, a check 
on the motion of the punch or its actuator can be 
incorporated. Several methods of checking this 
punch were considered and rejected. Mechanical 
contacts were rejected as being unreliable and prone 
to failure because of wear. An echo check generally 
involves sensing the position of the actuator arma­
ture at a specific time during the cycle. This was 
rejected as being too far removed from the actual 
punching and difficult to implement for this particu-
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Figure 7. Punch station, punch head open. 

lar interposer. Reluctance pickups would detect 
the motion of the selected punches, but signals 
would be small because of the low velocity, and 
peak output would occur at midstroke before the 
punch pierces the card. 

The method selected is a fail-safe position detec­
tor which senses the punch at its maximum excur­
sion fully through the card. With this device the 
position of the punch is actually sensed and checked 
against input data when the tip of the punch has 
gone through the card and into the die. Attached 
to the shaft of each punch is a tiny permanent mag­
net with a field strength at its surface of about 500 
gauss. Mounted adjacent to each punch is a ferrite 
memory core which can be saturated by an external 
field (Fig. 8). When the punch is in the up position, 
its magnet has negligible effect on the core. When a 
punch is selected, the permanent magnet moves 
closer to its associated memory core and saturates 
it. Each core has single turn primary and secondary 
windings. The primaries are excited by a common 
alternating carrier current. The secondaries are 
connected to peak voltage detectors. In the no­
punch position, the core functions as a transformer, 

Figure 8. Punch check cores and punch with magnet attached. 

coupling the carrier signal from the primary to the 
secondary. At the bottom of the punch stroke, the 
permanent magnet saturates the core decreasing the 
primary signal coupled to the secondary winding. 
The resulting null in secondary voltage causes the 
detector circuit to generate a logic signal indicating 
that the punch has pierced the card. 

While the detectors operate continuously, their 
outputs are sampled only when the punches are in 
the card. The punch check logic is such that opera­
tion of unselected punches, or failure of selected 
punches creates an error signal. This is an extremely 
simple punch check system and appears to be the 
safest alternative to a post-punch reading of the 
card. 

INDEXING 

Indexing mechanisms fall into four general 
groups: 

1. Clutched pinch rolls 
2. Gated stop units 
3. Oscillating pushers 
4. Geneva and similar type mechanical indexes 

The inherent advantages and disadvantages of 
these mechanisms can be summed up as follows. 

1. Clutched pinch roll: 
a) Wearing clutch face, latches and 

sprocket teeth. 
b) Good control because the tabulating 

card is always gripped and under con­
trol of the rollers. 

2. Gated stop unit: 
a) Many moving and pivoting parts. 
b) Card edge damage. 
c) Tabulating card can be ejected. 
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3. Oscillating pusher: 
a) Card edge damage. 
b) Lacks positive card control. 

4. Geneva and similar type mechanisms: 
a) Wear. 
b) Backlash. 

Because of the many disadvantages of these and 
similar devices, a simple servo system was designed 
using a high-performance moving-coil motor to 
drive the card pinched between a pair of index and 
idler rollers. The card can be indexed for punching 
well within the tolerances specified for the card, or 
skipped at high speed between columns. The card 
also can be transported through the punch (for 
read-only modes) or ejected after punching is com­
plete. 

The coincident development of this moving-coil 
motor was a significant factor in the successful 
design of the indexing system which can step the 
card 0.174 in 80 times/sec and skip at 100 in/sec. 

The motor used has a torque per ampere constant 
of 6 oz in/amp and a moment of inertia of 50 x 
10-5 oz in sec2

• 

Since the load inertia consists only of the card, 
the steel index and aluminum idler rolls, their con­
necting shaft and tachometer, an exact inertia match 
with the motor is possible (Fig. 7). 

The elimination of armature iron in the motor 
gives the low inertia, inductance and high torque­
to-inertia and high torque per ampere ratios that 
provide an ideal marriage between low-power. solid 
state control circuitry and the indexing require­
ments. 

Servo System 

The servo system used in the reader - punch to 
index a card through the punch head is a precision 
velocity servo as shown in Fig. 9. A velocity servo 
is used in lieu of a position servo because it per­
forms the indexing task with accuracies well within 
the specified tolerances without requiring the use of 
expensive feedback elements such as resolvers, syn­
chros, etc. 

Under the control of this velocity servo, a card is 
moved a distance of 0.174 in (two columns) in 5 
msec a maximum of 39 times per card by means of 
a set of driving rollers, directly coupled to the motor 
shaft without any intervening belts, gears, etc. Zero 
backlash and faster response are attainable by this 
direct drive system. 

All timing relationships and synchronization 
within the punch head are derived from the con-
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Figure 9. Velocity servo control loop. 

tinuous running eccentric drive shaft by an electro­
magnetic pickup. This pickup generates an advance 
timing pulse (A TP), the signal to begin advancing 
from one punch position to the next as well as the 
punch timing pulse (PTP), used to synchronize 
selection of the interposers and the punch check 
timing pulse (ETP). The punch strobe pulse which 
initiates the stopping of the card is generated from 
a photo electric sensing block having 40 apertures, 
one for each of the 40 stop positions. As a card 
passes under the strobe block, the trailing or regis­
tering edge of the card uncovers an aperture, gener­
ating the brake pulses to position the card for 
punching the next two columns. Because of con­
tinuous strobing of the trailing edge of the card, 
each increment and its associated positional toler­
ance is independent of the previous increment and 
therefore any error is noncumulative over the length 
of the card. A card enters the punch station at a 
speed of 100 in/sec, is picked up by indexing rolls 
and its speed reduced to 44 in/sec. When the trail-
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ing edge of the card is sensed by the first photocell, 
a brake'pulse is generated and the card is registered. 
Subsequent synchronization between punching and 
indexing is controlled by the electromagnetic pickup 
on the continuously running punch eccentric. The 
timing relationships can be seen in Fig. 10. 

TIMING 

CHECK PULSE (ETP) 
PUNCH PULSE (PTP) 

ADVANCE PI) LSE (ATP) 

Figure 10. Punch timing diagram. 

Punch Strobe 

As in the read station, registration of the card for 
punching is controlled by photocell detection of the 
card's trailing edge~ Strip cells are arranged behind 
a mask with 40 apertures, and illuminated by the 
single projection lamp. No lenses are used. As a 
card approaches the first punching position, all 40 
apertures are covered by the card. As the trailing 
edge of the card uncovers the apertures, a staircase 
current waveform is generated by the photo cell. 
Each step of current is amplified and differentiated. 
The output of the differentiator triggers a multivi­
brator whose output signals the servo system to stop 
the card. The card waits until the first column pair 
has been punched. The servo is then restarted and 
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Figure 11. Punch strobe logic. 

the card advanced until its trailing edge uncovers 
the next aperture, apd so on (Fig. 11). 

Only one cell is connected to the differentiator at 
any given time. The stop pulses are counted by a 
scale of 40 counter. Output gates from various 
stages of the counter select the cell which is con­
nected to the differentiator. In effect, the counter 
tracks the cards down the row of apertures. Every 
time the card exposes the last aperture of a cell, the 
counter gates off the exposed cell and gates on the 
next cell. Using only one photocell at a time allows 
the punch to handle cards which have been scored 
or perforated for tear-off stubs. 

An adjustable delay multivibrator between the 
photo cell circuits and the indexing servo allows the 
card to travel a short controllable distance beyond 
the point where the trailing edge is sensed. This 
electrical vernier provides adjustment of the loca­
tion of the card relative to the die and eliminates 
the need for a fine mechanical adjustment such as 
a lead screw, with its problems of backlash and 
possible loss of adjustment with vibration. 

ServO' Control 

The way in which the velocity servo controls the 
card from position to position within the punch 
head can be followed by referring to the block dia­
gram, Fig. 9, and the series of timing pulses, Fig. 10. 

An advance timing pulse triggers a voltage refer-
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ence level providing the input to the summing am­
plifiers. The output of the summing amplifier is 
fed to the power amplifier which drives the motor. 
The motor begins accelerating the load to the ve­
locity established by the voltage reference, driving 
the tachometer which in turn feeds back a negative 
voltage to the summing amplifier. This voltage is 
proportional to the rotational speed of the motor. 
The motor and load accelerate until the feedback 
voltage of the tachometer is equal to the input 
voltage reference. At this point, acceleration 
ceases and velocity remains constant at 44 in/sec. 
The acceleration from zero to 44 in/sec is accom­
plished in less than 1 msec. The constant velocity 
level is maintained for about 3 msec until a strobe­
generated stop pulse drops the voltage reference to 
zero. Consequently, the summing point is negative 
since the only signal present is the feedback voltage 
from the tachometer. The power amplifier is now 
conditioned to decelerate the motor and load to a 
stop. 

Deceleration time is less than 1 msec. The card is 
now registered within the tolerance required for 
punching. The total time for indexing and punching 
is 12.5 msec (80 cps) with 5 msec for indexing and 
the remainder for punching. In the block diagram, 
a second summing amplifier and voltage feedback 
loop are shown. The purpose of this loop is to 
achieve the proper gain and reduce the servo "dead 
zone" for optimum response. The constant velocity 
level is of extreme importance in this servo system 
because positionai accuracy depends upon the 
motor and load braking from the same velocity for 
each increment. The specified tolerance for punch 
hole registration relative to the trailing edge is 
±0.007 in. 

The two-column punch design permits this veloc­
ity level to be considerably lower than that which 
would be required of a single-column punch with 
the same throughput. An additional advantage is 
found in the reduced wear on component parts. 

In the voltage reference level area of the block 
diagram (Fig. 9) a high- and low-speed level dis­
tinction is indicated. In the above explanation, 
reference to either input voltage or constant velocity 

relates only to low speed, 44 in/sec. The high speed 
is used for ejection when punching is complete and 
in a read-only mode, for transporting cards at 400 
cards per minute without indexing. It is also used 
in the high-speed skip feature described below. 

High-Speed Skip Feature 

This particular feature is unique in that it permits 
high speed skipping between columns while punch­
ing. Skipping is performed automatically without 
requiring any special program routine and is ac­
complished by two logical functions-searching for 
blanks (SFB) and blanks found (BF). The control 
logic sends out two pulses, one for each column to 
be punched, requesting data and simultaneously 
checking for blank columns. As long as blanks are 
found in both columns the card moves at high 
speed. When blanks are no longer signaled the 
indexing system immediately drops from the high 
speed to the low speed and resumes normal index­
ing. Registration after a high-speed skip is main­
tained with the same degree of accuracy as a single 
increment because the low speed of 44 in/sec is 
resumed two columns prior to braking. 

CONCLUSION 

This paper has described a card reader-punch 
designed around mechanical components of proven 
reliability. The use of electrical functions to replace 
troublesome mechanical operations has n~sulted in 
a much simpler mechanism than found in conven­
tional machines of this type. Additional advantages 
are increased operator convenience and reduced 
maintenance requirements. 
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THE IBM 2560 MULTI-FUNCTION CARD MACHINE 

Chester E. Spurrier 
IBM SDD Development Laboratory 

Rochester, Minnesota 

INTRODUCTION 

The IBM 2560 Multi-Function Card Machine 
(MFCM) provides the System/360 Model 20 with 
a unique and versatile input/output capability. It 
combines the facilities of a card reader, card 
punch, collator, interpreter, and card document 
printer, all under control of the Model 20 processor. 
(See Fig. 1.) Two card hoppers, an optical read 
station that reads both primary and secondary 
cards, a common punch station, an optional 
printing station, and five selective radial stackers 
provide the Model 20 system with a card handling 
capacity never before possible with one pass of the 
cards. 

HISTORY 

Prior to the development of the MFCM, ap­
proaches to peripheral card handling equipment 
generally assumed a separate machine for each of 
the functions of reading, printing, punching, col­
lating, and selecting cards. Combinations of some 
of these five functions had been successfully 
achieved, for example, in the collator-reproducer 
of Remington Rand, the IBM 101 statistical sorter, 
the IBM 1402 and 1622 Reader Punches with their 
multiple hoppers and stackers, and the Sperry 
Rand 1001 with its reading-sorting-collating ca­
pability. However, not until the development of the 
MFCM did any machine combine all five functions 
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into one unit and thus bring a "system" philoso­
phy to card handling. 

GENERAL DESCRIPTION 

The MFCM reads 500 cards per minute and 
punches at a rate of 160 columns per second. The 
card throughput during punching is a function of 
the number of columns punched or spaced, begin­
ning with column 1. It varies from a minimum of 
91 cards per minute for 80 columns punched to a 
maximum of approximately 340 cards per minute 
for 1 column punched. With the optional print fea­
ture installed, the machine can print 138 characters 
per second per line. Throughput when printing is 
also a function of the number of columns printed 
and varies from a minimum of 99 cards per minute 
when printing 64 characters to a maximum of 397 
cards per minute when printing 1 character. Since 
the Model 20 operates in a time-sharing mode, the 
machine prints and punches simultaneously and 
thus only the operation requiring the greatest 
.amount of time limits the throughput of the ma­
chine. 

All the logic circuitry for controlling the MFCM 
is contained in the processor. The only electronic 
circuits located inside the MFCM are the magnet 
drivers, solar cell amplifiers, and pulse shapers 
needed for proper operation. All timing pulses 
needed by the processor, except those required for 
reading, are created by 13 magnetic sensing coils 
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Figure I. IBM System-360 Model 20 showing the IBM 2203 Printer, the IBM 2020 Processor, and the IBM 2560 Mul1:i-Funcltion 
Card Machine. 

which detect the motion of magnets embedded in 
five separate timing discs. Card movement and 
location are monitored by nine solar cell sensors, 
rather than the more conventional mechanical card 
levers. 

The lower half of the MFCM contains two gates 
of electronics, power supplies, and the chip box. 
The upper half contains the card handling mecha­
nism (see Fig., 2). An unusual: feature of the machine 
is the so-called "backbone" or vertically mounted 
plate on which are mounted most machine com­
ponents. This backbone feature greatly improves 
accessibility of the card path and components over 
the more conventional side frame or "boxed-in" 
approach. The two card feed hoppers are mounted 
on the front or operator side of the backbone. 
The stacker assembly, which consists of a magnetic 
selector unit and five radial stackers, is also located 
on the operator side. All other components are 
mounted on the rear side of the backbone, including 
the entire serial card path, the read, punch, and 
print units, and the drive motor. The motor drives 
all units through toothed belts and pulleys. 

CARD FEEDING 

Card motion during reading or ejecting in the 
MFCM is controlled by the card feed clutch. From 
each parallel hopper the cards are fed into a corner­
ing station by picker knives and continuously 
running feed rolls, as shown in Fig. 3. From the 
cornering station they move serially through the 
read, punch, and print stations before cornering 
again to move in a parallel path into one of the 
five stackers. The movement from the hopper 
through these operational stations is under com­
plete processor control and is carried out by either 
cam operated or magnetically operated feed roll 
selection devices and the feed clutch. Cards are 
designated as primary or secondary according to the 
hopper from which they are fed. During a typical 
operation, one of each type of card is always in 
position to enter the read station, one of each type 
of card is always in position to enter th,e punch 
station and a single card is in position in the print 
station. As the card in the print station passes 
through the station to go on to the stacker, either 
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PRIMAHY SECONDAHY 

Figure 2. Rear view of the MFCM showing location of major components. 

the primary or secondary card at the pre-punch 
station is fed through the punch unit to the print 
station and the corresponding primary or secondary 
card at the pre-read station is fed through the read 
unit to the pre-punch station. At the same time 
a card is being fed from the corresponding hopper 
to the pre-read station. All of this card movement 
occurs simultaneously during one clutch cycle, and 
thus all card stations are occupied on every cycle. 
Under processor control, cards from one hopper 
can be held indefinitely at the pre-read and pre-

punch stations while cards from the other hopper 
are processed through the machine. 

READING SYSTEM 

A magnetically operated pressure roll and the 
continuously running read inject roll grip the card 
and feed it into the read station from its pre-read 
position. The card is accelerated up to the reading 
velocity of 146 inches per second, which matches 
the peripheral velocity of the continuously running 
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Figure 3. Schematic of the MFCM card path. 

read feed roll. As the leading edge of the card is 
gripped by the read feed roll, the trailing edge leaves 
the inject roll so that the card is under the control 
of the read feed roll for the entire read operation. 

The holes are sensed by 12 silicon solar cells 
located below the card path. Light is provided 
by 12 lens tip lamps located above the card path. 
The lamps are individually adjustable for position 
and intensity. Both the lamps and the cells are 
mounted inside sealed assemblies behind glass 
plates to prevent card dust accumulation from 
affecting light transmission. 

During a read operation, the CPU must be sup­
plied with a series of pulses synchronized with 
card motion and timed so as to indicate the opti­
mum time for sampling the output of the read 
circuits for each of the 80 card columns. The device 
which accomplishes this in the MFCM is the mag­
netic read emitter. A schematic of the emitter is 
shown in Fig. 4. The rotor or drum of the emitter 
is mounted on the read feed roll shaft. The periph­
ery of the drum is plated with a thin, hard coating 
of cobalt. The stationary housing of the emitter 
contains 60 heads or probes equally spaced around 
the periphery of the drum. The housing also con­
tains a write coil, a read coil, and an erase coil. 

As the leading edge of the card enters the read 
station, the trailing (or column 80) edge of the card 
uncovers a solar cell. The cell is located so that 
it becomes uncovered as column "zero" is directly 
over the read cells. The uncovering of the trailing 
edge cell causes the CPU to send a signal to the 
emitter write driver. This results in 60 magnetic 
bits being recorded on the drum due to the flux 
generated by the single write coil passing through 
the 60 heads. The read feed roll on the drum shaft 
feeds a card one column in 1/60 of a revolution so 

Figure 4. Schematic of the Magnetic Read Emitter. 

that as each column is passing under the read sta­
tion, the 60 magnetic bits on the drum have rotated 
one position and are being sensed simultaneously by 
the 60 heads. The cumulative flux change of the 
60 heads is sensed by the common read coil. Any 
air gap variation between the drum and the he:ads 
caused by eccentricity is of little consequence since 
the output signal of the emitter is the sum of the 
60 signals. After the card has left the read station, 
the erase coil is energized and the 60 bits are erased 
so that the emitter may be resynchronized with the 
next card as the card is being read. 

PUNCHING 

To register a card for punching, the punch pusher 
clutch and the desired path selection solenoid is en­
ergized. The primary or secondary card s.elected is 
pushed into column 1 registration and the incre-
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mental pressure rolls are closed. Command. from 
the processor controls the number of columns 
punched and incremented. 

The chief difficulty in designing a high-speed 
serial punch is in maintaining accurate punching 
registration over 80 columns of movement. An 
error of only 0.001 inch in column to column 
spacing would result in the punching being about 
one full column out of registration after 80 spaces. 
The basic problem is the high card acceleration 
necessary to achieve desired throughput. The 
MFCM solves this pI:oblem in two ways: 1) by 
keeping the acceleration as low as possible, and 2) 
by using feed rolls with a very high coefficient of 
friction to minimize card slippage. The punch 
unit is designed to allow approximately three­
fourths of the 6.25-millisecond punch cycle for 
card movement, thus minimizing the acceleration 
requirements. The unit utilizes three cams: one 
to drive the punch through the card, one for posi­
tively restoring the punch, and one for moving the 
interposer-armature assembly, as shown in Fig. 5. 
By optimizing each of these motions, the time the 
punch is in the card has been reduced to approxi­
mately one-fourth of the punch cycle. 

The punch mechanism is controlled by a magnet 
unit utilizing the so-called "no-work" principle. 
The magnets are only required to prevent the arm­
ature from moving rather than causing them to 
move; thus, the origin of the term "no-work" mag­
nets. Several advantages are realized by using this 
style of magnet ·unit. 'Since reluctance of the mag­
netic circuit is low, the coil and core size may be 
reduced, resulting in a much more compact unit. 
Also, magnet driving requirements are lowered and 
heat dissipation is reduced. 

Figure 5. Cross section of the punch mechanism. 

A constantly energized single hold coil sur­
rounding all 12 punch magnets prevents the arm­
ature from following the interposer cam. When 
a punch is to be operated, the appropriate punch 
magnet coil is energized. This cancels the hold 
flux, which releases the armature at the high point 
of the interposer cam, and the armature spring 
causes the armature to follow the cam. This moves 
the interposer between the punch bail and the 
punch, causing the punch to be driven through 
the carel. The restore lever pulls the punch out of 
the card. 

CARD DOCUMENT PRINTER 

Basic requirements for the MFCM included a 
card document printer that would provide an out­
put of 100 fully printed cards per minute, with up to 
six lines per card. Existing printing mechanisms 
were capable of such output, but at an unreasonable 
cost, so an entirely new print unit was developed. 
The desired output is achieved by using a wire 
matrix print head for each print line and printing in 
the serial mode. These wire matrix print heads may 
be positioned manually by the operator in any of 
the 25 printing row locations from the top to the 
bottom of the card to accommodate any card for­
mat. 

Each of the printed lines may contain up to 64 
characters spaced at 10 characters per inch. A wire 
matrix five wires wide by seven wires high forms the 
characters. The wires are driven against an inked 
ribbon, card, and platen to print the character on 
the carel. 

One matrix of 35 wires, hereafter called a print 
head, prints a complete line on a card. To print 
six lines on a card, six print heads are required. 
Print heads are installed in groups of two to the 
maximum of six. An incremental drive moves. the 
card from position to position, stopping the card in 
each position. Each print head prints a character on 
the card in a 7.23-millisecond cycle, which achieves 
the rated speed of 138 characters per second per 
line, or 828 characters per second for six print 
heads. 

A card ejected from the punch station is stopped 
in print position 1 registration by a magnet-oper­
ated print gate. During the first print cycle the card 
is gripped by incrementing rolls. An· emitter on the 
incremental drive triggers each print cycle, which 
consists of setting up the characters for each print 
head, printing all of the characters in the position, 
and moving the card to the next column. Upon 
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completion of printing, the card is ejected from the 
print station during the following feed cycle. 

A ribbon is continuously driven past all the print 
heads at an average speed qf 7 inches per second. 
A spring-loaded reversing mechanism assists the 
ribbon-drive motor in achieving rapid ribbon rever­
sal. 

Print Mechanism 

Figure 6 is a cross section of the print unit. Each 
print armature is fastened to a print wire. A print 
unit contains 70 wire and armature assemblies or 
two heads. A tube, which is securely fastened at 

~--J)RINT TUBE 

.-IlZmaIIlWf--MAGNE:T MOUNTING BAR 

'---llRINT CAM 

'----PRINT ARMATURE 

'----BUCK COIL 

'-----HOLD COIL 

'-----HOLD MAGNET 

Figure 6. Cross section of the print unit. 

the unit and at the print head, guides each wire. A 
compression spring drives each armature and wire 
against the ribbon, card, and platen to perform the 
printing. The print armatures are controlled by no­
work magnet units similar to those used in the 
punch unit. Characters are' formed by energizing 
the required buck coils. The selected armatures 
drop onto the print cam which controls the time of 
impact of the wires, and restores the armatures to 
the magnet after printing. When not printing, the 
armatures are held away from the print cam by the 
hold magnets. 

Character Selection 

The printing circuitry in the MFCM consists of 
an array of 35 magnet drivers, each of which is 
connected, through isolation diodes, to the six buck 
coils associated with the same matrix position on all 

six heads. The common side of the 35 coils for 
each head are connected to the power supply 
through a separate silicon-controlled rectifier. This 
circuitry allows the 210 magnets required for six 
print heads to be controlled by only 35 drivers, since 
the six heads are set up sequentially rather than 
simultaneously. 

Two things make sequential operation possible: 
1) a memory dwell built into the print cam, and 
2) a motionless period for the card which is long 
enough to allow the three print cams to be timed 
for sequential operation. 

Figure 7 shows the sequential timing and the c:am 
profile for the three print unit cams. At high dwell 
on the print cam, the armatures have been restored 
from the previous cycle and are ready for setting 
up in the next print cycle. Setup begins when a 
pulse arrives from an emitter on the incremental 
driv~, timed with high dwell on the print cam for 
print unit one. The selected buck coils for print 
head one are energized for 350 microseconds, during 
which time their armatures are released. The arma­
tures drop to the memory dwell which is an inter­
mediate dwell on the print cam just following the 
high dwell. After the coils are de-energized and 
the holding flux increases, the armatures are not 
reattracted back to the magnets due to the air gap 
created by the memory dwell. After the 350-micro­
second buck pulse for head one, there is a 1. 00-
microsecond delay before head two is set up to 
allow the silicon-controlled rectifier for head one! to 
turn off. Head two is then set up in a similar man­
ner. The second print unit, which controls head 
three and four, is timed so that the setup for its 
two heads comes just after the print circuitry has 
completed the setting up of heads one and two. The 
third print unit is similarly timed with respect: to 
the second. As a result of this method of timing, 
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Figure 7. Electrical and mechanical timing diagram of the 
print unit. 
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the impact from heads one and two occurs just 
after the card has come to rest in the dwell period, 
heads three and four print in the center of the dwell 
period, and heads five and six print just before the 
card starts to move. 

CONCLUSIONS 

The challenge of designing a machine that could, 
in a single pass, perform most of the functions re­
quired in a card-oriented processing system, has 
been met by the IBM 2560 Multi-Function Card 
Machine. 

This machine, as a part of System/360 Model 20, 
provides a dramatic reduction in the number of 

processing steps and the card processing time re­
quired by conventional punched card equipment. 
File maintenance or file updating is now possible 
with one machine. The unique concept of the 
MFCM has been likened to a "poor man's mag­
netic tape system." In this concept the two card 
hoppers simulate two magnetic tape input drives, 
the five card stackers simulate magnetic tape output 
drives, and the coordinated read-punch-print units 
simulate the read-write-copy function of magnetic 
tape. 

The wide acceptance and interest in the MFCM, 
since its announcement, is an indication of the basic 
soundness of the multi-function concept in card 
handling. 
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INTRODUCTION 

There is a present trend in data processing sys­
tems toward the decentralization of computer sys­
tems as exemplified by time-sharing and related 
techniques. A consequence of this development is 
a requirement for digital communication systems 
capable of operating reliably at comparatively high 
speeds. One of the oldest known forms of such 
communication is the printing telegraph which 
operates at the lower end of the speed spectrum at 
rates ranging from 50 to 100 baud. There is some 
evidence to suggest that for routine digital com­
munications purposes, particularly in the time­
sharing area, the economic maximum for a few 
years into the future will lie in the vicinity of 1000 
to 2000 baud and that the volume of traffic at these 
rates will rapidly increase. Present practice is gener­
ally to transmit data at such rates in "real time" 
only over communication paths which are not ex.­
pected to fail during the transmission period. In the 
future, however, it is a virtual certainty that low­
cost buffering devices will be required having the 
speed, versatility and storage capacity to handle 
system requirements at rates up to 4800 baud or 
more. 

The use of magnetic tape in preference to paper 
tape offers a preferred solution to the problem of 
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high-speed buffering, provided that a technique can 
be devised which permits the use of magnetic tape 
so that it is in all operational respects equivalent to 
paper tape systems. Such a functional equivalence 
can be obtained if it is possible to: 1) record on the 
tape incrementally over a speed range extending to 
at least 300 characters per second on a character-by­
character or bit-by-bit basis and 2) read the infor­
mation recorded on the tape in an incremental man­
ner through the same speed range. 

A device having these characteristics would be 
functionally equivalent to a paper tape system 
capable of operating at punching and reading rates 
up to 300 characters per second but would of course 
be physically smaller and mechanically simpler be­
cause of the improved packing densities available 
on magnetic tape. 

To additionally exploit the full advantages of 
magnetic tape in such an environment the device 
should also be capable or recording and reproduc­
ing digital information "on the fly" in a manner 
somewhat analogous to a conventional digital mag­
netic tape transport so that very high acceptance 
and transmission rates could be achieved if neces­
sary. 

A capstan drive system for magnetic tape which is 
capable of satisfying these operating requirements 
can be achieved by the proper combination of a fast 
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response, smooth torque DC motor operating in 
combination with a wideband velocity servo ampli­
fier and logic control circuits. An assembly of this 
type is known as a "random incrementer" and can 
provide a high degree of flexibility in the control of 
tape motion when either recording or reading digital 
information. 

In the following discussion the operation princi­
ples of the random incrementer will be briefly re­
viewed while two particular applications of the 
device in the communications env·ironment will be 
described in sufficient detail to illustrate the versa­
tility afforded by the technique. 

THE RANDOM INCREMENTER 

A simplified block diagram of the basic com­
ponents in a random incrementer system are shown 
in Fig. 1. For a detailed description of the system 
operation the reader is referred to the paper by 
Burr, Rheinhold and Andres. 1 As pointed out in 
this reference the characteristics of the drive motor 

Control 
Flip-Flop 

R:' S C Input 

Go Stop 

Figure 1. 

utilized for the application are critical to the proper 
functioning of the drive system. SpecificallYll the 
motor must be a device having a small mechanical 
inertia, a negligible electrical time constant, essen­
tially no preferred positions and the abillity to de­
liver substantial pulse torques. A printed circuit 
motor is a component which is ideally compatible 
with these requirements and provides excellent per­
formance in the system. (See Fig. 2). 

To review briefly, the essential features of the 
incrementer system operation are shown in the 
waveform di&grams of Figs. 3 and 4, and depend 
upon the fact that that portion of the cin:uit to the 
right of the point marked "input" on Fig. 1 is basi­
cally a velocity servomechanism of the type gc:mer­
ally known as a regulator. Such a system has the 
property that when a fixed DC voltage is applic!d to 
the "input" terminal the action of the amplifier and 
the tachometer is such as to accelerate the! motor to 
a speed such that the difference or error between the 
input voltage and the tachometer voltage is just 
sufficient to provide the necessary driving voltage 
via the amplifier to the motor. Systems of this type 
are widely used in the industry for speed control ap­
plications of all sorts and are almost invariably op­
erated in a "nonsaturated" mode, which is to say 
that the rate of change of the input signal command 
is restrained to a value which can at all times be sat­
isfied by the available acceleration capability of the 
~~m. . 

In the present instance, however, the random in­
crementer action is obtained by operating the servo 

Figure 2. 
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in a saturated condition for acceleration or decelera­
tion of the capstan. As will be seen from the wave­
forms of Fig. 3, the system is put in motion by the 
application of a voltage step from the control flip­
flop to the servo input terminal. The magnitude of 
the final velocity is proportional to the magnitude 
of the voltage step. The servo system is designed so 
that it remains in saturation until the specified 
velocity is reached. Therefore, maximum possible 
acceleration is obtained from the capstan motor 
during the starting transient interval. Correspond­
ingly, when the input command is removed by clear­
ing the flip-flop, the action of the servo is such to 
apply the maximum possible acceleration to the 
motor during the stopping transient until zero veloc­
ity is reached. 

Va loe ity, 
ips 

Figure 4. 

The shape of a typical velocity increment is shown 
in Fig. 4. The distances in this diagram are referred 
to the periphery of an optimized tape drive capstan2 

mounted on the motor shaft and therefore to the 
magnetic tape itself. For purposes of the present 
discussion the point of greatest importance is that 
the transient accelerations available in this mode 
of operation are sufficiently high so that the capstan 
(and tape) attain significant velocities in very small 
displacements and in comparatively short times. 
In Fig. 4, for example, the tape achieves a stable 
velocity of 4 inches per second in a distance of 
0.002". The total motion time is 2.25 milliseconds 
and the total motion displacement is 0.005". 

INCREMENTAL READ BACK 

In Fig. 4, the beginning of the stopping transient 
or stopping displacement of the incremental drive 
occurs at the instant that the control flip-flop in 
Fig. 1 is Cleared. It will be noted from Fig. 4 that 
the stopping displacement for this particular case is 
0.002". As a result the incremental drive may be 
utilized to read back a record on magnetic tape 
having a packing density. such that the distance be­
tween characters is greater than or equal to 0.004". 
The apparatus arrangement for accomplishing this 
is shown in Fig. 5. For an understanding of the de­
tails of the operation it is immaterial as to whether 
a single or multiple track recording is used on the 
tape: the only requirement is that for each "and 
every character or frame there be a flux transition 
of some type which can be interpreted as a "read." 

It will be noted from Fig. 5 .that the clearing 
terminal of the flip-flop is connected through suit­
able amplification to the magnetic head output so 
that whenever a read is obtained from the tape the 
control flip-flop will be cleared. In order to read 
the tape one character at a time it is therefore only 
necessary to apply "advance-and-read" pulses to the 
go or set terminal of the control flip-flop. The effect 
of so doing will be to put the motor in motion, i.e., 
initiate the starting transient. The motor velocity 
will then rise to the limiting value and the tape will 
move 0.002" in this process. If the character spacing 
is 0.005", the read or stop signal will be received 
at the right-hand upper corner of the waveform in 
Fig. 4 at a distance of 0.003" from the starting 
point. The motor will then decelerate to a stop al­
lowing another 0.002" of tape to pass over the head 
so that the final stopping point will be 0.002" after 
the previous character and 0.003" before the next 
character. 
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The maximum rate at which information can be 
recovered from the tape while retaining the ability 
to stop before the next character, which is a limiting 
condition on the incremental: reading, I would be 800 
characters per second in tpe foregoing situation 
since the steady state velocity is 4 inches per second 
and the packing density is 200 characters per inch. 
The maximum permissible packing density in this 
case is that which results in a, distance of 2 x 0.002" 
or 0.004" between characters or 250 characters per 
inch. The maximum infonrtation rate would then 
be 4 x 250 or 1000 characteITs per second. 

It is evident that higher operating rates are 
possible, subject to a relaxation of the restriction 
that the stop distance must be less than half the 
distance between characters. 

INCREMENTAL RECORDING 

Two possible arrangements of the random incre­
menter for recording are shown in Figs. 6 and 7, the 
ditTerence between the two schemes being prin­
cipally in the accuracy with which the recorded bit 
spacing is generated. ' 

In Fig. 6 the incoming information is recorded on 

the tape (shown in this instance for parallel format) 
when a pulse is received from the optical tachoml:!ter 
or' code wheel attached to the shaft of the motor. 
Recording is therefore made "on the fly" in exact 
space synchronism with the output from the optical 
pick-otT so that excellent accuracy is obtainable. 
The accuracy of bit spacing achieved by this method 
will be essentially equivalent to the accuracy of the 
divisions on the optical tachometer degraded only 
by any tendency for the tape to slip otT thl:! capstan 
or by stretching between the capstan and the record­
ing head. Experience indicates that at the low veloc­
ities involved these latter etTects are negligible. 

In Fig. 7 the spacing of the recorded data is 
basically determined by a single shot pulse genera­
tor which energizes the incrementer for a fixed time 
period. The displacement accuracy of the record is 
therefore atTected to some extent by tension and 
friction "noise" in the system. However, it is most 
important to note that if the resulting recording is 
to be read by another incrementer system, the 
presence of displacement inaccuracies is unim­
portant so long as the minimum bit spacing does 
not fall below a figure equal to the sum of the start­
ing and stopping displacements on the n~ading in­
crementer. 
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APPLICATIONS OF THE 
INCREMENTER SYSTEM 

A more general picture of the flexibility of th~ 
random incrementer tape transport can be obtained 
from the following discussion of two specific appli­
cation areas which range in complexity from the 
simple to the complex. The first of these is a simple 
and inexpensive serial format data collection device 
which is well suited to the slow-speed recording and 
"batch" transmission of information. The second 
application is a considerably more versatile "paral­
lel format" dual-capstan machine having a wide 
speed range and directed specifically towards buffer-

ing applications involving data rates up to approxi­
mately 10,000 baud. 

SERIAL FORMAT DATA COLLECTOR 

The serial format data collection device is de­
signed to accept a serial data stream of the type 
emitted by a printing telegraph machine or serial 
paper tape reader, to record this information serially 
by bit and by character on one quarter inch wide 
magnetic tape, and to read back the data either in 
the same format and speed as received or at rates 
up to 2400 baud. The higher speed output can be 
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either free running or synchronous with an external 
clock. 

The format used on the tape is shown in Fig. 8. 
Although there are several alternative possibilities 
this particular case is of special interest because the 
"unrecorded" tape, shown in Fig. 8a, carries a 
"prerecorded" clock pulse on one of the two avail­
able channels. A sketch of a complete recording is 
shown in Fig. 8b. The "clockh is on the upper track 
and the data is on the lower. It will be noted that 
the data bits are recorded in space register with the 
timing bits. The magnetic head used in the system 
is a low-cost "two-track stereo" record/reproduce 
head of the type used in home entertainment tape 
recorders. 

A block diagram of the electronic systc!m used 
for recording is given in Fig. 9. It will be seen that 
the function of the prerecorded clock bits is equiva­
lent to that of the optical pick-off in Fig. 6. When 
recording, the serial data stream enters a convtm­
tional synchronizing interface so that the character 
"start" or "sync" pulse is recognized and a 10lcal 
timing oscillator is phased with the sign ali. Each 
successive local oscillator pulse samples each data 
pulse following the stl:ut pulse, places the data in a 
one-bit storage flip-flop, and simultaneously starts 
the incrementing tape drive. When the correspond­
ing "stop" signal is received from the recorded clOick 
track, the data is recorded with an RB pulse through 
the data head winding, the one-bit storage flip-flop 
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is cleared and the system waits for the next bit of the 
character to be delivered. This process is repeated 
through the entire character, so that the tape is 
incremented step-by-step for each bit in sequence. 
As a result, for example, seven motions are made 
for the Baudot code and eleven for the ASCII code. 
When the character is completed, the system rests 
until the next start pulse appears on the line. The 
maximum rate at which this simple system will 
accept serial data for recording in this manner is 
theoretically 800 bits per second and practically 600 
bits per second for an incrementer using a type 
PM-368.printed motor. This is, of course, far in 
excess of conventional printing telegraph rates. The 
local timing oscillator and counter chain must con­
form to the particular signal bit-rate and format. 

The recorded packing density is 200 bpi. A stan­
dard home-entertainment EIA cartridge of 300 foot 
capacity will therefore accomodate approximately 
60,000 characters in the serial format. 

Readout can be accomplished with varying levels 
of sophistication depending upon the desired result. 

In the simplest case the incrementer motor is run 
continuously by a constant DC command. The 
electronics for this are shown in Fig. 10. The op­
erating speed of the tape is adjusted by setting the 
level of the "go" command from the motion control 
flip-flop to the desired level. The recorded signals 
are recovered from the head, amplified and limited 
in a threshold decision circuit to obtain "clean" 
pulses. The clock track and data track signals are 
then applied to a coincidence logic and flip-flop 
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circuit which regenerates th¢ form of the original 
data stream. 

The signal transitions (i.e.,'bit rate) resulting from 
this type of read-back are "noisy" in time since 
there is no speed stabilizati~n on the tape motion 
other than that provided by ~he servo. Speed (and 
therefore frequency) bumps :on the order of ± 5% 
can be expected in the short term. Long-term 
accuracy of =1:: 10% is readily achieved. 

This read-back method is not suitable at rates of 
less than 800 baud and is ,limited in the upward 
direction by mechanical tape! path considerations to 
about 3000 baud. 

An improved but slightly more complex read-out 
method is obtained by using the system as an in(;re­
menter (Fig. 11). In this arrangement, the clock 
track output is used for a "stop" signal, as pre­
viously described, while the "read" command pulse 
is obtained from either the internal local osciallator 
or an external reference pulse. In Fig. 11 it is shown 
as originating from an external source. The rlead 
command pulse and the data pulse are applied to a 
logic system including a single bit storage: flip-flop 
and a regenerating flip-flop to recreate a replica of 
the original input signal. 

In this case, the output signal is not noisy in time 
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but has, instead, transitions which occur exactly in 
synchronism with the reference pulse train. The 
upper frequency limit for this operation without the 
further improvement described below is 600 baud. 

The upper frequency limit for synchronous opera­
tion may be extended by a further improvement. 
This is obtained by inserting the block marked 
"Speed Escalator" in Fig. 11 between the points 
marked "X", and is subject to the restriction that 
at rates above 600 baud the system will not stop the 
tape before the next bit. That is, a synchronizing 
time of one to six bits (at 200 bpi) is required on 
starting and a similar number of bits will be lost 
while stopping, the synchronizing interval measured 
in bits being proportional to the square of the op­
erating speed in excess of 800 baud. For higher 
speeds therefore, the system begins to operate as a 
data "block" reader. 

The effect of the speed escalation circuit is to pro­
vide an additional command to the incrementer 
which increases the limiting speed as the reference 
(read command) pulse is raised. The incrementing 
rate therefore tracks with the command, holding the 
entire system in synchronism with the reference 
clock up to a maximum speed set by mechanical 
limitations in the tape path. This limit lies at about 
3000 baud for a simple mechanical system. At this 
speed, about 6-bit intervals (0.03") are required to 
synchronize. 

In this case also the output signal is not noisy and 
remains in exact synchronism with the reference 
clock throughout the speed range. From a servo 
viewpoint, the system operates as a random incre­
menter timed from the tape signals at low speeds 
and gradually executes a transition to a so-called 
"phase-locked" servo locked to the tape as the 
speed is raised to high speeds. 

In summary, therefore, the random incrementer 
drive applied to a single capstan serial tape trans­
port provides a system which will record syn­
chronously at rates up to about 3000 baud (when 
speed escalation is used) and which will read syn­
chronously or free-running over the same range. It 
should perhaps be specifically noted that the drive is 
reversible simply by inverting the command signal 
to the incrementer electronics so that rerecording 
and rereading operations can be obtained through 
the use of additional electronics. 

PARALLEL FORMAT DUAL-CAPSTAN 
BUFFERING SYSTEM 

This more sophisticated apparatus uses two incre­
menter systems in a dual-capstan drive with 72" 

magnetic tape as a buffering system for store and 
forward applications in a digital communications 
path operating at rates up to 4800 baud. 

The device includes five basic functions. These 
are the input serial-to-parallel converters, the paral­
lel data recording system and tape drive, the ma­
chine control logic system, the parallel data reading 
system with its tape drive, and the output parallel­
to-serial converters. These elements are shown in 
the block diagram of Fig. 12. 

