CONTROL DATA

CORPORATION

CONTROL DATA®

CYBER 70 COMPUTER SYSTEMS
MODELS 72,73,74,76

7600 COMPUTER SYSTEM

6000 COMPUTER SYSTEMS

FORTRAN EXTENDED VERSION 4
REFERENCE MANUAL

New features,

as well as changes, deletions, and additions to information in this manual are

indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed,

REVISION RECORD

REVISION DESCRIPTION
A Original Printing
(10-22-71)
B This revision uses shading to denote non-ANSI features and footnotes to indicate information that
(10-06-72) applies only to the Model 76 and 7600 computers or only to the Models 72, 73, 74, and 6000 computers
The sections on the Reference Map and COMPASS coded subprograms are new with more details and
examples. This manual supersedes (but does not invalidate) the previous edition.
C This revision corrects typographic errors and expands the description of some features. This.revision
(5-25-73) reflects Version 4.0 of FORTRAN Extended available with SCOPE 3.4 and KRONOS 2.1 operating
systems. Pages affected are: iii, iv, vii thru xi, xvi, xviii, I-1-1, I-1-2, I-14, I-2-5 thru [-2-12, I-3-5,
1-3-6, 1-3-8, 1-5-8, 1-5-15, 1-5-16, 1-6-1, 1-6-6, 1-6-9, 1-6-11, 1-6-21 thru 1-6-26, I-7-1, 1-7-2, 1-7-20, 1-7-21,
1-8-1 thru 1-84, 18-6, I-8-8 thru 1-8-11, 1-8-13, [-9-1 thru 194, 1-9-8, I-9-15, 1-9-16, 1-9-19, 1-9-20,
1-10-2, 1-10-13, I-10-14, 1-10-16 thru I-10-18, I-10-21, I-10-23, -10-24, I-10-31, I-10-32, I-11-1, I-11-3,
I-114, I-11-6, I-12-5 thru 1-129, [-13-1, I-13-20 thru [-13-22, 1I-1-1, II-1-2, 1I-1-15, 1I-1-17, 1I-1-37
thru 11-1-39, 11-2-1 thru III-2-13, I1£-2-19, 111-2-20, I114-8, 1i1<4-10, 1I1-5-10, 1H-5-17, 11I-6-1 thru
11-6-9, 11-7-1, 1II-7-6, HI-10-2, 11I-10-5, MI-11-1, M1-12-1, I11-12-2, III-13-1, II-13-9, A-1, A-2,
Index-1, Index 12, and Comment Sheet
D This revision includes the new features of Version 4.1, as well as minor corrections. Major changes occur
(11-30-73) in sections I-9 and I-10 for the I/O enhancements. FTN control card options are now arranged alpha-

betically. Pages affected: iii thruxxi; Part It 1-2, 1-3, 14; 2-1, 2-2, 29, 2-10, 2-17; 3-8; 5-15, 5-16;

6-6, 6-8, 69, 6-11, 6-12, 6-13, 6-21, 6-25; 7-1, 7-2, 7-3, 7-20, 7-21; 8-12 thru 8-15; 9-1 thru 9-26; 10-1,

10-2, 10-6 thru 10-14, 10-18 thru 10-35; 11-1 thru 11-9; 12-9; 13-30; Part II: 1-37 thru 1-41; Part III:

1-1, 1-2, 19, 1-12; 2-3 thru 2-14, 2-19, 2-20; 3-3 thru 3-11; 4-11; 5-1, 5-3, 5-7, 5-11, 5-14; 8-1;

Publication No.

12-1, 12-2; 13-1, 13-2; A-1; Index 1 thru 18; Comment Sheet.

60305600
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.

CONTROL DATA CORPORATION

Software Documentation
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

© 1971, 1972, 1973, 1974
Control Data Corporation or use Comment Sheet in the

Printed in the United States of America back of this manual

New features, as well as changes, deletions, and additions to information in this manual are

indicated by bars in the margins or by a dot near the page number if the entire page is affected.

A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD (Cont’d)

REVISION DESCRIPTION
=]
E This revision includes new features of Version 4.2 for use under SCOPE 3.4, KRONOS 2.1, and SCOPE
(5-10-74) 2.1; and it incorporates clarifications and technical and typographical corrections. Pages affected: iii

thru x; Part It 4-3; 5-8, 5-9, 5-10; 6-12, 6-17, 6-18, 621, 6-25; 7-2, 7-8, 7-9; 8-1, 8-2, 8-5 thru 8-8,

8-13, 8-15; 9-7, 99, 9-11, 9-14; 10-1, 10-6, 10-34; 11-2 thru 11-9; Part II: 2-15 thru 2-19; 5-12, 5-19;

7-4; 11-1 thru 11-3; Index-2, 9, 10, 13; Comment Sheet.

Publication No.

60305600

PREFACE

This manual describes the FORTRAN Extended language (Version 4.2) for the CONTROL DATA® CYBER |
70/Models 72, 73, 74, and 76; 6200, 6400, 6500, 6600, and 6700 computers; and 7600 computers. It is

~ assumed that the reader has knowledge of an existing FORTRAN language and the CONTROL DATA CYBER
70, 6000 Series or 7600 computer systems. FORTRAN Extended is designed to comply with American Standards
Institute FORTRAN Language.

The FORTRAN compiler operates in conjunction with Version 3 COMPASS assembly language processor under
control of the 6000 SCOPE operating system (Version 3.4), the 6000 KRONOS® Time-Sharing System (Ver-
- sion 2.1), and 7000 SCOPE operating system (Version 2). The FORTRAN compiler makes optimum use of
the high speed execution characteristics of the CONTROL DATA CYBER 70, 6000 Series and 7600 computer
systems. It utilizes the operating system’s multi-programming features to provide compilation and execution

e within a single job operation, as well as simultaneous compilation of several programs.
- The following features are available in FORTRAN Extended for all systems mentioned above:
LEVEL statement
IMPLICIT statement
Hollerith strings in output lists
~
Expressions in output lists
— Quote delimited Hollerith strings
Exclusive OR function
Messages on STOP and PAUSE statements
et Line limit on output file at execution time
Syntax-scan-only option
Program listings suppressed but reference map produced
e Rewrite in place, mass storage
Multiple systems texts and local texts for intermixed COMPASS programs
List directed input/output
- 60305600 E iii

This manual is in three parts. The reference section, Part 1, contains a full description of the FORTRAN
Extended language.

Part 2 consists of a set of sample programs with input cards and output. Each program is preceded by a short

introduction which explains some of the more difficult aspects of the language for the less experienced FORTRAN

programmer.

Part 3 contains mainly systems information, although the applications programmer will be interested in the
character set in section 1 and the compilation and execution diagnostics in section 2.

Other documents of interest:

iv

COMPASS 3 Reference Manual

FORTRAN Extended DEBUG User’s Guide
SIFT Programming System Bulletin
INTERCOM 4 Reference Manual

INTERCOM Interactive Guide for Users of
FORTRAN Extended

LOADER Reference Manual

Record Manager Reference Manual

Record Manager Guide for Users of FORTRAN Extended
Record Manager File Organizaiton User’s Guide

UPDATE Reference Manual

KRONOS 2.1 Reference Manual

KRONOS 2.1 Time-Sharing User’s Reference Manual
SCOPE 3.4 Reference Manual

SCOPE 2 Reference Manual

Publication Number
60360900
60329400
60358400

60307100

60359700
60344200
60307300
60385200
60359600
60342500
60407000
60407600
60307200

60342600

60305600 E

Throughout the manual, Control Data extensions to the FORTRAN language are indicated by shading. Other-
wise, FORTRAN Extended conforms to ANSI standards

Information which applies only to the CONTROL DATA CYBER 70/Model 76 and 7600 computers is indi-
cated by §.

Information which applies only to the CONTROL DATA CYBER 70/Models 72, 73, and 74, and 6000 Series
computers is indicated by I.

This product is intended for use only as described in this document. Control
Data cannot be responsible for the proper functioning of undescribed features
or undefined parameters.

60305600 D v

CONTENTS
PREFACE iii
STATEMENT FORMS xi
PARTI
1 CODING FORTRAN STATEMENTS [-1-1 Masking Assignment 1-4-5
The FORTRAN Character Set I-1-1 Multiple Assignment I-4-6
FORTRAN Statements I-1-2
Continuation [-1-2 5 CONTROL STATEMENTS I-5-1
Statement Separator I-1-2 GO TO Statement I-5-1
Statement Labels I-1-3 Unconditional GO TO I-5-2
Comments [-1-3 Computed GO TO I-5-2
Columns 73-80 I-1-3 ASSIGN Statement I-54
Blank Cards I-1-3 Assigned GO TO I-5-5
Data Cards I:1-3 Arithmetic IF
Three Branch I-5-6
2 LANGUAGE ELEMENTS I-2-1 Arithmetic IF
Constants and Variables 1-2-1 Two Branch I-5-6
Constants I-2-1 Logical IF
Variable Names 1-2-9 One Branch 1-5-7
Arrays [-2-12 Logical IF
Array Structure I-2-15 Two Branch I-5-8
Subscripts [-2-17 DO Statement I-5-8
Loop Transfer I-5-10
3 EXPRESSIONS I-3-1 CONTINUE I-5-14
Arithmetic Expressions I1-3-1 PAUSE I-5-14
Evaluation of Expressions I-32 STOP 1-5-15
Type of Arithmetic Expressions 1-3-5 END I-5-15
Exponentiation I-3-6 RETURN I-5-16
Relational Expressions 1-3-7
Evaluation of Relational 6 SPECIFICATION STATEMENTS I-6-1
Expressions I-3-8 Type Statements I-6-1
Logical Expressions [-3-9 Explicit Declarations I-6-2
Masking Expressions 1-3-13 Subscripts I-6-5
DIMENSION Statement I-6-6
4 ASSIGNMENT STATEMENTS I-4-1 Adjustable Dimensions 1-6-7
Arithmetic Assignment Statements 1-4-1 COMMON I-6-8
Conversion to Integer [-4-2 EQUIVALENCE Statement 1-6-12
Conversion to Real 1-4-3 EQUIVALENCE and COMMON 1-6-16
Conversion to Double Precision 1-4-3 LEVEL Statement 1-6-17
Conversion to Complex I-4-4 EXTERNAL Statement I-6-18
Logical Assignment I-4-5

60305600 E vii

10

viii

DATA Statement
BLOCK DATA Subprogram

PROGRAM UNITS

Main Program and Subprograms
Main Programs
Subprograms

FORTRAN LIBRARY
Intrinsic Functions
Basic External Functions
Additional Utility Subprograms
Subroutines
Functions

INPUT/OUTPUT

FORTRAN Record Length
Carriage Control
Output Statements

PRINT

PUNCH

Formatted WRITE

Unformatted WRITE

List Directed WRITE
INPUT Statements

Formatted READ

Unformatted READ

List Directed READ

List Directed Input Data Forms

List Directed Output Data Form
File Manipulation Statements

REWIND

BACKSPACE

ENDFILE
BUFFER Statements
NAMELIST

Input Data

Output

Arrays in NAMELIST
ENCODE and DECODE

ENCODE

DECODE

INPUT/OUTPUT LISTS AND
FORMAT STATEMENTS
Input/Output Lists

Array Transmission
FORMAT Statement

Data Conversion

Field Separators

Conversion Specification

[-6-21
I-6-25

I.-7-1
I.7-1
I-7-1
1.7-4

[-8-1
I-8-1
1-8-6
1-89
1-8-9
I-8-13

1-9-1
1.9-2
1-9-2
1-9-3
1-9-3
194
1.9-5
19-6
1-9-7
1-9-7
1.9-7
1-9-8
199
[-9-10
I-9-11
1-9-12
1-9-12
[-9-12
[-9-13
1-9-13
1-9-15
1-9-17
1-9-18
[-9-19
1-9-21
[-9-21
1.9-24

I-10-1
I-10-1
I-10-2
I-10-5
I-10-6
[-10-7
I-10-7

Scale Factors

X

nH Output

nH Input

LK ELF

FORTRAN Record /

Repeated Format Specification
Printer Control Character

Tn

v

Execution Time Format
Statements

FORTRAN CONTROL CARD
A Exit Parameter
B Binary Object File
C COMPASS Assembly
D Debugging Mode Parameter
E Editing Parameter
EL Error Level
GO Automatic Execution
GT Get System Text File
I Source Input File
L List Output File
LCM Levels 2 and 3
Storage Access
OL Object List
OPT Optimization Parameter
P Pagination
PL Print Limit
Q Program Verification
R Symbolic Reference Map
Rounded Arithmetic Options
S System Text File
SL Source List
SYSEDIT System Editing
T Error Traceback
V Small Buffers Option
XT External Text Name
Z Zero Parameter
FTN Control Card Sample

[-10-22
1-10-24
[-10-25
I-10-26
[-10-27
[-10-29
1-10-31
[-10-32
1-10-34
I-10-35
[-10-35

I-10-36

I-11-1
I-11-2
[-11-2
I-11-2
I-11-3
[-11-3
I-11-3
I-11-3
I-11-4
I-11-4
I-11-4

I-11-5
I-11-5
I-11-5
I-11-6
I-11-6
I11-6
I-11-6
I-11-7
I-11-7
I-11-7
I-11-7
I-11-8
I-11-8
I-11-8
I-11-8
I-11-9

60305600 E

g

12 OVERLAYS
Overlays
Overlay Linkages
Creating an Overlay
Calling an Overlay

13 DEBUGGING FACILITY
Debugging Statements
Continuation Card
ARRAYS Statement
CALLS Statement
FUNCS Statement

1 SAMPLE PROGRAMS
PROGRAM OUT
PROGRAM B
PROGRAM MASK
PROGRAM EQUIV
PROGRAM COME
PROGRAM LIBS
PROGRAM PIE
PROGRAM ADD

ENCODE and DECODE
PROGRAM PASCAL

1 CROSS REFERENCE MAP
Entry Points
Variables
File Names
External References
Inline Functions
Statement Lables
DO Loop Map
COMMON Blocks
EQUIVALENCE Classes
Program Statistics

2 FORTRAN DIAGNOSTICS
Compilation Diagnostics
Execution Diagnostics

3 SYSTEM ROUTINE
SPECIFICATIONS
Calling SYSTEM

Error Processing

60305600 D

I-12-1
I-12-1
I-12-3
I-12-3
I-12-5

I-13-1
[-13-3
I-134
I-134
I-13-6
I-13-8

PART II

II-1-1
I-1-1
1I-14
II-1-6
II-1-9
II-1-11
II-1-14
II-1-17
II-1-19
II-1-19
II-1-22

PART Il

II-1-1
III-1-6
HI-1-7
11-1-9
II1-t-10
III-1-11
nI-1-12
1I-1-13
Im-1-14
II-1-15
1I-1-16

I-2-1
MI-2-1
III-2-14

II1-3-1
IM-3-1
III-3-2

STORES Statement

Hollerith Data
GOTOS Statement
TRACE Statement
NOGO Statement
Debug Deck Structure
DEBUG Statement
AREA Statement
OFF Statement
Printing Debug Output
STRACE

PROGRAM X

PROGRAM VARDIM
PROGRAM VARDIM2
SUBROUTINE IOTA
SUBROUTINE SET
FUNCTION AVG
FUNCTION PVAL
FUNCTION MULT

Main Program - VARDIM?2
PROGRAM CIRCLE
PROGRAM OCON

List Directed Input/Output

Standard Recovery
Non-standard Recovery
File Name Handling by SYSTEM
Compiler Optimization

ARITHMETIC

Floating Point Arithmetic
Overflow (+e° or ~ o)
Underflow (+0 or -0)
Indefinite Result
Non-standard Floating Point
Arithmetic
Integer Arithmetic
Double Precision
Complex
Logical and Masking

Arithmetic Errors
Tracing Arithmetic Errors

[-13-11
I-13-14
I-13-15
I-13-16
[-13-18
[-13-19
[-13-24
I-13-26
[-13-28
I-13-30
1-13-30

II-1-24
II-1-26
1I-1-28
II-1-28
I1-1-28
II-1-29
II-1-30
II-1-30
II-1-31
II-1-35
I1-1-37
1I-1-40

I-3-3
IMI-3-3
II1-3-6
1-3-8

111-4-1
11-4-1
I11-4-3
I4-3
I1-4-4

I114-5
1114-7
111-4-7
111-4-8
1114-8
11-4-8
[11-4-11

ix

OBJECT-TIME INPUT/OUTPUT
Structure of Input/Output Files
Definitions
Record Manager
FORTRAN Default Conventions
(Sequential Files)
FORTRAN Default Conventions
(Random Files)

IMI-5-1
IH-5-1
HI-5-1
II1-5-2

I11-5-3

111-5-4

Additional Block and Record Types I11-5-5

BACKSPACE/REWIND
ENDFILE
Labeted Files
BUFFER Input/Output
Buffer In
Buffer Out
Status Checking
EOF Function (Non-buffered,
Input/Output)
IOCHEC Function
Parity Error Detection
Data Input Error Control
Programming Notes

FORTRAN-RECORD
MANAGER INTERFACE
File Information Table Calls
File Commands
Updating File Information Table
Key Hashing Subroutine
Error Checking

MASS STORAGE INPUT/OUTPUT
Accessing a Random File
Index Key Types
Muiti-level File Indexing
Index Type
Master Index
Sub-index
Error Messages
Compatibility with Previous
Mass Storage Routines

RENAMING CONVENTIONS

Register Names

External Procedure Names

(Processor Supplied)
Call-by-Value
Call-by-Name

I11-5-8
I11-5-10
II1-5-11
I11-5-12
111-5-12
11-5-13
11-5-13

111-5-14
III-5-15
i1-5-16
II1-5-16
I11-5-19

1II-6-1
111-6-1
111-6-3
111-6-3
111-6-8
111-6-9

I11-7-3
II1-7-3
I11-7-4
II-7-7
I11-7-8
I11-7-8
I11-7-8
HI-7-11

II-7-12

I11-8-1
I11-8-1

I11-8-1
I11-8-1
II1-8-1

10

11

12

13

PROGRAM AND MEMORY
STRUCTURE

Subroutine and Function Structure
Main Program Structure

Memory Structure

INTERMIXED COMPASS
SUBPROGRAMS

COMPASS Coded Subroutine

Call by Name Sequence

Entry Point

COMPASS Subprograms

Library Function Call by Value
Restrictions on Library Functions

TERMINAL [/O
WITH FORTRAN

LISTINGS
DMPX.

SAMPLE DECK STRUCTURES
FORTRAN Source Program with
Control Cards

Compilation Only

Compilation and Execution #
FORTRAN Compilation with

COMPASS Assembly and Execution -

Compile and Execute with
FORTRAN Subroutine and
COMPASS Subprogram

Compile and Produce Binary Cards
Load and Execute Binary Program
Compile and Execute with
Relocatable Binary Deck

Compile Once and Execute with
Different Data Decks

Preparation of Overlays
Compilation and Two Executions
with Overlays

Standard SCOPE Character Sets

INDEX

I11-9-1
I11-9-2
111-9-3
11-9-3

I1-10-1
11-10-1
I1-10-1
111-10-2
1I-10-2
I111-10-5
I11-10-5

I-11-1

IM-12-1
11-12-2

III-13-1
II-13-1
I1-13-2
II-13-2
IH1-13-3
II1-134
I1I-13-5
III-13-6

I1I-13-7

III-13-8
I11-13-9

NI-13-10

A-1

Index-1

60305600 E

RN

STATEMENT FORMS

The following symbols are used in the descriptions of FORTRAN Extended statements:

v variable or array element

sn statement label

iv integer variable

m unsigned integer or octal constant or integer variable
name symbolic name

u input/output unit:

1- or 2-digit decimal integer constant, integer variable with value of: 1-99,
or a Hollerith value which is the filename left justified with zero fill

fn format designator

iolist input/output list

Other forms are defined individually in the following list of statements.

ASSIGNMENT STATEMENTS
v = arithmetic expression
logical v = logical or relational expression

v = masking expression

MULTIPLE ASSIGNMENT

V1 = V2 = ... Vn = expressnon

CONTROL STATEMENTS
GO TO sn

GO TO (sn1 ,...,snm),iv
GO TO (sn1 ,...,snm) iv

GO TO (sn1 sy snm) , expression

GO TO (sn1 ,...,snm) expression

60306500 D

Page

Numbers

14-1
14-5

[-4-5

14-6

I-5-2

[-5-2

I-5-2

[-5-2

Xi

Page

Numbers

GO TO v, (sn1 snm) : 1-5-5
GO TO iv(.sn1 ,...,snm) I-5-5
ASSIGN sn TO iv I-54
|F (arithmetic or masking expression} sn, , SN, , SN, I.5-6
IF {arithmetic or masking expression} sn, . sn, I-5-6
IF (logical or relational expression) stat I-5-7
|F {logical or relational expression) sn, , SNy [-5-8
DO sn iv=m1,m2,m3 [-5-8
DO sn iv=m1,m2 1-5-8
CONTINUE }-5-14
PAUSE) I-5-14
PAUSE n 1-5-14
PAUSE #c¢...c# 1-5-14
STOP I-5-15
STOP n I-5-15
STOP #c...c# I.5-15
END I-5-15
TYPE DECLARATION

INTEGER name,, ..., name 1-6-2

TYPE INTEGER name .., name_

1

' xii 60306500 D

REAL name,,..., name_

1

TYPE REAL name,,...,name

n

COMPLEX name,,..., name_

1

TYPE COMPLEX name,, ..., name_

DOUBLE PRECISION name ... name_

1

DOUBLE name,,... .name_

17

TYPE DOUBLE PRECISION name,, .

TYPE DOUBLE name .« hame

kR

LOGICAL name ...name

1

TYPE LOGICAL name._,...; name

1

IMPLICIT type, (ac},...,type_(ac)

(ac) is a single alphabetic character or range of characters represented by the first and last

character separated by a minus sign.

EXTERNAL DECLARATION

EXTERNAL name,,..., name_

1

STORAGE ALLOCATION
type name, (d;)

TYPE type name, {d;)

DIMENSION name, (d1),...,namen (dn)

1

60306500 D

., name

d. array declarator, one to three integer constants; or in a subprogram, one to
three integer variables

type INTEGER, REAL, COMPLEX, DOUBLE PRECISION or LOGICAL

Page
Numbers

I-6-2

I1-6-2

I-6-3

1-6-3

I-6-3

1-6-18

I1-6-6

Xiii

COMMON v,, ... v

n

COMMON/blkname1 /v1 P A ./bIknamen/v1 A
COMMON// v, , ..., v,
blkname symbolic name or 1 - 7 digits

!

blank common

DATA vlist, /dIist1/ e vlistn/dlistn/

DATA (var=dlist} , ..., (var=dlist)

EQUIVALENCE (v

LEVEL n,a, ,...

var
vlist

dlist

n

a

variable, array element, array name or implied DO list
list of array names, array elements, or variable names, separated by commas
one or more of the following forms separated by commas:

constant
(constant list)
rf*constant
rf*(constant list)
rf(constant list)

constant list list of constants separated by commas

rf integer constant. The constant or constant list is repeated
the number of times indicated by rf

V)

,v),...,(v1,... A

PRI A

lan

unsigned integer 1,2 or 3

variable, array element, array name

Page
Numbers

1-6-8
1-6-8

1-6-8

I-6-21

I-6-21

I-6-12

I-6-17

60306500 D

Page

MAIN PROGRAMS Numbers

PROGRAM name (file, , ..., file) I-7-1

PROGRAM name 171

SUBPROGRAMS

FUNCTION name (p1 S, pn) I.7-6

type FUNCTION name (p1 N I.7-6
type INTEGER, REAL, COMPLEX, DOUBLE PRECISION or LOGICAL

SUBROUTINE name (p,,...,p,) 1.7-12

SUBROUTINE name 1-7-12

SUBROUTINE name (p,.....p,), RETURNS (b,,...,b_) I7-12

SUBROUTINE name,RETURNS (b,,....b) 17-12

ENTRY POINT

ENTRY name 17-20

STATEMENT FUNCTIONS

name (;‘J1 vens pn) = expression 1.7-9

SUBPROGRAM CONTROL STATEMENTS

CALL name I-7-14

CALL name (p,,....p_) [-7-14

CALL name (p,,...,p,),RETURNS (b,,...,b,;,) ' | [-7-14

CALL name,RETURNS (b,,...,b) [.7-14

RETURN [-5-16

RETURN i [-5-16
i is a dummy argument in a RETURNS list

60306500 D XV |

SPECIFICATION SUBPROGRAMS

BLOCK DATA

BLOCK DATA name

INPUT/OUTPUT
PRINT fn;iolist
PRINT fn

PRINT {u,fn} iolist
PRINT,iolist
PRINT ‘ {u,fn)
PRINTY {fu,*). iolist
PUNCH: fn,iolist
PUNCH fn

PUNCH {u,fn) iolist
PUNCH™ iolist
PUNCH {u,fn)
PUNCH {u,*) iolist
WRITE (u,fn) iolist
WRITE (u,fn)
WRITE fn,iolist
WRITE fn

WRITE (u) iolist
WRITE (u)

WRITE {u,*) iofist

WRITE®,iofist

Xvi

Page
Numbers

[-6-25

I-6-25

19:3
193
1.9:3
19:3
193
193
194
194
194
194
194
194
19:5
19.5
19-5
19.5
19-6
1.9-6
19-7

19-7

60306500 D

READ (u,fn)iolist
READ (u,fn)

READ fn,iolist

READ (u) iolist

READ (u)

READ (u,*) iolist
READ* iolist
BUFFER IN (u,p) (ab)

BUFFER-QUT (u.p} (a,b}

a first word of data block to be transferred
b last word of data block to be transferred
P integer constant or integer variable.

zero = even parity, nonzero = odd parity
NAMELIST/group name, /a,,...,a,/.../group name /a,,...,a,
READ (u,group name)
WRITEk {u,group name)

3 : array names or variables

group name symbolib name identifying the groupa,,...,2
INTERNAL TRANSFER OF DATA
ENCODE (c,fr v} iofist
DECODE {c,fn,v) iolist

v starting location of record. Variable or array name

c length of record in characters. Unsigned integer constant or simple
integer variable

60306500 D

Page
Numbers

19-7
197
198
19-8
198
199
199
19-13

19-14

I-9-15
1-9-15

1-9-15

1-9-21

1-9-24

xvii

Page

Numbers
FILE MANIPULATION
REWIND u 1-9-12
BACKSPACE u [-9-12
ENDFILE u [-9-13
FORMAT SPECIFICATION
sn FORMAT (fs1 veennfs)) I-10-5
fs: one or more field specifications separated by commas and/or grouped by
parentheses
DATA CONVERSION
srEw.d Single precision floating point with exponent I-10-9
srFw.d Single precision floating point without exponent I-10-13
srGw.d Single precision floating point with or without exponent I-10-15
srDw.d Double precision floating point with exponent I-10-16
riw Decimal integer conversion I-108
rlw Logical conversion 1-10-22
rAw Character conversion 1-10-19
rRw Character conversion 1-10-21
rOw Octal integer conversion I-10-18
s optional scale factor of the form: 1-10-22
nPDw.d
nPEw.d
nPFw.d
nPGw.d
nP
T repetition factor
w integer constant indicating field width
d integer constant indicating digits to right of decimal point
| xii 60306500 D

nX Intraline spacing

nH...

* .. " pHollerith

F.F

/ Format field separator; indicates end of FORTRAN record
Tn Column tabulation

FORTRAN Control Card

OVERLAYS

CALL OVERLAY (fname,i,j,recall k)

i primary overlay number

j secondary overlay number

recall if GBHRECALL is specified, the overlay is not reloaded if it is already in
memory

k L format Hollerith constant: name of library from which overlay is to
be loaded

any other non-zero value: overlay loaded from global library set

OVERLAY (fname,i,ji,Cn)

i . primary overlay number, octal

j secondary overlay number, octal

Cn n'is a 6-digit octal number indicating start of load relative to blank common
DEBUG
C$ DEBUG

C$ DEBUG (name, , ..., name)

C$ AREA bounds, , ..., bounds,
C$ DEBUG

within program unit

Cc3$ AREA/name1/bounds1 ,---,bounds ..., /namen/bounds1 .

C$ DEBUG (name, , ..., name)
or
C$ DEBUG

60306500 D

, boundsn

external
debug deck

Page
Number

I-10-24

I-10-25
[-10-27
I-10-27

[-10-29
1-10-34

I-11-1

I-12.5

I-124

I-13-24

I-13-24

113-27

I-13-27

Xix

bounds (ny,n,) n, initial line position
n, terminal line position

(ng) n, single line position to be debligged
(n,,*) n, initial line position

* last line of program
(*.n,) * first line of program

n, terminal line position

(*,*) * first line of progxam‘
* last line of program

Page
Numbers

ARRAYS (a,,...,a_) . [-134
ARRAYS I-134
3 array names
CALLS (sy,...,s) I-13-6
CALLS I-13-6
§; subroutine names
FUNCS (fq,f,) [-13-8
FUNCS [-13-8
f; function name
GOTOS [-13-15
NOGO ; 1-13-18
STORES (cj,...,cn) [-13-11
c: variable name

i
variable name .relational operator. constant

variable name .relational operator. variable name
variable name .checking operator.
checking operators:

RANGE out of range
INDEF indefinite
VALID out of range or indefinite

60306500 D

Cc$

cs

c$

“TRACE (v}

TRACE

v

OFF

OFF (x1,..

60306500 D

X)

level:number:
4]

n

n

any debug option

tracing outside DO loops

tracing up to and including level n in DO nest

Page
Numbers

[-13-16

[-13-16

[-13-28

I-13-28

CODING FORTRAN STATEMENTS -1

A FORTRAN program contains executable and non-executable statements. Executable statements specify
action the program is to take, and non-executable statements describe characteristics of operands, statement
functions, arrangement of data, and format of data.

The FORTRAN source program is written on the coding form illustrated in figure 1. Each line on the coding
form represents an 80-column card. The FORTRAN character set is used to code statements. I

THE FORTRAN CHARACTER SET

Alphabetic AtoZ

Numeric 0t09

Special = equal) right parenthesis
+ plus , comma
- minus . decimal point
* asterisk $ dollar sign

/ slash blank
(left parenthesis : g0

In addition, any character (Appendix A) may be used in Hollerith constants and in comments. Blanks are not |}
significant except in Hollerith fields.

60305600 C ‘ I.1-1

FORTRAN STATEMENTS

Column 1 Clo

Columns 1-56

Column 6

Columns 7-72 Statement

Columns 73-80 Identification field, not processed by compiler

CONTINUATION

Statements are coded in columns 7-72; if a statement is longer than 66 columns, it may be continued on as
many as 19 lines. A character other than blank or zero in column 6 indicates a continuation line. Column |
can contain any character other than C, *, or $; columns 2, 3, 4 and 5 ma contain any character. Any

vy ey
i . .

| statement except a comment or OVERLAY may be continued [ATTNINLI StAMSAT MAY DO CORTIMAE. |

TSTATEMENT SEPARATOR ™'
i W - ‘ . ! o M
Several shory statemenis may be Wl‘inén:,a?" ;

satement followiag (he 3 (igh is

7

STATEMENT LABELS

Columns 1-S of the first line of a statement may be used for the statement label. Any statement may be labeled;
however, only FORMAT and executable statement labels can be referenced by other statements. Statement labels
are integers 1-99999, and they may appear in any order. Leading zeros and leading or embedded blanks are not
significant. Each statement label must be unique to the program unit in which it appears. In figure 1, statement

labels are 4, 1, 2, and 3.

k12 60305600 C

STATEMENT LABELS

A statement label uniquely identifies a statement so it can be referenced by another statement. Statements
that will not be referenced do not need labels. Labels can be any 1- to 5-digit integer; blanks and leading
zeros are not significant in a label. Labels need not occur in numerical order; however, a given label must not
be used more than once in the same program unit. A label is known only in the program unit containing it;
it cannot be referenced from a different program unit. Any statement can be labeled; however, only FORMAT
and executable statement labels can be referenced by other statements. A label on a continuation line is ignored.

COMMENTS

In column 1 a C, *, or § indicates a comment line. Comments do not affect the program; they can be written
in column 2 to 80 and can be placed anywhere within the program. If a comment occupies more than one
line, each line must begin with C, *, or § in column 1. In a comment card a character in column 6 is not
recognized as a continuation character. Comments can appear between continuation cards; they do not inter-
rupt the statement contifiuation.

Comment cards following an END statement are listed in the same program unit as the END.

COLUMNS 73-80

Any information may appear in columns 73-80 as they are not part of the statement. Entries in these columns
are copied to the source program listing. They are generally used to order the punched cards in a deck. They
may contain information for DEBUG AREA processing.

BLANK CARDS

Blank cards may be used freely between statements to produce blank lines on the source listing. Unlike a
comment card, a blank card does interrupt statement continuation, and the line following the blank card is
the beginning of a new statement even if it is a continuation line.

DATA CARDS

No restrictions are imposed on the format of data cards read by the source program. Data can be written in
columns 1-80. Columns 73-80 are not ignored on data cards.

60305600 D I1-3

VISV weidorg - amdi

veTerTeclcTocleiTvelec]ziTse ocleslasTcaTostasTroT calzalro]oaleslaal ca s aa Tva TealzaTra oaTev TavT iy TorTavTve Tewlze Tev JosToc Toc T2c Toc TseTvr TecTzeve JoeTaz acl calozlszlvelecleehic[ocl e el celalsilalealedfieJoT 6 T T To Slotvlet
TT T T I T T T [T T T TT I T 37 [T T T T T T T T T T T T i I T 11T |7 TTTT1T TT T T T T T T T[T T T T T T 1T TTT7]
TT T T T T T T T T T T T T T T T I T { T T T T T 7T T T[T T T T T T iTr e[T TTTTTIT N A A L 0 A A A TT 177
TT T T F T T T T T T T T TT TV [TV T T T P Iy T [T T T T T T T i T [T T rTrTd 5 S T O A O O B A TTT
T T T T I T T T 7 Ty I T T T T T [T T Y T T T T T [T T T I T T [T rTTTTT TT T T T T T T T [T TV I T T TT i {70 TTT77]
T T T TT T T[T T T I T I T T T[T I T I I T T T T YT T TTT T T T [TTTTTT] T T T T T T T T T T T T T T T 1T T T [1gmNE [1T
TT T T T I T [T T T T T T T P T T [T T T Iy T T T T T T TT T TTITTT | TTTTTTI rTT T T TV TV [T T T T T T T dgiarg [TT T
T T T T T T T[T T T T T T T I T[T T T I T T I T T[T I T T T I 71T 77rTT] I B O R B AN AN U E R
TT T T TT T T T T T T T T I v T T [T T T T T T i T T T T I TT T [T T rTTiTT __m_ﬁ_d._u_._n_?,Q_..CJC__._m_c,z_w_d_n_ LA
TT T T 7 TV T T T T T T I T T T [T T T T T i T T T iTTrIrT i T TTTTTT _:____::i?.:ﬂtcl??Cs:j T
T T T T T T T T T T T T I T T AT [T T I T T T T [TTTr I TTT T T TT 7T TTT T T T T T T T T T T I o= [T g [T 17
Y T S I A T I I O O O | TT T T T T T T T [VT T ET T T3 17T
N Y U D A I I A T O O B T T T T T T I T P T T T T T T T -] =T T
A N T O O O T T LT T 1T 1711 ____o_H__H_u_H.N__\&_a T
TT T T T T T T T T T I T T T I I T [7T T T T T T T T [T T T T T T T [T TTTTTd S 0 A O O O A T T o
T T T T T T T T T T I T T T T T T T [F IV T T Y T T T i T T 1T T T T T[T T VTrrTTd TT T T T T T TV T T T T PTGy 71T
T _\gﬂéé;@qﬂ]ﬂ%g@%ﬁ_o;i@f:t<<<&€_u s
S T T S T A O O O O ___:CH;_.\;U_H_,_HQ_A@_Crz_w&_a T T
TT T T T T VT T T I T T T T T I T I T [T T T T T T T T [T T T T T TIT T T rTTITrTT T T T T T I T TP T T T 1T 1T 17T 17T TT 7D
Sy o s O S I S R A AR RN IR V25 A2 LGN A D R A AT I A
T T T T S A Y O R B A O _m_H_HCJ__w__meEzQ TT1
o A T O T I Y O :FSEE:E_V_q_q___w:\ﬁ__s_q_um@_mi T T T
wleteTaTeemea el eTeeTraTsal saTveT caTeahio [os TealaaTcaToa aaTralealza Fia | os TewTavT coTanTavTvaTevTcvTir [ovTec e zeToeTaelve Teelza Tie [oetee Vazl e TazlseT veleel cziefoel e T Torls T vl e s fo Te To T [o 6 T m_mxw

n 3
YHAW =2 1 VHATY = | 0 YHdTV = ‘ON
YISNNN z # N O d
oML =2 INO =L o¥3z=0 e
Iviuas o A
nvis [}
IN3W3LV1S NVHLH0d 2
10
1OVd aiva INILNOY
INVN \\\»\QM«R WYHD0Hd

WHOA ONIGOD NYH 1804

NOILY HOIHED

viva T04INOY |

60305600 D

I-14

LANGUAGE ELEMENTS -2

CONSTANTS AND VARIABLES
CONSTANTS

A constant is a fixed quantity. The seven types of constants are: integer, real, double precision, complex,
octal, Hollerith, and logical.

INTEGER CONSTANT

n is a numeric digit

1 < m < 18 decimal digits
Examples:

237 -74 +136772 0 -0024
An integer constant is a string of 1-18 decimal digits written without a decimal point. It may be positive,
negative or zero. If the integer is positive, the plus sign may be omitted; if it is negative, the minus sign
must be present. An integer constant must not contain a comma. The range of an integer constant is -2%-1

to 29-1 (2%-1 = 576 460 752 303 423 487).

Examples of invalid integer constants:

46. (decimal point not allowed)
23A (letter not allowed)
7,200 v (comma not allowed)

When the integer constant is used as a subscript, or as the index in a DO statement or an implied DO, the
maximum value is 2'7-2 (2'7-2 = 131 070), and minimum is 1.

Integers used in multiplication and division are truncated to 48 bits. The result of integer multiplication or
division will be less than 2%7-1. If the result is larger than 247-1, (247-1 = 140 737 488 355 327) high order
bits will be lost. No diagnostic is provided. The resultant maximum value of conversion from real to integer
or integer to real is 247-1. If the value exceeds 247-1, high order bits are lost; no diagnostic is provided. For
addition and subtraction, the full 60-bit word is used.

60305600 D I-2-1

REAL CONSTANT

l n.n n. n.nExs .nEts n.Ets nEﬂ
n Coefficient < 15 decimal digits

E+s Exponent, the + sign is optional

S Base 10 scale factor

A real constant consists of 4 string of decimal digits written with a decimal point or an exponent. or both.
Commas are not allowed. If positive. a plus sign is optional.

The range of a real constant is 107" to 10", if this range is exceeded. a diagnostic is printed. Precision is
approximately 14 decimal digits. and the constant is stored internally in one computer word.

Examples:

7.5 -3.22 +4000. 23798.14 .5 - .72 42.E1 700.E-2
Examples of invalid real constants:

3,50. (comma not allowed)

2.5A (letter not allowed)

Optionally, a real constant can be followed by a decimal exponent, written as the letter E and an integer con-
stant indicating the power of ten by which the number is to be multiplied. If the E is present, the integer
constant following the letter E must not be omitted. The sign may be omitted if the exponent is positive, but
it must be present if the exponent is negative.

Examples:
42.E1 (42. x 10" = 420)

.00028E+5 (.00028 x 10° = 28.)

6.205E12 (6.205 x 10" = 6205000000000.)

8.0E+6 (8. x 10° = 8000000.)

700.E-2 (700. x 1072 = 7))

7E20 (7. % 10* = 70 000 000 000 000 000 0000.)

Example of invalid real constants:

7.2E3.4 exponem notan imeger

[-2-2 60305600 D

V DOUBLE PRECISION CONSTANT

In.nDis .nDts n.Dis nDisI

- n Coefficient
Dz#s Exponent, if s is positive the + sign is optional
.
s : Base 10 scale factor

Double precision constants are written in the same way as real constants except the exponent is specified by
the letter D instead of E. Double precision values are represented internally by two computer words, giving

extra precision. A double precision constant is accurate to approximately 29 decimal digits.

Examples:
5.834D2 (5.834 x 10?7 = 583.4)
14.D-5 (14. x 10™ = .00014)
o 9.2D03 (9.2 X 10° = 9200.)
~-7.D2 (-7. X 10* = -700.)
— 3120D4 (3120. x 10* = 31200000.)

Examples of invalid double precision constants:

7.2D exponent missing
D5 exponent alone not allowed
2,1.3D2 comma illegal

3.141592653589793238462643383279

60305600 B

D and exponent missing

I-2-3

COMPLEX CONSTANT
(r1, r2)

rl Real part
r2 Imaginary part
Each part has the same range as a real constant.

Complex constants are written as a pair of real constants separated by a comma and enclosed in
parentheses.

FORTRAN Coding Complex Number

(1., 7.54) \ I+ 7.54i i= /0
(-2.1E1, 3.24) 2k + 324i

(4.0, 5.0) 40 + 5.0i

(0., -1.) 0.0 - 1.0i

The first constant represents the real part of the complex number, and the second constant represents the
imaginary part. The parentheses are part of the constant and must always appear. Either constant may be
preceded by a plus or minus sign. Complex values are represented internally by two consecutive computer
words. '

Both parts of complex constants must be real; they may not be integer.

Examples of invalid complex constants:

(275,,3.24) 275 is an integer

{12.7D-4 16.1) comma missing and double precision not allowed
4.7E+2,1.942 parentheses missing

{0,0) (0 is an integer

Real constants which form the complex constant may range from 107" to 1072

1-24 60305600 A

| | E“4““‘“?1%

7777778

¥

tal d‘igus

S

SR

An octal constant must not exceed 20 digits nor contain a non-octal Higit. If it does; & TAf compiler
diagnostic is printed. When fewer than 20 octal digits are specified, the digits are right justifidd’and zero -
filled. Octal constants can be used anywhere integer constants can’ be" used, cxcept: they pleishy
_satement labels or statement label references, in a FORMAT statement, or as the cha '
Hollerith constant is specified. i

S

L

3. (B252B%

When an octal comta
' rexpression (Tghie 34

60305600 C ' 12.5

HOLLERITH CONSTANTS

n Unsigned decimal integer representing number of characters in string. Must be

greater than zero, and not more than 10 when used in an expression.
f String of characters
H Left justified with blank fill

g

5] 17
FPOCEPAM HCLL (CUTFUT)
A = GHARCDEF
£ = 6LARCDEF
(= 6RARCCEF
D = 2ARCDEF2
FRINT 14 Ay A,E4R,C4C4(,yD
1| [FORVAT (074,4,A15)
STCF
EMND
Stored Internally: Display Code:
0192Cc304050€E8585E658 BRCDEF A
0102030L)5%6¢000C000 BRCDEF 8
CeOCO00CO001CG2C2040506 AFCNEF c
0102030410506E88E5E56 PRCDEF D

I-2-6

60305600 C

e

A Hollerith constant consists of an unsigned decimal integer, the letter H, and a string of characters. For
example:

SHLABEL

The integer represents the number of characters in the string including spaces (or blanks). Spaces are significant |
in a Hollerith constant:

18HTHIS IS A CONSTANT

7HTHE END

19HRESULT NUMBER THREE

I = (+5HABCDE) is a valid statement; (+ SHABCDE) is an expression and the + sign is an

operator.

nHf

Hollerith constants may be used in arithiilicespreéssions, DATA and FORMAT statemems, as arguments
in subprogram calls, ﬁa‘ s ii&t i!ems in mqﬁpﬂt iﬁfﬁf a‘g‘i input i ’If a Hollerith constant

constant can be used For exampie

IF(V. m 9‘!38") Y-Yﬂ.,'

: "mﬁéﬁ:ﬁ LINE(7), W
LOGICAL NEWPAGE = v
1F (nxmcz) LINE(7) - wngz of “

PROGRAM fuoutwn

PRINT 1y # FIELD uz%m =
1° FORMAT xzma"fw“% »
~END :

60305600 C 1.2.7"

| An empty string such as OH or # # is not permitted.

When the number of characters in a Hollerith constant is less than 10, the computer word is left justified

with blank fill. If it is more than 10, but not a multiple of 10, only the last computer word is left justified —
with blank fill. ‘
Examples:
117
READ 1,NAME
FORMAT (A7)
IF(NAME .EQ. 4HJOAN) GO TO 20
n?’
RITE (6,1000)
100 ORMAT (1X, 73H NO COUNTRY THAT HAS BEEN THOROUGHLY EXPLORED IS
INFESTED WITH DRAGONS.)
‘nRfandnlf s
A Hollerith constaat of the | R
statement., DL AT EY LGB
LOGICAL CONSTANTS
A logical constant takes the forms:
TRUE. ot & representing the value true
.FALSE. &.@ representing the value false
The decimal points are part of the constant and must appear.
Examples:
LOGICAL X1, X2
X1 = .TRUE.
X2 = .FALSE.

1-2-8 60305600 C

g

VARIABLE NAMES

A variable represents a quantity whose value may vary; this value may change repeatedly during program exec-
ution. Variables are identified by a symbolic name of one to seven letters or numbers, the first of which must
be a letter. A variable is associated with a storage location; and whenever the variable is used, it assumes the

value currently in the location. The five types of variables are: logical, integer, real, double precision, and com-

plex.