The input and output blocks constitute the inter­
faces between the storage system and the outside 
world. Since the parallel-to-serial conversions 
which occupy these blocks depend upon time rela­
tionships in the external signals, they both contain 
clocks or timing generators which must be com­
patible with the particular type of information 
which the buffer is supposed to handle. A change of 
element speed or bit rate on either side of the buffer 
requires a corresponding adjustment in the clock 
rate on that side, as is the case with the previous 
serial machine. 

It is, of course, possible to omit the serial-to­
parallel conversion blocks. In this case, the middle 
three components function simply as a parallel-to­
parallel storage device. The heart of the buffer is, 

-in fact, contained in these three blocks and a de­
scription of the apparatus is most easily understood 
by assuming initially that we are dealing with a 
parallel device and looking at these functions first. 

The mechanical arrangement of the magnetic tape 
path as shown is intended to indicate that the re­
cording and reading stations are separated by a dis­
tance which is as small as possible. When there is 
no information stored on the tape in the machine, 
the tape is drawn up into a "tight" condition be­
tween the magnetic heads. The existence of this 
tight condition is sensed by a switch in the tape 
path and modifies certain of the machine functions, 
as will be explained later. 

When a character arrives at the input terminals 
of the recording circuitry, it is immediately recorded 
and transported to the output where it appears in a 
register. If the character is not immediately re­
moved from the machine, additional characters 
arrive at the machine input and will continue to be 
recorded upon the tape which will therefore begin 
to form a loop containing stored information be­
tween the recording and reading stations. The size 
of this loop can grow until it contains approxi­
mately 250,000 characters. At any time during this 
process, characters may be removed from the out­
put, which will, of course, tend to decrease the size 
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of the loop. Finally, when characters are no longer 
being applied to the input, the output can continue 
to run until the tape has resumed its tight condition 
and has been cleared of all data. 

It is important to note that each capstan is in­
dividually controlled and the: device may therefore 
be used as a speed changer.; As an example, the 
input character rate could be; 2,000 baud while the 
output could be provided at slower speeds such as 
100 baud. The speed conversion could be main­
tained until the storage loop is filled to capacity. 
Reverse speed conversion is also possible, that is, 
slow input speed, high output,speed. In this particu­
lar case, it would be necessary: to inhibit the readout 
until sufficient information is built up in the loop 
between the two magnetic heads. Low to high speed 
conversion could then be maintained until all the in­
formation in the loop had been transmitted. It is 
obvious that once this point is reached, the output 
cannot be any faster than the input data rate. 

The "tight tape" condition! modifies the machine 
functions. When no input data is being recorded 
but transmit or read data is being commanded, the 
record capstan remains stationary and only the read 
capstan moves on external command until such time 
as the stored information in the loop of magnetic 
tape is depleted or until the tape becomes tight 

between the record and read head. When this final 
condition exists the tight tape switch actuates and 
commands the record capstan to move at the same 
velocity as the read capstan even though no in­
formation is being put into the record statiion. As 
the read commands continue, a point will eventually 
be reached where no character is recorded. on the 
tape. In this case, a timing circuit is provided to 
transport a length of tape over the read head equal 
to the length of tape between the record and read 
heads. Should no additional characters be recorded 
each time a read command is given, both the record 
and read capstan will operate at their control veloc­
ity for this period of time insuring that no informa­
tion is trapped between the two heads. 

The device also provides for bidirectional tape 
motion in both the record and read capstans. Via 
proper external command, the read capstan may be 
reversed and stopped at any specific point on the 
tape. This feature is utilized for retransmission of 
information in the event that the receiving terminal 
did not properly receive the transmitted informa­
tion. The record capstan provides the same: type of 
control so that incorrect data received and recorded 
on the tape may be erased and rerecorded with the 
proper information. Other interfaces may be pro­
vided to allow this system to interrogate the received 
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information prior to recording. This serves the 
purpose of deleting certain information which is not 
required to be stored, providing the capability of 
code conversion, and allowing for additional data 
to be inserted for coding of the information block 
to follow. 

CONCLUSION 

The random incrementing technique can be in­
corporated in many equipment configurations other 
than those described in this paper. The flexibility 
and simplicity of the basic capstan drive allows 
the design of peripheral devices that combine the 
functions of a number of presently used machines 
into a single unit. 

The new technique also offers the higher speeds 
and greater storage capacity of magnetic tape in new 
areas and can eliminate data conversion operations 
in many systems. 

Equipment incorporating the "random incre­
menter" has been manufactured for RCA Com­
munications, Inc. and is in use at the present time. 
The rapidly increasing amount of digital communi­
cation would indicate many additional applications 
and requirements for the unique capabilities of this 
new technique. 
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INTRODUCTION 

Ten years ago IBM announced the 305 and 650 
RAMAC Data Processing Systems-systems that 
heralded the on-line processing concept, wherein 
business transactions could be economically pro­
cessed as they occurred. This was made possible 
largely through the use of the 350/355 Disk Storage 
Files, whose 5 million stored characters were di­
rectly accessible. Since that time, significant ad­
vancements have been made in direct-access mem­
ory development. These include the double density 
350/355, the 1405, the 1301 and the 2302. Pioneer­
ing the removability and interchangeability features 
of direct-access storage media was the 1311 Disk 
Storage Drive. A further advancement is the 2321 
Data Cell Drive. 

During the conceptual stage of the 2321 Data Cell 
Drive, two basic decisions were made: 

1. To use magnetic recording techniques 
for data storage because of simplicity in 
the recording and reproducing pro­
cesses, and 

2. To use thin strips as storage media be .. 
cause of the high volumetric efficiency 
in packaging the media within a ma~ 
chine frame. 

Physically, the components are arranged in a me­
chanical section and an electrical section (Fig. 1). 
Each section is a separate self-contained frame, fa­
cilitating manufacturing, shipment, and installation. 

335 

The L-sbaped configuration was devised to offer 
optimum servicing accessibility to the cell array. 

Functionally, from a circular array of 10 cells 
with 20 subcells each, a cell drive positions a selected 
subcell of 10 strips beneath an access station. At 
this station a selected strip is withdrawn from the 
subcell. Gliding on a film of air which acts as a 
hydrodynamic bearing, the selected strip is rotated 
past a magnetic head for data transfer. Upon com­
pletion, the strip is returned to its original location 
in the subcell. 

Magnetic recording, strip transport, and logic 
organization are described in the next three sections. 
Following these is a section briefly discussing some 
other important design considerations. These in­
clude anticlastic curvature, squeeze film, hydrody­
namic lubrication film, computer simulation, mini­
mum wear of machine elements, and contamination 
control. 

MAGNETIC RECORDING 

Storage Medium 

The storage medium is a 2~ x 13 x 0.005-inch 
saturated polyester strip having an iron oxide coat­
ing for magnetic recording on one side and an anti­
static coating of carbon on the other (Fig. 2). A set 
of 10 strips is contained in a subcell. Each strip has 
a pair of coding tabs for identifying its position in 
the sub(;ell, and a single latching slot for picking up 
the strip. Chamfered sides and a "swallow" tail are 
introduced to control strip dynamics. 
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Figure 1. Component layout. 

Twenty subcells are housed in a cell. Ten cells 
are attached around the periphery of a spindle, 
forming a cell array. Each cell is physically remov­
able and interchangeable. For machine operation 
involving less than a full complement of 10 cells, 
ballast cells are used to dynamically balance the 
rotating array. 

One hundred addressable recording tracks are 
available on each strip. Dual-frequency recording 
at a nominal density of 3500 flux reversals per inch 
provides each of the 100 tracks with 17,500 bits of 
storage capacity. Logical extensions show the fol­
lowing incremental storage capabilities: 

Track 
Head 

position 
Strip 
Subcell 
Cell 
Full array 

Bits 
17,500 

(20 tracks) ............. 350,000 
(100 tracks) ... : ....... 1,750,000 
(10 strips) ........... 17,500,000 
(20 subcells) ......... 350,000,000 
(10 cells) .......... 3,500,000,000 

Recording is accomplished in a serial-seldal 
fashion. At a nominal strip velocity of 250 inches 
per second, the data transfer rate is 437,500 bits per 
second. 

Magnetic Head 

The magnetic head has 40 laminated elements, 
20 write and 20 read (Fig. 3). Each element (read or 
write) is physically aligned with its adjacent element 
on a 0.090-inch center-to-center spacing. The head 
can be moved to 1 of 5 discrete positions, thus pro­
vi~:ag for 100 tracks per strip. 

The effects of thermal and hygroscopic expansion 
of the flexible medium, the element position toler­
ances, and strip registration repeatability are com­
pensated by making read elements much narrower 
than the write elements, that is, 0.007 inch vs 0.018 
inch. Furthermore, since the updating of any record 
requires the identification of its address, the repro­
ducing gap precedes the recording gap by 0.150 
inch. 

Strip-to-head spacing of approximately 75 micro-
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Figure 2. Data cell array. 

inches is controlled by a self-generated hydrody­
namic lubrication film and longitudinal slots on the 
head surface. Circuitwise, a read element is equiva­
lent to 1 millihenry in parallel with 30 picofarads on 
a differentjal basis. This represents a self-resonant 
frequency of approximately 1 megacycle and an im­
pedance of about 7 kilohms at 437.5 kilocycles. 

Recording Electronics 

The recording circuits perform the following 
functions: selection, write, read, safety, and contro1. 

Since only one of the write and read elements is 
operative at a time, its selection is accomplished by 
an XYZ diode matrix of dimensions 2 x 10 x 2, 
respectively. XY selects one of 20 elements, and Z 

lr·007 

I -J.090f; 
Ii I 

\ II I 

REPRODUCING GAP 

y......w....w....w....w...M...JoI...W,------, 

.150 

ii' 
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Figure 3. Magnetic head. 

controls the mode of operation (either write or 
read). 

In recording, the data transmitted from the con­
trol unit is converted from return-to-zero into non­
return-to-zero dual-frequency code by two write 
drivers, each supplying unidirectional current into 
one or the other half of the write winding (Fig. 4). 
In readback, processing of the signal is begun by the 
head preamplifier, located with both write and read 
matrices in a special package mounted on the head 
assembly. To minimize the effects of common-mode 

WRITE 
DATA 

TENS 
DECODE 

WRITE 
STATUS 

1 OF 20 
READ 

ELEMENTS 

Figure 4. Block diagram of write/read circuits. 
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noise, amplification starts d:ifferentially and remains 
so throughout the entire reaJdback channel. 

Because of the dual-frequency encoding and the 
gap-filling techniques used in the recording process, 
the amplifier is never required to read through an 
absence of signal. Hence, the overall philosophy 
was to have the readback channel maintain no 
threshold level, so that the: ability to recover data 
depends exclusively on the signal-to-noise ratio. 

To insure data integrity, safety circuits are used 
to monitor critical points i of the recording elec­
tronics and to set the 2321 inoperative immediately, 
should an unsafe condition c;levelop. 

Synchronization between :data handling and strip 
position with respect to the ~ead is accomplished by 
two transducers mounted on the drum drive and as­
sociated amplifiers. These ~ransducers produce one 
pulse for each revolution df the drum and define 
the beginning and end of the usable strip area. 

Data Handling 

To compensate for variations due to the oscillator 
frequency and/or the medium velocity, a variable­
frequency oscillator (VFO) is used in the readback 
process to produce a signal whose frequency and 
phase are controlled by the reproduced raw data. A 
synchronous detection is thus possible. Although 
the VFO is physically located in the control unit, its 
relationship with, and importance to, the 2321 war­
rant a brief discussion. The block diagram of Fig. 5 
shows the significant components of the VFO: 

1. The error detector, who~e output is a 
linear function of the phase difference 
between data and VFO output over a 
periodic range. : 

2. The filter, which has a low-pass charac­
teristic to attenuate fast changes in the 
phase error due to noise in the input 
signal or to instantaneous peak shift. 

3. The variable oscillator, whose output 
frequency varies in proportion to the 
error signal. When the error signal is 
zero, the output frequency is the design 
center frequency of the oscillator. 

Figure 5. Block diagram of variable-frequency oscillator. 

STRIP TRANSPORT 

Cell Drive 

The basic function of a cell drive is to bidirecltion­
ally rotate the circular array of 10 cells to 1 of 200 
discrete subcell positions through the shortest angu­
lar distance. For high speed and positioning accu­
racy involving a moved inertia of 2.4 in-Ib-sec 2

, an 
electrohydraulic servomechanism was selected. A 
schematic of the drive and its control is shown in 
Fig. 6. 

DECODED SUBCELL ADDRESS 

SEEK 

Figure 6. Cell drive and servo controls. 

Cell positioning is initiated by a seek instruction. 
When all safety interlock conditions are satisfied, 
the decoded subcell address selects the appropriate 
reed relays. With the use of a reference oscillator 
and programmable transformer, the proper voltage 
level is applied to the stator windings of a resolver. 
Induced voltage in the rotor windings, generally 
known as error voltage, is amplified, demodulated, 
and summed with a velocity feedback from the DC 
tachometer in the servo control circuit. The con­
trolled current is used as an input to the dual-gain 
servovalve. 

During reed relay selection, a brake is released, 
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and the blocking valve is moved, permitting a flow 
of oil through the servovalve to the hydraulic motor 
which converts flow to rotary motion of the array. 

As the array rotates, the rotor windings sense a 
decreasing error voltage which, in turn, decreases 
the input current to the servovalve. The resultant 
decrease in oil flow to the hydraulic motor deceler­
ates the array until no further error signal is present 
or a null point is reached. As the null is reached, the 
arrival detector signals the blocking valve to be 
moved and the brake to be applied, locking the 
array at the addressed position. 

Finger Drive 

Concurrent with cell motion, two pairs of strip 
separation fingers are moved to 1 of 10 positions for 
the selection of 1 of 10 strips in a subcell. A separa­
tion finger drive (Fig. 7) is then initiated. The sub­
cell springs, which maintain the vertical position of 
the strips, are first parted by a pair of wedges. Si­
multaneously, the separation fingers move vertically. 
downward, followed by a horizontal movement for 
strip separation. The wedges and fingers remain in 
the actuated position until the strip is fully restored. 

Figure 7. Finger drive. 

Drum Drive 

SEPARATION FINGER 
CARRIAGE 

To pick and restore the selected strip, the drum 
drive is required to rotate both clockwise and coun­
terclockwise. Conventional electric motors do not 
provide the torque-to-inertia ratio to meet the 
stringent access-time requirements. In addition, 
during strip restore, it is difficult for the motors to 
control the precise indexing at turn-around (de­
fined as the shaft position when the direction of ro­
tation changes). Lack of turn-around control fur­
ther complicates the latching of the drive shaft at 

its home position when the restore operation is 
completed. 

The present drive uses mechanical indexing, 
which allows energy storage and transfer. Two 
magnetic clutches are mounted on the shaft-one to 
maintain constant speed in the clockwise direction, 
and the other, constant kinetic· energy in the coun­
terclockwise direction. 

The basic principle is shown in Fig. 8. A torsion 
spring, through the lever and the index roller, stores 
the kinetic energy of the drive during the restore 
cycle. During the pick cycle, the wound-upspring 
provides sufficient torque to rapidly and smoothly 
accelerate the drive to near synchronous speed, at 
which time the magnetic clutch is engaged to main­
tain a constant period of 50 milliseconds per revolu­
tion or a strip surface velocity of 250 inches per 
second. A similar arrangement controls the turn­
around indexing. 

Also mounted on the drive shaft is a drum. At­
tached to the drum by two connecting links is a 
pickup head which contains a latching flipper for 
strip pickup and a release lever for strip release. 

In front of the drive is the strip housing with two 
openings, one for the magnetic head and the other 
for passage of the pickup head as well as the selected 
strip. Attached to the strip housing are a front 
guide ring and a rear mounting plate. They guide 
the pickup head and register the revolving strip. 

The drum drive may be considered as a slider 
crank inversion (Fig. 9). The drum is analogous to 
a crank shaft, the links to a connecting rod, the 
pickup head to a piston, and the housing guides to a 
cylinder. With the drive shaft latched and the drum 
at rest, the pickup head is approximately % inch 
above the strips. When the shaft is unlatched and 
the drum begins to rotate, the pickup head first 
moves downward to latch the selected strip, then 
upward, and subsequently locks onto the rotating 
drum. During restore, the strip is propelled by the 
pickup head in a reverse direction. The pickup head 
is unlocked and directed downward by housing 
guides. At "bottom dead center" of its downward 
travel, the strip, fully replaced in the subcell, is re­
leased. The pickup head then reverses its direction 
and continues upward to the latched or home posi­
tion of the drive shaft with the drum once again at 
rest. 

LOGIC ORGANIZATION 

The logic organization of the 2321 is shown in 
Fig. 10. Principal areas are the interface, address-
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Figure 9. Strip pick cycle. 

ing, motion controls, and' recording electronics. 
Address information and control signals are trans­
mitted to the 2321 through ~he interface to initiate 
the selection of the proper track for data transfer. 

Similarly, status signals are transmitted from the 
2321 through the interface to indicate the drive con­
ditions. 

Addressing 

The physical location of a recording track is 
identified by: 

1. Data cell drive number 
i. Data cell number 
3. Subcell number 
4. Strip number 
5. Cylinder (head position) number 
6. Track number 

When a record is selected, each item of the new 
address listed above is compared against that of the 
previous address. From this comparison, the ne1ces­
sary electronic and electromechanical action re­
quired to place the selected record in the data trans­
fer position is determined. For example:, assume 
that the new record is in the same data cell drive, 
but the remaining portions of the address differ. 
The new address thus causes the following to occur: 

1. The cell array is rotated to the sel<;!cted 
subcell. 

2. The magnetic head is positioned. 
3. The finger drive and the drum drive are 

activated to select and transport the 
selected strip past the magnetic head. 
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4. The specific read/write head element is 
electronically selected. 

posItIon, the only action would be the electronic 
switching of the proper read/write head. 

When the new address is the same as the previous 
address in a specific area, no electromechanical 
action is required for that area. For example, if the 
only difference between a new and previous address 
is the selection of a track within the same cylinder 

Typical Record Update 

During the cycle of updating a record, a typical 
sequence of events involves a seek, read (for address 
search and verification), write, write-check, and re­
store. 
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A seek operation causes the addressed data track 
to be placed in the proper status to allow data trans­
fer, as described under "Ad~ressing." 

A read operation involves the amplification and 
shaping of the reproduced signals prior to their 
transfer to the control unie Successive read opera­
tions, in a simple read mode, can be performed on 
up to 20 tracks on 20 successive drum revolutions 
because of the mUltiple read-elements-per-head de­
sign. 

A write operation entails the transfer of write 
data to the 2321. Track formatting is organized so 
that updating of the data portion of a record does 
not require the rewrite of either the entire record or 
the entire track. 

A write-check operation is a read operation per­
formed following a write operation to verify the 
da ta written. 

A restore operation returns the strip presently on 
the drum to the original subcell. This operation is 
performed under one of three conditions: 

1. When a strip different from that on the 
drum is requested. . 

2. When the drive is not selected within 
800 milliseconds upon completing the 
instructed operation, be it a seek, a 
read, or a write. 

3. When the drive is specifically instructed 
to restore the strip. 

Formatting 

All storage devices on the IBM System/360 have 
no mechanical formatting designed into them. In­
stead the format of a record is determined at the 
record level and by the user. Each track is identified 
by: 

1. A home address which defines the phys­
icallocation of the track, as well as the 
track condition. 

2. A track descriptor record which allows 
alternate track assignment. 

Following the home address and track descriptor 
record, data records may be formatted to any record 
length. The maximum record length, as in a single 
record per track application, is 2000 8-bit data 
bytes. . 

SOME OTHER DESIGN CONSIDERATIONS 

Anticlastic Curvature 

Transverse deformation of a bent strip creates 
serious compliance and wear problems, when the 

strip is rotated past the magnetic head in the cylin­
drical housing. The phenomenon of the curled-up 
edges is known as anticlastic curvature (Fig. lIa). 

The cross section (Fig. 11 b) assumes a wave form, 
whose amplitude is a maximum (Yo) at ejther edge 
and exponentially diminishes to zero at the center. 
The major governing parameters of the phenome­
non include Poisson's ratio (~) of the elastic ma­
terial, the material thickness (t), and the bending 
radius (R). Simply explained, a force couple e:xists 
at the strip edges, as shown in Fig. 11c, b~~caus(, the 
outer fiber of the bent strip is under tension and the 
inner fiber under compression. 

A thorough mathematical analysis has been 
made, and a practical approximation of the ildeal 
solution of the defining equations was used in strip 
fabrication. This requires a carefully controlled 
edge chamfer of the side of the strip nc~xt to the 
drum (Fig. 11d). 

The chamfer reduces the circumferentiall compres­
sive force on the inner fiber, leaving a surplus of the 
tensile force on the outer fiber. This surplus allows 
a radially inward-directed force component. to 
counteract the force couple, producing a nearly per­
fect flat cross section. Uniform spacing be:tween the 
rotating strip and the stationary magnetic head is 
thus achieved, resulting in a constant reproduced 
signal and drastically reducing the wear rate. 
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Figure 11. Anticlastic curvature. 
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Squeeze Film 

The theory dealing with pressure of a thin flat 
film whose bounding surfaces are in relative lateral 
motion was extensively treated by Osborne Reynold 
some 80 years ago. However, limited work exists 
in the study of pressure dealing with surfaces in 
relative normal motion. While "squeeze film" liter­
ally applies to surfaces being brought together, the 
term is also conveniently borrowed here in describ­
ing the converse phenomenon when surfaces are 
being parted. 

In transporting strips, squeeze film effect was ex­
perienced at three critical areas and times: 

1. During strip separation, the swift parting of 
strips creates a pressure differential as shown in Fig. 
12a such that: 

(A) PI ~ P2 (on either side of the selected strip) 

and 
(B) P A :> PI or P2 (on either side of the sepa­
rated packs). 

~n (A), long strip settling time was needed to equal­
Ize the pressures and to achieve stability before the 
selected strip was brought within "a pick able range. 
As for (B), in addition to a further penalty in terms 
of time, a high separation force was encountered in 
overcoming the pressure differential. 

The potential problem of access time and strip 
wear was resolved with the use of carefully filtered, 
accurately directed, and precisely balanced air flow 
from above the cell to nullify the squeeze film effect 
and to dampen strip oscillation. Serving an equally 
important function, this same air provides lubrica­
tion to reduce resistance, wear, and "stiction" dur­
ing strip picking and restoring. 

AIR ~ g 
SELECTED ST~¥\ I SEPARATION FORCE 

SEPARATED PACK ~ 
P2 PI ....... RUCTION FORCE «('\ _PI' 

AM.IENT PRESSURE "A 
-.. - .. 

DRUM 

(al 

MAGNE TIC HEAD 
STRIP 

STRIP PASSAGE 
OPENING 

Figure 12. Squeeze film. 

(el 

2. During the first pass (defined as the condition 
when the strip is partially in the cell as shown in Fig. 
12b), the wrapping action of the strip on the drum 
causes the strip to adhere to the drum. In due time, 
after several drum rotations, centrifugal force and 
"unwrapping" force (similar to a bent beam) over­
come the squeeze film effect and allow the strip to 
comply to the magnetic head. However, by intro­
ducing longitudinal grooves on the drum (as shown 
in Fig. 8), pressure between the strip and drum is 
relieved, and the squeeze film effect is removed al­
most instantaneously, thus permitting first-pass 
read/write operation. 

3. During forward rotation, as the trailing end of 
the strip is brought sharply against the housing 
across the strip passage opening, the impact is cush­
ioned by air (Fig. 12c, Area X). In this instance, the 
beneficia] effect of the squeeze film is instead fully 
exploited. 

Hydrodynamic Film 

Compliance to the magnetic head of a flexible 
rotating strip constrained in a cylindrical housing is 
very complex in analysis, and influenced by many 
parameters. Two of these have been briefly men­
tioned under previous headings. This section deals 
principally with the self-generated hydrodynamic 
lubrication film effect. 

Briefly stated, a thin layer of air, the "boundary 
layer," adheres to, and travels with, a moving body. 
When this boundary layer comes into contact with a 
similar layer adhering to a stationary body, a vis­
cous shearing takes place, causing a change in mo­
mentum of the moving layer, converting the change 
into static pressure, and developing a load-carrying 
force. In the case of a rotating strip, this force 
balances the centrifugal force and "unwrapping" 
force. The film effect is achieved by creating a con­
verging wedge-shaped spacing in two critical areas: 

1. At the leading edge of the strip with a 
properly derived drum geometry, as 
shown in Fig. 13a. 

2. At the area downstream from the pro­
truding magnetic head, as shown in Fig. 
13b. 

Once compliance was achieved, optimization of 
the strip-to-head spacing became possible. This was 
accomplished, in turn, by controlling the effective 
air-bearing area with properly designed longitudinal 
slots on the face of the magnetic head (as shown in 
Fig. 3). 

By shaping the unrestrained strip end in a tra-
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Figure 13. Hydrodynamic film. 

pezoidal ("swallow-tail") design, a near circular 
form throughout the rotating strip is obtained. 
With the incorporation of other equally critical 
parameters (such as, surface finish, strip registration 
force, strip housing and magnetic head geometry, 
etc.), total compliance at optimum spacing was thus 
attained across the strip width. 

Computer Simulation 

Analytical techniques through computer simu­
lation have been broadly applied throughout the 
2321 Data Cell Drive Program. For instance, the 
powering and control of a solenoid application was 
optimized by equating an~ solving the electro­
mechanical energy conversioin process. Control of 
the magnetic clutches was similarly designed for 
optimum performance. AlsQ, in designing the strip 
housing and pickup head g~ide, the basic funda-

mentals of smooth contours for static and dynamic 
transients were followed to avoid impact and wear. 
However, none of the computer simulation work is 
as significant as that done in analyzing the feedback 
control system. 

Early in development, a root locus program was 
developed to facilitate the transient response anal­
ysis of open and closed-loop systems with limited 
capability in treating certain nonlinearities in the 
forward path. Subsequently, a digital simulation 
language was written with extensive coveragl~ of 
nonlinear conditions, such as servovalve hysteresis 
and saturation, viscous and coulomb friction, t:lec­
tronic control, etc. Without the aid of the simula­
tion work, the very nonlinear nature and the time­
variant characteristics of the complex AC S4~rvo 

system would have rendered the design an extremely 
difficult, if not an impossible, task. 

Minimum Wear of Machine Elements 

A simple wear theory has been postulated and 
developed by IBM's Physical Technology Labo­
ratory in Endicott. The theory is based on the maxi­
mum shear stress criterion; that is, plastic flow is 
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OUTSIDE AIIR 
"--...-~_...v 

Figure 14. Contamination control. 
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assumed to occur when the maximum shear stress at 
any point exceeds the shear stress at yield. By keep­
ing the stress in the contact area below an estab­
lished level, the initiation of wear can be prevented. 

The wear theory and its experimentally verified 
wear data have been extensively applied in determi­
ning the limiting design stresses of all critical con­
tact surfaces in the 2321. The analysis included two 
general categories: first, cylinder-against-cylinder 
as in cams and followers, and second, cylinder­
against-groove as in journal bearings. 

Contamination Control 

It was recognized in the early development stage 
that particulate contaminants in the strip transport 
system could adversely affect recording reliability 
and eventually the life of the strip. Other than the 
implementation of the appropriate error-recovery 
actions, the problem was attacked by creating a 
miniature "clean room," housing the area of con­
cern. This consists of: 

1. Inner covers to isolate the cell array 
from the surrounding mechanism, with 

the front entry door serving a func­
tional purpose. 

2. Pressurization of the "clean room" with 
filtered air. 

3. Three vacuum nozzles strategically lo­
cated to continuously insure the cleanli­
ness of the critical areas. 

Physical arrangement of the contamination con­
trol scheme is shown in Fig. 14. A high-pressure 
blower is used to draw air from the outside and to 
recirculate internal air through the vacuum nozzles. 
Inside the plenum is a replaceable filter which ef­
fectively removes micron-size as well as larger 
particles. 
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HYBRID SIMULATION OF A HELICOPTER 
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INTRODUCTION 

The recent and rapid increase in the application 
of the airmobile concept within the U.S. Army is 
well known. Accompanying the fact of the air­
mobile division, brigade, etc., has been the con­
comitant requirement for the development and im­
provement of the airborne electronics (avionics) to 
support this major innovation in conventional war­
fare. This increased emphasis for the development 
of new and more sophisticated avionic equipments 
and subsystems has led to the organization of an 
Avionics Laboratory within the U.S. Army Elec­
tronics Command. In the Avionics Laboratory, the 
problem of defining system performance character- . 
istics for advanced avionics has in turn generated a 
requirement for analyzing the tactical mission en­
velope of both existing and advanced Army air .. 
craft. One aspect of this particular task-that of 
evaluating avionics systems synthesized to provide 
particular mission capabilities has resulted in the 
development of a unique man-machine known as 
the Tactical Avionics System Simulator (Fig. 1). 
This simulator system integrates a real-time hybrid 
digital-analog computer (expanded EAI HYDAC 
2400) with two operable cockpits-e.g., functional 
combination of crew inclosures, motion systems, 
synthetic instruments, control loading, and acoustic 
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and visual simulators (Fig. 2). As illustrated, the 
TASS includes all of the necessary subsystem hard­
ware to provide for the simulation of the aircraft, 
the avionics systems and the external environment. 
The basic requirement in the implementation of 
this expensive and sophisticated system was that the 
crew be able to realistically "fly" the aircraft from 
hover thru transition to high-speed flight while 
providing the avionic engineer with a "hands on" 
simulation capability. 

The primary goal then was to develop a com­
puter program that would provide for the realistic 
representation of the vehicle dynamics, which when 
coupled to the rather extensive "cue generators" 
(e.g., acoustic, motion, feel, and visual simulators) 
would generate an accurate and meaningful tactical 
environment and hence a valid base for the evalua­
tion of various avionic equipments and systems. 

The first major system to be evaluated with the 
aid of this system was. that of the Advanced Aerial 
Fire Support System (AAFSS)-a next generation 
armed helicopter. Schedule requirements dictated 
that the hardware components that collectively 
comprise the TASS would be delivered only 75 days 
prior to the initiation of the AAFSS evaluation. 
The installation, checkout, integration" and com­
puter programming for the evaluation were required 
to be accomplished in this 75-day interval. To 
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Figure 1. Tactical Avionics System Simulator (TASS). 
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Figure 2. TASS functional block diagram. 
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CAPABILfTII::S 

Figure 3. Development of generic model. 

minimize the risk inherent in a program scheduled 
this tightly, a software development program (Fig. 
3) was initiated at an earlier date to provide: 

• Verification of the Computer Comple­
ment. This step was intended to identify 
the additional computer modules that 
would be required to accomplish the 
necessary simulation of the AAFSS ve­
hicle. 

• Checkout of Operable Cockpit Interface. 
Emphasis here was on the definition and 
implementation of the specific interfac­
ing required to provide for man-ma­
chine-computer integration. 

• Development of A nalysis and Data Re­
duction Techniques. Again, the program 
scheduling required that the "Evalua­
tion tools" be in hand at the beginning 
of the evaluation period. This particular 
effort provided for the development of 
the data reduction techniques and func­
tional implementation to verify the con­
cepts postulated. 

The software program illustrated did, in fact, de­
velop a hybrid computer program for a generic 
single rotor helicopter complete with outer loop 
avionics and fire control subsystems. If you will, 
the conceptual system was a "straw man" that al-

lowed the analyst to come to grips with a realistic 
engineering model of a typical system. 

Of greater significance than the successful ac­
complishment of a project gQal however is the flexi­
bility afforded by the basic concept of the computer 
program developed. From the viewpoint of an 
avionics system designer the aircraft (be it proposed 
or existing) must be considered a given condition 
since no design alteration can be accomplished. De­
sign alteration of the avionics is however both pos­
sible and necessary and since the hybrid computer 
program developed accomplishes the calculation of 
the aerodynamic forces and moments on the digi­
tal side (main rotor, tail rotor, etc.) and the co­
ordinate resolution and integration on the analog 
side, the avionic designer can easily implement the 
study of both inner and outer loops of the flight 
control system, the crew interaction, and the nav­
igation, terrain following, formation flight and dis­
play subsystems while accepting the given condition 
of the aircraft performance as a boundary value. 
Viewed more generically, the digital computer 
stores the program that describes the aerody­
namically unique data corresponding to a particu­
lar aircraft. Thus, the digital computer can be 
thought of as an "Aero Function Generator" and 
with the introduction of the unique aero data into 
the digital program a different aircraft configuration 
can be interjected into the avionic analysis loop. 
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The potential of this aircraft switching capability 
is considered to be of significant value in the design 
evaluation of avionic systems that apply to more 
than one aircraft (e.g., flight control systems) but 
must be tailored to each particular aircraft. Looked 
at in a more direct manner' the simulation program 
provides for the "hands on" simulation of the 
avionics and the "hands 'off" simulation of the 
basic aircraft. 

The concept expressed here has been proven since 
the generic hybrid computer program developed 
was used as the function' building block in the 

u,v,w 

Xa 
Yo 

analysis of proposed avionic designs for the Ad­
vanced Aerial Fire Support System. The sp(~cific 
computer program has recently been updated to ac­
curately reflect the latest design configuration for 
the AAFSS and is presently being used as the real­
time model for design synthesis and analysis. 

HYBRID PROGRAM 

Organization 

The major airframe simulation was divided into 
computational tasks suitable for analog and di.gital 
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sections of the hybrid computer. With the require­
ment that the simulation be able to cover a full 
mission from takeoff to touchdown, a representative 
simulation of the airframe dynamics over all flight 
regimes was of great importance. 1-3 

equipment, and of this the major demand was from 
forces and moments produced by the main rotor. 

It was found that a straightforward, conventional 
analog program for the complete simulation would 
have required too large a complement of analog 

Hence, a division of tasks between analog and 
digital sections was arrived at by assigning all the 
forces and moments calculations to the digital sec­
tion and integrating these forces and moments by 
continuous, parallel analog equipment to derive the 
required outputs. 
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Figure 5. Analog program-block diagram. 
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The scheme is shown in Fig. 4. The analog re­
quirement was approximately 100 amplifiers, which 
left a considerable amount of equipment for the 
simulation of the flight control systems. 

The digital computation of the forces and mo­
ments of the main rotor, tail rotor and fuselage was 
accomplished in 50 msec, thus giving a sampling 
time of 20 samples per sec. : One consequence of 
hybrid programming is the existence of an interface 
between analog and digital sections. As a result of 
the sampling effects introduced, there is an unavoid­
able phase lag that can adversely affect loop damp­
ing within the simulation. 

However, using digital prediction on the com­
puted forces and moments, equivalent damping to 
the real-world vehicle is obtained-up to about 2 
cps natural frequency. 

Analog Section 

The analog program developed for the six degrees 
of freedom simulation followed the block diagram 
shown in Fig. 5. Here, the moments and forces 

generated digitally were integrated to give angular 
rates and body velocities, and these in turn wt:~re 

integrated to give vehicle orientation and distance 
traveled. The operations involved in the compu­
tation are primarily integrations and rotations of 
the velocity vectors from one axis system to an­
other. 

Figure 6 shows the generation of angular rates 
and orientation angles of the airframe. So as to al­
low for continuous feedback paths around the rate 
integrations, the hub moments were linearized as 
functions of the control inputs A IS and B IS and spin 
rates p and q. These feedback terms were then al­
lowed for by subtracting equivalent terms from the 
hub moments computed on the digital computer, so 
that only differences had to be transmitted.4 

AL = L - (LpP + LqQ + LAlsAls 

+ LBlsBls) 

AM = M - (MpP + MqQ + MAlsAls 

+ MBlsBls) 

VEttlCLE pB~ ________________________________________________ ~-P~~I£i 

p 

8 

u 

Figure 6. Analog simulation of angular rates and Euler angles. 
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Since the moments due to velocity were not re­
moved, these corrections were only close to zero at 
hover. It should be mentioned, however, that there 
was not really any approximation, since the net 
pitching moment at the analog integration at any 
instant did correspond to that computer digitally, 
but part of it arrived a little early to help reduce 
effects of phase shift. 

Values for the derivatives were obtained by meas­
uring changes in the variable at various speeds and 
choosing compromise values to cover as wide a 
range as possible. 

Avionics, comprising an inner loop stability aug­
mentation system and outer loop long-term stabili­
zation were simulated by standard analog tech­
niques to provide the necessary control inputs and 
feedback. 

Linkage Section 

Data transfer between the analog and digital sec­
tions of the simulation was controlled by a standard 
program written for the HYDAC 2400. This pro­
gram provided for up to 20 channels of analog to 
digital and 12 channels of digital to analog conver­
sion. The transfers were 12 bits and sign in a sign 
magnitude convention. 

The Input/Output Subroutine on the digital com­
puter controlled all data transfer, reading a block of 
mUltiplexer channels on analog to digital input, and 
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establishing voltages on banks of track/store ampli­
fiers on digital to analog output. 

The analog to digital conversion at 70 J.lsec per 
channel was used to input the variables u, v, lV, p, q, 
r, Q, A os , A IS , B IS , f)TR and dx to the digital com­
puter.- Since scale factors are normally different be­
tween the analog and digital sections of a hybrid 
computer, the scaling was adjusted by multiplying 
by a constant during the spare time while the next 
channel was being converted, before storing the 
variable in an input buffer. 

Because the number of DA converters was limited 
to six, voltages were transferred to two banks of 
track/store amplifiers to provide the equivalent of 
block demultiplexing. The first bank was used to 
output X, Y, Z, L, M, N to the analog computer, 
and the second outputted V T, Q MR. Spare channels 
in this bank were used for monitoring digital vari­
ables dynamically and were found extremely useful 
during debugging phase of simulation. 

Digital Section 

The digital section received inputs from the pilot's 
con trol actions through A os, A IS, B IS, f) TR, from the 
helicopter velocities u, v, w, the spin rates p, q, rand 
the rotor speed Q. The primary purpose of the digi­
tal program was to compute all forces and moments 
acting on and about -the center of gravity of the 
vehicle. The total forces and moments were then 
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Figure 7. Digital program-block diagram. 
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transmitted to the analog computer 20 times a 
second, synchronization with real time occurring 
just before the input data ,block where a waiting 
loop was executed for the master timing pulse. 

The digital program generated these forces and 
moments by a succession of subprograms which cal­
culated the effects of fuselaige, tail rotor and main 
rotor separately. These are shown in block form in 
Fig. 7. 

A secondary function of the digital program was 
to make various program options available during 
program checkout and running. These permitted 
printing of intermediate results, programmed halts, 
system checkout with test data, and for the hybrid 
operation, inclusion of a prediction computation to 
compensate for the 50-msec,delay introduced by the 
computation interval. 

Implementation of the: digital programming 
phase was concerned with coding and extensive 
checking. Fixed point arithmetic was used through­
out the computation cycle, necessitated by the short 
cycle time required because of interaction with the 
continuous analog section. : The fixed point coding 
of the arithmetic operations was quite straight­
forward; once scaled equations had been written, 
occasional checks for overflow and improper divide 
being the only precautions taken. 

The main program embodied all the computation 
for the 12 rotor stations, ~ince this was by far the 
largest section of coding. ' Computations for the 
forces and moments of the other components, i.e., 
wing, tail, propeller, etc., were coded as closed 
subroutines mainly to simplify program organiza­
tion and checkout and to simplify modification as 
the programs developed and the vehicles become 
more firmly defined. Communication between main 

and subprograms was by means of a common stor­
age area so that no time was required to transfer 
arguments and results from one region of storage to 
another. 

Of the various programs shown (Fig. 7) by far the 
most important is that of the Main Rotor. Its 
organization was dictated by the requirement to 
step around the azimuth computing forces and 
moments on the disc at each point. The main rotor 
was represented by 12 stations defined by the azi­
muth \}t and station y-discussed previously. 

The sets of computations of forces and moments 
contributed by the stations \}t, y were essentially 
identical, differing only in the terms involving sin \}t 

and cos \}t. Because the values of \}t are multiples 
of 90°, clearly it was not necessary to evaluate all 
the sines and cosines; instead the program was ar­
ranged to branch to one of four paths at each of two 
appropriate points. For each path, it was then 
necessary only to add, subtract or omit correspond­
ing terms equivalent to sin and cos of 1, - 1, or O. 
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A TIME-SHARED HYBRID SIMULATION FACILITY 

R. Belluardo, R. Gocht and G. Paquette 
United Aircraft Corporation Research Laboratories 

East Hartford, Connecticut 

INTRODUCTION 

The capability for combined analog-digital com­
putation at the United Aircraft Research Labora­
tories was greatly expanded in January 1966 by the 
addition of a large-scale, time-shared, general­
purpose digital computer and a pool of hybrid 
linkage equipment which can be distributed to any 
of four analog consoles. The digital computer time­
sharing system provides hardware and software for 
the simultaneous use of the system by several users 
at teletype consoles. 

This expansion was necessitated by the increased 
demand for time on an existing hybrid facility which 
has been in operation since December of 1962.1,2 
Typical uses for this equipment include determina­
tion of static and dynamic performance character­
istics of rocket engines, jet engines, fuel controls, 
helicopters, and V/STOL aircraft. 

GENERAL 

The ability to efficiently and simultaneously 
handle several problems of varying size and com­
plexity, and ease of utilization were the basic 
requirements which influenced the selection of com­
ponents for this system. The first of these require­
ments was met by selecting a digital computer capa­
ble of performing both time-dependent (real time) 
and non-time-dependent calculations on a machine 
sufficiently fast and large enough to simultaneously 
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accommodate several problems. The second of 
these requirements was met by selecting a digital 
computer system and designing a hybrid linkage 
system such that each user, whether hybrid or 
digital, would find this system as easy to program 
and operate as he would a single non-time-shared 
hybrid computer. 

A Digital Equipment Corporation PDP-6 Digital 
Computer was selected for this purpose.3 This com­
puter is equipped with a core memory of 65,000 
36-bit words and 16 high-speed storage register / 
accumulators. Cycle time for these memories is 
1.75 microseconds and 400 nanoseconds, respec­
tively. Five teletype stations, six Dectape units each 
capable of storing about 65,000 words and a paper 
tape reader constitute the input/output devices for 
this system. Randomly addressable core storage 
associated with a single processor can be expanded 
to 262,000 words. The system can accommodate 
several parallel processors. The number of tele­
type stations can be expanded to 64. A schematic 
of the complete system is shown in Fig. 1. 

This computer will simultaneously accommodate 
several problems in real and non-real time in addi­
tion to several users involved in utility operations 
such as edit, assemble, compile and debug. Each 
user's program resides in a portion of core memory 
and is protected from all other users by hardware 
and software features incorporated in the machine. 
On-line communication with the system permits use 
of symbolic debugging techniques with resulting 
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Figure I. Schematic of digital computer. 

reduction in large problem checkout time. Finally, 
initial and operating costs are low enough so that 
relatively long periods of time at one of the consoles 
are still economically feasible. 

Basic to this digital system is a 6000-word execu­
tive routine which provides overall coordination 
and control of the total o]l>erating system. Addi­
tional software packages available include an editor, 
FORTRAN II (FORTRAN IV is currently under 
development), a macro-assembler, a relocating link­
ing loader, a desk calculator and a symbolic de-
bugging program. . 

The present hybrid linkage system contains a 
Raytheon Multiverter which combines a 48-channel 
multiplexer with a 14-bit analog to digital converter. 
Total conversion time is under 40 microseconds. 
The system also contains 40 Adage Model 4W13 
digital to analog converters. These units feature 
± 128 volts output and 14-bit accuracy. 

Since the system was designed as a multi-user sys­
tem, it was felt that all users should be able to ad­
dress particular D / A's or A/D's beginning with 
address O. This was acc,omplished by designing 
address relocation hardware for the linkage system. 
Basically, relocation constants are added to A/D 
and D / A addresses. These constants are predeter­
mined numbers that are functions of how many 
D / A's and A/D's are assigned to other users. Pro­
tection hardware which prevents inadvertant ad­
dressing of converters assigned to another user was 
also designed into the system. 

The remainder of this paper is concerned with a 
detailed description of the hybrid linkage system 
and modifications to the PDP-6 monitor system that 
were required to make time-shared, time-dependent 
computing possible. 

THE HYBRID LINKAGE 

The possibility of having several hybrid simula­
tions in progress sim ultaneously on one dngital l~om­
puter creates a need for a rather special hybrid link­
age. Over and above the requirements that each 
analog computer have the appropriate numbc!r of 
accurate, reliable and fast converters are the special 
requirements imposed by the use of one digital com­
puter to service several analog computers. The 
solution to this problem was found by using a pool 
of linkage equipment which could be distributed 
easily and effectively. The analog to digital con­
verter channels and the digital to analog converters 
are distributed to the four analog consoles by a 
patch board located within the PDP-6 hybrid link­
age as shown in Fig. 2. 

SpecialIj 0 Instructions and Analog Assignment 

A PDP-6 user cannot normally execute: any input/ 
output instructions. Input and output are per­
formed by the monitor on request from a user. 
Devices must be assigned to a user before h·e can 
expect to use them. In order to make the use of 
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Figure 2. Hybrid linkage. 

hybrid equipment as simple and as fast as possible, 
the in-out instructions on the PDP-6 were divided 
into two classes; the normal in-out instructions 
which are illegal for a user and the special instruc­
tions which are legal for users. Most instructions 
for the hybrid linkage are legal for all users. 

One user cannot, however, affect another user's 
hybrid equipment. This protection is accomplished 
by both software and hardware features. Once a 
user has been assigned a specific analog console he 
can use only that portion of the linkage connected 
to that analog console. The monitor turns on the 
correct portion of the linkage whenever a job is 
selected for running. The monitor can actually turn 
on anyone of five analog consoles. These are con- . 
soles NONE, 0, 1, 2 and 3. Console NONE is 
turned on for all users lOot assigned a specific analog 
console. A user cannot change analog console as­
signment except via the monitor commands. 

Patch Board Wiring and Converter Addressing 

Once set up the hybrid linkage allows each pro­
grammer, both digital and analog, to address analog 
to digital converters and digital to analog con-

verters starting at address O. Each analog program 
will use as many A/D's and D/A's as is needed. 

The corresponding digital program will address 
the converters by identical addresses. This ad­
dressing scheme applies to all "four" hybrid com­
puters. A particular program will not change from 
day to day as the converters are distributed to users 
in different arrangements. Of course the total num­
ber of converters is limited. This addressing scheme 
also protects each user. 

In order to properly distribute analog to digital 
converters and digital to analog converters to the 
analog computers the hybrid linkage must be 
"set up." This requires a patch board to be wired 
and inserted in the patch bay at the hybrid linkage. 
The number of converters used on each console 
must also be entered in a toggle switch register. 
The linkage hardware will then automatically re­
locate converter addresses so that each user starts 
addressing with number O. 

Since this addressing is perhaps the most unusual 
feature of this hybrid linkage a more detailed des­
cription is in order. The outputs of all digital to 
analog converters appear on the patch board in the 
hybrid linkage. The analog computer patch panel 
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positions that are to be used for D / A outputs are 
also wired to this patch board. The D / A outputs 
must be patched to the analog computers in an 
orderly way. The D / A outputs are used starting at 
number o. The required number of converters for 
console 0 are wired in order. ;The next consecutive 
group of D / A converter outputs are wired to analog 
console 1, starting with position 0 on console 1. The 
next group is wired to console 2 and the final group 
to console 3. The number o( converters delegated 
to each analog console is then entered on the toggle 
switch register. The analog' to digital converters 
are distributed in the same marmer. 

Figure 3 is a block diagram of the address calcu­
lating hardware. The six-bit address comes directly 
from the programmer's in-out instruction. The 
console number is selected' by the time-shared 
monitor. The numbers No, N j, N2 and N3 are set in 
the toggle switch registers and correspond to the 
number of components of this type assigned to the 
corresponding analog console, 

Consider an example. Let console 2 be selected 
and No = 10, N 1 = 10 and N2 = 4. The program 
addresses converter number 3. The output of the 
subtractor signals an illegal address when the result 
of the calculation is zero or negative. 4 - 3 is posi­
tive and therefore does not signal an illegal address. 
The addition circuit will add 3 to No + N 1 and will 
therefore calculate 23. If the patch board wiring is 
examined at this point, converter number 23 will be 
found wired to patch panel position 3 on console 2. 

As a second example, suppose console NONE is 
selected and the programmet addresses channel O. 
The subtractor signals an illegal address and the 
converter action is inhibited.; Any illegal converter 
reference would result in this same action. 

Summary of Linkage Instructions 

In this section an outline of the use of each com­
ponent in the hybrid linkage,.is given. This is done 
without going into a detailed description of the 
instruction or data formats. These instructions are 
exactly the same for any of the "four" hybrid 
computers. 

Two instructions are used with the digital to 
analog coilVerter system. One instruction is used to 
select a converter address. ; The other instruction 
transfers data to the selected converter. Each data 
transfer instruction will increment the address by 
one. Consecutive data transfers will load consecu­
tive converters. 

Three instructions are associated with the analog 
to digital converting system:. One loads the con-

verter address and starts the converter, another 
transfers data to the computer. The third instruc­
tion is used as a skip instruction for timing pur­
poses. This instruction will skip when conve:rsion is 
complete. As the data is transferred into the com­
puter the converter address is automatically incre­
mented by one and the next conversion is started. 

Discrete inputs can be read from each analog 
console into the user's digital program. Discre:te 
outputs can be set at each analog console from the 
user's program. This requires two instructions; one 
to read and one to set. There are 12 of these discrete 
inputs and outputsperrYlanently assigned to ea1ch 
analog console. 

The hybrid linkage contains a millisecond clock 
that is used mainly by the real-time monitor for all 
timing control. Any user can, however, read the 
clock. This is useful in computing times Ifor pro­
gram execution within one computing time interval. 

TIME-SHARING SOFTWARE 

Time-dependent problem solutions using the dig­
ital computer combined with dynamic devices, as in 
hybrid simulation, require execution of th,e digital 
program within a repeated, fixed time interval while 
the problem is operating, i.e., compute mode, in 
analog terminology. In previous hybrid computa­
tion at United Aircraft Research Laboratories the 
repeated digital program cycle and the execution 
time were the same. In many instances, the repe 
tition rate, or duty cycle, need not be as short as 
execution time. With a longer duty cycle and/or a 
faster computer, a portion of the duty cycle can be 
shared with program service activities. By mini­
mizing the ratio of time-dependent program, execu­
tion time to an acceptable duty cycle, a number of 
these programs can coexist within a common duty 
cycle. 

Time-Sharing Control 

Software control is provided to accomplish time 
sharing by the PDP-6 Multiprogramming Syste:m.4 

This system includes a resident monitor which 
handles input/output service and schedules user 
program execution. Using the PDP-6 priority 
interrupt channels, the monitor sequences pro­
grams based on delayed input/output reque:sts, 
clocked timing, and user's programmed or teletyped 
commands. As shown in Fig. 4, service is provided, 
in order, to input/output device requests, monitor 
service requests from user software or teletype, 
and a round-robin sequencing of user programs. 
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Figure 3. Converter addressing. 

Programs in the round-robin include the users soft­
ware as well as library routines called by the user 
such as editor, FORTRAN, etc. 

Exact, repeated interval control is not a function 
of the basic monitor. Clock control is used to 

terminate programs in order to prevent long oper­
ation of a, single user without looking at the service 
requirements of others. However, clock control is 
at low priority and is often deferred for monitor or 
inputj output functions. 



360 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

ORIGINAL DEC MONITOR 

UACRL MONITOR 

Figure 4. Monitor priority. 

Exact timing of time-dependent users has been 
designed into the monitor using the UACRL clock 
at high priority. The time-dependent programs are 
sequenced within an accurateJ repeated time interval 
(the duty cycle) preset to a desired value in milli­
seconds. Each time-dependeht user receives a pre­
assigned position and time in;terval within the duty 
cycle. ' 

Dectape and teletype reading and writing oper­
ations can interrupt time-dependent service. Any of 
the routines used at this high~r priority is completed 
well within one millisecond. i Their combined use 
over the duty cycle should n~ver exceed 10% of the 
duty cycle. 

The current time-sharing at UACRL permits up 
to 95% of the established i duty cycle for time­
dependent use. Time-dependent users are commu­
tated within the duty cycle in ia queue separate from 
the round-robin of non-time~dependent users. The 
remaining 5~~ of the duty; cycle is reserved for 
monitor functions and the round-robin. While the 
percentage for non-time-dependent use seems small, 
time-dependent users often' operate in compute 
mode for reasonably short~ infrequent intervals. 
When compute mode does not exist, most of this 
user's time is returned to ~he system for lower 
priority service. ' 

In order to implement this form of time·,sharing, 
a number of new features were added to the mon­
itor. These functions, described below and s.ummar­
ized in Table 1, include control of: 

1. Duty cycle 
2. User time 
3. Time synchronization 
4. Hybrid linkage assignment 

The last is provided for the assignment of proper 
linkage hardware to each user. 

Duty Cycle 

The duty cycle can be set by a teletyped command 
TSET x, where x is the desired duty cycle in milli­
seconds. This command is accepted by the monitor 
only when all time-dependent jobs are absent since 
the duty cycle affects all time-dependent users. If a 
user attempts to set the duty cycle when it is pro­
tected, he receives a typed return indicating the 
number of a job still in time-dependent status and 
the original duty cycle is retained. 

A command TCLEAR can be typed by a residlent 
time-dependent user to permit a duty cycle change 
while retaining his original memory and equipment. 
He must reinstate his timed operation by a TJOB 
command, described below, once the new duty cycle 
is set. 

One command, TREAD, can be entered from 
teletype or from the user's program to access timing 
information. As a teletype entry, TREAD will yield 
a printout of the duty cycle, time-dependent job 
numbers and their reserved time intervals, and time 
left for additional reservation (balance of 01.95 duty 
cycle in the present system). 

The use of TREAD as a programmed operator 
results in the transfer of the duty cycle value to a 
designated machine accumulator. This information 
is useful in calculating data affected by the time 
interval as a problem initializing operation. 

User Time 

With one time-dependent user in the syste:m, 
execution of the program at the start of each duty 
cycle would provide accurate cycling. Program 
execution time varies due to data values and pro­
gram branching and interruptions, but accurate 
time cycling of one user is possible by converting 
analog information at the start of the cycled 
program. 

With more than one time-dependent user, the 
second and later users must be assured of simillar 
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Table 1. Summary of Commands Added to the Monitor 

Influences Source Command Action Errors ~eletype Response 

Telfotype TSET x Set duty cycle to x in milli- x) 8191 or x = 0 Ix MSEC CAN'T BE SET 
seconds if none of the jobs 
are currently in time- Duty cycle pro- j IS A TD JOB 
dependent status. tected by existing 

time-dependent job. 

None Carriage return/line feed 

Teletype TCLEAR Release duty cycle protection None Carriage return/line feed 
for initiating job. 

Teletype TREAD Type value of duty cycle, None In MSEC DUTY CYCLE 
Duty Cycle reserved user intervals, and r.rIME JOB NUMBER 

remaining time available for ml jl 
time-dependent use. 

mL h 
Ix MSEC AVAIL 

Program TREAD Transfer value of repetition None None 
time to specified accwnulator. 

Teletype TJOB y Establish a reserved time y> (0.95 Duty Cycle z MSEC AVAIL 
interval, y, in milliseconds, less sum of exist-
if available, and set duty ing reserved 
cycle protection for the intervals) 
initiating job. 

None Carriage return/line feed 
User Time 

Teletype TJOB 0 Release the execution time None Carriage return/line feed 
interval (or set zero time) 
for the initiating job. 
Duty cycle protection is set. 

Program TSYNC Return control to the monitor Execution when job TSYNC FROM NON TD JOB 
for job switching and signal does not have non-
the execution of the succeed- zero reserved time 

Time Syncro- ing instructions in the interval. 
nization initiating job when its next 

execution interval begins. TSYNC instruction TD JOB TIMED OUT 
not executed before 
clock interrupts 
time-dependent job. 

None None 

Teletype ENABLE ANAx Reserve analog console x Device previously ANAx ENABLED FOR JOB j 
linkage for the initiating enabled by another 
job, if available. The job. 
physical hardware assignment 
exists only during this Nonexistent console NO SUCH DEVICE 
job's operation. Only one number. 
console may be assigned to a 

Hybrid job. Illegal device name DEVICE CAN'T BE ENABLED 

Linkage 
None Carriage return/line feed 

Teletype DISABLE ANAx Release analog assignment None - note, wrong Carriage return/line feed 
or DISABLE for the initiating job. address is ignored 

and any console 
that was assigned 
is released. 
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cyclic scheduling. This is accomplished by requir­
ing all time-dependent users to establish a reserved 
interval within which they must complete their oper­
ation. Any time not needed by the assigned user, 
within his time interval, is a,lotted to the queues of 
non-time-dependent operati0ns. 

Time-dependent programs operate at high prior­
ity following each interrupt I for successive reserved 
intervals until all job intervals are exhausted. The 
remainder of the duty cycle is used for non-time­
dependent job functions. If all job operations are 
exhausted, the remainder or the duty cycle is spent 
in counting this dead time (the null job). The null 
job data is a useful indicator of computer utiliza­
tion. 

Figure 5 illustrates the ~ubdivision of the duty 
cycle. The monitor schedu!les all these operations 
within separate queues with high priority given to 
the time-cycled queue. The information supplied to 
the clock comes from a ring table in sequence. This 
table contains the reserved job intervals and the 

Ne.xt Time 
Dependent User 

Service and Response 
to Monitor Command 

balance of the duty cycle. Thus, with two time­
dependent users active, the executive sequences 
three time values to the clock which determine the 
interrupts. When the executive responds to an inter­
rupt, it sets the clock interval for the next operation. 
This will always occur within the first clock count 
after interrupt was signaled. Should the interrupts 
occur during execution of a time-dependent pro­
gram, the job is reduced to round-robin operation 
and is informed of the error via teletype. 

To establish an interval for the user a command 
TJOB y is typed into the system, where: y is the 
interval in milliseconds to be reserved for the initi­
ating job. A time slot is then entered at the end of 
the time-cycled queue for the user. The: time: re­
quested should represent maximum program execu­
tion time plus a buffer time for higher priority 
inputj output and program swapping. This buff,er is 
recommended as 10% of execution time or one milli­
second, whichever is largest. 

The sum of reserved intervals must be less than 
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0.95 of the duty cycle. Should an excessive interval 
be specified, an error response will be typed and the 
user denied entry to the time-cycled queue. 

A command TJOB 0 can be used to release the 
user's reserved interval but retains protection of the 
duty cycle. This allows for additional sharing of 
cyclic operation by two or more cooperating users. 
Since they require time cycling only during active 
analog linked computing in simulation, an often 
small percentage of total use of the computer, users 
may successfully alternate time-dependent and 
round-robin operation. 

Time Synchronization 

While the TJOB command reserves an interval for 
the user, it does not actually enter his program into 
cyclic operation. A programmed operator TSYNC 
must be executed within the user's program to ac­
complish the transfer. Prior to execution of this 
instruction, the reserved time interval was used for 
non-time-dependent functions. 

The TSYNC command will result in an error 
return if it is encountered without a reserved inter­
val being previously set. This includes the condition 
of zero time reserved with TJOB o. 

When TSYNC is correctly executed, the user's 
operation is terminated for the remainder of the 
current duty cycle whether he was operating in 
time-cycled queue or round-robin. When this user's 
interval is entered during the next duty cycle, the 
program begins execution at the instruction follow­
ing the TSYNC. Thus, the TSYNC command pro­
vides for initiating and maintaining time-cycled 
operation. Termination of timed operation occurs 
when nonhybrid input/output is attempted or the 
user signals an exit from program branch or tele­
type. 

While input/output service results in termination 
of cyclic operation, this monitor controlled service 
proceeds legally at its lower priority. Automatic 
return to cyclic execution is possible if the user pro­
vides a TSYNC after completing the input/output 
programmed operator sequence (Table 1). 

Hybrid Linkage Assignment 

The monitor provides for user assignment and 
protection of hybrid linkage as provided for any 

other input/output device. The teletyped command, 
ENABLE ANA x, allows a user to reserve analog 
console x for his needs. Once assigned to a specific 
user, only that job is permitted to access the actual 
equipment. Only one console can be assigned to a 
job. A subsequent analog ENABLE, calling for a 
different console, will result in the release of the 
prior console as well as enabling the newly specified 
console. 

Hardware assignment of the hybrid linkage takes 
place whenever the job is selected for operation 
regardless of which queue contains the job. In this 
way, round-robin operated debugging can include 
analog equipment. 

The reserved equipment can be released by a cor­
responding DISABLE ANAx, or just DISABLE, as 
well as the job canceling KJOB.4 

CURRENT STATUS 

The entire system which includes the digital com­
puter as delivered by Digital Equipment Corpora­
tion, the hybrid linkage as designed and assembled 
by United Aircraft, and the modifications to the 
standard PDP-6 monitor as implemented by United 
Aircraft has been operating satisfactorily as de­
scribed since February 1, 1966. 
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INTRODUCTION 

The free piston engine principle is one which has 
intrigued mechanical engineers for decades. Indeed, 
the original gas engine of Otto and Langden em­
ployed a piston assembly which did not contain the 
now conventional connecting rod and camshaft 
arrangement I and hence may be considered as an 
early implementation of the free piston principle. 
Today, however, the free piston principle is nor­
mally applied to a highly supercharged two-stroke 
compression ignition engine in which two opposed 
reciprocating pistons are used in a diesel cylinder. 
These pistons do not transmit mechanical energy 
but instead pneumatic energy is delivered in the 
form of high-pressure, high-temperature exhaust gas 
to a separate power turbine to obtain shaft power. 

Such an engine has great performance potential 
in that it combines the superior thermal efficiency 
of the diesel cycle and the flexibility of a free turbine 
drive with a basic mechanical design simplicity in 
which highly stressed rotating members are absent. 
Further, unlike the conventional engine arrange­
men,t, complete dynamic balance of the pistons is 
obtained so that the engine is vibrationless, thus 
eliminating any need for complicated and expensive 
vibration isolation mountings. 

365 

Unfortunately, however, the lack 'of any mechani­
cal connection to the pistons, other than a simple 
rack and pinion system to maintain an out-of-phase 
relationship between the pistons, presents a piston 
control problem which does not exist in a crank­
shaft engine. This problem is one of ensuring that 
the pistons do not exceed certain mechanical design 
limits irrespective of engine loading. It was prin­
cipally to investigate various piston control schemes 
that this simulation of a specific engine was under­
taken. The ability to implement any control action 
without the expense of tooling special components 
and without the risk of mechanical damage has 
shown the hybrid simulation to be a valuable design 
tool. 

A number of attempts have been made to simu­
late the free piston engine in the past2

-
4 from which 

we concluded that neither the analog nor digital 
computer simulations alone provided the most suit­
able means of handling the problem. It was felt 
that the ability of the analog to handle the system 
dynamics and to allow intimate operator contact 
with the problem should be teamed with the digital 

, computer's ability to perform the thermodynamic 
calculations involved; and this hybrid approach 
seemed a most reasonable way to proceed. . 

In this discussion we will describe our hybrid 
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approach to this problem, confining ourselves to a 
discussion of the simulation itself rather than the 
results obtained from it. We use it only as a vehicle 
for exhibiting the power of hybrid simulations of 
systems of this type. 

THE HYBRID COMPUTER 

The hybrid computer available to us was certainly 
modest compared to systems available today. It 
consisted of an Electronic Associates 131 R analog 
computer, a Control Data (nee Bendix) G 15D 
digital computer, coupled together through an 
Epsco 8 x 8 converter system. The analog equip­
ment has been modified to allow individual mode 
control of some integrators; all mode relays were 
replaced with the faster and more dependable reed 
type, and a scheme for master mode controlling 
the equipment from the digital computer was im­
plemented. The system is shown in Fig. 1. 

The patchable logic used was a small logic trainer, 
the Digiac 3010, which interfaced to the individual 
mode control relays of the integrators through re-
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lays. The comparators used were analog amplifi(!rs 
with suitable diode feedbacks. 

The limited dynamic performance of the;~ analog 
equipment required that the simulation be run at a 
much reduced time scale, which certainly detracted 
from the operator's 'feel' for the problem. As well, 
since the digital computer is also slow, the calcula­
tion times were quite long, and this calculation speed 
was further decreased over that possible with ma­
chine language programming by using all programs, 
including interface control, written in ALGO.s The 
slow computing speed was possible only by halting 
the simulation at both ends of the engine stroke at 
which time the digital calculations were donie. 

ENGINE DESCRIPTION 

The free piston engine consists of a pair of op­
posed pistons which are constrained to move out of 
phase under the influence of gas pressures existing 
in chambers adjacent to them. The pistons do not 
transmit mechanical power as in conventional 
crankshaft engines, but instead serve to provide;: a 
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Figure 1. National Research Council's hybrid computer. 
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cylinder of varying volume in which the chemical 
energy of liquid fuel may be released in a highly 
supercharged and effiCient diesel cycle to generate 
hot, high-pressure exhaust gas. This is subsequently 
passed through a simple gas turbine wheel to obtain 
mechanical power. Figure 2 is a diagrammatic 
sketch of an outward compressing machine and it 
shows one half of the engine. The engine is essen­
tially symmetrical about its centerline, except that 
it is usual to arrange the exhaust ports and intake 
ports of the diesel cylinder to be controlled by 
separate pistons. For convenience, however, these 
ports are both shown on the same side. Further, 
because of the symmetry of the engine, it is con­
venient to simulate the motion of only one of the 
pistons. The remainder of the discussion is limited 
to a consideration of this case. 

The piston itself serves to divide the cylinders 
into three separate expansion chambers. The com­
plete cycle of events in each of these chambers is 
as follows: 

1. With the piston close to the engine centerline, 
fuel is injected into the diesel cylinder and combus­
tion takes place. The resulting high pressure stops 

I .... "'I--------YCR----~ 

!Ly-~-YBR 
"jr----If'-------I 

I 

I/nletP~ 

PO 

FU'I/lYEX 

Inl,ct r- Exhaust Port t 
PATM 

PBREF 

POEL 
"2 of enoine shown 

Exhaust Receiver En~i;~te~y~:e~trical about 

-~ 

711/"n. 
Narrle/ LJ" 

Figure 2. Simplified free piston engine. One half of engine 
shown. Engine symmetrical about center line. 

the inward movement of the piston at its inner dead 
point (lOP) and forces the piston to move outward. 

2. This outward movement of the piston com­
presses air contained in the compressor and bounce 
cylinders. 

3. As the piston uncovers the exhaust ports, the 
gas in the diesel cylinder expands through the ports 
causing a reduction of pressure in the diesel cylin­
der. This process is normally referred to as the 
blowdown process. 

4. As the piston uncovers the intake ports, the 
compressor pressure just exceeds the transfer duct 
pressure and the pressure-sensitive delivery valves 
open and deliver air to the diesel cylinder via the 
transfer duct. -This air scavenges the exhaust gases 
from the diesel cylinder, replacing them with fresh 
air. The mixture of exhaust gas and some scavenge 
air is stored in the exhaust receiver for subsequent 
delivery to the turbine at an almost constant rate. 

5. Further movement of the piston is resisted by 
the increasing pressure in the bounce chamber along 
with piston ring friction forces and it finally comes 
to rest at its outer dead point (OOP) position. 

6. The high-pressure bounce air, coupled with the 
air trapped in the clearance volume of the com­
pressor chamber, supplies the necessary energy to 
return the piston to its inner dead point (lOP). 

7. On the return stroke, compressor pressure 
decreases to just less than atmospheric pressure at 
which point pressure-sensitive suction valves open 
admitting air from the surroundings to recharge the 
chamber. 

8. As the exhaust ports close, the air trapped in 
the diesel cylinder is compressed in readiness for the 
next combustion. 

9. The reducing pressure in the bounce cylinder is 
prevented from falling below a desired minimum 
value by supplying air from some reference source. 
Such makeup is required to replace leakage from the 
bounce eylinder. This cylinder is used as the 
primary means of controlling piston motion. This 
completes the cycle. 

In the absence of a crankshaft, starting of the 
engine is accomplished by locking the piston in a 
position close to the normal outer dead point (OOP) 
position and charging the bounce cylinder with air 
at a high pressure. Release of the piston produces 
a rapid-inward movement which compresses air in 
the diesel cylinder in preparation for injection of the 
fuel. 
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Figure 3c. Analog circuits. Time scale 400: 1. 

DIESEL CHAMBER EQUATIONS is obtained for diesel pressure 

Solving for the diesel pressure, PD, during the 
polytropic expansions when the ports are closed, 
and no combustion is occurring, requires solution 
of the equation 

(PD) vn = const 

If the expansion and compression processes are 
assumed to be isentropic, then this equation be­
comes: 

(PD) y'Y = const 

where'Y = cp / Cv for the gas, 
cp = specific heat at constant pressure, 
Cv = specific heat at constant volume, and 
y = effective diesel cylinder length uncov­

ered by the piston. 

Differentiating this equation, a first-order equation 

d (PD) - 'Y(PD) dy 
dt" = y dt 

(1) 

Although it is known that 'Y is a function of tem­
perature and hence varies in magnitude during the 
expansion and compression processes, a suitable 
mean value is used to simplify the simulation. Such 
approximations are common in engine calculations 
and are normally quite acceptable. 

Comparator circuits and patchable logic are used 
to detect when isentropic expansion or compression 
should be taking place, i.e., when Eq. (1) is valid, 
and the integrator of Figure 3b which generates 
(PD) from Eq. (1) is kept in the hold mode at all 
other times by this logic. Since the inward isen­
tropic compression is of air, and the outward isen­
tropic expansion is of hot gas, both at quite dif­
ferent mean temperature levels, a separate value of 
'Y is used in each case. 
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Figure 4. Comparitors and converters. 

The assumed indicator diagram for the diesel 
cylinder is shown in Fig. 7a.As seen in the program 
flow chart of Fig. 6, the simulation is halted at the 
lOP and OOP piston positions. At the lOP posi­
tion, combustion occurs which causes an instan­
taneous pressure rise followed by a constant pres­
sure expansion before isentrqpic expansion occurs. 

When the exhaust ports open, the diesel pressure 
falls to the exhaust receiver pressure, and this drop 
is assumed to occur exponentially. 

COMPRESSOR CHAMBER EQUATIONS 

By similar arguments, the 'isentropic portions of 
the compressor cycle are described by solving 

d(PC) - 'Y(PC) d(yc) 
---;Jt = y c dt 

(2) 

where PC = compressor pressure and Yc effective 
compressor chamber length uncovered by the 
piston. 

Again, suitable logic is used to detect when Eq. 
(2) is valid and the circuit of Fig. 3c results. The 
compressor chamber indicator diagram is shown in 
Fig. 7b. On the inward stroke, isentropic expan­
sion of the clearance volume air occurs until the 
compressor pressure is just less than atmospheric 
pressure, causing the suction valves to open and 
admit air. For the remainder of this inward stroke, 
PC is constant and is given by 

PC = 0.95 P atm 

where the factor accounts for suction valve: pressure 
drop. 

On the outward stroke, isentropic compression 
occurs until the compressor delivery valv,e leading 
to the transfer duct is open, at which time we have 

PC = 1.13 P del 

where P del = exhaust receiver pressure, and the 
factor accounts for pressure drops through the 
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compressor delivery valves and the intake and ex­
haust ports of the diesel. 

Provided the exhaust receiver is large compared 
with the swept volume of the diesel cylinder (of the 
order of 3 times), it can be assumed that P del is con­
stant over that portion of the cycle when the ex­
haust port is open, without sacrificing accuracy. 
(In the actual engine, Pdel changes in the order of 
5% over a complete engine cycle.) 

BOUNCE CHAMBER EQUATIONS 

The bounce chamber indicator diagram is shown 
in Figure 7c. This chamber acts essentially as a 
pneumatic spring in which leakage from the cham­
ber results in a pressure loss during the cycle. This 
leakage, which occurs past the piston sealing rings, 
is proportional to the instantaneous bounce pres­
sure in the chamber. Thus the equation to be solved 
IS: 

d(PB) -A{PB) d(Yb) _ a(PB) 
~ = Yb dt 

~ ~:~:o----D htll ==p>---+--+---10 DHOLD 

:::o----D "iJ------O DRESET 

DIESEL CYLINDER 

DHOLD = EXH + MH + CPC·VOT 
DRESET = MR + SET·VDT 

INL~ 
VDT . MHo-_-+----+-____ ~ CHOLD 

ATM 
MR VDT 0 0 CRESET 

COMPRESSOR CYLINDER 

CHOLD = INL'VDT + ATM·VOT + MH 
CRESET = MR 

(3) 

where PB bounce chamber pressure, 
Yb effective bounce chamber length un­

covered by the piston, and 
a leakage factor. 

When, due to leakage, the bounce pressure drops to 
below a desired bounce reference pressure, PBREF , 

the bounce chamber is connected t~, a reference 
pressure source by a pressure sensitive valve to hold 
the minimum bounce chamber pressure constant. 

The analog circuit generating PB is shown in 
Fig.3c. 

PISTON DYNAMIC EQUATIONS 

The forces acting on the piston are due to the 
pressures in the various chambers along with piston 
ring friction. For dimensions in inches, piston mass 
(m) in slugs, and pressure in pounds per square 
inch, the equation describing piston motion is: 

=D-~BHOLD 
MR 

O--------Q BRESET 

BOUNCE CYLINDER 
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BRESET = MR 

MR 

SET~PRESET 
VOT MH~PHOLD 
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PHOLD ,= MH 
PRESET = SET·VTIT + MR 

VDT 

MASTER 
HOLD = MH 

(4) 

ANALOG OR DIGITAL HOLD 
MASTER MODE 

CONTROL 
MASTER 

RESET = MR 

~:~_J'\B 
PEX ~T.PEX 

EXHAUST TIME CONSTANT 

0.-0--0 
ANALOG OR 

DIGITAL RESET 

Figure 5. Control logic. 
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where PNB 

ACBK 

negative bounce chamber pressure 
(constant), 
cross-sectional area of· negative 
bounce pist~n surface, 

Ad cross-sectional area of diesel piston 
surface, 

Ae cross-sectional area of compressor 
piston surface, 

A b cross-sectional area of bounce 
piston surface, and 

Fe frictional force (assumed constant). 
The scaled equations and analog circuit are shown 
in Fig. 3a. 

MOOE SWITCHING LOGIC 

The logic signals necessary to control the simula­
tion are obtained by use of the comparators of 
Fig. 4. The mode switching for the compressor and 
bounce chambers are relatively straightforward, and 
the logic is shown in Fig. 5. The diesel pressure 
circuit is perhaps less so, and will be used as an 
example of how the mode switching conditions are 
obtained. 

From Fig. 7a, and starting at the OOP position, 
the diesel pressure is equal to that existing in the 
exhaust receiver (i.e., Pdel ) alild remains at this pres­
sure until the exhaust port is closed. Thus the diesel 
integrator is in the hold mode whenever the follow­
ing is true: 

VOT·EXH (5) 

When EXH is no longer true (port is closed), the 
pressure increases adiabatically until lOP is reached; 
i.e., until the velocity changes sign. This sign change 
is used to put the whole simulation in hold while 
the combustion calculations are made. Thus condi­
tion (5) must be OR'ed with master hold (MH). 
The new diesel pressure at lOP resulting from the 
constant volume portion of the combustion (as 
described in the Appendix) is established as an 
initial condition input to the diesel pressure in­
tegrator through converters, and this integrator is 
placed in reset by use of a SET signal from the 
digital computer. Since this SET signal is also used 
at OOP to reset the period measuring integrator, 
and to allow for engine starting, the reset condition 
on the diesel integrator is given by: 

ORESET = SET· VOT + MR 

where M R is the master reset condition. 
If some constant pressure combustion, as de­

scribed in the Appendix, is to take place, then the 

voltage Y3 is output to the CPC comparator, and 
CPC is true during this constant pressure portion 
of the expansion. Thus the integrator is also in hold 
whenever the following is true:' 

CPC· VOT (6) 

When CPC is no longer true, Eq. (1) is integrated to 
give the isentropic expansion until the exhaust port 
is again opened, at which time the pressure de­
creases exponentially to the exhaust receiver pres­
sure. This exponential pressure decrease is achieved 
by placing the diesel integrator in hold and, at the 
same time, switching a resistor around the integrat­
ing capacitor until the delivery pressure P dill is 
reached. This is achieved by a relay driv,en by the 
logic signal B where 

B = EXH . VOT . PEX 

Parameter Inl~' 

~ 
Type In 

Ambient Conditions 
Efficiencies , And 

Same Geamlttry 
Data 

Figure 6. Simplified program flow chart. 
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Figure 8. Engine and simulation comparison. 

The complete diesel integrator hold condition is 
given by: 

DHOLD = EXH + VDT . epe + MH 

DIGITAL PROGRAM 

A simplified flow chart for the digital program is 
shown in Fig. 6. The program is entered, and initial 
conditions are established on the analog console for 
proper starting under specified environmental con­
ditions. Problem running is controlled by a break­
point switch (No.1) which, at any time, can return 
the simulation to the starting conditions. The 
engine is. started with the piston at the ODP posi­
tion. After the inward strqke, the program causes 
the analog console to go to hold at the IDP position 
after which the combustion calculations of the 
Appendix are performed. The program then re-

leases the analog to operate until it is again put to 
hold at the ODP position for the mass flow calcula­
tions. Monitoring information type-outs are con­
trolled by a breakpoint switch (No.2). 

RESULTS 

The performance data available from actual 
measurements on a specific engine are shown in 
Fig. 8. The geometry data and ambient envilron­
mentaf conditions were established on the simula­
tion, and the combustion efficiencies, friction co­
efficient, leakage and heat transfer coefficients were 
calculated based on measurable quantities and 
estimates of the engine properties at the: time: the 
results were obtained. These quantities wt!re further 
adjusted by a few percent to obtain the comparisons 
shown in Fig. 8. 
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Since it is the purpose of the simulation to facili­
tate the design of control hardware to control the 
engine under transient conditions, some means of 
evaluating the simulation under transient conditions 
would have been most useful. As can be appre­
ciated, however, transient behavior of the engine 
would involve measurements which are extremely 
difficult if not impossible to obtain, and it was 
possible to make only qualitative comparisons be­
tween the engine and simulation under these con­
ditions. Figures 9 and 10 are examples of the simu­
lation data which allowed these qualitative com­
parisons to be made. In particular, the transient 
during start-up, when an operator familiar with the 
engine also attempted simulated runs, allowed us to 
conclude that the simulation was adequate for the 
purposes of the intended control studies. 

PC 

50 
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30 

20 

10 

Exhaust Volume YSO Actual Size 

1.0 20 3.0 

Appendix 

DIGITAL CALCULATIONS 

The Combustion Model 

The diesel cycle assumed is a modified form of the 
limited pressure cycle. This cycle assumes that heat 
release occurs in two distinct phases: 

1. At constant volume, the pressure rising 
to a defined maximum pressure; 

2. At constant pressure, the volume in­
creasing until all the remaining fuel 
energy~expended. 

To describe the combustion process the following 
assumptions are made. 

4.0 5.0 6.0 y 

Figure 9. Compressor start-up transient. 
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Figure 10. Velocity and acceleration. 

• The gas is ideal obeying PV = mRT. 
• The specific heats for constant volume 

Cv, and constant pressure Cp , are con­
stant and related by 

Cp - Cv = R/J 

where J = Joule's constant. 
• All losses due to combustion inefficiency, 

leakage, and heat transfers can be con­
tained in a single constant efficiency fac­
tor 11c' 

Under these conditions, and referring to Fig. 7a, 
an energy balance between states (1) and (3) for an 

amount of fuel F of calorific value k is giv1en by: 

F k 1Jc = mCv (T2 - T I ) + mCp (T3 .- T2) 

Using the ideal gas law, the above can be reducc;!d to 

Y3 = (lOP) + ~ [ks F - (IOP)(P2 - PI)] (A. 1) 
P2 l' 

where ks = k 1Jc R . This equation forms the basis 
CpAd 

for the assumed combustion process, and is usc;!d as 
follows: 

1. If PI > POOM, where POOM is some: 
defined pressure, then all combustion is 
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assumed to occur at constant pressure 
and (A.I) reduces to 

2. If PI < POOM, then P2 is calculated 
assuming all the fuel is burnt at con­
stant volume. If the resulting calculated 
pressure is less than POOM, then no 
constant pressure combustion is 
achieved, i.e. Y3 = O. If this calculated 
pressure is greater than POOM, then P2 

is set equal to POOM, and the resulting 
Y3 is calculated using (A. 1 ). 

Exhaust Mass Flow Model 

The engine performance is measured in terms of 
the exhaust gas mass flow and its mean tempera­
ture and pressure. These properties are determined 
by applying I) the continuity equation, 2) the energy 
equation, and 3) the turbine nozzle characteristic 
equation to a simple model of the gas exchange 
process. 

The gas delivered to the receiver is given by 

(A.2) 

where kl RL Ps Ao 
Ys stroke length during which the com­

pressor suction valves are open, 
Ps atmospheric air density, and 
RL leakage factor. 

The delivery temperature of the exhaust gas is 
determined from an energy balance of the complete 
engine. This results in the equation 

where k2 

k2F 
T del = Tamb + -k 

IYs 

c 
c = average specific heat, 
F = cyclic fuel input, and 
Tamb = ambient temperature. 

(A.3) 

Solution of the actual gas transfer dynamics dur­
ing gas exchange was prohibited by the lack of 
sufficient hardware to cope with the complex, non­
linear equations describing these processes. Instead, 
a simple model was assumed in which delivery of 
gas to the receiver occurs instantaneously at OOP. 
This assumption, though evidently unrealistic, is not 
considered to materially affect the results, particu­
larly on a cycle basis. 

Oelivery of the exhaust pulse to. the receiver re­
sults in the equations 

. Mnew 

from which 

M + M del 

MT + M del Tdel 

Mnew 

P _ MnewRTnew 
new - V 

(A.4) 

(A.5) 

where M = mass in receiver immediately before 
delivery of the pulse, 

T = temperature of the gas in the receiver, 
immediately before delivery of the 
pulse, 

R = gas constant, and 
V = receiver volume. 

The mass flow rate leaving the receiver is gov­
erned by the characteristic equation of the nozzle. 

This mass flow rate, M, can occur governed by 

I) subcritical flow: [P;m] > (:.y ~ Ir~ I (A.6) 

2) critical flow: [P;m] ~ (:.y ~ Ir I (A.7) 

where sub critical flow is given by 

2 

2g (~\.~.(Patm)-:Y 
R :r-I/T P 

(A.8) 

and critical flow by 

where DN = nozzle diameter, 
g = gravitational acceleration, and 

Patm = atmospheric pressure, to which noz­
zle is discharging. 

If the receiver volume V is large, it can be as­
sumed that the mean receiver pressure during one 
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cycle is given by 

Pmean 
Pnew + Pdel 

(A.I0) 
2 

where P del = pressure in receiver immediately be­
fore next pulse. 

Calculating IV! from (A.7), (A.8) and (A.9), where 
P = P mean, T = Tnew , the remaining mass is 

M = Mnew - IV!Perd (A. II ) 
and 

MRTnew 
Pdel = V (A.I2) 

where Perd = cyclic period of the piston. 

These equations are solved iteratively for each 
cycle to obtain the corresponding nozzle mass flow 
M, mean pressure Pmean and temperature Tnew. 