The type of a variable is implied by its first character if it is not defined explicitly with a type or IMPLICIT
statement (section 6). If type is not declared, a variable is type integer if the first character of the symbolic
name is I, J, K, L, M, or N.

Examples:
IFORM JINX2 KODE NEXT23 M

A variable not defined in a type or IMPLICIT statement is type real if the first character of the symbolic
name is any letter other than I, J, K, L, M, N.

Examples:

RESULT ASUM A73 BOX

60305600 D 129

Default Typing of Variables

A-H, 0-2 Real

I-N Integer

INTEGER VARIABLE

An integer variable name must be one to seven letters or numbers; the first letter must be I, J, K, L, M, or N if the
type has not been defined explicitly.

The value range is .259-1 to 259-1. When an integer variable is used as a subscript or as the control variable in
a DO statement, the maximum value is 217.2. The resultant absolute value of conversion from integer to real,
or real to integer must be less than 247 The operands, as well as the result, of an integer multiply or division
must be less than 247 in absolute value. If this value is exceeded, hig,h order bits will be lost. The resultant

absolute value of integer addition or subtraction must be less than 2 9.1,
Examples:
ITEM1 NSUM JSUM N72 J K2504

REAL VARIABLES

A real variable name must be one to seven letters or numbers of which the first must be any letter other than 1. J, K|
L, M, or N if the type has not been defined explicitly.

The value range is 102% to 10"*%, with approximately 14 significant digits of precision.
Examples:

AVAR SUM3 RESULT TOTALZ2 BETA XXXX

1-2-10 60305600 D

DOUBLE PRECISION VARIABLES

Double precision variable names must be defined explicitly by a type declaration. The value of a double
precision variable may range from 10 to 10**2, with approximately 29 significant digits of precision.

Example:

DOUBLE PRECISION OMEGA, X, IOTA

COMPLEX VARIABLES

Complex variables must be defined explicitly by a type declaration. A complex variable occupies two words
in storage. Each word contains a number in real variable format, and each number can range from 107 to
10+322 - ’

Example:

COMPLEX ZETA, MU, LAMBDA

LOGICAL VARIABLES

Logical variables must be defined explicitly by a type declaration. A logical variable has the value true or
false.

Example:

LOGICAL L33, PRAVDA, VALUE

60305600 C . I-2-11

ARRAYS
A FORTRAN array is a set of elements identified by a single name. A particular element in the array may
be referenced by its position in the array. Arrays may have one, two, or three dimensions; the array name

and dimensions must be declared in a DIMENSION, COMMON or type declaration.

Example:

PROGRAN VARDIN (OUYROT FAPEG=IIUTIETY

COMMON X (443)

KEAL Y (6)

caLL IOTA(Xe12)

CaLL IOTA(Ys6)

WRITE (691U0) XoY

100 §¥ngr (SLARRAY X = #412F6,005% s FARKAY Y = #6F6.0)

v}

(VT

The number of elements in an array is the product of the dimensions. For example, STOR(3,7) contains 21
elements, STOR(6,6,3) contains 108. The number of subscripts must not exceed the number specified in the
array declaration. For example, a one dimensional array A(l) cannot be referred to as A(I,J) and a two
dimensional array A(1,J) cannot be referred to as A(LJ,K). Such references would produce a diagnostic.
The number of dimensions in the array is indicated by the number of subscripts in the declaration.
DIMENSION STOR(6) declares a one-dimensional array of six elements
REAL STOR(3,7) declares a two-dimensional array of three rows and seven columns

LOGICAL STOR(6,6,3) declares a three-dimensional array of six rows, six columns and three planes

Each element in the array is referred to by the array name followed by a set of expressions in parentheses,
called subscripts. Subscripts indicate the position of the element in the array.

1-2-12 60305600 C

Example:

The array N consists of six values in the order: 10, 55, 11, 72, 91, 7

N(1) value 10
N(2) value 55
N(3) value 11
N(4) value 72
N(5) © value 91

N(6) value 7

The entire array may be referenced by the unsubscripted ar;ay name when it is used as an item in an
input/output list or in a DATA statement. In an EQUW&QE&‘ smemem h er, only the first
element of the array is implied by the unsubscripted array nameg. - Wi 0

Example:

The two-dimensional array TABLE (4,3) has four rows and three columns.

Column 1 Column 2 Columnr 3
Row 1 44 10 105
Row 2 72 20 200
Row 3 3 11 30
Row 4 91 76 714

To refer to the number in row two, column three write TABLE(2,3).
TABLE(3,3) = 30 TABLE(1,1) = 44 TABLE@4,1) = 91
TABLE(4,4) would be outside the bounds of the array and results may be unpredictable.

Zero and negative subscripts are not allowed. If the number of subscripts in a reference is 1655 than the
declared dimensions, the compiler assumes missing subscripts have a Wiue of one, :

For example, in an array A (10,10,10) , Similarly for A(i 2,14)
A(LJ) implies A (11,1} = A(l) implies A(L1)
A(Y) implies A (I1,1) A impués' ALY
A implies A (1,1,1)f and for A(7). A implies A(1)}

A(D or A(1,K) are illegal

tExcept in input/output lists, as arguments to functions or subroutines, and DATA statements.

60305600 B [-2-13

:
For example, in a three-dimensional array NEXT when only one subscript is shown, the remaining|

subscripts are assumed to be one. i
Plane 1 . Pene2 e
Col 3 Col1 Col2 Col3 Cold

Col1 Col2

subscript reprasents raprasents . .
NEXT (3) NEXT(32,1) NEXT (221
represents
NEXT(311: o

I-2-14 60305600 B

ARRAY STRUCTURE

Arrays are stored in ascending locations; the value of the first subscript increases most rapidly. and the
value of the last increases least rapidly.

Example:

~In an array declared as A(3,3.3), the elements of the array are stored by~coiuﬁms in ascending

locations.

Row 1

Row 2

Row 3

60305600 A

Plane 1
Col1 Col2 Col3
A111 (=A121 =A131
{ | !
A211 | A221 | A231 Plane 2
| § |
A311- A321< A331 Colt Col2 Coi3
.
Row 1| A112 p=A122 ~A132
} | {
Row2| A212 | A222 | A232 Piane 3
! { §
Row3| A312- A322- A332 Coli Col2 Col3
~—
Row 1| A113 (~A123 ~A133
{ oo
Row2| A213 | A223 | A233
) l {
Row3| A313- A323-4 A333

The array is stored in linear sequence as follows:

Location Relative

Element to first Element
A(LLLD) stored in 0
AQ2,L.D) 1
A(3.1.1) 2
A(1,2,1) 3
A(2.2.1D) 4
A(3.2.1) 5
A(L.3.1) 6
AQ2.3.1) 7
A@3.3.DH 8
A(LL2) 9
A(2.1.2) 10
A(3,1.2) 11
A(1.2.2) 12
A2.2.2) 13
A(3.2.2) 14
A(1.3.2) 15
A(2.3.2) 16
A(3.3.2) 17
A(1.1.3) 18
A2.1.3) 19
A@3.1.3) 20
A(1.2.3) 21
A(2.2.3) 22
A(3.2.3) 23
A(1.3.3) 24
A(2.3.3) ‘ 25
A(3.3.3) stored in 26
To find the location of an element in the linear sequence of storage locations the following method can be
used:
Number of Array Location of Element
Dimensions Dimension Subscript Relative to Starting Location

1 ALPHA(K) ALPHA(k) (k-1)XE

2 ALPHA(K M) ALPHA(k,m) {k-1+KX{m-1))XE

3 ALPHA(K,M,N) ALPHA(k,m,n) {k-1+KX (m-1+MX{n-1)))XE

Figure 2-1. Array Element Location

K. M. and N are dimensions of the array.

k.m, and n are the actual subscript values of the array.

I-2-16

60305600 B

1 1s subtracted from each subscript value because the subscript starts with 1, not 0. '

E is length of the element. For real, logical, and integer arrays, E = 1. For complex and double
precision arrays, E = 2.
Examples:
Location of Element
Subscript Relative to Starting Location
INTEGER ALPHA (3) ALPHA(2) (2-1)X1 =1
REAL ALPHA (3,3) ALPHA(3,1) (3-1+3X(1-1})X1 =2
REAL ALPHA (3,3,3) ALPHA(3,2,1) (3-1+3X(2-1)+3X3X(1-1))X1 =5

A singlé subscript may be used for an array with multiple dimensions.

The amount of storage allocated to arrays is discussed under DIMENSION declarations in Section 5.

SUBSCRIPTS

A subscript can be any valid arithmetic expression. If the value of the expression is not integer, it is
truncated to integer.

The value of the subscript should be greater than zero and less than or equal to the maximum specified in
the array specification statement, or the reference will be outside the array. If the reference is outside the
bounds of the array, results are unpredictable.
Examples:
Valid subscript forms:

A(I,K)

B(I+2,J-3,6*K+2)

LAST(6)

ARAYD(1,3,2)

STRING(3*K*ITEM+3)

Invalid subscript forms:

ATLAS(O) zero subscript causes a reference outside of the array
D(1 .GE. K) relational or logical expression illegal

60305600 D I-2-17

EXPRESSIONS | 1-3

% logical and relanonal Arithmetic d%id 3 m ng expressions
expressions yield truth values..)

FORTRAN expressions are arithmetic,
yield numeric values, and logical and refation

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of unsigned constants, variables, and function references separated
by operators and parentheses. For example,

(A-B)*F + C/D**E is a valid arithmetic expression
FORTRAN arithmetic operators:

+ addition

- subtraction
* multiplication
division
*E exponentiation

An arithmetic expression may consist of a single constant, variable, or function reference. If X is an
expression, then (X) is an expression. If X and Y are expressions, then the following are expressions:

X+Y X-Y
X*Y X/Y
-X X**Y
+X

60305600 B [-3-1

All operations must be specified explicitly. For example, to multiply two variables A and B, the expression
A*B must be used. AB, (A)(B), or A.B will not result in multiplication.

Expression Value of

3.78542 Real constant 3.78542

A(2*]) Array element A (2*))

BILL Variable BILL

SQRT(5.0) Vs |

A+B Sum of the values A and B

C*D/E - Product of C times D divided by E
J**1 Value of I raised to the power of 1
(200 - 50)*2 300

EVALUATION OF EXPRESSIONS

The precedence of operators for the evaluation of expressions is shown below:

(exponentiation)
/ s (division or multiplication)
+ - (addition or subtraction)
.GT. .GE. .LT. .LE. .EQ. NE. (relationals)
.NOT. (logical)
.AND. (logical)
OR. (logical)

Unary addition or subtraction are treated as operations on an implied zero. For example, +2 is treated as
0+2, -3 is treated as 0-3.

Expressions are evaluated from left to right with the precedence of the operators and parentheses
controlling the sequence of operation (the deepest nested parenthetical subexpression is evaluated first).

However, any function references and exponentiation operations not evaluated inline are evaluated prior to
other operations.

In an expression with no parentheses or within a pair of parentheses in which unlike classes of operators

appear, evaluation proceeds in the above order. In expressions containing like classes of operators,

evaluation proceeds from left to right e Bted a5\)

Gt

I-3-2 : 60305600 B

An array element (a subscripted variable) used in an expression requires the evaluation of its subscript. The
type of the expression in which a function reference or subscript appears does not affect, nor is it affected

by the evaluation of the arguments or subscripts.

The evaluation of an expression having any of the following conditions is undefined:

Negative-value quantity raised to a real, double precision, or complex exponent

Zero-value quantity raised to a zero-value exponent

Infinite or indefinite operand (section 4, part 3)

Element for which a value is not mathematically defined, such as division by zero

If the error traceback option is selected on the FTN control card (section 11), the first three conditions will
produce informative diagnostics during execution. If the traceback option is not selected, a mode error

message is printed (section 4, part 3).

Two operators must not be used together. A*-B and Z/+X are not allowed. However, a unary + or - can

be separated from another operator in an expression by using parentheses. For example,

A*(-B) and Z/(+X) Valid expressions
B*-A and X/-Y*Z Invalid expressions

Each left parenthesis must have a corresponding right parenthesis.

Example:

(F+ (X *7Y) Incorrect, right parenthesis missing
(F+ (X *Y)) Correct

Examples:
In the expression A-B*C
B is multiplied by C, and the product is subtracted from A.
The expression A/B-C*D**E is evaluated as:
D is raised to the power of E.
A is divided by B.

C is multiplied by the result of D**E.

The product of C*D**E is subtracted from the quotient of A divided by B.

The expression -A**C is evaluated as 0-A**C; A is first raised to the power of C and the result is then

subtracted from zero.

60305600 B

[-3-3

“An expression containing operators of equal precedence is evaluated from left to right.
A/B/C

A is divided by B. and the quotient is divided by C. (A/B)/C is an equivalent expression.

The expression A**B**C is. in effect. ((A**B)y**C).

Dividing an integer by another integer yields a truncated result; 11/3 produces the result 3. Therefore,
when an integer expression is evaluated from left to right, J/K*I may give a different result than I*J/K.

Example:
I =4 J=23 K=2
J/K*1 . I*J/K
3/2*4 = 4 4*3/2 =6

An integer divided by an integer of larger magnitude yields the result 0.

Example:
N = 24 M=27 K=2
N/M*K
24/27*2 =0

Examples of valid expressions:
A
3.14159
B + 16.427
(XBAR +(B(I,J+I,K) /3.0))
-(C + DELTA * AERO)
(B - SQRT(B**2*(4*A*C)))/(2.0%A)
GROSS - (TAX*0.04)

TEMP + V(M,MAXF(A,B))*Y**C/ (H-FACT(K+3))

I-3-4 ’ 60305600 A

TYPE OF ARITHMETIC EXPRESSIONS

An arithmetic expression may be of type integer, real, double precision, or complex. The order of

dominance from highest to lowest is as follows:
Complex

Double Precision

Real
Integer
Table 3-1. Mixed Type Arithmetic Expressions with + - * / Operators
2nd Doub!
1st operand| |, ie0er Real ouble Complex
operand+ Precision

Integer Integer

Double

Precision Complex

Real

Real

Double
Precision

Double
Precision

Double
Precision

Complex Complex

When an expression contains operands of different types, type conversion takes place during evaluation.

Before each operation is performed, operands are converted to the type of the dominant operand. Thus the
type of the value of the expression is determined by the dominant operand. For example, in the expression
A*B-1/], A is multiplied by B, I is divided by J as integer, converted to real, and subtracted from the result

of A multiplied by B.

When an octal or Hollerith constant is used, type is not converted. When these constants are the only operands

in an expression, the result of the expression is type integer.

60305600 C

I-3-5

EXPONENTIATION

In exponentiation, the following types of base and exponent are permitted:

Base

Integer

Real

Double Precision

Complex

Integer. Real, Double Precision

Integer, Real, Double Precision

“The exponentation is evaluated from fefi to Hight.

In an expression of the form A**B the type of the result is determined as follows:

Type of Result
Type of A of A**B
Integer It ge
Real Real
Real

Double Integer Double

Real Double

Double Double
Complex integer Complex

The expression -2**2 is equivalent to 0-2**2. An exponent may be an expression. The following examples

are all acceptable:
B**2.
B**N
B**(2*N-1)

(A+B)**(-J)

I-3-6

A negative exponent must be enclosed in parentheses:

A**(-B)

NSUM**(-7J)

60305600 C

Examples:

Expression Type

CVAB**(1I-3) Real**Integer

D**B Real**Real

C**1 Complex**Integer

BASE(M,K)**2.1 Double Precision
**Real

K**5 Integer**Integer

314D-02**3.14D-02 Double Precision

**Double Precision

RELATIONAL EXPRESSIONS

dy,d,

R

op

Arithmetic or masking expression

Relational operator

Result
Real
Real
Complex

Double Precision

Integer

Double Precision

A relational expression is constructed from arithmetic or masking expressions and relational operators.
Arithmetic expressions may be type integer, real. double precision. or complex. The relational operators are:

GT.
.GE.
LT.
LE.
EQ.

NE.

The enclosing decimal points are part of the operator and must be present.

60305600 B

Greater than

Greater than or equal to
Less than

Less than or equal to
Equal to

Not equal to

137

Two expressions separated by a relational operator constitute a basic logical element. The value of this
element is either true or false. If the expressions satisfy the relation specified by the operator, the value 1s
true; if not, it is false. For example:

X+Y .GT. 5.3

If X+ is greater than 5.3 the value of the expression is true. If X+ is less than or equal to
5.3 the value of the expression is false.

A relational expression can have only two operands combined by one operator. a, 0p & Op a, is not valid.
Relational operands may be of type integer, real, double precision, or complex, but not logical. With complex

operands, the relational operators .EQ. and .NE. test for equality on both the real and imaginary parts; for all
other relational operators only the real parts are compared.

Examples:
J.LT.ITEM

580.2 .GT. VAR
B .GE. (2.7,5.9E3) real part of complex number is used in evaluation

E.EQ..5

(I) .EQ. (J(X))
C.LT. 1.5D4 most significant part of double precision number is used in

evaluation

EVALUATION OF RELATIONAL EXPRESSIONS

Relational expressions are evaluated according to the rules governing arithmetic expressions. Each
expression is evaluated and compared with zero to determine the truth value. For example, the expression
p-EQ.q is equivalent to the question, does p - ¢ = 07 q is subtracted from p and the result is tested for zero.
If the difference is zero or minus zero the relation is true. Otherwise, the relation is false.

If p is 0 and q is -0 the relation is true.

Expressions are evaluated from left to right. Parentheses enclosing an operand do not affect evaluation; for
example, the following relational expressions are equivalent:

A.GT.B
A.GT.(B)
(A).GT.B

(A).GT.(B)

I-3-8 60305600 D

Examples:
REAL A AMT LT, (1,,8+88)
A.GT.720
DOUBLE PRECISION BILL, PAY
INTEGER I,J BILL .LT. PAY
I1.EQ.J(K)

A+B.GE.Z**2
(I1).EQ.(N*J)

300.+B.EQ.A-2Z
B.LE.3.754

.5+2. .GT. .8+AMNT
Z.LT.35.3D+5

Examples of invalid expressions:
A .GT. 720 .LE. 900 2 relational operators must not appear in a relational expression

B .LE. 3.754 .EQ. C

LOGICAL EXPRESSIONS

L1 op L2 op L3 op...Ln

L.L, logical operand o relational expression

op logical operator
A logical expression is a sequence of logical constants, logical variables, logical array elements, or relational
expressions separated by logical operators and possibly parentheses. After evaluation, a logical expression

has the value true or false.

Logical operators:

NOT. or N. logical negation
AND. or .A. logical multiplication
OR. 6t .0. inclusive OR

The enclosing decimal points are part of the'operator and must be present.

60305600 B 1-3-9

The logical operators are defined as follows (p and q represent LOGICAL expressions):

NOT.p

p-AND.g

p.OR.q

Truth Table

If p is true, NOT.p has the value false. If p is false, NOT.p has the

If p and q are both true, p.AND.q has the value true. Otherwise, false.

If either p or g, or both. are true then p.OR.q has the value true. If both
p and q are false, then p.OR.q has the value false.

p.AND. g p.OR.q .NOT.p
1 1 0
0 1 0 |
0 1 1
0 0 1

If precedence is not established explicitly by parentheses. operations are executed in the following order:

.NOT.

AND.

OR.

[-3-10

60305600 A

Example:

FROGRAM LOGIC(INFUT,OLTPUT,TAPES=INPUT)
LOGICAL MALE,FHD,SINGLE,ACCEPT
INTEGER AGE
FRINT 20
20 FORNMAT (*1 ' LIST OF ELIGIBLE CANDIDATES*)
3 READ (541) ULNAME,FNAME,MALE,PHC,SINGLE,AGE
1 FORMAT (2A10,3L5,12) '
IF (EOF(5))6,44
4 MACCEPT = MALE .AND. FPD ,AND. SINGLE .AND. (AGE .CT. 2% .AND.
S AGE .LT. 45)
IF (ACCEPT) PRINT 2,LNAME,FNAME,AGE
2 FORMAT (1H0,2R10,3X,12)

GO 10 3
6 STOF
END
Data Cards:

RALPH ERICSON T T T 2u
JOHN S. SLIGHT T T T 26
MILDRED MINSTER F T T 41

JUSTIN BROWN T T T Ju

JAMES SMITH T F T 2

Output:
LIST OF ELIGIBLE CANDIDATES
JOHN S, SLIGHT 26
JUSTIN BROWN 30

60305600 A [-3-11

The operator .NOT. which indicates logical negation appears in the form:
NOT. p
NOT. may appear in combination with .AND. or .OR. only as follows (p and q are logical expressions):
p -AAND.NOT. q
p -OR.NOT. q
p -AND.(NOT. q)
p .OR(NOT. q)
NOT. may appear adjacent to itself only in the form NOT.(NOT.(.NOT.p))
Two logical operators may appear in sequence only in the forms .OR.NOT. and .AND..NOT.
Valid Logical Expressions:
LOGICAL M,L
NOT.L
NOT. (X .GT.Y)
X .GT. Y AND.NOT.Z
(L) AND. M
Invalid Logical Expressions:
P,Q, and R are type logical
.AND. P AND. must be preceded by a logical expression
.OR. R OR. must be preceded by a logical expression

P.AND..OR.R AND. always must be separated from .OR. by a logical expression

[-3-12 60305600 A

Examples:

A, X, B,C J, L, and K are type logical.

Expression Aternative Form

A .AND. .NOT. X
.NOT.B
A.AND.C

J.OR.L.OR.K

Examples:

B-C <A < B+C is written asB~C .LE. A .AND. A .LE. B+C
FICA >178. and PAYNB - 5889. is written FICA .GT. 178. .AND. PAYNB .EQ. 5889,

 points are pm

60305600 B [-3-13

Examples:

1 .OR. J .OR. K .OR. N~

Expression

«OR,
A AND, JNOT¢ C

BILL ,AND. BOB

{.NOT. (.NOT.(.NOT. A .OR.

The operands may be any type variable,

Examples:

NOT. BB

TAX .AND. INT

1 1100110501

60305600 B

~—

N
1
produce the follo

60305600 B I-3-15

Example:

€ IF FIRST THO Cﬁlﬁﬂﬂ7£R8

i1
10

I-3-16

‘PRGG&AH MASK (Iﬂ*ﬂ?w,

KgoogoB)) GO 10 3

FORMAT t:ﬁi;w,h%ﬁﬁ,ﬁ L
PRINT 1 ‘ o
FORMAT (3A10,I8)
READ Z’Lﬂlﬂﬁyfﬁ&ﬂﬁy
rnusmp.ea.nsrw

0F ISTATE MoT EQU
IFC(ISTATE, lﬂﬁ.7777993@30““‘8‘05@0@3)
FORMAT(SX,2410)

PRINT 111LN§HEQ?R‘”§

60 Tﬁ 3
END

60305600 A

ASSIGNMENT STATEMENTS 1-4

An assignment statement evaluates an expression and assigns this value to a variable or array element. The

statement is written as follows:
v = expression

v is a variable or an array element

The meaning of the equals sign differs from the conventional mathematical notation. It means replace the
value of the variable on the left with the value of the expression on the right. For example, the assignment)
statement A=B+C replaces the current value of the variable A with the value of B+C.

ARITHMETIC ASSIGNMENT STATEMENTS

v = arithmetic expression

Replace the current value of v with the value of the arithmetic expression. The variable or array element

can be any type other than logical.
Examples:
A=A+1
N=J-100*20
WAGE=PAY-TAX
VAR=VALUE+(7/4)*32

B(4)=B(1)+B(2)

60305600 B

replace the value of A with the value of A+ 1

replace N with the value of J-100*20

replace WAGE with the value of PAY less TAX

replace the value of VAR with the value of VALUE +(7/4)*32

replace the value of B(4) with the value of B(1)+B(2)

[-4-1

If the type of the variable on the left of the equals sign differs from that of the expression on the right, type
conversion takes place. The expression is evaluated, converted to the type of the variable on the left, and
then replaces the current value of the variable. The type of an evaluated arithmetic expression is
determined by the type of the dominant operand. Below, the types are ranked in order of dominance from
highest to lowest:

Complex

Doubie Precision

Real

Integer

In the following tables, if high order bits are lost by truncation during conversion, no diagnostic is given.

CONVERSION TO INTEGER

Value of IFORM
Value Assigned Example After Evaluation

Integer = Integer Value of integer IFORM = 10/2 5
expression re-
places v.

Integer = Real Value of real IFORM =25%2+3.2 8
expression, trun-
cated to 48-bit
integer, replaces
V.

Integer = Double Precision Value of double IFORM = 3141,593D3 3141593
precision expres-
sion, truncated to
48-bit integer,
replaces v.

Integer = Complex | Value of reat part | 'IFORM = fp!

' ofcomplex ~ } ¢
exprassions trun-
‘cated to 4B-bit
V.o

I4-2 60305600 B

CONVERSION TO REAL

Value of AFORM
Value Assigned Example After Evaluation

Real = Integer Value of integer AFORM =200 + 300 500.0
expression, trun-
cated to 48 bits,
is converted to

real and replaces

V.
Real = Real Value of real AFORM =25+7.2 9.7
expression re-
places v.
Real = Double Precision Value of most AFORM = 3421.D - 04 .3421

significant part
of expression re-
places v.

0.2,1.1)-(2.15.0)

Value of real
part of complex
expression re-

places v.

AEORM =

Real = Complex

CONVERSION TO DOUBLE PRECISION

Value of SUM
Value Assigned Example After Evaluation

Double Precision = Integer Value of integer SUM =7%5 35.D0
expression, trun-
cated to 48 bits,
is converted to
real and replaces
most significant
part. Least sig-
nificant part set
to 0.

Double Precision = Real Value of real SUM =75%2 15.D0
expression re-
places most
significant part;
least significant
part is set to O.

60305600 E 1-4-3

CONVERSION TO DOUBLE PRECISION (CONTINUED)

Value Assigned

Example

Value of SUM
After Evaluation

Double Precision
= Double Precision

Double Precision = Complex

Value of double
precision expres-
sion replaces v.

SUM =7.322D2 - 32.D -1

Value of real
part of complex
expression re=
places v. Least
significant part
issetto 0. l

SUM = (32,7.6) + (65,1.0) -

CONVERSION TO COMPLEX

7.29D2

Complex = Integer

Complex = Real
i

Complex = Double Precision

Value Assigned

Value of integer
expression, trun-
cated to 48 bits,
is converted to
real, and replaces
real part of v.
Imaginary part is
set to 0.

Value of real
expression re-
places real part
of v. Imaginary
part set to 0.

Example

AFORM =2 +3

AFORM =23+72

Most significant
part of double

precision expres-
sion replaces real
part of v. Imag-
inary part set to

0.

AFORM =20D0 + 4.4D1 -

Value of AFORM
After Evaluation

- 85,00)

4.0,0.0)

Complex = Complex Value of complex AFORM = (3.4,1.1) + (7.3,4.6) (10.7,5.7)
expression replaces
variable.
1-4-4 60305600 B

o LOGICAL ASSIGNMENT

Logical variable or array element = Logical or relational expression

Replace the current value of the logical variable or array element with the value of the expression.
Examples:
LOGICALV LOG2
I =1
1062 = I .EQ.O
LOG? is assigned the value FALSE. because [0

LOGICAL NSUM,VAR

BIG = 200.

VAR = .TRUE.

NSUM = BIG .GT. 200. .AND. VAR

NSUM is assigned the value .FALSE.

LOGICAL A,B,C,D,E,LGA,LGB,LGC
REAL F,G,H
— A = B.AND.C.AND.D
A - F.GT.G.OR.F.GT.H
A = .NOT.(A.AND..NOT.B).AND.(C.OR.D)
LGA = .NOT.LGB
LGC - E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AND.B)

‘nmx - INK. .em.‘ .wz ANI NEXT
J(x) - N .aRD.

60305600 B 14-5

INTEGER I,J,K,L,M,N(16) R T S

REAL B,C,D,E,P(18) —
N(2) = T.AND.T e TP
B = C.AND.L : i g s 4
- F(J) = I.OR..NOT.L.AND.F(J) :
I =" NOT:1 S $?e‘: ~—
N(1) = I.OR.J.OR.K.OR.L.ORM
MULTIPLE ASSIGNMENT
VTV, By, = e‘xpmafiuﬁ‘! : |
Replace the value of several variables or array elements with the value of the sx Fessie
X =Y = Z= (10+2)/SUM(}) is equivalent to the following statements: :
Z = (10 + 2)/SUM(1)
Y = 2 R
X =Y - o S
ST i e
The value of the expression is converted to the type of the variable or array “elethtsdar
replacement. : S R e ¥ D
¥ : [l s if -
Examples: ' ‘ : w L ¢!
NSUM = BSUM = ISUM = TOTAL = 10.5 = 3,2 : '
. TOTAL is assigned the value

1-4-6 60305600 B

CONTROL STATEMENTS -5

FORTRAN statements are executed sequentially. However, the normal sequence may be altered with
control statements. : '

ASSIGN PAUSE

GO TO STOP
IF END

DO ~ RETURN
CONTINUE

Control may be transferred to an executable statement only: a transfer to a non-executable statement results
in a fatal diagnostic. Compilation continues, but the program is not executable unless it is compiled in
debug mode.

Statements are identified by an integer, 1-99999. Leading zeros are ignored. Each statement number must
be unique in the program or subprogram in which it appears.

In the following control statements:
sn = statement label

iv = integer variable

GO TO STATEMENT

The three GO TO statements are: unconditional, computed, and assigned.

60305600 A [-5-1

UNCONDITIONAL GO TO

GO TO sn

Control transfers to the statement labeled sn.
Example:

10 A=B+12
100 B=X+Y
I1F(A-B)20,20,30
20 Z=A
G0 TO 10 -«—————Transfers control to statement 10
30 Z=B
STOP
END

COMPUTED GO TO

GO TO (sn1,sn2 ,...,snm),iv had

7
GG TO (sn1,sn2, snl, cxprmim

[P ORI -

The comma separating the statement labef list and the variable ot expression is optidnkl. This statement
causes a transfer to one of the statement labels in parentheses. depe dmg’on the value f th
variable, iv, can be replaced by an expression, The vatue of the 83 oft i trencater
[integer if necessary, and used in place of iv.

f converted to

Example:
G0 T0(10,20,30,20),L
GO T0(10,20,30,20)%L
The next statement executed will be: —
10if L = 1
20if L = 2

1-5-2 60305600 B

I
w

30if L

20ifL = 4

— The variable must not be specified by an ASSIGN statement. If it is specified by an ASSIGN statement, the
object code is incorrect. but no compilation error message is issued.

If the value of the expression is less than 1. or larger than the number of statement numbers in parentheses,
« the transfer of control is undefined and a fatal error results. For example, execution of the following
computed GO TO statement will cause a fatal error. :
M=4
G0 TO (100,200,300),M
Less than 4 numbers are specified in the list of statement numbers; therefore, the next statement to be
executed is undefined.
|
p—
— hat

60305600 A I-5-3

Examples:

K=2
G0 T0(100,150,300)K statement 150 will be executed next

G0 TO(10,110,11,12,13),X/K control transfers to statement 110 uunce the :=acger
part of the expression X/K equals 2

L =7
GO T0(35,45,20,10)L-5 statement 45 will be executed next.

35 Z=R+X
45 A=X+Y

20 B=CAT**2

10 ANS=RES+ERROR

ASSIGN STATEMENT

7
ASSIGN sn TO iv

The value of iv is a statement label to which control may transfer. This statement is used in conjunction
with the assigned GO TO statement. sn must be the label of an executable statement in the same program
unit as the ASSIGN statement.

I-54 63005600 A

Example:

ASSIGN 10 TO LSWITCH)
GO TO LSWITCH(5,10,15,20) control transfers to statement 10

Once the integer variable, iv, is used in an ASSIGN statement, it must not be referenced in any statement,
other than an assigned GO TO, until it has been redefined.

! ASSIGNED GO TO

GO TO iv, (sn.' P I

m

iy

- Example:

ASSIGN 50 TO CHOICE

10 GO TO CHOICE, (20,30,40,50) statement 50 is executed immediately after statement
. 10

30 CAT=-ZERO+HAT
40 CAT=10.1-3.

60 CAT=25.2+7.3

This statement transfers control to the statement label last assigned to the variable. The assignment must
take place in a previously executed ASSIGN statement.

mitting the list of statement labels (sn,....sn,,) causes a fatal error. If the
value of iv is defined by a statement other than an ASSIGN statement. the results are unpredictable. (A
transfer is made to the absolute memory address represented by the low order 18 bits of iv.)

The ASSIGN statement assigns to the variable one of the statement labels specified in parentheses.
Example:
GO TO NAPA, (5,15,25)

If 5 is assigned to NAPA, statement 5 is executed next. if 15 is assigned to NAPA. statement 15 is
executed next. if 25 is assigned to NAPA, statement 25 is executed next.

60305600 B I-5-5

ARITHMETIC IF

THREE BRANCH

7

IF (arithmetic or masking expression) sn,.SN,SN,

expression < 0 branch to sn,
expression = 0 branch to sn,

expression > 0 branch to sn

This statement transfers control to sn, if the value of the arithmetic or masking expression is less than zero,
sn, if it is equal to zero, or sn, if it is greater than zero. Zero is defined as a word containing all bits set to
zero or all bits set one (+0 or -0). . -

Example:

PROGRAM IF (INPUT,OUTPUT,TAPES=INPUT,TAPE6=OUTPUT)
READ (5,100) I,J,K,N
100 FORMAT (10X,4I4)
IF(I-N) 3,4,6
3 ISUM=J+K

—

& CALL ERROR1 4 hnd

PRINT 2, ISUM
2 FORMAT (I10)
4 STOP

END

If the type of the evaluated expression is complex, only the real part is tested.

»

ARITHMETIC IF " " o | f?*:’&ff":f;%f*%?“{;‘
TWO BRANCH |

[=e

1-5-6 60305600 B

Example:

‘ IF (I*J*DATA(K))100,101
100 IF (I°Y'K)105,106

LOGICAL IF

7
IF (logical or relational expression) stat

stat is any executable statement other than DO, a logical IF, or END.

If the expression is true. stat is executed. If the expression is false. the statement immediately following the
IF statement is executed.

Examples:

IF (P.AND.Q) RES-=7.2
50 TEMP=ANS*Z

If P and Q are both true. the value of the variable RES is replaced by 7.2. Otherwise. the value of
RES is unchanged. In either case. statement 50 is executed.

IF (A.LE. 2.5) CASH=150.
70 B=A+C-TEMP

If A is less than or equal to 2.5. the value of CASH is replaced by 150. If A is greater than 2.5

CASH remains unchanged.

IF (A.LT.B) CALL SUB1
20 ZETA-TEMP+RES4

If A is less than B. tle subroutine SUBI is called. Upon return from this subroutine. statement 20 is
executed. I A is greater than or equal to B. statement 20 is executed. and SUBI is not called.

60305600 B [.5.7

LOGICAL IF

TWO BRANCH
7

IF (logical or relational expression) sny.sn,

If the value of the expression is true, sn, is executed. If the value of the expression is false, sn, is executed.
Example:
IF(K.EQ.100)60,70

If K is equal to 100, statement 60 is executed; otherwise statement 70 is executed.

DO STATEMENT

! N

| DO sn iv=m,,m,,m,
i
|

7
! e
| DO sn iv=m,,m,
I
I
sn Terminal statement: an executable statement which must physically follow and reside in the
‘ same program unit as its associated DO statement. The terminal statement must not be an

arithmetic or two-branch logical IF, a GO TO, RETURN, END, STOP, PAUSE, or another DO
statement, or a logical IF containing any of these statements.

iv Control variable: an integer variable

my Initial parameter Indexing parameters: unsigned integer or octal constants or
integer variables with positive values at excution such that

m, Terminal parameter neither m+my nor my+my is larger than 2'7-1. If the index-
ing parameters exceed these constraints, the results are unpre-

mgy Incrementation parameter dictable. If m4 is not specified, it is assigned the value 1.

The range of a DO loop consists of all executable statements from and including the first executable statement
after the DO statement to and including the terminal statement.

I-5-8 60305600 E

S

-

Execution of a DO statement causes the following sequence of operations:

1. ivis assigned the value of mj.

2. The range of the DO loop is executed.

3. iv is incremented by the value of mj.

4. iv is compared with m,. If the value of iv is less than or equal to the value of mj, the sequence

of operations starting at step 2 is repeated. If the value of iv is greater than the value of m,, then
the DO is said to have been satisfied, the control variable becomes undefined, and control passes to
the statement following sn. (Note that the range of a DO loop is always executed at least once,
even if my exceeds my on initial entry into the loop.)

A transfer out of the range of a DO loop is permissible at any time. When such a transfer occurs, the control
variable remains defined as its most recent value in the loop. If control eventually is returned to the same
range, the statements executed while control is out of the range are said to define the extended range of the
DO. The extended range should not contain DO statements.

The control variable must not be redefined in the range of a DO; such redefinition causes a fatal-to-execution
diagnostic to be issued. The control variable should likewise not be redefined in the extended range; such
redefinition causes the results of execution, to be unpredicatable.

The indexing parameters should not be redefined in either the range or the extended range of a DO. In either
case, the results of execution will be unpredictable; redefinition in the range of the DO causes an informative
diagnostic to be issued.

Examples:

DO 10 I-1,11,3
IF(ALIST(I)-ALIST(I+1))15,10,10
15 ITEMP=ALIST(I)
10 ALIST(I)=ALIST(I+1)
300 WRITE(6,200)ALIST

The statements following DO up to and including statement 10 are executed 4 times. The DO loop is
executed with I equal to 1,4,7,10. Statement 300 is then executed.

K=3

J=5

DO 100 I-J,K

RACK=2.-3.5+ANT(I)
100 CONTINUE

The DO loop would be executed once only (with I =5) because J is larger than K.
DO 10 I-1,5
CAT=BOX+D
10 IF (X.GT.B.AND.X.LT.H)Z=EQUATE
6 A=ZERO+EXTRA

Statement 10 is executed five times whether or not Z = EQUATE is executed. Statement 6 is
executed only after the DO loop is satisfied.

60305600 E 159

DO 20 I = 1,200

IF (I-IVAR) 20,10,10

20 CONTINUE
10 IN =1

An exit from the range of the DO is made to statement 10 when the value of the control variable I is equal

to IVAR. The value of the integer variable, IN, becomes 9.

LOOP TRANSFER

The range of a DO statement may include other DO statements providing the range of each inner DO is
entirely within the range of the containing DO statement. The last statement of an inner DO loop must be
either the same as the last statement of the outer DO loop or occur before it.

If more than one DO loop has the same terminal statement, a transfer to that statement may be made only
from within the range (or extended range) of the innermost DO. When a DO loop contains another DO

loop, the grouping is called a DO nest. DO loops may be nested to 50 levels.

Example:

DIMENSION A(5,4,4), B(4,4)

DO 2 I =
DO 2 J
DO 1 X

1 A(K,J,I

2 B(J,I)

?

(
1,4
1,4
1,5
= 0.0
0.0

[|

.

Examples:

DO loops may be nested in common with other DO loops:

—~ D1
- D2
D3
[n3
—— n2
— D4
— n4
— nl

| 1510

— D1

— n1

— D2

— n2

— D3

— n3

~ D1

e D2

D3

— n1=n2=n3

60305600 E

e

The preceding diagrams could be coded as follows:

po 1 I=1,10,2

Do 2 J-1,5

3 CONTINUE

2 CONTINUE
DO 4 L=1,3
4 CONTINUE

1 CONTINUE

10

20

100

DO 100 L=2,LIMIT

DO 10 J=1,10
CONTINUE

DO 20 K=K1,K2

CONTINUE

CONTINUE

DO 5 I=1,5
Do 5 J=I,10
DO 5 K=J,15

5 A = B*C

A DO loop may be entered only through the DO statement. Once the DO statement has been executed, and
before the loop is satisfied, control may be transferred out of the range and then transferred back into the

range of the DO.

A transfer from the range of an outer DO into the range of an inner DO loop is not allowed. However, a
transfer out of the range of an inner DO into the range of an outer DO is allowed because such a transfer
is within the range of the outer DO loop.

60305600 A

lilegal

I-5-11

The use of, and return from, a subprogram within a DO loop is permitted. A transfer back into the range
of an innermost DO loop is allowed if a transfer has been made from that same loop.

—

— _—
—
.

Legal -¢—— |llegal

When a statement is the terminal statement of more than one DO loop, the label of that terminal statement
may not be used in any GO TO or IF statement in the nest, except in the range of the innermost DO.

Example:
DO 10 J=1,50
DO 10 I=1,50
DO 10 M=1,100

GO TO 10

10 CONTINUE

When the IF statement is used to bypass several inner loops, different terminal statements for each loop are
required.

I-5-12 60305600 A

Example:

20

40

101

103

50
30
10

102

109

104

In the following illustration, transfers 2, 3, and 4 are acceptable; 1, 5, and 6 are not.

[

60305600

DO 10 K=1,100

IF(DATA(K)-10.)20,10,20

DO 30 L=1,20

IF(DATA(L)~-FACT*K-10.)40,30,40

DO 50 J=~1,5

GO TO (101,102,50),INDEX

TEST=TEST+1
GO TO 104
TEST=TEST-1 "

DATA(K)=DATA(K)*2.0

CONTINUE
CONTINUE
CONTINUE

GO TO 104
DO 109 M=1,3

CONTINUE
GO TO 103
CONTINUE

H

(4]

=zl

(=]

B

CONTINUE

5 7
sn| [CONTINUE

Example:

DO 10 I = 1,11

IF (A(I)-A(I+1)20,10,10
20 ITEMPP = A(I)

A (I) = A (I+1)
10 CONTINUE

CONTINUE is a statement that may be placed anywhere in the source program without affecting the
sequence of execution. It is used most frequently as the last statement in the range of a DO loop to avoid
ending the loop with an illegal statement. The CONTINUE statement should contain a statement label in
columns 1-5. I it does not. it serves no purpose: and an informative diagnostic is provided.

DO 20 I=1,20
1 IF (X(I) - ¥(I))2,20,20
2 X(I)=X(I)+1.0
Y(I)=Y(I)-2.0
GO TO 1
20 CONTINUE

The use of the CONTINUE statement avoids ending the DO loop with the statement GO TO 1.

(|

PAUSE

PAUSE |

— —

[

PAUSE n l

PAUSE # ¢...c #

[

n is a string of 1-5 octal digits.

-

c...c is a string of 1-70 characters.

When a PAUSE statement is encountered during execution, the program halts and PAUSE n, or c..c,

appears as a dayfile message on the display console. The operator can continue or terminate the program
with an entry from the console. The program continues with the next statement. If n is omitted, blanks are
implied.

1-5-14 60305600 B

STOP
1
i STOP
|
|
|
| STOP n
I
|
|
7 :
STOP #c...c#

n is a string of 1-5 octal digits.
¢...c is a string of 1-70 characters.
When a STOP statement is encountered during execution, STOP n, or STOP c.. .c, is displayed in the dayfile,

the program terminates and control returns to the operating system. If n is omitted, blanks are implied. A
program unit may contain more than one STOP statement.

END

END

The END line indicates to the compiler the end of the program unit. Every program unit must physically
terminate with an END line.

The END line can follow a statement separator $ and can be continued. Comment lines after the END line
are listed immediately after the END line; not at the beginning of the next program unit. Any non-comment

line, including a blank line, after the END line denotes the start of the next program unit.

If control flows into an END line it will be treated as if a RETURN statement had preceded the END.

60305600 D I-5-15

RETURN

RETURN

7 L
RETURN i

iis a dummy argumeni which appears in the RETURNS list

The effect of a RETURN statement depends on the kind of program unit as follows:

In a SUBROUTINE: Control returns to the next executable statement following the CALL in the cal-
ling routine.

In a FUNCTION: Control returns to complete the evaluation of the expression referencing the function.

In a main program, which may be a (0,0) overlay: Execution of the program terminates and control
returns to the operating system.

In a primary or secondary overlay: Control returns to the next executable statement after the CALL
OVERLAY that caused loading and execution of the higher level overlay.

Example:
A - SUBFUN (D,E) FUNCTION SUBFUN(X,Y)
10 DO 200 I = 1,5 SUBFUN = X/Y
RETURN
END

RETURN i can appear only in a SUBROUTINE subprogram with a RETURNS fist. (A RETURN i in a
FUNCTION subprogram causes a fatal error at compilation time.) The statement labels in the RETURNS
list in the CALL statement correspond to the dummy statement labels in the SUBROUTINE statement in
the SUBROUTINE subprogram. When a SUBROUTINE subprogram is called, the actual statement labels
replace the dummy statement labels. Execution of RETURN i returns control to the statement label
corresponding to i in the RETURNS list.

1-5-16 60305600 D

Example:

PROGRAM MAIN (INPUT,OUTPUT)

.

10 CALL XCOMP(A,B,C),RETURNS(101,102,103,104)"
101 CONTINUE

.

GO TO 10
102 CONTINUE

;103’3‘“f

G0 T0 10
104 CONTINUE
END

SUBROUTINE XCOMP (B1,B2, c) RETURNS{Al Az aa 14) a
I1F(B1*B2-4.159)10, 20,30 x
10 CONTINUE

»
.