Gas Horsepower and Specific Fuel Consumption 

The gas horsepower is defined as the horsepower 
available from exhaust gas when expanded through 
an ideal turbine. Thus: 

(A.13) 

where k4 = cp J /550. The corresponding specific 
fuel consumption is 

3600F 
SFC = Perd(GHP) lb/GHP hr 
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HYBRID ANALOG/DIGITAL TECHNIQUES FOR 
SIGNAL PROCESSING APPLICATIONS 

Thomas G. Hagan and Robert Treiber 
Adage, Inc., Boston, Massachusetts 

INTRODUCTION 

This paper describes a number of hybrid tech­
niques, most of them developed as applications for 
the AMBILOG 200 Stored Program Signal Proc­
essor. They are described in fairly general terms, 
since our purpose is to elucidate the techniques, 
rather than to describe specific applications or de­
tailed methods of implementation. 

The signal processing operations here considered 
involve the use of analog and hybrid operators 
which operate simultaneously upon a number of 
analog and digital operands. A stored program 
controller controls the array of parallel operators 
and provides for the transfer of operands back and 
forth between the operator array and core memory. 
The AMBILOG 200 system is specifically organized 
to perform these control and transfer operations ef­
ficiently. Since its organization for these purposes 
has been described in a previous paper, 1 we shall not 
discuss it further here. 

In many signal processing applications, time is of 
the essence. The term "signal" itself, as we use it 
here, implies that the dimension of time is signifi­
cant. The signals operated upon by the various 
processing techniques described below are often in 
analog form at some point. Although ease of ac­
commodating both analog and digital signals as 
inputs and outputs is indeed an important virtue of 
the hybrid approach, its validity depends upon the 
amount of processing it affords per unit time per 
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unit cost, not upon whether the signals to be proc­
essed happen to occur in analog form. Indeed, in 
many of those cases where hybrid techniques are 
appropriate, both input and output data are in 
digital form. 

As we shall see in several instances below, the 
performance advantage afforded by the hybrid tech­
nique (as compared with an all-digital approach 
using a conventional sequential stored program 
system) results from the high degree of parallelism 
achievable at relatively low cost. For a technique 
involving use of multiple parallel arithmetic opera­
tors i,n conjunction with a sequential core memory, 
a very rough "figure of merit" is simply the number 
of arithmetic operations accomplished per fetch of 
an operand from memory. In the operation of a 
conventional highly sequential digital computer, a 
maximum of one arithmetic operation per fetch of 
an operand from memory is usually the limit. In the 
hybrid techniques we discuss below, many arithme­
tic operations can usually be accomplished per 
memory fetch-5, '10, or even 100 or more. 

WAVEFORM MEASUREMENT 

We use the term waveform measurement to sig­
nify the measurement of various waveform param­
eters based upon axis crossings, peak values, slope 
maxima and minima, discontinuities, and other 
such singularities. The effectiveness of hybrid tech­
niques for such measurements is illustrated by a 
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Figure I. Time intervals I between threshold crossings of a signal. 

method that has been used for the determination 
of histograms of threshold crossing intervals of a 
speech waveform. The problem (see Fig. 1) is to 
monitor an analog waveform derived from a micro­
phone, to measure the time intervals between 
successive positive-going crossings through an arbi­
trary programmable threshold value, and, by count­
ing the number of intervals ~hat occur for each of a 
number of different interval lengths, to develop a 
histogram (in memory) which can be plotted to 
show number of intervals versus interval length. 

The measurement of interval length could be ac­
complished by connecting an A-D converter to a 
digital computer and executing a program that in­
cluded steps necessary to increment a counter, per-

form an A-D conversion, transfer the result from 
the A-D converter into the computer, subtract the 
threshold value from the A-D converter result, and 
then test for sign of the remainder. Resolution of 
the interval length -measurement would be limited 
by the length of time required to execute these st1eps. 

A hybrid technique that has been used to accom­
plish this operation with fewer program steps is 
shown in Fig. 2. The threshold value is transferred 
to a DAC, whose output is thenceforth subtracted 
by analog means from the analog input signal. The 
difference signal feeds an axis crossing detector, 
whose output is monitored by a sense lin~:! testable 
by the program. The "inner loop" which limits 
resolution of the interval measurement need only 

DAC 
DIGITAL 

~-- THRESHOLD 
VALUE 

SUMMING 
AMPLIFIER 

ANALOG 
AXIS CROSSING 
DETECTOR 

I....-____ ~ DIGITAL OUTPUT LEVEL 
TO SENSE LINE OF 
STORED PROGRAM CONTROLLEH 

Figure 2. Hybrid technique for measurement of time intervals between threshold crossings. 
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contaih program steps for testing the sense line, 
incrementing a counter, and closing the loop. A 
program written to implement this technique, which 
also provided for testing the counter and exiting 
from the inner loop when the count reached a pre­
scribed limit, resulted in interval measurement 
resolution of less than 16 microseconds. 

Waveform measurement techniques of this gen­
eral type have been successfully applied to the real­
time analysis of multichannel physiological signals 
including electrocardiograms (ekg), vascular pres­
sures, and breathing waveforms.2 

R 

DIGITAL VALUE REGISTER 

where x I through Xn comprise a set of input signals, 
YI through Yn are output signals, and aoo through 
amn are coefficients in the transformation matrix. 
Each output signal Y is achieved by summing the 
appropriately weighted input signals x. 

A hybrid technique for accomplishing this trans­
formation is illustrated in Fig. 4. Digital coefficients 
can be loaded under stored program control into 
storage registers contained in the hybrid multiplying 
elements (HME's). 

The HM E's thenceforth provide the weighting or 
multiplication function by multiplying the analog 

etc. 
R 

eout 

{ Contents = N } J 
\'----~ 

SIGN BIT VALUE {lis Complement for 
Negative Numbers} 

Figure 3. A hybrid mUltiplying element (HME) for multiplying an analog signal by a digital coefficient. 

LINEAR TRANSFORMATION 

Numerous measurement and simulation prob­
lems require a signal processing technique to im­
plement the linear transformation implied by the 
equations: 

input by the stored coefficient. The weighted out­
puts are analog signals which can be summed with 
summing amplifiers. The diagram of an HME is 
shown in Fig. 3. 

The hybrid technique achieves a high "figure of 
merit" for the linear transformation operation in 
that once the coefficients of the transformation 
matrix have been fetched from memory and loaded 
into the array of DAC's and HME's, the parallel 
array can perform the equivalent of a very large 
number of multiply and add operations as the input 
analog signals vary. 
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Figure 4. A hybrid array for performing linear transformations. 

SPATIAL COORDINATE 
TRANSFORMA TION 

The array shown in Fig. 5 can be used to ac­
complish transformation of spatial coordinates. 
The three analog input signals x,y,z represent the 
coordinates of a point irt one coordinate system; 
the three outputs x',y',z' represent the coordinates 
of the same point in a different coordinate system, 
displaced and rotated with: respect to the first one. 

Motion of the coordinate systems with respect to 
each other entails updating of the transformation 
matrix to reflect changes in displacements and 
angles between the two systems. For a given set of 
values in the transformation matrix, the analog in­
puts are transformed into, appropriate analog out­
puts, and as the inputs vary, the outputs vary. 

VISUAL DISPLAY 

The coordinate transformation method described 
above can be used for performing translation and 
rotation of objects being displayed on a CRT. A 
given three-dimensional object can be represented 
by the coordinates of a set of points in memory. An 
isometric view of the object can be generated by 
calling the points from memory one by one, subject­
ing them to a coordinate transformation, and gen-

erating a picture by connecting straight lines be­
tween points. The viewpoint from which the object 
is seen can be altered by changing the coefficiemts of 
the coordinate transformation to which each point 
is subjected as it is called from memory. Co­
efficients of the transformation matrix remain 
constant throughout the process of generating one 
complete view (frame) of the object. For viewing 
a visual display on a CRT, a frame repetition rate 
of about 30 frames per second is desirable. Using a 
vector generator that develops a line segment con­
necting two points in 30 microseconds, it is possible 
to depict objects representable by drawings consist­
ing of about 1000 straight line segments at a 30-
frames-per-second rate. 

Arbitrary rotation and translation of the object 
viewed requires that the necessary arithmetic opera­
tions to accomplish the coordinate transformation 
be performed for each point in turn. A hybrid ar­
ray suitable for performing the operations required 
for developing an isometric projection of a solild ob­
ject onto a plane is shown in Fig. 6. The output 
variables x' and y' are developed from the input 
coordinates x, y, z by operating upon the inputs 
with a transformation matrix consisting of coef­
ficients loaded into the operator array. Coefficients 
of the transformation matrix are computed once per 
frame and loaded into the array. Thenceforth the 
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Figure 5. An array for coordinate transformation. 

ANALOG 
VECTOR 

HORIZONTAL 

GENERATOR VERTICAL 

Figure 6. Hybrid technique for generation of visual displays with isometric translation and rotation. 

necessary multiplications and additions are ac­
complished as the coordinates for each successive 
point are fetched from memory and loaded into the 
input DAC's. 

Geometrical relations for true perspective repre-

sentation of a three-dimensional object are shown 
in Fig. 7. Coordinates of the object are stored in 
memory in terms of the coordinate system xyz. It 
is desired to display the object on a CRT by plotting 
the projections of points on the viewing plane x' y', 



384 PRQCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966 

Figure 7. Geometrical relations for true perspective display. 

a "window" through which an observer- located on 
the z' axis at I views the object. The coordinate 
system of the object is arbitrarily translated and 
rotated with respect to the coordinate system of the 
viewing plane. A hybrid technique suitable for de­
termining x" and y" is illustrated in Fig. 8. Co­
ordinates of the point xyz in the object are trans­
formed into the quantities lx', Iy' and I + z'.­
Analog division is then used to produce x" and y", 
coordinates of the intersection of the line of sight 
(between observer and object) and the plane of the 
window. Again, an analog vector generator con­
nects successive points to generate a line drawing. 

x y z 

For "continuous" (to the eye) motion of the dis­
played object, coefficients in the matrix must be re­
computed for every frame. With inputs in the form 
of translations, (m, nand p) and angles (or direction 
cosines) between the two coordinate systems, the 
coefficients can be computed in less than 500 micro­
seconds. With a 30-microsecond vector generator, 
therefore, objects represented by more than 1000 
line segments can be displayed at 30 frames per 
second. For each fetch of the three operand values 
x, y and z representing a point, the hybrid array 
performs nine multiplications, 12 additions, and 
two divisions-slightly more than seven arithmetic 
operations per operand fetch. 

FUNCTION GENERATION 

Hybrid techniques have proven themselves es­
pecially useful for the generation of arbitrary func­
tions of one or more variables. Various methods 
have been worked out, including techniqw:::s in 
which quadratic or cubic interpolation is achieved 
at high speed by using hybrid arithmeti~:; elements 
in parallel to accomplish evaluation of the poly­
nomial algebraic expression required for the inter­
polation. For most applications, straight-line 
approximations to arbitrary functions are satis­
factory, however. When a function is: approxi-

ANALOG 
VECTOR 

GENERATOR 

Figure 8. A hybrid technique for generation of visual displays in true perspective with arbitrary translation and rotation. 
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mated by a series of straight lines, the input/output 
relation is simply 

Y = mx + b 

with different values of m and b for each line 
segment. 

In one method for generation of an arbitrary 
function of one variable, different values of m and b 
corresponding to different line segments are stored 
in a table in memory. The input signal x is moni­
tored periodically to determine which region it is 
within. When x is found to have moved into a 
region corresponding to a new line segment, the ap­
propriate new values of m and b are transferred 
from memory into an HME and DAC, whose out­
puts are summed to produce y. 

This basic technique for establishing an arbitrary 
nonlinear relationship between an analog input and 
an analog output can be extended in various ways to 
accommodate functions of two or more variables. 
A number of different methods have been explored 
by Chapelle,3 which are based upon hybrid tech­
niques for linear interpolation between break­
points, resulting in a series of discrete outputs be­
tween breakpoints. One of several methods 
developed for use with the AMBILOG 200 is sim­
ilar to Chapelle's techniques; however, it provides 
a continuous output between breakpoints, elim­
inating errors due to the discrete steps and the 
delays encountered in signal conversions from ana­
log to digital and back again. To accomplish this, 
the independent variable is used directly in the ana­
log domain in order to obtain the appropriate in­
terpolating factors. 

Consider a function of two variables F(x,y) 
whose values at equally spaced breakpoints in x and 
yare known. Using double linear interpolation, 
the expression for F(x,y) is: 

F(x,y) = Fn.n 5x 5y + Fn,n+ I ~Oy 

+ Fn+l,nOx5y + Fn+l,n+IOxOy 

where Xn < x < Xn+1 

Yn < Y < yn+1 

and Ox 
x - Xn 

Xn+1 - Xn 

Oy = 
y - Yn 

Yn+1 - Yn 

5x = Ox 

5y = - Oy 

The values of F are the values of the dependent 
function at the corresponding breakpoints. The 0 
terms may be considered as interpolating factors. 
Figure 9 shows the case where: 

and 

F(X,Y) 

F(X,Y) 
Foo 

x 

'I 

Figure 9. A function of two variables F(x.y) with equally 
spaced breakpoints. 

For this case, the bounding values of the inde­
pendent variables, i.e., xo, x I, Yo, and Y I are de­
termined programmatically by monitoring x and y. 
By means of DAC's, the values of Xo and Yo are 
transmitted to the analog computing elements 
where the 0 products are developed as shown in 
Fig. 10. These 0 products are then returned as in­
puts to the array of HME's. The HME's are 
loaded with the digital values of the dependent 
variable at the breakpoints in order that each may 
compute one term of the equation for F(x,y). 
These four HME outputs are summed to obtain the 
desired result, F(x,y). As shown in Fig. 10, the 
eight 0 products may be applied to other sets of 
HME's to obtain other arbitrary functions of the 
input variables x and y. 

Note that as long as 

XI < X < Xo and 

continuous interpolation takes place. This sig­
nificantly relieves the stored program processor of 
the major computing chore normally associated 
with hybrid function generation. The primary 
tasks of the AMBILOG 200 System Control Unit 
in performing function generation using this 
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Figure 10. Generation of a function of two variables. 

technique are: 

1. Bracketing or locating the independent 
variables with breakpoints; 

2. Fetching the appropriate values of the 
dependent variables at the breakpoints 
and loading them into the HME's; and 
finally, 

3. Monitoring the independent variables 
to detect the crossing of breakpoint 
boundaries. 

This technique, illustrated for a function of two 
variables, applies equally well in the general case of 
a function of n variables. In this case, there are n 
independent variables and 2 n terms in the equivalent 
algorithm corresponding to the 2 n values of the 
dependent variable which must be interpolated to 
obtain F(x I, X2, X3 ••• xn). 

It is worthwhile noting that the technique utilizes 
the value of the dependent variables at breakpoints 
directly. This is desirable because 1) the breakpoint 
data may be used without modification, and 2) the 
dependent variable tables occupy a minimum of 
core storage. Furthermore, the continuous inter­
polation between breakpoints minimizes errors and 
reduces the computing load on the AMBILOG 200. 

Typically, utilizing the above technique with the 

AMBILOG 200 in performing an aerodynamic 
simulation involving force and moment c~quations, 
10 functions of two variables may be computed in 
less than one millisecond. This capability re:pre­
sents a significant improvement over conventional 
techniques and in practice allows for faster-than­
real-time simulation of many problems. This faster­
than-real-time capability in turn enhanc(:s the use 
of statistical parameter search techniques in simula­
tion studies. 

CONVOLUTION 

Convolution and correlation operations provide 
another fruitful area for application of hybrid tech­
niques. A hybrid method for performing convolu­
tion integration is shown in Fig. 11. An eight-term 
weighting function is loaded into a set of HME 
registers. The HME analog inputs an: derived 
from DAC's whose flip-flops are interconnected as 
shift registers. Successive samples of a digitized 
signal are fed into the first DAC. With each new 
sample, all DAC values shift right one position, so 
that successive samples are stepped sequentially 
through the shift register array. Eight cross prod­
ucts are multiplied and summed simultaneously 
each time a new sample of the input signal is taken. 
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TO OTHER HME's, CONTAINING OTHER WEIGHTING FUNCTIONS 

Figure II. A parallel array for convolution operations. 

A new sample can be entered about every 10 
microseconds, so the array shown has a multiply j 
add rate of about 800 kc. That rate can be in­
creased by expanding the array, either by adding 
more DACjHME pairs, or by adding more rows of 
HME's. Overall multiply jadd rates of 10 mega­
cycles or more are practical. 

INTERCONNECTIONS 

In each of the cases above where multiple op­
erators are useful in parallel, a specific interconnec­
tion of analog signal paths between elements is 
shown. The techniques illustrated can indeed be 
implemented by permanently interconnecting a set 
of operators, which then become committed to per­
forming only those operations implied by the inter­
connections. However, the approaches illustrated 
here do not necessarily entail permanent com­
mitment of the operators to specific tasks. In fact, 
the opposite is usually the case, and in actual im­
plementation considerable flexibility of interconnec­
tion is achieved, sometimes by means of patch pan­
els and more generally under fully programmatic 
control. 

For arrays numbering 16 or 24 operators, the 
highly desirable flexibility of fully programmatic 
control of analog interconnections among opera­
tors in the array is economically feasible. Inter­
connections are established by signal steering 
elements which consists of digitally controlled, 
solid state, precision analog switches. To allow 
for all possible interconnections of n operators, 

n(n - 1) switches would be required. For arrays of 
about 24 operators of two or three different types, 
very little loss of generality results if the number of 
switches used is reduced by Y2 or even %. Thus, 
use of about 200 digitally operated analog signal 
steering switches permits very general stored pro­
gram control of an array of 24 operators. 

Actual applications of some of the techniques 
described above have involved use of parallel arrays 
of more than 100 operators. In those cases, some 
of the operators in the array are interconnected 
by high-speed programmable signal steering 
switches, supplemented by conventional analog 
computer-type patch panels which provide means of 
interconnection combining economic feasibility 
with a fair degree of flexibility. 

CONCLUSIONS 

A number of signal processing techniques have 
been developed, based upon the use of multiple 
analog and hybrid elements operating in parallel, 
all under close stored program control. They have 
proven both feasible and useful for a variety of 
applications. 

In particular, the same basic array of PAC's, hy­
brid multipliers, and summing amplifiers, all or­
ganized to evaluate sums of cross products, has 
been shown to be useful for generalized linear trans­
formation, spatial coordinate transformation, gen­
eration of visual displays of three-dimensional 
objects in true perspective, generation of functions 
of two or more variables, and convolution and cor-



388 PRO,CEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

relation operations: Depending upon the nature of 
the problem and the extent of the array, multiply / 
add operations at overall rates up to about 10 mil­
lion per second are possible with present-day com­
ponents. 

Comprehensive, high-speed, programmatic con­
trol of analog interconnections among operators in 
an array is feasible for arrays of up to about 24 
operators. Beyond that number, analog computer 
patch panels are generally used. Systems with over 
100 operators of the DAC and hybrid multiplier 
types are being built, and in ,fact are not uncommon. 

Various applications of the AMBILOG '. 200 
Stored Program Signal Processor have provided 
considerable experience with hybrid techniques 
of the general type discussed in this paper. . That 
applications experience n~w includes ~eal-time 

acquisition and analysis of seismic waveforms, real­
time analysis of physiologicill signals from postop­
erative heart surgery patients, speech analysis, sonar 
analysis, wind tunnel data reduction, flight test 
telemetry data reduction, aerospace vehicular sim-

ulation, and simulation in real time of a secure 
speech communication system. 
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INTRODUCTION 

The recent availability of hybrid computers to the 
simulation engineer has made possible the solution 
of many complex reactor models that hitherto had 
to be either crudely approximated, or else required 
extremely long solution times on all-digital ma­
chines. Using the high speed of the parallel analog 
equipment and the logic and storage capabilities of 
a digital computer has meant that single blocks of 
analog equipment can be time-shared where phy~i­
cal similarity exists between process modules result­
ing in large savings in both analog equipment and 
running time. 

We have written this paper to describe the simula­
tion of a distillation-reactor column which, because 
of plate-to-plate similarity, has natural advantages 
when multiplexing a single analog tray mode~ 
throughout the column. 

Experience has shown that such a simulation can 
be run at approximately 120 times plant time so that 
one minute of computer time becomes equivalent to 
two plant hours. With variable amplitude scaling 
built into the simulation, large dynamic ranges in 
the magnitudes of the concentrations can be 
handled so that a complete system start-up can be 
studied. Because of the exothermic reaction, run­
away effects were' possible, and a study of the dy­
namics of the column was important both from a 
control and efficiency point of view. 

389 

The basic simulation embodies continuous analog 
representation of the reboiler and condenser which 
interact with a digital simulation of the column. In 
order to solve the plate dynamics at sufficiently high 
speed, an analog subroutine was used to model one 
plate and then switched at high speed up and down 
the 26 plates in the column. Sinc~ the digital pro­
gram entailed mainly storage and logic operation, a 
relatively unsophisticated computer would suffice 
together with adequate analog to digital and digital 
to analog data channels. 

GENERAL DESCRIPTION OF PROCESS 

A schematic of a typical system which might be 
simulated is shown in Fig. 1. The main piece of 
equipment in the process would be a conventional 
distillation column having 26 trays. Reaction as 
well as separation is carried out in this column 
where the bottom 20 trays constitute the main re­
action zone. The feeds to the column consist of 
two liquid reactants, A and B. Reactant B is intro­
duced on the 20th tray while reactant A is intro­
duced on the 2 i st tray. 

A and B react together to form products C and D 
according to the reversible equation 
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Figure 1. Schematic of the system. 

The reaction is moderatety exothermic and the 
rate constants, kF and kR obey the Arrhenius rela­
tionship 

k = Ae- B/ T 

The vapor flow leaving the top tray (#26) is sent 
to a partial condenser which ,further purifies the by­
product D, and provides liquid reflux to the top 
tray. The vapors leaving the partial condenser are 
sent to a total condenser and then to liquid storage 
tanks. The heat required to provide the column 
boilup is supplied through a shell and tube heat 
exchanger (reboiler) by condensing steam on the 
shell side. Liquid product is removed from the bot­
tom of the column. Reactant A is added in excess 
and removed with product C together with trace 
quantities of reactant B. By-product D is so volatile 
relative to the other components, that its concen­
tration in the bottoms is very small. Conversely, 
the concentration of Band C above the feed plates 
is also very small. The six trays above the main 

reaction zone constitute a clean up zone to separate 
reactant A and by-product D. 

A tentative control scheme is also shown in Fig. 1. 
The temperature on plate #25 controls flow of cool­
ing water to the partial condenser. Temperature on 
plate #3 controls the feed flow rate of reactant A. 
The feed flow rate of reactant B is flow controilled. 
The column pressure drop controls steam flow to 
the reboiler. The level in the bottom of the column 
controls the bottom's flow rate. 

MATHEMATICAL MODEL OF 
THE PROCESS 

In order to simulate the process, a realistiic mathe­
matical model must be developed to describe the 
pertinent physical phenomena which are taking 
place. 

The principal equations used to describe the tray 
are statements of the material and enthalpy bal­
ances, vapor-liquid equilibrium and reaction kinet­
ics. 
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Each component is described by a difference 
equation of the form: 

! [M"X~] = L"+IX~+I + v,,-I Y~-I 
- L"X~ - v" Y~ (±) R" + F~ 

(1) 

where M" = liquid hold-up on the nth tray (moles), 
Y~ = mole fraction of ith component in va­

por leaving nth tray, 
L" = liquid flow rate leaving nth tray (moles 

/unit time), 
v" = vapor flow rate leaving nth tray (moles 

/unit time), 
R" = rate of production (or consumption) of 

component due to reaction, and 
F~ = feed rate of the ith component (if any) 

on to nth tray. 

These material balance equations are solved for 
the individual component hold-up M"X~. 

The total material balance is written as: 

(2) 

Enthalpy balance provides the total enthalpy 
hold-up on a tray by: 

- L"C" T" - v"H" + dHR" 
(3) 

where T" = temperature on nth tray rC), 
e" = average specific heat of liquid on' nth 

tray (PCU /mole DC), 
H" = average enthalpy carried by vapor 

from nth tray (PCU /mole), and 
dH = heat of reaction (PCU /mole). 

The vapor-liquid equilibrium can often be ex­
pressed using Raoult's Law and a plate efficiency 
factor. 

Using a contact value of 0.70 for the plate effi­
ciency, the vapor mole fraction Y~ leaving the tray 
can be related to the vapor mole fraction entering, 
Y~~ I, the equilibrium mole fraction Y~·' by the rela-
tion 

Y~ = 0.7 Y~· + 0.3 Y~_I (4) 

Using Raoult's Law the equilibrium mole frac~ 
tion is obtained by: 

Y~. = P?(T,,).X~ (5) 

where P?(T,,) = vapor pressure of ith component 
on nth tray which is a function of temperature, and 
7r" = total pressure on nth tray. 

The reaction kinetics are described by: 

, r A B X~X~ J 
R" = M"k(T,,} LX" x" - KEQ(T,,) ' 

where k(T,,) = reaction rate constant, and 
KEQ(T,,) = equilibrium constant 

(6) 

Thepn~ssure above the nth tray, 7rn , is equal to the 
pressure above the (n + 1 )th tray plus the pressure 
drop across the (n + 1 )th plate, i.e.: 

(7) 

The pressure drop across the plate is made up of 
the hydrostatic head plus the dynamic drop due to 
the vapor flow. We can assume the weir height is 
large relative to changes in crest over the weir so a 
constant average value, dPo, can be used for the 
liquid seal pressure drop. The dynamic vapor drop 
is a function of the vapor flow rate, which can be 
obtained from the tray manufacturer's data, so 

dP,,+1 = dPo + fCv,,) (8) 

The, main computational difficulty is in determin­
ing the molar vapor flow rate leaving the tray. If the 
equations are solved digitally, an iteration must be 
performed to adjust the vapor flow until the con­
straint equation that the sum of the Y;'s is unity is 
satisfied, i.e.: 

L Y~ = 1 (9) 
i 

In the analog simulation, the constraint is satis­
fiedby feeding the error in this equation into a high 
gain amplifier and calling the output v". The circuit 
rebalances automatically in the operate mode 
through the energy balance and equilibrium rela­
tionships to give the correct value for this vapor 
flow rate. 

HYBRID SIMULATION 

The mathematical model just described for the 
representation of a single plate is fairly simple, but 
well represents the physical behavior of trays. 
Simple as it is however, in mechanizing the equa­
tions computationally, a significant quantity of ana­
log equipment would be utilized. The same applies 
to an all digital simulation but here the important 
parameter denoting feasibility is time. Because of 
the implicit algebraic loops involved, a number of 
iterations are required within a time step so that the 
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analog representation, with effectively instantaneous 
solution of implicit equations, shows to advantage. 

For the analog mechanization, however, a repre­
sentation of a complete distillation-reactor column 
with a full simulation of each tray becomes im­
practical, since the equipment complement required 
could be multiplied by factors ranging from 20-100. 
There are a number of ways to avoid this enormous 
equipment duplication,I,2 but the one we intend to 
discuss is that of time-sharing. Essentially, we want 
to use the high-speed capability of the analog com­
puter which is at its best when solving implicit alge­
braic loops or continuously integrating time­
dependent, nonlinear differential equations. The 
sequential nature of the digital computer suggests 
using an analog single plate ;representation as a sub­
routine, performing the appropriate calculations on 
each plate in turn. 

The solution of a set of differential equations de­
pends on the initial conditions established on the 
state variables and the time history of the forcing 
functions acting on the system. 

Consider the representation of a single plate in 
Fig. 2 where the simulation solves a set of five first­
order, differential equations-Eqs. (1) and (3) above 
-under the influence of adjacent trays, the outputs 
of which may be considered as forcing functions. 
The lower plate acts through the vapor flow and 
there are five functions corresponding to compo­
nent and enthalpy fluxes into the plate. Similarly, 
the plate above only interacts via a liquid flow down 
the downcomer, which again consists of five com­
ponent and enthalpy fluxes. Because of the exist­
ence of feed plates, component and enthalpy feeds 
must also be considered in enumerating forcing 
functions acting on the tray. 

Now we make the fundamental assumption that 
is necessary to allow any sequential solution to be 
meaningful. This assumption is that if the differ­
ential equations representing the plate are allowed 
to integrate for a sufficiently short time, then the 
magnitudes of the forcing functions (fluxes) acting 
on a tray will not have changed appreciably and so 
in a simulation can be held constant. The main 
problem in any simulation ~ecomes the interpreta­
tion of how small a time step is necessary in order 
that the complete solution will adequately represent 
the dynamics of the actual operating column. 

Basing results on a stirred tank time constant 
T (= MIL) one can say that a time step of 0.1 T is 
probably as low as it is necessary to go, and that a 
value of 0.5 T would normally be acceptable for an 
overall check of column dynamics. 

Varying the time step does not influence stability, 
the only effect being to increase solution time when 
very small time steps are chosen since establishing 
initial conditions and determination of end point 
values takes a fixed time determined by the equip­
ment used. 

The operation of the simulation with the assump­
tion of constant forcing functions is to establish as 
analog voltages initial conditions "on the five state 
variable integrators. Component and enthalpy 
fluxes-both vapor and liquid-forcing th,e plate are 
established on to track/store amplifiers and the 
program allowed to integrate for about 0.2 T (say). 
At the end of this time, a hold mode is established, 
and the vapor and liquid fluxes leaving the tray 
determined for use as forcing functions for adjacent 
trays. The new state variable values are also 
measured and these replace the -old values in the 
state variable table which represents the condition 
of the column. 

Each tray can be operated on sequentially from 
bottom to top, thus assembling within the! memory 
of the digital computer a set of tables describing 
both the state variable magnitudes (hold-up) and the 
fluxes between trays, representing coupling or inter­
action. If the operation is repeated again, starting 
from the bottom, each tray will integrate to stt:ady 
state. The whole system will then operate as a dy­
namic representation with a time scale of nT, where 
T is the equivalent integration period of a single 
tray and n is the number of trays operated IOn. 

There are two problems with this approach, 
which are, first, the delay involved in propagation of 
disturbances down the column and, second, the 
dynamic range of the variables over the height of 
the column. 

When the trays are treated sequentially from 
bottom to top (or vice versa) with the st:quencing 
direction maintained, disturbances introduced llnto 
a tray (i.e., at the top) can only propagate down­
wards at a rate of a single tray per sweep. That is, 
an LX calculated on a tray (resulting from an LX 
from the tray above) would not be used, for the tray 
below, until the next upward sweep. Changes in 
liquid or vapor flow rates occur rapidly, compared 
with temperature changes say, because the weir time 
constant can be effectively neglected. Thus an in­
crease in reflux should appear fairly rapidly as a 
higher molar flow into the reboiler, without waiting 
for n sweeps to allow the change to propagate down 
n trays. 

A compromise then, to incorporate faster than 
usual transients, is necessary and is accomplished 
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Figure 2. Interaction of plate with surroundings. 

by sequencing the operating tray first up, and then 
down the column. On the way up VY's computed 
as leaving a plate are used immediately to force the 
tray directly above and on the way down LX's com­
puted as leaving a tray are used to force the plate 
directly below. 

A rather subtle effect appears here in that any LX 
calculated on the way up is never used, being super­
seded by a value calculated on the way down. Simi­
larly, a VY calculated on the way down is super­
seded by one calculated on the way up. Conse-

quently, the forcing function inputs to the nth tray 
are maintained constant for two column sweeps, the 
LX's for down and up sweeps, the VY's for up and 
down sweeps. 

Rescaling is necessary in most columns, since dy­
namic ranges of 104 or 105 are quite common and 
the removal of trace materials usually determines 
the quality of the product. 

Rescaling is only necessary in part of the simula­
tion. If a component goes to zero, the contribution 
to enthalpy balance or total vapor flow is negligible 
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and does not have to be included with high accu­
racy. The accuracy requirement hinges on the cal­
culation of mole fractions in vapor and liquid and 
corresponding changes in component flux into and 
out of a tray. It will be shown in the next section 
that this rescaling operation can be conveniently 
performed by a digital multiplication or division 
which preserves the full pre~ision available. 

In order to maintain. constant scaling in part of 
the problem appropriate attenuation factors are 
switched in and out (with: 0/ A switches) at different 
regions in the column. 

Consider, for instance, the liquid flux 01\0, the 
volatile component (Fig>-3» which could 'l)~ 'scaled 
up from [LyD] leaving ~he 20th tray to [lOLyD] 
forcing the 19th tr.~y by .. ~ 

10 [LYPo] -+ [10 LyD]FORCING 
19 

Similarly, [10 VyD] leaving the top of the 19th 
tray must be scaled down so that 

IN 

l~ [10 LyD]19 -+ [LyD]F02~CING 

OUT 
~ ____________ ~A~ ________________________ ~ 
/ \ 

A(LXA
) 

ANALOG PLATE SIMULATION 

Figure 4 shows the loops controlling the molar 
mass balance for component A on a single plate and 
identical circuits are used to determine molar hold-

22 

19 

18 

Figure 3. Rescaling of volatile componc!nt. 

Figure 4. Main loops controlling mass balance. 
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ups for the other three components. Inputs from 
the digital memory through 0/ A converters are re­
quired for the original molar holdup prior to the 
current integration period, M nX~(O), and also the 
molar fluxes carried by the vapor from below, 
v,,-I Y~-I' and by the liquid from above, Ln+ 1 X~+ I' 
At the end of the integration period the molar fluxes 
out of the tray and the current molar holdup can 
be sampled by the A/D converter and stored in the 
digital memory. 

The equations solved by this section are the mass 
balance 

~ [MnX~] = v,,-I Y~-I - v" Y~ + Ln+IX~+1 

- LnX~ + R~ 

and Raoult's Law for the equilibrium vapor concen­
tration 

where P~ is the equilibrium vapor pressure of com­
ponent A, considered to be a function of tempera­
ture. 

The enthalpy balance is obtained (Fig. 5) in a 
similar way to the mass balance circuit. In addi­
tion however, the molar vapor flow v" provides a 
tight loop because of the large enthalpy carried by 
the latent heat of vaporization. This vapor flow rate 
is obtained by forCing the molar concentrations in 
the vapor phase to add up to unity. Note that 
where components interact, a changing scale factor 
implies a changing gain, so the amplifier inputs 
identified by an asterisk (*) become either relay con­
tacts or digital to analog switches, providing gain 
variation in decade steps. 

The reaction rate constants can also be obtained 
as functions of temperature in this section. The 
reaction rates them-selves are obtained by standard 
logarithmic multiplication of the respective concen­
trations and reaction rate constants and are not 
shown in detail. 

DIGITAL LOGIC AND CONTROL PROGRAM 

The digital computer is responsible for establish­
ing voltages corresponding to inputs to the tray 
simulation and subsequently after an integration 
period reading the results of the computation back 
into memory. 

The basic timing sequence (Fig. 6) consists of a 
repetitive IC/OPERA TE/HOLD cycle which we 
will assume is a 4-msec IC, 8-msec OPERATE and 

4-msec HOLD. The actual times used depend on 
hardware speeds and time scaling, but we believe 
these would be typical. During the IC period, volt­
ages corresponding to inputs from above and below 
the tray are established on track/store amplifiers; 
state variable magnitudes are established on the 
tray integrators. During the OPERATE period, the 
simulation integrates for 8 msec, and this would be 
time-scaled to correspond to about 0.2 M / L. Dur­
ing the HOLD period, the new voltages determining 
tray outputs-vapor and liquid fluxes-and state 
variable magnitudes are read into appropriate slots 
in the tables established in digital memory. These 
voltages are determined by stepping round a multi­
plexer connected to a single analog-digital con­
verter. 

In order to follow the logical control for sequenc­
ing the tray representation up and down the col­
umn, consider Fig. 7. 

Within the digital memory, data tables are de­
fined which are TOP+2 entries long, where TOP is 
the number of plates in the column. The two extra 
entries are required to hold the boundary condi­
tions. A total of 16 tables are required; 5 for the 
LX's and LT, 5 for the MX's and MT, 5 for the 
VY's arid cVT and I for the plate pressure, which is 
not an excessive memory requirement. 

Before operation, these tables must be initialized 
. to correspond to some physically meaningful state 
of the column. If the operating conditions aren't 
known, then a cold steady state can be inserted and 
the computer used to calculate the operating condi­
tions by simulating a plant start-up. 

Only two control locations are needed by the dig­
ital program, which are: 

T--thecurrent tray number (::; TOP), 
and 

U P--this is one when the simulation is 
proceeding up the column and zero 
going down. 

The computation loop is entered from the bottom 
of the column, going up, so these cells are suitably 
initialized (Fig. 7). 

Three tests follow which determine whether 
boundary condition information is needed; i.e. the 
continuous reboiler simulation will be computing 
VY A, VY B, VY c, V and c VT which must be read via 
a multiplexer and A/D converter into the T = 0 
slots in the appropriate tables. Similarly, LX A, 

LXB,LXc , Land cLT must be read from the con­
tinuous condenser-reflux control simulation for 
entry into the T = TOP+ I slots in the tables. At 
the feed trays, feed controller output is determined 
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IN 

OUT 
~ ________ ~A~ ____________ ~ 
I 

ENTHALPY FLUX 
DUE TO 
VAPORISATION 

+1 

} 

REACTION 
RATE 

>K_R __ O CONSTANTS 

N.a *' DENOTES GAIN DEPENDENT ON SCALE FACTOR 

Figure 5. Main loops controlling enthalpy balance. 

-! ~8msec 

OPERATE 

Ie J1~_ ....... 
HOLD L 

Figure 6. Basic timing sequence. 

and the net component and enthalpy fluxes into the 
tray computed. 

Communication of the column with the outside 
world is via the vapor leaving the column top and 
liquid leaving the column bottom. In order that 
the column simulation can force the external con­
tinuous simulation for reboiler and condenser, 

component fluxes in these streams leaving the col­
umn must be sampled when the top and bottom 
trays are simulated. In order to accomplish this, 
the digital computer controls banks of track/store 
amplifiers which themselves act as forcing functions 
for the simulation of the peripheral equipment. 
Fig. 8 shows the control logic where the output 
line TOP is set by the digital compute:r during 
operation on the top tray and BOTTO M is set 
during operation on the bottom tray. Since these 
signals are ANDed with the HOLD signal, the 
final values are stored. 

The digital section, after establishing these 
boundary conditions, then establishes forcing func­
tions and state variables acting on tray T., via dig­
ital-analog converters and track-store amplifiers. 
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INITIALISE TABLES 

LXo(T=I,n) ---+ LX (T= I,n) 

VY 0 (T=I tn) --+ VY(T = I tn) 

MXo (T=I,n) ---+ VY (T = I,n) 
I --+ UP 

I ---+ T 

OUTPUT TO ANALOG 

VY(T-I) 

MX(T) 

LX (T+I) 

WAIT FOR END 

OF OPERATE 

PERIOD 

SENSE LINE 
TEST 

SET BOTTOM 
CONTROL . LINE 
READ VY\ FROM 
REBOILER 

READ FEED L a LT 

SET TOP CONTROL 
LINE 
READ LX s IN RFLX 

READ FROM 

ANALOG 

VY (T) 

MX(T) 

LX (T) 
Figure 7. Digital control program. 
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Figure 8. Sampling fluxes from top and bottom tray simulations. 

Vapor flow into the tray comes from tables 

VYA(T- 1), VYB(T- 1), VYdT- 1), 

VeT - 1), c VT(T - 1) 

State variables (hold-ups) come from tables 

MXA(n, MXB(n, MXdn, MXD(n, MT(n, peT) 

Liquid flow onto the tray comes from tables 

LXA(T + 1), LX8(T + 1),. LXdT + l), 

L(T - 1), cLr(T + 1) 

When these levels have become established (- 2 
msec), the analog computer integrates for the 
8-msec OPERATE period which is then folow(~d by 
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the HOLD mode. During this time, the new state 
variables and fluxes from the tray that will be used 
to force adjacent trays can be read and stored-in 
the T slot in the tables. 

Scaling considerations suggest that it is better to 
read a change rather than a magnitude and so the 
analog computer is programmed to calculate the 
change in flux through the plate, i.e., Vy,{+I. 
VYI, etc., so that the addition to obtain the actual 
magnitude can be carried out at the full precision 
of the digital section. 

The logic to control the sequencing up and down 
the column is straightforward. Normal operatiori 
increments or decrements T according to whether 
UP is one or zero respectively. At the ends when 
T = 0 or T = TOP, UP is changed over appropri­
ately. 

Tests for scale factor changes are not shown, but 
at fixed trays, the scale factors in the tables could 
be changed by factors of 10. An interesting possi­
bility is dynamic rescaling where the digital com­
puter would itself determine whether overflow were 
likely and automatically change scale. Now the 
interfaces between scale factor change would depend 
on the column operating condition which would 
help considerably in evaluating transient conditions. 

With the scale factor changes, D / A switches have 
to be controlled, and this is accomplished by extra 
output control lines (OCP's). 

CONCLUSIONS 

We have shown how an extremely complex repre­
sentation of a reacting distillation column and 

ancillary equipment can be represented by multi­
plexing a high-speed analog single tray representa­
tion up and down the column under digital control. 
In actual fact, the demands on the digital section 
are minimal since very little logic or arithmetic is 
required, the principal requirement being for stor­
age. Even for this, a memory size of less than 4K 
would be adequate. Another point worth mention­
ing is that all control and data transfer operations 
are performed during the reset or hold periods of 
the analog section, so no high-speed interaction with 
an operating system is required. Thus, providing 
the conversion channels were sufficient in number 
(~ 30 x 30), one of the newer small input/output 
digital computers would serve for the control and 
storage section of the simulation. 

The technique for adjusting scale factors dy­
namically or at fixed points in the column certainly 
bears consideration since in this way dynamic ranges 
over 100,000 to 1 can be achieved-and these 
actually occur in typical industrial distillation 
columns. 
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TRANSIENT NEUTRON DISTRIBUTION SOLUTIONS BY COMPRESSED 
AND REAL-TIME COMPUTER COMPLEXES 

1. E. Godts 
Westinghouse A tomic Power Division 

Pittsburgh, Pennsylvania 

INTRODUCTION 

Core transient neutron flux distribution currently 
constitutes one of the most intensively investigated 
phenomena in nuclear technology. Independently, 
nuclear physicists and system analysts attempt to 
develop solutions to the problem. The arsenal of 
mathematical tools presently available to them 
covers most of the spectrum ranging from precise 
multigroup djgital computations to adiabatic core 
analog analysis. The former involve a series of 
steady state or quasi-steady state situations, hence 

STEADY STATE (NO Cj ) o DISTRIBUTION 
NO fEEDBACK 
PRECISE MULTIGROUP-DIGITAL 
NUCLEAR PHYSICIST 

are not acceptable to the transient analyst. The lat­
ter are too inadequate for detailed safeguard or 
control analysis, thus forcing the designer to in­
crease his conservative margin. 

However, as seen in Fig. 1, a workable compro­
mise has been achieved by the author based on the 
,modal synthesis. Although it is not claimed that 
this constitutes the best possible approach, it is con­
sidered to be an extremely useful tool for solving 
present problems. Figure 2 demonstrates the com­
promise which the proposed method offers in the 
modal-nodal plan. Figure 3 illustrates, by graphical 

TRANSIENT ANALYSIS (6 Cj ) 
POINT REACTOR 

COMPLETE FEEDBACK 
CRUDE CORE - ANALOG 
SYSTEM ANALYST 

MODAL SYNTHESIS 

STEADY STATE (NO Cj ) o DISTRIBUTION 
CORE FEEDBACK 
PRECISE FEW GROUP-DIGITAL 
NUCLEAR ENGINEER 

TYPICAL TRANSIENTS (I ?6 Cj ) 
o DISTRIBUTION - H. C. F. 

CORE & PARTIAL PLANT FEEDBACK 
1-1/2 GROUP-DIGITAL ,ANALOG HYBRID 
NUCLEAR ENG. X SYSTEM ANALYST 

TYPICAL TRANSIENTS (6 Cj ) o REACTOR CHANNEL 
CORE & PART FEEDBACK 
AXIAL CORE-DIGITAL,ANALOG ,HYBRID 
SYSTEM-THERMO ANALYST 

Figure 1. C j = delayed neutron group; (jJ = neutron flux; HCF = hot channel factor. 
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equivalence, the various flux descriptions. The 
mathematical model is the same in all approaches; 
only the proposed solutions differ largely in their 
form and in their goal. The choice between dif­
ference (or nodal), modal (or series of eigenvalues) 
and synthesis (or series of functions) is influenced 
by the major discipline of the analyst and his goal. 
Quasi-steady state solutions are best sought by dif­
ference digital methods, while control design prob­
lems are generally best approached by methods 
based upon use of an analog computer. 

From the above general discussion emerges a 
mathematical solution based on a modal-synthesis 
method. I

•2 For one spatial dimension, no such 
modal-synthesis is needed, since the analog equip­
ment can directly perform the iterations for the 

MODAL - GEOMETRIC SYNTHESIS - PHYS. NODAL - LOCAL 
OVERALL CORE INITIAL & FINAL (S-S) LOCAL PROPERTIES 
ANALYTIC MODES "WELL CHOSEN "TERMS CHOICE BY EXPERIENCE 
LARGE * OF TERMS FEW TERMS. LARGEN OF REGIONS 

I 
MODAL - SYNTHESIS 
INTRINSIC BUCKLING 
REGION PROPERTIES 
FEW TERMS 

Figure 2. 

MODAL SYNTHESIS 

boundary conditions for the solution described! by 
the neutron diffusion equation, as shown in this 
paper. For two spatial dimensions, decomposition 
in basic modes is necessary. 

This paper proposes to show that the different 
basic processes necessary to solve a two-spatial­
dimension transient diffusion equation can be per­
formed satisfactorily with present equipment. These 
basic operations are: 

1. Iteration processes on a boundary con­
dition of the diffusion equation in a 
discontinuous medium. 

2. Double iteration processes on the above 
(two conditions). 

3. Iteration of a time-dependent diffusion 
equation in one dimension. 

The circuitry and results are briefly described and 
some of the computer solutions obtained are shown. 
This type of computation need not be limited to 
repetitive real-time analog computer systems, but 
can be well adapted to hybrid computation. In the 
near future, such simulations will be performed 
with the memory extension achieved digitally and 
with the iterations made on the analog computer. 
The main (and indirectly the only) reason for re­
serving the analog computer for the iterative process 

NODAL 

MODAL - SYNTHESIS 

Figure 3. 
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and plant simulation is that the control designer 
must, at least at present, be aware of the plant 
reactions. He must then modify the design accord­
ing to the response trend as directly observed on 
the display of the computer solution. The busy con­
trol designer cannot afford to wait for the answers 
of large digital codes, where only a few cases can be 
seen at a time. Furthermore, the design processes 
are not sufficiently perfected to where machines can 
perform the complete tasks. The nuclear plant 
designer must continually alter the mathematical 
model details in order to decrease the over design 
margins imposed by conservatism due to insuffi­
cient knowledge. Although such new models are 
easily introduced in analog simulations, they neces­
sitate costly modifications to existing codes. 

For these reasons, analog-hybrid simulations 
have a possible life expectancy of 10 to 20 years, 
thus some hardware expenditures may be justified. 

MODEL DEFINITION 

The system analyst confronted with the transient 
study of a nuclear power plant faces two problems: 

1. Safety problems: Checking to make sure 
that no safety limitations are exceeded. 

2. Control problems: Designing the con­
troller so as to insure that no design 
limitations are exceeded. 

Both problems are studied on the same or on dif­
ferent models. The trend to limit design over con-
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servatism present in certain core designs makes 
necessary the transient spatial description of the 
neutron flow. The development of highly sophisti­
cated hybrid computer complexes provides the sys­
tem engineer with more vers~tile tools. 

In order to solve the three basic problems stated 
in the Introduction, the study was divided into four 
parts. 

The first part deals with solving the one-dimen­
sional model, which consists! of the neutron kinetics 
equation eigenvalue problem. No delayed neutron 
equation is considered in this case. 

The second part introduces the delayed neutron 
equation and studies> the eigenvalue problem of the 
system of the equation proposed. 

The third part employs the equation without 
delayed neutron and operates a second series of 
iteration on the normalization of the result. 

The last part solves a one-dimensional time­
dependent diffusion equation." 

For the first three parts, only the compressed 
time repetitive computer (GPS) is used. Only in 
the fourth part is the simulation performed on the 
computer complex consisting of real time (EA) and 
compressed time (GPS) elements. 

Simple Problem Models, Circuitry and Displays 

The eigenvalue problem corresponding to the 
one-dimensional model, with or without delayed 
neutron and with or without normalization, is 
expressed in a general matricial form as: 3 

L<I> - A~<I> = 0 

where L = a square matrix operator, 
<I> = a column matrix of flux and delayed 

neutron flux, and 
A~ = the mth eigenvalue solution. 

The problem can also be expressed as: 

d 2<I> 
dz 2 + A(z)<I> + 'Y A~<I> (1) 

<I> -'Y A~'Y (2) 

The eigenvalue A~ must be found by iteration, 
and the circuitry used is developed in steps. 

If no delayed neutrons are present, and no nor­
malization is operated, Eq~ (1) is expressed in a 
much simpler form: 

d2<I> - + A(z)<I> = A~<I> (3) 
dz 2 

The fact that A is a function of z was illustrated 
in our example by a step in value at a given value of 
the independent variable. 

U sing the circuitry illustrated in Fig. 4 (Blocks 
1 and 2), the displays obtained are given by Figs. 5, 
6 and 7. To illustrate the work performe:d by the 
machine during a very slow iteration process, the 
convergence towards the solution from two different 
initial conditions is shown by Figs. 8 and 9. 

The mentioned "control rod depth" corresponds 
to the location of the step in the value of A. 

To check the stability and reality ofa given solu­
tion, the inversion of the properties along the inde­
pendent variable z was performed (Figs. 101 and 11). 
The obtained results were perfectly symmetrical. 
(The iteration is always performed at the riight 
boundary.) 

The large discontinuities of material, correspond­
ing to the control rod boundaries in nudear f(~ac­
tors, result in large discontinuities in the second 

Figure 5. The first two modes. Vertical white line (fiourth 
square from left) indicates control rod depth. 

Figure 6. Third mode (iteration not completed). Arrow points 
to location of x = 2L. 
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Figure 7. The fourth mode. Arrow points to location of 
x = 2L. 

Figure 8. 

Figure 9. 

Boundary value search for fixed initial tangent search 
on ,,~, starting point with a large ,,~. 

Boundary value search for fixed initial tangent search 
on ,,~, starting point with a small ,,~. 

Figure 10. The first mode, its first and second derivative. 

Figure 11. 

Arrow (top) points to first derivative; double arrow 
(lower left) to second derivative; arrow (right) to 
location of x = 2 L. 

Reversed iteratidn of Fig. 10. Arrow (top left) 
points to first derivative; double arrow (top center) 
points to second derivative. White vertical line 
(lower left) indicates rod insertion depth. Arrow 
(lower right) points to location of x = 2L. 

derivatives (e.g., Fig. 10). If the choice of the spatial 
variable direction is free, the preferred solution has 
the highest possible. gradient at the boundary of 
iteration (Fig. 10). Since the solution will converge 
more rapidly, it will be more precise and more 
stable. 

The higher mode solutions were somewhat more 
difficult to obtain than the fundamental, and meth­
ods should be devised to scan automatically the 
successive values of A~ (Figs. 5, 6 and 7). 

To show the adaptability of the circuit, a small 
slug of reactive material was introduced into a scat­
tering material. Successive modes were easily ob­
tained (Figs. 12, 13 and 14). 
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Figure 12. First mode slug case. White vertical lines (bottom) 
indicate position of the slug. 

Figure 13. Fourth mode slug case, first and second derivatives. 
White vertical lines (bottom) indicate position of the 
slug. Arrow (right) points to location of x = 2L. 

Figure 14. Sixth mode slug case, first and second derivatives. 
White vertical lines (bottom) indicate position of the 
slug. Arrow (right) points to location of x = 2 L. 

Introducing Delayed Neutron into the Equation 

This introduction is performed by adding block 3 
(Fig. 4) to the circuit. If one delayed neutron 
group (precursor) is introduced, each nodal solu­
tion comprises two orders. 

The physical meaning of the two orders is found 
in the initial conditions imposed in the problem. 
In the case of one delayed neutron group problem, 
the suitable initial conditions consist of a flux 
distribution and a delayed neutron distribution. It 
is assumed that such distributions follow the first 
mode curve. The relative amplitude of flux and 
delayed neutron distribution must be d~;!termiined 

and the initial condition must fit them. This is only 
possible if two orders exist, since two conditions 
must be satisfied. It can be further demonstrated 
that the relative sign of the delayed neutron and 
the flux distribution is the same in one of the o~ders, 
and that the delayed neutron distribution has the 
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Figure 15. First order offirst mode. 

Figure 16. Second order of first modle. 
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opposite sign of the flux distribution in the other 
order. 

It is proved mathematically that the orders give 
different relative sign of the flux and the delayed 
neutron.2 

In the search for the second order, the sign of 
the divider must thus be inverted. The iteration 
process will then proceed normally towards the 
solution. To avoid making a complete revision of 
the scaling, no changes were made in the simulation; 
only the display amplification was changed. This 
explains the large amount of noise present in one 
of the solutions (Fig. 15 and 16). 

The Solution with Two Iterations 

To perform this operation, the delayed neutron 
circuit was rendered inactive (block 3 and block 4 
were introduced). 

Only the fundamental mode is of interest for this 
transient study. An absorbing rod was suddenly 
removed from the core, and the subsequent condi-
tions imposed are that: . 

1. The flux vanishes at the outer bound­
ary. 

2. The area enclosed by the flux distribu-
tion curve is constant. 

Figure 17 shows the resulting display. The two 
iterations are performed alternatively, each for 
15 machine cycles, by the introduction of block 5 
(Fig. 4). In practice, this large number of itera­
tions cannot be maintained; it was successfully re­
duced to three or four machine cycles per iteration. 

Figure 17. Constant area problem during rod removal process. 
A-initial flux distribution; B-final flux distribu­
tion; C-initial rod insertion depth; D-initial 
second derivate curve; E-influence of the itera­
tion process on the second derivate distribution; 
F-initial flux jump. 

When the procedure performs adequately, a 
modification of the area should not change the 
extrapolated boundary conditions. A test was con­
ducted to check this statement by inverting the sign 
of the required area. Only four machine cycles per 
iteration were retained. The result appears in 
Fig. 18. 

Figure 18. Area inversion at fixed rod position. G-initial 
flux distribution; H-initial second derivative curve; 
I-rod insertion depth; J-final second derivative 
curve; K-final flux distribution with area inverted. 

One-Dimensional Time-Dependent 
Diffusion Equation 

The problem was introduced in the following 
mathematical form: 

cr<1> a<1> - + A(z,t)<1> = a-
az 2 at 

The solution is approached by using a time dif­
ference equation of the following type: 

d
2

<1>(t +. dt) + (A _ ~) <1>(t + ~t) = ~ <1>(t) 
dz 2 ~t ~t 

The function <1>(t) is stored in a memory after each 
iteration is performed, and thus can be used for the 
next time step. The block diagram used in shown in 
Fig. 19. 

Each new circuitry has already been explained. 
The A(z, t) function was formed by the intervention 
of the fast repetitive computer for the z dependency, 
and the real-time computer for the time dependency. 

The task of the real-time computer was to· simu­
late the whole plant response. This was done on a 

. 1: 1 time basis. The memory used was formed with 
elements of the GPS computeri and does not pre-
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Figure 19. 

sent any originality. This is certainly the part of the 
circuitry that most needs to be perfected. For future 
simulations, it is intended to use digital memories 
of various types. 

In its present form, the memory circuitry is inade­
quate since the number of retention points is too 
small and necessitates a far too large an amount of 
equipment. , 

Nevertheless, it was tried on a rod insertion and 
withdrawal problem. The processes provide the 
displays shown in Figs. 20 and 21. 

CONCLUSIONS 

The search for the modes and orders of the neu­
tron diffusion equations can be performed satis­
factorily on analog computers. 

The one-dimensional transient flux distribution 
can be successfully simulated as part of a complete 

Figure 20. The rod insertion process. Dotted lines represent 
extent of rod depth. 
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Figure 21. The rod removal process. Dotted lines represc~nt 
extent of rod depth. 

nuclear plant simulation. It is, nevertheless, necc:!s­
sary to improve the memory capacities of the prc:!s­
ent machines by further hybridization of the 
complexes. 

The two-dimensional transient flux distribution 
can be performed, but present equipment requires 
too large amounts of circuitry for a safety and con­
trol analysis of nuclear reactors. Nevertheless, 
average methods, as described in Refs. 1 and 2, 
should prove adequate for present needs. They are 
based on the studies described in this paper. 

The introduction of simplified circuitry or func­
tionals in the simulation will permit future simula­
tion of the two-dimensional flux distribution within 
a complete nuclear plant study. 

Simplified circuitry and memory equipment might 
even enable the introduction of more than one 
group of delayed neutrons. 

No difficulty was encountered in the interconn(~c-
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tion of the slow real-time computer (EA 231 R) and 
the fast repetitive computer (GPS). An auxiliary 
problem of a rod ejection accident in a thermal 
reac,tor was successfully tried on the circuit. The 
answers were rapidly obtained and with sufficient 
accuracy for qualitative evaluation. 

The limiting factors for such large problems (a 
complete problem uses two GPS, two EA 16-31R 
and one EA 231 R plus logic and memory) are the 
necessary zeroing time and the equipment failure 
rate. It is foreseeable that units could be designed 
with self-zeroing and self-checking features. These 
operations could be performed automatically during 
the off times of the machines. With the use of the 
above-mentioned functionals reducing greatly the 
amount of equipment, large multivariable problems 
will then be within the reach of the analog hybrid 
simulators and will certainly be welcomed by the 
nuclear system engineer. 
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The biomedical sciences characteristically deal 
with huge masses of data, which must be organized, 
reduced, analyzed, and generally processed in many 
different ways.) Much of this data is in the form of 
pictures: photomicrographs, electron micrographs, 
X-ray films, Schlieren photographs, X-ray diffrac­
tion patterns, autoradiographs, time-lapse films, 
cineradiographs, or the like. Individual pictures 
hold a great wealth of precise numerical informa­
tion, such as the morphological and structural char­
acteristics of lengths, areas, volumes, anq densities. 
From sequences of pictures, quantitative results can 
be derived, such as the kinematic and dynamic char­
acteristics of trajectories. Such pictures relate to 
almost every field of biomedical research: chromo­
some karyograms in cytogenetics, angiogram cine­
radiographs in cardiology, Schlieren photographs 
in ultracentrifugal molecular-weight determinations, 
auto radiographs of polymorphonuclear leukocytes 
in the study of leukemia, Golgi-stained neuron 
photomicrographs in the study of the ontogeny and 
phylogeny of the brain, X rays of bones in studies of 
calcium density distribution in orthopedic diseases, 
X rays of epiphysial plates of the hand in investiga­
tions of accurate physiological age, X-ray crystallo­
graphic plates in protein structure determination, 
electron micrographs in the investigation of the fine 
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structure of virus particles, motion pictures of 
marine crustaceans in the detection of their sensitiv­
ity to polarized light, tissue-culture time-lapse films 
in the investigation of cancer-cell motility, and 
many others. 

In this paper we shall describe selected illustra­
tions of work already accomplished QY the authors 
in the pattern-recognition analysis of biomedical 
pictures. The technique involves two main steps: 
first, a scanning instrument, called FIDAC (Film 
Input to Digital Automatic Computer), scans the 
picture on-line into the high-speed memory of a 
digital computer; second, two computer program­
ming systems (called FIDACSYS and BUGSYS) 
are used to recognize the objects to be measured 
and to process the quantitative data, according to 
the requirements of the particular biological or 
.-nedical problem under consideration. This FIDAC 
sy~tem was designed specifically for the processing 
of biomedical pictures. 

THE FIDAC INSTRUMENT 

The FIDAC instrument is responsible in the first 
place for putting the picture into the computer's 
memory; it is an on-line computer-input device 
which can scan in real-time at very high speed and 
with high resolution, under computer-program feed­
back control (see Fig. 1). These capabilities make 
feasible the successful application to biomedical 
problems. FIDAC has a high-speed scan of less 
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than 0.3 seconds per frame, which makes possible 
the rapid processing of pictures for statistical 
analysis and screening purposes. During the scan, 
350,000 points per picture (700 x 500 point raster) 
are sampled in the seven-level gray mode, which 
uses three memory bits per picture point, or 800,000 
points per picture (1000 x 800 point raster) are 
sampled in the black-and-white mode, which uses 

Figure lao The FIDAC Instrument. 

FIDACSYS 
PROGRAMMING 

SYStEM 

IBM 7094 
COMPUTER 

one memory bit per picture point. As a comparison, 
during the scan the FIDAC can load the computer's 
core memory 10 to 50 times faster than can conven­
tional magnetic tape input units. (The 1 BM 7094 
computer, equipped with a direct data channel, is 
used.) 

FIDAC has a high resolution (greater than that 
of the optical microscope), which enables the re:ten­
tion of all information when photomicrographs are 
scanned. This is because when the specimen is seen 
at a magnification of 1000 X , the field has a diam­
eter of about 50J.L; thus the 750 points sampled by 
FIDAC across this field gives about 700/50 == 14 
points per micron on the specimen, or about 
3 points in the 0.2J.L, that is, the optical resolution of 
a microscope at 1000 power. 

The capability of real-time operation enables pro­
gram control of the FIDAC by the computer-that 
is, when the processing of a film frame has· been 
completed, the program signals the FIDAC to move 
automatically to the next frame. The fact that 
FIDAC is on-line with the computer, with no inter­
mediate magnetic-tape recording, results in extreme 
flexibility, convenience, and economy of storage of 
the original data. For instance, a single: 100-foot 
roll of 16mm film, which fits in a 3 Y2-inch diameter 
can, contains 4000 frames and will record over 4 bil-

The FIDAC Instrument 

COMPUTER 
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Figure I b. Block Diagram of FIDAC System. 

GENERATOR 
DRIVER 



PATTERN RECOGNITION STUDIES IN THE BIOMEDICAL SCIENCES 413 

---..,-.... ..,---.................... ::::~~~~~:~~~!~ 
- .. - ........... _................ --l\i"'-
-~~~~~~~-~~~-~~-~~~~~-~-~ 
--~~~~~~~-~~~~~~-~~~~~~~~~ 

-~-~~-~~~~~~-~~~~~-~-~~---
~-~~~~~-~~-~~~~--~-~~~~~~ 

Figure Ie. Cineangiogram of a dog's heart as recorded in the computer's memory. The original photograph is scanned by 
FIDAC and a 700 x 500 raster of spots is sampled. The density of the film at the location of each of these spots 
is determined as one of seven gray-levels. The picture in the computer's memory, therefore, consists of codes for 
these density levels. To show what is in the computer's memory, the computer translates the code for each spot 
into a numerical gray-level value, and prints the value in its correct relative position for each of the 350,000 spots 
that comprise the picture. This is what is shown in the figure. In the lower-left inset we illustrate an enlarged por­
tion of the figure showing the density levels. The other inset shows a portion of the original cineangiographic pic­
ture. 
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lion bits of information; this would require more 
than 55 conventional digital-magnetic tape reels, 
making a stack more than 4 feet high. 

THE PROGRAMMING SYSTEM 
FIDACSYS 

Once the picture is recorded in the computer's 
core memory, as a grid of points, each with one of 
seven gray-level values, the computer analysis pro­
ceeds by means of the two programming systems. 
The FIDACSYS system 2 is the basic picture­
handling and object-recognition system; the 
BUGSYS language is used mainly to facilitate 
picture analysis and measurement. 

The first problem for theFIDACSYS system is 
to read the picture into the computer's memory. 
The program does this by :signaling the FIDAC 
through the direct data channel. The program 
monitors the read-in, line by line, keeping track of 
the lines and the size of the picture. Of course, the 
program must select the proper FIDAC mode. The 
program also moves or positjons the film. Usually 
the film is advanced to the next frame by the pro­
gram immediately after the picture has been read 
in. This is done during the time the analysis pro­
gram is being executed, and if the analysis time is 
greater than the film movement time, namely 1/.., of 
a second, then no provision need be made for film 
movement time. A roll of film is processed frame 
by frame in this manner. The program keeps track 
of the number of frames to be processed, and when 
all of the frames have been processed, the program 
proceeds to compute the statistical results ap­
plicable to the film roll. 

In processing each frame, the FIDACSYS system 
first determines whether or not the frame is blank; 
if it is not blank, then any required overall picture 
processing, such as differentiation, is carried out. 
Next the program locates and processes one object 
at a time; this is accomplished by an internal, pro­
grammed scan of the picture, starting at the top left­
hand corner and continuing row by row. We say 
that this internal scan is accomplished by a "bug," 
which is looking for a picture spot that has a gray 
level greater than the "cutoff" gray level. The cut­
off gray level is defined such that the interior points 
of any object will have gray-level values greater 
than that cutoff level. When an object is found, it is 
then processed. In this way each object is sequen­
tially processed, until finally, when the scanning 
bug reaches the lower right-hand corner of this 

picture, all of the objects have been processed and 
the program proceeds to the statistical analysis ap­
plicable to that frame. 

When an object has been found, its processing is 
carried out by the FIDACSYS program in terms of 
a boundary analysis. The bug is moved around the 
boundary of the object in such a direction that the 
interior of the object is kept to the right. The next 
boundary point is determined by looking dockwise 
around the present boundary point, starting from 
the previous boundary point (see Fig. 2a). When a 
certain number N of boundary points (that is, a 
certain boundary length) has been traversed, a seg­
ment is defined. The segment is then characterized 
by the coordinates of its center point, the: compo­
nents of a leading vector, and the components of a 
trailing vector (see Fig. 2b). The length of the seg­
ment chosen must be short enough that the angle 
between the leading and trailing vectors is approxi­
mately a measure of the curvature of the segment. 
Then the vector sum of the leading and trailling vec­
tors is approximately the tangent to the segment at 
its center point and gives a measure of the direction 
of the segment. There are three user parameters 
associated with a segment, varied to suit the par­
ticular problem under consideration. These are the 
segment length N, the arrow length A, and the 
distance D between centers of successive segments. 
A boundary-characterization list is constructed as 
each boundary segment is analyzed successively, 
until the original boundary entry point is reached 
again. 

As each boundary point is traversed, its gray­
level value is changed by the bug to the value 7, so 
that the object is completely enclosed in a string 
of 7's. Only seven gray levels per spot were used in 
the scan so that the eighth level, namely 7, could be 
reserved for this purpose. Thus no object is re­
processed, because only objects not enclosed in such 
a string of 7's are found by the search. If the anal­
ysis involves the investigation of holes wlithin the 
object, then the holes are discovered by carrying 
out an erasing process. When a hole in the object 
is discovered during the erasure procedure, its 
boundary is characterized by segments. Islands 
within holes are found by filling in the holes, and 
holes within islands within holes are found by 
erasing, ad infinitum. (However, only simple holies, 
with no islands, are found in most applications.) 

The recognition of the object by the FIDACSYS 
programming system is accomplished by means of 
the boundary-characterization list. A syntax-
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Figure 2a. The black box is the present 
boundary point, the verti­
cally hatched box the prev­
ious boundary point, and 
the horizontally hatched 
box the next boundary 
point. 

H 
Hy 

Tx 

( a ) 

Figure 2b. A segment (above) illustrating 
the center of the segment 
C(x, y), the trailing arrow 
components Tx and Ty, and 
the leading arrow component 
Hx and Hy. The tangent vec­
tor T + H (below) and the 
angle () = Lj K, giving K = 

Lj(), where K is the curvature 
and L is the segment length 
(and () is in radians). 

directed pattern-recognition technique is utilized. 
(An introduction to this technique is described 
elsewhere.3,4) 

Since in the IBM 7094 memory the picture takes 
up more than 25,000 words of the 32,OOO-word 

memory, the FIDACSYS programming system has 
to be broken into links, each link being executed 
separarely in the memory. The initial link enables 
the user input parameters to be inserted into the 
program. The second link is concerned with 
reading-in the picture and "compacting" it into the 
proper part of the memory, in appropriate form. 

The next link will manipulate the picture, will 
move the film to the next frame if desired, and will 
print the picture as it appears in the memory if 
desired. Optional manipulations of the picture 
include masking, that is, widening the margins of 
the picture; reducing, that is, decreasing the density 
of spots of the picture as read into the computer; 
differentiating, that is, processing the picture to 
emphasize changes in gray level; and other related 
processes, as well as printing the picture. 

The fourth link scans a picture and proc,esses the 
objects, as described previously, and is carried out 
in the three phases. Phase 1 concerns the locating, 
boundary tracing, boundary-list characterizing, and 
optional erasing of an object. Phase 2 is concerned 
with the syntax analysis leading to the identification 
of the parts of the object. And Phase 3 is concerned 
with actually making the measurements on the 
object. The fourth link also accomplishes the over­
all statistical processing for each frame. 

THE BUGSYS LANGUAGE 

BUGSYS is a picture processing and measuring 
programming language for the analysis of the pic­
ture in the computer's memory.5 The main concept 
of the system is the use of a collection of program­
mable pointers, which are visualized as a family of 
"bugs." A bug can be "initiated," or "placed," and 
once initiated a bug can be "moved." In addition, a 
bug can "change" the gray-level value of the spot 
on which it is located, and it can lay down a so­
called "stick" across a thick line in the picture as an 
aid to locating the middle of the line. In addition, 
two bugs together can "probe" along the direction 
of the line between them or along a direction per­
pendicular to the line between them. These probes 
can sense an extension of an object or the width of 
an object, and so forth. "Globs" of objects can be 
assessed by laying down squares and determining 
the percentage of the area of the square intersected 
with the object. The system is composed of many 
such stat(~ments as will be illustrated below. 

For each bug initiated by means of the macro 
PLACE, there is associated a list which gives the 
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x and y coordinates of the current position of that 
bug, the actual core location, the spot position 
(0-11) within this location (there are three bits per 
spot, or 12 spots per 36-bit IBM 7094 computer 
word), and the gray-level value of the current posi­
tion of the bug. For example, if the bug named 
"ZIPPY" is in the position x = 6, y = 8, then the 
list for ZIPPY might contain the following: 

Address 

ZIPPY(l) 
ZIPPY(2) 
ZIPPY(3) 

ZIPPY(4) 

ZIPPY(5) 

Contents 

6 
8 

6009 

6 

4 

Comment 

x 

Y 
5553 (first location of pic-

ture) + 456 (57 words per 
line times y) + 0 (x di­
vided by 12 spots per 
word and truncated to an 
integer) 

remainder of x divided by 
12 

gray-level value or contents 
of spot 

As a bug is moved about the picture by a program, 
the list for the bug is kept current. In fact, in es­
sence, the list is the bug. 

We will now proceed to describe some of the 
statements of the BUGSYS language. The PLACE 
statement initiates, or sets up, a bug by assigning a 
name and initial coordinate to it. Thus we have 

< PLACE statement> : : = PLACE <bug 
name>, < x coordinate>, < y coordinate> 

where the bug name is a FORTRAN label and the 
x and y coordinates are either unsigned integers or 
integer variables. 

The BUGS statement allocates five storage loca­
tions to each bug named; its form is 

< BUGS statement> :: = BUGS « bug-name 
list> ) 

where the bug-name list is a string of bug names 
separated by commas. 

A bug can be moved a specified distance (i.e., 
number of spots in the picture) in either the x or y 
direction by the following statement: 

< MOVE statement> :: = MOVE < bug 
name>, < direction>, < distance> 

where the direction is given by the literals LEFT, 
RIGHT, UP, or DOWN, and the distance is an un­
signed integer or integer variable. The statement 
"MOVE ZIPPY,RIGHT,15" moves the bug named 

ZIPPY to a new location having the same y co­
ordinate but a new x coordinate 15 spots to the right 
of the present x coordinate. Each time a bug is 
moved, of course, the list corresponding to the bug 
name is adjusted for the new values. 

Many of the statements involve multiple-,way 
branches, for provision must be made to be sure 
that the bug will not be moved out of the picture. 
For instance, in the MOVE statement if the bug 
would be moved out of the picture, then it is not 
moved at all, and the next sequential instruction is 
taken as a next executed instruction. Otherwise 
(i.e., if the bug will still be in the pictun: after the 
move) the bug is moved and the next sequential in­
struction is skipped. 

The BUGSYS language also includes a GO.TO 
statement and a series of TEST stateme:nts. For 
example, the statement 

< TEST statement> :: = TEST < bug name>, 
< relation>, < gray cutoff > 

would test the value of the gray level on the spot of 
the picture at which the bug is located, with respect 
to the gray cutoff (which is specified by a literal 
digit from 0 through 7). The relation can be 
EQUAL or GREATR or LESSN. If the relation 
is not satisfied, then the next instruction following 
the TEST is executed. Otherwise (if the gray-level 
value of the bug location is in true relation to the 
cutoff gray level) the next sequential instruction is 
skipped and the' second following instruction is ex­
ecuted. 

The statement 

< CHANGE statement> CHANGE 
< bug name>, < gray value> 

can change the value of the bug location spot to 
the literal specified as the gray value. When using 
the BUGSYS program, it is usually convenient to 
change the value of the bug location to a 7. In this 
way the bugs will leave "footprints" as they move 
around the picture during the analysis, and these 
footprints can be utilized as an aid in che:cking out 
results. The BUGSYS language also includes pro­
visions for bounding an object. This is the same 
subprogram as the bounding routine which appears 
in the FIDACSYS system, except that in BUGSYS 
it can be utilized in a macro called BOUND. 

BUGSYS also includes a specialized macro called 
CRANK, defined as follows: 

< CRANK statement> :: = CRANK <bug 
name>, < direction>, < gray cutoff>, 
< neighbor number> 
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where the "direction" is either the literal CLOCK 
or the literal CCLOCK, the "gray cutoff" is a literal 
digit from 0 through 7, and the "neighbor number" 
is an octal-integer variable. The purpose of 
CRANK is' to help initiate a bounding procedure. 
As we mentioned above, finding the next boundary 
point involves knowing the previous boundary 
point; but in initiating a bounding process no previ­
ous boundary point is available. CRANK will 
produce a previous boundary point for the macro 
BOUND and will assign this as the value of the 
"neighbor number." The bounding, and hence the 
cranking, can be clockwise or counterclockwise 
around the object, accounting for the term "direc­
tion." 

The "stick" and "probe" statements enable a bug 
to investigate its surroundings in various ways. For 
example, consider the normal-probe statement 
NPROBE, defined as 

<NPROBE statement> :: = NPROBE <bug 
name>, < bug name>, < bug name>, 
<distance>, <gray cutoff > 

Here the probe will be made perpe,ndicular to the 
direction between the first two bugs named. The 
third bug named will hold the result of the probe. 
This probe consists in effect of moving a bug along 
a line perpendicular to the line between the first two 
bugs mentioned until this moving bug comes to the 
edge of the object. The "distance" is included so 
that if the bug does not come to the edge of the 
object before going the distance specified, then an 
alternative branch may be chosen. It is supposed 
that the probing bug will start out inside the object. 
Additional macros are also available in the system. 

ILLUSTRATIONS OF RESULTS 
ACCOMPLISHED 

We shall now describe four applications of the 
FIDAC system: 1) Analysis of Neuron Dendrites 
(Fig. 3); 2) Analysis of Schlieren Photographs (Fig. 
4); 3) Analysis of Rabbit Brain Cells (Fig. 5); and 
4) Analysis of Chromosome Karyograms (Figs. 
6-11 ). 

Analysis of Neuron Dendrites 

In the young kitten's brain, certain cells in the 
cortex will appear almost entirely within a single 
microtome section. The following is a discussion 
of our computer program used for the analysis of 
such cells, in order that comparisons can be made 

among these cells in kittens of different develop­
ment stages. The BUGSYS language was used. In 
general, bugs will search the picture to find an ob­
ject, i.e., a neuron cell, and then will move around 
the boundary of the object, recognizing the den­
drites, as distinguished from the cell body itself, and 
making measurements on dendrite segment lengths 
from branch to branch. In particular, four com­
ponents of such a neuron cell must be recognized 
before the measurements can be made. These are 
the cell body, the dendrite-to-cell-body junction, 
the dendritic branching points, and the ends of the 
dendrite branches. Figure 3a shows a neuron cell 
as it appears in the computer's memory; Fig. 3b 
points out a detail of this picture; and Fig. 3c gives 
a flow chart of the program for the neuron analysis 
with the BUGSYS language. 

Six subprograms are utilized, as shown in Fig. 3c. 
The first of these subprograms directs the FIDAC 
instrument to scan the photomicrographic trans­
parency in the gray mode. 

Next a bug, called SRCHXY, is directed to search 
the picture systematically to find the first object. 
There are two possible outcomes to this process: 
either a next object is found; or the bug comes to 
the lower right-hand corner of the frame, which 
means there are no more objects in the frame. These 
are the main functions of the subprogram 
SUNBOG. 

If a next object is found, then the program enters 
the subprogram CBLOCK. In this subprogram the 
components of bug SRCHXY are used to initiate a 
new bug, called BUGM, which together with an 
auxiliary bug, called BUGS, finds the cell body. 
There art! two possible outcomes to this process: 
first the object may not be a complete neuron or 
may be some other fragment, in which case there 
will be no cell body; here transfer of control will 
be returned to subprogram SUNBOG, which will 
continue on to look for another object. The second 
outcome of CBLOOK is that BUGM and BUGS 
will actually find a cell body, in which case the 
subprogram DDLOOK is activated. 

In the subprogram DDLOOK, the cell-body 
boundary is traced until a dendritic junction is 
found. Again there are two possible outcomes to 
this subprogram: First, a dendrite may not be 
found, in which case transfer of control is returned 
to SUNBOG, which looks for another object. The 
second outcome is that a dendrite is actually found. 
In this case BUGM will be residing on one side of 
the dendrite, cell-body junction. BUGM will then 
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be used to set up another bug, called BUGT, on the 
other side of this same junction, and subprogram 
MAPDD will be activated. 

In the subprogram MAPDD, BUGM and BUGT 
move up the dendrite looking for branch points and 
end points, and by this means these bugs are able to 
make the desired measurements on the branching 
dendrite. When they have completely analyzed all 
the branches, they will return to the dendrite, cell­
body junction where BUGM is again utilized. If 
more dendrites might possible exist, BUGM will 

continue to look for these other dendrites, in the 
subroutine DDOOK. On the other hand, if during 
the mapping of the present dendrite it has been ob­
served that the entire cell has been analyzed, then 
BUGM will transfer control to SUNBOG and the 
search for the next object will be reinitiated. 

After all of the objects in a frame have been ana­
lyzed, the final-result display subprogram, SC4020, 
will be activated. 

Let us now describe some of the mechanisms by 
means of which the different subprograms are car-

Figure 3a. The large black dots illustrate the computer's determination of the ends of the dendrite arms, of the branch points, 
and of the cell's body-dendrite junctions. The thin line is drawn at the computer's determination of the actual den­
drite, cell-body junction. 
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ried out. The first step in subprogram CBLOOK is 
that bug SRCHXY is used to set up BUGM. Now 
BUGM will move clockwise along the boundary of 
the object. BUGM will also be used to initiate the 
subsidiary bug BUGS, which BUGM will drag at a 
prescribed distance behind it. Together, BUGM 

and BUGS look for a cell body. The method for 
finding a cell body is for BUGM to form a normal 
probe perpendicular to their connecting line, di­
rected into the object. The probe is made long 
enough that it will pass through and beyond the 
relatively narrow dendritic arm. However, the cell 
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Figure 3b. Details of computer analysis of upper left-hand neuron dendrite showing computered locations of cell junction, branch 
points, and end points. 
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Figure 3c. Flow chart of program for neuron analysis. 

body has the distinguishing feature of being thicker 
than a denqrite. Hence when the end of the probe 
still remains within the object, it would be reason­
able to suppose that a cell body may have been 
found. A further test is used to confirm the finding 
of a cell body, since it is possible that a branching 
point will be wide enough to contain the entire 
probe. In contrast to such a branching point, the 
cell body is relatively massive, and hence another 
criterion is utilized, namely that a reasonably large 
interior area is found in the region ahead of the 
probe. Only if such an area is found is the location 
of a cell body confirmed. 

In the subprogram DDLpOK, the boundary of 
the cell body is searched by BUGM and BUGS. 
At every point a probe is drawn normal to the line 
between BUGM and BUGS. When the two bugs 
begin to climb up a dendrite, the probe goes through 
the narrow dendrite and comes out the other side. 
When the width of this narrow portion is less than a 
predetermined length, then a dendrite is presumed 
to have been found. When a dendrite is found, 
BUGT is set up on the other side of the dendrite, 

cell-body junction, opposite BUGM, and the sub­
program MAPDD is initiated. As they bound the 
cell body looking for dendrites, BUGM and BUGT 
also observe whether or not either has n!turned to 
SRCHXY. If it has, this indicates that the entire 
object has been bounded, and at the termination of 
MAPDD the subprogram SUNBOG is ·entered 
once more. 

The subprogram MAPDD is more intricate than 
the other programs. Its overall tactic is to have 
BUGM and BUGT climb out on the dendrite. At 
the dendrite, cell-body junction, BUGM and BUGT 
are opposite each other. During the climb they are 
programmed to remain approximately opposite 
each other on the dendrite. When a branch point 
in the dendrite is found, BUGT will be going out 
on one side of one of the branches while the BUGM 
will be going out on the other side of the other 
branch. Thus BUGM and BUGT begin to move 
apart.· The distance between them is obst!rved, and 
if it exceeds a certain value a branch point is indi­
cated. Confirmation of this branch point is assured 
by drawing a line, or tangential probe, between 
BUGM and BUGT. Only when this line leaves and 
reenters the cell area is the attainment of the branch 
confirmed. In addition, since this line completely 
crosses each of the two branches, new bugs can be 
set up at its intersections with the inner sides of 
the branch. 

Of course there may be many branches to a den­
drite. The procedure is to analyze in each case the 
most counterclockwise branch first. The other 
branch is stored in a so-called push-down list for 
later analysis. The end of a branch is fOlUnd when 
BUGM and BUGT meet at the same point. Then 
the most recent branch in the push-down list is 
popped up and analyzed. A little reflection will show 
that all of the branches can be systematkally ana­
lyzed by this means. 

Analysis of Schlieren Photographs 

At present, data from ultracentrifugal experi­
ments is usually presented in the form of Schlieren, 
or interference, images on film or on glass-baeked 
spectroscopic plates. These images are normally 
measured manually on a microscope having a mi­
crometer stage; then the measurements are pro­
cessed by certain algorithms to obtain sedimenta­
tion coefficients, weight-average molecular weights, 
or whatever molecular parameters the investigator 
may be studying. Usually as much time is spent 
measuring the plates, and as much time again in 
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Figure 4a. Picture of a Schlieren photograph as recorded in the computer's memory. In the insert we illustrate an enlarged 
portion of the figure showing the density levels (where the unit is the zero level). We have also shown an insert of a 
portion of the original Schlieren photograph. 
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computation, as was required to perform the ex­
periments. The automatic analysis of such ultra­
centrifugal Schlieren photographs consists in first 
reading each picture into the computer by means of 
the FIDAC instrument (see Fig. 4a), and then utiliz­
ing the BUGSYS language to make measurements 
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Figure 4b. Computer analysis of Schlieren photographs show­
ing "footprints" of the paths of the bugs. 

on the picture. As illustrated by the dots, or "foot­
prints," in Fig. 4b, a bug is first plac.ed to the right, 
beyond the two lines. It is then moved to the left, 
searching for the rightmost line, or function curve. 
When this line is found, another bug continues the 
motion to the left, looking for the second line, or 
base axis. Now we have one bug placed on each 
line. The bugs are then moved up along their re­
spective lines until the right-hand bug finds the be­
ginning of the function curve. The measurement to 
be made in this case is the horizontal distance be­
tween the two bugs, i.e., Lly. The bugs now move 
down, one point at a time, making approximately 
115 measurements of Lly on the curve. The 
measurements are made from the "middle" of each 
line, since the line is really "thick." Th~! STICK 
statement is used to keep the bug in the middle of 
the line. After all the measurements are made, the 
computer programs to determine molecular param­
eters are executed, to produce the finally desired 
results. On an IBM 7094, this entire process takes 
less than one second per Schlieren photograph, with 
the FIDAC device. 