¥

RETURK Al
20 CONTIRUE

RETURN A2
30 CONTINUE

¥

IF [B1)40,50
40 RETURN A3
50 RETURN A4
END

Program MAIN pdsses statement labels 101,102,103 and 104 to subroutine XCOMP to replace the
dummy RETURNS arguments A1,A2,A3 and A4. If RETURN Al is reached in the subroutine, a
return is made to statement 101; if AZ is reached, a return iS made to statement 102, A3 o 11)3 and
A4 w0 104. & ;

60305600 B [-5-17

[-5-18

FUNCTION Y(X)
IF (X.LT. 3.2) GO TO 30
40 Y = 0.7 * X + 1.237
RETURN
30 Y = 0.012 * X + 7.2
RETURN
END

60305600 B

SPECIFICATION STATEMENTS -6

Specification statements are non-executable; they define the type of a variable or array, specify the amount
of storage allocated to each variable according to its type, specify the dimensions of arrays, define methods
of sharing storage, and assign initial values to variables.

The IMPLICIT statement must precede other specification statements

Type

DIMENSION :

COMMON If any of these statements appear after the first executable statement or
statement function definition, it is ignored and a fatal diagnostic is

EQUIVALENCE printed.

EXTERNAL

DATA The DATA statement must follow all other specification statements and

precede the first executable statement.

- TYPE STATEMENTS

A type statement explicitly defines a variable, array, or function to be integer, real complex, double
precision, or | 1. The type statement may be used to supply dimension information. 1

a prefix i

A symbolic name not explicitly defined in a type, FUNCTION & statement is 1mpllc1tly defined
as type integer if the first letter of the name is LJK.L,M,N: if it is any other letter, the type is real. An
explicit definition can override or confirm an implicit definition.

Basic external and intrinsic functions are implicitly typed, and need not appear in a type statement in the
user’s program. The type of each library function is listed in section 8.

60305600 C 1-6-1

EXPLICIT DECLARATIONS
INTEGER

7
INTEGER name,, name, ,...,Nname

]
!
|
I
The symbolic names listed are declared to be of type integer.

Example:
INTEGER SUM, RESULT, ALIST
The variables SUM, RESULT and ALIST are all defined as type integer.

REAL
7

REAL name

|- name,, ..., name

— v — e

Example:
REAL LIST,JOB3,MASTER4
The variables LIST, JOB3, and MASTERA4 are all defined as type real.

A real variable is stored in floating point format in one word in memory.

COMPLEX
7
COMPLEX name

name, .., hame "

1' 2!‘

|
|
|
1
The symbolic names listed are defined as type complex.
Example:
COMPLEX ALPHA, NAM, MASTER, BETA

The variables ALPHA, NAM, MASTER, BETA are defined as type complex.

A complex variable is stored as two floating point numbers in two consecutive 60-bit words in memory; the
first word is the real part, and the second word is the imaginary part.

162 60305600 A

DOUBLE PRECISION

7

T
[
I
I
I

DOUBLE PRECISION name,, name,, ..., name_

Double precision variables occupy two consecutive words of memory: the first for the most significant part
and the second for the least significant part.

The symbolic names listed are declared to be of type double precision. DOUBLE may be used instead of
DOUBLE PRECISION.

Example:

DOUBLE PRECISION ALIST, JUNR, BOX4

The variables ALIST. JUNR. BOX4 are defined as type double precision.

LOGICAL

7

LOGICAL name,, name,, ..., name_

The symbolic names listed are defined as type logical.

Example:

LOGICAL P,Q,NUMBR4

The variables P.Q and NUMBR4 are defined as type logical.

IMPLICIT STATEMENT

7

type

(ac)

Example:

IMPLICIT type, (ac1,...,acn),...,typen(ac1 ,...,ac_)

n

LOGICAL, INTEGER, REAL. DOUBLE PRECISION, or COMPLEX

Single alphabetic character, or range of characters represented by the first and last
character separated by a minus sign. ac must be enclosed in parentheses.

IMPLICIT REAL (I-M, X), COMPLEX (A-D,N)

60305600 B

[-6-3

This statement specifies the type of variables or array elements beginning with the letters ac. Only one
IMPLICIT statement may appear in a program unit, and it must precede other specification statements. An
IMPLICIT statement in a FUNCTION or SUBROUTINE subprogram affects the type of dummy
arguments and the function name, as well as other variables in the subprogram.

Explicit typing of a variable name or array element in a type statement or FUNCTION statement overrides
an IMPLICIT specification. >

Examples:

IMPLICIT INTEGER(A-D,N,R)
DIMENSION GRAD (10,2)
ASUM = BOR + ROR * ANEXT
DECK = CROWN + B

The variables ASUM, BOR, ROR, ANEXT, DECK, CROWN and B are of type integer.

An IMPLICIT statement cannot be used to dimension an array. The IMPLICIT statement must also precede all other
specification statements.

PROGRAM COME (OUTPUTsTAPE6=0UTPUT)
IMPLICIT INTEGER (A=FsH)

DIMENSION E(394)

COMMON A(1)9BsCosDs FoeGoH
EQUIVALENCE (AsEs])
NAMELIST/VLIST/A9BoeCoDsEsF ¢GoHol

DO 1 J =1y 12
1 A(JY=J

WRITE (6sVLIST)

STOP
END

I-64 60305600 D

SUBSCRIPTS

A subscripted symbolic name in the type specification is the name of an array. and the product of the
subscripts is the number of elements in the array.

Example:
INTEGER ZERO(3,3)

defines ZERO as an array of type integer containing 9 integer elements.

REAL NEXT(7),ITEM

defines NEXT as an array with 7 real elements. and ITEM as a real variable

INTEGER CANS(10),NRUMS(7,3),B0OX

defines CANS as an integer array with 10 elements. NRUMS as an integer array with 21 elements.
and BOX as an integer variable

Dimension information should be specified only once for any array name. a second specification is ignored
but a warning message is printed.

Examples:
INTEGER ZERO(3,3) invalid if both statements appear in the same program: second
- DIMENSION ZERO(4,3) definition is ignored
INTEGER CAT valid: CAT is an integer array
DIMENSION CAT(4,3,2)

These statements could be shortened to one statement:

INTEGER CAT (4,3,2)

60305600 B I-6-5

DIMENSION STATEMENT

T

DIMENSION name, (d,) name_ (dn)

d; Array declarator, 1-3 integer constants. In a subprogram DIMENSION
statement, they can be integer variables.
name,,..,name, Symbolic name of an array

PROGRAM SUM (INPUT,OUTPUTs TAPES=INPUT TAPE6=0UTPUT)
DIMENSION INK (10)
READ (54100) INK

100 FORMAT (10I4)
DO 41 = 1,10

4 ITOT = ITOT + INK(I)

WRITE (6+200) ITOT

200 FORMAT (10Xs#TOTAL = #, I4)
END

DIMENSION is a non-executable statement which defines symbolic names as array names and specifies the
bounds of the array.

Example:
DIMENSION TOTAL (7,2)

TOTAL is defined as a real array of 14 elements.
More than one array can be declared in a single DIMENSION statement.
Example:
DIMENSION A(10),B(7,5),C(20,2,4)

The. number of computer words reserved for an array is determined by the product of the subscripts and
the type of the array. For real, integer and logical arrays. the number of words in an array equals the
number of elements in the array. For complex and double precision arrays, the number of words reserved is
twice the product of the subscripts. No array can exceed 131,071 words.

1-6-6 60305600 D

— Example:

COMPLEX BETA
DIMENSION BETA (2,3)

BETA is an array containing six elements: however. BETA has been defined as COMPLEX and two
words are used to contain each complex element; therefore. 12 computer words are reserved.

| REAL NIL
| DIMENSION NIL (6,2,2) reserves 24 words for the array NIL

Example:

DIMENSION ASUM(10,2)

DIMENSION ASUM (3), VECTOR (7,7)

The second specification of ASUM is ignored, and an informative message is printed. The specification for
VECTOR is valid and is processed.

ADJUSTABLE DIMENSIONS

Within a subprogram, array dimension specifications may use integer variables, as well as integer constants,
provided the array name and all the variable names used for array dimension specifications are dummy
arguments of the subprogram. The actual array name and values for the dummy variables are defined by
the calling program.

FUNCTION DTOTAL (ARRAY,N)
DIMENSION ARRAY (N,N)

DTOTAL = O.
pO1I =1,N
1 DTOTAL = DTOTAL + ARRAY (I,I)
RETURN
END

The above function totals the elements on the major diagonal of any square array. The array name and dimen-
sions are arguments of the function.

A further explanation of adjustable dimensions appears in section 7.

60305600 B I-6-7

COMMON

COMMON/ /v ,...,v

n

COMMON/bIkname1/v1, <oV, . /blkname /v,, ...V

n

7
COMMON v, ,...,v_

|
|
I
!

blkname Block name or number enclosed in slashes. A block name is a symbolic
name. A block number is 1-7 digits; it must not contain any alphabetic
characters. Leading zeros are ignored. 0 is a valid block number. The
same block name or number can appear more than once in a COMMON
statement or a program unit; the loader links all variables in blocks having
the same name or number into a single labeled common block.

ViV, Variables or array names which can be followed by constant subscripts
that declare the dimensions. The variable or array names are assigned to
blkname. The COMMON statement can contain one or more block
specifications.

// Denotes a blank common block. If blank common is the first block in the
statement, slashes can be omitted.

Example:

PROGRAM CMN (INPUT,OUTPUT)

COMMON NED (10)
READ 3sNED

3 FORMAT (101I3)
CALL JAVG
STOP
END

Variables or arrays in a calling program or a subprogram can share the same storage locations with
variables or arrays in other subprograms by means of the COMMON statement. Variables and array names
are stored in the order in which they appear in the block specification.

COMMON is a non-executable statement. See section 119 for proper location of COMMON statements relative
to other statements in the program unit. The COMMON specification provides up to 125 storage blocks that
can be referenced by more than one subprogram. A block of common storage can be labeled by a name or a
number. A COMMON statement without a name or number refers to a blank common block. Variables and
array elements can appear in both COMMON and EQUIVALENCE statements. A common block of storage can
be extended by an EQUIVALENCE statement; however, no common block can exceed 131,071 words.

I-6-8 60305600 D

All members. of a common block must be allocated to the same level of storage; a fatal diagnostic is issued if
conflicting levels are declared. If only some members of a common block are declared in a LEVEL statement,
the remaining members of that common block are allocated automatically to the same level; and an informative
diagnostic is issued.

Block names can be used elsewhere in the program as symbolic names, and they can be used as subprogram
names. Numbered common is treated as labeled common. Data stored in common blocks by the DATA
statement is available to any subprogram using these blocks.

The length of a common block, other than blank common, must not be increased by a subprogram using
the block unless the subprogram is loaded first by the operating system loader.

Example:

COMMON/BLACK/A(3)
DATA A/1.,2.,3./

COMMON/100/1(4)
DATA 1/4,5,8,7/

Data may not be entered into blank common blocks by the DATA declaration.
The COMMON statement may contain one or more block specifications:
COMMON/X/RAG,TAG/APPA/Y,Z,B(5)
RAG and TAG are placed in block X. The array B and Y.Z are placed in block APPA.

Any number of blank common specifications can appear in a program. Blank, named and numbered
common blocks are cumulative throughout a program, as illustrated by the following example:

COMMON A,B,C/X/Y,Z,D//W,R

COMMON M,N/CAT/ALPHA,BINGO//ADD
These statements have the same effect as the single statement:
COMMON A,B,C,W,R,M,N,ADD/X/Y,Z,D/CAT/ALPHA,BINGO
Within subprograms, dummy arguments are not allowed in the COMMON statement.

If dimension information for an array is not given in the COMMON statement, it must be declared in a
type or DIMENSION statement in that program unit.

60305600 D 1-6-9

Examples:
COMMON/DEE/Z(10,4)
Specifies the dimensions of the array Z and enters Z into labeled common block DEE.

COMMON/BLOKE/ANARAY,B,D
DIMENSION ANARAY(10,2)

COMMON/Z/X,Y,A
REAL X(7)

COMMON/HAT/M,N,J(3,4)
DIMENSION J(2,7)

In the last example, J is defined as an array (3.4) in the COMMON statement. (2.7) in the
DIMENSION statement is ignored and an error message is printed.

The length of a common block, in computer words. is determined by the number and type of the variables
and array elements in that block. In the following statements. the length of common block A 1s 12 computer
words. The origin of the common block is Q(1).

REAL Q,R
COMPLEX S
COMMON/A/Q(4),R(4),S(2)

Block A

origin Q)
Q2)
Q(3)
Q4
R(1)
R(2)
R(3)
R(4)
S(1) real part
S(1) imaginary part
S(2) real part
5(2) imaginary part

If a program unit does not use all locations reserved in a common block, unused variables can be inserted
in the COMMON declaration in the subprogram to ensure proper correspondence of common areas.

1-6-10 60305600 A

Example:
COMMON/SUM/A,B,C,D main program

COMMON/SUM/E(3),D subprogram

If the subprogram does not use variables A,B, and C, array E is necessary to space over the area
reserved by A,B, and C.

Alternatively, correspondence can be ensured by placing unused variables at the end of the common list.

Se—
COMMON/SUM/D,A,B,C main program
— COMMON/SUM/D subprogram
If program units share the same common block, they may assign different names and types to the members
of the block; but the block name or numbers must remain the same.
Example:
~ PROGRAM MAIN
COMPLEX C
COMMON/TEST/C(20)/36/A,B,2

The block named TEST consists of 40 computer words. The length of the block numbered 36 is three
computer words.

The subprogram may use different names as in:

SUBROUTINE ONE
~ COMPLEX A
COMMON/TEST/A(10),G(10),K(10)

The length of TEST is 40 words. The first 10 elements (20 words) of the block represented by A are
complex elements. Array G is the next 10 words, and array K is the last 10 words. Within the
subprogram, elements of G are treated as floating point: elements of K are treated as integer.

— 60305600 D I-6-11

EQUIVALENCE STATEMENT

7
EQUIVALENCE (glistq}, ... (glist,)

Each glist; consists of two or more variables, array elements, or array names, separated by commas.

Array elements must have integer constant subscripts. Dummy arguments must not appear in an equivalence
statement. Equivalenced variables must be assigned to the same level of storage.

EQUIVALENCE is a non-executable statement and must appear before all executable statements in a pro-
gram unit. If it appears after the first executable statement, a fatal diagnostic is printed.

EQUIVALENCE assigns two or more variables in the same program unit to the same storage location (as
opposed to COMMON which assigns two variables in different program units to the same location). Variables
or array elements not mentioned in an EQUIVALENCE statement are assigned unique locations.

Example:

DIMENSION JAN(6),BILL(10)
EQUIVALENCE (IRON,MAT,ZERO), (JAN(5),BILL(2)),(A,B,C)

The variables IRON, MAT and ZERO share the same location. the fifth element in array JAN and the
second element in array BILL share the same location, and the variables A,B and C share the same location.

When an element of an array is referred to in an EQUIVALENCE statement, the relative locations of the
other array elements are, thereby, defined also.

Example:

DIMENSION Y(4), B(3,2)
EQUIVALENCE (Y,B(1,2)), (X,Y(4))

This EQUIVALENCE statement causes storage to be shared by the first element in Y and the fourth
element in B and, similarly, the variable X and the fourth element in Y. Storage will be as follows:

B(1,1)
B(2.1)
B(3,1)
B(1,2) Y(1)
B(2.2) Y(2)
B(3.2) Y(3)

Y(4) X

The statement EQUIVALENCE(A,B),(B.C) means the same as EQUIVALENCE (A,B,C).

I-6-12 60305600 E

When no array subscript is given, it is assumed to be 1.

DIMENSION ZEBRA(10)
EQUIVALENCE (ZEBRA,TIGER)

Means the same as the statements:

DIMENSION ZEBRA(10)
EQUIVALENCE (ZEBRA(1l),TIGER)

A logical, integer, or real entity equivalenced to a double precision or complex entity shares the same

location as the real or most significant part of the complex or double precision entity.

60305600 D -

1613 |

An array with multiple dimensions may be referenced with a single subscript. The location of the element
in the array may be determined by the following method:

DIMENSION A(K,M,N)
The position of element A(k,m.n) is given by:
A+(k-1+K* (m-1+M*(n-1)))*E
Eis I if A is real. integer or logical; E is 2 if A is complex or double precision.
Example:

DIMENSION AVERAG(2,3,4),TERM(7)
EQUIVALENCE (AVERAG(8),TERM(2))

Elements AVERAG (2,1,2) and TERM(2) share the same locations.

Two or more arrays can share the same storage locations.

Example:

DIMENSION ITIN(10,10),TAX(100)
EQUIVALENCE(ITIN,TAX)

500 READ (5,40)ITIN

600 READ (5,70) TAX

The EQUIVALENCE declaration assigns the first elements of arrays ITIN and TAX to the same
location. READ statement 500 stores the array ITIN in consecutive locations. Before READ
statement 600 is executed, all operations involving ITIN should be completed: as the values of array
TAX are read into the storage locations previously occupied by ITIN.

Lengths of arrays need not be equal.

Exampies:

DIMENSION ZERO1(10,5),ZER02(3,3)
EQUIVALENCE (ZERO1,ZERO02) is a legal EQUIVALENCE statement

EQUIVALENCE (ITEM,TEMP)

The integer variable ITEM and the real variable TEMP share the same location: therefore. the same

location may be referred to as either integer or real. However. the integer and real internal formats
differ; therefore the values will not be the same.

I-6-14 . 60305600 B

Example:

PROGRAM COME (QUTPUTTAPES=0UTPUT)
COMMON Atl)ebeCeDs FoeGoeH

INTEGER AsBeColDec(394)9Fe H
EJUIVALENCE (AsEsI)

NAMEL IST/VLIST/A9B89CsDsboFsGoHsl

DU 1l J =1y 12
1 AtJI=J

WwrRITE (6sVLIST)
STOP
j 1)

Output from Program COME:

$VLISTY

b

29

3y

by

1, 29 35 b4y 5y 6y 7y 8y 9, 10y 11y 12

5y

A
8
c
D
E
F
G 0.0y
H

"
N
-

I

1
$END

An explanation of this example appears in part 2.

60305600 A 1-6-15

EQUIVALENCE AND COMMON

Variables, array elements, and arrays may appear in both COMMON and EQUIVALENCE statements. &
common block of storage may be extended by an EQUIVALENCE statement.

Example:
COMMON/HAT/A(4),C
DIMENSION B(5)

EQUIVALENCE (A(2),B(1))

Common block HAT will extend from A(1) to B(5):

/HAT/
Origin A(l)
A(2) B(1)
A(3) B(2)
A(4) B(3)
C B(4)
B(5)

EQUIVALENCE statements which extend the origin of a common block are not allowed, however.
Example:

COMMON/DESK/E,F,G
DIMENSION H(4)
EQUIVALENCE (E,H(3))

The above EQUIVALENCE statement is illegal because H(1) and H(2) extend the start of the
common block DESK:

/DESK/
H(1)
H(2)
origin E H(3)
F H(4)

G

An element or array is brought into COMMON if it is equivalenced to an element in COMMON. Two elements in
COMMON must not be equivalenced to each other.

1-6-16 60305600 A

Examples:

COMMON A,B,C
EQUIVALENCE (A,B) illegal

COMMON /HAT/ A(4),C /X/ Y,Z
EQUIVALENCE (C,Y) illegal

LEVEL STATEMENT

Ll o *

| LEVEL n, a, ,..., 2
|
|
I

Gpiady List of variables or array names separated by commas

n Unsigned integer 1. 2, or 3 indicating level 1o which list is to be allocated.

[Small core memory resident (SCM)
§ (- Large core memory resident (LCM). Directly addressable (or word addressable)
3 Large core memory resident. accessed by block transfer to or from small core memory

through MOVLEV subroutine call

1 Central memory resident

2 Central memory resident

Extended core storage resident. accessed by block transfer to or from central memory
through MOVLEV subroutine call

This statement assigns variables or array names to the level n. LEVEL statements must precede the first
executable statement in a program unit. Names of variables and arrays which do not appear in a LEVEL
statement are allocated to central memory.

No dimension or type information may be included in the LEVEL statement.

Variables and arrays appearing in a LEVEL statement can appear. in DATA, DIMENSION, EQUIVALENCE,
COMMON; type, SUBROUTINE and FUNCTION statements. Data assigned to levels:2-and 3 must appear also
in COMMON statements or as dummy arguments in SUBROUTINE o1 FUNCTION statements.

$Applies only to CONTROL DATA €YRER 70/Model 76 and 7600 computers.

T Applies only to CONTROL DATA CYBER 70/Models 72, 73 and 74 and 6000 Series computers.

60305600 E I-6-17

Data assigned to level 3 can be referenced only in: COMMON, DIMENSION, EQUIVALENCE, DATA, CALL,
SUBROUTINE, and FUNCTION statements. Level 3 items cannot be used in expressions.

No restrictions are imposed on the way in which reference is made to variables or arrays allocated to levels
1 and 2.

If the level of any variable is multiply defined, the level first declared is assumed; and a warning diagnostic
is printed.

All members of a common block must be assigned to the same level; a fatal diagnostic is issued if
conflicting levels are declared. If some, but not all. members of a common block are declared in a LEVEL
statement, all are assigned to the declared level, and an informative diagnostic is printed.

If a variable or array name declared in a LEVEL statement appears as an actual argument in a CALL
statement, the corresponding dummy argument must be allocated to the same level in the called
subprogram.

If a variable or array name appears in an EQUIVALENCE and a LEVEL statement, the equivalenced
variables must all be allocated to the same level.

Example:

DIMENSION E{500),B(500),CM(1000)
LEVEL 3, E,B
COMMON /ECSBLK/ E,B

.

CALL MOVLEV (CM,E,1000}

The LEVEL statement allocates arrays E and B to extended core storage. They are assigned to a named
common block, ECSBLK. Starting at location CM (the first word address of the array CM), 1000 words of
central memory are transferred to the two arrays E and B in extended core storage by the library routine
MOVLEV.

EXTERNAL STATEMENT

7

EXTERNAL name, ,.

.., name_

name,....name, Subprogram names

Before a subprogram name is used as an argument to another subprogram. it must be declared in an
EXTERNAL statement in the calling program.

[-6-18 60305600 E

Any name used as an actual argument in a call is assumed to be a variable or array unless it appears in an
EXTERNAL statement. An EXTERNAL statement must be used even if the subprogram concerned is a
standard system function. such as SQRT. However. an EXTERNAL statement is not required for intrinsic
functions used as actual arguments. If an intrinsic function name appears in an EXTERNAL statement, the
user must supply the function.

Example:

Calling Program Subprogram
EXTERNAL SIN, SQRT SUBROUTINE SUBRT (A,B,C)
CALL SUBRT(2.0,SIN,RESULT) X=A+3.14159/2.
WRITE (6,100) RESULT C=B(X)

100 FORMAT (F7.3) RETURN
CALL SUBRT(2.0,SQRT,RESULT) END

B WRITE (6,100)RESULT

STOP
END

First the sine, then the square root are computed; and in each case, the value is returned in
RESULT. The EXTERNAL statement must precede the first executable statement, and always
appears in the calling program. (It may not be used with statement functions.)

A function call that provides values for an actual argument does not need an EXTERNAL statement.

_ Example:
‘ Calling Program Subprogram
CALL SUBRT(SIN(X),RESULT) SUBROUTINE SUBRT(A,B)
B=A
END
An EXTERNAL statement is not required because the function SIN is not the argument of the
subprogram; the evaluated result of SIN(X) becomes the argument.
—

60305600 A ‘ 1-6-19

Example:

PROGRAM VARDIMZ2 (OUTPUT» TAPE6=0UTPUT s DEBUG=0UTPUT)
COMMON X ({443)

REAL Y (6)

EXTERNAL MULTs AVG
NAMELIST/V/XsYosAAsAM
CALL SET(Ys690,)
CALL IOTA(Xe12)

CALL INC(X9129=5,)
AA=PVAL (124AVG)
AM=PVAL (124MULT)
WRITE (64V)

STOP

END

FUNCTION AVG())
C AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF COMMON,
COMMON A(100)
AVG=0,
DO 1 1 = 1,J
AVG=AVG+A(I)
AVG=AVG/FLOAT (J)
RETURN
END

Pt

REAL FUNCTION MULT(J)

COMMON ARRAY (12)
MULT=ARRAY (12) #ARRAY (1) =AVG (J/2)
RETURN

E N D

An explanation of this example appears in part 2.

1-6-20 60305600 A

DATA STATEMENT

7
DATA vlist1/dlist1 [0, vlistn/dlistn/

| | DATA (var =dlist}, {var = dlist)

var Variable, array element, array name or implied DO

vlist List of array names, array elements,-variable names, or an implied DO loop, separated by
commas. Unless they appear in an implied DO loop, array elements must have integer constant
subscripts.

dlist One or more of the following forms separated by commas:

constant
(constant list)
rf*constant
tf*(constant list)
rf{constant list)

constant list List of constants separated by commas

rf Integer constant. The constant or constant list
is repeated the number of times indicated by
rf.

The data statement is non-executable and must follow all specification statements. It assigns initial values to vari-
ables or array elements. Only variables assigned values by the DATA statement have specified values when program
execution begins. The DATA statement cannot be used to assign values in blank common or to dummy argu-

ments.

The number of items in the data list should agree with the number of variables in the variable list. If the data
list contains more items than the variable list, excess items are ignored, and an informative diagnostic is printed.
If the data list contains fewer items than the variable list, remammg vanables are not defined, and an informative
diagnostic is printed. ~

The type of the constant in the data list should agree with the type associated with the corresponding name
in the variable list. If:the types do not agiee, the form of the value stored is determined by the constant used
in the DATA statement rather than by the type of the name in the variable list.

60305600 E I-6-21

Data cannot be entered into blank common with a DATA statement.
When a Hollerith specification is used in a DATA statement, it should not exceed 10 characters.

For example, to store the following values in an array A
A(l) = 1234567890
A(2) = ABCDEFGHIJ
A(3) = KLMNOPQRST
A(4) = UVWXYZ+- *

The following statements should be used:

DIMENSION A(4)
DATA A/10H1234567890,10HABCDEFGHIJ, 10HKLMNOPQRST, 10HUVWXYZ+- */

The following statements would not produce the desired result:
DIMENSION A(4)
DATA A/20H1234567890CABCDEFGHIJ,20HKLMNOPQRSTUVWXYZ+~ */
They would initialize
A(1) 1234567890
A(2) KLMNOPQRST
AQ3) UVWXYZ+- *
A(4) undefined

The implied DO loop may be used to store values into arrays.
Example:

REAL ANARAY(10)
DATA (ANARAY(I),I = 1,10)/1.,2.,5.,7%2.5/

Values stored in array ANARAY:

ANARAY(]) 1.
2.
3.
2.5
25
2.5
25
25
25

ANARAY(10) 75

When an implied DO is used to store values into arrays. only one array name can be used within the
implied DO nest. ; , ,

Example:

Invalid: DATA (A(I),B(I),I=1,3)/1.,2.,3.,4.,5.,6./

I-6-22 60305600 C

An unsubscripted array name implies the entire array in the order it is stored in memory.

R

S

I-6-23 @

60305600 C

When a repeat specification is used with complex constants, it B w‘, mﬁ;ﬁ
part of the comyiex (:onstam are mt. mfwﬁm&ﬁw parent

Bmmples
24(1.0, 2 o

210, 20)

PROGRAM DATA C (OUTPUTyTlPEG‘OUTPUT’
COMPLEX Z(3),2¢ '
RZAL AlW)
LOGICAL L
5 ‘ NhHELISTIOU?IIQL,X,Zl,ﬂQ
BATA I,L,X,ZIQA,Z/59.TRUE-.3.1“15926535,(2-1"3.,’2‘ii-gZo?s
1 3"((10"1-5",

WRITE(6,0UT)
sToP

10 END
souT
1 s 5

s T ' -
X s 0031415926536E+01y
31 s { 0.21E401,=003E01)0 |
A = 0s1Ee0ly 0e2E¢01s ColEO0Ls 0,2E010
z e (0.1E0019=0015EC1)y 0"1E0019=0,15E01) 0 ¢ nelre0lou0,15E401Y 0
SEND

e 1624 60305600 C

Example:

DIMENSION AMASS(10,10,10), A(10), B(5)

DATA (AMASS(6,K,3),K=1,10)/4%(-2.,5.139),6.9,10./
DATA (A(I),I1-5,7)/2*(4.1),5.0/

DATA B/5%0.0/

ARRAY AMASS: ARRAY A
- AMASS(6,1,3) - -2. A(5) - 4.1
AMASS(6,2,3) = 5.139 A(6) = 4.1
AMASS(8,3,3) = -2. A(7) = 5.0
- AMASS(6,4,3) = 5.139
AMASS(6.,5,3) = -2, ARRAY B:
AMASS(6,6,3) = 5.139
B AMASS(86,7,3) = -2. B(1) = 0.0
AMASS(6,8,3) = 5.139 Bl2) = 0.0
AMASS(6,9,3) = 6.9 B(3) - 0.0
- AMASS(6,10,3) = 10. B(4) = 0.0
B(5) = 0.0

BLOCK DATA SUBPROGRAM
Data may be entered into labeled or numbered common (but not blank common) prior to program execution
by the use of the BLOCK DATA subprogram. This subprogram should contain only IMPLICIT, type, LEVEL,

DIMENSION, COMMON, EQUIVALENCE, DATA, and END statements. Any executable statements will be
ignored, and a warning printed.

A BLOCK DATA subprogram has one of the following formats:
BLOCK DATA name
END
BLOCK DATA
END

name is any legal FORTRAN name. It identifies the BLOCK DATA subprogram if more than one BLOCK
DATA subprogram is compiled. If the user does not name the block, it is given the name BLKDATA.

— 60305600 E [-6-25

DATA may be entered into more than one block of common in one subprogram.
Example:

BLOCK DATA ANAME
COMMON/CAT/X,Y,Z/DEF/R,S,T
COMPLEX X,Y

DATA X,Y/2*((1.0,2.7))/,R/7.6543/
END

Z is in block CAT, and S and T are in DEF; although no initial data values are defined for them.
The DATA statement must follow the specification statements.

BLOCK DATA
COMMON/ABC/A(5),B,C/BILL/D,E,F

COMPLEX D,E

DOUBLE PRECISION F

DATA (A(L),L=1,5)/2.3,3.4,3*7.1/,B/2034.756/,D,E,F/2*((1.0,2.5)),

S 7.86972415872D30/
END

I-6-26 60305600 C

PROGRAM UNITS 1-7

A program unit is either a main program or a subprogram, and consists of FORTRAN statements and optional
comments terminated with an END line. A program unit containing no FORTRAN statements other than com-
ments and followed by an END line is considered to be a null program; it is diagnosed and ignored.

MAIN PROGRAM AND SUBPROGRAMS

A FORTRAN program may be written with or without subprograms. One main program is required in any
executable FORTRAN program; any number of subprograms may be included.

MAIN PROGRAM

A main program should begin with the PROGRAM statement. If this statement is omitted from the main
program, the program is assumed to have the name START.. and files INPUT and OUTPUT are assumed.

PROGRAM STATEMENT

FORTRAN I/O statements use buffer areas established by the file name specified on the PROGRAM state-
ment in the main program. The FORTRAN programmer must specify in the PROGRAM statement a file
name for every logical 1/O device that could be used in executing the entire program.

EORTRAN I/O routines add the characters TAPE as a prefix to each logical unit number referenced in the user’s
program to form the file name. For example, logical unit 3 refers to the file name TAPE3, and the programmer
must list the file name TAPE3 in the PROGRAM statement if he references logical unit 3 in his program.

If the program uses READ, PRINT, or PUNCH statements, the corresponding file names INPUT, ’OUTPUT, or
PUNCH must appear in the PROGRAM statement. (The PROGRAM statement could be omitted if READ and
PRINT are the only 1/O statements used in the program.)

The file name must appear in the PROGRAM statement of the main program even if the read or write
statement is in a subprogram. .

7 ,
| |PROGRAM name (file. ..., file)

name , Must be a unique symbolic name within the main program and cannot
be used as a subprogram name. It will be the entry point name and the
~ object deck name for the loader, '

60305600 D I-7-1

(file,....file) Names of all input/output files required by the main program and its subprograms;
maximum number of file names is 50. All internal file names used in input/output
statements should be declared. If the program is to be loaded as an overlay (but not
as the main overlay) this parenthetical list must be omitted. \

file 1-6 character file name

file=n in is a decimal number specifying the buffer length in words. It must appear with the
file=n/r first reference to the file in the PROGRAM statement. If n is not specified, the file is
rile=/1 assigned a buffer length of 2002g words. A buffer length of zero can be specified for

a file referenced by a BUFFER statement (since buffered records are transmitted
directly into and out of core); field length of the program is reduced by at least 2000g
‘026 words for each file declared with zero buffer length in the PROGRAM statement. If
0028 file=n is specified in a 7600 program, the n is ignored. ~ ;

r defines the maximum length in characters for formatted and list directed records. If r
is not specified, a default value of 150 is used. r should be specified for files referenced
in formatted input/output statements transferring data in ASCHl eede through a terminal,
and for files referenced in list directed input/output statements

file, = fil Files will be made equivalent. File b must have appeared prevzously in the same pro-
a b
gram statement. -

All references to file a refer to file b. Since file b and ﬁle a refer to the same file, any
buffer length and record size specified applies to both file names. .

Example:
PROGRAM ORB (INPUT,OUTPUT=1000,TAPE1=INPUT,TAPE2=-OUTPUT, TAPE4=1000/2000)

All input/output statements which reference TAPE! will instead reference INP{}T and all listable output
normally recorded on TAPE2 would be transmitted to the file named OU’IPi}T

Only one level of parentheses is allowed in the PROGRAM statement. The PROGRAM statemem is scanned
from left to right. -

At compile time, the file names should satisfy the following conditions (file names ca:a be changed at execution
time by control cards). I these conditions are not met, a warning diagnostic is pnm:eﬁ

1. File name INPUT should be declared if any READ fn, iolist stateman’t‘ cii;ded in the program.
2. File name OUTPUT should be declared if any PRINT statement is mclf _ If execution error
messages are to be hsted. OUTPUT must be included, '

3. File name PUNCH should be declared if any PUNCH statement is inchi&‘ ,m;“ the program.

4. File name TAPEu (u is an integer constant 1-99) should be declared 1f any mput/output statement
involving unit u appears in the program. At execution time, if u is a vamhie,"ihere must be a file
name TAPEu for each value u may assume. »

tn applies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 SeriieS,hdiﬁputers.

1-7-2 60305600 E

The characters TAPE are added as a prefix to each logical unit number in the user’s program. Logical unit 3
is assigned the file name TAPE3, logical unit 4 is assigned the file name TAPE4. Note, TAPES and TAPEOS
do not specify the same file name. Furthermore, if TAPEOS is used, it can be accessed with FORTRAN I/O
.statements only by usirig the display code file name-in L format; see Input/Output section I-9.

A logical unit number is assigned by writing TAPEu = filenam, where filenam is the name of the file with
which the logical unit number is to be associated.

Examples:
PROGRAM X (INPUT,TAPEG-INPUT)
PROGRAM Y (OUTPUT,TAPE2=0UTPUT)

“PROGRAM QUT(OUTPUT,TAPES=-OUTPUT)

.
. .

WRITE(6,200)A,B,C Logical unit 6 must be declared as TAPE6
200 FORMAT (1H1,3F7.3) in the PROGRAM statement.

PROGRAM IN(INPUT,TAPES5=INPUT)

-
.

READ(5,100)A,B,C This statement reads from logical unit 5,
100 FORMAT (3F7.3) it is declared in the PROGRAM statement*
as TAPES.

When a file name is made equivalent to another file, the file name appearing to the right of an equals sign
must have been previously declared in the same statement.

Example:

In the following statement, INPUT and OUTPUT are defined before they appear to the right of the

equals sign. TAPES becomes an alternate name for the file INPUT, and TAPE6 becomes an
alternate name for OUTPUT.

PROGRAM SAMPLE (INPUT,OUTPUT,TAPE5~INPUT, TAPE6=QUTPUT)

Example:
PROGRAM JIM{INPUT,TAPE19=INPUT)

TAPE19=INPUT must be preceded in the same statement by INPUT (or INPUT = buffer length)

60305600 D 1.7-3

If any of the following statements are used in a program or its subprograms, the logical unit number. u,
must appear as file name TAPEu in the program statement:

WRITE (u) iolist ENDFILE u

WRITE (u,fn) iolist BACKSPACE u

READ (u) ioclist REWIND u

READ (u,fn) iolist BUFFER IN (u,p) (a,b)

BUFFER OUT (u,p) (a,b)
If u is a variable, there must be a file name TAPEu for each value u can assume in the source program.
Example:

PROGRAM KAY(INPUT,OUTPUT,TAPES8O=INPUT,TAPES1=0UTPUT)

READ(60,100)ALIST
100 FORMAT (F7.3)

WRITE (61,200)ALIST
200 FORMAT (1HO,F7.3)

Example:

PROGRAM JIM{TAPEl, TAPE2,TAPE3, TAPES5)

READ(N)

SUBPROGRAMS
A subprogram is headed by a BLOCK DATA. FUNCTION. or SUBROUTINE statement. A subprogram

headed bv a BLOCK DATA statement is a specification subprogram as described in Section 6. A
subprogram headed by a FUNCTION or SUBROUTINE statement is called a procedure subprogram.

1.7-4 60305600 B

Procedure subprograms are of two types: subroutine and function. Function subprograms return a single
value to the expression containing the function’s name. The four kinds of functions are:

Statement functions
user defined

FUNCTION subprograms

Intrinsic functions (in-line functions) }

library functions system supplied

Subroutine subprograms may return a number of values (or none at all); they are referenced by a CALL
statement. The two kinds of subroutines are:

User subroutine

Library subroutine
Subprograms are defined separately from the calling program and may be compiled independently of the
main program. They are complete program units conforming to all the rules of FORTRAN programs. The
term program unit refers to either a main program or a subprogram.
A subprogram may call other subprograms as long as it does not directly or indirectly call itself. For
example, if program A calls program B, B may not call A. A calling program is a program unit which calls
a subprogram.
Subprogram definition statements declare certain names to be dummies representing the arguments of the
subprogram—these are called dummy arguments. They are used as ordinary names within the defining
subprogram and indicate the number, type and order of the arguments and how they are used. The dummy
arguments are replaced by the actual arguments when the subprogram is executed. Dummy arguments may
not appear in COMMON, EQUIVALENCE, or DATA statements.
Actual parameters appear in subroutine calls

CALL SUB3 (7.,CAT, 8.932)

or function references

A = B + ROOT (6.5,7.,B0X)

60305600 A 1-7-5

FUNCTION SUBPROGRAM

DEFINING A FUNCTION SUBPROGRAM

FUNCTION name (p,,...,p,)

type FUNCTION name (p1 ,...,pn)

Pre-ePn Dummy arguments which should agree in order, number, and type with the
actual arguments in the calling program. At least one argument is required: a
maximum of 63 is allowed.

type The type may be REAL, INTEGER, DOUBLE PRECISION, COMPLEX or
LOGICAL. (The word PRECISION is optional) When type is omitted, and no
IMPLICIT statement appears in that progeam-nit, the type of the function result is
determined by the first character of the function name.

name FUNCTION name. It must not appear in any non- executable statement other
than the FUNCTION statement in the subprogram.

Mummy arguments may be the names of arrays, variables, and subprograms. Since all names are local to
the subprogram containing them, dummy arguments may be the same as names appearing outside the
subprogram. A dummy argument must not appear in COMMON, EQUIVALENCE or DATA statements
within the function subprogram.

The programmer can define a sequence of statements as a function. A function subprogram begins with a
FUNCTION statement and returns control to the calling program when a RETURN statement in the function sub-
program is encountered. Execution of the FUNCTION subprogram results in a single value which is returned to the

main program through the function name.

The name of the function must be assigned a value within the function subprogram; if it is not assigned a
value, a warning diagnostic is printed. This value is the value of the function.

If an END line is encountered in the FUNCTION subprogram, a RETURN is sssamed.

A function must not, directly or indirectly reference itself.

FUNCTION SUBPROGRAM REFERENCE
A function is referenced when the name of a function appears in an arithmetic, logical or masking

expression. A function reference transfers control to the function subprogram, and the values of the actual
arguments are substituted for the dummy arguments.

I-7-6 60305600 B

Actual arguments may be arithmetic or logical expressions, constants, variables, array names, array element
names, SUBROUTINE subprogram names, an external function name (not an intrinsic function or
statement function), or function reference (the function reference is a special case of an arithmetic
expression), or a Hollerith constant, or an ECS variable, array or array element name, or an LCM variable,
array name or array element name.

Example:

. FUNCTION GRATER(A,B)
. IF (A.GT.B)1,2
W(I,J)=-FA+FB-GRATER(C-D,3*AX/BX) 1 GRATER-A-B

RETURN
. 2 GRATER=A+B
. RETURN
. END

When a RETURN statement in the function subprogram is executed, and control is returned to the
statement containing the function reference, if A is greater than B the value of A-B, in this case,
C-D-3*AX/BX is returned to the main program and used in the evaluation of the expression. If A is
less than B, the value of A+ B (C-D+3*AX/BX) is returned to the main program.

A function reference may appear anywhere in an expression that an operand may be used.

The name of a function must not appear in a DIMENSION declaration. Dummy arguments representing
array names must appear within the subprogram in a DIMENSION or type statement giving dimension
information. If dummy arguments are not dimensioned. they cannot be referenced as an array in the
subprogram.

If the subscripts of an array in the subprogram are to agree with the subscripts in the calling program, the
dimensions in the subprogram must be the same as those in the calling routine. If array dimensions
between subprogram and calling program differ. the user must be aware of the arrangement of arrays in
storage (Common, section 6 and Arrays, section 2).

Example:

-

DIMENSION ARY (5,5) FUNCTION DIAG (A,N)
. DIMENSION A(5,5)

. DIAG=A(1,1)

. DO 70 I=1,N
RES-DIAG(ARY,5)**2 70 DIAG=DIAG*A(I,I)

. RETURN

. END

The function subprogram may contain any statements except PROGRAM, BLOCK DATA, SUBROU-
TINE, another FUNCTION statement, or any statement that directly or indirectly references the function
being defined.

60305600 B I-7-7

In addition to returning the value of the function to the calling program, a FUNCTION subprogram can yield
results also through the assignment of values to one or more of its dummy arguments.

Adjustable dimensions are permitted in FUNCTION subprograms.

If an actual argument in the calling program unit is the name of an external function or subroutine, the cor-
responding dummy argument must be used within the FUNCTION subprogram as the name of an external
function or subroutine, respectively.

CONFLICTS WITH LIBRARY FUNCTIONS

A FUNCTION subprogram can have the same name as that of an intrinsic or basic external function contained
in the FORTRAN library. The user’s routine, however, overrides the library’s routine only if option T, D, or
OPT=0 is specified on the FTN control card, or if in the calling program unit the name of the function appears
either in an EXTERNAL statement or in an explicit type statement which changes the type associated with

the library function.

Names and types of the library functions are listed in section I-8, tables 8-1 and 8-2.

1-7-8 60305600 E

STATEMENT FUNCTION

DEFINING A STATEMENT FUNCTION

7
name (p1 Py.P3. ..., P,) = expression

name Type of the function is determined by the type of the function name, unless it
appears in a type statement.

PioeosPa Dummy arguments must be simple variable names. At least one argument is
required; a maximum of 63 is allowed. These arguments should agree in order,
number, and type with the actual arguments used in the function reference.

expression Any arithmetic, masking, relational, or logical expression may be used. It may
contain references to library functions, statement functions, or function
subprograms. Names in the expression which do not represent arguments have
the same value as they have outside the function (they are normal variables).

The definition of a statement function is contained in a single statement, and it applies only to the program
or subprogram containing the definition. It consists of one statement and produces only one result.

Statement function names must not appear in DIMENSION. EQUIVALENCE, COMMON or EXTER-
NAL statements; they can appear in a type declaration but cannot be dimensioned. Statement function
names must not appear as actual or dummy arguments. If the function name is type logical, the expression
must be logical. For other types. if the function name and expression differ, conversion is performed as part
of the function.

A statement function must precede the first executable statement and it must follow all specification

statements (DIMENSION, type. etc.). A statement function must not reference itself. For example,
R(I) = R(I) *R(I-1) is illegal unless R is an array name.

60305600 E 1-79

Examples:

LOGICAL C,P,EQV
EQV(C,P) = (C.AND.P).OR.(.NOT.C.AND..NOT.P)

COMPLEX Z,F(10,10)
Z(A,I) = (3.2,0.9)*EXP(A)*SIN(A)+(2.0,1.)*EXP(Y)*COS(B)+F(I,J)

GROS(R,HRS,0THERS) = R*HRS + R* .5"0THERS

STATEMENT FUNCTION REFERENCE

The statement function only defines the function; it does not result in any computation.

The value of the function is computed using the values of the actual arguments. The actual arguments are
substituted when a statement function reference is made; they may be any arithmetic expressions.

Statement function names should not appear in an EXTERNAL statement.

For example, to compute one root of the quadratic equation ax’+bx+c¢=0, given values of a, b and ¢, an
arithmetic statement function can be defined as follows:

ROOT (A,B,C)=(-B+SQRT(B*B-4.*A*C))/(2.0*A)

When the function is used in an expression, actual arguments are substituted for the dummy arguments -
A.B,C.

RESA - ROOT (68.5,7.,1.)
is equivalent to writing

RESA - (-7.+SQRT(7.*7.-4.0%*6.5%*1.0))/(2.0%6.5)
or

TAB = 3.7 * ROOT (CAT, 8.2, TEMP) + BILL

Wherever the statement function ROOT (A,B,C) is referenced, the definition of that function—in this case
(-B+SQRT(B*B-4.¥*A*())/(2.¥A)—is evaluated using the current values of the arguments A,B,C.

I-7-10 60305600 A

Examples:

Statement Function Definitions Statement Function References

ADD(X,Y,C,D)=X+Y+C+D RES1=GROSS-ADD(TAX,FICA,INS,RES3)

AVERGE(0,P,Q,R)=(0+P+Q+R)/4 | GRADE=AVERGE(TEST1,TEST2,TEST3,
TEST4)+MID

LOGICAL A,B,EQV
EQV(A,B)=(A.AND.B).OR. TEST=EQV(MAX,MIN).AND.ZED

(.NOT.A.AND..NOT.B)

COMPLEX Z
Z(X,Y)=(1.,0.)*EXP(X)*COS(Y) | RESULT=(Z(BETZ,GAMMA(I+K))**2-1.)

+(0+,1.)*EXP(X)*SIN(Y) /SQRT (TWOPIE)

Here, the statement function is used to substitute a library function name in a program containing
an alternate name for this library function.

SINF(X)=SIN(X) statement function definition

A=SINF(3.0+B)+7.
The above sequence generates exactly the same object code as:
A=SIﬁ(3.0+B)+7.
During compilation, the statement function definition is retained by the compiler. Whenever the function is
referenced, instructions are generated in line to evaluate the function (as opposed to FUNCTION

subprograms for which a branch instruction is generated at each reference). The expansion of a statement
function is similar to the expansion of an assembly language macro. Thus the statement function does not

reduce execution speed or efficiency.

60305600 A : I-7-11

SUBROUTINE SUBPROGRAMS

DEFINING A SUBROUTINE SUBPROGRAM
TI SUBROUTINE name (n1 ,pz,...,pn) —
|
|
: SUBROUTINE name
]
|
|
name Symbolic name of the SUBROUTINE R
Pisees P Dummy arguments which must agree in order, number and type with the o~

actual arguments passed to the subprogram at run time. A maximum of 63 is
allowed. The argument list is optional. Dummy arguments can be the names of
arrays, simple variables, library functions, or subprograms. Since dummy
arguments are local to the subprogram containing them, they may be the same
as names appearing outside the subprogram. A dummy argument must not
appear in a COMMON, EQUIVALENCE, or DATA statement within the
subroutine.

Byysbia

A SUBROUTINE subprogram can be referred to only by a CALL statement. It starts with a SUBROU-
TINE statement and returns control to the calling program through one or more RETURN statements. The
subprogram name is not used to return results to the calling program and does not determine the type of
the subprogram. Values are passed by one or more arguments or through common (refer to SUBPRO-
GRAMS and COMMON).

Dummy arguments which represent array names must be dimensioned within the subprogram by a
DIMENSION or type statement. If an array name without subscripts is used as an actual argument in a
CALL statement and the corresponding dummy argument has not been declared an array in the
subprogram, the first element of the array is used in the subprogram. Adjustable dimensions are permitted
in SUBROUTINE subprograms.

17-12 60305600 B

SUBROUTINE subprograms may. contain any statements except PROGRAM, BLOCK DATA, FUNC-
TION, or another SUBROUTINE statement.

The SUBROUTINE name must not appear in any other statement in the same subprogram.

~—

60305600 B , 1-7-13

REFERENCING A SUBROUTINE SUBPROGRAM —
CALL STATEMENT

The CALL statement causes a SUBROUTINE subprogram to be executed.

CALL name

)

CALL name (p1 yeeno P

n

name Name of subroutine called must not appear in any specification statement in the calling
program except an EXTERNAL statement.

PisPa Actual arguments which must correspond in order, number, and type with those
specified in the SUBROUTINE statement.

Dby

The total number of arguments, p,,....p, + b,,...b,, must not exceed 63.

Actual arguments may be: arithmetic or logical expressions, constants, variables, array elements. array
names, library function names, subroutine subprogram names, external function names (not an intrinsic or
statement function), function referen he function reference is a special case of an arithmetic

expression), or LEVEL 3 array names

I-7-14 _ 60305600 B

N
—~—
b
~——
~—
—
~
e

GO TO 10
104 CONTINUE
END o #E

& ek

. SUBROUTIRE XCOMP (B1,B27G),RETURNS(A1,A2,A3,

1F(] 59)10,20,30
10 CONTIN e

20 CONTINUE

RETURN A2 ,
30 CONTINUE “

IF (B1)40,50
40 RETURN A3

60305600 B

I-7-15

PROGRAM VARDIM (OUTPUTTAPE6=0UTPUT)

COMMON X (4,+3)

REAL Y(6)

CALL IOTA(Xsl2)
CALL IOTA(Ys6)
WRITE (6+100) XoY
FORMAT (#]1ARRAY X =
STOP

END

SUBROUTINE IOTA (A.M)

100

c STARTING AT 1
DIMENSION A (M)
DO 1 I = 1M

1 A(I)=1
RETURN
END

#912F6,095X9#ARRAY Y = #6F6,0)

IOTA STORES CONSECUTIVE INTEGERS IN EVERY ELEMENT OF THE ARRAY A

If a CALL is the last statement in a DO loop, looping.continues until the DO loop is satisfied.

Example:

Calling Program

D051 =1,20

5 CALL GRATER (STACK(I),TEMP(I))

2B =~A+ B it

Subprogram

SUBROUTINE GRATER (A,B)
IF (A.GT.B) 1,2

1B=4A-8B

RETURN

RETURN
END

The subroutine subprogram GRATER will be called 20 times.

Example:

Calling Program

DIMENSIOR LIST (50}

.

CALL SORT (LIST)
15

10
50
200

Subgrogram

SUBROUTIRE SORT(ALIST)
INTEGER ALIST (50)

D0 10 J - 1,50
K=-50-13

PO 10 I = 1,K

IP (ALIST (I) - ALIST (I+1)) 15,10
ITEMP = ALIST (I)

ALIST (I) = ALIST (I + 1)
ALIST (I + 1) = ITEMP
CONTINUE

WRITE (6,200) ALIST
FORMAT (*1*,10(I14,2X))
RETURN

END

The parameter list in a SUBROUTINE subprogram is optional.

I-7-16

60305600 A

Example:
Calling Program Subprogram
SUBROUTINE ERROR1
WRITE (6,1)
1 FORMAT (5X,*NUMBER IS OUT OF RANGE*)
IF (A-B) 10,20,20 RETURN

END

10 CALL ERROR1
20 RESULT=(A*CAT) +375.2-2ERO

SUBPROGRAMS AND COMMON

Transferring values through common is a more efficient method of passing values than through arguments
in the CALL statement. Variables or arrays in a calling program or-a subprogram can share the same
storage locations with variables or arrays in other subprograms. Therefore, a block of common storage can
be used to transfer values between a calling program and a subprogram.

Example:

PROGRAM CMN (INPUT.OUTPUT)
COMMON NED (10)
READ 3sNED
3 FORMAT (1013)
CALL JUAVG
STOP
END
SUBROUTINE JAVG
C THIS SUBROUTINE COMPUTES JHE AVERAGE OF THE FIRST 10 ELEMENTS IN
C COMMON
" COMMON N(10)

ISTORE = 0
DO 11 = 1010

1 ISTORE = ISTORE ¢ N(I)
ISTORE = ISTORE/10

PRINT 2»ISTORE

2 FORMAT (®*]1AVERAGE = #,110)
RETURN
END

AVERAGE = 45

60305600 A I-7-17

The array NED in program CMN and the array N in subroutine JAVG share the same locations in
common. NED(1) shares the same location with N(1), NED(2) with N(2), etc. The values read into
locations NED(1) through NED(10) are available to subroutine JAVG. JAVG computes and prints
the average of these values.

Argumgnts passed in COMMON are subject to the same rules with regard to type, length, etc., as those
passed in an argument list (section 5).

ADJUSTABLE DIMENSIONS IN SUBPROGRAMS

Within a subprogram, array dimension specifications may use integer variables instead of constants,
provided the array name and all integer names used for array dimension specifications are dummy
arguments of the subprogram. The actua] array name and values for the dummy variables are given by the
calling program when the subprogram is called. The dimensions of a dummy array in a subprogram are
adjustable and may change each time the subprogram is called; however, the absolute dimensions of the
array must have been declared in a calling program. The size of an array passed to a subprogram using
adjustable dimensions should not exceed the absolute dimensions of that array.

Adjustable dimensions cannot be used for arrays which are in common.
Calling Program SUBROUTINE Subprogram

DIMENSION 4(10,10),B8(10,10),¢(10,10), SUBROUTINE MATADD(X,Y,Z,M,N)
S E(5.5).F(5,5),6(5,5),H(10,10) DIMERSION X(M,N),Y(M,N),z(M,N)
DO 10 I = 1,M
DO 10 J = 1,N
. 10 2 (1,3) = x (1,3) + ¥(1,7)
CALL MATADD (E,F¥,G,5,5) RETURN
. END

CALL MATADD(A,B,C,10,7)

CALL MATADD(B,C,A,I, 10) When this call is made to the subprogram, the actual arguments
(A,B,C,10,7) are substituted for MATADD(X,Y,Z,M,N), and the
subprogram s assigned dimensions: DIMENSION
X(lO,?),Y(lO,?),Z(lO,7)

The main program may call the subroutine MATADD from several places within the main program.

The adjustable dimensions may be passed through more than one level of subprograms.

I-7-18 60305600 A

Example:
Calling Program Subprogram

SUBROUTINE SUB3 (B,I,J)
DIMENSION B(I,J)

REAL A(10,5) .
CALL SUB3 (A,S5,3) .
. DO 20K - 1, J

CALL SUB4 (B,I,J)

Subprogram

SUBROUTINE SUB4 (X,K,L)
DIMENSION X (K,L)

In the main program, array A has dimensions (10,5); a portion of this array is passed to the
subroutine SUB3 through the call CALL SUB3(A,5,3). Thus array B in the subroutine has
dimensions (5,3). The subroutine SUB3, in turn, calls another subroutine SUB4 passing the
dimensions of the array B. The array X in the subroutine SUB4 has dimensions X (5,3).

Constants must be used when array A is dimensioned in the initial calling program, and the values
of second and third arguments in the subprogram call should be consistent with the dimensions of
A. If adjustable dimensions are not consistent with constant dimensions in the calling program,
results are undefined.

In a subprogram, an array name which appears in a COMMON statement must not have adjustable
dimensions.

Example:

PROGRAM VARDIM (OUTPUT,TAPE6=0UTPUT)
COMMON X (4,3)
REAL Y (&)
CALL IOTA(X,12)
CALL IOTA(Y,6)
WRITE (6,100) X,Y
100 FORMAT (*1ARRAY X = *,12F6.,095Xs*ARRAY Y = %6F6,0)
sSTOP
END .
SUBROUTINE IOTA (A,M)
C JOTA STORES CONSECUTIVE INTEGERS IN EVERY ELEMENT OF THE ARRAY A
c STARTING AT 1
DIMENSION A (M)
DO 1 I = 1,M
1 ACI)=]
RETURN
END

60305600 A I-7-19

?‘*'“‘

mafn en{ry point fg»
mants

1-7-20 60305600 C

Example:
Main Program

Z=A+B-JOE(3.*P,Q-1)

R=S+JAM(Q,2.5*P)

10

20

Function Subprogram

FUNCTION JOE(X,Y)
JOE=X+Y

RETURN

ENTRY JAM
IF(X.GT.Y)10,20
JOE=X-Y

RETURN

END

In the calling program, an entry name may appear in an EXTERNAL statement, and FUNCTION entry
names also may appear in type statements. All ENTRY points within a SUBROUTINE subprogram define
SUBROUTINE subprogram names, and all ENTRY points within a FUNCTION subprogram define
FUNCTION subprogram names. A function entry name must be the same type as the name in the

FUNCTION statement.

An ENTRY name must be unique in the FUNCTION subprogram.

Example:
FUNCTION CAT(A,B)

D0G=10.+3.2
ENTRY DOG

The ENTRY name DOG is not valid because it has been used as a variable.

60305600 D

The value of the function is the last value assigned to the name of the function regardless of which
ENTRY statement was used to enter the subprogram. The function name is used to return results to the
calling program even though the reference was through an entry name.

Example:
Calling Program Subprogram
RESULT=FSHUN(X,Y,Z) FUNCTION FSHUN(A,B,C)
RES2=FRED(R,S,T) 3 FSHUN=A*B/C**2
RETURN
ENTRY FRED

IF(A .LE. 702.) GO TO 3
FSHUN=(C+A)/B

RETURN

END

When the FUNCTION FSHUN is entered at the beginning of the function. or through the ENTRY
FRED. the result must be returned to the calling program through the function name FSHUN.

Example:

Sue~OUTINE ST (AsMeV)

C Se.t PUTS TrHE vaLut Vv INTO pvERY bLEMENT OF ThL ArraY A
DIMENSTUN a (M)
D)lI=]em
i "\(1)30.0
L
L aIRY InC
C 140 AUL>D The value v TU EVeERY ELEMENT IN 1rne AkkHAY A

Vo 2 1 = 1M
A(l) = A(}) + v
wE T URD

B U

"

An explanation of this example appears in part 2.

[.7.22 60305600 B

——

FORTRAN LIBRARY -8

FORTRAN Extended provides certain subprograms that are of general utility or difficult to express in FORTRAN;
they are referenced in the same way as user written subprograms. The library consists of three classes of sub-
programs: intrinsic functions, basic external functions, and utility subprograms.

INTRINSIC FUNCTIONS

If, in a calling program unit, the name of an intrinsic function appears either in an EXTERNAL statement or
in an explicit type statement which changes the type associated with the function, the user should supply a
FUNCTION subprogram with the name of that function; otherwise, results are unpredictable.

When a variable, array, or statement function is defined with the same name as that of an intrinsic function,
the user definition overrides the system definition.

When a FUNCTION subprogram is defined with the same name as that of an intrinsic function, the user defi-
nition overrides the system definition only if option T, D, or OPT=0 is specified on the FTN control card, or
if in the calling program unit the name of the function appears either in an EXTERNAL statement or in an
explicit type statement which changes the type assoicated with the intrinsic function.

Table 8-1 lists the intrinsic functions provided by FORTRAN Extended.
The results of functions listed with type “no mode” assume the type of the expression in which they are used.
The sign of the second argument in the functions SIGN, ISIGN, AND DSIGN is defined to be positive when

the value of that argument is +0 and negative when the value is -0.

The functions AMOD and MOD are not defined when the second argument is zero. The functions SHIFT and
MASK are not defined when their arguments exceed the bounds specified.

60305600 E [-8-1 @

‘X se awes ayl ubis yum ¥ jo apnijubew ay) pasdxa 10u saop leyl Jabaiul 1sabie| ayl s1 [X] adsym ‘g[q/e]-e se psulap si (a’e) QONYV 10 AOW

"L 03 [enba 10 Uey $53] 89 YB3 ISNW QO 40 sjuswnBie ay) Li _

|ea1 0}
Jabalul wouy
() LvO14=1X feay sabaruy 1vo14 l UOISIBALOD) 1eo|4
(8'V)LNING=D
2'a'v 3719Nn0d ajgnoQ ajqnoQ INING
(A'X)LNIW=r J1aBauy leay ININ
(r'1)ONIN=T Jabaju| 1ebaru| ONIW
{(AX)ININVY=Z feay jeay LNINY (" 'ev anjen 1sajjews
(F'NONINV=A jeay J1abajuf ON{AY z< "LYIUIN Buisooyd
(Z’A'X) LXVING=M
Z’AX'm3nanod ajgnoQg ajgnoQ LXVING
(2'VILXVIN=I Jebaru leay LXVIN
(NDI'T'DOXVYIN= Jabaiuj Jabarug OXVIN anjea
(Z A'X)LXVIAV=Y jeay {eay LXVINVY (" 'ev 1sab.e|
DI NOXYINY=X feay 4abanu| OXVNVY z< ‘LY)xep Buisooy)
Awwoc wwwv
(ZI'11)aow=r Jabaquy| Jabalu| Ligon 4 Bui
(zv'LV)AOWV=4 jesy feay downv 4 (gv pow) Ly ~Japulewsay
(Z)LNIQt=r
Z 3719n0d dabayuy ajqnoQ INIQI l-gyC > V] 10}
{(X)LNI=I Jabau| jeay INI v} > Jebaiul 1sabie
(X)LNIV=A |eay jeay 1NIV L sawil} v 40 ubig uoledun §
(visava=4a
a'v 319nod ajgnoQ ajgnoQ sdva
(nsavi=r 1abau| J1abaluy savi anjep
(X)Sgv=A feay jeay sav i |Vl a1n|osqy
w_a..:mxw :O_wo-._:u_ u:we:q_m._< aweN ma:wF_:?_< uonuyag uofydung
joadAj jJoadAj oljoquAS 40 Jaquinp alsulu|

suonoung OISULIU]

"1-8 9[qel

60305600 E

I-8-2

*pasn aq {jim 1ied (ea. 10 Japio yYbry syl Ajuo “Juawnbie xsjdwod 1o uoisicasd ajgnop e 104 1L

‘posn 3q ued Sjuawnbie Z UBY) aiOW PIIBAIRIE S| oo_wno a0eJ] 8yl 4! JO TYNYILXI Paiejoap ale suolsunj ssayl 44 _

s

‘O uey) gv>
@reywial=r Jsebeu| Jeberu| wiai tv il ‘ev-lv 8duasLyg
(@’0)nig=v lesy jeey wia 4 Ul Zv<iv H aAs0d
(A'XINDISQ=2
Z'A'X 378n00 signog a|gnog NOISa
(ZI'LNDISI=F Jabeu) Jebajuy NOISI 1V Yum ubig jo0
(A'XINDIS=Z jesy lesy NOIS Z Zv jo ubig Jajsuelf
NI se aweg _
sabajuy 03 jeas
(AMXidi=Al Jebezu| jeay Xidl l Wwol} uoisiaauo) xid
asjdwex3y uonsung uswnBay swepN siuawnBay uonuyaQq :.c_ﬁ.::u_
joedAj jJoodAj JloquiAg 30 JequinN ETETTE T

(panunuo)) suonoung dIsUINU] ‘[-§ J[qe]

1-8-3

60305600 C

*pasn aq jjim 1ied jeas 10 Juedyiubis 1sow ayl Ajuo ‘Juawnbie xaidwod 1o uoisioaud siqnop e Jo4 L1

"SpUNOQ asayl apIsIno siuawnbie 4oy paulspun aie | JIHS Pue JNSVINL

—

ajdwexgy

uonoung wawnbiy awen syuawnbay
joadA} jo adA) NOqUIAS J0 sPqunp

wawnbay

(v)v3y=9 xa|dwo) 40 ued
vV X371dNOD |1esy xajdwo) v3y 3 {eay utelqo
Juawnbay

uoISIo3id

signoQ jo Lied

{A)TONS=X weoyrubig
0d eay ajgnoQ TONS l ISOW uteaqQ

uonosung
asuLY|

(panuniuoy)y) suondun, dISUTIU] "{-§ d[qBL

60305600 C

1-84

4001

wieiboud

-gns |eulaIxa
10 ‘Juswiale
Aelie ‘sigeuiea
B jO aweu ayy

weiboidgns
|BUIBIXB 10
jutod Alua Jo
‘Quawiale Aenie
‘ajgeuen e jo

0140071=F i sp1usnbay $sa1ppe uielgo

*paioubl si

luswnbie Alunp

{1'p) obury

ay1 18A0 paing
-H3SIp Ajuogiun 101e18UD) Usq
(Y}dNVH=A adA; Aue JdNYY i sanjea suinjay “wnN wopuey
wawnbay xajd
{X)OFNOOJ=A (1g+e=V a18ym) -Wwo9 e 4o aieb
A'X X31dWO09 xa|dwo) xatdwoy OrNO2 l ig-e -nfuod ulergo
w404
xajdwon u|
{eV'IV)X1dIND=D (1= =1 as0ym) syuawnbay jeay
3 X31dINOD xajdwo) lesy X1dWO c 1ITV+LY om| ssaidx3
W04 UOISIoalg
a|gnoQ ut s
(X)37194=A ~-nBuy uoisidaly
A 379N03A 8|qnoQg leay 378d l ajbuig ssasdx3
1uswinbay
xa|dwo)
(V)DVYWIv=a 4O Lied Aseu
VvV X31dW0OD 1eay xajdwo) DVNIV L -1bewj ulerqQ

ajdwex3 uonoung juawnbay aweN spuawnbayy uotiugaqy uonosung
joadAy joadA} JoquIAS 40 JBquinN a1sunUy
(ponunuo)) suonouny JISULIU] ~[-§ 9]qEL

I-8-5

60305600 E

BASIC EXTERNAL FUNCTIONS

A basic external function ordinarily is called by value; however, it is called by name if, in the calling program
unit, the name of the function appears either in an EXTERNAL statement or in an explicit type statement
which overrides the type associated with the function, or if option T, D, or OPT=0 is specified on the FTN
control card.

When a variable, array, or statement function is defined with the same name as that of a basic external func-
tion, the user definition overrides the system definition.

When a FUNCTION subprogram is defined with the same name as that of a basic external function, the user
definition overrides the library definition only if,in the calling program unit, the name of the function appears
either in an EXTERNAL statement or in an explicit type statement which overrides the type associated with
the library function, or if option T, D, or OPT=0 is specified on the FTN control card.

Table 8-2 lists the basic external functions.
Arguments for which a result is not mathematically defined, or those of a type other than that specified,

should not be used. Arguments of the trigonometric functions are in radians; and the inverse trigonometric
functions return principal values. The function DMOD is not defined when the second argument is zero.

[-8-6 60305600 E

‘U~z 8N|_A e Uiim 1ued AseuiBew ue suinial {40!-X) DOT1D Pue [L+~ 3NjeA B yum Lied Aleuibew ue suinyal (404+X)D071D
‘L= 8njea e yum died Aseulbew] ue suinias (Qi+x)DOT) ‘84044841 ‘g>X 404 ¢ [£2~) abues ay1 ul s1ied Aseuibew) yum sanjea suinlal ook

LI LVLS|V abue |
(V)JHNVL1=9 jeay jeay HNVL l (v)yuer d1j0quadAH
LI LPLS|IA|
(4)8020=00 apC X L>|X|
4°00 X31dIN0D xajdwoy xajdwo) S020 L {Al+X)s00
(d)soosa=3 8ujso)
3'a 379n0a ajgnoq s|gnoQg S02d l gpC X L>|V| dtsw
{A)SOD=X |eay jeay S02 l (v)soo -ouobii}
LILVLS|A|
{4)NISDO=00 apC X £ X|
4'00 X31dWO09D xa|dwo) xajdwo) NISO L (Al+X)urs
(@INISa=3 auIg
3'‘a 3719n0d a|gnog sjgnoQg NIsd L apC X LS|V | ouzaw
{(XINIS=A leay leay NIS i (w)uis -ouobly |
{@)oLo071a=3
3'd 3719n0da ajgnoQ ajqnoq 0L507a o<V wyebon
(V)OLDO1V=9 leay leay 0LDOTV L (v)0'6oy uowwoy
(V)D010-9 0#zA+zX
8’V X31dIN0D xajdwoy xa|dwo) 19010 L (Al+X) 6o
(X)D01a=A
A’X 379n0d 8jgnoq a|gnoQg 50714 l o<v wy3aLieton)
(A)D0TV=2 jeay jeay 901V l (v) %60 Jeanien
gyl X L A|
(v)dX30=4d (9P LS*SY8 6.9
'V X31dW02 xadwo) xajdwo) dX30 1 (A4+X) @
{(X)dX3Aa=A
A'X 378n0a s|gnoQ a|gnoQg dX3a t LI LY LSYSYE LY
(A)dX3=Z leay leay dx3 L P je1zuauodxy
o_Qmem uoipung w:wE:m‘_d. awenN mu:w:‘_:m._x\ uonuiaqg uonoung
Jo adAj Jo adAj J1joquAS J0 Jaqunp jewsalxy
oiseq
suornoung [euldarxy omseq [-8 dlqel

187 @

60305600 E

ay1 ubis yum ¥ o apniubew ay) pasdxa j0u saop eyl Jabajul 1sabae syl si [X] 949Yym ‘q[q/e]-e se paulyap si (4'e) QOWQ uonduny ayj §

"X se awes

I - a 8NjEA B SUINYB) (X' _Q)ZNV.LY PUB ‘L + a anjeAa e suinjai
(X' 0)ZNVLV ‘& + = anjea e suinal (X'0)ZNVLVY ‘210501043 ‘0 > X 404 ._tm |m abues ayi ul sanjea waNlal ZNVLVQ Pue ZNV1V)LL

(7 '7o) abues ayl Ul sanjea uinlas NY1vd Pue NVLV4d
"aue|d jjey 1ybis 3yl ul sanjea suanlas | YOS+

opl X LS| V| wcmmcm.rJ
(AINYL=X IBay |eay NVL l (v} uey oriawouohi |
s |
LIV |
{AINISY=X |1esy 1Bay NIsY 3 {v) uisole auisoy
LSV _
(A)SOQY=X 128y oy SO0V L () s090Je 8UIS0004y
(2)SavOo=WD 1g+e=Y
O X31dIN0D jesy xajdwo) sSavo l Nn+mm> SNINPON
{cd’LA)aona=na
za’la’wna 31gsnod 2iqnog 8|gnog aona c (v pow) v §buriepurewsy
(¢cad’'tQ)eNv1iva=a
za’'td’'d 3nanoa 3|qnoqg a|gnog .m.++mz<._.<o c OFzCV+zLVY
{2V’ LV)ZNVL1v=9 eay lesy thmz<._.< c (ev/1V) ueloe
(Q)INVLVG=3
3'd 379N0a a|qnog a|gnoQg :Z<._.<Q l
(XINVLV=A jeay leay ++Z<._.< l (V) ueidie 1usbuelosy
(4)LH0SI=00
4'00 X31dW0D xa|dwo) xajdwoy 4LH0SO L
(Q)1LY¥0sA=3
3'g 3719n0a ajqnoqg s|gnoQg 140sd l ocyY 100y
(X)LHOS=A jeay jesy 140S l i iv) alenbg
ajdwexy uonosung Juawinbay awep syuawnbay uoniuiyaqg uonosuny
J0 adA) Jo adAj) o1joqWAS JO Jaqunp Jeus21xy
aiseq

(ponunuo)) suonoung jeuIeIXyg oised 7-8 9[qEL

60305600 E

1-8-8

ADDITIONAL UTILITY SUBPROGRAMS
The following utility subroutines are supplied by the system. ANSI does not specify any library subroutines.

A user supplied subprogram with the same name as a library subprogram overrides the library subprogram.
but still retains the type of the library subprogram.

The subprograms which follow are always called by name (refer to section 7).

In the following definitions, i is an integer variable or constant; j is an integer variable.

SUBROUTINES

CALL DUMP (a,.b,.f,,....a,,b..[)
CALL PDUMP (a,,b,,f|.....a,.b,.[,)

Dumps main memory on the OUTPUT file in the indicated format. 1If PDUMP was called, it returns control
to the calling program; if DUMP was called, it terminates program execution. ; is the first word, and b, the
last word of the storage area to be dumped. 1 < n < 20. f is a format indicator, as follows:
f =0 or 3, octal dump
= 1, real dump
f = 2, integer dump
a and b are the first and last words dumped for f values 0-3. If 4 is added to any of the f values, their

contents will be used as addresses of the first and last words dumped. An ASSIGN statement or the
LOCF function can be used to get addresses for the a and b parameters.

The maximum number of arguments is 63.

Examples: CALL PDUMP(A(1}, A(100), 1} Dumps from A(1l) to A(100) as real numbers

CALL PDUMP(0, 10008, 4) Dumps from location 0 to 1000B in octal

CALL SSWTCH (ij)

If sense switch i is on, j is set to 1; if sense switch i is off, j is set to 2. 1 is 1 to 6. If i is out of range. an
informative diagnostic is printed, and j = 2. The computer operator uses this subroutine to select options in
a FORTRAN program.

CALL REMARK (H)

Places a message of not more than 80 characters, 40 characters per line, in the dayfile. Messages exceeding 80
characters will be truncated. Messages shorter than 80 characters must have all zeros in the lower 12 bits of the
last word: they are supplied automatically when a Hollerith constant is used as the parameter. H is a Hollerith

specification.

Example: CALL REMARK (9HLAST DECK)

60305600 D [-8-9

CALL DISPLA (H,k)

Displays a name and a value in the dayfile. H is a Hollerith specification of not more than 80 characters. k
is a variable, or a real or integer expression; k is displayed as an integer or real value.

Example: . CALL DISPLA {7H TIME =, STQP-START)

CALL RANGET(n)

Obtains current generative value of RANF between 0 and 1. n is a symbolic name to receive the seed. It is
not normalized.

CALL RANSET(n)

Initializes generative value of RANF. n is a bit pattern. Bit 2" will be set to 1 (forced odd), and bits (2%-2%)
will be set to 1717 octal.

SECOND(t) or CALL SECOND (1)}

Returns central processor time from start of job in seconds. in floating point format, accurate 1o three
decimal places. t is a real variable.

Example: DPTIM = SECOND (CP)

DATE(a) or CALL DATE (a)f

The value of a will be the current date in operating system format. a is a dummy argument. Format is
hMM/DD/YYb; but it may vary at installation option.

The value of a will be the current date in operating system format. a is a dummy argument. Format is
bMM/DDYYb; but it may vary at installation option. The value returned is 6-bit character data and may be
output using an A FORMAT element, see PROGRAM LIBS (page 1I-1-16).

The function DATE is real for mode conversion, thus if J and K are integer variables in:

J = DATE(K)

J will not be useful as the value returned will have been converted from floating to fixed.

+These routines can be used as functions or subroutines. The value is always returned via the argument and
the normal function return.

1-8-10 60305600 C

TIME(a) or CALL TIME (a)t

The value of a will be the current reading of the system clock. Format is BHH.MM.SSb, (where b is a blank).

The value returned is 6-bit character data and may be output using an A FORMAT element, see PROGRAM
LIBS (page 1I-1-16).

The function TIME is real for mode conversion, thus if J and K are integer variables in:

J = TIME(K)
J will not be useful, as the value returned will have been converted from floating to fixed.
CALL ERRSET (a,b)it

Sets maximum number of errors, b, allowed in input data before fatal termination. Error count is kept in a.

CALL LABEL (u,fwa)it

Sets tape label information for a file. u is the unit number. fwa is the address of the first word of the label
information. The label information must be in the mode and format discussed in the operating system reference
manual.

CALL MOVLEV (0,b,n)

Transfers n consecutive words of data between a and b. a and b are variables or array elements; n is an
integer constant or expression. a is the starting address of the data to be moved and b is the starting address

of the location to receive it.

Example: CALL MOVLEV (A, B, 1000)

No conversion is done by MOVLEV. If data from a real variable is moved to an integer type receiving field,
the data remains real. '

Example: CALL MOVLEV {A, |, 1000}
After the move, 1 does not contain the integer equivalent of A.

Example: DOUBLE PRECISION D1(500), D2(500)
CALL MOVLEV (D1, D2, 1000)

Since D1 is defined as double precision, n should be set to 1000 to move the entire
D1 array.

#These routines can be used as functions or subroutines. The value is always returned via the argument and
the normal function return.

t1Refer to section 5, part 11l for further information.

60305600 D [-8-11

CALL OPENMS (u,ix,Ingth,)t

Opens mass storage file and informs Record Manager that this file is word addressable. If an existing file is
called, the master index is read into the area specified by the program. u is the unit designator. ix is the first
word address of the index in central memory. Ingth is the length of the index buffer; for a name index,
Ingth = 2 * (number of records in file) + 1; for-a number index, Ingth 2 number of records in file + 1.
t = 1 file is referenced through a name index; t = 0 file is referenced through a number index.

Example: ' PROGRAM MS1 (TAPE3)
, DIMENSION INDEX (11}, DATA (25)
CALL OPENMS (3,INDEX,11,0)
CALL READMS (u;fwa,n k)i
Transmits data from mass storage to central memory. fwa is the central memory address of the first word
of the record. n is the number of central memory words transferred. Number index k = | < k < Ingth - L.

Name index k = any 60-bit quantity except 0. u is the unit designator.

Example: CALL READMS(3,DATA,25,6)

CALL WRITMS{u,fwa,nk.rs)t

Transmits data from central memory to mass storage. u.fwa,nk are the same as for READMS. r = +1

rewrites in place. Unconditional request; fatal error is printed if new record length exceeds old record
length. r = -1 rewrites in place if space is available, otherwise writes at end of information. r = 0 no
rewrite; writes normally at end of information. The r parameter can be omitted if the s parameter is
omitted. The default value for r is 0 (normal write).
s = | writes subindex marker flag in index control word for this record. s = 0 does not write subindex
marker flag in index control word for this record. The s parameter can be omitted; its default value is 0.
The s parameter is included for future random file editing routines. Current routines do not test the flag,
but the user should include this parameter in new programs, when appropriate, to facilitate transition to a
future edit capability.
Example: CALL WRITMS (3,DATA,25,NRKEY)
CALL STINDX (u,ix,Ingth,t)T
Changes index in central memory from master to subindex. u,ix,Ingth,t are the same as OPENMS.
Example: CALL STINDX {2,SUBIX,10)

~

+Refer to section 7, part II for further information.

| 1812 60305600 D

CALL CLOSMS (u)++
Writes index from central memory to file and closes file.

Example: CALL CLOSMS (7)

CALL LENGTHX(u, nw,ubc}t

Gives information regarding the previous BUFFER IN or READMS call of the file designated by u. nw is set
to the number of 60-bit words read. ubc is set to the number of unused bits in the last word of the transfer.
Values retumned are type integer. ‘

Example: CALL LENGTHX(5 NWRDS NBITS)

CALL STRACE
Provides subroutine calling traceback information from the subroutine which calls STRACE back to the
main program. Traceback information is written to the file DEBUG. To obtain traceback information

interspersed with the source program, DEBUG should be equivalenced to OUTPUT in the PROGRAM
statement. (Refer to section I-13 STRACE).

FUNCTIONS
UNIT (u)

Returns buffer status on unit u. Result is type real. -1 Unit ready, no error. +0 Unit ready, EOF
encountered. + 1 Unit ready, parity error encountered.

Example: IF (UNIT(2))30,40,70

EOF(u)t

Gives input/output status on non-buffer unit. If zero, no end-of-file was encountered on previous read.
Result is type real. ~

Example: I1FL -~ EOF (4)

tRefer to section 5, part Ul for further information.
tFRefer to section 7, part LI for further information.

60305600 E 1-8-13

LENGTH{u)}

Gives number of central memory words read on the previous buffer or mass storage input/output request
for a designated file. Result is type integer. '

Example: CMW - LENGTH(5)

IOCHEC(u)}

Gives parity status on non-buffer unit. If zero, no parity error occurred on previous read.
Result is type integer.

LEGVAR(a]

Checks variable a. Result is -1 if variable is indefinite, + | if out of range, and 0 if normal. Variable a is
type real; result is type integer,

The following subroutines are included for compatibility with previous processors only and should be
avoided by new programs.

CALL FTNBIN {i,m,IRAY)

Null routine. All parameters ignored. Exists only for compatibility reasons.

CALL SLITE(i)

Turns on sense light 1. If i = 0, turn all sense lights off. If i is other than (0-6). an informative diagnostic
is printed; and sense lights are not changed.

CALL SLITET(i,j)

Tests sense light. If sense lightiison,] = [, if sense lightiis off. j = 2. Always turns sense light i off. If
1 is other than 1-6, an informative diagnostic is printed: all sense lights remain unchanged; andj = 2.

(Note: Logical variables generally provide a more efficient method of testing a condition than do calls to
SLITE or SLITET). ‘

CALL EXIT

Terminates program execution and returns control to the operating system.

tRefer to section 5, part HI for further information.

[-8-14 60305600 D

- CALL WRITEC (ab,n)

Transfers data from central memory to extended core storage or I1CM.

- CALL READEC (ab,n)
Transfers data from extended core storage to central memory.
A'is a simple variable or array element located in central memory, b is a simple variable or array element '
located inan extended core storage block or 1CM block. n is an integer constant or expression. n consecutive

—_ words of data are transferred beginning with a in central memory and b in extended core storage.

No type conversion is done.

LEVEL 3A
CALL READEC({1,A,10)
_ CALL WRITEC(LA10)

— 60305600 E [-8-15

INPUT/OUTPUT -9

To input or output data, the following information is required: #
Unit number of the input/output device
List of FORTRAN variables to receive input data or from which results are to be output.

Layout or format of data

READ, WRITE, PRINT, or PUNCH statements specify the input or output device and the list. The form of
data is designated by the FORMAT statement.

Data can be formatted or unformatted or list directed. In formatted mode, display code character strings are
converted and transferred according to a FORMAT statement. In unformatted mode, data is transferred in the
form in which it normally appears in storage, no conversion takes place, and no FORMAT statement is used.
In list directed mode, display code character strings are converted and transferred according to the type of the
list items.

Input/output control statements are discussed below. Input/output lists and the FORMAT statements are
covered in section 10.

The following definitions apply to all input/output statements:
u Input/output unit; the operating system associates this unit with an internal file name

which may be:

Integer constant of one or two digits (leading zeros are discarded). The compiler
associates these numbers with file names of the type TAPEu, where u is the file
designator (refer to PROGRAM statement, section 7).

Simple integer variable name with a value of:
1-99, or
A display code file name (L format, left justified with binary zero fill). This is the

internal logical file name.

fn Format designator; a FORMAT statement number or the name of an array containing
the format specification. The statement number must identify a FORMAT statement in
the program unit containing the input/output statement.

iolist Input/output list specifying items to be transmitted (section I-10).

60305600 D : 1-9-1

All information is considered to be a file or part of a file. Local to a given job, a file is identified by a logical
file name (the internal file named, u). All control card references to a file identify it by the logical file name.
The internal central memory representation of a logical file name consists of its literal value in display code. left
justified and zero filled.

Several file names are given special significance. When one of these names is used, the following automatic dis-
position is made, unless the user has defined an alternate disposition:

Card input is assigned to the file INPUT.

Data in the file OUTPUT is assigned to the printer.

Data in the file PUNCH is assigned to the card punch as coded card output.

Data in the file PUNCHB is output on the card punch as binary card output.

FORTRAN RECORD LENGTH

For cards, formatted logical record length cannot exceed 80-characters and for the file OUTPUT, 137 char-
acters. Other files are limited to 150 characters unless the maximum record length is specified on the
PROGRAM STATEMENT (see section 1-7).

The length of an unformatted FORTRAN logical record is determined by the length of the input/output
list, and can be any size.

CARRIAGE CONTROL

Output files assigned to the printer, a maximum of 137 characters can be specified for a line, but only 136
characters are printed. The first character of a line is the carriage control; it is never printed. The second char-
acter in the line appears in the first print position. The printer control characters are listed in section 10. For
off-line printing, printer control is determined by the installation printer routine.

If more than 137 characters are specified for a line. a fatal execution time error results and an error
message is printed.

[-9-2 60305600 D

X

OUTPUT STATEMENTS

PRINT
7 : S
/ { PRINT fn,iofist
' P ;
]
7
& | PRINT fn
1 .
I
I
7
; PRINT{(u,fn) iolist
i
i
7 ‘
; PRINT® iolist
e
; PRINT (u,fn)
I
i
| PRINT{u,*) iolist
! o
’.

This statement transfers information from the storage locations named in the input/output list to the file
named OUTPUT or the file specified by u, according to the specification in the format designator, fn or *
If the user has not specified an alternate assignment, the file OUTPUT is sent to the printer.

60305600 D . 193

X

ROGRAM PRINT (OUTPUT)
=1.2

=3HYES

=19

RINT 4,A,B,N

41 ORMAT (G20.6,A10,I5)

The iolist can be omitted. For example,

PRINT 20
20 FORMAT (30H THIS IS THE END OF THE REPORT)

PUNCH
7

PUNCH fn,iolist

NN

- — il

7 |
/ PUNCH fn oy
l
|
7
/ : PUNCH{u,fn) iolist |
| 5.
!
,
/ : PUNCH* jolist 1
]
|
7

N

PUNCH(u,*) iolist

7
PUNCH({u,fn}

N

Data is transferred from the storage locations specified by iolist to the file PUNCH or the file specified by u.
If the user has not specified an alternate assignment, the file PUNCH is output on the standard punch unit
as Hollerith codes, 80 characters or less per card in accordance with format specification, fn. If the card
image is longer than 80 characters, a second card is punched with the remaining characters.

1-94 60305600 D

5{17

PROGRAM PUNCH (INPUT,OUTPUT,PUNCH)
2||READ 3,A,B,C

3||[FORMAT (3G12.8)

ANSWER = A + B - C

IF (A .EQ. 99.99) STOP
PRINT 4, ANSWER
4/|FORMAT (G20.8)

PUNCH 5,A,B,C,ANSWER
5||[FORMAT (3G12.6,G20.6)
GO TO 2

END

The iolist can be omitted. For example,

PUNCH 30
30 FORMAT (10H LAST CARD)

FORMATTED WRITE

WRITE (u,fn) iolist

S

7
WRITE (u,fn)

WRITE fn,iolist

WRITE fn

TN TN TN

Data is transferred from storage locations specified by iolist to the unit u according to FORMAT
declaration, fn.

60305600 D [-9-5

ROGRAM RITE (OUTPUT,TAPE6=-OUTPUT)
-2.1

=3.

=7

RITE (6,100) X,Y,M

100| [FORMAT (2F6.2,14)

STOP

END

The iolist can be omitted. For example,

WRITE (4,27)
27 FORMAT (32H THIS COLUMN REPRESENTS X VALUES)

UNFORMATTED WRITE

7
WRITE (u) iolist

Example:

PROGRAM OUT(OUTPUT,TAPELO)
DIMENSION A(260),B(4000)

WRITE (10) A,B
END

This statement is used to output binary records. Information is transferred from the list variables. iolist. to
the specified output unit. u. with no FORMAT conversion. One record is created by an unformatted
WRITE statement. (Refer to section S, part III). If the list is omitted. the statement writes a null record on
the output device. A null record has no data but contains all other properties of a legitimate record.

1-9-6 60305600 D

LIST DIRECTED WRITE

7

WRITE(u,”) iolist

| WRITE” jolist

Data is transferred from storage locations specified by the iolist 10 unit u iri @ manner consistent with the list
directed input described below.

For files referenced in list directed WRITE and PRINT statements, the maximum record length in characters
should be specified in the PROGRAM statement (section 1-7).

Example. PROGRAM LDW (OUTPUT=/80+TAPES20UTPUT)
INTEGER JU(4)
COMPLEX Z(2)
DOUBLEPRECISION Q
DATA JsZ9Q/1a=2839=49 (Tas=le)sl=3492:e)31D=5/
WRITE(B.*) J
WRITE(64%)24Q
S10pP
END

Outplit: § =2 3 =4
‘701‘10, ("30,2.) «00001

INPUT STATEMENTS

FORMATTED READ
7

READ (u,fn) iolist

—_— e oy

7
READ ({(u,fn)

I
[
|
[

These statements transmit data from unit u to storage locations named in iolist according to FORMAT specification
fn. The number of words in the list and the FORMAT specifications must conform to the record structure on the
input unit. If the list is omitted, one or more FORTRAN records will be bypassed. The number of records bypassed
is one plus the number of slashes interpreted in the FORMAT statement. Except for information read into H spec-
ifications in the FORMAT statement, the data in the records skipped is ignored.

60305600 E 1-9-7

PROGRAM IN (INPUT,OUTPUT,TAPE4-INPUT,TAPE7-OUTPUT)
READ (4,200) A,B,C

200| [FORMAT (3F7.3)

A - B*C+A

WRITE (7,50) A

50| [FORMAT (50X,F7.4)

STOP

The user should test for an end-of-file after each READ statement to avoid input/output errors. If an
attempt is made to read on unit u and an EOF was encountered on the previous read operation on this unit,
execution terminates and an error message is printed. (Refer to section 5. part III, EOF FUNCTION.)

READ fn,iolist

This statement transmits data from the INPUT file to the locations named in iolist. Data is converted in
accordance with format specification fn.

PROGRAM RLIST (INPUT,OUTPUT)
READ 5,X,Y,Z

5/ [FORMAT (3G20.2)

RESULT = X-Y+Z

PRINT 100, RESULT

100 [FORMAT (10X,G10.2)

STOP

END

UNFORMATTED READ

7
READ (u) iolist

,

T
l
!
|

7
/| READ (u)
|
|
|

1-9-8 60305600 D

One record (refer to section 5, part IIT) of information is transmitted from the specified unit, u, to the
storage locations named in iolist. Records must be in binary form; no format statement is used. The infor-
mation is transmitted from the designated file in the form in which it exists on the file. If the number of
words in the list exceeds the number of words in the record, execution diagnostic results. If the number of
locations specified in the iolist is less than the number of words in the logical record, the excess data is
ignored. If iolist is omitted READ (u) spaces over one record.

PROGRAM AREAD (INPUT,OUTPUT,TAPE2)
READ (2) X,Y,Z
SUM - X+Y+Z/2.

'END
LIST DIRECTED READ

READ{u,”} iolist

READ’, iolist

These statements transmit data from unit u to storage locations named in iolist; the input data items are free
form with separators rather than in fixed size fields.

For files referenced in list directed READ statements, the maximum record length in characters should be
specified in the PROGRAM statement (section I-7).