Analysis of Neuron Cell Bodies 

The purpose of this study was to investigate pos­
sible morphological changes due to aging in cell 
populations of neurons from the caudate nucleus of 
the rabbit. The morphological characteristics 
measured were 1) the area, 2) the maximum di­
ameter, 3) the maximum perpendicular radii, and 
4) eccentricity of the perpendicular radii (see Fig. 
5a). These measurements were made for both the 
nucleus and cytoplasm of each of about 6000 cdls, 
utilizing the FIDAC scanning instrument on an 
IBM 7094 computer. About 2.1 seconds p(~r celt, or 
3 Y2 hours altogether, were required to process the 
6000 cells, including the scanning and computer­
measurement times. 

A problem arose from the fact that in looking 
through a microscope at a three-dimensional ,cell 
only a two-dimensional section is seen at the plane 
of focus. Therefore the largest projected area of 
the cell can only be obtained from the examination 
of a composite of sections seen at many levels of 
focus. To obtain such a composite, the image from 
the microscope was projected into a ground-glass 
plate, and as the plane of focus of the microscope 
was moved up and down the largest projected area 
was traced on paper. In this way, drawings were 
made of each cell in the study, with the cytoplasm 
in black and the nucleus clear. These drawings were 
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Figure 5a. Diagrammatic picture of a cell indicating the meas­
urements to be made. For the cytoplasm the meas­
urements to be made are the maximum diameter 
DcD'c and the semiminor axes SCPI and S'cP2, 
as well as the eccentricity PI P2 and the area. For 
the nucleus the measurements to be made are the 
maximum diameter DND'N, the semiminor radii 
S N P3 and S'N P4 and the eccentricity P3 P 4 and the 
area. 

Figure 5b. Actual 35mm frames showing cells. 

then photographed on 35mm film for input through 
the FIDAC (see Fig. 5b). 

For this problem the FIDACSYS programming 
system was utilized. In the first step, the FIDACSYS 
system directed the FIDAC to scan a frame and 
read the picture into the computer's memory. After 
a frame had been read into the computer, the in­
ternal bug scan was initiated in order to locate the 
first object or cell. When a cell was located, its 
boundary segments were determined (see Fig. 5c). 
While tracing out the boundary, the bug also re­
places the boundary points with the value "7." In 
addition, during this process the maximum and 
minimum x and y extensions of the cell under con­
sideration are also determined. 

For the computation of the maximum diameter, 
the distances between all pairs of boundary points 
are determined; the points corresponding to the 
largest distance are the end points of the maximum 
diameter. For the computation of the maximum 
perpendicular radii, the areas of all possible tri­
angles constructed on the maximum diameter with 
an intermediate boundary point as vertex are com-
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Figure 5c. On the right, a partial-print of an object. On the 
left, illustration of the selected boundary points on 
the object and examples of the triangles by means of 
which the minor semidiameter is determined. This 
object is shown for illustrative purposes only. In 
general the brain cells analyzed were much larger, 
and about 200 boundary points were obtained on 
the cytoplasm. 

pared. The largest area on either side will give the 
two largest perpendicular radii. A simple calcu­
lation gives the point of intersection of each maxi­
mum perpendicular radius with the maximum di­
ameter, and the eccentricity is thereby determined. 

Next an erasing process is initiated; the object is 
erased from the top down until the nucleus of the 
cell, which is a clear area, is found. The boundary 
of the nucleus is then traced by the bug, and a list 
of boundary points is· made. From this list of 
points, the maximum diameter, perpendicular radii, 
and eccentricity are again computed.' 

Analysis of Chromosome Karyograms 

As a final example we shall consider the auto­
matic analysis of chromosomes by the FIDACSYS 
programming system. Recently there has been 
much active interest in the analysis of chromosomes 
in the metaphase stage of mitosis, when they ap­
pear as structures split longitudinally into rod­
shaped chromatids, lying side by side and held to 
one another by a constricted area called the centro­
mere. Certain abnormalities in the number and 
structure of chromosomes are particularly evident at 
this stage and can be related to clinical conditions 
in animals and in men. For example, in man, mon­
golism and the Klinefelter and Turner syndromes 
have been correlated with chromosomal aberra­
tions. 

The study of chromosomes by manual methods, 
however, requires a great deal of time-enlarged 
prints must be made from photomicrographs, and 
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each chromosome must then be cut out from the 
print so that it can be aligned with the others for 
classification into the so-called chromosome karyo­
type. With the FIDAC system, the time required 
for analyzing and classifying! each chromosome can 
be radically reduced, to about half a second per 
chromosome or about 20 seconds for the full com­
plement of human chromosomes. Here' we use the 

computer for investigating large numbers of cells 
with respect to total chromosome complement 
counts, to quantitative measurements of individlual 
chromosome arm-length ratios, densities, areas, and 
other morphological characteristics, and so forth. 

By processing large numbers of chromosome sets 
and statistically analyzing the data, it is possible to 
give very accurate descriptions of the standard 
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Figure 6. (a) Results of analysis on a chromosome. (b) Subprintout of chromosome being analyzed. (c) Centers of boundary 
segments. 
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chromosome complement and of individual chro­
mosome variability for particular species. This 
statistical technique may be the only way to uncover 
small variations, which may prove important in re­
lating chromosome karyotypes to diseases. 

Figures 6 through 11 illustrate the capabilities of 
the FIDACSYS chromosome-analysis computer 
program. After the picture has been placed in the 
computer's memory, an internal programmed scan 
is made in the memory for each of the chromo­
somes in the picture. When a chromosome is 
found, it is analyzed; the results obtained are as 
shown, for example, in Fig. 6a. The coordinates of 
the center of gravity of the chromosome are deter­
mined, its area and perimeter are measured, its 
centromere and arms are identified and the lengths 
of the arms of each arm pair are/ measured, the arm­
length ratio is computed, and the overall length of 
the chromosome is determined. Of course, the 
actual coordinates of the ends of the arms and of 
the centro meres had to be determined in order that 
the arm lengths could be properly measured. These 
coordinates are also given for the chromosome, as 
illustrated in Fig. 6a. 

PLOT OF eASIC PARTS FOA OBJECT 

.0 A .OC 
.OE .ou 

In Fig. 6b we show a subprintout of the particular 
chromosome being analyzed. When a chromosome 
is located during the internal scan in the computer's 
memory, the boundary of that chromosome is 
traced. This boundary is then characterized by a 
sequence of boundary segments. Figure 6c illus­
trates the actual locations of the centers of the 
boundary segments that were chosen to characterize 
the chromosome of the illustration; for this chromo­
some, there were 19 such segment centers in all. 

The next step in the analysis of a chromosome is 
to characterize the curvatures of the boundary seg­
ments. These curvatures, called the basic parts of 
the chromosome, are illustrated in Fig. 7a, in which 
we show the curvature code corresponding to each 
boundary segment. The code letters at the end of 
the alphabet, namely U, V, W, X, Y, and Z, repre­
sent concave curvatures in increasing order, whereas 
the code letters A, B, C, D, E, and F, represent 
convex curvatures in increasing order. The code 
letter 0 represents an essentially straight segment. 
Next, from these basic parts, the syntax-directed 
pattern-recognition technique is carried out to build 
up the so-called derived parts of the chromosomes. 
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Figure 7. (a) Curvature codes corresponding to each boundary point. (b) Codes for derived parts. (c) Final results showing 
end points "E," and centromere location "C-C." 
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1 11 A 427'18;) 199.7 78.7 42.3,40.9 37.5,36.7 .529 1114. 591. 499. .542 
1 12 G 208,164 49.5 10.6 8.7, 7.5 7.fH 7.4 • 520 153. 79 • 72. .521 
1 1 .~ 

.. J n 304,1()U 117.6 41.0 2~.2'21.5 20.0,15.3 • 570 531 • 295 • 237. .555 
1 lt~ b 3~6'20d 99.2 32.1 la.5,1i3.7 12.7,14.2 .580 451. 246. 205. .545 
1 l~ D 3~6'21~ 63.6 19.8 11.9,11.0 9.1, 7.5 .580 219. 128. 87. .596 
1 16 D 2t>5'26~ 51.7 16.5 8.7, 9.2 7.9, 7.1 .544 154. 81. 69. .540 
1 17 !j 214,27:' 90.9 30.5 19.1,18.7 12.0,11.2 .619 3R2. 253. 125. .669 
1 18 C 442,274 76.5 24.7 21.0'18.~ 5.3, 4.6 .799 351. 277. 64. .813 
1 19 A 2::>0,.307 161.0 59.7 32.4,32.0 28.(),26.9 .~40 895. 450. 426. .514 
1 20 C 2b5,.30~ 71.6 23.9 23.2'21.6 1.5, 1.5 • 937 301. 297 • 7. .977 
1 21 C 366,318 90.9 30.2 22.0,22.4 8.9, 7.1 .735 3A2. 310. 69. .SlA 
1 22 A 303,350 203.2 83.0 45.4,46.0 36.5,38.2 • 550 1139. 592 • 550. .518 
1 2.3 H 356,394 120.5 39.3 23.5.19.9 20.5,14.7 .552 596. 318. 262. .548 

Figure 8. Printout of final results of completely automatic analysis of full complement of chromosomes of the Chinese··hamst~:r 
tissue-culture cell of Fig. 9. 

This procedure results in the recognition of the ends 
of the arms and the centromere position. Figure 7b 
illustrates the codes developed for the derived parts. 

Figure 7c illustrates the final results of the recog­
nition method for our illustrative chromosome. 
Here the letter E has been placed at the points 
which represent the ends of the arms of the chromo­
some, and the letter C has been placed at the points 
that represent the location of its centromere. The 
measurements of the arm lengths are made from the 
centromere to the end of the corresponding arm. 
The area and perimeter of the chromosome have 
previously been determined by the computer pro­
gram. 

Figure 8 shows a printout from the computer of 
the completely automatic analysis of the full com­
plement of chromosomes from a Chinese-hamster 
tissue-culture cell. Note that the computer has 
automatically 1) counted the chromosomes, and for 
each chromosome has automatically 2) found the 
center, 3) evaluated the perimeter, 4) measured the 
overall length, 5) measured the lengths of the two 
long arms, 6) measured the lengths of the two short 
arms, 7) calculated the (arm) length ratio, * 8) evalu-

*The arm-length ratio is computed as the average of the long 
arm lengths divided by the sum of the averages of the short and 
long arm lengths. 

ated the overall area, 9) measured the arlea of the 
long arms, 10) measured the area of the short arms, 
and 11) calculated the ratio of the arm areas.t 
Figure 9a shows the photomicrograph of the cell of 
Fig. 8. Figure 9b was plotted by the computer only 
from the results of its analysis. This plot shows 
where the computer 1) located and 2) counted each 
chromosome (see small numbers), and for each 
chromosome shows how the computer 3) traced the 
perimeter (see chromosome outlines), 4) identified 
the arm end points (see x's), and 5) determined the 
centromere (see line across chromosome). 

In Fig. 10 the computer has plotted the results of 
the automatic classification of the chromosomes of 
the cell of Figs. 8 and 9, giving the complete karyo­
gram. The x marks the centromere, and the lines 
diagramatically illustrate the actual arm lengths; 
the number below each schematic chromosome re­
lates it to the corresponding chromosome in the 
Table of Fig. 8 and in the plot of Fig. 9b. In Fig .. 11 
the computer has plotted a scattergram of the short 
arm lengths vs the long arm lengths, where the small 
numbers again relate to the chromosome n4mbers 
of Figs. 8 and 9. 

tThe ratio of the arm areas is computed as the area of the long 
arms divided by the total area of the chromosome. 
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Figure 9a. Photomicrograph of cell of Fig. 8. 
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Figure 9b. Plot of computer analysis of cell of Fig. 9a. 
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Figure 10. Karyogram plotted by computer. 

SUMMARY 

In this paper we have presented an introduction 
to the instrumentation and programming techniques 
utilized by the authors in biomedical pattern recog­
nition and processing. We have illustrated the tech­
niques by briefly describing four applications al­
ready accomplished. Such techniques promise to 
open up entirely newfields in biomedical research. 
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A CHESS MATING COMBINATIONS PROGRAM* 

George W. Baylor and Herbert A. Simon 
Carnegie Institute of Technology 

Pittsburgh, Pennsylvania 

1. INTRODUCTION 

The program reported here is not a complete 
chess player; it does not play games. Rather, it is a 
chess analyst limited to searching for checkmating 
combinations in positions containing tactical possi­
bilities. A combination in chess is a series of forcing 
moves with sacrifice that ends with an objective ad­
vantage for the active side. 1 A checkmating com­
bination, then, is a combination in which that 
objective advantage is checkmate.t Thus the pro­
gram described here-dubbed MATER-given a 
position, proceeds by generating that class of forc­
ing moves that put the enemy King in check or 
threaten mate in one move, and then by analyzing 
first those moves that appear most promising. 

The organization of this paper centers around 
MATER's ability to analyze chess positions. After 
a brief look at the program's history in Section 2, 
the overall organization of the program is presented 
in Section 3, an organization which is designed to 

*This investigation was supported in part by Research Grant 
MD~07722~OI from the National Institutes of Health, and by the 
System Development Corporation while the author was a sum~ 
mer associate there. 

tSometimes the defender is able to avert the checkmate by 
incurring a heavy loss in material (pieces and/or Pawns). If the 
attacker's gain in material is indeed an "objective advantage"­
the defender being left with no compensatory attacking changes 
-then such combinations would generally be called mating 
combinations, even though not ending in mate. The current 
version of the program confines itself to mating combinations 
in the narrow sense-those from which there is no escape. Inclu­
sion of the broader class is an obvious extension. 

431 

allow flexible movements in an analysis tree of 
possibilities. Then in Section 4 the "top level" 
comes under consideration; MATER's heuristics of 
analysis-the search rules and priorities, the search 
evaluators-that enable it to find a mate in the 
maze of possibilities. In Section 5 data on the per­
formance of the program is presented. Finally, the 
programming language representation of the chess­
board and chess pieces and the basic chess capa­
bilities this affords are reported in the Appendix 
(they are reported in yet finer detail in Baylor2

). 

2. HISTORY OF THE PROGRAM 

MATER has led a checkered life. The original 
mating combinations program,as conceived by 
Simon and Simon3 was a hand simulation setting 
forth a strategy of search. According to hand simu­
lations the program discovered mating combina­
tions in 52 of the 129 positions collected in Fine's4 
chapter on the mating attack. But a hand simula­
tion is not a rigorous model and, as such, is itself 
sometimes prone to the imprecisions and ambigui­
ties of many verbal theories. Indeed, Myron and 
May~ pointed out two such ambiguities in the 
specifications laid down by Simon and Simon 3

• 

Newell and Prasad6 coded an IPL·V program 
which set up a chessboard, recorded positions, made 
moves, tested their . legality , and performed a few 
other functions (see Appendix). This they overlaid 
with the beginnings of a mating program. 



432 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

8 11 

1 
W-:-:-k~ 

IJ 

1 
Figure 1. The Analysis Tree 

(The W's are White moves, the B's, replies.) 

The first version of a mating program described 
here-MATER I-is the work of G. Baylord,2 
H. Simon and P. Simon,3 using the Newell-Prasad6 

chessboard. The program was revised during 1964 
by Baylor into a second version, MATER II. 

3. ORGANIZATION OF THE 
ANALYSIS TREE 

The Problem 

As stated in Section 1 the mating program 
analyzes chess positions. An analysis of a position 
-as the term is used here*-consists of the set of 
moves and evaluations made in the course of re­
solving the choice-of-move problem. Taken to­
gether, moves and positions make up a tree of 
possibilities in which moves operate on positions to 
produce new positions (see Fig. 1) and on which 
evaluations of positions and· of moves in achieving 
desired positions can be hung as desired. 

The dots or nodes in Fig. 1 denote positions 
(static states) and the lines between dots denote 
moves (operators) that transform one position into 
another.t 

*Chess players would probably prefer to define "analysis" as 
the finished product rather than the process of search, laying 
stress on the "right" moves and continuations rather than 
emphasizing how these were arrived at. 

tSimon and NeweiF have often drawn this difference equation 
analogy to the problem-solving process: given an initial state 
description and a desired state, the problem is to find a process 
description that operates on the initial state to produce the 
desired one. In discussion of the Logic Theorist,8 for example, 
the logic expressions correspond to the static states, and the 
rules of inference, to the operators. 

How should the analysis of a posItIOn be c:on­
ducted? Figure 2 presents one simple scheme. 
Would this scheme be workable if it wc;~re made 
operational? For example, let: 

1. "X" be defined as checkmate and the 
program be given the capability of 
generating moves in its service; 

2. the criteria for deciding among moves 
be specified by certain rules of selec­
tion; 

3. the program be given the capability 
of making moves and updating board 
positions; 

4. a test be provided so that the pro­
gram "knew" if it had achieved ';'X"; 
and 

5-8. the corresponding provisions be made 
for "Y", defined as escaping check, 
and for choosing among replies. 

The answer is no, not quite. The schem,e lacks a 
means for recovering from false starts, for retracing 
its steps when it runs into blind alleys. Ind4;!ed, 
what is lacking can be seen by considering the dif­
ference between actually playing a game of chess 
and analyzing a chess position: the course of analy­
sis is fickle and reversible, whereas in an acltual game 
a move once made cannot be unmade. In other 
words, the scheme outlined above needs provisions 
for unmaking moves and for abandoning seemingly 
unpromising positions as much as it needs the capa­
bility of making moves and pursuing promising 
positions. Ideally, one should like to be ablt~ to 
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Figure 2. A simple recursive mating scheme:-

enter and reenter the move tree at any node (posi­
tion) at any time and from there to proceed down 
any branch, old or new. Providing such capabilities 
for reinstating the right position at the right time is 
probably the central problem of organization at this 
level of the program, while making operational and 
making sense out of steps 1-8 above is probably the 
central problem at the next higher conceptual level. 
This section ,reports on the former problem: imple­
mentation of a flexible move tree. Section 4 is 
devoted to the latter: defining the problem and the 
heuristics of search. 

Building the Tree 

The notion of analysis as a tree search is mis­
leading to the extent that it implies that each step 
consists solely of selecting a move from the many 
available alternatives. Actually, the process is more 
one of generating moves as one goes along, of build­
ing one's own tree. This is the very distinction 
Maier9 (p. 218) has drawn between decision making 
under conditions of uncertainty* and problem 
solving: "Decision making implies a given number 
of alternatives, whereas in problem solving the 
alternatives must be created. Thus, problem solving 
involves both choice b~havior and the finding or 
creating of alternatives." 

In every chess position, of course, the rules of the 
game place an upper limit on the number of possi­
bilities that can be created; de Groot ll found that, 
averaged across the course of a game, the mean 
number of legal move possibilities lies somewhere 
between 30 and 35. This is a full-grown tree; the 
one the searcher actually builds is much smaller: on 

* According to Luce and Raiffa 10 decision making under un­
certainty is the condition in which the outcomes of the various 
known alternatives are unknown. 

the average, four or five branches at the top node 
and smaller thereafter. 

The first question addressed in this section is the 
technical one: How does one build a tree? How are 
limbs and nodes-moves and positions, respectively 
-structured into a tree of possibilities? (See the 
Appendix for the details of construction of moves 
and positions.) Second, and pursuing the metaphor, 
think of the chess player climbing the tree as he 
builds it. Crawling along a branch in one direction 
corresponds to making a move in the current posi­
tion (node) while traversing it in the opposite direc­
tion corresponds to unmaking a move and restoring 
the previous position (node). This ability to back 
up the tree is what enables a player to abandon 
unpromising lines of investigation and start afresh. 
In starting afresh, moreover, the player may either 
reinvestigate branches he has previously built or 
build new ones. 

Third, as the player builds and climbs he also 
accrues and retains information. The information 
garnered en route and the use to which it is put are 
in large part what Denkpsychologists have called 
the development of the problem. That is, the 
searcher's conception of the problem at anyone 
time consists of the information he has about the 
problem, how he has evaluated this information, 
and even how it has shaped his definition of what 
the problem is (cf Duncker 12 and de Groot ll

). Pro­
visions for gathering information are considered in 
both this section and the next; the use to which 
information is put and the matter of problem devel­
opment are more properly treated in the subsequent 
sections. 

Most of the organizational problems are solved 
via the description lists of moves. For convenience 
of reference the entire list of possible attributes a 
move can take on is set forth in Table 1. 
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With respect to the first question-provisions for 
holding the tree together-a signal cell and attri­
butes A46 and A47 do the job. The signal cell con­
tains the name of the most recent move made on the 
board-the contemporary-while attributes A46 
and A47 are its ancestor and; its list of descendants, 

Table 1. Move Attributes 

A40-From square 
A4I-To square 
A42-Special move (yes or no) 
A43-Man removed from castle list 
A44-Man captured 
A4S-Square of captured en passant Pawn 
A46-Ancestor 
A47-List of descendants 
A48-Irreversibility of move (reversible; or 

irreversible) 
A49-Value of move (mate, no mate, no value) 
ASO~ Number of descendants 
ASI- Man moved 
AS2-Double check (yes or no) 
AS3-Discovered check (yes or no) 
AS4-Checking move (yes or no) 
ASS-Descendant's list of m'ate threats 
AS6-Threatened mating square 
AS8--Mating piece on V(AS6) square 
A63-Reply NOMV (no mo;ve) 
A6S-Number of checking moves generated to date 
A66-Number of replies generated to date 
A 70-List of King replies 
A 71-List of capturing replies 
A 72-List 0 f interposing replies 

respectively. The log of the analysis is preserved by 
defining a dummy move, L31, which has on its de­
scription list the list of descendants attribute A47. 
Thus the course of analysis is linked together as a 
chain of moves with contemporaries linked by an-

cestor and descendant relations, as in the exam pIle of 
an analysis tree in Fig. 3. 

Second, because of the strong family ties just 
described, one can eventually crawl one's way down 
any branch of any node and then back up. That is 
to say, one can make or unmake any move. Two 
routines, E6S and E66, make and unmake moves, 
respectively. The procedure for unmaking a move 
is exactly the reverse. With the help of routine Ell 
the position list is restored, that is, the dt~scription 
lists of the pieces and squares affected are restQired 
and the signal cells reset. 

At any node a new limb may also be constructed 
(by routines ESI and ES2; see Appendix) simply by 
specifying the "from square" and the "tQi square" 
(and special move status, if any) whereupon the 
move is added to the list of descendants, V(A47), 
and assigned an ancestor, V(A46). 

Third, information gathered in the st~arch for 
mate is stored on the description list of the move 
that gathers it. (See Table 1.) When a move is con­
structed, its ancestor is always assigned as a valule of 
A46 and the man moved in always assigned as a 
value of AS1. Conditionally, a move is assigned a 
value of A43 if a Rook or King is removed from the 
castle list, a value of A44 if a man is captured, a 
value of A4S if a Pawn is captured en passant, a 
value of AS2 if it is a double check, a value of AS3 
if it is a discovered check, and a value of AS4 if it 
is a checking move at all. 

Evaluative information is also gathcTed: attribute 
A49 records the win-loss value of a move: mate, no 
mate, or no value. If a checking movie has. no 
descendants, that move mates; consequently, attri­
butes A 70, A 71, and A 72 record the kinds of replies 
to check. Attribute A47 lists the descendants in toto 
and the value of ASO is a count of them. 

The point here is to illustrate how information is 
hung on the move tree as it is gathered. How the 
information is retrieved and utilized is a topic for 
the next section. 

A46 None 

L31 G" (I.P-K4) 
A46 L3l A46 l.P·K4 

~JiI. .. p-K4)1 ~ None 

~1...N.-KB3U A46 (1.P·K4) 

~ (2.P-K5) 
A46 (1 ... N·KB3) 

Gi{(2 ... N,Q4)} 
(2 ... N.K5) etc. 

Figure 3. Course of analysis linked as contemporaries, ancestors, and descendants. 
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4. THE EXECUTIVE AND HEURISTICS 
OF SEARCH 

Introduction 

In a given position, what moves should be con­
sidered and in what order? Human chess players are 
known to be highly selective in the moves they look 
at, a selectivity based on their heuristics of search. 
Computers must also incorporate such selectivity. 
What follows then is a discussion of the search 
heuristics incorporated into the early version of the 
mating program, some measures on its search be­
havior, a brief description of the routines that effect 
the move generation, and, finally, later develop­
ments added to a second version of the program, 
MATER II. 

MATER I 

Restricting the mobility of the opponent's pieces 
is a recognized principle of chess strategy. It is par­
ticularly important in checkmating combinations 
since checkmate is defined as an unopposed attack 
on an enemy King whose mobility has been reduced 
to zero. Strategically this means the attacker strives 
to gain control over 1) the square the enemy King 
occupies, as well as 2) all the squares contiguous to 
it that do not contain an enemy piece. If just condi­
tion (1) obtains, the enemy King is simply in check; 
if just condition (2) holds, the enemy King is stale­
mated; while if both (1) and (2) hold, he is check­
mated. Viewed in this light, checkmate is a process 
of acquiring 'controls, or more and more restricting 
the enemy King's mobility. This principle is the 
cornerstone of the mating program. 

The restriction of mobility principle applies to the 
generation and selection of moves as well as to deci­
sions about when to abandon search in certain 
directions. Thus in the mating program: Only 
checking moves (in MATER I) and moves that 
threaten mate in one move (in MATER II) are gen­
erated for the attacker; the move selected for in­
vestigation is the one that most restricts the oppo­
nent's mobility; and search is continued down a 
chosen path only so long as the opponent's mobility 
is on the decline. This-the rate of growth of the 
search tree-is an alternative formulation to an 
evaluation function for terminating search in a par­
ticular direction. 

Before illustrating the flow of control and the pro­
gram's executive structure, it is necessary to intro­
duce the notion of a try-list, a notion similar to the 
"pool of subgoals" in the Logic Theory Machine. 13 

Since only one move can be tried out at a time in 
any particular position, other "eligible" checking 
moves must wait their turn on a list, L35-the try­
list. This list has two noteworthy properties: first of 
all, it is an ordered list, and second it is independent 
of a move's level. * Such independence proves 
powerful in directing search. 

The list is ordered by a fewest-replies heuristic: 
highest priority goes to moves with the fewest num­
ber of legal replies, while checking moves with more 
than four legal replies are discarded entirely. Ties 
are broken by giving priority to double checks, then 
to checks that have no capturing responses, then to 
the order in which the checks were generated. The 
second property-that checks from all levels are 
mixed--effects the evaluative principle that search is 
continued down a particular path only so long as 
the opponent's mobility is on the decline: when the 
number of replies at some node in the current line 
of investigation is equal to or greater than the num­
ber of replies at some prior node, the current line is 
abandoned, the prior node restored, and the al­
ternative that had once been passed over is tried. 
This nips in the bud unpromising proliferations in 
the move tree. 

In addition to the notions just described-rate of 
growth serving to terminate search in a particular 
direction, the set of considerable moves serving to 
restrict the set of applicable operators in the given 
position, the try-list ordered by the fewest-replies 
heuristic serving to stipulate the application of of­
fensive operators-some heuristics of chess strategy 
serving to stipulate the order of application of 
defensive operators can also be seen more clearly 
from the following illustrative position taken from 
Fine4 and MATER I's performance on it. t 

The following layout is adapted to the simple 
recursive scheme of Fig. 2. 

*The level of a move refers to its depth in the move tree, i.e., 
how many moves out it is from the starting position. 

t They can also be seen more clearly within the picture of 
heuristic search in general in Newell and Ernst. 14 
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(I) Generate checking moves: LN-K6ch; B-K7ch; B-B7ch; 
Q-B6ch. 

(2) Select one move for further analysis: 
(a) l.N-K6ch l.B-K7ch l.B-B7ch l.Q-B6ch 

1...K-K 1 1...NxB 1...NxB 1 ... NxQ 
1 ... QPxN 1. 1- 1 ... N-K2 
1 ... BPxN 1. 

1. 

(b) Transfer checks to try-list; order them by their "u" 
values (number of replies): 

L35 .y. 
l.B-K7ch 1 
1.B-B7ch I 
l.Q-B6ch 2 
1.N-K6ch 3. 

(c) Select and delete top move from try-list L35: l.B-K7ch. 
(3) Make that move (l.B-K7ch) in the analysis. 
(4) Test if checkmate has been achieved: No. 
(5) Generate replies to relieve check: 1 ... NxB. 
(6) Select "best" reply*: 1 ... NxB. 
(7) Make that reply (l...NxB) in the analysis. 
(8) Test if check has been relieved: Yes. 

(I) Generate checking moves: 2.N-K6ch. 
(2) Select one move for further analysis. 

(a) For each check generate and count replies: 

2.N-K6ch 
2 ... K-KI 
2 ... QPxN 
2 ... BPxN 

1. 
(b) Transfer check to try-list: order them by their "u" 

values: 

L35 .y. 
I.B-B7ch I 
l.Q-B6ch 2 
I.N-K6ch 3 
2.N-K6ch 3. 

(c) Select and delete top move from try-list L35: 1.B-B7ch. 
(3) Make that move (l.B-B7ch) in the analysis, restoring the 

board to the initial position. 
(4) Test if checkmate has been achieved: No. 
(5) Generate replies that relieve check: 1 ... NxB. 
(6) Select best reply: 1 ... NxB. 
(7) Make that reply (l...NxB) in the analysis. 
(8) Test if check has been relieved: Yes. 

(I) Generate checking moves: 2.N~K6ch; Q-B6ch. 
(2) Select one move for further analysis. 

(a) For each check generate and count replies: 

2.N-K6ch 2.Q-B6ch 
2 ... K-KI 2 ... NxQ 
2 ... QPxN 2 ... N-K2 
2 ... BPxN 2.. 
2 ... NxN 

~. 

*"Best" is defined in the text immediately following this ex­
ample. 

(b) Transfer checks to try-list; order them by their "u" 
values: 

L35 .y. 
1.Q~B6ch 2 
2.Q-B6ch 2 
I.N-K6ch 3 
2.N-K6ch 3 
2.N-K6ch'4. 

(c) Select and delete top move from try-list: l.Q-B6ch. 
(3) Make that move (l.Q-B6ch) in the analysis, restoring the 

board to the initial position. 
(4) Test if checkmate has been achieved: No. 
(5) Generate replies to relieve check: 1 ... NxQ; N-K2. 
(6) Select best reply: 1 ... NxQ. 
(7) Make that reply (l...NxQ) in the analysis. 
(8) Test if check 'has been relieved: Yes. 

(I) Generate checking moves: 2.N-K6ch; B-K7ch; B-B7ch .. 
(2) Select one move for further analysis. 

(a) For each check generate and count replies: 

2.N-K6ch 
2 ... K-KI 
2 ... QPxN 

2.B-K7ch 
Q. 

2.B-E:7ch 
2 ... N:I(B 

1. 
2 ... BPxN 

1. 
(b) Transfer checks to try-list; order them by their "u" 

values: 

ill .Y. 
2.B-K7ch 0 
2.B-B7ch I 
2.Q-B6ch 2 
2.N-K6ch 3 
I.N-K6ch 3 
2.N-K6ch 3 
2.N-K6ch' 4. 

(c) Select and delete top move from try-list L35: 2.B-K7ch. 
(3) Make that move (2.B-K 7ch) in the analysis. 
(4) Test if checkmate has been achieved: Yes. 
(6') Select next best reply: 1...N-K2. 
(7') Make that reply (1...N-K2) in the analysis, mstoring the 

board to the appropritte position. 
(8') Test if check has been relieved: Yes. 

(1) Generate checking moves: 2.N-K6ch; BxNch; B-B7ch; 
QxNch. 

(2) Select one move for further analysis. 
(a) For each check generate and count replies: 

2.N-K6ch 
2 ... K-KI 
2 ... QPxN 
2 ... BPxN 

1. 

2.BxNch 
.Q. 

2.B-B7ch 
2 ... NxB 

1. 

2.QxNch 
.Q. 

(b) Transfer checks to try-list; order them by their "u" 
values: 

L35 !! 
2.BxNch 0 
2.QxNch 0 
2.B-B7ch' I 
2.B-B7ch I 
2.Q-B6ch 2 
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Diagram 36 
1/6/ 
10/15 ~ 

0·B6 

2. 

2 ... 

~ "=2 ~ 

;;

N.K6 @ B.B~7 N.~XN 

. 

MATE MATE 
18 21 

K·Kl OpxN BpxN K·Kl OpxN BPxN 
u=3 u=4 u=2 u=3 u=3 

Figure 4. MATER I's analysis tree of Diagram 36, Fine4
. . . ... 

(The u's are a tally of the number of replies by which the pnonty of .move~ on. the try-Itst IS es~ablts~ed. The sq.u~re boxes 
represent positions and the numbers in them trace the course of the mvestIgatIon-the order 10 which the posItions were 
taken up. The crosshatched branches trace the mating path.) 

2.N-K6ch"3 
2.N-K6ch'" 3 
I.N-K6ch 3 
2.N~K6ch 3 
2.N-K6ch' 4. 

(c) Select and delete move from try-list L35: 2.BxNch. 
(3) Make that move (2.BxNch) in the analysis. 
(4) Test if checkmate has been achieved: Yes. 
(6') Select next best reply: None. 
(7') Make that reply (None) in the analysis. 
(8') Test if check has been relieved: No. 
Mark MATE and print move-tree (Fig. 4). 

This example also illustrates the criteria by which 
the order of application of defensive moves is ac­
complished: by "best" reply is meant that reply 
that seems most likely to give. the attacker trouble. 
Thus the priority of defensive moves Black tries is, 
first, the capture of the most valuable White pieces 
by the least valuable Black pieces followed by King 
moves, interpositions, then order of generation. 
Again this is an attempt to clip unnecessary pro­
liferations in the move tree: if there is a "killing" 
reply to a checking move, further analysis of that 
checking move would seem futile. * 

*This is the minimax assumption; namely, that the opponent 
will make his strongest reply at every opportunity. McCarthy's 
killer heuristic (see Kotok (5) assumes that a killing reply to 
one checking move may be a killing reply to other checking 
moves and thus should be looked at first. 

Measures of Search Behavior. Many measures of 
search behavior can be picked off an analysis tree 
like MATER I's of Diagram 36 (Fig. 4). For ex­
ample, the tree can be characterized by counting the 
number of positions or the number of moves. Simon 
and Simon) call the total number of positions ex­
amined the "exploration tree"; in Diagram 36, 
above, the position count yields an exploration tree 
of size 16. In general, however, more moves are 
seen than positions are investigated, which is to say 
that some moves remain unexplored, such as the 
replies to l.N-K6ch in the example above. The 
count of moves seen-the un investigated as well as 
the investigated ones-will be called the discovery 
tree; in Diagram 36, above, this move tally yields a 
discovery tree of size 36 (14 checks and 22 re­
sponses). One further refinement can be carved out 
of the exploration and discovery trees; namely, the 
"verification tree," which Simon and Sjmon) define 
as the total number of positions required to prove 
the combination-the positions resulting from the 
single best move at each node for the attacker and 
from every legal move at each node for the defender; 
respectively, the positive and negative parts of the 
proof schema. 11 The verification tree "is precisely 
analogous to the correct path in a maze. It is a tree 
instead of a single path because all alternatives al­
lowed to the defender must be tested" (Simon and 
Simon,) p. 427). In Diagram 36, above, the 
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branches of the verification tree are crosshatched, 
yielding a position count of size 6, or alternatively, 
a move count of size 5. 

These measures do not reveal the time order in 
which the tree was generated. Human chess players 
are fickle tree climbers, "progressive deepeners," to 
use de Groot's 11 term for the phenonenon: "The 
investigation not only broadens itself progressively 
by growing new branches, countermoves, or con­
siderable own-moves, but also literally deepens it­
self: the same variant is taken up anew and is calcu­
lated further than before" (de Groot,1l p. 266). In 
other words, the search strategy is an important 
structural characteristic of the thought process. In 
Fig. 4 the order in which positions are taken up is 
captured by numbering the nodes (positions) in the 
analysis. These measures will be used for com­
parative purposes in Section 5. 

Routines. How are checking moves arid replies ac­
tually generated in any given position? There would 
seem to be two tacks, corresponding to a one-many 
approach and a many-one approach. In trying to 
find all the checks in a given position, for example, 
one could either radiate out from the enemy King 
and from each square, search for a piece that can get 
there and give check (the one-many approach), or 
converge from the squares along the move direc­
tions of each attacking piece onto the enemy King's 
square (the many-one approach). If there are many 
pieces on the board, the former is the more efficient; 
if few, the latter. 

G 1 is a master routine that procures all checks in 
a given position. It employs the many-one ap­
proach, calling subroutine GIl for Queen, Bishop, 
and Rook checking moves: G 12 for Knight and 
regular Pawn checks; and G 13 for double Pawn 
moves that administer check. Similarly, R21 pro­
cures all replies to a given checking move: Rl1 gen­
erates all the King moves that get out of check, R 12, 
all the captures of the checking piece, and R13, all 
the interpositions. In this way the mating program 
is able to enumerate all checks and all replies in a 
particular position. 

MATER Il 

In designing search programs it is useful to distinguish the 
strategy of search from the information that is gathered during 
the search. The search strategy tells where to go next, and what 
information must be kept so that the search can be carried out. 
It does not tell what other information to obtain while at the 
various positions, nor what to do with the information after it 
is obtained. There may be strong interaction between the search 
itself and the information found, as in the decision to stop 

searching, but we can often view this as occurring within the 
confines of a fixed search strategy. 

(Newell and Simon,116 pp. 24-25) 

MATER II adds a modification to MATER I's 
search strategy by bypassing the fixedne:ss in the 
order of application of operators inherent in the try­
list. The new search rule states: in the given posi­
tion pursue immediately and in depth all checking 
moves that keep the enemy King stalemated (or 
nearly so), i.e., moves that can only be answered by 
captures and/ or interpositions or, in the absence of 
both, by one and only one King move (the "ne:arly 
so" condition). In addition to altering the pro­
gram's search strategy by telling it "where to go 
next," this procedure also gathers Information 
about the position. In this respect it resembles what 
de Groot 11 has called a "sample variation," a kind 
of trial balloon sent up for the express purpose of 
gathering information to direct subsequent investi­
gation; in this sense it is orientative. Before turning 
to what information is gathered and how it is used, 
it should be mentioned that sometimes a sample 
variation pays off directly-the "samph! moves" 
may be a path to a quick mate. 

Specifically, a routine G 10 conducts the prelimi­
nary search and, if no "easy mate" is found, records 
the sequence of moves investigated on a list B4. A 
routine G 17 makes use of this information latt~r in 
drawing up a plan of attack. Just how these rou­
tines operate can best be seen by considering in three 
parts MATER II's analysis for a particular posi­
tion, Diagram 97 from Fine.4 

The first part has to do with the preliminary 
search; the second with the use to which th{~ re­
corded information is put in drawing up a plan; and 
the third with the exploration and verification of 
that plan. 

The first 10 moves of the discovery tree: are those 
in Fig. 5a. (Note that both the I.Q-N7ch and 
I.QxRPch sample variations are record(!d on list 
B4.) 
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~) 
1. Q-N7ch QxRPch 

--liL CD 
RxQ QxQ KxQ 

QJ ctJ 
1. .. 

pxRch N-NSch 

Record ed on list 84 

Sequence 1: l.Q-N7ch, 
RxQ; 

2.pxRch. 

Sequence 2: l.QxRPc,h, 
KxQ; 

qJ J1L 
K-N1 K-R1 K-R3 

• 2. 

2 ... 

2.N-NSch. 

-(K no longer 
sto lemoted) 

Figure SA. MATER II's preliminary search in Position 97. 

Clearly, the "wishful thinking" goal of the sample 
variations went unfulfilled; the preliminary excur­
sions did not yield mate. They do yield two se­
quences of forcing moves, however, that may be 
useful in constructing a plan of attack. Indeed, the 
routine G 17 searches list B4 for the first move can­
didates and finds, in this example, I.PxR and 
l.N-N5. The former is rejected as illegal in the cur­
rent position while the latter is deemed considerable. 
Note that the set of operators that may be applied 
in the initial position is expanded in MATER II to 
include moves other than just checking moves, yet 
the means by which these are generated continues 
to ensure a high degree of selectivity. 

Routine G 17 asks if a proposed move, in this 
case I.N-N5, threatens mate in one move. It deter­
mines the answer by assuming that Black does 
nothing on his turn, that is, by playing a "No 
Move" and then seeing if White can enforce an im­
mediate checkmate. And, indeed, 2.QxRP is ,mate. 
In other words, White leaves the actual problem 
space to seek a mate in a simplified planning space 
(see Newell, Shaw and SimonS) and, in fact, the 
second part of the move tree is given over to solving 
the problem in the planning space (Fig. 5b).* 

Finally, the third stage is devoted to testing the 
soundness of the plan; that is, suppose Black tries to 
avert 1.N-N5 and 2.QxRPmate. Can he? It hap-

* A hybrid version of MATER I and II would first have re­
investigated 1.Q-N7ch and 1.QxRPch, invoking the fewest­
replies heuristic, transferring these two checks to the' try-list, 
and elaborating them, before even considering moves which 
threaten mate in one. Unfortunately the statistics gathered on 
various versions of the program are too incomplete to say which 
search strategy is superior across positions, if in fact a correct 
strategy can be determined independent of position. 

pens that in this position he cannot so that the ex­
ploration tree and the verification tree are identical 
in this stage of the analysis. (The rather lengthy 
third stage is omitted here.) 