Example:
PROGRAM LDR (INPUT=/80,0UTPUT=/80+TAPES=INPIITs TAPE6=OUTPUT) |

READ (5.%) CAT+BIRDsLOG
WRITE (69%) #2CAl = 29 CAfle #BIKD = 24 BIRDs #DU0 = g+e 006G

SToP
END

Input:

13.3} ""502’ 001

60305600 E 1-9-9

LIST DIRECTED INPUT DATA FORMS

The List directed READ statement is similar to formatted 1/O statements except an asterisk replaces the
FORMAT statement number. For input statements, the form is!

READ *, iolist
READ(unit,*) iolist

Input data consists of a string of values separated by: one or more blanks, a comma or a slash " either of
which may be preceded or followed by any number of blanks. Also, a line boundary, such as end of record
or end of card, serves as a value separator.

To repeat a value, an integer repeat constant is followed by an asterisk and the constant to be repeated.
Blanks cannot be embedded in a constant or the specification of a repeated constant.

A null may be input in place of a constant when the value assigned to the corresponding list entity is not
to be changed. A null is indicated by the first character in the input string being a comma or by two com-
mas or slashes separated by an arbitrary number of blanks. Nulls may be repeated by specifying an integer
repeat count followed by an asterisk and any value separator. A null cannot be used for either the real or
imaginary part of a complex constant; however, a null can represent an entire complex constant.

When the value separator is a slash, remaining list elements are treated as nulls; when the next input state-
ment is executed for this specified unit, the character following the slash becomes the first input character
for the second READ. When the /O list is exhausted and no slash has been encountered, the next list
directed input on the same unit will begin at the following value separator.

Constants in the input stream take the form of FORTRAN constants except: blanks are not allowed within
a constant and a decimal point omitted from a real constant is assumed to occur to the right of the right-
most digit of the mantissa. Otherwise, each constant must be of the same type as the corresponding list

entry, or the job will be terminated. Furthermore, a repeated constant such as 4*7 should not be used as
input data to variables of differing types.

For example:
BEADIB) 1L J, X, Y
can read correctly:
2*7, 2*7 but not 4%
assuming that I and J are integer and X and Y are real.
Repeated constants or repeated null values should be used entirely by one read.
The only Hollerith constants permitted are those enclosed in the symbol #. They may contain embedded blanks.
The paired symbols # # can be used to represent a single # within a character constant. A character string can-
not be repeated, and it should be read into an integer variable or array. A character constant of less:than 10

characters is padded on the right with blanks to fill the word. Only the first 10 characters are used if the
constant exceeds 10 characters.

[9-10 60305600 D

LIST DIRECTED OUTPUT DATA FORM

List directed output is consistent with the input; however, null values, as well as slashes and repeated constants
are tiot produced. For real or double precision variables with absolute values in the range of 106 to 107, an
F format type of conversion is used; otherwise, an output is of the 1PE type. Trailing zeros in the mantissa
and leading zeros in the exponent are suppressed.

PRINT* list

For list directed PRINT statements, a blank is output as the first character of each record and also as the
first character when a long record is continued on another line; for list directed WRITE statements, a blank
is output gs the first character of each record only.

List directed WRITE statements include the # symbols with the character output; therefore, they should be
used if the list directed record output is to be input subsequently with a list directed READ statement.

For example:

PROGRAM H(OUTPUT=/80)

X = 3.6

PRINT®92THE VALUE OF SGRT(#s Xe #) IS =#s SQRT(X)
WRITE®s25AME WITH WRITEs SUKRT(ZEs Xs 2) IS =z +SART (X)
STOR

END

Output:

THE VALUE OF SQRT(3.8) 13 =1.8373665%90141 -
2SAME WITH WRITE, SORT(Z 3.6 #) I5 =7 1.837366596101

60305600 E I-9-11

FILE MANIPULATION STATEMENTS

REWIND

7
REWIND u

The REWIND operation positions a file so that the next FORTRAN input/output operation references the first
record in the file; even though several ENDFILE statements may have been issued to that unit since the last
REWIND. A mass storage file is positioned at the beginning of information. If the file is already at beginning
of information, the statement acts as a do-nothing statement. (Refer to BACKSPACE/REWIND, section 5,

part III for further information.)

Example:

REWIND 3

BACKSPACE

7
BACKSPACE u

Unit u is backspaced one logical record. If the file is at beginning of information, this statement acts as a
do-nothing statement. A backspace operation should not follow a list directed read on a given file.

§BACKSPACE is permitted for F, S, or W record format or for tape files with one record per block. (Refer to
BACKSPACE/REWIND, section 5, part IlI for further information.)
Example:

DO 1 LUN = 1,10,3
1 BACKSPACE LUN

Files TAPE1. TAPE4, TAPE7. and TAPE10 are backspaced one logical record.

8 Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

1-9-12 60305600 D

ENDFILE

7
ENDFILE u

An end-of-file mark is written on the designated unit.
Example:

IOUT = S8LOUTPUT
END FILE IOUT

End-of-file is written on the file OUTPUT.

Extended core storage and mass storage input/output statements are discussed in section 7, part IIL

BUFFER STATEMENTS

The buffer statements and the read/write statements both accomplish data input/output; however, they
differ in the following respects:

A buffer control statement initiates data transmission and then returns control to the program so that
it can perform other tasks while data transmission is in progress. A read/write statement completes
data transmission before returning control to the program.

In a buffer control statement, parity must be specified by a parity indicator. In the read/write control
statement, the mode of transmission formatted (display code) or unformatted (binary) is tacitly
implied.

The read/write control statements are associated with a list and, if formatted; with a FORMAT
statement. The buffer statements are not associated with a list: data is transmitted to or from a block
of storage.

7

BUEFER IN (u,p) (ab)

p Integer constant or simple integer variable. Designates parity on 7-track magnetic tape,
zero designates even parity: one designates odd parity. p is inoperative for other
peripheral devices.

a First word of record to be transmitted.
b Last word of record to be transmitted. The address of ‘b must be greater than the

address of a. Arrays are stored in the order in which they appear in the dimension
declaration with larger subscripts at higher addresses.

60305600 D [-9-13

Each BUFFER IN statement causes one record of information be. transmitted from unit u to storage loca-
tions a through b. A program should not reference either the unit u or the contents of storage locations a
through b between the time a BUFFER IN statement is executed and the time a Ul function (on the same
unit) indicates the buffer operation is complete. The length of a BUFFER IN record can be ascertained through
either the LENGTH function or the LENGTHX library subroutine (section 8, part I).

1 5[|7
PROGRAM TP (TAPE1,0UTPUT)

INTEGER REC(512) 4RNUMB
REWIND 1

DO 4 RNUME = 1,10000
FER IN (1,1) (REC(1),REC(512))

o
o
C
mn

K=LENGTH(1)

g‘I\F (UNIT(1)) 3,5,5

I !C LENG'TH RETURNS NUMBER OF WORDS TRANSFERRED BY BUFFER 1IN

4 | IPRINT 100,RNUMBy (REC(T1),I=1,4K)
6o l FORMAT (7HORECORD,I5/(1X,10A10))

| 5 |[sToP
END

dd parity information is transferred from logical unit 1 into storage beginning at the first word of the
record REC(1), and extending through the last word of the record REC(512). The UNIT function tests

the status of the buffer operation. If the buffer operation is completed without error, statement 3 is
executed. If an EOF or a parity error is encountered, control transfers to statement 5 and the program

stops

Additional Example:

DIMENSION CALC(50)
BUFFER IN (1,0) (CALC(1),CALC(50)

l Even parity information is'transferred from logical unit 1 into storage beginning at the first word of the
record, CALC(1), and extending through CALC(50), the last word of the record

7

/ 1! BUFFER OUT (u;p) (ab)
| |
|

u,pab are the same as for BUFFER‘AEN

Contents of 'stm:agc‘loé‘atibnsf a through b yarﬁ;wﬁ%t@e'n on unit u in even or odd parity.

19-14 60305600 E

~—

Examples:
BUFFER OUT{(2,0){(OUTBUF{1),0UTBUF(4))

DIMENSION ALPHA{100)
BUFFER OUT (2,1)(ALPHA(1),ALPHA(100))

One record is written for each BUFFER OUT statement. Section 5, part Il contains further information
regarding BUFFER IN/OUT statements.

NAMELIST

The NAMELIST statement permits input and output of groups of variables and arrays with an identifying
name. No format specification is used.

7
1! NAMELIST/group name, /a, .-...a /... /group namen/a1 veeea8y
!
|
group name Symbolic name which must be enclosed in slashes and must be unique within
the program unit.
- T List of variables or array names separated by commas.

The NAMELIST group name identifies the succeeding list of variables or array names. Whenever an input
or output statement references the NAMELIST name, the complete list of associated variables or array
names is read or written.

A NAMELIST group name must be declared in a NAMELIST statement before it is used in an input/
output statement. The group name may be declared only once, and it may not be used for any purpose
other than a NAMELIST name in the program unit. It may appear in any of the input/output statements
in place of the format number:

READ (u, group name)
READ group name
WRITE (u, group name)
PRINT group name
PUNCH group name

It may not, however, be used in an ENCODE or DECODE statement in place of the format number. When
a NAMELIST group name is used, the list must be omitted from the input/output statement.

A variable or array name may belong to one or more NAMELIST groups.

60305600 D [-9-15

Data read by a single NAMELIST name READ statement must contain only names listed in the referenced
NAMELIST group. A set of data items may consist of any subset of the variable names in the NAMELIST.
The value of variables not included in the subset remain unchanged. Variables need not be in the order in
which they appear in the defining NAMELIST statement.

PROGRAM NMLIST (INPUTsOUTPUTsTAPES=INPUTsTAPEO=0UTFUT)
NAMELIST/SHIFP/AsBeCollsll

READ (S5+SHIFP)

IF (CeLE«Q4)STOP

A=B+C

[1=12 + 11

wrITE (69SHIP)

END

Input record
2
(ESHIP A=12.2,B=20.,0=3.4,11-8,12=508

i

Output
ESHIP
A = 0.234E+02,
B = 0.2E+02,
c = 0.34E+01,
I = 58$
I2 = 50,
$END

7
READ (u,group name)

— —

Input data in the format described below is read from the designated unit, u when a READ statement
references a NAMELIST group name. If no group name is found, and an end of file is encountered, a fatal
error Occurs.

[-9-16 60305600 D

INPUT DATA

/— terminator

(A$
(Aarray namef{n) = constant , . .. ,constant,
(Aarray name=constant, . ..,constant,

'Avariable=constant,)
data items

ﬁl$group name

Data items succéeding $ NAMELIST group name are read until another $ is encountered.
Blanks must not appear:

Between § and NAMELIST group name

Within array names and variable names

Within constants and repeated constant fields
Blanks may be used freely elsewhere.

A maximum of 150 characters per input record is allowed. More than one record may be used in input
data. The first column of each record is ignored. All except the last record must end with a constant

followed by a comma.

Data items separated by commas may be in three forms:
variable = constant
array name = constant,...constant

array name(integer constant subscripts) = constant,....constant
Constants can be preceded by a repetition factor and an asterisk.
Example:

5*(1.7,-2.4) five complex constants.

Constants may be integer, real, double precision, complex or logical. Logical constants must be of the form:
TRUE. .T. T .FALSE. F. or F. A logical variable may be replaced only by a logical constant. A complex
variable may be replaced only by a complex constant. A complex constant must have the form (real
constant, real constant). Any other variable may be replaced by an integer. real or double precision
constant; the constant is converted to the type of the variable.

60305600 D -9-17 |

OUTPUT

7
| WRITE(u,group name)

All variables and arrays, and their values, in the list associated with the NAMELIST group name are output
on the designated unit, u. They are output in the order of specification in the NAMELIST Statement.
Output consists of at least three records. The first record is a $ in column 2 followed by the group name;
the last record is a $ in column 2 followed by the characters END.

Example:
PROGRAM NAME (INPUTOUTPUT s TAPES=INPUT» TAPE6=OUTPUT)
NAMELIST/VALUES/TOTAL sQUANT»COST
DATA QUANTCOST/15,93,02/
TOTAL = QUANT#COST#1.3
WRITE (69+VALUES)
STOP
END

Output
$SVALUES
TOTAL = Ne58889999999999F+ 02,
QUANT = 0.15E4020
COST = 0430264014 ”
$SENNP

No data appears in column 1 of any record. If the logical unit referenced is the standard punch unit and a
variable crosses column 80, this and following variables are punched on the next card. The maximum
length of a record written by a WRITE (u,group name) statement is 130 characters. Logical constants
appear as T or F. Elements of an array are output in the order in which they are stored.

Records output by a WRITE (u, group name) statement may be read by a READ (u. group name)
statement using the same NAMELIST name.

Example:

NAMELIST/ITEMS/X,Y,Z

WRITE (6,ITEMS)

[-9-18 60305600 D

Output record:

$ITEMS
X=734.2,
Y=2374.9,
2=22.25,
SEND

This output may be read later in the same program using the following statement:

READ{5, ITEMS)

ARRAYS IN NAMELIST

In input data the number of constants, including repetitions. given for an array name should not exceed the
number of elements in the array.

Example:

DIMENSION BAT(10)
NAMELIST/HAT/BAT,DOT
READ (5,HAT)
2
f/:sHAT BAT-2,3,8*4,D0T=1.05$END
, :
The value of DOT becomes 1.05, the array BAT is as follows:

BAT(1) 2
BAT(2) 3
BAT(3) 4
BAT(4) 4
BAT(S) 4
BAT(6) 4
BAT(7) 4
BAT(8) 4
BAT(9) 4
BAT(10) 4

Example:
DIMENSION GAY(5)
NAMELIST/DAY/GAY,BAY,RAY

READ (5,DAY)

Input Record:
2

r’}sDAY GAY(3)=7.2,GAY(5)=3.0,BAY=2.3,RAY=77.2$
I
array element = constant....,.constant

60305600 D 1-9-19 I

When data is input in this form, the constants are stored consecutively beginning with the location given by
the array element. The number of constants need not equal, but may not exceed, the remaining number of
elements in the array. ‘

Example:
DIMENSION ALPHA (6) ;
NAMELIST/BETA/ALPHA,DELTAX,Y
READ (5,BETA)

Input record:
2

‘ {$BETA ALPHA(3)=7.,8.,9.,DELTA=2.%
N ,

In storage
ALPHA(3) 7.
ALPHA(4) 8.
ALPHA{S) 9.
DELTA 2.

Data initialized by the DATA statement can be changed later in the program by the NAMELIST statement.
Example:

PROGRAM COSTS (INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPUT)
DATA TAX,INT,ACCUM,ANET/23.,10,500.2,17.0/
NAMELIST/RECORDS/TAX,INT,ACCUM, ANET

FIRST = TAX + INT

SECOND = FIRST * SUM

READ{S5, RECORDS)

Input Record:
2

r’kancoans TAX-27., ACCUM=666.2$
I

Example:

DIMENSION Y(3,5)

LOGICAL L

COMPLEX Z
NAMELIST/HURRY/I1,I12,13,K,M,Y,Z,L
READ (5,HURRY)

| 1920 60305600 D

Input Record:

$HURRY Il=1,L=.TRUE,,I2-2,13=3.5,Y(3,5)=26,Y(1,1)=11,
12.0E1,13,4*14,Z=(1.,2.),K=16,M=17§

produce the following values:

I1=1 Y(1,2)=14.0
I12=2 Y(2,2)=14.0
13=3 Y(3,2)=14.0
Y(3,5)=26.0 Y(1,3)=14.0
¥Y(1,1)=11.0 K=16
Y(2,1)=120.0 M=17
Y(3,1)=13.0 2=(1.,2.)
L-.TRUE.

ENCODE AND DECODE

The ENCODE and DECODE statements are used to reformat data in memory; information is transferred under
FORMAT specifications from one area of memory to another.

ENCODE is similar to a WRITE statement, and DECODE is similar to a READ statement. Data is
transmitted under format specifications, but ENCODE and DECODE transfer data internally; no
peripheral equipment is involved. For example, data can be converted to a different format internally
without the necessity of writing it out on tape and rereading under another format.

ENCODE
7
: ENCODE (c,fn,v) iolist
|
i
|
v Variable or array name which supplies the starting location of the record to be encoded.
c Unsigned integer constant or simple integer variable specifying the length of each

record.
The first record starts with the leftmost character of the location specified by v and continues for ¢ characters,
10 characters per computer word. If ¢ is not a multiple of 10, the record ends before the end of the word is

reached; and the remainder of the word is blank filled. Each new record begins with a new computer word.
There is no intrinsic limit on c, except if v is a level 2 variable ¢ must be less than or equal to 150.

fn Format designator, statement label or integer variable, which must not be a NAME-
LIST group name or an *.

iolist List of variables to be transmitted to the location specified by v.

60305600 D [-9-21

Example:

5{ {7

PROGRAM ENCDE (OUTPUT)

DIMENSION A(2) sALPHA(4)

DATA Ay»BsC/10HABCDEFGHIJ9 1 OHKLMNOPQRST ¢ SHUVWXY s 7THZ123456/
ENCODE (404+1+ALPHA)A4B»C

1| FORMAT (2A49AS59A6)

PRINT 2+ALPHA

2| FORMAT (20H1CONTENTS OF ALPHA =48A10)

STOP

{[END

In memory after ENCODE statement has been executed.

ABCDKLMNUVWXYZ12345

ALPHA {1) ALPHA (2) ALPHA (3) ALPHA {4)

ENCODE is a core-to-core transfer of data, which is similar to WRITE. Data in the iolist, in internal form, is
converted under FORMAT specifications, fn, and written in display code into an array or variable.

An integral number of words is allocated for each record created by an ENCODE statement. If ¢ is not a
multiple of 10, the record ends before the end of the word is reached; and the remainder of the word is
blank filled.

If the list and the format specification transmit more than the number of characters specified per record, an
execution error message is printed. If the number of characters transmitted is less than the length specified
by ¢, remaining characters in the record are blank filled.

For example, in the following program which is similar to program ENCDE above, the format statement
has been changed; so that two records are generated by the ENCODE statement. A(1) and A(2) are written
with the format specification 2A4, the / indicates a new record, and the remaining portion of the 40
character record, c, is blank filled. B and C are written into the second record with the specification AS and
A6, and the remaining characters are blank filled. The dimensions of the array ALPHA must be increased
to 8 to accommodate two 40-character records.

[-9-22 60305600 D

F

PROGRAM TW0O (OQUTPUT)

DIMENSION A(2) sALPHA(8)

DATA A9BeC/10HABCUEFOHIJs 1 OHKLMNOPQRST s SHUVWXY s THZ123456/
ENCODE (4091 9ALPHA)AIBSC

1 IFORMAT (2A4/7A54+A6)

PRINT 29ALPHA
2 FORMAT (20H1CONTENTS OF ALPHA =s8A10)

STUP
Enib
Output:
CONTENTS OF ALPHA =ABCDKLMN UVHAXYZ12345

If this same ENCODE statement is altered to:

ENCODE (33,1,ALPHA)A,B,C
1 FORMAT (2A4/A5,A8;

The contents of ALPHA remain the same. When a record ends in the middle of a word the
remainder of the word is blank filled (each new record starts at the beginning of a word).

Record 1 | Record 2

ABCDKLMN b;:n?k UVWXYZ1234 |5 "';‘I‘I"

ALPHA(Y) ALPHA({2) ALPHA(3) ALPHA(4) ALPHA(S) ALPHA(8) ALPHA(7) ALPHA(8)

end of record end of record

The array in core must be large enough to contain the total number of characters specified in the ENCODE
statement. For example, if 70 characters are generated by the ENCODE statement, the array starting at
location v (if v is a single word element) must be dimensioned at least 7. If 27 characters are generated, the
array must be dimensioned 3. If only 6 characters are generated, v can be a 1-word variable.

The following example illustrates that it is possible to encode an area into itself, and the information
previously contained in the area will be destroyed.

6117

PROGRAM ENCO2 (QUTPUT)
I=10HBCDEFGHIJK
Ia=1H1

ENCODE (8+1091) IslAsl
10{ |[FORMAT (A3sAleR4)

PRINT 11l
11} [FORMAT (All)
EnND
Printout is:
BCDIHIJKbb

60305600 D [-9-23

ENCODE may be used to calculate a field definition in a FORMAT specification at object time. Assume
that in the statement FORMAT (2A10,Im) the programmer wishes to specify m at some point in the
program. The following program permits m to vary in the range 2 through 9.

IF(M.LT.10.AND.M.GT.1)1,2
1 ENCODE (10,100,SPECMAT)M
100 FORMAT (7H(2A10,1,11,1H))

.

PRINT SPECMAT,A,B,J

M is tested to ensure it is within limits; if it is not, control goes to statement 2, which could be an
error routine. If M is within limits, ENCODE packs the integer value of M with the characters
(2A10,]). This packed FORMAT is stored in SPECMAT. SPECMAT contains (2A10,Im).

A and B will be printed under specification A10, and the quantity J under specification 12, through
19 according to the value of m.

The following program is another example of forming FORMAT statements internally:

PROGRAM 'I1GEN (OUTPUT,TAPEE=OUTFUT)
DO 9 JI=1,50
ERCODE (10,7 ,FMT)J
7 FORMAT {2H{I,I2,1H}) .
9 WRITE (8,FMT)J
STOF
END

In memory;, FMT is first (I 1) then (I 2), then (1 3), etc.

DECODE

DECODE (c.fn,v) iolist

¢, fn, and v are the same as for ENCODE.

“jolist is the list to receive variables from the location specified by v. iolist conforms to the
syntax of an input/output list.

| o024 60305600 D

T —

5117

PROGRAM ADD (INPUT 4OUTPUT » TAPES=INPUT s TAPE6=0UTPUT)
DIMENSION CARD (8)y INK (77)
2l IREAD (5,100) KEY1,CARD
100/ IFORMAT (I147A104A9)
IF (EOF (5)) 80490
90| |IF (KEY1=2) 34843
31CALL ERROR1
G0 TO 2
8| IWRITE (6+4300) CARD
300/ [FORMAT (1H1+97A106A7///)
DECODE (77+17+CARD) INK
17| [FORMAT (7711)
ITOT = 0
DO & I = 1e77
4{{ITOT = ITOT + INK(I)
ISAVE = ITOT
WRITE (6+200) ISAVE
200! |FORMAT (19Xs#TOTAL OF 77 SCORES ON CARD = #,110)
80 {|STOP
END
SUBROUTINE ERRORI1
WRITE (641)
11 IFORMAT (SX#NUMBER IS NOT 2%#)
RETURN
END

(An explanation of this program appears in part I1.)

DECODE is a core-to-core transfer of data similar to READ. Display code characters in a variable or an array.
v, are converted under format specifications and stored in the list variables, iolist. DECODE reads from a string
of display code characters in an array or variable in memory; whereas the READ statement reads from an input
device. Both statements convert data according to the format specification, fn. Using DECODE, however, the
same information can be read several times with different DECODE and FORMAT statements.

Starting at the named location, v, data is transmitted according to the specified format and stored in the list
variables. If the number of characters per record is not a multiple of 10 (a display code word contains 10 dis-
play code characters) the balance of the word is ignored. However, if the number of characters specified by
the list and the format specification exceeds the number of characters per record, an execution error message
is printed. DECODE processing an illegal BCD character for a given conversion specification produces a FATAL
error. If DECODE is processing an A or R FORMAT specification and encounters a zero character (6 bits

of binary zero), the character is treated as a colon under 64-character set or as a blank under 63-character set.

Example:
¢ # multiple of 10

DECODE (16,1,GAMMA) X,B,C,D
1 FORMAT (248)

60305600 D 1-9-25

beginning of new record
Record 1 \ Record 2

Word 1 Word 2 ' Word 1 Word 2

GAMMA | HEADER 121 | HEAD 0142 | HEADER 122 |HEAD 0233

Last 4 characters of the second
word in each record are ignored.

Data transmitted under this DECODE specification would appear in storage as follows:

X=HEADER 1
B=21HEAD
C=HEADER 1
D=22HEAD

The following illustrates one method. of packing the partial contents of two words into one. Information is
stored in core as:

LOC(1)SSSSSxxxxx

.

LOC(6)xxxxxDDDDD
To form SSSSSDDDDD in storage location NAME:
DECODE({10,1,L0C(6))TEMP
1 FORMAT({5X,A5)

ENCODE(10,2,NAME)LOC(1), TEMP
2 FORMAT(2AS5)

The DECODE statement places the last 5 display code characters of LOC(6) into the first 5

characters of TEMP. The ENCODE statement packs the first 5 characters of LOC(1) and TEMP into
NAME. '

Using the R specification, the example above could be shortened to:

ENCODE(10,1,NAME}LOC(1),L0C(8)
1 FORMAT(AS5,R5)

| 1926 60305606 D

S’

INPUT/OUTPUT LISTS AND FORMAT STATEMENTS I-10

This chapter covers input/output lists and FORMAT statements. Input/output statements, which include
READ and WRITE, are covered in section 1-9.

INPUT/OUTPUT LISTS

The list portion of an input/output statement specifies the items to be read or written and the order of
transmission. The input/output list can contain any number of elements. List items are read or written
sequentially from left to right.

If no list appears on input, a record is skipped. Only Hollerith information from the FORMAT statement
can be output with a null (empty) output list.

A list consists of a variable name, an array name, an array element name, or an implied DO list. On output
the data list can include Hollerith constants and arithmetic expressions. Such expressions must not reference
a function if such reference would cause any input/output operations (including DEBUG output) to be
executed or would cause the value of any element of the output statement to be changed.

Multiple lists may appear, separated by commas, each of which may be enclosed in parentheses, such as:

(),(0).

An array name without subscripts in an input/output list specifies the entire array in the order in which it
is stored. The entire array (not just the first word of the array) is read or written.

Subscripts in an input/output list may be any valid subscript (section I-2).
Examples:

READ 100,A,B,C,D
READ 200,A,B,C(I),D(3,4),E(I,J,7).H

READ 101,J,A(J),I,B(I,J)

READ 202,DELTA

READ 102, DELTA(5*J+2,5*I-3,5*K),C,D(I+7)
READ 3,A,(B,C,D),(X,Y)

An implied DO list is a list followed by a comma and an implied DO specification, all enclosed in
parentheses.

60305600 E 1-10-1

A DO-implied specification takes one of the following forms:

1= m;,m,m I = m,m,

The elements i, m;, m,, and m, have the same meaning as in the DO statement. The range of a DO-implied
specification is that of the DO-implied list. The values of i, m;, m,. and m; must not be changed within the
range of the DO implied list by a READ statement.

On input or output, the list is scanned and each variable in the list is paired with the field specification
provided by the FORMAT statement. After one item has been input or output, the next format specification
is taken together with the next element of the list, and so on until the end of the list.

Example:

READ (5,20)L,M,N
20 FORMAT (I3,12,17)

Input record

100243456712
P

100 is read into the variable L under the specification 13, 22 is read into M under the specification
12, and 3456712 is read into N under specification 17.

Reading more data than is in the input stream produces unpredictable values. The EOF function described in
section 18 may be used to test for end-of-file.
ARRAY TRANSMISSION

Input/output of array elements may be accomplished by using an implied DO loop. The list of variables
followed by the DO loop index, is enclosed in parentheses to form a single element of the input/output list

Example:
READ (5,100) (A(I),I=1,3)
has the same effect as the statement
READ (5,100) A(1),A(2),A(3)
The general form for an implied DO loop is:
(voo({1ist,i=m,my,ms), =31, Jos33)seeeri KK K3)

m,j,k are unsigned integer constants or predefined positive integer variables. If ms, j; or k; is omitted,
a one is used for incrementing.

ij...ip are integer control variables. A control variable should not be used twice in the same implied DO nest,
but array names, array elements, and variables may appear more than once.

I-10-2 60305600 D

N

The first control variable (i,) defined in the list is incremented first. i, is set equal to m; and the associated list is
transmitted; then i, is incremented by mj, until m, is exceeded. When the first control variable reaches m,, it is
reset to m,; the next control variable at the right (i,) is incremented; and the process is repeated until the last
control variable (in) has been incremented, until k, is exceeded.
The general form for an array is:
(((A(I,J,K),1=m,mym3),1,0,,05 03), iyk,,k;ky)

Example:

READ 100, ((A(JV,JX),JV=2,20,2),JX=1,30)

READ 200, (BETA(3*JON+7),JON=JONA,JONB,JONC)

READ 300, (((ITMLIST(I,J+1,K- 2),I-1,25),J=2,N),K=IVAR,IVMAX,4)
An implied DO loop can be used to transmit a simple variable more than one time. For example, the list
item (A(K),B,K=1,5) causes the variable B to be transmitted five times. An input list of the form
K.(A(I).]=1,K) is permitted, and the input value of K is used in the implied DO loop. The index variable
in an implied DO list must be an integer variable.

Examples of simple implied DO loop list items:

READ 400, (A{I),I=1,10)
400 FORMAT (E20.10)

The following DO loop would have the same effect:

Do 5 1=-1,10
5 READ 400, A{(I)

Example:
CAT,DOG, and RA+ will be transmitted 10 times each with the following iolist

(CAT, DOG, RAT, I-1,10)

Implied DO loops may be nested.

Example:
DIMENSION MATRIX(3,4,7)
READ 100, MATRIX

100 FORMAT (16)

Equivalent to the following:

DIMENSION MATRIX(3,4,7)
READ 100, (((MATRIX(I,J,K),I=1,3),J=1,4),K=1,7)

60305600 B I-10-3

The list is similar to the nest of DO loops:

o
(o}

=1
=1,
=1

o o
o O
(4 04 B]
- X
[I]

’

5 READ 100, MATRIX(I,J,K)
Example:

The following list item transmits nine elements into the array E in the order: E(1,1), E(1,2), E(1,3),
E(2,1), E(2,2), E(2,3), E(3,1), E(3,2), E(3,3)

READ 100, ((E(I,7),J=1,3)I=1,3)

Example:

READ 100,(((((A(I,J,K),B(I.L)C(J,N),I=1,10),J=1,5),
X XK-1,8),L=1,15),N=2,7)

Data is transmitted in the following sequence:

A(1,1,1), B(1,1), ©(1,2), - A(2,1,1), B(2,1), = C(1,2)...
...A(10,1,1), B(10,1), €(1,2), A(1,2,1), B(1,1), C(2,2)...
...A(10,2,1), B(10,1), €(2,2),...A(10,5,1), B(1l0,1), C(5,2)...
...A(10,5,8), B(10,1), €(5,2),...A(10,5,8), B(10,15), C(5,2)...

Data can be read from or written into part of an array by using the implied DO loop.
Examples:

READ (5,100) (MATRIX(I),I=1,10)
100 FORMAT (F7.2)

Data (consisting of one constant per record) is read into the first 10 elements of the array MATRIX.
The following statements would have the same effect:

DO 40 I = 1,10
40 READ (5,100) MATRIX(I)
100 FORMAT (F7.2)

In this example, assuming unit S is the card reader, numbers are read, one from each card, into the elements
MATRIX(1) through MATRIX(10) of the array MATRIX. The READ statement is encountered each time
the DO loop is executed; and a new card is read for each element of the array. Each execution of a READ
statement reads at least one record regardless of the FORMAT statement.

1-104 60305600 B

READ (5,100) (MATRIX(I),I=1,10)
100 FORMAT (F7.2)

In the above statements, the implied DO statement is part of the READ statement; therefore, the
FORMAT statement specifies the format of the data input and determines when a new card will be
read.

If statement 100 FORMAT (F7.2) had been 100 FORMAT (4F20.10), only three cards would be
read.

To read data into an entire array, it is necessary only to name the array in a list without any subscripts.
Example:

DIMENSION B (10,15)
READ 13,B

is equivalent to
READ 13, ((B(I,J),I-1,10),J=1,15)

The entire array B will be transmitted in both cases.

FORMAT STATEMENT

Input and output can be formatted or unformatted. Formatted information consists of strings of characters
acceptable to the FORTRAN processor. Unformatted information consists of strings of binary word values
in the form in which they normally appear in storage. A FORMAT statement is required to transmit

formatted information.

5 7
FORMAT (fs,,... fs)

sn

sn Statement label which must appear

fsy,....fs, Set of one or more field specifications separated by commas and/or slashes and
optionally grouped by parentheses

Example:

READ (5,100) INK,NAME,AREA
100 FORMAT (10X,I4,I2,F7.2)

FORMAT is a non-executable statement which specifies the format of data to be moved between input/output

device and main memory. It is used in conjunction with read and write statements, and it may appear anywhere in
the program.

60305600 B [-10-5

The FORMAT specification is enclosed in parentheses. Blanks are not significant except in Hollerith field
specifications.

Generally, each item in an input/output list is associated with a corresponding field specification in a FORMAT
statement. The FORMAT statement specifies the external format of the data, and the type of conversion to
be used, and defines the length of the FORTRAN record or records. COMPLEX variables always correspond
to two field specifications. DOUBLE variables correspond to one floating point field specification (D, E, F, G)
or two of any other kind. The D field specification will correspond to exactly one list item or half of a
COMPLEX item.

The type of conversion should correspond to the type of the variable in the input/output list. The
FORMAT statement specifies the type of conversion for the input data, with no regard to the type of the
variable which receives the value when reading is complete.

For example:

INTEGER N
READ (5,100) N
100 FORMAT (F10.2)

A floating point number is assigned to the variable N which could cause unpredictable results if N is
referenced later as an integer.

DATA CONVERSION

The following types of data conversions are available:
stEw.d Single precision floating point with exponent
stEw.dEe With explicitly specified exponent length
stEw.dDe With explicitly specified exponent: length

stFw.d Single precision floating point without exponent
stGw.d Single precision floating point with or without exponent
stDw.d Double precision floating point with exponent
rlw Decimal integer conversion

rlw.z With minimum number of digits specified

rLw Logical conversion

rAw Character conversion

tRw Character conversion

Ow Octal integer conversion

tOw.z With minimum number of digits specified

Zw Hexadecimal conversion

stVw.d Variable type conversion

I-10-6 60305600 E

~—

E.F.G,D,I.L, A R, O, and Z are the codes which indicate the type of conversion.

~—

W Non-zero, unsigned, integer constant which specifies the field width in number of character
positions in the external record. This width includes any leading blanks, + or - signs, deci-
mal point, and exponent.

d Integer constant which represents the number of digits to the right of the decimal point
within the field. On output all numbers are rounded.

r Unsigned integer constant which indicates the conversion code is to be repeated.

S Optional: it represents a scale factor.

z Minimum number of digits to output.

The field width w must be specified for all conversion codes. If d is not specified for w.d. it 1
assumed to be zero. w must be = d.

FIELD SEPARATORS

Field separators are used to separate specifications and groups of specifications. The format field separators
are the slash (/) and the comma. The slash is also used to specify demarcation of formatted records.

CONVERSION SPECIFICATION

Leading blanks are not significant in numeric input conversions: other blanks are treated as zeros. Plus
) signs may be omitted. An all blank field is considered to be minus zero. except for logical input. where an
- all blank field is considered to be FALSE. When an all blank field is read with a Hollerith input
specification. each blank character will be translated into a display code 55 octal.

For the E. F. G. and D input conversions, a decimal point in the input field overrides the decimal point
specification of the field descriptor.

The output field is right justified for all output conversions. If the number of characters produced by the
conversion is less than the field width, leading blanks are inserted in the output field. The number of
characters produced by an output conversion must not be greater than the field width. If the field width 18
exceeded, asterisks are inserted throughout the field.

Complex data items are converted on input/output as two independent floating point quantities. The
format specification uses two conversion elements.

Example:
COMPLEX A,B,C,D
PRINT 10,A
10 FORMAT (F7.2,E8.2)
READ 11,B,C,D
11 FORMAT (2E10.3,2(F8.3,F4.1))

Data of differing types may be read by the same FORMAT statement. For example:

10 FORMAT (I5,F15.2)

60305600 D I-10-7

specifies two numbers, the first of type integer, the second of type real.

READ (5,15) NO,NONE,INK,A,B,R
15 FORMAT (315,2F7.2,A4)

reads 3 integer variables
reads 2 real variables

reads 1 character variable

| 1w and 1wz iNPUT
The I conversion is used to input decimal integer constants.
Iw lw.z

w is a decimal integer constant designating the total number of characters in the field including signs and
blanks. z is ignored on input.

The plus sign may be omitted for positive integers. When a sign appears, it must precede the first digit in
the field. Blanks are mterpreted as zeros. An all blank field is considered to be minus zero. Decimal points
are not permitted. The value is stored in the specified variable. Any character other than a decimal digit.
blank, or the leading plus or minus sign in an integer field on input will terminate execution.

Example:

READ 10,I1,J,K,L,M,N
10 FORMAT (13,17,12,13,12,14)

Input Card: In storage:
T3dbb-150 N TNy I contains 139 L contains 7
3 % 2 4 J contains -1500 M contains -0
K contains 18 N contains 104

Iw and lw.z OUTPUT
The | specification is used to output decimal integer values.
Iw lw.z

w is a decimal integer constant designating the total number of characters in the field including signs and
blanks. If the integer is positive the plus sign is suppressed. Numbers in the range of - 23594+ 1 1o 259]
(259-1=576 460 752 303 423 487) are output correctly.

2z is a decimal integer constant designating the minimum number of digits output. Leading zeros are generated
when the output value requires less than z digits. If z=0, a zero value will produce all blanks. [f z=w. no blanks
will occur in the field when the value is positive, and the field will be too short for any negative value. Not
specifving z produces the same results as z=].

1-10-8 60305600 D

The specification Iw or Iw.z outputs a number in the following format:

ba...a
b Minus sign if the number is negative, or blank if the number is positive
a.a May be a maximum of 18 digits

The output quantity is right justified with blanks on the left.

If the field is too short, all asterisks occupy the field.

Example:
PRINT 10,I1,J,K
10 FORMAT (I19,110,I5.3)

Result:

Exampile:
~— WRITE (6,100)N,M,I
100 FORMAT (15,16,19)

Result:

Ist blank taken
as printer control
character

Ew.d, Ew.dEe and Ew.dDe OUTPUT

[contains -3762
J contains +4762937
K contains + 13

bbb-3762|bbb4762937|6b013
N’ ——
8 10 5
/

Ist blank taken as

printer control character

N contains + 20
M contains -731450
I contains +205

bb20]* * *** *|bbbbbb205|
o N o e e’

4 6 9
t
specification too
small; * indicates field
is too short

E specifies conversion between an internal real value and an external number written with exponent.

Ew.d Ew.dEe Ew.dDe

w is an unsigned integer designating the total number of characters in the field. w must be wide enough to
contain digits, plus or minus signs, decimal point, E, the exponent, and blanks. Generally, w = d + 6

or w>d + e + 4 for negative numbers and w > d + 5 or w > d + e + 3 for positive numbers. Positive
numbers need not reserve a space for the sign of the number. If the field is not wide enough to contain the
output value, asterisks are inserted throughout the field. If the field is longer than the output value. the quan-
tity is right justified with blanks on the left. If the value being converted is indefinite, an I is printed in the

field: if it is out of range, an R is printed.

60305600 D

I-10-9

d specifies the number of digits to the right of the decimal within the field.
e specifies the number of digits in the exponent.
The Ew.d specification produces output in the following formats:
b.a...aE * ee For values where the magnitude of the exponent is less than one hundred
b.a..a * eee For values where the magnitude of the exponent exceeds one hundred
b is a minus sign if the number is negative, and a blank if the number is positive
a..a is the most significant digits of the value correctly rounded
When the specification Ew.dEe or Ew.dDe is used, the exponent is denoted by E or D and the number of

digits used for the exponent field not counting the letter and sign is determined by e. If e is specified too
small for the value being output, the entire field width as specified by w will be filled with asterisks.

Examples:
PRINT 10,A A contains -67.32 or +67.32
10 FORMAT (E10.3)
Result: -.673E+02 Or b.673E+02
PRINT 10,A

10 FORMAT (E13.3)

Result: bbb-.673E+02 Or bbbb.673E+02

If an integer variable is output under the Ew.d specification, results are unpredictable since the internal format

of real and integer values differ. An integer value does not have an exponent and will be printed, therefore, as
a very small value or 0.0.

I-10-10 60305600 D

Ew.d, Ew.dEe and Ew.dDe INPUT
E specifies conversion between an external number written with an exponent and an internal real value.

Ew.d Ew.dEe Ew.dDe

w is an unsigned integer designating the total number of characters in the field, including plus or minus
signs, digits. decimal point, E and exponent. If an external decimal point is not provided, d acts as a
negative power-of-10 scaling factor. The internal representation of the input quantity is:

(integer subfield)x 107 x 10 {exponent subfieid)

For example. if the specification is E10.8. the input quantity 3267E+05 is converted and stored as:
3267%x 107 x 10" =3.267.

If an external decimal point is provided, it overrides d. If d does not appear it is assumed to be zero. e, if
specified, has no effect on input.

In the input data. leading blanks are not significant: other blanks are interpreted as zeros.
An input field consisting entirely of blanks is interpreted as minus zero.

The following diagram illustrates the structure of the input field:

input field
+ +
digit EorD
integer fraction exponent
subfield subfield

The integer subfield begins with a + or - sign. a digit. or a blank: and it may contain a string of digits. The
integer field is terminated by a decimal point, E. +. - or the end of the input field.

The fraction subfield begins with a decimal point and terminates with an E. +. - or the end of the input
field. It may contain a string of digits.

The exponent subfield may begin with E, + or -. When it begins with E. the + is optional between E and
the string of digits in the subfield.

For example, the following are valid equivalent forms for the exponent 3:

E+ O03|E 03]E03|E+ 3|E3|+ 3|+3|{D3|D+3|D+ 3

®e o 0o LA N) oo LI W) LN 4 o 00 LN) LN] e 0 L2 B I]

The range, in absolute value, of permissible values is 3.13152E-294 to 1.26501E322 approximately. Smaller
numbers will be treated as zero; larger numbers will cause a fatal error message.

60305600 D [-10-11

Valid subfield combinations:

+1.6327E-04 Integer-fraction-exponent
-32.7216 integer-fraction

+328+5 integer-exponent

629E-1 fraction-exponent

+136 integer only

136 » integer only

07628431 fraction only

E-06 (interpreted as zero) exponent only

If the field length specified by w in Ew.d is not the same as the length of the field containing the input
number. incorrect numbers may be read, converted. and stored. The following example illustrates a
situation where numbers are read incorrectly. converted and stored: yet there is no immediate indication

that an error has occurred:

READ 20,A,B,C
20 FORMAT (E9.3,E7.2,E10.3)

On the card. input quantities are in three adjacent fields, columns 1-24:

+6,47E-01-2.36+5.321E+02
9 5 10

9 10

7
+6.47E-01 I

+8.47E-012.36+5

+6.47E-01-2.36+5 321E+02bb

First. +647E-01 is read. converted and placed in location A. The second specification E7.2 exceeds
the width of the second field by two characters. The number -2.36 +5 is read instead of -2.36. The
specification error (E7.2 instead of ES5.2) caused the two extra characters to be read. The number
read (-2.36+5) is a legitimate input number. Since the second specification incorrectly took two
digits from the third number. the specification for the third number is now incorrect. The number
321E+02bb is read. Trailing blanks are treated as zeros; therefore the number 321E+0200 is read
converted and placed in location C. Here again. this is a legitimate input number which is converted
and stored, even though it is not the number desired.

I-10-12 60305600 A

Examples of Ew.d input specifications:

Input Field Specification Converted Value Remarks
+143.26E-03 E11.2 .14326 All subfields present
-12.437629E+1 E13.6 -124.37629 All subfields present
327.625 E7.3 327.625 No exponent subfield
4.376 ES 4.376 No d in specification
0003627+5 E11.7 -36.27 Integer subfield left of decimal
contains only a minus sign and a
plus sign appears instead of E in
input field
-.0003627E5 E11.7 -36.27 Integer subfield left of decimal
contains minus sign only
blanks Ew.d -0. All subfields empty
1E1 E3.0 10. No fraction subfield; input num-
ber converted as 1.x10
E+06 E10.6 0. No integer or fraction subfield;
zero stored regardless of expo-
nent field contents
1.bEb? E6.3 10. Blanks are interpreted as zeros
1.0E16 E6.3 10000000000000.
Fw.d OUTPUT

The F specification outputs a real number without a decimal exponent.

Fw.d

w is an unsigned integer which designates the total number of characters in the field including the
sign (if negative) and decimal point. w must be = d + 2.

d specifies the number of places to the right of the decimal point. When d is zero, only the digits to the

left of the decimal and the decimal point are printed.

The plus sign is suppressed for positive numbers. If the field is too short, all asterisks appear in the output field.

If the field is longer than required, the number is right justified with blanks on the left. If the value being
converted is indefinite, an I is printed in the field; if it is out of range, an R is printed.

60305600 D

I-10-13

The specification Fw.d outputs a number in the following format:

r——— decimal point
b..a%a...a

b Minus sign if the number is negative, or blank if the number is positive.
Examples:

Value of A FORMAT Statement PRINT Statement Printed Result
+32.694 10 FORMAT (1H ,F6.3) PRINT 10,A 32.694
+32.694 11 FORMAT (1H ,F10.3) PRINT 11,A bbbb32.694
-32.694 12 FORMAT. (1H ,F6.3) PRINT 12,A kb

32694 13 FORMAT (1H ,F4.3,F6.3) PRINT 13,AA .327bb.327

The specification 1H is the carriage control character.
Fw.d INPUT
On input F specification is treated identically to the E specification.

Examples of the F format specification:

Input Field Specification Converted Value Remarks
367.2593 F8.4 367.2593 Integer and fraction field
-4.7366 F7 -4.7366 No d in specification
.62543 F6.5 .625643 No integer subfield
62543 F6.2 62543 Decimal point overrides d of speci-
fication
+144.15E-03 F11.2 14415 Exponents are allowed in F input,

and may have P scaling

5bbbb F5.2 500.00 No fraction subfield; input number
converted as 50000x 102

bbbbb F5.2 -0.00 Blanks in input field interpreted as
-0

I-10-14 60305600 D

- Gw.d INPUT

Input under control of G specification is the same as for the E specification. The rules which apply to the E
specification apply to the G specification. .

Gw.d
w ’ Unsigned integer which designates t'he total number of characters in the field including
E, digits, sign, and decimal point
d Number of places to the right of the decimal point
Example: ‘

READ (5,11) A,B,C
11 FORMAT (G13.6,2G12.4)

Gw.d OUTPUT

Output under control of the G specification is dependent on the size of the floating point number being
converted. The number is output under the F conversion unless the magnitude of the data exceeds the range
which permits effective use of the F. In this case, it is output under E conversion with an exponent.

Gwd

w Unsigned integer which designates the total number of characters in the field including
digits, signs and decimal point, the exponent E, and any leading blanks. .

d Number of significant digits output.

If a number is output under the G specification without an exponent, four spaces are inserted to the right of
the field (these spaces are reserved for the exponent field E +00). Therefore. for output under G conversion
w must be greater than or equal to d + 6. The six extra spaces are required for sign and decimal point plus
four spaces for the exponent field.

Example:

' PRINT 200,YES YES contains 77.132
200 FORMAT (G10.3)

L

Output: b77.1bbbb b denotes a blank

If the decimal point is not within the first d significant digits of the number, the exponential form is used
(G is treated as if it were E). :

60305600 A ' T I-10-15

Example:

PRINT 100, EXIT EXIT contains 1214635.1
100 FORMAT (G10.3)

Output: .1215E+07 -
Example:

READ (5,50) SAMPLE

WRITE (6,20) SAMPLE
20 FORMAT (1X,G17.8)

Data read by
READ statement Data Output format QOption
.1415926535bE-10 .141592653E-10 E conversion
-8979323846 89793238 . F conversion
2643383279. .264338328E+10 E conversion
-693.9937510 " 2693.99375 . F conversion
Dw.d OUTPUT

Dwd

Type D conversion is used to output double precision variables. D conversion corresponds to E conversion
except that D replaces E at the beginning of the exponent subfield. If the value being converted is
indefinite, an I is printed in the field; if it is out of range, an R is printed.

1-10-16 ' 60305600 C

Examples of type D output:

DOUBLE A,B,C

A 111111.11111

B 222222.22222

C=A+B

PRINT 10,A,B,C
10 FORMAT (3D23.11)

[l

.11111111111D+06 .22222222222D+06 .33333333333D+06

The specification Dw.d produces output in the following format:

I—— decimal point

bla..ateee -308 < eee < 337

b.a..aD tee 0<ee<99
b Minus sign if the number is negative. or blank if the number is positive
a..a Most significant digits
ee Digits in the exponent

Dw.d INPUT

D conversion corresponds to E conversion except that D replaces E at the beginning of the exponent
subfield.

The following diagram illustrates the structure of the input field:

input field
+ +
digit DorE
integer fraction exponent
subfield subfield

Ow INPUT
Octal values are converted under the O specification.

Ow
w is an unsigned integer designating the total number of characters in the field. The input field may contain
a maximum of 20 octal digits. Blanks are allowed and a plus or minus sign may precede the first octal digit.
Blanks are interpreted as zeros and an all blank field is interpreted as minus zero. A decimal point is not

allowed. -

The list item corresponding to the Ow specification should be integer.

60305600 C I-10-17

Example:
INTEGER P,Q,R
READ 10,P,Q,R
10 FORMAT (010,012,02)

Input Card:
(3737375731?66b6644b44 0
o !

10 12 2

Input storage (octal representation):

p [00000000003737373737
Q |00000000666066440444
R 7777777777777 7777777

Ow OUTPUT
The O specification is used to output the internal representation in octal.

Ow Ow.d

w is an unsigned integer designating the total number of characters in the field. If w is less than 20, the
rightmost digits are output. For example, if the contents of location P were output with the following
statement the digit 3737 would be output.

WRITE (6,1) P location P 00000000003737373737
100 FORMAT (1X,04)

If w is greater than 20, the 20 octal digits (20 octal digits = a 60- bit word) are right justified with blanks
on the left.

For example, if the contents of location P are output with the following statement

WRITE (6,200) P
200 FORMAT (1X,022)

Output would appear as follows:
bb0O00O0O000003737373737 b = blank
A negative number is output in one’s complement internal form.
If d is specified, the number is printed with leading zero suppression and with a minus sign for negative

numbers. At least d digits will be printed. If the number cannot be output in w octal digits, all asterisks
will fill the field.

1-10-18 60305600 D

N

Example:

I = -11

WRITE (6,200) I
Output would appear as follows:
boTTTTTIVTTTTTI?I7777764

The specification Ow produces a string of up to 20 octal digits. Two octal specifications must be used for variables
whose type is complex or double precision.

Zw INPUT and OUTPUT

Hexadecimal values are converted under the Z specification.

Zw

H

w is an unsigned inlteger designating the total number of characters in the field. The input field may contain
digits and the letters A through F. A maximum of 15 hexadecimal digits is allowed, blanks and a plus or
minus sign may precede the first hexadecimal digit. On output if w is greater than 15, leading blanks will
occur.

Aw INPUT

The A specification is used to input character data
Aw

w is an unsigned integer designating the total number of characters in the field.

Character information is stored as 6-bit display code characters, 10 characters per 60-bit word. For example, the
digit 4 when read under A specification is stored as a display code 37. If w is less than 10, the input quantity is
stored left justified in the word; the remainder of the word is filled with blanks.

Example:

READ (5,100) A
100 FORMAT (A7)

Input record:

(EXAMPLE

When EXAMPLE is read it is stored left justified in the 10 character word

1234567890
[FIX,

3
FAMPIIE]]])

If w is greater than 10, the rightmost 10 characters are stored and remaining characters are ignored.

Example:

READ (5,200)B
200 FORMAT (A13)

60305600 D [-10-19

Input record:

1 13
(SPECIFICATION

In storage:

12345678910
EESRSAGREY

READ (5,10) Q,P,R
10 FORMAT (Al10,Al10,A5)

Input record:

THIS IS AN|EXAMPLE 1 Knowl
44‘(o | “— e |

10 10 5

In storage:

12345678910

Aw OUTPUT
The A specification is used to output alphanumeric characters.
Aw

w is an unsigned integer designating the total number of characters in the field. If w is less than 10.
the leftmost characters in the word are printed. For example. if the contents of location A in the Aw
input example are output with the following statements:

WRITE (6,300)A
300 FORMAT (1X,A4)

In storage:

A EREETT]

Characters EXAM are output

[-10-20 60305600 A

B If w is greater than 10, the value is right justified in the output field with blanks on the left. For example. if
A in the previous example is output with the following statements:

WRITE (6,400)A
400 FORMAT (1X,Al2)

Printed output appears as follows:

bbEXAMPLEbbbD b = blank

Rw INPUT

w is an unsigned integer designating the total number of characters in the field. The R specification is the
same as the A specification with the following exception. If w is less than 10, the input characters are stored
right justified, with binary zero fill on the left.

Example:

READ (5,600) HOO,RAY
600 FORMAT (R10,R5)

Input card:

ﬁESULTs OF TESTl
1 Y
10 5

In storage:

HOO {RESULTISBOF

b = blank

Rw OUTPUT
Rw
w is an unsigned integer designating the total number of characters in the field.
This spe.ciﬁcation is the same as the A specification with the following exception. If w is less than 10. the
rightmost characters are output. For example. if RAY from the previous example is output with the

following statements:

WRITE (6,700) RAY
700 FORMAT (1X,R3) Characters EST are output.

60305600 C [-10-21

Lw INPUT
The L specification is used to input logical variables.
Lw
w is an unsigned integer designating the total number of characters in the field.
If the first non-blank character in the field is T, the logical value .TRUE. is stored in the corresponding list
item which should be of type logical. If the first non-blank character is F, the value .FALSE. is stored. If the
first non-blank character is not T or F, a diagnostic is printed. An all blank field has the value .FALSE.
Lw OUTPUT
Lw

w is an unsigned integer designating the total number of characters in the field.

Variables output under the L specification should be of type logical. A value of .TRUE. or .FALSE. in
storage is output as a right justified T or F with blanks on the left.

Example:
LOGICAL I,J,K I contains -0
PRINT 5,1,J,K J contains O
5 FORMAT (3L3) K contains -0 —
Output:
bTbbFbbT

SCALE FACTORS

The scale factor P is used to change the position of a decimal point of a real number when it 1s input or
output. Scale factors may precede D, E, F and G format specifications.

nPDw.d

nPEw.d nPEw.dEe nPEw.dDe
nPFw.d

nPGw.d.

nP

n is the scale factor. It is a positive, optionally signed, or negative integer constant. w is an unsigned integer
constant designating the total width of the field. d determines the number of digits to the right of the deci-

mal point.

[-10-22 60305600 b

A scale factor of zero is established when each format control statement is first referenced; it holds for all
F, E, G, and D field descriptors until another scale factor is encountered.

Once a scale factor is specified, it holds for all D, E, F, and G specifications in that FORMAT statement
until another scale factor is encountered. To nullify this effect for subsequent D, E, F, and G specifications.
a zero scale factor, OP must precede a specification.

Example:
15 FORMAT(2PE14.3,F10.2,G16.2,0P4F13.2)

The 2P scale factor applies to the E14.3 format specification and also to the F10.2 and G 16.2 format
specification. The OP scale factor restores normal scaling (10° = 1) for the subsequent specification
4F13.2.

A scaling factor may appear independently of a D, E, F or G specification. It holds for all subsequent D, E,
F or G specifications within the same FORMAT statement,until changed by another scaling factor.

Example:
FORMAT(3P,5X,E12.6,F10.3,0PD18.7,-1P,F5.2)

E12.6 and F10.3 specifications are scaled by 10°, the D18.7 specxﬁcauon is not scaled, and the F5.2
specification is scaled by 107,

The specification (3P,319,F10.2) is the same as the specification (319,3PF10.2).

Fw.d SCALING
INPUT

The number in the input field is divided by 10" and stored. For example, if the input quantity 314.1592 is
read under the specification 2PF8.4, the internal number is 314.1592 X 102 = 3.141592. However, if an
exponent is read the scale factor is ignored.

OUTPUT

The number in the output field is the internal number multiplied by 10". In the output representation. the
decimal point is fixed; the number moves to the left or right, depending on whether the scale factor is plus
or minus. For example, the internal number-3.1415926536 may be represented on output under scaled F
specifications as follows:

800 0000000000000 00000 000000000
(-1PF13. 6) -e314159
(Fi13. o) -3.141593
(1PF13. 6) -31.415927
(3PF13. 6) =3141.592654

60305600 D [-10-23

Ew.D SCALING
INPUT

Ew.d scaling on input is the same as Fw.d scaling on input.

OUTPUT

The scale factor has the effect of shifting the output number left n places while reducing the exponent by n.
Using -3.1415926536, the following are output representations corresponding to scaled E specifications:

(=3PE20a 4) -.0003E+04
(-1PE20. &) -.031LE+02
(£20. &) -s3142E+(1
(1PE20. &) -3.1416E+C0
(3FE20. &) -314elbE-{2

Gw.d SCALING
INPUT

Gw.d scaling on input is the same as Fw.d scaling on input.

OUTPUT

The effect of the scale factor is suspended unless the magnitude of the data to be converted is outside the
range that permits the effective use of F conversion. Using first -3.1415926536 then -.00314159, the following

are scaled G specifications:

(-3PG20. 5) -3.14153 (=3FG2C. &) -—eTLC314E+LY

(-1PG20. 6) -3.14159 (-1PG20. 6} -« 031416E~02

(G20« 6) -3.14159 (G20. o) e 314153E-023

(1PG20. 6) -3.14159 (1PG2C.) - 2.141593E-C

(3PG20. 6) -3.14159 (3PG2C. &) -31441533E-"6

(5PG20. &) -3.14153 (5PG20. 6) ~31415.33F =04
(7PG20. o) -3.141583

SO0 8 O 80 59 5895 000 IO DD 0L e 00

X

The X specification is used to skip characters in an input line or output line. On output, any character
positions not previously filled during this record generation will be set to blank. It is not associated with 2
variable in the input/output list.

nX Number of characters, n, to be skipped. An optional plus sign may precede n.

0X is ignored, X is interpreted as 1X. The comma following X in the specification listis optional.

-nX Back up n characters, will not back up beyond the first column.

[-10-24 60305600 D

Example:
WRITE (6,100) A,B,C A = —342.743
100 FORMAT (F9.4,4X,F7.5,4X,13) B = 1.53190
c =22
Output record:
-342.743bbbb1.53190bbbbb22 b is a blank
on input n columns are skipped.
Example:
READ 11,R,S,T
11 FORMAT (F5.2, 3X, F5.2, 6X, F5.2)
or
11 FORMAT (¥5.2, 3XF5.2, 6XF5.2)
Input card:
f4.62bb$13.78bCOSTb15.97
In storage:
R 14.62
S 13.78
T 1597
Example:
INTEGER A A contains 7
PRINT 10,A,B,C B contains 13.6
10 FORMAT (I2,6X,F6.2,6X,E12.5) C contains 1462.37
Result: 7bbbbbbbl3.60bbbbbbb.146237E+04
nH OUTPUT

The H specification is used to output strings of alphanumeric characters and like X. H is not associated with
a variable in the input/output list.

60305600 B 1-10-25

nH

n Number of characters in the string including blanks.

H Denotes a Hollerith field. The comma following the H specification is optional.

For example. the statement:

WRITE (6,1)
1 FORMAT (15HbENDbOFbPROGRAM)

can be used to output the following on the output listing.
END OF PROGRAM
Examples:
Source program:

PRINT 20
20 FORMAT (28HbBLANKSbCOUNTbINbANbeFIELD.)

produces output record:
BLANKSbCOUNTbINbANDHBFIELD.

Source program:

PRINT 30,A A contains 1.5
30 FORMAT (6HbLMAX=,F5.2)

produces output record:

LMAX=b1.50

nH INPUT

The H specification can be used to read Hollerith characters into an existing H field within the FORMAT
statement.

Example:
Source program:

READ 10
10 FORMAT (27bebbbbbbbbbbbbbbbbbbbbbbbbb)

1-10-26 60305600 D

Input card:

rbTHIS IS A VARIABLE HEADING

After READ, the FORMAT statement labeled 10 contains the alphanumeric information read from the
input card; a subsequent reference to statement 10 in an output statement acts as follows:

PRINT 10
produces the print line:

THIS IS A VARIABLE HEADING

W e

Character strings delimited by a pair of * or ¥ symbols can be used as alternate forms of the H specification
for output. The paired symbols delineate the Hollerith field. This specification need -not be separated from
other specifications by commas. If the Hollerith field is empty, or invalidly delimited a fatal execution error
occurs, and an error message is printed.

An asterisk cannot be output using the specification * *. For example,

_ PRINT 1
1 FORMAT (*ABC*DE*)

The second * in the FORMAT statement causes the specification to be interpreted as *ABC* and
DE*, which is not valid..

The H specification or # ... # could be used to output this correctly:

PRINT 1
1 FORMAT (7H ABC*DE)

Output appears as follows: ABC*DE

PRINT 2
2 FORMAT (# ABC*DE#)

Output appears as follows: ABC*DE
can be represented within #... # by two consecutive' ¢ symbols.
Example:

PRINT 3
3 FORMAT (7 DON#=Tw)

60305600 D I-10-27

Output examples:

PRINT 10
10 FORMAT (* SUBTOTALS*}

produces the following output:
SUBTOTALS

WRITE (6,20)
20 FORMAT (#bRESULT OF CALCULATIONS IS AS FOLLOWS>)

produces the following output:
RESULT ‘OF CALCULATIONS IS AS FOLLOWS

PRINT 1, #SQRT>, SQRT(4.)
1 FORMAT (A10,E10.2)

produces the following output:
SQRT 2.0

Note: # is output as ' on some printers.
The *...* or #...# specification can be used to read alphanumeric data; however, the effect differs depending
on whether *..* or #..# occurs in an actual FORMAT statement or in a format specification contained in a
variable or array. When the READ statement contains a constant specifying a FORMAT statement, alphanu-
meric characters are read into the *..* or #..# specification. When a name occurs in the READ statement
to specify the format information (variable format), characters in the input stream are skipped and no change

is made in the *..* or #..# specification. ‘

In FORMAT statements, the *..* or #..# specification is changed to nH... at compile time. This conversion
does not occur with variable format specifications.

[-10-28 60305600 D

R

FORTRAN RECORD /

The slash indicates the end of a FORTRAN record anywhere in the FORMAT specification. Where a / is used,
a comma is not required, but it is allowed, to separate field specification elements. Consecutive slashes may
appear and need not be separated from other elements by commas. During output, the slash indicates the end
of a record. During input, it specifies further data comes from the next record.

Example:

PRINT 10
10 FORMAT (6X, 7HHEADING///3X, SHINPUT, 8H OUTPUT)

Printout:

HEADING line 1
—(blank) ——_ line 2

(blank)___ line 3

INPUT OUTPUT line 4

Each line corresponds to a formatted record. The second and third records are blank and produce
the line spacing illustrated.

A repetition factor can be used to indicate multiple slashes.

n{/)
n Unsigned integer indicating the number of slashes required. n - | lines are skipped on
output.
Example:

PRINT 15, (A(I),I-1,9)
15 FORMAT (8HbRESULTS4(/),(3F8.2))

Format statement 15 is equivalent to:

15 FORMAT (8HbRESULTS//// (3F8.2))

Printout:

RESULTS line 1
(blank) —— line 2

(blank) — line 3

(blank) —— line 4

3.62 -4.03 -9.78 line §

-6.33 7.12 3.49 line 6

6.21 -6.74 -1.18 line 7

60305600 D I-10-29

Example:

DIMENSION B(3)
READ (5,100)IA,B
100 FORMAT (I5/3E7.2)

These statements read two records, the first containing an integer number, and the second containing
three real numbers.

PRINT 11,A,B,C,D
11 FORMAT (2E10.2/2F7.3)

In storage:
A -11.6
B .325
C 46.327
D -14.261

Printout:

b-.12E+02bbb.33E+00
46.327-14.261

PRINT 11,A,B,C,D
11 FORMAT (2E10.2//2F7.3)

Printout:
b~-.12E+02bbb.33E+00 line 1
(blank) ——1line 2
46.327-14.261 line 3

| 1-10-30 60305600 D

REPEATED FORMAT SPECIFICATION

FORMAT specifications may be repeated by preceding the control characters D, E, F, G, I, A, R, L, Z or O
by an unsigned integer giving the number of repetitions required.

100 FORMAT (314,2E7.3) isequivalent to:100 FORMAT (14,14,14,E7.3,E7.3)
50 FORMAT (4G12.6) is equivalent to: 50 FORMAT (G12.6,G12.6,G12.6,G12.6)

A group of specifications may be repeated by enclosing the group in parentheses and preceding it with the
repetition factor.

1 FORMAT (I3,2(E15.3,F6.1,214))

1s equivalent to the following specification if the number of items in the input/output list do not
exceed the format conversion codes:

1 FORMAT (I3,E15.3,F6.1,14,14,E15.3,F6.1,14,14)

A maximum of nine levels of parentheses is allowed in addition to the parentheses required by the FORMAT
statement.

If the number of items in the input/output list is less than the number of format codes in the FORMAT state-
ment, excess FORMAT codes are ignored.

If the number of items in the input/output list exceeds the number of format conversion codes, when the final
right parenthesis in the FORMAT statement is reached, the line formed internally is output. The FORMAT
control then scans to the ieft looking for a right parenthesis within the FORMAT statement. If none is found,
the scan stops when it reaches the beginning of the FORMAT specification. If, however, a right parenthesis is
found. the scan continues to the left until it reaches the field separator which precedes the left parenthesis
pairing this right parenthesis. Qutput resumes with the FORMAT control moving right until either the output
list is exhausted or the final right parenthesis of the FORMAT statement is encountered.

60305600 D [-10-31

Example:

READ (5,300)1,J,E,K,F,L,M,G,N,R
300 FORMAT (I3,2(I14,F7.3),17)

is equivalent to storing data in I with format I3, J with 14, E with F7.3. K with 14. F with F7.3. L
with 17. Then a new record is read: data is stored in M with the format 14. G with F7.3. N with 14
and R with F7.3.

READ (5,100) NEXT, DAY, KAT, WAY, NAT, RAY, MAT
100 FORMAT (17,(F12.7,1I3))

NEXT is input with format 17. DAY is input with FI12.7. KAT is input with 13. The FORMAT
statement is exhausted. (the right parenthesis has been reached) a new card is read. and the

statement is rescanned from the group (F12.7.13). WAY is input with the format F12.7. NAT with
3. and from a third card RAY with F12.7. MAT with 3.

PRINTER CONTROL CHARACTER

The first character of a printer output record is used for carriage control and is not printed. It appears 1n all
nther forms of output as data.

The printer control characters are as follows:

Character Action
Blank Space vertically one line then print
0 Space vertically two lines then print

Eject to the first line of the next

1 .
page before printing
+ No advance before printing; allows
overprinting
Any other Refer to the operating system
character reference manual

For output directed to the card punch or any device other than the line printer. control characters are not
required. If carriage control characters are transmitted to the card punch. they are punched in column one

Carriage control characters can be generated by any means: however. the H specification is frequently used.
Example:
FORMAT (1HO,F7.3,12,G1l2.8)

FORMAT (1H1,I5,*RESULT = *,F8.4)

-10-32 60305600 D

The *...* specification can be used:

FORMAT (*1*,14,2(F7.3))
The blank printer control character can be transmitted by the X specification.
Example:

FORMAT (1X,14,G16.8)

Carriage control characters are required at the beginning of every record to be printed, including new
records introduced by means of a slash.

Example:

PROGRAM LOGIC(INPUT,0UTPUT,TAPES=INPUT)
LOGICAL MALE,PHD,SINGLE,ACCEPT
INTEGER AGE
FRINT 20
20 FORMAT (*
2 READ (5,1)
1 FORMAT (2Atl
IF (EOF(5))¢é,
4 ACCEPT = MALE .
S AGE LT« 45)
IF (ACCEPT) PRINT
2 FORMAT (1HO,2A10,3X,
GO 70 3
6 STOP
END

LIST OF ELIGIBLE CANDIDATES*)
NAME ,FNAME,MALE,PHDySINGLE,AGE
3L5,12)

ND. PHD .AND, SINGLE .AND. (AGE «GTes 25 .AND.

LNAME,FNAME,AGE
2)

.output starts on new page
double spacing

LIST OF ELIGIBLE CANDIDATES
JOHN S, SLIGHTY 26

JUSTIN BROWN 30

60305600 B I-10-33

Tn

This specification is a column selection control.

In
n Unsigned integer. If n = zero, column 1 is assumed.
When Tn is used, control skips columns right or left until column n is reached; then the next format specifi-

cation is processed. Using card input, if n > 80 the column pointer is moved to column n, but a succeeding
specification would read only blanks. '

 READ 40. A B C -
40 FORMAT (T1, E52, T11, F61, T21, F52)

_ Input:
84.730bbbb2436.2bbbb89.14.
Ais set to 8473, B to 24362, and C to 89.14,

WRITE (31, 10)
10 EORMAT (T20 *LABELS*)

The first 19 characters of the oﬁtp‘t’x‘t recordngr:e skipped and the next six characters, LABELS, are
written on output unit number 31 beginning in character position 20. ~ »

~ With T specification, the order of a list need not be kthe same as the printed page or card input, and the
same information can be read more than once. ‘ ‘ ' ;

When a T specification causes‘cdntrol to pass over character positions on output, positions not previously
filled during this record generation are set to blanks; those already filled are left unchanged.

1-10-34 60305600 E

Example:

5 7

ROGRAM TEST (OUTFUT)

1| [FORMAT (12(10H0123456789))

RINT 1

PRINT 60 |

60/ FORMAT (T80,*COMMENTS*,T60,*HEADING4® T4 0,
HEADING3,T20, HEADING2*,T2, *HEADING1*)

RINT 10

10/ FORMAT (20X*THIS IS THE END OF THIS RUN*T52%...HONEST*)

FRINT 1

TOF

ND

t!36'6‘"1'1.llhll?.!I“lb!"'"lt!!“.'|’.lllb’CY‘.‘!!‘Q"'I“SI““’OQ‘il“.!’“ltl“'.'I’OI”6“'”'!23“‘7."188Q't7"
WEADINGL HEADING2 NEADINGD NEADINGS cornenTs

THIS IS THE END OF THIS RUN o0 o NONESY
L2IASETIS012345678901234567890823056T000123456709012345670001234567690 1234587 000123A54T090423454709012340547890123485470%

Since the first character in a line output to the printer is used for printer control, T2 is output in the first
print position.

The following example shows that it is possible to destroy a previously formed field inadvertently. The
specification TS destroys part of the Hollerith specification 10H DISASTERS.

1 FORMAT (10H DISASTERS,T5,3H123)
PRINT 1

produces the following output:
DIS123ERS
\'
The specification can be used for any of the elements: A, D, E, F, G, I, L, O, P, R, T, X, or Z. When V
is encountered, the rightmost 6 bits from the next variable in the I/O list are picked-up to be used as a 6-bit

display character in place of the V. The character must be any of the elements listed above. V cannot be
used in Ew.dVe for the D or E.

This character may be used whenever a number could be used. The next list item is used as a signed integer
value for the format. The use of = in a FORMAT statement prohibits compilation syntax checking of the
FORMAT statement.

60305600 D I-10-35

EXECUTION TIME FORMAT STATEMENTS

Variable FORMAT statements can be read in as part of the data at execution time and used by READ.
WRITE. PRINT. PUNCH, ENCODE, or DECODE statements later in the program. The format is read in
as alphanumeric text under the A specification and stored in an array or a simple variable, or it may be
included in a DATA statement. The format must consist of a list of format specifications enclosed in
parentheses. but without the word FORMAT or the statement label. 2

For example, a data card could consist of the characters:

(E7.2,G20.5,F7.4,13)
The name of the array containing the specifications is used in place of the FORMAT statement number in
the associated input/output statement. The array name, which appears with or without subscripts. specifies
the location or the first word of the FORMAT information.
For example, assume the following FORMAT speciﬁcations:
(El12.2,F8.2,17,2E20.3,F9.3,14)
This information on an input card can be read by the statements of the program such as:
DIMENSION IVAR(3)

READ 1, IVAR
1FORMAT (3A10)

The elements of the input card are placed in storage as follows: —
IVAR(1) (E12.2,F8.
IVAR(2) 2,17,2E20.
IVAR(3) 3,F9.3,14)

A subsequent output statement in the same program can refer to these FORMAT specifications as:
PRINT IVAR,A, B, I, C,D, E, J
Produces exactly the same result as the program.

PRINT 10, A, B, I, C, D, E, J
10 FORMAT (Ei12.2,F8.2,17,2E20.3,F9.3,14)

[-10-36 ‘ 60305600 B

FORTRAN CONTROL CARD)]

The FORTRAN Extended compiler is called from the library and executed by an FIN control card. The ETN
control card calls the compiler. specifies the files to be used for input and output, and indicates the type of
output to be produced. This control card may be in any of the following forms:

F,TN (p1 Py e .P,) comments

/ F{TN. comments

TN, Py ..., P,. cOmments
1 , ,
; i
I

Example:

ETN (A LBNG 5=0)

The optional parameters, py,..p, may be in any order within the parentheses. All parameters, with the exception
of the list control options, must be separated by commas. If no parameters are specified, FIN is followed by a
period or right parenthesis. If a parameter list is specified, it must conform to the control statement syntax

for job control statements as defined in the operating system reference manual; with the added restriction

that the only valid parameter delimiter is the comma: Card columns following the right parenthesis, or period
can be used for comments; they are ignored by the compiler, but are printed on the dayfile.

(Plp s 1Pn)

Default values are used for omitted parameters. Default values aré set when the system is installed; but since
installations can change default values, the user should consult his installation for possible changes.

In the following description of the FTN control card parameter, lfn is a file name of 1-7 letters or digits.
The first must be a letter,

An improperly formed parameter will terminate the FTN control card scan. When an error is detected, a day-
file entry is made A ten-character segment of the control card is printed with an asterisk positioned beneath

the approximate column in which the error occurred.

* POINTS TO FTN CONTROL CARD ERROR

60305600 D I-11-1

Example:

Dayfile

22.14.11 FIN({I=-TEST,PL=ABC,L-LIST)

22.14.1
22.14.1

(T,PL=ABC,L)

*®

22.14.13 * POINTS TO FTN CONTROL CARD ERROR

The job proceeds with the option already processed or terminates and branches to an EXIT(S) card,
depending upon the installation option.

A EXIT PARAMETER (Default: job continues at next control card)

A

Compilation terminates and branches to an EXIT(S) control card if fatal errors
occur during compilation. If there is no EXIT(S) control card, the job ‘terminates.

B BINARY OBJECT FILE (Default: B = LGO))
B Generated binary object code is output on file 1LGO.
B =1 Generated -binary object code is output on file ifn.
B=0 No binary object file is produced. -
BG = Ifn Binary object file is loaded and executed at end of compilation. _
C COMPASS ASSEMBLY (Default: FTN internal assembler)
C Selects the COMPASS assembler to assemble the symbolic object code generated
by FIN. If C is omitted, the FTN assembler is used; it is. two to three times B
faster than the COMPASS assembler. When the C parameter is. specified, FTNMAC
is selected as text for the COMPASS assembly. Therefore, if the C option is
selected, the maximum number of system texts which can be specified with —
the GT and S parameters is six.
S
F11-2 60305600 E —

D DEBUGGING MODE PARAMETER

Do D=l
If the debug facility described in section I-13 is used, D or D = lfn must be specified. This parameter auto-
matically selects fast compilation (OPT = 0) and full error traceback (T option). When the debug parameter
is-selected, any OPT= parameter is ignored. This also will select the COMPASS D option for assembly of
interspersed COMPASS code.

Ifn is the name of the file on which the user debug deck resides (figure 134, section I-13). The default option
for D= lfn is D = INPUT.

FIN(D) is equivalent to FTN(D = INPUT,OPT = 0,T)

E EDITING PARAMETER (Default: E = COMPS)
EorE =ifn

Compiler generated object code is output as: COMPASS card images. If E is omitted, normal binary object

file is produced. If no file name is specified, COMPS is assumed. The B, C, G, O, and Q options must not be I

specified if the E option is selected.

The object code output file starts with the card image *DECK name. (name is the name of a program unit.)

The object code output file 1fn or COMPS is rewound. No binary file is produced. COMPASS is not called

automatically. When the COMPS file is assembled 8§ = FTNMAC must be specified on the COMPASS control
card.

EL ERROR LEVEL (Default: EL = 1)
EL = A List warning diagnostics for all- non-ANSI usages; informative diagnostics, and fatal
diagnostics.
EL =1 List informative and fatal diagnostics only.
EL=F List fatal diagnostics only.
GO AUTOMATIC EXECUTION (LOAD AND GO) (Default: GO = 0)
G =1fn
GB = Ifn . . o i
G Binary object file is loaded and executed at end of compilation.
GO
GO =40 Binary. object file is not loaded and executed.

60305600 E I-11-3

GT GET SYSTEM TEXT FILE ' (Default: GT = 0

GT = Iin Loads the first system text overlay, if any, from the sequential binary file, lfn
GT = In/ Searches the sequential binary file, 1fn, for a system text overlay with name
oviname oviname, and loads the first such overlay encountered.
GI =0 or No system text is loaded from a sequential binary file
omitted
A maximum of seven system texts can be specified. (Any combination of the GT, S, and C parameters must

not specify more than seven system ftexts.)

A

This feature is for COMPASS subprograms only. k

‘.“',' SOURCE INPUT FILE ‘ : ' Default: I=INPUT

I=lfn ifn is the name of the file containing the source input. If IFINPUT is specified, source
input is on the file INPUT. If I only is specified, source input is on the file COMPILE.
If source input is on a file other than INPUT, the I=lfn form must be used. Compilation
stops when an end-of-record or end-of-file is encountered. ‘

L LIST OUTPUT FILE . Default: L=OUTPUT, R=1)

y=lfn

The list control options specify the type of listing of the source program,y, and the file name, Ifn, on which
list output is to be written. If no list control options are specified, a listing is produced of the source
program with informative and fatal diagnostics. If no file name is specified, OUTPUT is assumed.

y is any combination of one to four list control options selected from the letters: L.O.R X, N. The letters
_ must not be separated by commas. X and N cannot be specified at the same time.

Ifn is the file on which output is to be written.

= fn Source program, diagnostics, and short reference map listed on file ln.
L L defaults to L = OUTPUT
=0or IR =(Fatal diagnostics and the statements which caused them are listed. All other
output, including intermixed COMPASS, is suppressed.

L=0,R=n Fatal diagnostics and the statements which caused them are listed and an R = n
reference map is produced.

I L1114 60305600 E

0 =ln Generated ‘object code is listed. The O option must not be used if the E option
is selected.

= in An R = 7 type reference map 18 listed. R is included in the list contro] options
for compatibility reasons only. Refer to R option in this section, and section
H1-1 for full description of reference map.

X=lfn A warning diagnostic is given for any non-ANSI usage. For example, if this
option is selected and a 7- character symbolic name is used, (legal in
FORTRAN Extended, but not defined under ANSI) the following warning
diagnostic is printed:

7 CHARACTER SYMBOLIC NAME 15 NON-ANSI

N=lfn Listing of informative diagnostics is suppressed; only diagnostics fatal to
execution are listed.

For example, LRON = ifn selecfs the following, and all information is listed on the file named lin.

List source program List generated object code
List fatal diapnostics Omit informative diagnostics
List R = 2 reference map ~

LCM LEVEL 2 AND LEVEL 3 STORAGE ACCESS (Default: LCM = D)

1M =D Selects 17-bit address mode for level 28 or 3 data. This method produces more
efficient code for accessing data assigned to level 28 or 3. User LCM or ECS field
length must not exceed 131,071 words.

1CM = 1 Selects 21-bit address mode for level 28 or 3 data. This mode depends heavily
‘ upon indirect addressing. LCM = I must be specified if the user LCM or ECS field
length exceeds 131,071 words. ,

OL OBJECT LIST ' . (Default: OL = 0)
oL . ’ Generated object code is listed on the file specified by the L option.
OL=0 Object code is not listed.
OPT OPTIMIZAT!ON PARAMETER {Default: OPT =1)
OPT=m m=0 Fast compilation (automatically selects T option)
m=| Standard compilation and execution
m=2 Fast execution

§ Applies only CONTROL DATA CYBER 70/Model 76 and 7600 computers,

60305600 E I-11-5

P PAGINATION

P Page numbering is continuous from subprogram to subprogram, including inter-
mixed COMPASS.

omitted Page numbers begin at 1 for each subprogram.
PL PRINT LIMIT (Default:n=5000)
PL=n n is the maximum number of records produced by the user program at
execution time which can be written on the OUTPUT file. n does not include

the number of records in the source program listing, and compilation and
execution time listings; n s 999 999 999

PL=nB An octal number must be suffixed with a B n< 777 7777778
Print limit option is effective only when a FORTRAN main program is compiled;
but the print limit may be altered at execution time as an added parameter on
the EXECUTE or load-and-execute control card.

Examples:

EXECUIE (- - -, PL = 1000}
L GO (PL = 2000}

The PL parameter may appear anywhere in the parameter list of the execution
control card: it is not counted as a file name for file equivalencing purposes.

Q PROGRAM VERIFICATION

Compiler performs full syntactic and semantic scan of the program and prints all diagnostics, but no object
code is produced. A complete reference map is produced (with the exception of code addresses). This mode
is substantially faster than a normal compilation; but it should not be selected if the program is to be
executed. If Q is omitted, normal compilation takes place.

R SYMBOLIC REFERENCE MAP (Default: R=1)
R=n Selects the kind of reference map required (section II-1-1) ’
R=0 No map
R=1 Short rﬁap (symbols, addresses, properties)
R=2 Long map (symbols. addresses, properties, references by line number and a
DO-loop map)
R=3 Long map with printout of common block members and equivalence groups

| s 60305600 E

ROUNDED ARITHMETIC OPTIONS (Default: arithmetic not rounded)

ROUND=o0p op is an arithmetic operator: + - * / Single precision (real and complex)
floating point arithmetic operations are performed using the hardware
rounding features (refer to 6000 series and 7600 Computer Systems Reference
Manuals). Any combination of the arithmetic operators can be specified. For
example: ROUND = +-/

If this parameter is omitted (default condition), computations for the operators + - * / are not rounded.
The ROUND option controls only the in-line object code compiled for arithmetic expressions; it has no effect

on the computations of the library subprograms or the I/O routines.

S SYSTEM TEXT FILE (Default: S = SYSTEXT)

omitted ; If the only GT parameter is GT=0, the overlay named SYSTEXT is loaded from the
job’s current library set.

S=0 When COMPASS is called to assemble any intermixed COMPASS programs,
it will not read in a system text file.

S =oviname The system text overlay, oviname, is loaded from the job’s current library set.

S=libname/

oviname The system text overlay, oviname, is loaded from the library, libname. Libname

can be a user library file or a system library, Valid only if the host operating
system supports partitioned library sets. ~ ‘

This feature is for COMPASS subprograms only.

SL SOURCE LIST (Default: SL)

SL Source program is listed on the file specified by the L option.
SL=0 . Source program is not listed,
SYSEDIT SYSTEM EDITING (Default: SYSEDIT not selected)

This option is used mainly for system resident programs.
SYSEDIT All input/output references are accomplished indirectly through a table search

at object time. File names are not entry points in main program, and
subprograms do not produce external references to the file name.

60305600 E I-11-7

T ERROR TRACEBACK

This option is provided to assist in debugging programs.

T

T omitted

Calls to intrinsic and basic external functions are made with call-by-name sequence
(section 10, part II1). Full errot traceback occurs if an error is detected.

The more efficient call-by-value sequence is generated. No traceback is provided if
an error is detected. A saving in memory space and execution time is realized.

Selecting the D parameter or OPT =0 automatically selects T.

V SMALL BUFFERS OPTION

v

The 'V option has no application in FIN 4.2 If specified on the control card,
it is ignored, and no diagnostic is issued.

XT EXTERNAL TEXT NAME

XT

omitted
XT =l

XT

Z ZERO PARAMETER

Z

I-11-8

Source of external text (XTEXT) when location field of XTEXT pseudo instruc-
tion is blank. Only one XT parameter may be specified. This feature is for
COMPASS subprograms only.

External text OLDPL file.
External text on file Hin.

External text on OPL file.

When Z is specified, all subroutine calls with no parameters are forced to pass a
parameter list consisting of a zero word. This feature is useful to subroutines ex-
pecting a variable number of parameters. For example, CALL DUMP dumps storage
on the OUTPUT file and terminates: program execution. If no parameters are speci-
fied and Z is selected, a zero word parameter is passed. Z should not be specified
unless necessary, as programs execute more efficiently if Z is omitted.

60305600 E

RN

FTN CONTROL CARD SAMPLES

Example:

FIN (AEL=F,GO,L=SEE ,R=2,5-0,5.=0}

Seclects the following options:

A Branch to EXIT(S) card if compilation errors occur,

Fl=F Fatal diagnostics only are listed.

GO Generated binary object file is loaded and executed at end of suceessful compilation.

1=SEE Listed output appears on file SEE.

=2 Long reference map is listed.
S= When COMPASS is called to assemble an intermixed COMPASS subprogram, it will not
read in a systems text file.
S1=0 Source program is not listed.
Example:
ETN (GO,T)

Source program on INPUT file; object code on LGO; source program; short map, informative and fatal
diagnostics listed on file OQUTPUT,; call-by-name sequence generated for calls to intrinsic and basic external
functions; no debug package; standard compile mode; and unrounded arithmetic. Program is executed if no

fatal errors occur.
Example:

FTN,

Selects the following options (unless default option values are changed by the installation):

B=LGO LCM=D
El=l 0L=0
GO OPT=1
=INPUT P
L=OUTPUT

60305600 E

PL=5000

R=1

S=SYSTEXT

SL

119 e

X/ 5+Y

result to)
register

60305600 B

I-11-11

Example:

Example;
FIN(|
Source program om INPUT file, object code on LGO, normal !

error_checking, 66 debug package,
executed if no fatal errors gecur

I-11-12 60305600 B

Fixed starting
address for
primary overlays

Fixed starting
address for (1,n)
secondary overlays

60305600 B

SOOI
OO OO
QX5ENANKIRNKY Zero overlay (0,0)

) ".........‘....‘.... ’

Primary overtay (1,0)

Secondary overlay {1,1)

[-12-1

Zero
overlay
(0,0)

Primary
overlay
(3,0

Secondary
overlay
(3,1)

[-12-2

080000000000
0.0.0.0.9.¢.0.0.0
RIRRIIRRIS

e%e00%
0020707 %
QXK

Fixed starting address

for primary overlay

Starting address for
sacondary overlay
(4,2)

Fixed starting address

for secondary overlay

60305600 B

- CREATING AN O\WRLAY

4

;. dev;ec or tape file in the bsolute form.
: generatwﬂ The FOE{IZRAEN CALL statement(tion I-7)in
in O in ,the zero -

An cwerlay may consxst of one.
overlay must be a FORTRAN ‘mai

Data is passed between ovcrlays]
' ,common block in' the main overlayﬁ (0,

the overlay in exactly the same formaiws:
and blank common at execution or load time.

overlay and is access;ble to all hxgher
allocated at the top of the (1,0). overlay dn
common blocks are generated in the overlay
labeled common blocks in this overlay.

reference an LCM wmiﬁbn b’iock;:f

r Iater and

§Applies only to CONTROL DATA €

60305600 B [-12-3

7

(!

file name

Cn

OVERLAY (fnameij€n)

File name on vhie) fh&“generatt& oveﬂay is to be written. All overlays need

Primary number, octal.

Secondary numbcr,‘ actai‘.‘ (iandj "must b#ﬁ,@ for the first OVer!ay card.)

Optional parameter consisting of the leétter C and a 6-digit octal number,
which indicates the overlay js to be loaded n words from the start of blank
common. Blank common is loaded after the zero overlay. With this method,
the programmer can change the size of blank common at execution time. Cn
cannot be included on the (0, 0) overlay control card. If this parameter is
omitted, the overlay is anded in the normal way.

The first overlay directive must have a ﬁlc namc, suhsequcm, dxrectxves may omit it, mdlcatmg that the

overlays are related and are to be written gn- thc same ﬁlc{

Example:

ovnxLAY(FNAuE 0,0) £
PROGRAM ex&étnyu?*ouiﬁu! 4925~1nv3?}

OVERLAY{1,0)
PROGRANM A

.

OVERLQY(1, 1)

PROGRAH B

PROGRAM C

.

.

OVERLAY(1,3)

PROGRAM D

OVERLAY(1,2})

All the above overlays are written on theﬁie FNAME

I-12-4

60305600 B

the zero or main overlay 0,0 muét specify al‘! '
fqr all overlay levels. File names shoum not a

f?charactm; n-2810
tﬁwith conswm, ﬁa&ﬁv&ﬂa is " library
t‘rom the

; GMI& ‘OVERB&Y{&H,& 1 0)

60305600 C I-12-5

The following statement which spi
the name BJR, to be loaded from the

The three parameters, fname, i, and j mus
execution time.‘ L

I-12-6

60305600 C

)

127

I-

60305600 C

main overiay fmm the pmgram and write ;
gonerated, execution beging WA %

The pnmary and secondary ovr:rhyﬁ
JIM and

I-128 60305600 C

program will be kept. When the program is required again, the permanent file OVRLY is called by an
ATTACH control card.

The first program must be a main program; in this case program A.

FTIN.

LOAD(LGO)

NOGO.

CATALOG (REPEAT,OVRLY,ID=IBB)
7/8/9

OVERLAY (REPEAT,0,0)

PROGRAM A (INPUT,OUTPUT,TAPEl)

Control
Cards

..

.

END
SUBROUTINE B

.
.

.

END
FUNCTION C

Main END
T Overlay SUBROUTINE D

END
REAL FUNCTION E

»
.

-

END

7/8/9
data

6/7/8/9

Main program A and the subroutines and functions B-E reside on the file REPEAT in absolute form.
They can be called and executed without recompilation by the control cards:

job card
ATTACH (REPEAT,OVRLY,ID=IBB)
REPEAT.
6/7/8/9

The operating system or Loader Reference Manual gives full details of the control cards which appear in the
above program.

60305600 D 129

60305600 C

I-13-1

I-13-2

60305600 B

S

o

——

All debugging options are activated and deactivated at compile time only. This compile time processmg is
not to be confused with program flow at execuuon time.