MA TER II contains one other highly selective 
mechanism for finding moves that threaten mate in 
one. Controls exerted over the enemy King's square 
and the squares in this immediate vicinity are built 
into a list structure called the King's Sector. For a 
given square five kinds of control have been de­
fined: 

1. No control-the enemy King can move 
to the given square. 

2. Attacking control-the attacker can 
move to or capture on the given square. 

3. Occupation control-one of the at­
tacker's pieces occupies the given 
square. 

4. Block control-one of the defender's 
pieces occupies the given square. 

5. X-ray control-the attacker can un­
mask an attacker control by removing 

I 

~ (Diagram 97) 

N·NS 

cb 
No Move 

NXBPch 
® 

QXRPch Q·N7 ch 

~ ~ 
QxN 

@] 
~ 
MATE RxQ QxQ 

lm ffiJ 
NOM NO,M NOM 

Figure SB. MATER II's plan formation in Position 97. 
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one of his own pieces . (corresponding to 
a "discovery" in chess jargon) or he 
could unmask an attacking control but 
for an enemy interposer (corresponding 
to a "pin"). 

The King's Sector, L40, is constructed by the four 
routines E91-E94. ' The complete structure of L40 
and the information contained therein can best be 
seen in Fig. 6, the King's Sector for Diagram 70 
from Fine.4 Attribute Y3 has data term XO as its 
value, a tally of the number of uncontrolled squares 
in the Sector (see Fig. 6). 

How is all this information retrieved and used by 
the program? First, a routine G 14 tries to generate 
mate-threatening moves by converting an X-ray 
control into a second attacking control. For ex­
ample, in Diagram 70, routine G 14, seizing on the 
White Bishop's X-ray control of KNS, proposes 
I.BxBP but then rejects the move because 2.B-NS 
does not administer check, let along mate. Second, 
a routine G 19, given one attacking control, tries to 
add a second. Routine G 19, seeing an attacking 
control over KN7 in position 70, proposes to add 
another with the moves LQ-KB6, l.Q-N6, and 
l.Q-R6. Since all three produce mate if Black does 
nothing, all three are accepted as considerable 
moves in the plan. 

In summary , MATER II contains several mech­
anisms for generating a s'elective set of considerable 

L40 9-0 
9-0 0 

S64 (KR8) 
9-1 (ICR8) 9-1 0 

moves. Incorporating MATER I's ability to gener­
ate all checking moves and all replies in a given 
position, MATER II goes on to generate mate­
threatening moves based either on their earlier 
appearance in forced sequences of checking moves 
or on the function they serve in controHing key 
squares around the enemy King. Moreover, 
MATER II has a set of routines, R15, ,R16, R22, 
for generating defensive replies to a threatened 
mate. 

MA TER II also contains three principal me:ch­
anisms in its search strategy specifying the order in 
which moves are to be considered. Defensively., in I 

reply to checking moves, captures are preferred to 
King moves, which, in turn, are preferred to inter­
positions; while in reply to one-move mate threats, 
captures are preferred to moves that defend the 
mating square as well as to interpositions and King 
runs. Offensively, search is directed by pursuing 
particular moves in depth so long as the ene:my 
King remains very highly constricted, and t.hen later 
by pursuing the move that leaves the opponent with 
the fewest replies. Each of these search evaluators 
rests on a single criterion: sometimes a line of search 
is terminated because the defender is left with King 
moves in reply (nodes 4 and 7 in the move tree;: of 
position 97); sometimes a move is rejected because 
it does not produce immediate mate (node:s II and 
12 in position 97); sometimes a move just never gets 
off the waiting list (node 2 in position 36); and 

863 (KN8) 
9-2 

MO (Man on KR8?) 
M29 (Black King) 0 

855 (KN7) 
9-3 
856 (KR7) 
9-4 
Y3 (No control over how 

many squares?) 
XO = 1 

Knight {854 (KB7) 
directions 9-5 
not used in 847 (KN6) 
tallying XO 9-6 0 

(KN8) 9-2 0 
Y7 (X-ray control) 
9-10 
y6 (Attacking control) 
9-11 0 

(KN7) 9-3 0 
y6 (Attacking control) 
9-12 
Y4 (Block control) 
M23 (Black Pawn blocks KN7) 0 

(KR7) 9-4 0 
y4 (Block control) 
M24 (Black Pawn blocks KR7) 0 

(KB7) 9-5 0 
y6 (Attacking control) 
9-13 
y4 (Block control) 
M22 (Black Pawn blocks KB7) 0 

(KN6) 9-6 0 
y6 (Attacking ~ontrol) 
9-14 0 

9-10 0 
M6 (White Bishop X-rays KNB) 
M22 (Black Pawn is X-I'ayed) I) 

9-11 0 
M2 (White Knight attacks KNB) 0 

9-12 0 
M7 (v-'hite Knight attacks KN7) 0 

9-13 0 
M6 (White Bishop attacks KB7) 0 

9-14 0 
M4 (vlhite Queen and White 
M2 Knight attack KN6) 0 

Figure 6. IPL·,V List Structure o~ King's Sector Controls (arranged in attribute-value pairs) of R. Fine's14 Diagram 70, from a game 
Alekhine-Supico, 1942. 
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checking moves with more than four legal replies 
are always rejected out of hand. Indeed, it is the 
thesis here that these kinds of criteria, criteria based 
on features of the task area, are what regulate chess 
players' choice-of-move decisions and form a good 
alternative representation to complicated weighting 
functions of the sort employed by Samuel 17 in 
checkers and Bernstein and Roberts 18 in chess. Even 
though mating combinations are the only facet of 
the game in which the final evaluators, MATE and 
NOMATE, are well defined*-a degree of certainty 
attained nowhere else in the game-the search­
directing decisions intermediate to the final choice 
of move must all be made on far less than certain 
criteria, just like the rest of the game. 

Except for the sample variations recorded on the 
list B4, the information-gathering mechanisms rely 
on the description list of the move that gathered it, 
including the final evaluation, MATE or NOMATE, 
which are propagated back up the tree by the mini­
max inference procedure in an attempt to demon­
strate the proof of a combination. 

5. INTERPRETATION AND RESULTS 

Introduction 

With respect to the verification of simulation 
models in general, and problem-solving models in 
particular, two criteria for assessment seem to have 
emerged clearly: an achievement criterion and a 
process criterion. Th<l;t is, can the model solve the 
class of problems it was designed to handle, and are 
its mechanisms for doing so equivalent to, or even 
comparable to, a human problem solver's? The 
answer to the first question is relatively straightfor­
ward; not so to the second, however, since the re­
quirements for equivalence or comparability of pro­
cess are themselves open to question. In the present 
report, we shall not consider questions of human 
simulation but will confine ourselves to a discussion 
of the achievement of the programs. 

MATER I solves combinations which consist of 
uninterrupted series of checking moves, given that 
the defender at no node in the verification tree has 
more than four legal replies; MATER II solves 
combinations that begin either with checks or with 
one-move mate threats and checking moves there­
after. This limitation on the class of moves the 
program can see restricts severely the class of com-

*"Well defined" is used in the sense that there exists a satis­
factory test that enables the player to recognize the solution to 
his problem. 19 

binations on which the model can be tested. Never­
theless, the program has been tested on material 
taken from Fine's4 chapter on the mating attack. 
Solutions to one class of positions in the chapter 
call for an uninterrupted series of checking moves 
ending in mate (51/129 positions). Anotherclass of 
positions is solved with one-move mate threats and 
checking moves thereafter (5/129 positions). In the 
residual class, mate ~an either be averted through a 
sacrifice of material or the mate is not "forced," as 
the term was defined in Sectiqn 1 (73/129 positions). 

MATER I's'Achievement 

MATER I found solutions to 43 of the 51 mating 
positions. The machine missed one combination en­
tirely by failing to move a Pawn that gave a dis­
covered check and exhausted available space before 
finding the other seven. * Table 2 breaks these 43 
positions down according to certain structural 
measures of search behavior: the depth of search to 
mate (D), the mean size of the verification tree .... 
necessary to prove the combination (VT measured 
in movt~s), and the mean size of the discovery tree 
generated in searching for mate (DT me,asured in 
moves). These latter two measures were defined in 
Section 4. 

Table 2. MATER I's Performance on 43 Positions 
from Fine4 

N (positions) D VT DT VTjD DTjD VTjDT 

15 2 3.5 15.5 1.8 7.8 4.4 
11 3 5.4 24.6 1.8 8.2 4.6 
14 4 9.9 61.5 2.5 15.4 6.2 
2 5 11.0 56.0 2.2 11.2 5.1 
1 8 17.0 108.0 2.1 13.5 6.4 

Simon and Simon3 (p. 428) suggest depth, num­
ber of positions in the exploration tree, and number 
of positions in the verification tree as measures of 
the difficulty of combinations. They remark that the 
four positions in their sample "are not ordered in 
the same way with respect to the different measures 
of difficulty." Using depth, number of moves in the 
discovery tree (DT), and number of moves in the 
verification tree (VT) as equivalent measures, the 

*In particular, MATER I failed to, see 2.P-B6ch in position 
148. The seven positions that exhausted available space did so 
because the fewest replies heuristic failed to discriminate among 
alternative checking moves: among six alternative discovered 
checks in positions 41 and tOO; among a large number of initial 
checks available in positions t09 and 140; and among a large 
number of checks in depth involved in a King hunt on the open 
board in positions Ill, 130, and 157. 
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1. 

I 
I 
I 
I 
I 
I 
I 

1. 

~_________ ~6 Q~ 
.~~ ~Q--- )," -", NO+~N~~ 
QxNPch NxPch NxPch R-R3ch QxNPch QxRPch QxNP Q;<NP 

1 ... 1 ... 

2. 

rill~ Al ~~4~~[~ 
MATE L.TJ MATE I MATE MII.TE 

I I 

PiN K-Nl K-R2 RxQ KxQ 

2. 

2 ••• 2 ••• 

3. 

3 ... 

4. 

piagram 70 
Legal number of first moves = 54 
Number of first moves considered = 4 

Discovery tree = 38 moves generated 
Exploration tree = 38 positions considered 
Verification tree = 13 positions (dashed lines) 
Depth of mate = 4 moves (7 half moves) 

. 0 ~ l$ ;;M 
I 
I 

R-R3ch 

~ 
I 
I 

Q-R5 
I 

~ 
I 
I 

RxQ 
I 

~ 
MATE 

I 

[$ 
I 
I 

R-R3ch 
I 

~ 
MATE 

3. 

3·· . 

Fig~~e 7. MA TER II's Analysis Tree and Order of Search on Diagram 70, from Fine 4. 

data of Table 2 do show, with but one exception, 
the same ordiflal relationship across measures, at 
least when averaged over the 43 positions. 

Between depth and the size of the verification 
tree (VTjD) there" is a fairly clQse correlation­
around two moves in the verification tree per move 
in depth. This confirms the Simon and SiIl1on 3 ob­
servation: the tree varies linearly, not exponentially, 
with depth, and it probably is this property that 
makes deep analysis possible in combinations. 
Neither DT jD nor VT jDT shows any consistent 
relationship. 

The only roughly constant ratio, VT jD, has more 
to do with the characteristics of mating positions 
than with characteristics of the mating program. 
The only measure on the program's search behavior 
is DT and there seems to be no consistent relation­
ship between it and the two measures on the com­
binations (DT jD and VT jDT). 

MATER Irs Achievement 

MA TER II has been tested on all five positions 
from Fine4 that necessitated an initial threat of mate 
in one and checks thereafter. It solved three di­
rectly, the other two, because of a change in com­
puter facilities, by hand simulation. The search tree 
for position 97 has already been described. In posi­
tion 107 the initial Queen sacrifice as well as an un­
expected Bishop sacrifice were easily spotted in the 
service of mate. The analysis tree of position 70 is 
given in Fig. 7. Note that the correct move and 
theme in position 70 derive from the celebrated 
game of Marshall's for which spectators showered 
the chessboard with gold coins!* Of the two hand 

*The program also finds the correct sequence of moves from 
the immortal Lewitzky-Marshall game, played in Breslau in 
1912 (Diagram 69 in Fine4

); it is excluded from the count here 
since Lewitzky, had he not chosen to resign, could have averted 
mate at the cost of a piece. 
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simulated runs position 95 required but the simple 
addition of a second control on the KN7 square via 
I.Q- R6, while position 113 required the move 
l.R-R5, which had been discovered in one of the ex­
ploratory sample variants. 

Conclusion 

In conclusion, MATER's power stems from its 
ability to generate a small selective set of moves that 
merit investigation. Since most of the earlier chess 
programs (see the review in Newell, Shaw and 
Simon 20

; and Kotok l5
) spent their analysis time 

processing tb~ wrong moves, it would seem that 
MATER II's two major mechanisms for generating 
relevant moves-its reliance on the sample varia­
tions and on the control of key squares-warrant 
further research. MATER II's major weakness, on 
the other hand, lies in its poorly organized search 
strategy for using its selectivity at all points in the 
analysis process. 

On the horizon, proposals have been made for 
strengthening the program's perceptual capabilities 
as well as altering its search strategy. 

Appendix 

THE BASIC REPRESENTATION 

Statement of the Problem 

In this Appendix we describe the basic represen­
tation implemented by Newell and Prasad.6 Two 
interrelated questions guided the choice of repre­
sentation: 

1.. What areithe necessary components of 
a chess representation? 

2. How sho'uld this information be or­
ganized? 

In response to (1): The program should be able to 
"see" the same things a human sees when he looks 
at a chessboard. Thus the program requires an in­
ternal representation of the squares and pieces on a 
chessboard and the relations among them, and a set 
of processes that can pick off and make use of these 
relations as needed. The former requirement is 
called "setting 'up the chessboard," the latter 
"move-making and board processing capabilities." 

In response to' (2): The game of ,chess provides 
an inhomogeneous collection of information out of ' 
which moves must be forged. Thus there must be 
enough variety in the representation to discriminate 
all the different kinds of moves; given that, the in-

formation should be stored in such a way that little 
space is allotted to moves that seldom occur (such 
as Pawn promotions, castling, etc.), and the de­
pendence and division of information between rou­
tines and data should remain flexible and open to 
change and never solidify into a resistant collection 
of conventions (NewelFI). List processing lan­
guages are specifically designed to cope with such 
problems. 

A chessboard is made up of squares, which lodge 
pieces, which make moves from one square to an­
other. Objects in chess, like the 64 squares and 32 
men, can be represented as symbols on lists, and 
moves can be represented as names of description 
lists with certain prescribed associations (such as 
the square from which a piece comes, the square to 
which it moves, and the kind of move in question). 
A chess position, moreover, can be fully described 
as a list of pieces and squares and a chess game as a 
list of moves that originate from a standardized ini­
tial position and terminate in a well-defined check­
mate position. 

Setting up the Chessboard 

A chessboard is made up of eight ranks and eight 
files which rule off 64 squares. The sequence of 
symbols S 1 ... S64 is used to denote these 64 squares. 

In the data section of the program there are a list 
of ranks, Ll, containing members Rl through R8, 
and a list of files, L2, containing members Fl 
through F8. Each rank is itself the name of a list 
containing eight member squares; e.g., R 1 contains 
SI, S2, ... , S8. 

In the routines section of the program a super­
routine, E 1, sets up a chessboard; it calls nine rou­
tines E2,·E7, E9, EI0, and E12, which do the work. 
Routine E2 builds the eight file lists, Fl through F8, 
out of the rank lists, R 1 through R8. Then routine 
E 12 takes each of the 64 squares and assigns it rank 
and file (x,y) coordinates, which are later used to 
compute another set of relations among squares. 

Squares. For each square on a chessboard it is es­
sential to know: 1) the name of its occupant, if there 
is one, and 2) the name of all its neighboring squares 
in the chess-legal directions. The first desideratum 
is effected by defining an attribute MO, "Man on 
Square?" on the description list of every square and 
assigning as its value the name of the piece occupy­
ing it-if there is one. 

The extensive network of relations among squares, 
constituting all legal move directions in chess, is 
captured by defining 16 directions on the chess-
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board, beginning with D I' for the forward direction 
and continuing clockwise to D16 for forward and 
left (e.g., the Knight's move KN 1 to KB3). 

Thus the even numbers (D2, D4, ... ,D16) define 
the eight possible Knight move directions; half the 
odd numbers (D1, D5, D9, D13) define rank (hori­
zontal) and file (vertical) directions; the other half 
(D3, D7, D 11, D 15), diagonal directions. 

Routines E3, E4, E5, and E8 use lists Ll, L2, L5, 
and L6 to build the network of relations among 
squares by assigning to each of the 64 squares all 
surrounding squares as values of each of the 
1:6 directions that obtain. In the initial position, 
for example, the list structure of the square S8-
White's KR t in standard American chess notation 
-would look like this: 

Name oflist Attribute Value 

Square KRI (S8) Man on Square White King Rook (MS) 
(MO)? 

Square to the Square KR2 (S 16) 
North (DI)? 

Square to the Square KN I (S7) 
West (Dl3)? 

Square to the Square KB2 (SI4) 
WNW 
(DI4)? 

Square to the Square KN2 (SIS) 
NW (DIS)? 

Square to the Square KN3 (S23). 
NNW 
(DI6)? 

Note that in such a list structure representation 
only those five of the 16 legal directions that are 
needed are defined; space in memory is not con­
sumed by providing the "information" that the 
other 11 directions have no values, as it would seem 
to be in a matrix representation of this kind of data. 
(Cf the argument in Newell,21 pp. 411-412, for a 
fuller statement of this view.) 

Men. The 32 men take and retain their designa­
tions from their placement in the initial position; 
they are denoted by the sequence of symbols 
MI ... M32. 

For each piece, it is essential to know: 

1. the square he occupies (attribute SO), 
2. his type (attribute AI), 
3. his color or side (attribute A2), 
4. his legally permissible move directions 

(attribute A20), and 
5. his legally permissible capture direc­

tions (attribute A21) .. 

The first of these is effected by defining an attri­
bute SO, "Square on?" on the description list of 
every piece and assigning as its value th<;: name of 
the square the piece currently occupies. The other 
four attributes assume the complete range of values 
in accord with the rules of chess. 

In the data structure there are 11 lists that group 
the chess men by types or otherwise useful cate­
gories: White Pawns; Black Pawns; Bishops; Rooks; 
Knights; Queens; Kings; White Rooks, Bishops and 
Queen; Black Rooks, Bishops, and Que<;:n; White 
Knights; and Black Knights. 

For each side, moreover, there is a list giving the 
type of each man on that side, and another list 
giving the move directions of each type of man. 

Routines E6 and E7 assign to each man his type, 
color, move directions, and capture directions. In 
the initial position, for instance, the list structure 
of M8 would look like this: 

Name oflist 

White King 
Rook (M8) 

Attribute 

Man on what 
square (SO)? 

Type of man (A I)? 
Color of man 

(A2)? 
Move directions 

(A20)? 
Capture directions 

(A21)? 

Value 

Square KR I (S8) 

a Rook 
White (KIO) 

a list of dinections D I, 
D5,D9,DI3 

a list of directions 
DI,D5,D9,DI3 .. 

Positions. A chess position can be described fully in 
terms of squares and pieces. Since MATER is s:up­
posed to find a checkmate in any given position, 
obviously some representation is necessary for 
encoding a particular position. This representation 
is a describable list called the position list, L 10. Its 
main list consists simply of the name of <;:ach man 
present on the board and the name of the square 
each man occupies, arranged in attribute-value 
pairs. Its description list contains a set of special 
attributes pertinent to the characterization of the 
position; in particular, S65, the "Whose move is 
it?" attribute that flip-flops between KIlO (White 
on move) and Kl1 (Black on move); S66, the name 
of the castle list that contains the Kings and Rooks 
still "eligible" for castling; S67, the signal cell that 
gets set when an en passant capture is in the o·ffimg; 
and S69, the name of the most recent move made 
on the board. 

Routine EtO takes as input any position list­
either the initial position or the mating position, 
which is read in from cards by routine E90-and 
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converts it into a set of associations between pieces 
and squares such that every piece has an attribute 
SO ("Square on?") with the square that piece occu­
pies as value, and every square has an attribute 
MO ("Man on?") with the name of the chess piece 
-if there is one-occupying that square as its 
value. 

This ends what might be called the "static" per­
ceptual relations on the chessboard. What follows 
is a bundle of basic routines that attempts to pro­
vide "dynamic" perceptual relations to the program. 

Move-Making Capabilities 

Moves are the operators that transform one chess 
position into another. What are the common prop­
erties of chess moves? Each involves a piece, or 
sometimes two, going from one square to another. 
If the "to square" is already occupied, the move is 
called a capture. If the "to square" is on the eighth 
rank and the piece a Pawn, it is called a promotion. 
But in all cases the common "from-to" property 
holds. 

This permits a move to be represented as the 
name of a description list containing a "from 
square" (as the value of an attribute A40) and a 
"to square" (as the value of an attribute A41). This 
information is sufficient to specify most moves. 
There is a special class of moves, however, which, 
while adhering to this "from-to" pattern, introduce 
some idiosyncratic properties of pieces. Each of the 
following five members in this class is assigned a dif­
ferent value to the special move attribute A42: 
King's side castling, Queen's side castling, a double 
Pawn move, an en passant response thereto, and a 
Pawn promotion. 

Five steps are required 'to make a move: first, the 
move must be constructed; second, it must be tested 
for legality; third, for repetition of position; fourth, 
it must actually be made on the board; and fifth, it 
should be printed. 

Routines E51 and E52 construct regular moves 
and special moves, respectively. Both create a new 
cell or symbol, which becomes the name of the 
move. Both take as input the square from which the 
piece is to move and the square to which it is to 
move and assign these as values of attributes A40 
and A41, respectively. For the special move routine, 
E52, the type of move must also be specified as 
input; it is assigned as the value of attribute A42. 
The name of the man moved is also received as the 
value of another attribute A51, for reasons that 

will appear under step 3 below. The move I.P-K4, 
for example, would be represented as follows (where 
al and a2 are internal cell names): 

Name of list Attribute 

al From Square (A40)? 
To Square (A41)? 
Man moved (AS I )? 

Value 

Square K2 (SI3) 
Square K4 (S29) 
White King Pawn (M 13), 

Similarly, the special move P-K8 = Q would be 
represented in the following format: 

Name of list Attribute 

a2 From Square (A40)? 
To Square (A41)? 
Special Move (A42)? 
Man moved (A51)? 

Value 

Square K 7 (S53) 
Square K8 (S61) 
Promotion to Queen 
White King Pawn (M 13), 

Second, a routine E 18 checks to insure that a 
newly constructed move is legal. The routine tests, 
for example, whether a Bishop is moving through a 
Pawn, whether a Rook is making a Bishop move, 
whether a player is castling through check, and the 
like. The output is a simple" +" ("yes, the move is 
legal") or "-" ("no, the move is illegal"). 

Third, according to the laws of chess a threefold 
repetition of position constitutes a draw, and, ac­
cording to the laws of computers, a loop. Before a 
move is executed, therefore, a routine E55 tests if 
the move under consideration has been played be­
fore in this same position. The position could not 
have occurred before if the move is irreversible, that 
is, if once the move is made on the board no subse­
quent set of legal moves can ever regain the exact 
same position. Captures, Pawn moves, and castling 
are all irreversible. Thus when a capturing move is 
constructed (step I), it is given an attribute A44 
with the man captured as its value. When a castling 
move is constructed, its status as a special move is 
recorded as the value of attribute A42. And for a 
Pawn move, a record is kept via the man moved 
attribute, A51. Routine E56, called by E55, tests for 
any of these three conditions to declare a move ir­
reversible. If none of them obtains, E55 must take 
some further comparisons between the A40 and A41 
values of the proposed move and earlier moves. 

Fourth, a routine E65 makes a regular move on 
the board; routines E71-E75 and E81-E85 execute 
the special moves. A move is made by updating 
the position list, which is done in two steps: first, 
with the assistance of routine Ell, the description 
lists of the pieces and squares affected by the move 
are updated. Second, the signal cells-S65, S66, 
S67, and S69-affected by the move are reset. 
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Since different routines are needed to make each 
of the five special moves, these routines are simply 
associated with their respective special move values 
in the data section of the program. 

Fifth, there is a print routine, E16, which prints 
out the name of the move, the "from square," the 
"to square," and the man captured, if any. 

Additional Board Processing Capabilities 

In addition to the move-making capabilities just 
described, there is a second group of routines in­
tended to provide the macqine with some more of 
the perceptual capabilities a human possesses; 
these are the board processing routines which pro­
vide answers to question~ asked of the board. 
Routine E13 finds the direction, if one exists, be­
tween two given squares. R6utine E14 tests to see if 
there is a piece between two squares in a given direc­
tion, and E24, if there is one and only one piece 
between two squares in a given direction. E15 tests 
if a piece is under attack,: and routine E26 asks 
specifically if that piece is the enemy King. Routine 
E33 tests whether a given Square is under attack, 
while E34 builds up the list' of men of a particular 
color attacking· a given square. Routine E36 tests 
if a given square is defended. These are some of 
the more important "building block" routines used 
in constructing the move tree. 

Processing Speed 

It might be supposed that since the program was 
written in an interpretive lalllguage, IPL-V, without 
any attempt to provide a special machine-language 
representation for primitive board manipulations, 
that it would be a very slow player. This has not 
proved to be the case-a tri.bute to the advantages 
of selectivity over machine brute force. The most 
difficult mates, requiring the examination of about 
100 positions, were achieved:in about 10 minutes on 
a CDC G-20-which would. be equivalent to about 
three minutes for the IPL-V system on the IBM 
7090. An excellent human player might be expected 
to take ten minutes or more! to discover and verify 
the mate in a position of this!difficulty. 

i 
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MULTIDIMENSIONAL CORRELATION LATTICES AS AN AID TO 
THREE-DIMENSIONAL PATTERN RECONSTRUCTION* 

Samuel J. Penny and James H. Burkhard. 
Lawrence Radiation Laboratory, University of California 

Berkeley, California 

INTRODUCTION 

Spatial reccn:-::truction of a three-dimensional 
object from a set I...'f stereo photographs must begin 
with the matching \ f the topological characteristics 
in one view with thosl.! in the other views. A human 
is usually good at this form of pattern recognition, 
but he is too slow for some applications. For high­
speed processing of bubble chamber photographs it 
has been necessary to design a computer code that 
will match the images seen in the various views. 

If we have n stereo views of an object, where each 
view contains images of the m characteristics to be 
correlated, a total of mn combinations are possible 
when one image is used from each view. These 
combinations are known as "n-tuplets." There is 
then some set containing m of the n-tuplets that 
describes the true matching of the images. With the 
physical limitation that an image in one view should 
not match more than one image in any other view, 
this solution set must be chosen from a total of 
(m!)n-I possible sets. This is in the class of combina­
torial problems that involve the construction of an. 
ordered set S = {Sh ... ,sml where the Sj are ele­
ments of a finite set U and the elements of the set S 
must be chosen subject to certain restrictions. 

One approach for finding the correct solution set 
would be to compute the likelihood for each pos-

*This work was performed under the auspices of the U.S. 
Atomic Energy Commission. 
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sible set of m n-tuplets, and then choose that set with 
the maximum likelihood. This approach can re­
quire a prohibitive amount of computation and is 
unreliable when there are large errors in the data. 
An alternative approach would be to use some type 
of elimination process, but even this can be ex­
pensive unless a technique is used to simplify the 
bookkeeping and to provide a rapid correlation 
among the various steps in the process. The "cor­
relation lattice" and methods for scanning it for 
solution sets (by means of an iterative scheme of 
backtrack programming l,2) supply the simplicity 
and speed to make this approach economical on a 
computer. 

THE THREE-DIMENSIONAL LATTICE 

At the Lawrence Radiation Laboratory in Berke­
ley, much of the high-energy-physics research deals 
with nuclear-particle events occurring in a bubble 
chamber. Three stereo views of the event are photo­
graphed, and points along the track images are 
measured. The images must then be matched so 
that the spatial trajectories of the particles involved 
in the interaction can be mathematically recon­
structed. Using the parameters of the trajectories, 
we do a kinematic analysis of the interaction to pro­
duce the information required by the physicist for 
his experiments. 

Figure 1 is a photograph and sketches of a simple 
nuclear event that occurred in the bubble chamber. 
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View I 

2 

View 2 View :3 

Figure 1. A photograph and sketches of a nuclear-particle 
interaction. 

As charged nuclear partiCles move through the 
liquid in the chamber, they leave small tracks of 
bubbles. A nuclear event occurs when an elemen­
tary particle interacts with an atomic nucleus in the 
liquid and produces a new:group of particles mov­
ing in different directions. 

Numbers have been assigned to the track images 
in the different views in the ;figure. The set of image­
number triplets that corrFsponds to the correct 
track-image matching is 

S = ((1,1,3), (2,3,2), (3,2,1)1 (1) 

where, for example, the triplet (1,1,3) means that 
track image 1 in view 1, track image 1 in view 2, and 
track image 3 in view 3 ~ue images of the same 
physical track. 

Producing the Lattice 

The computer's procedure for matching the track 
images begins with the construction of the correla­
tion lattice, E. Each dimension of this lattice cor-

responds to a set of track images from one of the 
stereo views, and the indices along a dimension are 
the identifying numbers of the track images in that 
view. The value, one or zero, of an element eijk in E 
will indicate the possibility or impossibility, re­
spectively, of matching image i in view 1 with image 
j in view 2 with image k in view 3. Since all image 
combinations must initially be assumed to be pos­
sible, the procedure begins with all lattice elements 
equal to one. Figure 2 shows the initial lattic'e for 
our sample event. 

View I 

Figure 2. The initial correlation lattice. (In Figs. 2-6, the 
solid disk. represents a value one; an open disk 0 

represents zero.) 

Often the correlation lattice will not be c:ubic, 
as it was for our sample event. It is possible that 
spurious images may be seen or real images missed 
in some views. With the bubble chamber film, it 
may be difficult to dissociate the background tracks 
from the interesting interaction in some view, thus 
producing spurious images in that view. However, 
the measuring devices seldom miss tral;k images. 
The strategy for dealing with the noncubic lattice 
for track matching is then rather simple: if L is the 
number of images the code "expects" to match. then 
every view must have at least L measured track 
images, and the solution set must contain L triplets. 
Other applications may require' other strat1egies. 

The remainder of the matching procedure is an 
iterative process of applying successively mone dif­
ficult tests of physical consistency to the image 
combinations in an attempt to eliminate! mat1ching 
possibilities from the correlation lattice, and, after 
each test sequence, scanning the lattice to determine 
the number of possible solutions sets that remain. 
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If there is no such set, or only one, the procedure 
ends. If there is more than one set, the lattice is 
still ambiguous, and it is necessary to go into the 
next test sequence. 

Testing Image Combinations 

A test may be concerned with an image from each 
of the three views (a triplet test) or it may compare 
images from only two views (a pair test). The pair 
test is very effective in the early stages of the pro­
cedure since, if an image pair is shown to be incon­
sistent, any triplet involving that pair must also be 
inconsistent. A single test can therefore eliminate 
many elements at a time. 

The tests may be expressed as binary-valued func­
tions. A pair test is written as the binary function 
Fp.Q(p,q) of the pair of image indices p and q from 
views P and Q. When the image pair is not con­
sistent with physical constraints, the value of the 
function is zero; otherwise its value is one. A simi­
lar definition is made of the triplet test F I •2•3(i,j, k). 

For efficiency, we do not apply a test to any image 
combination that has already been eliminated by a 
previous test sequence. The determination of trip­
lets to be tested with a triplet test is straightforward: 
A triplet is tested only if its corresponding element 
in E has the value of one. For the set of pair tests 
(F I •2 ; F2•3; F3.d, one view at a time must be syste­
matically eliminated from the image combinations 
by forming the "projections" of E along each of its 
three dimensions, one at a time. This produces the 
three two-dimensional-projection lattices IE, 2E, 
and 3E, where the elements of these lattices are 
given by 

(2a) 

(2b) 

(2c) 

. OR. is the logical sum operator, i.e., 

OR 0 

o 0 

The image pairs to be tested are determined by scan­
ning the three projection lattices for elements with a 

value of one and testing only the corresponding 
pairs. The projections of the initial lattice shown in 
Fig. 2 will obviously produce projection lattices that 
have elements all equal to one. 

Recording Test Results 

Now that the image combinations to be tested 
are determined, it is now necessary to record the 
results of the test sequence in the correlation lat­
tice E. For a triplet test this simply involves setting 
the lattice element corresponding to the triplet to 
zero if the value of the test function is zero. The 
procedure for recording the results of a pair-test 
sequence is to record the value of the test function in 
the two-dimensional-projection lattices that indi­
cated the image pairs to be tested. After all image 
pairs have been tested, the resulting projection lat­
tices are used to "mask" the correlation lattice E. 
This masking operation is written as 

E' = kE.AND.E (3) 

or expressed at the element level for the view 7:~ 

projection as 

(4) 

for all i, j, and k. Here, .AND. is the logical prod­
uct operator 

ANDIO 

o 

The masking is done for all three projections, and 
the final lattice E' replaces E as the correlation 
lattice. 

Returning to our sample event, suppose that the 
first test sequence was a pair test and eliminated five 
image pairs: (1,2) and (2,2) were inconsistent in 
views 1 and 2, and (1,1), (2,1), and (2,3) were incon­
sistent in views 1 and 3. No pairs could be elimi­
nated from views 2 and 3. Figure 3 shows the pro­
jection lattices containing the test results ready to be 
masked into the correlation lattice E . 

. Scanning for Solutions 

After masking into the correlation lattice, we now 
scan the three-dimensional lattice for possible solu­
tions. A solution in the lattice is defined as a set of 
lattice elements that all have a value of one and are 
chosen in such a way that no image in any view is 
used more than once. The length L of the solution 
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: View 2: 
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Figure 3. The projection lattices contammg the test results 
ready to be masked into the correlation lattice. 

set is defined as the number of elements in the solu­
tion set; in our sample event, the length is three. 

Figure 4 shows the resuLts of the masking opera­
tion on our sample event. • The dashed lines repre­
sent the two possible solution sets that will be found 
by the scanning procedure. 

The search for solutions in the three-dimensional 
lattice is based on the following proposition: If 
there exists a solution set qonsisting of L triplets­
SL{E)-in the three-dimensional lattice E, then at 
least one two-dimensional-solution set consisting of 
L doublets-SL{kE)-must also exist in each of the 
projection lattices of E; iie., a solution in E will 
project as a solution in any projection of E. A 
corollary to this proposition is that if no solution 
set of length L is found in some projection of E, 
then no solution set of length L exists in E. 

View I 

Figure 4. The correlation lattice after making. Dashed lines 
show the two remaining solutions. 

The scanning procedure is a four-step process. 
In the first step the lattice is reprojected along some 
axis to produce kE (3E in our case). In llhe second 
step this two-dimensional lattice is scanned for two­
dimensional solutions of the required length by the 
technique of backtrack programming. When a solu­
tion is found, the index pairs forming the solution 
set are used to construct a two-dimensional "post­
projection" lattice P (step three) as described llater. 
In step four this lattice is then scanned for solutions 
in order to determine the third index of the solution 
triplets. This type of scan fixes the indiices of the 
triplets one view at a time-Le., i is fixed for vi(~w 1, 
then corresponding j's are chosen from view 2" and 
this information is used to pick out the correspond­
ing k's from view 3. These steps are illustrat(~d in 
Fig. 5. 

Figure 5. The lattice and projections used in the scanning 
procedure. The solution in 3 E defines posts iJll E to 
be used as rows in P. 

As the three-dimensional solutions are found, 
they are used to construct a new three-dimensional 
lattice, E s , that contains only elements known to be 
a part of some solution. This lattice will be used 
later to discard unused elements on the basis of 
logical inconsistency. (If it is found that an element 
is not now a part of some solution in E, ill can never 
be a part of any solution, and it can then therefore 
be ignored in any further processing.) 

The first step-to produce 3E-is the projection 
procedure of Eq. (2c). By the proposition stated 
above, any solution in E will project as a solution 
in 3E. 

The second step-to scan 3E for a two-diimen­
sional solution-is done with backtrack program-
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ming I in the following way. Suppose that we are 
dealing with a projection lattice of n rows and 
m columns and are searching for solutions of length 
L. Row i of the lattice is used to form the set 
R; = {rij}, where the first m members of the set have 
values of zero or one, equal to the corresponding 
elements of the row, and the (m + I)th member of 
the set is always zero. (This last member repre­
sents a dummy track used to flag the row as not 
being used in a solution set.) Using these sets to 
form the Cartesian product space RI x R2 X ••• 

x Rn, we search for a vector (rlj" r2j., ... ,rnjn) in 
the space that satisfies the criterion function 

n 

fer) = L rij; = L (5) 
i= I 

and that meets the constraint that no two j; indices 
can have the same value unless that value is m + I. 
(This constrairit allows any column of the projec­
tion lattice to be used only once.) 

The concept of backtracking is to construct the 
vector one component at a time, with modified cri­
terion functions used at each step to determine if 
the line of pursuit still has a chance of success. 
When it is found that a partially constructed vector 
is doomed to failure, the last component is dis­
carded, and the program backtracks to resume con­
struction from the preceding elements. 

The modified criterion function used in the scan 
of a projection lattice at the kth row is 

k 

fk(r) = L rij; ~ L - (n - k) (6) 
i= I 

i.e., there must be enough rows left for the scan to 
reach the final value of L. When nand L are equal 
(as in our sample event), this function reduces to 

(7) 

In Fig. 5, the backtrack program begins by select­
ing rll from set R I and testing it with the modified 
criterion function fl (r). In this case 

fl(rll) = 1 

and the criterion is met. Having found the first 
component of our sample vector, (rll, -, -), the pro­
gram now begins a search in R 2 • The first choice is 
r21 and by applying Eq. (7) we see that 

f2(rll, r21) = 2 

However, the constraint that a column may be used 
only once eliminates this path from consideration. 

The component r21 is discarded, and we move to r22. 
Here again we meet failure because 

fz(rll, r22) < 2 

Continuing, we find that r23 meets the require­
ments, and the sample vector is extended to 
(rll, r23, -). 

The search now goes to R 3 • As seen in Fig. 5, 
r32 is the only member meeting the constraints, and 
so completes the vector (rll, r23, r32)' The solution 
set we have found in 3E is then 

S(3E) = {(l,I), (2,3), (3,2)} (8) 

At this point in the scan procedure, the position of 
the scan in 3E is saved, and step three is entered. 

The third step is to construct the post projection 
lattice, P, defined by the solution set just found in 
3E [Eq. (8)]. The index pairs in this set prescribe the 
posts (parallel to view 3) in the correlation lattice E 
that are to be used as rows in P. This projection is 
shown on the left of Fig. 5. 

The fourth step-to fix the third index of the 
solution triplets-is done by a scan of P in the same 
manner as the scan at 3E. As shown in the figure, 
the solution vector (rl3, r22, r31) is the only one pos­
sible, and a solution set has been found in the cor­
relation lattice E-

SeE) = {(l,1,2), (2,3,2), (3,2,1)} (9) 

Elements corresponding to this set are made equal 
to 1 in the "solution lattice" Es. 

After the solution is found in P, the scan of P 
will continue in an effort to find any more that 
might be present. If other solutions had been found, 
they also would have been entered into Es. 

When the scan for solution sets in the post projec­
tion has been exhausted, the program returns to step 
two to continue the scan of 3E from the point where 
the last solution set was found. If another solution 
set is found, steps three and four are again used to 
determine if the solution in 3E is the projection of a 
solution in the three-dimensional lattice. These· 
procedures continue until the scan of 3E is ex­
hausted, at which time the solution lattice, E s , will 
contain the elements of all solutions found in the 
scan. There is a second possible solution for our 
sample event, with the resulting solution lattice 
shown in Fig. 6. 

The solution lattice is used as a replacement for 
the original correlation lattice in order to eliminate 
all elements that do not contribute to some solution 
set. This lattice is now checked for elements com­
mon,to all solutions in the lattice. These triplets are 
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Q'--~--~~--~-o~--~--~~.-View 2 

View I 

Figure 6. The solution lattice ES showing the two remaining 
solutions. 

fully determined and need no further testing. Their 
elements are set equal to zero, their indices are 
saved to become a part of the final solution, and the 
required solution length in E is reduced accord­
ingly. In Fig. 6 we see that the triplet (3,2,1) is. of 
this type and can be eliminated from the lattice. 
This leaves only four elements to be tested by the 
second test sequence, thus illustrating the power of 
what seemed to be a rather weak first test that could 
eliminate only 5 image pairs out of the 27 tested. 

THE MULTIDIMENSIONAL 
CORRELATION LATTICE 

The properties and procedures described thus far 
for the correlation lattice can be extended to the 
case of n stereo views requiring an n-dimensional 
correlation lattice. If mj topological characteris­
tics are seen in view i, the lattice will have dimen­
sions of ml by m2 by ... by m n • Solutions in this lat­
tice will be made of L n-tuplets chosen with the same 
constraints as those used in the three-view case. 

In this general case, the tests of image combina­
tions can compare any number of views from 2 to n, 
and the concept of the pair and triplet test is ex­
tended to the more general k-tuplet test, a binary 
function of image indices from k views. 

It is possible to form various "orders" of projec­
tions of an n-dimensional lattice. The first-order 
projection, kE, that we used in the three-dimen­
sional case still eliminates only one view, but it 
produces an (n - 1 )-dimensional projection lattice. 
The elements of the 1 E projection are now written as 

ml 

lej ... k = .OR. eij ... k 
i= 1 

(10) 

The second-order projection, jk E, eliminates two of 
the views and is formed by projection from the ap­
propriate first-order projeclion. In this procedure, 
the projection operation is commutative, i.e., 

(11 ) 

In general, it is then possible to discuss the kth­
order projection in which k of the views have been 
eliminated by successive projections. 