PROGRAM rEst4(ourpur;nxsﬁgéaﬁryumy

GO 70 4
C$ (DEBUGGING OPTION)
C$ (DEBUGGING OPTION)
END
Even though a sectmm éf code may never ¢ executed, in
and are eﬁbcuve for the remainder of the pro,gr m in the abo e
Type of option, begmmng af‘ter column 6: DEQ‘Q UG REA A
FUNCS, GOTOS, NOGO, OFF, STORES, TRAtE =
P - Argument list; details dent of the option, ds (not used wz,th NO 5.{
for AREA, STORES; or o i E

60305600 B : [-13-3

CONTINUATION CARD
1

Debugging statements are written in columns 7-72, as in a normal FORTRAN statement, but columns |
and 2 of each statement must contain the charanw;s C3. Any. e&t{ramcr, other than a blank or zero, in
column 6 denotes a continuation line. Cohxmns 3,4, and 5 of any debuigging statement must be blank. The
restriction on the number of contmu&ﬁon lines is the same a8.f Fﬁ)&%AN contmuaiwn lines.. :

Comment cards may be interspersed with debugging statements The stawrnent separator ($) cannot be used

with debugging statements When the debng mode is n "ed all ;:tebuggmg smtemem re treated as
comments. ; : F ,

Example:

cs ARRAYS (A, BNUMB,Z10, f‘.*. DLES'!‘ HAfRI
C$ *NSUM, mnxr
c$ *T(mua L

ARRAYS smmmem;

¢ ||ARRavs .
P e
!

i

Byyeely array names

The ARRAYS statemgat miuaws subscx;‘
the program unit are checked. Each time

subscript is checked against the dimension vqﬁounds The addmss iséalculated accordmg to the method described in
figure 2-1, section 2. Subscripts are not Ghecked mdmd»ually It the addrg;s 1§ found to be greater than the storage

I-13-4 ‘ 60305600 B

I % N Nelk BRI
; []

5 s s n

o & ® &K

22 EE2ROBAEESEN LR ED X

©D(090+0) =1

60305600 B

A3 =1
B(S) IS OUT OF aoun:’ﬁ

8s) =1

 ~iuRN~oN"ARR&v§fF”

PROGRAM ARRAYS (OUTPUTsDEBUG=0UTPUT)
INTEGER A(2)y B(Q%teﬂf%?v 0(2¢3¢41
PRINT 1 . ;
FORMAT (%0

ARRAYS (Av D)y

A(3) 1S OUT OF BOUN
15 PRINTED,

DIAGNOSTIC IS.#R
ci2) = A(k(33&g

VEN THOUGH Ai3i WAS (O
A(A(3)) 1S EQUIVAL£N¢
; ﬁﬁg

THE Aooaasﬁforf‘
(L e L

 ‘foa THE ELEMENT Br59046) ; PnEA S 10 .
__BE OUT OF eo L, ECAUS scn PTS Aka our .
: WEVERy 2 : C g‘ Aﬁ RESSs 1S5 LESS THAN °

ISTICIS ISSUED,

ARRA*S

wxvn THIS Fcﬁn A
BE olasnosflc,
1S IN BOUNDS A#
NO D!AGNOSTSC‘

Ai?! =1
B(S) = 2 ¢ C(*lt

PRINT 24 A(t)

FGR“AT(!X» ilb)
END

I-13-5

ARRAYS EYAMPLE

/DEBUG/ ARRAYS AT LINE 13- THE SUBSCRIPT VALUE 0OF 3 IN ARRAY A EXCEEDS DIMENSIONED BOUNO OF
/0EBUGY/ AT LINF 20~ THE SUASCRIPT VALUE. OF 3 TN ARRAY A EXCEEDS DIMENSIONED BOUND [:]2
/DEBUGS AT LINE. &7« THE SUBSCRIPT VALUE OF 5. IN AHRAY B EXCEEDS DIMENSLONED BOUND OF
/FDEBUGY AT LINE = 47- THF SUBSCRIPT. VALUF 0F : “1IN ARRAY G EXCEENS DIMENSIONED BOUND.BF
/DEBUGY AT LINE . 4Bs THE SUBSCRIPT VALUE OF -8 IN ARRAY O EXCEEDS DIMENSRONED BOUND OF 2

CALLS STATEMENT

$ CALLS (a, ,....2,)

c“s CALLS

e S e

a,,...a, subroutine names

The CALLS statement initiates tracing of calls to and returns from specified subroutines. If there is no
argument list all subroutines will be traced. Mon-standard returns, specified .in a RETURNS list, are
‘ncluded. To trace alternate entry points to a subroutine, either the entry points must be explicitly named in
‘he argument list, or the form with no argument list must be used (all external calls traced). The message
printed contains the names of the calling and called routings, as well as the line and level number of the
call and retuin. o

A main program is at level zero; a ‘subroutine or a function called by the main program is at level 1,
another subprogram called by the subprogram at level 1, is at level 2, and so forth. Calls are shown in order
of ascending level number, returns in order of descending level number. e

level0 MAIN B L
level 1 return w SUB A T e call
level 2 ‘ R return g | SUB B

For example, subroutine SUB A is called at level 1 and a return is made to level 0. SUB B is called at
level 2 and a return is made to level 1.

[-13-6 60305600 B

£ e EnNm

- Example:

19
13

20

30

60305600 B

Sesssranas Q“

:ﬂEBUGSOUTPUTliL

‘ 'cakt cALgsi o, gsruqns as

1u IF (X ,EQ. 1.0 CALL CALLS2

QMAL SuBNOTY »
ALL CALLSIE (XY}

3,6 HE’S$AGES WILL BE PRINTED F’OR CALLS TO AND Rzﬂms rm e
ALLSY AND CALLS2. SINCE QALLS ARE FROM T% MAIR PROGRAN,

HEY ARE AT LEVEL 0. THE CALLS . TO. SUBNOT AND THE ALTERNATE

~ ENTRY POINY CALLS1E ARE NOT TRACED BECAUSE THEY DO NOT APPEAR
Iﬂ THE ARGUMENT LIST OF THE £S$. Cll.LS STATENKHT., '

M

‘susnouttﬂ:sf""

,Q‘,, TraceD. ;*
e u

, sueﬂommz cnu.sux,n. Rﬂmﬁﬁti"
TR D

IF LY oNE. x) stmd A

RETURN

\sn’mw cm.sue

SUBROUTINE CALLSZ

CALL CALLS1X,Y), RETURNS(5)
s RETURN
ENB

SUBROUTINE SUBﬁOT
X 2 =1,
s ’ﬁﬁ{.& CﬂLLSi(X»Y), RETUFNS(E'
5 RETURN it
END

[-13-7

CALLS TRACING

JDEBUG/ OILL&
JDEBUGY
FOEBIG Y/
20EBUGY
7DEBUG/
/DEBUGS
/BEBUG/
70EBUG/
7DEBUGY
/DESUG/

Ar
AT L
H‘”
AY:

AT
AY
%]

9- RﬂUTI”ﬁ‘elLL31 \LLE
10~ Rﬁﬂ?lﬂﬁ CALLSE ‘;

13-

ne cﬁu.sa;out.eb AT |

CALLS2 RETURNS 1O
tsuz CALLED AT
RET *

soOceDaGso

Funcnon tracmg mmﬂar to call tracin but the va!ue retumed by the function is mclud
is printed whieh

I-13-8

60305600 B

I-13-9

B 60305600 B

[-13-10

FQN?TION“?VAL(SIZE,NAY) L
AL COMPUTES THE Posxrxvs VALUE ﬂv vna EVER Rs,

VALUE PASSED oN
tuvec&n sxzs

60305600 B

—
—
L
~——
~—
-
\
S~
S

60305600 B I-13-11

The STORES statement is used to record chax;ges m value of speczﬁed vanables or arra
statement applies only to assxgnmeiﬁt Stater ‘ et
DATA, ASSIGN, C‘@MMON or argum n

In the ﬁrst form oflthe STORE st%t
array elemem chang T} i
statemem,

Example:

F13-12

60305600 B

I-13-13

60305600 B

I appears in the debug output when it is equa} fo 3; N apg:e rs whep it is less than
Since no relational Opetator is speciﬁaé i
CHECKING OPERATORS

Ini the third form of the STORE§ statexmn a message is issu
indefinite, or invalid as spemﬁeé%y

RANGE

- mx:}EF

; In,_the following
PA in display ct

IRIGHT ’

The Hollerith r.hd‘
- and ILEFT are g

60305600 B

JOEMUGZ GOTOS AT LINE 16= ASSIGNED GOTO YNOEX CONTAING. THE ANBRESS 02151, ND MATCH FOUND TN.STATEMENT LAREL: ADOPESS LIST
<<CONTROL TRENSFERED T0 STATENENT LBAEL b=+ e :

60305600 B [-13-15

TRACE STATEMENT

v is level number 0-49. 1f Iv = 0, ¢
and including level n in a DO nest. |
The C$ TRACE statement traces the
GO TO o
Computed GOTO.
Assigned GOTO =
Arithmetic IF
True side of logical IF ‘
"} ransfers resulti;ng;,frém a”i'.é{urn

~€ CALLS statement.)

If an out-of bomd mp& 2d GO
is terminated. %

diring execution. The message contai

Messageé are printed each txme €0 r ing ¢ 9 j
nd the pumber of the line to which the transfer

the line where the transfer took pld
 as the statement number of this I

A message is printed ;aéi& txmc control ‘transfets at a level iessmaféqual fo the one speei bylv For
example, if a statement CS TRACE(2) appesrs ‘before 4 sequence of DO loops nested four deep, tracing
takes place in ‘thé;tﬁobmetmast loops of ATl R T e SRS e

R e g

TRACE messages are produced at execution time, but TRACE levels are assigned at compile time;
therefore, the compile timé environment determines the tracing status bf any given statement. For example,
a DO loop TRACE statement applies only fo contro) transfers occusring between the D@ gtatement and its
terminal statement at compile time (physically hetween the two in the saurce listing). =~ o~

[-13-16 60305600 B

60305600 B I-13-17

The level number applies to the entire- pwgram unit; it is not relative to the position (}P the (ZS TRACE
statemient in the program. For examplt. t, trace the hvel 4 DO]oap in Program P '

cs TRACEM

must be specified. Positioning the statemt

FRACE(1) before statement 31 would niot achieve the same
result. Do s ; e

Care must be taken with the use of débxiggmg statements within DO laaps Sinee nestcd 1

more frequently, chc quantity of dehug c’)utput may quxckly muiuply.,

Example:
B0 100 T = 1,10

100 CONTINUE

Transfers from 7sita,teme,nt 100 1o

NOGO sm‘rmsm

1 7

If a NOGO statement is present anywh m]
not affected by an OFF statement or by

I-13-18 60305600 B

R

13-19

I-

60305600 B

[-13-20

60305600 C

: e : . e

60305600 C I-13-21

ts in the program
(other program units will be
L units. known«t “be free

1-13-22 60305600 C

{ Debug Deck

e \(externai debuggmg deck) named by the D parameter on
,pﬁamn Al program units will be debugged (unless the
ck). Th:s posnmnmg is useful when several pi)s can be

“The debugging deck is placed on a separatg fl
the FTN control card and called in duris
program units to be debugged are specmed
processed usmg the same debuggmg deck

_ : Fxgure 13» I Deck on Sepéréte File

60305600 B [-13-23

DEBUG STATEMENT

name,,..,iame, f routin&sf 5 which
Internal and external dehuggmg dccks stam with a DEBUG s
a debugging statement or comment. Interspersed deimggmg :

In an internal debugging deck the first form
used, since the deck can apply only to the prc
be the name of the outine ccmtammg the dﬂwzggs
diagnostic is prmted : :

fxample:

In the fouowmg _program, a DEBUG staten
'STORES (A,B), is interspersed. "‘

e REAL Mmi, &(tnm_
- c$ STORES (A4B) <
Lowh B(1,2) = 5,5
5 B‘l‘b,z’ = Q.
B AAN) = mi
‘ o PRINT §

10

[-13-24 60305600 B

However, if the C$ STORES statement immediately follows the PROGRAM statement this is aﬁ ifiterr
@ck and a C$ DEBUG statement must appear S i

'Paocaan DEHBL (:Npur,outpu?,aeaussoutpuV;

. c§ DEBUG e
-~ cs STORES(IHOL IRIGHT ILEFT,un;;) e

:,~xnoas2H9A

IRIGRT=2RP>“
ILEFT=2LP
o ,Hﬂtlaz’RP

DEEUG [
TORES(1, 3y , .
DEBUG(MAIN, EX?RA nAME‘
ARRAYS (VECTAB,MLTAB)
DEBUG(MAIN) g
~ TRACE- , ;
| CALLS{EXTRA,NAMES) i =

60305600 B [-13-25

|AREA bounds, ..., .t

bounds can b

{pim)

Any)
@ al hr -

N ; Last lin o?pmg;m
(*.ny) * Fzrst km: af proym
**) il “;Fxrs: line of prog am

. e Last hne of pmgtam

Line posmons can be
nnann ;Statefm:m }abel
Lnnnn ,program line number as printed on. tht%éu Q; listing by thé“"’“FORTRAN
compder (sougce listing lmc numbers _‘i when dmgging cards are
: xmterspérsed in the progi‘am) 2 o
id.n UPDATE line identifier (gefet to UPDATI ; id
' betic ‘character and cmtm o speciai chamcm —

A comma must be used to. separate the line positons, and émbedded b!m:ks ate
line position forms may be combined and bognds-may overlap. .

~—

k1326 60305600 B

The AREA statement is used (o spemfy an

area to be debugged wuhm a program unit. All debugging.
/ o1 fi atemem‘; “

/C5 | [AREA bounds,,. " ounds,

I-13-27

60305600 B

Example:
External deck

C$ DEBUG
C$ AREA/PROGA/ (XNEW. 10
C$ ARRAYS (TAB,TITLE DAYS)
C$ AREA/SUB/(15,99)
C$ STORES (DAYS)

Internal deck
c3 DEBUG

C$ AREA (L10,7)
% FUNCS (ABS) il

OFF STATEMENT

The OFF statemzm xs eﬁ‘emive af c

I-13-28 60305600 B

—— .

10

i5

20

/0EBUG/
7DEBUG/
/0EBUG/
/DEBUG/

60305600 B

cé
c3

cs

LI B B B

OFF

PROGRAM OFF (OUTPUT,DEBUG=OUTPUT)
DEBUG

STORES(C) v

INTEGER A, B8y C

STORES(A, B)

A= 41

8 =2

C =3

MESS AGES. WILL BE PRINTED FOR STORES Iﬂtori, 8y AND C.
OFF

4
5
6 v
OFF STATEMENT WILL ONLY AFFECT THE INTERSPERSED DEBUGGING
STATEMENT, SO THERE WILL BE NO MESSAGES FOR STORES INTO

A OR Bs MHOWEVER, C3 STORES(C) IN THE DEBUGGING DECK IS NOT
AFFECTED, AND A MESSAGE IS PRINTED FOR A STORE INTO C.

END

AT LINE 7- THE NEW VALUE OF THE VARIABLE A 1S
AT LINE 8~ THE NEW VALUE OF THE VARIABLE B IS
AT LINE 9~ THE NEW VALUE OF THE VARIABLE C IS
AT LINE 17- THE NEW VALUE OF THE VARIABLE C IS

[-13-29

O N

PRINTING DEBUG OUTPUT

Debug messages produced by the object routines are written to a file named DEBUG. The file is always
printed upon job termination, as it has a print disposition. To intersperse debugging information with
output, the programmer should equate DEBUG to OUTPUT on the program card. An FET and buffer are
supplied automatically at load time if the programmer does not declare the DEBUG file in the PROGRAM
statement. For overlay jobs, the buffer and FET will be placed in the lowest level of overlay containing
debugging. If this overlay level would be overwritten by a subsequent overlay load, the debug buffer will be
cleared before it is overwritten.

At object time, printing is performed by seven debug routines coded in FORTRAN. These routines are
called by code generated at compile time when debugging is selected.

Routine Function
BUGARR Checks array subscripts
BUGCLL Prints messages when subroutines are called and when return to calling

program occurs

BUGFUN Prints messages when functions are called and when return to calling
program occurs

BUGGTA Prints a message if the target of an assigned GO TO is not in the list
BUGSTO Performs stores checking
BUGTRC Flow trace printing except for true sides of logical IF
BUGTRT Flow trace printing for true sides of logical IF
STRACE

Traceback information from a current subroutine level back to the main level is available through a call to
STRACE. STRACE is an entry point in the object routine BUGCLL. A program need not specify the D
option on the FTN card to use the STRACE feature.

STRACE output is written on the file DEBUG: to obtain traceback information interspersed with the source

program’s output, DEBUG should be equivalenced to OUTPUT in the PROGRAM statement.

PROGRAM MAIN

PROGRAM MAIN (OUTPUT,DEBUG=OUTPUT)
CALL SUB1
END

[-13-30 60305600 D

;:mucuoN Funct

E}mputt‘mm STRACE:

SUBROUTINE SUBY

SUBROUTINE SUB1
- CALL ‘BUB2
RETURK
" END.

SUBROUTINE susd

~ s;mmumms svsz '
1= ruu01(2)

"FUNC vqn rnxcl (X))
FUKCL = X ** 10
CALL STRACE
RETURN

END

70EBUG/ FUNCAL . AT LINE 3= TRACE ROUTINE CALLED , o
L FUNCL CALLED 8Y SUB2 AT LINE 2, FROW
oy o , . SUBZ GALLED!BY SUBL AT LI 2, FROM
T SUBS CALLED BY WAIN .1 25 FROM.

LEVELS BACK
.2 LEVELS BACK
3 LEVELS BACK

returns in order of descamdmg level number.

For additional mformanon regardmg the debuggmg famhty, refer to the FOR’TRAN Extended Debug ;
User’s Guide.

60305600 B I-13-31

SAMPLE PROGRAMS -1

PROGRAM OUT

Program OUT illustrates the WRITE and PRINT statements.

Features:

Control cards
WRITE andPRiN’T statements

Carriage control

PAT,T10,CM45000.

The job card must precede every job. PAT is the job name. T10 specifies a maximum of 10 (octal) seconds
central processor time, and CM45000 requests 45000 (octal) words of memory for the job.

FIN.

Specifies the FORTRAN Extended compiler and uses the default parameters. (section 11, part 1.)

LGO.
The binary object code is loaded and executed.

If no alternative files are specified on the FTN card, the FORTRAN Extended compiler reads from the file
INPUT and outputs to two files: OUTPUT and LGO. Listings, diagnostics, and maps are output to OUT-
PUT and the relocatable object code to LGO.

7/8/9

The end-of-record card (EOR) or end-of-section card (EOS) separates control cards from the remainder of the

INPUT file. The end-of-record card is a multipunch 7/8/9 in column 1; it must follow the control cards in
every job.

60305600 C 1I-1-1

PROGRAM OUT (OUTPUT,TAPEE6~OUTPUT)
The PROGRAM card identifies this as the main program with the name OUT and specifies the file
OUTPUT. Output unit 6 will be referenced in the program. All files used by a program must be specified in
the PROGRAM card of the main program.

TAPE6 = OUTPUT is included because output unit 6 is referenced in a WRITE statement. The unit number
must be preceded by the letters TAPE. All data written to unit 6 will be placed in the file OUTPUT and
output to the printer.

WRITE (6,200) INK

The WRITE statement outputs the variable INK to output unit 6. If a PRINT statement had been used
instead of WRITE:

PRINT 200, INK

TAPE6 = OUTPUT would not be needed in the PROGRAM card; PROGRAM OUT
sufficient. = e B R e e

100 FORMAT (*1 THIS WILL PRINT AT THE TOP OF A PAGE*)

This FORMAT statentént uses * * to deflionit the litg#al. 1 is a carriage control character which causes the
line to be printed at the top of a page.

200 FORMAT (I5,* = INK OUTPUT BY WRITE STATEMENT*)

Although the variable INK is 4 digits, a specification of 15 is given because the first character is always

interpreted as a control. In this case, the carriage control character is a blank and output will appear on the
next line.

6/7/8/9

This is the end of file (EOF) or end of partition card; a multipunch 6/7/8/9 in column 1. This card must
appear as the last card in each job.

1I-1-2 60305600 C

PATsT104CM45000.

FTN.
LGO.

7/8/9 in column 1

100

200

300

PROGRAM OUT (OUTPUT.TAPE 6=0UTPUT)

PRINT 100

FORMAT (%*]1 THIS WILL PRINT AT THE TOP OF A PAGE*)
INK = 2000+4000

WRITE (6+200) INK

FORMAT (IS,# = INK OUTPUT BY WRITE STATEMENT*)
PRINT 300, INK

FORMAT (1H +I14430H = OUTPUT FROM PRINT STATEMENT)
STOP

END

6/7/8/9 in column 1

Output:

THIS WILL PRINT AT THE TOP OF A PAGE

6000
6000

60305600 A

INK OUTPUT BY WRITE STATEMENT
OUTPUT FROM PRINT STATEMENT

-1-3

PROGRAM B

Program B generates a table of 64 characters indicating which character set is being used. The internal bit
configuration of any character can be determined by its position in the table. Each character occupies six
consecutive bits.

Features:

Octal constants

Simple DO loop

PRINT statement

FORMAT with H./.I.X and A elements

The print statement PRINT! has no input/output list; it prints out the heading at the top of the page using
the information provided by the FORMAT statement on line 3. 25H specifies a Hollerith field of 25
characters, 1 is the carriage control character, and the two slashes // cause one line to be skipped before the
next Hollerith field is printed. The slash at the end of the FORMAT specification skips another line before
the program output is printed.

NCHAR- GO 01 02 03 04 05 08 07 1

This statement places an octal constant in NCHAR. The blanks and
affecting the programm; they are included for readability. A compaie
but since this statement uses only 8 char the 4 zeros af (he &
characters into the left 48 bits of the computer word. The 8
printed using A format. -

& &

Do 3 1I-1,8
J=1-1

These statements output numbers 0 through 7. A DO index cannot begin with a zero.

I1-1-4 60305600 B

p—g

PRINT 2, J, NCHAR

Prints out O through 7 (the value of J) on the left and the 8 characters in NCHAR on the right. The first
iteration of the DO loop prints NCHAR as it appears on line 4. The octal value 01 is a display code A, 02
isaB,03isaC, etc.

BBBBBYT109CM70000+P1S.
MAP (OFF)

FTN.

LGO.

7/8/9 in column 1
PROGRAM B (OUTPUT)
PRINT 1 ,
1 FORMAT(2S5HITABLE OF INTERNAL VALUES//12H 012345674+/)
NCHAR= 00 01 02 03 04 05 06 07 00 008
DO 3 I = 1.8
J=1-1
— - PRINT 24 JsNCHAR
2 FORMAT(I3,1X,A8)
3 NCHAR=NCHAR+10 10 10 10 10 10 10 10 00 008
STOP
END
6/7/8/9 in column 1

Output:

TABLE OF INTERNAL VALUES
01234567

0 ABCDEFG
1 HIJKLMNO
2 PQRSTUVW
3 XYZ01234
4 56789+-%
5 70)%= 4.,
6 ZC)tzpva
T 24<¢>€27

60305600 B II-1-5

PROGRAM MASK

Program MASK fé‘a@s n&'xgieﬁ and hortie st
state name. If the state name starts with

Feature:

Ma win i

1 FORMAT (IHY,BX 4HNANE
PRINTI o

The printer i directedyto Start a new.

5 READ 2,LNAME,FNANE, rStatE, Ks'm?
IF(KSTOP.2Q.1)STOP

The last name is read mm LNAME, first na
the deck contains a one wh:ch will be
for the stopindicator. :

IF((ISTATE.AND. 77vvﬁaooooooomv’ ¢
KOOOOOB)) GO T0 3 L

The relational operator NE tests 10 ﬁet it dﬁzme variable
ISTATE, match the two letters of the Hollerith nstant CA The Ias; eflg%t charamrs (48 biw) in ISTATE
are masked and the two remaining characters are compared with ‘the word containing the Hollerith con-
stant CA, also similarly masked. If the bit string ing one word i xs mz zdermeai to the &i string forming
the other word, ISTATE is not equa} to CA wé 1 ‘ ~

The bit cenﬁguraum of CALIFORNIA, t

California
Hollerith | € | A L
Octal 03 01 14

Bit | 000011 | 000001 | 001100 | 001001 | 000110, | o

I1-1-6 60305600 B

——

followg

mn ooeom '
o S i
000011 000001 000000

When (2HCA.AND.777700000000000000¢
words, all bits but those forming the fir
ing the first two characters of both words. If t
printed (statement 10), otherwise the next card is read.

60305600 B

Constant CA
' Hollerith blank | blank | blank f blenk | blank
| octat 55 55 | 55 | 6 | 55
Bit 101 | 101101 | 101101 | 101101 | 101101 | 101101
Mask
Octal 7 |7 |
st | i

s evahla%ed the ‘same result is abtamed Thus, in both
characters will be maa@ced making a valid basis for compar-
result of the mask i zs true the last name and first name are

1-1-7

IF (kS TOP:
C IF FIRST TWQ CHARACTERS

Output:

CoNAME

1-1-8

60305600 B

—

PROGRAM EQUIV

Program EQUIV places values in variables that have been equivalenced and prints these “Vaiﬁé‘s‘(ising the
NAMELIST statement. '

Features:

EQUIVALENCE statement

EQUIVALENCE (X,Y),(Z,I)

Two real variables X and Y are equivalenced; the two variables share the same location in storage, which
can be referred to as either X or Y. Any change made to one variable changes the value of the others in an
equivalence group as illustrated by the output of the WRITE statement, in which both X and Y have the
value 2. The storage location shared by X and Y contained first 1. (X=1.) then 2.(Y=2).

The real variable Z and the integer variable I are equivalenced, and the same location can be referred to as
either real or integer. Since integer and real internal formats differ, however, the output values will not be
the same.

For example, the storage location shared by Z and I contained first 3. then the integer value 4 When 1 is
output, no problem arises; an integer value is referred to by an integer variable name. However, when this
same integer value is referred to by a real variable name, the value 0.0 is output. The internal format of
real and integer values differ.

] 59 58 ' 0
integer |
59
Sign
59 58 46 47 0
Real . Biased Fraction{m}
Exp
48

Sign

Although they can be referred to by names of different types. the internal bit configuration does not change.
An integer value output as a real variable does not have an exponent and its value will be small.

When variables of different types are equivalenced. the value in the storage location must agree with the
type of the variable name; or unexpected results may be obtained.

60305600 B 1.9

WRITE(6,0UTPUT)

This NAMELIST WRITE st
LIST group OUTPU !
preceded by the grou]

Output:

f-1-10

FROGRAM EQUIV (OUTPUT,TAPE6=O0UTPUT)
EQUIVALENCE (X,Y)4(2,1)
NAMELIST/ZO0UTPUT/ XY 92yl

x=1.

¥=2.

2=3.

I=4

WRITE(6,0UTPUT)

STOP

END

$OUTPUT
X = 0.2E+01,
Y

0.2E401,
0.0,

Y4
I = by
$END

60305600 B

PROGRAM COME

Program COME places variables and arrays in common and declares another variable and array equivalent
to the first element in common. It places the numbers 1 through 12 in each element of the array A and
outputs values in common using the NAMELIST statement.

Features:

COMMON and EQUIVALENCE statements
NAMELIST statement

COMMON A(1l1),B,C,D, F,G,H

Variables are stored in common in the order of appearance in the COMMON statement A(1),B,C,D,F,G H.
Variables can be dimensioned in the COMMON statement; and in this instance, A is dimensioned so that it
can be subscripted later in the program. If A were riot dimensioned, it could not be used as an array in
statement 1.

INTEGER A,B,C,D,E(3,4),F,H

All variables with the exception of G are declared integer. G is implicitly typed real.

EQUIVALENCE(A,E,I)

The EQUIVALENCE statement assigns the first element of the arrays A and E and an integer variable I to
the same stbrage location. Since A is in common, E and I will be in common. Variables and array elements
are assigned storage as follows:

Relative
Address 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11

(1,1 | B2 | BB | B2 | E22) | EGB2) | EN3 | E(2,3) | EGB3) | EN1,4) | EQ24) E(3.4)

Al1) B C D F G H

A(2) A(3) A(4) A(5} Al8) Al7) A(8) Al9) Af10) | A1) | A(12)

60305600 B ’ H-1-11

DO 1 J=1,12
1 A(J)=J

The DO loop places values 1 through 12 in array A. The first element of array A shares the same storage
location with the first element of array E. Since B is equivalent to E(2,1), AQ2) is equivalent to B, A(3) to C,
A(4) to D, etc.

Any change made to one member of an equivalence group changes the value of all members of the group.
When 1 is stored in A, both E(1,1) and I have the value I. When 2 is stored in A(2), B and E(2,1) have the

value 2. Although B and E(2.1) are not explicitly equivalenced to A(2), equivalence is implied by their
position in common.

The implied equivalence between the array elements and variables is illustrated by the output.

NAMELIST/V/A,B,C,D,E,F,G,H,I

'The NAMELIST statement is us
A,B,C,D.EF.G,H, is defined. The N
the group in the order of appearance

order in which i is stored in memory. T

G is equivalent to E(3,2) and yet the output for E(3,2) is 6 and G 0.0. G is type real and E is type integer.
When two names of different types are used for the same element, their values will differ because the
internal bit configuration for type real and type integer differ (refer to Program EQUIV).

FROGRAM COME (OUTPUT,TAPES=0UTPUT)
COMMON A(1) 9yByCyDy FyGyH

INTEGER AyByCyDyE(3y4)yFy H
EQUIVALENCE (ALE,I)
NAMELIST/V/A3ByCyDyEgFeGyH,y1

00 1 J =1, 12
1 AW=J

WRITE (6,4V)

STOF
END

1I-1-12 : - 60305600 B

—

Output:
sV
- A = 1,
B = 2y
' c = 3,
D = 4y
E = 1, 2
F = 5y
G = 0.0,
H z Ty
I = 1,
SEND
o

60305600 A

3y

b4y

5y

6y

7y

8y

9

10,

11,

iz,

II-1-13

PROGRAM LIBS LR IS R T
Program LIBS illustrates library subroutines provided by FOR’TRA}&Eﬂend&d,
Features: |

EXTERNAL used to pass aklibra}y sqbromin* name ;gﬁgatp@mmeter ;(c another library routifgféﬁ.f, L

*

Division by zero.

Do \

LEGVAR used to test f or oVer‘ﬂyd'ét{kdr‘;ﬁm :

: ¢
i N
bR

ide error condi;mm

Library functions used: L A
LOCF ' g M * b
LEGVAR S ; » ;

Library subroutines us“‘efdv; o
DATE om
TIME
SECOND
RANGET

erator from the console. DATE is

DATE is a library subroutine whitlii‘rygmrng‘ the: date gx@}géged”byf the m the consolt
rclaring DATE external does -

declared external because it is used as pafatzrtome function LO
ot prevent its use as a library subroutine in this program. . .~

K

PRINT2, TODAY, GLOCK' . S
2 FORMAT(*1TODAY=*Y¥, AlO, * OLOCK=*,A10J .

s pear with the 10 slphanumeric
typed in the date this way. However,
since he may choose to use a 4-digit yeas, it may be prudent to usg A1l in the output FORMAY specifica-
tion to guarantee at least one leading space. The value returned by TIME is changed by the system once a
second, and the position of the digits remain fixed; a leading blank always will appe The format of
DATE and TIME can be checked by observing any listing, as the routines DATE and ; b

These statements print the date and time. Tﬁe X?dﬁg and 'tr&ﬂing; bléﬂ%s ap
characters returned by she subroutine DATE because the operator

compiler to print out the date and time at the top of compiler output fiskings

1I-1-14) 60305600 B

&

60305600 C ' i II-1-15

c
CALL s;ﬁmttmz) ,
LOCATN=LOCF (DATE)
CALL amﬁans&:m
PRINT 3;??%* Loc”
¢

TODAYS 8727774 amm- tmau.
THE ZLAPSED CRU 'IIUI s .mu

II-1-16 ' 60305600 B

PROGRAM PIE

Program PIE calculates an approximation of the value of .
Feature:
Library function RANF.

The random number generator, RANF, is called twice during each iteration of the DO loop, and the values
obtained are stored in the variables X and Y.

DATA CIRCLE,DUD/2*0.0/

The DATA statement initializes the variables CIRCLE and DUD with the value 0.0.

Each time the DO loop is iterated, a random number, uniformly distributed over the range 0-1, is returned
by the library function RANF, and this value is stored in the variable X. The value of X will be 0sX<1.
DUD is a dummy argument which must be used when RANF is called.

Y=RANF(DUD)

RANF is referenced again; this time to obtain a value for Y.

IF(X*X+Y*Y.LE.1.)CIRCLE=CIRCLE+1.

The IF statement and the arithmetic expression 4.*CIRCLE/10000. calculate an approximation of the value
of m. The value of = is calculated using Monte Carlo techniques. The IF statement counts those points
whose distance from CIRCLE(0.0) is less than one. The ratio of the number of points within the quarter
circle to the total number of points approximates 1/4 of . The value PI is printed by the NAMELIST
statement WRITE(6,0UT)

60305600 C . 1-1-17

Output:

[I-1-18

PROGRAM PIE(OUTPUT » TAPEOG=DUTPUT)
DATA CIRCLEIDUD/2%*0,0/
NAMEL IST/0UT/PI

Vo 1 I = 1910000

X=rANF (DUD)

Y=RANF (DUD)

IF (X#X+Y#Y JLE el e) CIRCLE=CIRCLE*]
CONTINUE

Pl=4.,#CIRCLE/1000V.
WRITE (650UT)

STuP
EwND

$ouT
PI = 0.31596E+404,
$END

60305600 &

- Wi
/ of the ﬁnal
record Iength

60305600 B - I-1-19

The number of computer words in each E’NCODE or DECODE wgctm% 8 deter mingd by
record length by 10 and rounding up. Fw mple, ‘m«:{;m ieﬂgihﬁq . ires 4 word
length of 71 requzres 8 words. G :

As & mnemonic aid, it may be usef‘ui to rmmbgtﬂEAD'end& wi
WRITE ends with an E and corresponds mﬁmm

In the following program, the format of da,g
of the remaining cotumns is a data item. 1f ¢
column 1 is a three or greater, each mp!e |
¢olumn 1, the correct DECODE stat‘amem (e g
and prints out the ﬁéma in éacim input card

: #

PROGRAM ADU

1(INPUT'OUTPUT01APES:1NPUYoThP§§L

INTEGER caubea).zmtruw.fbrat

10 KEAD(5s11)KEYsCARD :
11 FORMATCLI1e7TAL0.A9)

xrceoftaz.ua.oxstap

KEY= Maxocx”,Jgosxﬁv.Jﬁ

LOT040
2 DECODE (78

UECOUE(78t93vCARDi(1N1i?yl

FORMAT (26131 -

Nz26

TOTAL=G. .
DO4lisbeN : S

41 TOTAL=TUTAL'1N(15 ‘ : f

 WRITE(6912) TOTALsNsKE¥SCARD. Erkiuas et

12 FORMAT(/16+20H 1S TRE TOTAy F .Twe

1!2:7A10vh91}6ﬂ 1HE:NU“6£RS :

42k

601010
ENU k : y
7/8/9 IN COLUMN I. ' :
2l32255@76@98877553321éaaeabsbbo%?T xeaise?z,zaoah
3021«456699&77«5@@3221«455@@5&55233%5 hhk:Sb‘&i@?ﬁ
ssseasssaaseaassaaaza1«Absb66¢95371‘, el % ‘
1023456&6888993&1759%6&5544#4%5#@&;

THOB5 41
6bn9968$&605$a??§5€94’3
6Y9887 14TS LY

1I-1-20 - 60303600 B

—

THE NUFBERS . ARE

Output: i . g ‘ L 8

1900 IS THE TCTAL OF THE 30 Nﬁﬂé§ﬁ5> z'ﬁE CARD .
21322:547ee¢687755332103322“5666877965&&1233324112365#789
THE NUMEERS ARE

13 Zz LE 47 66 ©8 87 75 52 32 10 33 22 48 sg 68 77 9¢ £5. 41
23 33 2¢ 11 23 €5 47 89 65 41 23 6% k 78 96 54 12 3e Ny

4129655478 56541236028

14380 IS THE TCTAL OF THE 26 Nuuegas QN raﬁ CAﬁO
30‘14«‘eesse?7qssﬁaza:ahspea£eg‘23* 'szziiaaua
THE NLFEERS ARE

21 LT €65 987 745 663 224 u~§ ssg ees
566 655 477 885 4B8 702)

1384G 1S THE TCTAL OF THE 26 NUMBEFS ON THE CARD e
35566€€3¢2’e#e‘b233221“&5566699067765522219&«5!611223393326&556599857?@55@896030

THE NUMEERS ARE)
556 €6€ 327 J6E E5b 233 221 4o seE 699 887 /65 saz 244 445 561 1azﬂf%€“§*f*ﬁ§97

66t 956 €77 4zt 889 603 : ‘ [

370 IS THE TCTAL OF THE 79 Nuhaaks o “tHE ‘CRRO” R
1ozauseeeeee990077eesesssuuuuspeeeﬁ33322211423392;:335&2 §$5i5322119a$q?170e903;, \

-

g6 & ¥ %% & 6 6“ e gp" B ¢
6 5 S § &4 4 & & B 'S5 & &
T+ 1 1. & 3 6 .3 33 T . -
5 ¢ 2 & & %1 & 4 A A T 7 i

INTEGER CARD(8) y INITH) oTOTAL "

'oo«lxa;,uy;
4l rorALsrawng«Iuax;

Adds up to correct lumber of items and leaves the tmalm TOT AL. ol

60305600 B . II-1-21 @

WRITE(6912) TOTALoNeKEYsCARDs {IN(I)s1= 19N)
ie FORMAT(/I16+20H 1S THE TOTAL OF THE »13+20H NUMBERS ON THE CARD/

112+7A105A9/716H THE NUMBERS ARE/(2014))

Qutputs the results.

607010

Goes back to process the next card.

PROGRAM PASCAL

Program PASCAL produces a table of binary coefficients (Pascal’s triangle).
Features:

Nested DO loops
DATA statement

Implied DO loop

INTEGER L{11)

1> defined as an 11-element integer array.

DATA L(11)/1/

The DATA statement stores the value | in the last element of the array L. When the program is executed
L(11) has the initial value 1.

PRINT 4,(I,I=1,11)

This statement prints the headings. The implied DO loop generates the values | through 11 for the column
headings. :

PRINT 3,{(L{J),J=K,11)

This is a more complicated example of an implied DO loop. The index value J is used as a subscript instead
of being printed. The end of the array is printed from a variable starting position. The 1, which appears on

the diagonal in the output is not moving in the array: it is always in L(11); but the starting point is
moving.

I1-1-22 - 60305600 B

po 2 I=1,10
K=11-1

These statements illustrate the technique of going backwards through an array. As I goes from 1 to 10, K
goes from 10 to 1. The increment value in a DO statement must be positive, therefore,

Do 2 I=1,10
K=11-1

provides a legal method of writing the illegal statement DO 2 K=10,1,-1.

DO 1 J=K,10
1 L(J)=L(J)+L(J+1)

This inner DO loop generates the line of values output by statement number 2. When control reaches
statement 2, the variable J can be used again because statement number 2 is outside the inner DO loop.
However, if I were used in statement 2 instead of J, the statement 2 PRINT 3,(L(I),]=K,11) would be an
error. Statement 2 is inside the inner DO loop and would change the value of the index from within the
DO loop. Changing the value of a DO index from inside the loop is illegal and will cause a fatal error or a
never ending loop.

FROGRAM FASCAL
FROGRAM FASCAL (QUTPUT)

INTEGER L(11)
DATA L(11) 71/

c
g PRINT4y (I,I1=1,11) A
4 FORMAT(44+1COMBINATIONS OF M THINGS TAKEN N AT A TIME.//20%X,3H=N-/
. $1115)
DO 2 I = 1,10
K=11-1
10 LKI=1

DC 4 J = Ky10
LGJYzL(J)#L(J+1)
PRINT 3,5 (L(J)yJ=K,y11)
FORMAT (111I5)

DN =

15
SToF
END

COMBINATIONS OF M, THINGS TAKEN N AT A TIME.

-N-

1 2 3 4 5] 7 8 9 10 11
2 i

3 3 i

4 € 4 i

5 10 10 & 1

e 1t 20 1% 6 i

7 21 35 35 21 7 1

8 28 56 70 56 28 8 1

9 36 8L 12¢ 126 84 3€ 9 1
10 45 120 210 252 210 120 45 10 i
11 55 165 330 462 462 33(165 55 11 1

60305600 B - 11-1-23

PROGRAM X

Program X references a function EXTRAC which squares the number passed as an argument.
Features:

Referencing a function

Function type

Program X illustrates that a function type must agree with the type associated with the function name in
the calling program.

K=EXTRAC(7)

Since the first letter of the function name EXTRAC is E. the function is implicitly typed real. EXTRAC is
referenced, and the value 7 is passed to the function as an argument. However. the function subprogram ::
explicitly defined integer, INTEGER FUNCTION EXTRAC(K). and the conflicting types produce errone-
ous results.

The argument 7 is integer which agrees with the type of the dummy argument K in the subprogram. Tlic
result 49 is correctly computed. However, when this value is returned to the calling program. the integer
value 49 is returned to the real name EXTRAC: and an integer value in a real variable produces an
erroneous result (refer to program EQUIV).

This problem arises because the programmer and the compiler regard a program from different viewpoints.
The programmer often considers his complete program to be one unit whereas the compiler treats eaci;
.rogram unit separately. To the programmer, the statement

.

INTEGER FUNCTION EXTRAC(K)

defines the function EXTRAC integer. The compiler, however. compiles integer function EXTRAC and the
main program separately. In the subprogram EXTRAC is defined integer, in the main program it is defined
real. Information which the main program needs regarding a subprogram must be supplied in the main
program - in this instance the type of the function.

There is no way for the compiler to determine if the type of a program unit agrees with the type of the
name in the calling program; therefore, no diagnostic help can be given for errors of this kind.

The second time, the program was run with EXTRAC declared integer in the calling program, and the correct resuit

was obtained.

1I-1-24 - 60305600 B

PROGRAM X (OUTPUT)

c WITH EXTRAC DECLARED INTEGER ThE RESULT SHOULD BE 49s UTHERWISE 1T

c wILL BE ZERO
K = EXTRAC(T)
PRINT 19 K
1 FORMAT (1H1915)
STOP
ENO

INTEGER FUNCTION EXTRAC (K)
EATRAC = K*K

RETURN

END

Output:

FROGRAM X
FROGRAM X (OUTPUT)

C WITH EXTRAC DECLARED IMTEGER THE RESULT SHOULD BE 49, OTHERHIS‘ 17

C WILL BE ZERO
INTEGER EXTRAC
5 K = EXTRAC(7)
FRINT 14 K
1 FORMAT (1K1,1I5)
STOP
END

. FUNCTICN EXTRAC

INTEGER FUNCTION EXTRAC
EXTRAC = K¥K '
RETURN

END

60305600 B

(K)

- 11125

PROGRAM VARDIM

Program VARDIM illustrates the use of variable dimensions to allow a subroutine to operate on arrays -
differing size.

Features:

Passing an array to a subroutine as a parameter.

A subroutine name used as a parameter passes the address of the beginning of the array and nv

dimension information. ‘
COMMON X(4.3)
Array X is dimensioned (4,3) and placed in common.
REAL Y(6)
Array Y dimensioned (6) is explicitly typed real. It is not in common.
CALL IOTA(X,12)
The subroutine IOTA is called. The first parameter to IOTA is array X, and the second parameter is i
number of elements in that array, 12. The number of elements in the array rather than the dimensions {4 3} ‘\/
i5 used which is legal.
SUBROUTINE IOTA(A,M)
DIMENSION A(M)
Subroutine I0TA has variable dimensions. Array A is given the dimension M. Whenever the main prog:us:
calls IOTA, it can provide the name and the dimensions of the array; since A and M are dummy arg:-
ments, IOTA can be called repeatedly with different dimensions replacing M at each call.
CALL IOTA(X,12)
When IOTA is called by the main program, the actual argument X replaces A; and 12 replaces M.

N

II-1-26 - 60305684

DO 1 I-1,M
1 A(I)=I

The DO loop places the numbers 1 through 12 in consecutive elements of array X.

e
CALL IOTA(Y,$)

\ When IOTA is called again, Y replaces A and 6 replaces M; and numbers 1 through 6 are placed in
consecutive elements of array Y. Notice the type of the arguments in the calling program agree with the
type of the arguments in the subroutine. X and A are real, 12 and M are integer.

| Names used in the subroutine are related to those in the calling program only by their position as argu-
| ments. If a variable I was in the calling program, it would be completely independent of the variable I in
| the subroutine IOTA.
| :
| The WRITE statement outputs the arrays X and Y.
|
i
FRCGRAM VARDIM
FROGRAM VARDIM (OUTPUT, TAPE6ZOUTPUT)
COMMON X (4,3)
REAL Y(E)
CALL ICTA(X,12)
5 CALL ICTA(Y,6)
WRITE (€5100) X,Y _
- = 100 FOPMAT (*1ARRAY X = *,12F6,0/*0ARRAY Y = *o6F€.3)
el
STOP
END
SUEROLTINE I0TA
SUBROUTINE IOTA (A,M) _
C I0TA STORES CONSECUTIVE INTEGERS IN EVERY ELEMZINT CF THE ARRAY A
C STARTING AT 1
DIMENSION A(M)
5 00 1 I = 1,M
1 A(I)=1
RETURN
END
Output:
 ARFAY X = 1. 2. 3. 4. 5. 6. 7. Bs 9. 10, 11, 12
ARRAY Y = 1. 2. 3. be S 6.
Norec

60305600 B i 11-1-27

PROGRAM VARDIM2

VARDIM?2 is an extension of program VARDIM. Subroutine IOTA is used: in addition. another subrou-
tine and two functions are used.

Features:

Multiple entry points
Variable dimensions
EXTERNAL statement
COMMON used for communication between program units
Passing values through COMMON
Use of library functions ABS and FLOAT
Calling functions through several levels
Passing a subprogram name as an argument
Program VARDIM2 describes the method of a main program calling subprograms and subprograms

calling each other. Since the program is necessarily complex. each subprogram is described separately
followed by a description of the main program.