An (n - k)-tuplet test will use the kth-order pro­
jection lattices to determine which image combina­
tions it is to test and to record the results. However, 
the masking of the projections back into the lattice 
may be done in different ways. Storage require­
ments may prevent the keeping of all intervening 
projections to allow successively higher order mask­
ing back onto the n-dimensional lattice. It may be 
more efficient to record the test results directly into 
the lattice E; i.e., if the value of the test function is 
zero, then all elements in E that use the same indices 
used by the test function are set to zero. 

The scanning procedure for the n-dimensional 
lattice is simply a continuation of the three-dimen­
sional scan. A solution set in the two-dimensional 
projection lattice, 3 ... nE, defines the posts in the 
three-dimensional lattice, 4 ... nE, to be used in the 
construction of the post-projection lattice. A solu­
tion set in this lattice then defines posts in the four­
dimensional lattice, and a second two-dimensional 
post projection is constructed. This continue:s as 
far as the selection of posts from the n-dimensional 
lattice E in order to determine the final index of the 
n-tuplets forming the solution set. 

SUMMARY 

The correlation lattice and the iterative back­
track scheme of scanning for solution sets of match­
ing triplets were used as the basis for a code written 
in the FORTRAN IV language to match track 
images of nuclear-particle events. This code has 
been running on the IBM 7094 for over a year, and 
timing studies show that it can match images of 
events with seven images in each view in less than 
one half second, with most of that time devoted to 
computation for the various image-combination 
tests. 

As developed, the program is divided into two 
logically separate sections (test and logi.c) with a 
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simple interface. The tests are represented as 
FORTRAN logical functions which have values 
".TRUE." or ".FALSE." corresponding to the pos;­
sibility or impossibility, respectively, of matching 
the image combination being tested. This division 
allows the tests to be developed independently of the 
logic section of the code and permits easy develop­
ment of new programs using the same solution­
finding technique. 

The literature offers several examples of the use 
of backtrack programming. 1-3 As Golomb and 
Baumert so candidly state in their excellent sum­
mary of the technique,1 "Backtrack has been inde­
pendently 'discovered' and applied by many 
people." We regret that we are a member of those 
ranks. However, the notion of using backtrack in 
an iterative sense as we have done seems to be new. 
We feel that backtrack in any form may offer other 
people a very useful tool and hope that wider 
publication of the method will result in fewer inde­
pendent discoveries. 
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A PATTERN RECOGNITION TECHNIQUE AND 
ITS APPLICA YION TO HIGH-RESOLUTION IMAGERY 

R. D. Joseph and S. S. Viglione 
Astropower Laboratory, Missile & Space Systems Division, Douglas Aircraft Company, Inc. 

Newport Beach, California 

SCOPE OF THE PROGRAM 

The purpose of this project was to extend the 
study of the feasibility of automatic TIROS photo­
graph analysis. A specific objective was to arrive at 
the design specification for a feasibility model of an 
automatic vortex recognition system. 

The study had four main phases: 1) the develop­
ment of logical design techniques applicable to the 
analysis of TIROS photographs, 2) experimental 
investigations of selected design parameters on a 
simplified problem, 3) the simulated design of a vor­
tex recognition system using actual TIROS photo­
graphs, and 4) the consideration of suitable hard­
ware for implementing the system. 

In the study of the design approach, a variation 
of the discriminant analysis-iterative design tech­
nique 1 was developed. A description of this 
technique is given in the next section along with a 
discussion on discriminant analysis, in which al­
ternative pattern differences are assumed. Only one 
of these, one in which differences in covariance 
matrices of the pattern distributions are exploited, 
is suitable for the cloud pattern analysis. This dis­
criminant analysis yields a quadratic discriminant 
surface and requires complex hardware for mecha­
nization of the resulting first layer logic units. To 
simplify the implementation of the system, an ap­
proximation to the quadratic unit was developed. 
The approximate unit is derived from a principal 
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axis solution, and substitutes a pair of parallel hy­
perplanes for the quadratic switching surface of the 
more complex unit. Methods have been developed 
to make the system invariant to changes in the 
brightness and contrast of the input patterns. This 
invariance is considerably more effective than a 
simple normalization of the input pattern, as it is 
achieved by making each logic unit invariant to such 
changes. The iterative design process itself is a 
means for assigning output weights to the logic 
units, and for emphasizing the difficult patterns. In 
common with the popular error correction meth­
ods, iterative design will find a solution whenever 
it is possible to assign these output weights to give 
perfect performance on the sample patterns. Unlike 
error correction, iterative design provides an "opti­
mum" set of weights when no solution exists, and 
maximizes the switching surface to pattern distances 
when one does exist. 

A portion of the experimental program was per­
formed on a simplified problem using low-resolu­
tion, hand-printed alphabetic characters. These 
studies were used to investigate selected aspects of 
the design technique, rather than its application. 
The simplified problem permitted a very much more 
extensive investigation than would be possible on 
the cloud patterns. The average computer simula­
tion time (IBM 7094) to design a recognition net­
work for cloud patterns was five hours-for the 
alphabetic characters, five minutes. Two sets of 
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alphabetic patterns were obtained, each consisting 
of 20 examples of 12 letters. One of these sets was 
used to design recognition networks, the other to 
test them. The topics studied include the cost of 
providing contrast and brightness invariance and 
the cost of the parallel hyperplane approximation. 

Certain topics, namely those which are particular 
to TIROS photograph analysis, or the application 
of the design technique to cloud pattern analysis, 
are not suitable for the sample problem investiga­
tion. Studies were therefore performed on actual 
TIROS cloud photographs. In one study, the reso­
lution of negatives taken from the TV display were 
modified by a screen process. Prints of these modi­
fied resolution frames were examined by a large 
number of people to determine the resolution re­
quirements of untrained personnel for vortex recog­
nition. The remaining studies were performed on 
patterns stored as digitized video signals. The study 
of primary interest was whether or not a vortex 
recognition network could be designed that would 
give good generalization results, i.e., a network 
capable of recognizing vortices in cloud photo­
graphs not included in the training or learning 
sample. Pattern sets of 1000 patterns and 200 pat­
terns were utilized, the former for network design· 
and the latter for generalization testing. Other 

topics studied were the effect of changing the reso­
lution of the design set of patterns, the effect of 
changing the rate of network design, the effect of 
merging several network designs, the effect of Hmit­
ing the input fields of the logic units, and the 'effect 
of varying a parameter which controls the propor­
tion of patterns which turn the logic units on. 

THE APPROACH INVESTIGATED 

The Design Technique 

The design technique for designing n,etworks of 
the general perceptron structure (Fig. 1) is based on 
a loss function. To each pattern in a sample of 
classified patterns a loss is assigned. The;: particular 
form of the loss function employed assigns tht~ loss 
L j to the ith sample pattern 

(1) 

where () is the threshold of the response unit, OJ is 
plus or minus one, depending on the desired classifi­
cation of the ith pattern, and {3j is the value of the 
discriminant function for the ith pattern. 

(2) 

Sensory Units 
(pattern sampling) 

Logic Units Response Unit 
(property detection) (pattern classification) 

Figure 1. Decision network structure. 
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where Wj is a weight assigned to the jth logic unit, 
aj is one if the jth logic unit is activated by the ith 
pattern and zero otherwise. The system loss is de­
fined as the sum of all of the sample pattern losses. 

Iterative Design. In the work of Highleyman 2 and 
Bledsoe, * the weights, Wj, and the threshold, (), are 
established by minimizing the loss function. "Dis­
criminant-analysesjiterative-design" shares the 
usage with the earlier techniques. The current ap­
proach extends these techniques, utilizing the loss 
function for two additional purposes. 

The recognition logic is designed sequentially. 
Logic units are designed using discriminant analysis. 
As logic units are added to the design, the pattern 
losses indicate which of the sample patterns require 
the most attention. In acquiring the data required 
to generate additional logic units, the loss assigned 
to a pattern is used to weight the contribution of 
that pattern to the group statistics. This insures 
that the logic units thus derived are suitable for the 
part of the recognition problem as yet unsolved. 

Logic units are generated by selecting a subspace 
of the original signal space, and performing a dis­
criminant analysis in that subspace. Subspaces are 
used since it is usually not practical to perform the 
discriminant analysis in spaces with high dimension­
ality, nor is the implementation in analog hardware 
of the resulting logic unit feasible. No technique 
has yet been found for optimally selecting sub­
spaces, so that an element of randomness is used. 

Randomly chosen subspaces are not all of equal 
utility, and often a particular subspace will prove 
to be of no value at all. For this reason, selection is 
used. Each time the recognition network is to be 
expanded by the addition of logic units, more units 
are generated than are to be added. Only the best 
of these units are selected. The selection criterion 
is-which unit would result in the greatest decrease 
in the system loss. 

The particular form of the system loss function 
does not permit its optimization with respect to all 
of the weights, Wj, simultaneously. Its optimization 
with respect to one weight and the threshold simul­
taneously, however, is readily accomplished. A re­
laxation process is used, cycling through all of the 
logic unit output weights and optimizing with re­
spect to each weight individually. It has been 
shown 3 that this iterative process will lead to a de­
sirable set of weights if the process is continued in 

* Personal communication. 

depth. However, as new units are added to the net­
work, different weightings for the units become de­
sirable, so that it seems uneconomical to iterate the 
weight adjustment process too long on a partially 
designed network. The compromise chosen is to 
iterate the process a given number of cycles each 
time the network is expanded. Part of the investiga­
tion was concerned with the effects of the number of 
iterative cycles used. 

Discriminant Analysis. Discriminant analyses are 
used to generate a logic unit, given a subspace. To 
pe;form the discriminant analysis, assumptions con­
cerning the distributions of patterns in the subspace 
must be made. These assumptions, in general, are 
not justified. To some extent these assumptions are 
important; in other cases, they are not. 

In the cases under investigation, two pattern 
classes are considered. The two pattern classes are 
assumed to have multivariate normal distributions. 
The statistical data which must be extracted from 
the patterns is thus limited to the first two mo­
ments but this does not seem to be a serious short­
coming for this problem. Experience with discrimi­
nant analysis with a normality assumption has 
shown it to work well even when the distributions 
are not normal, provided, of course, that the pattern 
classes may be separated on the first two moments 
of their distributions. Further, the selection and 
iter~tive design procedures evaluate and weight 
logic units according to their actual performance on 
the sample patterns rath~r than the performance 
predicted for them by the discriminant analysis. 

The assumptions which are made concerning the 
mean vectors and the covariance matrices of the two 
distributions seem more important. These assump­
tions control the nature of the differences between 
the distributions which are to be exploited. They 
also control the nature of the resulting logic units. 

An assumption, which results in easily imple­
mented logic units, is that the covariance matrices 
are equal. The pattern class distributions differ only 
in their mean vectors. Under this assumption the 
optimum decision boundary for a logic unit is a 
hyperplane-one which bisects the line segment 
joining the mean points of the two pattern classes. 
The estimate of the common· covariance matrix is 
used to establish the orientation of this hyperplane. 
The resulting logic unit is the linear input threshold 
unit almost universally used in perceptron work. In 
the following material, this technique is designated 
"Oriented Hyperplane." Figure 2a illustrates the 
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oriented hyperplane in two dimensions (in this case 
the hyperplane is a line). 

The calculation can be simplified by ignoring the 
orientation of the hyperplane. The logic unit 
boundary is the hyperplane which bisects the line 
segment joining the class means and which is per­
pendicular to that line segment. This approach 
eliminated the need for estimating and inverting the 
covariance matrix. The same logic unit would re­
sult if it were assumed that the common covariance 
matrix was a multiple of the identity matrix. This 
technique is designated "Perpendicular Bisector" 
and is illustrated in Figure 2b. 

The assumption of the preceding techniques­
that the pattern class distributions differ in their 
mean vectors-does not fit :the cloud pattern recog­
nition problem. It can be shown that if patterns are 
to be recognized in all rotations and translations, 
then the mean vector for a pattern class will have all 
components equal. These components will equal 
the average intensity of all patterns of that class. It 
would appear that the mean vectors should be as­
sumed equal, and the common mean vector should 
have equal components. The pattern classes are 
differentiated by their covariance matrices. 

If it is assumed the covariance matrices are dif­
ferent, then the decision boundary becomes a quad-

(a) Oriented Hyperplane 

Logic Unit 
Decision Boundary 

(c) Quadratic Surface 

Logic Unit 
Decision Boundary 

(b) Perpendicular Bilector 

Logic Unit 
Decision Boundary 

(d) Parallel Hyperplane 

Figure 2. Discriminant functions. 

ratic surface. The assumption concerning the mean 
vectors does not alter the general form of the solu­
tion, just its computation. The technique which 
assumes the mean vectors equal, and the common 
mean vector to have equal components is called 
"Quadratic Surface." It is illustrated in Fig. 2c., 

Quadratic units are difficult to implement in hard­
ware, and require large amounts of memory in a 
digital simulation. An approximation is possible in 
which the principle axis of differentiation is com­
puted. A pair of parallel hyperplanes perpendicular 

,to this axis is substituted for the quadratic surface. 
The resulting logic unit is easily implemented. This 
technique is designated "Parallel Hyperplane" and 
is illustrated in Fig. 2d. 

Detail::; of the computations for these four tech­
niques are given in Ref. 3. The techniques are sum­
marized in Table 1. 

Table 1. Technique Comparison 

Difference 
Technique Exploited Remarks 

Oriented Hyperplane Mean vector Linear imput threshold 
unit 

Perpendicular Bi- Mean vector Same--easier c:ompu-
sector tation 

Quadratic Surface Covariance matrix Quadratic input 
threshold unit 

Parallel Hyperplanes Covariance matrix Linear imput-double 
threshold unit 

Gray Scale Invariance. The gray scale of TIROS 
frames vary from picture to picture, and the darker 
shades on one picture may actually be lighter than 
the brighter areas of another frame. Indeed, such 
variation can occur in different areas within a single 
frame. It seems desirable that an in variance to such 
changes in the gray scale be built into tht~ logic of a 
decision network, rather than obtained by providing 
a multiplicity of hardware to operate at different 
gray scale levels. A single normalization of the gray 
scale of a frame does not provide the degree of in­
variance of the techniques used in this study. 

For each of the techniques previously described a 
version which was invariant under linear transfor­
mations of the gray scale was devised (that is, when 
the intensity x is replaced by a(x + b». This was 
accomplished by determining the restrictions placed 
on the decision boundary of a logic unit by the re­
quirement that its switching surface be su<ch that the 
unit's state is unaffected by changes of picture 
brightness or contrast. Next, it was determined 
what conditions were required in the discriminant 
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analysis to assure that the restrictions on the deci­
sion boundary would be met. Finally, the bright­
ness and contrast of the sample pictures were modi­
fied to yield the desired conditions. 

As an example, the Perpendicular Bisector (which 
produces linear logic unit boundaries) will be con­
sidered. It is easily shown that for these units to 
have the desired invariance, the threshold must be 
zero, and the weights of the input connections must 
sum to zero. To insure that the weights sum to zero, 
the weight vector is the difference between the mean 
vectors for the two pattern classes within the sub­
space, each mean vector was required to have the 
appropriate coordinates summed to zero. Thus, in 
the computation for each unit, for each sample pat­
tern, a value of "b" is computed which will produce 
the desired zero sum, and the pattern components 
reduced accordingly. Similarly, a zero threshold 
occurs when the mean vectors within the subspace 
have equal length. This in turn is accomplished by 
scaling each pattern so that the (zero sum) means 
have equal length. For the generation of each unit, 
one scale factor "a" is derived and is applied to all 
patterns of the negative class. For this technique 
(Perpendicular Bisector), it is not necessary to treat 
individual patterns, as the mean vectors themselves 
may be reduced and scaled to the same end. The 
consideration above shows, however, that this re­
duction and scaling is legitimate under the assump­
tion that all patterns which differ only in brightness 
and contrast are equivalent. 

SAMPLE PROBLEM INVESTIGATION 

A study of a simplified problem-alphabetic 
character recognition-permitted a much broader 
investigation, as the computer time required for a 
single network design averaged 1/60 that required 
with the actual TIROS frames. The investigation 
was for the most part restricted to problems con­
cerning the design technique itself, rather than its 
application to a specific problem. Eight variations 
of the basic design technique were studied, these 
differing in the means for generating property filters, 
and four variations on these to produce units in~ 
variant to changes in the gray scale. Two of the 
basic methods exploit differences in the means of the 
distributions of measurement vectors for the pattern 
classes, one method representing a computational 
simplification of the other. The other two basic 
methods exploit differences in the covariance ma­
trices of the distributions, one method permitting 

much simpler implementation than the other. 
Several "open" perceptron techniques and a cor­
relation technique were studied to provide a basis 
for evaluation. 

All eight of the techniques were very effective in 
producing small networks giving perfect perfor­
mance on the sample patterns. In general, 10 to 15 
property filters were required for one binary deci­
sion on the 240 patterns. * This rate of design is too 
fast, and emphasizes the weakness in using only 
performance on a limited sample of patterns (the 
240 samples represented 12 different letters) as the 
design criterion. Any false correlations which are 
found may solve part of the problem of classifying 
the sample patterns, but do not contribute to the 
solution of the real problem. In part, these false 
correlations may be detected by comparing the error 
rates achieved on the sample patterns used in the 
design with the error rates on an independent 
sample. When these false correlations are prevalent, 
one should increase the sample size, or make 
stronger use of distributional assumptions. For 
partial relief, several steps to slow down the design 
rate have been considered. A slower rate allows 
more opportunity for useful properties to be found 
before portions of the problem are considered 
solved on the basis of extraneous correlations. The 
presence of the false correlations is also indicated 
in a comparison of the results with the property 
filter generation methods based on differences in the 
means of the distributions, and those based on dif­
ferences in the covariance matrices. Although little 
difference is shown in the rate of design, the ability 
of the networks to generalize to the independent 
sample is considerably different. As shown in Fig. 
3, there is considerable variability in the design, due 
to randomness in the selection of subspaces for the 
logic units. This variability tends to mask differ­
ences which occur in the experiments performed. 
At least three networks were designed with each 
method, and the results averaged to reduce the 
variability. 

In part, the variability is due to the high selection 
ratio (see Fig. 4) used, the ratio of the number of 
property filters generated to the number incorpo­
rated in the network. Since the subspaces are gener­
ated randomly, the evaluation of a unit to be gen-

* Figure 3 is a plot of system loss vs number of logic units for 
a number of network designs for each technique. The curves for 
each technique represent a different randomly selected starting 
point. 
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erated may be regarded as a random variable. With 
a high selection ratio, only the tail of its distribution 
is being used, a situation which induces variability. 
High selection ratios may be. undesirable since units 
which are selected are usually of high utility for the 
classification of the sample patterns. In a complex 
problem, however, it is unlikely that a single prop­
erty filter could solve a large portion of the real 
problem. High ratios could thus put a premium on 
the extraction of extraneous correlations. 

Despite the difficulties discussed above, the design 
techniques worked comparatively well on the 
sample problem. The final, network designs work 
considerably better, both on the sample patterns 
used in the design process and the independent 
sample, than did networks; three to five times as 
large, designed using two "open" perceptron tech­
niques. The utility of the current technique appears 
to be in the design of a set of property filters. In one 
experiment, the linear decision function of a net­
work designed with the current technique was re­
assigned using the perceptron techniques. The re-

suIting network classified the independel1t sample 
about as well as did the original network. A corre­
lation method was also used. The entire set of 
sample patterns was stored, and unknown patterns 
classified by finding the highest correlation coef­
ficient (the second highest when the sample deck 
was used for testing). This method showed the 14~ast 
effect of spurious features correlating highly with a 
pattern class. The error rates on the design sample 
and the independent sample were virtually identical. 
The generalization error rates were the lowest 
achieved. The best networks designed with the Gur­
rent technique came very close to the generalization 
error rates of the correlation scheme. 

The number of freely variable weights in a lI1et­
work appears to be a critical quantity. Within the 
range investigated, the effect of the number of input 
connections per property filter may be accoul1ted 
for by this quantity. For the linear input propc~rty 
filters, the number of free weights varies linearly 
with the number of connections. Thus a m:twork of 
seven logic units, each with seven input cOlllnections 
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would work about as well as one with eight units 
each with six connections. For the quadratic input 
units, the number of free weights varies quadrati­
cally with the number of input connections (Fig. 5). 

The cost of making the property filters invariant 
to linear changes in the gray scale may also be ac­
counted for by the number of free weights. It can be 
shown that the constraints which produce the in­
variance reduce the number of free weights by two 
per property filter for the linear input units, and by 
the number of input connections plus one for the 
quadratic input units. In both cases, the loss is 
equivalent to the loss of one connection plus one 
weight. The experimental results confirm these pre­
dictions. The value of the gray scale invariance is 
strikingly demonstrated by the generalization error 
rates for samples in which the gray scale has been 
varied both'linearly (as per the invariance) and non­
linearly (see Fig. 6). 

The cost of using the simplified techniques ap­
pears to be an increase of 30% in the number of 

property filters needed when differences in the mean 
vectors are being exploited, and an increase of 50-
75% when covariance matrix differences are being 
used. In the latter case, the simplified units have 
less than half as many free weights, so that the total 
network has fewer free weights in the simplified 
case (see Fig. 7). 

CLOUD PATTERN INVESTIGATION 

Four files of digitized TIROS patterns were gener­
ated. The first and third files are frames containing 
vortex patterns, the frames in the second and fourth 
files contain nonvortex cloud cover. The first two 
files contain 500 patterns each, and were used in net­
work design; the last two files of 100 patterns each 
were used for testing the networks. The 1200 pat­
terns are derived from 223 actual TIROS frames, by 
considering different translations and rotations of 
these pictures. Great difficulties were encountered 
in obtaining and verifying these patterns. The 
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TIROS frames were edited to:a 180-by-180 size, and 
the gray scale reduced to four bits. Examples of 
these patterns are shown in Wig. 8. The editing of 
9/16 of the original frames was accomplished to 
remove as much of the horizon as possible. 

Seven complete recogniti~n networks were de­
signed, and four fractional networks were designed. 
A total of 48 hours of IBM 7094 time was used to 
design these networks and two hours were used to 
test their generality. These ngures are dwarfed by 
the amount of time used in program debugging. 

The partial network designs were obtained to ad­
just two parameters of the design technique. One of 
these parameters controls the expected fraction of 
nonvortex patterns which turn each property filter 
on, the other parameter controls the rate of design 
and the stability of the weight adjusting procedure. 
Three partial networks were 'available for selection 
of each parameter. Instabilit~ did not occur in these 
networks (although it had o,ccurred with different 
values in the debugging run~). Values which gave 
the fastest design rates were selected for these 

parameters. In retrospect, this criterion does not 
seem optimum. The parameter value sell;!cted by 
this method gives an expected activity rate for non­
vortex patterns of one-half of the property filters. 

Approximately 250 property filters are required 
to provide perfect separation of the 1000 patterns 
in the design files. The actual figures range from 220 
to 290. Designs with more than 250 units occuned 
only when constraints were placed on the prop­
erty filters. Steps to terminate the design process 
are taken when perfect performance on the design 
patterns is obtained. This termination procedun:: is 
such that it produces designs with 10 property filters 
more than required for the zero error rate. Thlese 
units and the additional adjustments made to 1the 
output weights appear to reduce performance levels 
rather than improve them. The error rates on the 
design sample drop rapidly until they reach 1 %, at 
which point a sharp break is noted in the rate of 
reduction. Approximately 180 property filters are 
required to achieve the 1 % error rate (see Fig. 9). 

Two generalization error rates were comput,ed, 
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corresponding to different thresholds for the de­
cision element. One of these thresholds gives a min­
imum rate on the generalization patterns. These 
error rates are computed for each increment of 10 
property filters to the network. The error curves 
generally show two significant local minima. Usu­
ally these minima occur near the beginning of the 
design and in mid-design. Occasionally, the mini­
mum near the beginning is replaced by one near the 
end of the design. The mid-design minimum occurs 
when the error rate on the design patterns is about 
5 or 6%. The mid-design minimum is usually the 
larger of the two (see Fig. 10). 

The first three networks were designed under 
standard conditions. Different random numbers 
provide different input connection combinations 
and hence different networks. These networks pro­
vide the best generalization performances of the 
seven networks, giving error rates which are not 
particularly low. Network 1 has 250 property 

. filters. The first minimum gives a 36.5% generaliza­
tion error rate with both thresholds-the lowest 
rate observed. The mid-design minimum gives the 
rates of 37.5 and 39.5%. The highest error rate is 
46%. Network 2 has 250 property filters, early error 
rates of 38 and 43.5%, and mid-design minima of 
41 and 42.5%. The maximum error rate is 48%. 
Network 3, with 220 property filters, exhibits only 
mid-design minima which are 39 and 44%. At one 
point in the design an error rate of 51 % is observed. 
Thus each network is capable of making less than 
two errors in each five decisions at some point in its 
design. Although these performances are not high, 
the networks do achieve better than chance per­
formance quite consistently. 

When the first three networks are considered in 
combination, the generalization error rates are not 
better than those for the best single network. The 
error rate curves are smoother, however. Failure 
to improve the single network performance is in-
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dicative of a nonrepresentative design sample rather 
than too fast a design rate .. 

Networks 4 and 5 were designed on reduced reso­
lution design patterns, using 90-by-90 and 60-by-60 
rasters, respectively. The generalization perfor­
mances were tested on full resolution patterns, how­
ever. Network 4, (see Fig. 11) with 240 property 
filters has early minima of 41 and 42%, and mid­
design minima of 43.5 and 46.5%, these latter occur­
ring at different points in the design. Performance 
no better than chance is observed 12 times in the 
design. Network 5 has 250 units and shows pro­
nounced minima only near the end of the design. 
These minima are 41 and 41.5%. Performance no 
better than chance is observed 10 times in the de­
sign. These figures represent significant deteriora­
tions from the first three networks. Combined with 
optical studies, which indicated that full resolution 
is necessary for many patterns, this result indicates 
that the property filters in the first three networks, 

at least in part, are dealing with the proper level of 
detail. 

Networks 6 and 7 were designed with restricte:d 
area subfields for the property filters, No.6 with 90-
by-90 subfields, No.7 with 45-by-45 subfields. The~y 

required 280 and 290 property filters. The rate of 
design was similar to the other networks until a 1 
or 2% error rate on the design patterns was 
achieved. Unlike the first four networks, the gener­
alization error rate did not incr:.!ase during the rc!­
maining network design. The minimum error rat(~s 
for network 6 (see Fig. 12) are 41.5 and 44.5%. Per­
formance is no better than chance seven time:s. For 
Network 7, the minimum error rates are 43.5 and 
45%. The design fails to better chance performance 
19 times. These results are significantly pooner than 
those with the first three networks. The condusion 
is that local properties are not desirable for thils 
problem when 10 input connections are used for 
each property filter. 
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Figure 9. Machine design #1. 

Optical studies were performed on TIROS 
frames. The resolution of 60 frames was altered to 
several levels using a screening process (see Fig. 13). 
The prints obtained were then examined by 15 to 20 
people, in order of increasing ~esolution. The reso­
lution level at which their decisions became consis­
tent with their final judgment was noted. For a re­
markable number of frames, the panel disagreed in 
their final judgment. When the resolution was too 
low, the frame was almost always judged nonvortex. 
Consequently, when the final judgment was nonvor­
tex, all preceding judgments were also. About half 

of the vortex decisions were reached at the highest 
resolution level (240 lines per frame). The othe~r 
half were made at the coarsest resolution levells 
(about 70 lines per frame). Very few final judgments 
were made at intermediate levels. 

SUMMARY AND CONCLUSIONS 

An extensive study of a particular design tech­
nique for pattern recognition, and particularly its 
application to TIROS photographs, has beem con­
ducted. Many aspects of the technique which were 
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Figure 10. Network performance-machine #1 plus #2 plus #3. 

not specific to this application were investigated in 
a series of experiments on alphabetic characters. 
Other experiments were performed on data from 
actual TIROS frames in an attempt to separate 
frames containing vortices from those which do not. 

Automatic design techniques for pattern recogni­
tion networks may be given varying degrees of 
coupling to a sample of patterns. At one extreme, 
the technique may be tightly coupled in that the 
only design criterion is the correct classification of 
the design sample of patterns. The drawback to this 
extreme is that even if the sample of patterns is very 
representative of the actual distributions, the finite­
ness of the sample can lead to networks giving poor 
generalization results. A nonrepresentative sample 
almost insures poor generalization. The advantages 

are I) that there is no need to make distributional 
assumptions; and 2) that since the goal is a high 
level of performance on all patterns, and since. it is 
unlikely that the generalization performance will ex­
ceed the performance on the design sample, perfect 
or near perfect performance on the design sample is 
a good starting point. At the other extreme are the 
techniques with minimal coupling to the design 
sample. A design is accomplished by making strong 
assumptions concerning the actual distributions of 
patterns, using the sample to estimate a limited 
number of parameters of these distributions. The 
disadvantages are that if the distributional assump­
tions are incorrect, then poor performance is ob­
tained. Even if the assumptions are nearly correct, 
the technique usually results in networks which 
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classify a majority of the patterns correctly, but 
leave a substantial minority incorrect. Increasing 
the sample size does not help usually, for although 
the less common patterns are better represented, 
only a few a·.rerage values are extracted from the 
sample. The advantage is that "the number of 
sample patterns required by the technique is mini­
mized, since the technique is ~ot nearly as sensitive 
to noise and false clues in the sample patterns. 

The present technique was selected to provide a 
compromise between these ex:tremes. Initially, the 
design of the property filters is very loosely coupled 
in that populations of them are designed statistically 
under very strong distributional assumptions. The 
selection of property filters and the design of a linear 
discriminant for the decision element are tightly 

coupled to the design sample. This is done in terms 
of a loss function which reflects how well each 
sample pattern is classified. The losses are used as 
weightings in the statistical averages used to design 
property filters so that as the design process pro­
ceeds, the design of these filters becom(~s more 
tightly coupled to the sample patterns. The intent 
was to derive properties in a loosely coupled fashion 
to avoid the sensitivity to sample representativeness 
of the tightly coupled systems. The purpos.e of in­
creasing the extent of this coupling was to avoid the 
common failing of loosely coupled systems--that of 
solving the same portion of the problem over and 
over, while ignoring the harder parts of the problem. 

The effects of this increase in coupling are evident 
in the experimental programs, in which the generali-
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Figure 12. Network performance--machine #6. 

zation performance nearly always does not improve, 
and often deteriorates as the last few errors in the 
design phase' are eliminated. Overall, the design 
technique appears to be tightly coupled, having 
never indicated an inability to provide perfect per­
formance on the sample patterns with a relatively 
small network. 

Techniques were devised to provide property 
filters which were invariant to linear changes in the 
gray scale. Experiments on the alphabetic charac­
ters indicated that the increase in network complex­
ity required for perfect performance on the sample 
patterns was nominal, although for the type of 
property filter selected, the gray invariance was 
costly in the hardware implementation. 

Consideration of the TIROS frame analysis indi-

cates that the property filters must be designed by a 
covariance analysis-that is, it is combinations of 
intensity values rather than individual intensities 
which are important. The alphabetic characters 
seem more susceptible to analysis of the distribution 
means, due to centering of the patterns. In the ex­
periments on alphabetic characters both mean 
analysis and covariance analysis were used. On the 
TIROS frames only covariance analysis was used. 

Normal populations which differ in their covar­
iance matrices give rise to quadratic input property 
filters. These are very expensive in analog hard­
ware, and require very large amounts of memory in 
digital implementations. A parallel hyperplane ap­
proximation was developed. Experiments on the 
alphabetic characters indicate that with this approx-



472 

. :.: 

. 

. '.' 

.:.: 
:.:. 

. -:. 

. :. 

.... 

-. 

-.~ 

PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

.-. 
.:.::: 

::: :.:.:::: 

:.~ ::::::: !. ':.:;::.: :.:. 
;-; 

-'.' -. 
-' 

'.' 

.'. 
~; 

.... .... ::: 

;.; 

;.: 
~'. 

::;. 

:::: 

= ::: :::; 

: :;::! ,'.'~ ::: :;::: 
,'. 

:. :.:.:.: 

.... ·.·::~;~~;~::::::~;:m ~ /'. ;::. ': .. :. 
'. :. .':' 

30 
TAPE 

Figure 13. Pattern 30 at resolutions of 95, 111, 150 and 220. 

....... . 
::: ::::::';" . ::: : ...... 

.;. :.: ::: 
"':.:::';' :.: ;"::::::: .;. 

,-" :.:.::.: ,.;.: ,'. 

:.;:;;.;:;:;:;:; :;:;:. ::: 
:. ~.:'.: ~;: . :.: :/: r 

::::: .:-
:::: 
:.: 

:::: 
:. 

;::: 

:-: 

:.: .:.:: 

:.: .}:::: ':= ~ 
::: •. ' )tI~ 1~ :~: :.:.: :;: '~ ::: =::: .;. . 

::::::: 
.;.: .:.:.;::::::=? 



PATTERN RECOGNITION 473 

imation the increase in the number of property fil­
ters to separate the sample patterns is not great, 
considerably reducing the overall system complex­
ity. Implementation of the gray invariant version 
of this approximation in digital equipment is simple, 
but the analog form suffers from the same problems 
as the quadratic unit, but on a more limited scale. 
The gray invariant approximation was used in the 
TIROS frame experiments. 

In the experiments on the alphabetic characters, 
eight methods for generating property filters were 
used. Four of these were designed to exploit dif­
ferences in the means of the distributions, and four 
to exploit differences in the covariance matrices. 
Half of the techniques in each case produce prop­
erty filters invariant to changes in the gray scale. 

There was sufficient information in the sample 
patterns to permit each of these techniques to pro­
vide complete networks. The number of property 
filters required to separate the sample patterns gen­
erally ranged between 8 and 15, depending on the 
particular technique. 

The generalization performance of these networks 
was reasonable. For the techniques based on dif­
ferences in the distribution means, there is little dif­
ference in performance, each technique averaging 
about an 8% error rate. The best individual net­
work had about a 6% error rate. The quadratic 
units gave a 10% error rate. The parallel hyperplane 
technique gave a 13% error rate and its gray invari­
ant version yielded 15% errors. The best generali­
zation performance generally occurred when the 
design was about 70% completed. Although the 
performance degrades only about 1 % after the best 
level is reached, better levels might have been 
achieved if the coupling did not become as great as 
it does toward the end of the network design. 

The utility of the gray invariance was demon­
strated by modifying the gray scale of the sample 
patterns. A linear change has no effect on the per­
formance of the gray invariant networks while 
having profound effects on the noninvariant ones. 
Even for some nonlinear changes in the scale, the 
effect on the noninvariant networks is much greater 
than for the invariant ones. 

These performances were achieved on one binary 
decision. The design and generalization sets of 
sample patterns consisted of 20 examples, each con­
taining 12 letters. These were sloppy handprinted 
characters. To put the results in perspective, several 
other design techniques were tried. The best of 
these, in which all of the sample patterns are stored 

in memory, and the unknown patterns correlated 
against all of these to find the highest correlation, 
gave a 5% error rate. In other tests perceptrons with 
both 50 randomly selected property filters, and 50 
property filters designed by analysis of the distri­
bution means, and forced learning and Bayes 
weights for decision function assignment gave 25 
and 20% generalization errors respectively. Using 
14 property filters taken from a network designed by 
the current technique (one which analyzes distribu­
tion means), the forced learning approach gave 9% 
generalization errors, just 1 % more than the net­
work from which the units were taken. The value of 
the selectivity and the coupling in the present tech­
nique is apparent. 

Despite the shortcomings shown in the generali­
zation data, and the hardware difficulties in imple­
mentation, the gray invariant version of the parallel 
hyperplane technique was used in the TIROS frame 
investigation. Unless a considerable amount of 
normalization can be achieved, methods based on 
differences in the distribution means will not be 
effective in photo interpretation. This leaves the 
quadratic units and the parallel hyperplane units. 
The parallel hyperplane units were selected, as they 
require only 22% as much memory for unit specifi­
cation. The value of the gray invariance when the 
gray scale does change was deemed to be sufficient 
compensation for the slightly higher error rate on 
the black and white generalization patterns. 

One thousand patterns were used as design pat­
terns in the TIROS investigation. Five hundred of 
these contained vortices; 500 did not. An additional 
200 patterns used as a generalization sample were 
also equally divided. This classification was ac­
complished by meteorologists with experience on 
TIROS photographs. Classification by Douglas 
personnel was less consistent. 

Optical studies were performed on some TIROS 
pictures to determine· the minimum resolution re­
quirements compatible with good recognition per­
formance by people. Sixty different frames were 
utilized. Prints of these frames were made at vari­
ous resolutions, using a screen process to control 
the resolutions. These were examined by 15 to 20 
people, in order of increasing resolution, to deter­
mine the coarsest resolution level at which their 
classification became consistent. A remarkable 
number of frames resulted in split decisions, nearly 
half of the people calling them vortex and half 
nonvortex, even at the highest resolution level. For 
the vortex patterns the decision point seems to split 
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evenly between the highest and lowest resolution 
levels (240 lines and 70 lines). 

Seven networks were designed to separate the 
sample patterns. The first three of these were 
designed with 180-by-180 resolutions, with each 
property filter receiving 10 connections selected 
randomly from the entire input field. A different 
starting random number provides distinct networks. 
The first two networks required 250 property filters, 
the third required 220 to separate the sample pat­
terns. Thus the networks aver.ged 2400 input con­
nections, or 8% of the available picture points. 
Since the resolution study did not indicate that the 
smaller vortices could be identified at 70 lines (giv­
ing 8% as many elements as 240 lines), one network 
alone will not be particularly general. If the de­
sign sample is sufficiently representative, improved 
generalization should result if the networks are 
combined. Such combinations do not result in 
significant improvements in the generalization per­
formance. 

Each of the three networks can produce generali­
zation error rates less than 40% at some stage 
in its design. Machine No. 1 is best in this respect, 
giving a minimum of 36.5% errors at one point, and 
maintaining 40% or less through most of the design. 
For machines 1 and 2 the error rate has a minimum 
at a point about half way through the design. Quite 
consistently, the error rate on the design patterns is 
3-6% at this point. In all cases the error rate deteri­
orates toward the end of the design. Combining 
the networks overcomes this tendency for the error 
rate to rise. The conclusion from these data is that 
the increase in coupling in the design of the prop­
erty filters is undesirable. 

The poor generalization performance is due to the 
nonrepresentativeness of the sample patterns. That 
500 patterns, unnormalized for size, position, hori­
zon location, or· fiducial mark location, do not 
adequately represent the vortex or nonvortex classes 
on a 32,400-point input field is not surprising. The 
network which achieved perfect separation on non­
representative samples may have accomplished 
some combinations of two things. The network 
may be a good design for a smaller class of vortex 
and nonvortex patterns of which the design sample 
is representative, or it may be a design which capi­
talizes on the nonrepresentativeness of the ex­
traneous features in the samples, such as the loca­
tion of the horizon or fiducial marks. The extent of 
the combination achieved cannot be determined 
without a very detailed study of the design and 

generalization patterns. Some indication is given in 
the resolution results to be discussed next. That at 
least some honest properties were found is ,evi­
denced by the fact that generalization performance 
is consistently better than chance. 

Networks 4 and 5 were designed on lower reso­
lution patterns. These maintained the 180-by-180 
format, but the gray level changed only every 
second or third point, respectively. Generalization 
for these networks was tested against full resolution 
patterns. The networks required 240 and 250 prop­
erty filters, respectively. Each network has a best 
generalization error rate of 41 %, near the beginning 
of the design for Network 4 and near the: end for 
Network 5. This significant deterioration is again 
indicative that some honest properties have b4~en 

derived. 
Networks 6 and 7 were designed with limitations 

on the input fields of the property filters. For Net­
work 6 the connections for the filters were drawn 
from 90-by-90 subfields positioned randomly in the 
main field. For Network 7 45-by-45 subfields were 
used. These networks required 280 and 290 prop­
erty filters for complete design. The rate of design 
is not noticeably slower than for the other networks 
until the error rate on the design patterns is less than 
2%. The minimum generalization error rates are 
41Yz% and 43Yz%, respectively, each minimum 
being achieved twice. Therefore, there does not 
appear to be any advantage, and indeed there is 
some disadvantage, in seeking more localized prop­
erties. 

The following conclusions are drawn: 

I. The design technique is capable of producing 
networks to separate the design sample of patterns. 
When this sample is representative, as with the al­
phabetic characters, good generalization results are 
achieved. In this case, the primary value of the 
process is in the set of property filters derived, rather 
than the discriminant function. When the sample is 
nonrepresentative, as with the TIROS frames, only 
limited generalization success is achieved. 

2. The coupling between the design technique 
and the sample patterns is too tight. The increase 
in coupling in the property filter design should Ibe 
removed or reduced, the parameter which controls 
the rate of design should be adjusted to give a lower 
rate, and perhaps the criteria for acceptance of 
property filters should be weakened. 

3. The size of the design sample required depends 
upon the minimum number of picture points needed 
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for recognition and on the amount of normalization 
and "cleaning-up" of the patterns. For essentially 
unnormalized vortex patterns on a 32,400-point in­
put field, 1000 sample patterns are inadequate to 
give a properly stratified (representative) sample. 

4. If the designs achieved are to be practical, con­
siderably more attention must be given to normal­
ization of the patterns. A size normalization would 
permit the use of a resolution level suitable to all 
patterns rather than just the smallest ones. The re­
sultant decrease in the number of picture points 
required would make the sample more represen­
tative by editing or averaging out noise, and by 
limiting the number of effective translations of the 
patterns. Local and general normalizations of the 
contrast in the frame could eliminate the need for 
gray invariant property filters, reSUlting in a much 
simpler hardware implementation of the parallel 
hyperplane technique, and somewhat better per­
formance. Position normalization (i.e., centering) 
could make one of the techniques based on distribu­
tion means practical, or at least would simplify the 
recognition task. 
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