SUBROUTINE I0TA

SBROUTINE IOTA is described in program VARDIM.

SUBROUTINE SET

SUBROUTINE SET(A,M,V) places the value V into évery element of the array A. The dimension of A is
specified by M.

Subroutine SET has an alternate entry point INC. When SET is entered at ENTRY INC, the value V is
added to each element of the array A. The dimension of A is specified by M.

The DO loop in subroutine SET clears the array to zero.

I1-1-28 i 60305600 A

FUNCTION AVG |

This function computes the average of the first J elements of common. J is a value passed by the main
program through the function PVAL. '

This function subprogram is an example of a main program and a subprogram sharing values in common.
The main program declares common to be 12 words and FUNCTION AVG declares common to be 100
words. Function AVG and the main program share the first 12 words in common. Values placed in
common by the main program are available to the function subprogram.
The number of values to be averaged is passed to FUNCTION PVAL by the statement AA = PVAL(12,AVG) and
function PVAL passes this number to function AVG: PVAL=ABS(WAY(SIZE))
COMMON A(100)
Function AVG declares common 100 so that varying lengths (less than 100) can be used in calls. In this
instance, only 12 of the 100 words are used. :

po 1 I=1,J

1 AVG=AVG+A(I)

The DO loop adds the 12 elements in common.

AVG=AVG/FLOAT(J)

This statement finds the average. The library function FLOAT is used to convert the integer 12 to a floating
point (real) number to avoid mixed mode arithmetic.

The average is returned to the statement PVAL = ABS(WAY(SIZE)) in function PVAL.

60305600 A - I1-1-29

FUNCTION PVAL

Function PVAL references a function specified by the calling program to return a value to the calling
program. This value is forced to be positive by the library function ABS.

The main program first calls PVAL with the statement AA =PVAL(12,AVG), passing the integer value 12
and the function AVG as parameters.

INTEGER SIZE

PVAL declares SIZE integer - the type of the argument in the main program (integer 12) agrees with the
corresponding dummy argument (SIZE) in the subprogram.

PVAL=ABS(WAY(SIZE))

The value of PVAL is computed. This value will be returned to the main program through the function

name PVAL. Two functions are referenced by this statement; the library function ABS and the user written
function AVG. The actual arguments 12 and AVG replace SIZE and WAY.

PVAL-ABS(AVG(12))
Function AVG is called, and J is given the value 12. The average of the first 12 elements of common are

computed by AVG and returned to function PVAL. Library function ABS finds the absolute value of the
value returned by AVG. ‘

AM=PVAL(12,MULT)

In this statement in the main program, PVAL is referenced again. This time the function MULT replaces
WAY. '

FUNCTION MULT

MULT multiplies the first and twelth words in COMMON and subtracts the product from the average
(computed by the function AVG) of the first J/2 words in common.

COMMON ARRAY(12)

Common is declared 12; MULT shares the first 12 words of common with the main program.

11-1-30 - 60305600 A

MULT=-ARRAY(12)*ARRAY(1)-AVG(J/2)

The twelfth and first element in common are multiplied and the average of J/2 is subtracted. This is an
example of a subprogram calling another subprogram - the function AVG is used to compute the average.

MAIN PROGRAM — VARDIM2

The main program calls the subroutines and functions described.

COMMON X(4,3)

Twelve elements in the array X are declared to be in common.

REAL Y(6)

The real array Y is dimensioned 6.

EXTERNAL MULT, AVG
Function names MULT and AVG are declared EXTERNAL. Before a subprogram name is used as an
argument to another subprogram, it must be declared in an EXTERNAL statement in the calling program.
Otherwise it would be treated by the compiler as a variable name.
CALL SET(Y,6,0.)
Subroutine SET is called. The arguments (Y,6,0.) replace the dummy arguments (A,M,V).

DIMENSION Y (6)

D011 =1,6
1 Y(I) = 0.0

The array Y is set to zero. The NAMELIST output shows the 6 elements of Y contain zero.

60305600 A - ' Ii-1-31

CALL IOTA(X,12)

Subroutine IOTA is called. X and 12 replace the dummy arguments A and M

DIMENSION X (12) -
DO 1 I=1,12
1 X(I) =1

the value of the subscript is placed in each element of the array X. Program VARDIM output shows the
value of X is 1 through 12.

CALL INC(X,12,-5.)

Subroutine SET is called, this time through entry point INC. The arguments (X.12.-5.) replace the dummy
arguments (A,M,V) '

DO 2 I-1,12
2 X(I) = X(I) + -5.

-5. is added to each element in the array X. Program VARDIM2 output shows X is now -4.-3.-2.
-1,0,1,2,3,4,5,6,7

~

Ai=PVAL(12,AVG)

unction PVAL is called and its value replaces AA.

AM=PVAL(12,MULT)

Function PVAL is called again with different arguments and the value replaces AM.

’ PROGRAM VARDIM2(OUTPUT,TAPE6*OUTPUT,DEBUG=OUTPUT)

c THIS PROGRAM USES VARIABLE DIMENSIONS ANO MANY SUBFROGRAM CONCEPTS
COMMON X (4,3)
REAL Y(6)
EXTERNAL MULT, AVG
NAMELIST/V/XysYyAA AN
CALL SET(Yy6404)
CALL IOTA(X,12)
CALL INC(Xy124-5,)
AA=PVAL (12, AVG)
AM=FVAL(12,MULT) ~
WRITE(6,V)
STOP
END

II-1-32 - 60305600 A

SUBROUTINE SET (Ay,M,V)

c SET PUTS THE VALUE V INTO EVERY ELEMENT OF THE ARRAY A
DIMENSION A(M)
DO1I=1,4M
1 A(I)=0.0
c
ENTRY INC '
c INC ADDS THE VALUE V TO EVERV ELEMENT IN THE ARRAY A

00 2 1 = 1yM

2 A(I) = A(I) + V
RETURN
END

SUBROUTINE IOTA (A,M)
C IOTA PUTS CONSECUTIVE INTEGERS STARTING AT 4 IN EVERY ELEMENT OF
C THE ARRAY A

OIMENSION A(M)

0011I=1,M

1 A(I)=1
RETURN
END

FUNCTION PVAL(SIZE,KAY)

C PVAL CCMPUTES THE POSITIVE VALUE OF WHATEVER REAL VALtE IS RETURNED
c B8Y A FUNCTION SPECIFIED WHEN PVAL WAS CALLED. SIZE IS AN INTEGER
c VALUE PASSED CN TO THE FUNCTION.

INTEGER SIZE

PVAL=ABS(WAY(SIZE))

RETURN

END

FUNCTION AVG(J)
C AVG COMPUTES THE AVERAGE OF THE FIRST J ELEMENTS OF CCMMON.,

COMMON A(100)
AVG=0.,
00 1 I = 1,4

1 AVG=AVG+A(I)
AVG=AVG/FLOAT(J))
RETURN
END

REAL FUNCTION MULT(J)

C MULT MULTIPLIES THE FIRST AND TWELTH ELEMENTS OF COMMON AND
C SUBTRACTS FROM THIS THE AVERAGE (COMPUTED
c BY THE FUNCTION AVG) OF THE FIRST J/2 WORDS IN COMFON,.
C

COMMON ARRAY (12)

MULT=ARRAY(12)'ARRAY(i)'AVG(J/Z)

RETURN

E N O
sV

2 =0.4E4+01, ~0.3E4C1i, ~0,2E+04, -0.1E+01y 0.0y 9.4E+01, 0.28+81, 0.3E¢0%y 0.4Ee01, 0.5E+01,
G.6E401, 0.7E+02,

Y * 0.0y 0e0y DeOy 0.0y Oely 840y
AA = 0.15E+01,
AN = 0.265E402,

11-1-34 60305600 A

- PROGRAM CIRCLE

Program CIRCLE finds the area of a circle which circumscribes a rectangle.
Features:
Definition and use of both FUNCTION subprograms and statement functions.
This program has a hidden bug. We suggest you reud the text from the start if you intend to find it.

A programmer wrote the following program to find the area of a circle which circumscribes a rectangle.
and wrote a function named DIM to compute the diameter of the circle.

The area of a circle is TR, which is approximately the same as 3.1416/4*Diameter**2.

PROGKRAM CIkCLE (QUTPUT) .
AF‘#.U
B=3e0 R
AYEA=3,1416/%e 0% UM (Aqgy) &ty
P<INT le AREA
1 FoareniAT (G2Ue10)
SiuP
t ot
FOUNCTION UIM(XeY)
DIvaSuKT (X#A+YH*Y)
Ke TURN
e b
Output:
«7854000000

60305600 A II-1-35

The programmer was completely baffled by the result; he felt the area of a circle circumscribing a rectangle
12 square inches should be more than .785! He consulted another programmer who quickly pointed out
that a simple function like DIM should have been written as a statement function. Since FORTRAN
Extended compiles statement functions inline. it would execute much faster because no jump nor return
jump would be generated by the function.

The programmer rewrote his program as follows:

PrUOGKRAM CIKCLE (OQUTPUT)
UDIMXeY)I=SURT (X#X+YHY)
A=4.0

8=3e0
AREA=3,1416/74,0%DIM(Agr) B3ty
PiINT 1o AREA

FOorRMAT (G20410)

STUP

t b

and obtained the correct result.

I-1-36

When the programmer wrote his function subprogram, he used the same
name as a library intrinsic function. If the name of an intrinsic function
is used for a user written function, the user written function is ignored.

60305600 A

PROGRAM OCON
Program OCON illustrates some problems that may occur with octal or Hollerith constants.
Features:

Octal Constants in expressions
The compiler generally treats both octal and Hollerith constants as having no type; therefore, no mode conver-
sion is done when they are used in expressions. If, however, the compiler is forced to assume a type for an
octal or Hollerith constants, it will treat them as integer. When an expression contains only operands having no
type, integer arithmetic is used. For example:
B=10B+10B
The expression is evaluated using integer arithmetic. Furthermore, for subsequent operations, the result of integer
arithmetic is treated as true integer. Thus, in the above example, the expression on the right is evaluated using
integer arithmetic; and the integer result is <converted to real before the value is stored in B. Comparing the
values produced in OCON for A and B illustrates this effect.
With REAL arithmetic whenever the left 12-bits of the comphter word are all zeros or all ones, the value of
that number is zero. (See section III-4 discussion of Underflow.) This explains why the output value of A from
OCON is zero.
C=B+10B

REAL arithmetic is used to evaluate the expression; and the octal constant 10B is used without type conversion,
making its value zero. Note in the output from OCON, the values of B and C are equal.

D=I+108B

No problem arises in the above expression as it is evaluated with integer arithmetic; then the result is converted
to REAL and stored in D. '

E=B+I+10B

The compiler, in scanning the above expression left to right, encounters the REAL variable B and uses REAL |
arithmetic to evaluate the expression. Again, the octal constant 10B has the REAL value of zero.

If the expression were written as:
E=10B+1+B or E=I+10B+B

The first two terms would be added using integer arithmetic; then that result would be converted to REAL and
added to B. In this case, the octal constant 10B would effectively have the value eight.

60305600 D 1-1-37

This is similar to the mode conversion which occurs in:
X=Y+3/5 or Z=3/5+Y

The above expressions would give different values for X and Z. More information on the evaluation of mixed
mode expressions is in section I-3.

F=A.EQ,10B

REAL arithmetic is used to compare the values because A is a type REAL name. The value in A and the
constant 10B both have all zeros in the leftmost 12 bits; both have value zero for real arithmetic; therefore,
the value assigned to F is .TRUE.

To avoid the confusion illustrated in this example, simply use integer names for values that come from octal
or Hollerith constants or character data that is input using A or R format elements. To illustrate, this program

was rerun with the names A, B, C, D, and E all as type INTEGER.

All these examples have used octal constants; however, the same problem occurs with Hollerith especially when
it is right justified; the following coding illustrates the point:

REAL ANS

READ 2, ANS
2 FORMAT(R3)
IF(ANS .EQ. 3RNO)PRINT3
3 FORMAT (*-NEGATIVE RESPONSE*)

PRINT3 of the logical IF will always be executed independently of information in the data cards.

11-1-38 60305600 D

WITH REAL VARIABLES

10

PROGRAM OCON(OUTPUT,TAPE6=OQUTPUT)
LOGICAL F
NAMELIST/0OUT/ZA489CyDyEHF
A=208B

B=10B+108

C=B+1d8B

I=5

D=I+108B

E=B+I+108B

F=R.EQ.778B

WRITE(6,0UT)

STOP

END

WITH INTEGER VARIABLES

L)

10

60305600 C

PROGRAM OCON(OUTPUT,TAPE6=0UTPUT)
INTEGER A,89Cy0yE
LOGICAL F
NAMELIST/0UT/A389CyDyEHF
A=208

B=108+108

C=B+108

I=5

D=1+108B

E=B+1+108

FzA.EQ.778

WRITE(&,0UT)

STOP

END

$ouUT

m MmO O o

SEND

$0UT

T M O O o

$END

Dely

0.16E+02,y
0.16E¢02,
0.13E402y
0.21E¢02y

Ty

16,
16,
2hy
13y
29,

Fy

11-1-39 e

R

LIST DIRECTED INPUT/OUTPUT

List directed input/output eliminates the need for fixed data fields. It is especially useful for input since the
user need not be concerned with punching data in specific columns. List directed input does not require the
user to name each item as does NAMELIST input.

Used in combination, list directed input and NAMELIST output simplify program design. Such a program is
easy to write, even for persons just learning the language; knowledge of the FORMAT statemens is not required.
This facility is particularly useful when FORTRAN programs are being run from a remote terminal.

Example:

H2:T10.
MAP (OFF }
FIN(R=0)
LGOU.

7/8/9
PROGRAM tASY 10 (lNPUToOUTPUToThPESSINPUt9TAPE6=0UYPUT)
COMPUTE THE AREA AND RADIUS OF AN INSCRIBED CIRCLE OF ANY TRIANGLE.
KEAL SIDES(3)
£QUIVALENC£(SIDES(1)0A)9(SIDLS(Z)'B)'(SIDES(3)QC)
NAMEL ISTZ0UT/SIDESsAREAYRADIUS
3 READ(5+%)S10ES
If(EOF(S).NE.O)STOP
S=(AsB3+C) /2,
AREA=SGRT (52 (5=A)®#{5=8) *(S-C})

RADIUS=AREA/S
WRITE(69UUT)
6UTO3 :
END —
7/8/9
3 &5
62798
3=
4
S
6
12.5321452¢ 2244536425
6/7/8/9
Qutput:
$ouT

SIDES = 0+3Ee01y Qe4E*Uly 0e¢SEsOL
AREA = 0s6Ee0ly
RADIUS = 041Es01»

SEND

11-1-40 60305600 D

souT
SIDES = 0.6Es0ls 0.7E+Uly QeBEeOLY
AREA = 0.2033316256758¥E402,

RADIUS = 0,1936491673103/€+01,

SENO

$OUT
SIDES

[}

DelEeOLly UelEsvly OQelEeOlr

AREA 0,43301270189224E4+00,

RADIUS 0.28867513459481E400

SEND

souT

SIDES = 04E+01r 0.SE*uls 006E¢0)s
AREA = 0.99215676416492¢€+01,

RADIUS = 0413228756555324E+015

SEND

souT
SIDES = 0.125321652E4021 0,224536E402, 0,25E+020

AREA 0¢14040622058737£+03y

RADIUS = 0,4681252853299wt+01,

SEND

The user may enter the three input values in whatever way is convenient for him; such as: one item per line
(or card), one item per line with each item followed by a comma, all items on a single line with spaces separ-
ating each item, all items on a line with a comma and several spaces separating each item, or anv combination
of the foregoing. Furthermore, even though all input items are real, the decimal point is not required when
input value is a whole number.

60305600 D ‘ RS

CROSS REFERENCE MAP HI-1

The cross reference map is a dictionary of all programmer created symbols appearing in a program unit, with the pro-
perties of each symbol and references to each symbol listed by source line number. The symbol names are grouped by
class and listed alphabetically within the groups. The reference map begins on a separate page following the source
listing of the program and the error dictionary.
The kind of reference map produced is determined by the R option on the control card:

R=0 Nomap

R =1 Short map (symbols, addresses, properties)

R=2 Long map (short map, references by line number and a DO-loop map)

R=3 Long map and printout of common block members and equivalence classes

R Implies R =2

If R is not specified the default option is R = 1 unless the L option equals 0; then R = 0.

Fatal errors in the source program will cause certain parts of the map to be suppressed, incomplete, or inaccurate. Fatal
to execution (FE) and fatal to compilation (FC) errors will cause the DO-loop map to be suppressed, and assigned ad-
dresses will be different; symbol references may not be accumulated for statements containing syntax errors.

For the long map, it may be necessary to increase field length by 1000(octal).

The number of references that can be accumulated and sorted for mapping is: field length minus 20000 (octal) minus
4 times the number of symbols. For a source program containing 1000 (decimal) symbols, approximately 8000
(decimal) references can be accumulated with a field length of S0000 octal.

Examples from the cross-reference map produced by the program which follows are interspersed with the general
format discussions.

The source program and the reference maps-produced for both R =1 and R = 3 follow. A complete set of maps for
R = 2 is not included, but samples are shown with the discussion.

On the following pages, some addresses will differ because they were run on an earlier version of the com-
piler.

The new header line that appears at the top of each page of compiler output contains: the prograr: -inii

tvpe. the compiling machine, the target machine, control card options, version and mod-level of the comniter
data. time. and page number.

60305600 D HI-1-1

SOURCE PROGRAM

Main Program

| PROGRAM MAPS T4/Th oPI=1 FTN bei®REL 99726/73 18.22.52.
PROGRAM MAPS MAPS 00%
1(INPUT,OUT?UT,TAPE5=INPUT,TAPEb=0UTFUT) MAPS 006

INTEGER SIZE1, S1y SIZEZ2y S2 s STRAY MAPS 007
EQUIVALENCE(SIZEi,Si),(SIZEZ,SZ) MAPS 008

5 NAMEL IST/PARAMS/SIZEL,SIZEZ MAPS 009
DATA S1,S2/12,12/ MAPS 0410

100 READ(54 PARAMS) MAPS 011

WRITE (6,PARAMS) MAPS 012

PRINT 1 MAPS 013

10 1 FCRMAT (#0SAMPLE PROGRAM 10 ILLUSTRATE THE VARIOUS COMPILER MAPS.#)MAPS 014
CALL PASCAL(S1) MAPS 015

PRINT 2 MAPS 016

4 FORMAT (#0THE FOLLOWING WILL HAVE NO HEADINGS.?) MAPS 017

CALL NOHEAD(S2) MAPS 018

ig STOP MaPs 019
END MAPS 020

Block Data Subprogram

| BLOGK DATA Tw/T% OPT=1 FIN bel#REL

BLOCK DATA
COMMON/ARRAY/X (22)
INTEGER X
DATA X(22)/%/

5 END

Subprogram with
second entry

l SUBROUTINE PASCAL Te/Th OPTs} FTN beieREL 83726773 18.2h.12.
SUBROUTINE PASCAL(SIZE) MAPS 026

INTEGER L(22),SIZE MAPS 027

COMMON/ARRAY/L MAPS 028

PRINT 4y (I,121,SIZE) MaPS 029

5 4 FORMAT (44HOCOMBINATIONS OF M THINGS TAKEN N AT A TIME.//20Xy3H=N=-/HAPS 030
$2216) MAFS 031

ENTRY NOHEAD MAPS 032

M=MINO (21,MAX0(2,SIZE=1)) MAPS 033

D02I=1,HM MAPS 034

10 K=22-1 MAPS 035
L(K)=1 MAPS 036

D01J=K,21 MAPS 037

1 LGJI=L (I el IrY) MAPS 038

2 PRINT 34 (L(J)yJ=K,22) MAPS 039

15 3 FORMAT (2216} MAPS 040
RETURN MAPS 041

END MAPS Q42

7/8/5% in column 1I.

Namelist data

SPARAMS

S12E2 = Ty
SEND
6/7/8/9 in column 1.

HI-1-2

09726773 13.24.11.

MaAPS 021
MAPS 022
MAPS 023
MAPS 824
MAPS 025

60305600 D

R=1 MAPS

FROGRAM NAPS COC 6600 FYN V4.0~-P3LD OPT=1 07/19/72 08.13.43C,
SYMBOLIC REFERENCE MAP (R=1)

ENTRY FOINTS

— 4102 MAPS
= VARIABLES SN TYPE RELOCATION
4167 SJ2E1L INTEGER 4170 SIZE2 INTEGER
4366 STRAY INTEGER - %UNDEF 4167 S1 INTEGER
4178 S2 INTEGER
FILE NAMES MODE
b o INFUT : 2036 OUTPUT FHT 0 TVAPES NANE 2036 TAPE® NAME
EXTERNALS TYPE ARGS
NOHEAD 1 PASCAL 1
NAMELISTS
- PARAMS
STATEMENT LARELS
4345 1 1414 . #3572 FMT 0 100 INACTIVE
. STATISTICS
o PROGRAM LENGTH 758 61

BUFFER LENGTH 4743 2108

8LOCK [ATA COC 6600 FTN V4,0-P310 OPTst 07/19/72 (08.,13.40.
SYMBOLIC REFERENCE MAP (Re1}

VARIABLES SN TYPE RELOCATION
[INTEGER ARRAY ARRAY

S COMMON BLOCKS LENGTH
ARRAY 22

STATISTICS
FROGRAM LENGTH] '}
COMMON LENGTH 268 22

— . SUBROUTINE PASCAL COC 6600 FTIN V4.0-P310 OPT=1 07/19/72 08.13.41.
SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS
26 NOHEAD 2 PASCAL

VARIABLES ‘ SN TYPE RELOCATION

111 1 INTEGER 116 4 INTEGER

113 K INTEGER g L INTEGER ARRAY ARRAY

112 ¥ INTEGER 0 SIZE INTEGER F.P,
FILE NAMES MODE

QUTPUY FrY
INLINE FUNCTIONS TYPE ARGS
INTEGER 0 INTRIN MIND INTEGER ¢ INTRIN

STATEMENT LABELS
v o1 ? 2 107 3 FNT
72 o Fu
COMMON BL OCKS LENGTH
ARRAY 22
STATISTICS

PROGRAM LENGTH 1178 79
COMMON LENGTH 268 22

60305600 B -1-3 e

R=3 MAPS

PROGRAM

MAPS

SYMBOLIC REFERENCE MAP (R=3)

CDC 6600 FTN V4.0-P310 0PT=1 07719772

ENTRY POINTS DEF LINE REFERENCES
4102 HAPS 1
VARTABLES SN TYPE RELOCATION
4167 SIZEL INTEGER REFS 3 4 5
4170 S12E2 INTEGER REFS 3 “ 5
4166 STRAY = INTEGER *UNDEF REFS 3
4167 S1 INTEGER REFS 3 " 11 DEFINED
4170 S2 INTEGER REFS 3 u e DEFINED
FILE NAMES MODE
o INFUT
2036 OUTPUT FNT WRITES 9 12
0 TAPES NAME READS ?
2036 TAFE6 NAME WRITES]
EXTERNALS TYPE ARGS REFERENCES
NOMEAD 1 14
PASCAL 1 11
NAMELISTS DEF LINE REFERENCES
PARAHS 5 7
STATEMENT LABELS DEF LINE REFERENCES
4145 1 FHT 10 9
4187 2 1 13 12
¢ 160 INACTIVE 7
£QUIV CLASSES LENGTH MEMBERS « BIAS NAME (LENGTH) . _
SIZEL 1 0 st Y s missing for R=2 map
SI12E2 1 0 s2 (1)
STATISTICS
PROGRAM LENGTH 758 61
BUFFER LENGTH 40748 2108
BLOCK DATA COC 6600 FTN V4.0-P310 OPT=1 07/19/72
SYMBOLIC REFERENCE MAP (R=3)
VARTABLES SN TYPE RELOCATION
o X INTEGER ARRAY ARRAY REFS 2 3 OEFINED W
~3HMON BLOCKS LENGTH MEMBERS - BIAS NAME (LENGTH) : oci -
ARRAY 22 0 X (22) -«—— missing for R=2 map
STATISTICS .
PROGRAM LENGTH 08]
COMMON LENGTH 268 22
SUBROUTINE PASCAL COC 6600 FTN Vi4.0-P340 OPT=1 07/19/72
SYMBOLIC REFERENCE MAP (Rs3)
ENTRY POINTS DEF LINE REFERENCES
26 NOHEAD 7
2 PASCAL 1
VARIABLES SN YYPE RELOCATION
111 1 INTEGER REFS " 10 DEFINED “
114 J INTEGER REFS 13 1A DEFINED 12
113 K INTEGER FEFS 11 12 14 DEFINED
0L INTEGER ARRAY ARRAY RE S 2 3 2043 1%
112 ™ INTEGER REFS 9 DEF INED s
0 SIZE INTEGER FoP. REFS 2 " s DEFINED
FILE NAMES MODE
oUTFUT FHT WRITES 4 1
INLINE FUNCTIONS TYPE ARGS DEF LINE REFERENCES
MaX0 INTEGER 0 INTRIN s
NING INTEGER 0 INTRIN ’
STATEMENT LABELS DEF LINE REFERENCES
0 13 12
0 2 16 9
107 3 FuT 15 14
72 4 FHT 5 o
LOOFS LABEL INDEX FROM-TO LENGTH PROPERTIES
20 .1 4 48 EXT REFS
43 2 1 9 14 208 EXT REFS NOT INNER
50 1 J 12 13 28 INSTACK
COMKON BLOCKS LENGTM MEMBERS - BIAS NAME (LENGTH) L _
ARRAY 22 oL (22} - mlsslng for R—2 map
STATISTICS
FROGRAM LENGTH 1178 79
COMMON LENGTH 268 22

11-1-4

08.13.49,

oo

08.13.50.

098.13.51.

9

14

10
DEFINED 1t 13

i

60305600 B

e OUTPUT
SPARAMS
SIZE1 = 12,
. s12E2 = 7,
$E ND

i SAMPLE PROGRAM TO ILLUSTRATE THE VARIOUS COMPILER MAPS.

COMBINATIONS OF M THINGS TAKEN N AT A TIME.

oNe=
b 2 3 4 5 6 7 8 9 10 11 12
2 1
3 3 i
L € 4 1
s i0 i0 5 1
6 15 20 15 6 i
7 21 35 35 21 7 i
8 28 56 70 56 28 8 1
9 36 84 126 126 84 36 9 1
10 45 120 210 252 210 120 4E i0 1
11 5¢ 165 330 462 462 330 165 55 11 1
12 66 220 495 792 924 792 495 220 66 12 1
THE FCLLOWING WILL HAVE NO HEADINGS.
2 1
3 3 i
4 6 & 1
5 10 10 5 1
—_ € 15 20 15 6 1
7 21 35 35 21 7 i
—

60305600 B I-1-5 ®

General Format
Each class of symbol is preceded by a subtitle line that specifies the class and the properties listed.
Formats for each symbol class are different, but printouts contain the following information:
The octal address associated with each symbol relative to the origin of the program unit.
Properties associated with the symbol
List of references to the symbol for R=2 and R=3

All line numbers in the reference list refer to the line of the statement in which the reference occurs. Muitiple refer-
ences in a statement are printed as n*1 where n is the number of references on line 1.

All numbers to the right of the name are decimal integers unless they are suffixed with B to indicate octal.

Names of symbols generated by the compiler (such as system library routines called for input/output) do not appear
in the reference map.

ENTRY POINTS

Entry point names include program and subprogram names and names appearing in ENTRY statements. The format
of this map is:

ENTRY POINTS DEFINITION REFERENCES
addr name def ref
addr - ‘ Relative address assigned to the entry point.
name Entry point name as defined in FORTRAN source.
def Line number on which entry point name is defined (PROGRAM statement, SUBROUTINE
statement, ENTRY statement, etc.). (Not on R=1 maps.)
ref In subprograms only, line number of RETURN statements. (Not on R=1 maps.)
R=1:
ENTRY POINTS
26 NOHEAD . 2 PASCAL
R=2 and R=3:
ENTRY POINTS DEF LINE REFERENCES
26 NOHEAD 7 16
2 PASCAL 1

® [lI-1-6 60305600 B

N

VARIABLES

— Variable names include local and COMMON variables and arrays, formal parameters, RETURNS names, and for
FUNCTION subprograms, the defined function name when used as a variable. The format of this map is:

name

block

60305600 B

"VARIABLES SN TYPE RELOCATION
addr name * type prop block refs

Relative address assigned to variable name. If name is a member of a COMMON block;
addr is relative to the start of block.

Variable name as it appears in FORTRAN source listing. Variables are listed in alphabeti-
cal order.

SN = stray name flag. (No entry appears under SN when R=1 is specified.) Variable names
which appear only once in a subprogram are indicated by * under the SN headline. Such
variable names are likely keypunch errors, misspellings, etc. In the long map, DO loops where
the index variable is not referenced will cause the index variable to be flagged as a (legal) stray
name.

LOGICAL, INTEGER, REAL, COMPLEX, DOUBLE, or ECS.
Gives the arithmetic mode associated with the variable name. RETURNS appears if name
is a RETURNS formal parameter.

Properties associated with variable name are printed by keywords in this column:
*UNDEF Variable name has not been defined. A variable is defined if any of the
following conditions hold:
name appears in a COMMON or DATA statement.
is EQUIVALENCED to a variable that is defined.
appears on the left side of an assignment statement at the outermost
parenthesis level.
is the index variable in a DO loop.
appears as a stand alone actual parameter in a subroutine or function
call.
appears in an input list (READ, BUFFERIN, etc.).

Otherwise, the variable is considered undefined. However, variables which
are used (in arithmetic expressions, etc.) before they are defined (by an
assignment statement or subprogram call) are not flagged.

ARRAY Variable name is dimensioned.

*UNUSED name is an unused formal parameter.

Name of COMMON block in which variable name appears. If blank, name is a local variable.

/1 indicates name is in blank COMMON.
FP. indicates name is a formal parameter.

1l-1.7 e

refs

S
DEFINED All appearances of name where its value may be altered such as in DATA,
ASSIGN, READ, ENCODE, or DECODE, BUFFER IN, assignment state-
ments, or as a DO loop index.
I0 REFS All appearances of name in use as a variable file name in I/0 statements.
R=1: This map form uses a double column format to conserve space. Headings appear only on the first columns.
VARIABLES SN TYPE RELOCATION
111 INTEGER 116 J INTEGER
113 X INTEGER L INTEGER ARRAY ARRAY
112 # INTEGER 0 SIzE INTEGER F.Pe
R=2 and R=3:
VARIABLES SN TYPE RELOCATION
it 1 INTEGER REFS [16 DEFINED & 9
114 J INTEGER REFS 13 14 DEFINED 12 14
i13 K INTEGER REFS 11 12 1k DEFINED 10
e v INTEGER ARRAY ARRAY REFS 2 3 2*13 16 DEFINED 11 13
112 N INFEGER REFS 9 OEFINED 8
0 SIZE INTEGER F.P, REFS 2 4 L] DEFINED 1

111-1-8

(Does not appear in short map, R=1)

References and definitions associated with variable name are listed by line number, begin-

ning with the following in-line subheadings:
REFS
value of name is used.

All appearances of name in declarative statements or statements where the

60305600 B

FILE NAMES

File names include those explicitly defined in the PROGRAM header card as well as those implicitly defined (in
subprograms) through usage in I/O statements. The format of this map is:

addr

name

mode

refs

FILE NAMES
6 INFUT

R=2 and R=3:

FILE NAMES
8 INFUT
2036 OQUTPUT
0 TAPES
203¢ TAFEe

FILE NAMES MODE
addr name mode refs

Relative address of the file information table (FIT) associated with the file name. The
file’s buffer starts at addr+34B This column appears only in main programs (where the
file is actually defined). In subprograms, this column is blank.

Name of the file as defined in PROGRAM statement or implied from usage in 1/0O state-
ments. For example, in a subprogram, WRITE(2) implies a reference to file TAPE2.

Indicates the mode of the file, as implied from it usage. One of the following will be

printed:

FMT Formatted /O e.g. READ(2,901)
FREE List Directed I/O READ(2,*)
UNFMT Unformatted I/O READ(2)

NAME Namelist Name 1/O0 READ(2,NAMEIN)
BUF Buffer 1/O BUFFER IN(2,0)
MIXED Some combination of the above.

blank Mode cannot be determined.

(Does not appear in short map, R=1.)
References are divided into three categories by in-line subheadings:
READS followed by list of line numbers referencing file name in input operations.

WRITES line numbers of output operations on file name.

MOTION line numbers of positioning operations (REWIND, BACKSPACE, ENDFILE)
on file name.

2036 OUTPUT FHMT 8 TAPES NAME 2036 TAPES NAME T

WRITES 9
READS 7
WRITES 8

12

When a variable is used as a unit number in an I/O statement the following message is printed:

60305600 D

VARIABLE USED AS FILE NAMES, SEE ABOVE

1i-1-9

EXTERNAL REFERENCES

External references include names of functions or subroutines called explicitly from a program or subprogram, as well
as names declared in an EXTERNAL statement. Implicit external references, such as those called by certain FORTRAN
source statements (READ, ENCODE, etc.) are not listed. The format of this map is:

EXTERNALS TYPE ARGS REFERENCES
name type args prop refs
name Name defined EXTERNAL as it appears in source listing.
type Applies to externals used as functions. Possible keywords are:

REAL, INTEGER, COMPLEX, DOUBLE, LOGICAL

Gives the arithmetic mode of external function.

NO TYPE No specific arithmetic mode defined.
Applies to certain library functions listed as externals in T mode. (T mode
is implied when OPT=0 or D mode is selected.)

This column will be blank for all externals used as subroutines in CALL statements.

args Number of arguments in call to external name.
prop Special properties associated with external name:
FP name is a formal parameter (applies only for references within a program).

LIBRARY name is a library function called by value. In T compile modes, no LIBRARY
entries appear since all references to library functions (SIN, COS, etc.) will be
by name. (OPT=0 or D mode automatically implies T mode.)

refs Line number on which name is referenced. (Does not appear in short map, R=1.)
=}:

EXTERNALS TYPE ARGS

NOHEAD 1 PASCAL 1
R=2 and R=3:

EXTERNALS TYPE ARGS REFERENCES
NOHEAD 1 14
PASCAL 1 11

[1-1-10 60305600 B

INLINE FUNCTIONS

Inline functions include names of intrinsic and statement functions appearing in the subprogram. The subtitle line is:

INLINE FUNCTIONS TYPE ARGS DEF LINE REFERENCES

name mode args ftype def refs
name Symbol name as it appears in the listing.
mode Arithmetic mode, NO TYPE means no conversion in mixed mode expressions.
args Number of arguments with which the function is referenced.
ftype INTRIN Intrinsic function.
SF Statement function.
def Blank for intrinsic functions; the definition line for statement functions.
refs Lines on which function is referenced.
R=1:
INLINE FUNCTIONS TYPE ARGS
MAXO INTEGER ¢ INTRIN WIND INTEGER 0 INTRIN
R=2 and R=3:
INLINE FUNGCTIONS TYPE ARGS DEF LINE REFERENCES
MAXD INTEGER 0 INTRIN 8
MIND INTEGER 8 INTRIN 8
NAMELISTS
NAMELISTS DEF LINE REFERENCES
name def refs
name Namelist group name as defined in FORTRAN source.
def Line on which namelist is defined.
(Does not appear in short map.)
refs Line numbers of references to name.
R=1:
NAMELISTS
PARANMS
R=2 and R=3:
NAMELISTS DEF LINE REFERENCES
PARAMS 5 4

60305600 B HI-1-11

STATEMENT LABELS

The statement label map includes all statement labels defined in the program or subprogram. The format of this map

is:

addr

label

type

act

def
refs

R=1:

STATEMENT LABELS
6 1
72 0« FnT

R=2 and R=3:

STATEMENT LABELS
0 1
4

167 3 Fu1
72 4 FHT

-1-12

DEF LINE REFERENCE
act def refs

STATEMENT LABELS
addr label type

Relative address assigned to statement label. Inactive labels will have addr zero.

400 000 will be shown if no address is assigned; usually, a fatal error
occurred and the final phase of compilation did not take place.

Statement label from FORTRAN source. Statement labels are listed in numerical order.

One of the foltowing keywords:

FMT Statement label is a FORMAT statement.

UNDEF Statement label is undefined. refs will list all references to this undefined
label.

blank Statement label appears on a valid executable statement.

One of the following keywords:

INACTIVE label is considered inactive. It may have been deleted by optimization.
Terminal statements of a DO loop are inactive unless referenced as the
object of a transfer of control. Inactive labels will have addr zero.

NO REFS label is not referenced by any statements. This label may be removed safely
from the FORTRAN source.

blank label is active or referenced.

Line number on which label was defined. (Does not appear in short map.)

Line numbers on which label was referenced. (Does not appear in short map.)

6 2 107 3 FHT

OEF LINE REFERENCES
13 12

14 9
15 14
5 L

60305600 D

DO-LOOPS

The DO-loop map includes all DO loops as well as implied DO loops not in DATA statements that appear in the pro-
gram and lists their properties. This map is generated only in the long map (R=2 and R=3). Loops are listed in order
of appearance in the program. The format of this map is:

fwa

term

index
first-last
len

prop

R=2 and R=3:

LOOFS LABEL INDEX
20

-
43 2 .

1
I
$0 1 J

LOOPS
fwa

LABEL
term mf index

INDEX FROM-TO

first-last

LENGTH
len

PROPERTIES
prop

Relative address assigned to the start of loop body.

Statement label defined as end of loop, or blank for implied DO-loops in 1/O statements.

blank

Indicates index is materialized (value of index in memory is the current value
of loop count).

Indicates index is not materialized (index is not used directly and is updated
in a register only; value in memory will not correspond to current loop count).

Variable name used as control index for loop, as defined by DO statement.

Line numbers of the first and last statements of the loop.

Number of computer words generated for the body of the loop (octal).

Various keyword prints are possible, describing optimization properties of the loop:

OPT Loop has been optimized.
INSTACK Loop fits into instruction stack (7 words or less, 6600 onlyt).
EXT REFS Loop not optimized because it contains references to an external subprogram,
or it is the implied loop of an I/O statement.
ENTRIES Loop not optimized because it contains entries from outside its range.
NOT INNER Loop not optimized because it is not the innermost loop in a nest.
EXITS Loop not optimized because it contains references to statement labels outside
its range.
FROHW-TO LENGTHN PROPERTIES
& 8 . EXT REFS
9 14 208 EXT REFS NOT INKER
12 13 28 INSTACK

tLoops that fit in the 6600 instruction stack have a maximum length of 7 words and usually run two to three times as
fast as a comparable loop that does not fit into the stack.

60305600 B

1-1-13 e

COMMON BLOCKS

The common block map lists common blocks and their members as defined in the source program. The format of this
map is:

COMMON BLOCKS LENGTH MEMBER - BIAS NAME(LENGTH)
block blen bias member (size)
block Common block name as defined in COMMON statement.
!/ represents blank common.
blen Total length of block in decimal.

If the long map is specified (R=3) the following details are printed for each member of each block:

bias Relative position of member in block; in decimal, gives the distance from the block origin.
member Variable name defined as a member of block.
size Number of words allocated for member.

Only variables defined as members of a common block explicitly by a COMMON statement are listed in this map.
Variables which become implicit members of a common block by EQUIVALENCE statements are listed in the EQUIV

CLASS map and the variable map.
R=1 and R=2:

CGMMON ‘BLOCKS LENGTH
ARRAY 22

R=3:

COMMON BLOCKS LENGTM HEMBERS - BIAS NAME(LENGTH)
ARRAY 22 LS 22

111-1-14 60305600 B

EQUIVALENCE CLASSES

This map appears only when R=3 is selected. All members of an equivalence class of variables explicitly equated in
EQUIVALENCE statements are listed. Variables added through linkage to common blocks are not included. The
format of the map is:

cbase

base

clen
bias

member

size
R=3 only:

EQUIV CLASSES
SI1ZE
SI12€2

60305600 B

LENGTH
1

1

EQUIV CLASSES ' LENGTH MEMBERS - BIAS NAME (LENGTH)
cbase base clen bias member (size)

Common base. A variable name appears here if the equivalence class is in a common block.
In such a case, cbase is the variable name of the first member in that common block.

ERROR Indicates this class is in error because more than one member is in common
or the origin of the block is extended by equivalence.

If the class is local (not in a common block), base is the name of the variable with the lowest
address. If the class is in a common block, base is the name of the variable in that common
block to which other variables were linked through an EQUIVALENCE statement.

Number of words allocated for base, (considered the class length).

Position of member relative to base; bias is in decimal.

Variable name defined as a member of an equivalence class. (Members having the same bias
which are associated with the same base and thus occupy the same locations.)

Size of member as defined by DIMENSION, etc.

MEMBERS ~ BIAS NANME (LENGTH)
0 S1 (1)
0 s2 [$8]

I-1-15 @

PROGRAM STATISTICS

At the end of the reference map, the statistics are printed in octal and decimal. The format is:

STATISTICS

PROGRAM LENGTH Length of program including code, storage for local variables, arrays, éonstants,
temporaries, etc., but excluding buffers and common blocks. -

BUFFER LENGTH Total space occupied by I/O buffers and FIT/FET.

COMMON LENGTH Total length of common, excluding blank common.

BLANK COMMON Length of blank common.

R=1, R=2, and R=3:

STATISTICS
FROGRAM LENGTH 1178 78
COMMON LENGTH 268 22

ERROR MESSAGES

The following error messages are printed if sufficient storage is not available:
CANT SORT THE SYMBOL TABLE INCREASE FL BY NNNB

or

REFERENCES AFTER LINE NNN LOST INCREASE FL BY NNNB

DEBUGGING (Using the Reference Map)

New Program:

The reference map can be used to find names that have been punched incorrectly as well as other items that will not
show up as compilation errors. The basic technique consists of using the compiler as a verifier and correcting the FE

errors until the program compiles.

Using the listing, the R=3 reference map, and the original flowcharts, the following information should be checked by
the programmer:

Names incorrectly punched
Stray name flag in the variable map
Functions that should be arrays

Functions that should be inline instead of external

e Ill-1-16 60305600 B

S

Variables or functions with incorrect type
Unreferenced format statements

Unused formal parameters

Ordering of members in common blocks
Equivalence classes

Existing Program:

The reference map can be used to understand the structure of an existing program. Questions concerning the loop
structure, external references, common blocks, arrays, equivalence classes, input/output operations, and so forth, can

be answered by checking the reference map.

60305600 B

m-1-17 ®

FORTRAN DIAGNOSTICS -2

Diagnostic messages are produced by the FORTRAN Extended compiler during both compilation and

execution to inform the user of errors in the source program, input data or intermediate results.

COMPILATION DIAGNOSTICS

Errors detected during compilation are noted on the source listing immediately following the END card.
The format of the message is as follows:

CARD NO.
n
n
SS— e
d
~ error
message
S

60305600 C

SEVERITY DIAGNOSTIC

e a error message

Card number where error was detected. This number is assigned by the FORTRAN Ex-
tended compiler. Some declarative statement diagnostics will show the card number of

the next non-declarative statement; END card number is used for undefined statement

number diagnostics.

Indicates the type of diagnostic. In the fbllowing pages, compile time diagnostics are
listed alphabetically by error type.

I Informative message which indicates minor Syntax errors or omis-
sions which have no effect upon compilation or execution.

EC When an error of this type is encountered during compilation. the
remaining portion of the program is checked for Syntax errors
only. Program is not executed.

FE Error fatal to execution. Program compiles but does not execute.

ANSI Usage does not conform to ANSI standards (X3.0 - 1966). ANSI
diagnostics are not listed unless the X parameter is specified on
the FTN control card.

Information in this column will differ according to the type of error encountered. For

example, if the same statement label is used more than once. the label number is

printed. If a message of the format tn CD n appears. cn is the column number in
which the error was detected. and n is the card number.

Error message printed by FORTRAN Extended compiler

I-2-1

£
$728v7 GINL4IONN
ROT38 335 ‘SUIGNNAN LNINILVLS O3INLIIAND a4 52
$3SN SNITAINS HIIN SAOITINOD 130¥Y SIHL 43 350 IN3ISIud ¢ 34 9"
ANINILNLS 40 34AL SIHL NO 3LVNINNIL AON AVN 4007 00 V¥ a4 124
*SISIHINIYYY 1437 ¥O C3INVN SLNVASNOD ¥ AG O3INOVI04 33 ASAN Lew HO 4/%4%¢%=) QILVIIINI HOLVNIJO INL '4 34 6
SHILIVHVHD ANYK 00L S¥H IW¥A JIT0QWAS as 6
F36YT LN34340LS 3LVIIV4EN0 34]
AN3NILVLS 032IN90JIIUNN FE] £
*S4013 3VINNUIS °*ONISSIN SISININIYVG 14918 13AIY O¥3IZ £ 09 L0 34 e
S¥VIS40 INISILVAS UIOVIH ON N3HM 3vieN AVEO0Bd 03ANSSY °*LN¥VLS I L4
JILSONIVIO ALI¥3A3S °ON QAVD
ON3
d401S 683 °
(NVES0Nd 3HL 40 ON3 341 SI SINL HIE) LUNuOd 9
(9%9) aLIum 4
(Y0UY3 WVUS0¥d HYT) Llviuod 6
(2°9) 3Llun &
£4944(1-000%)41 90T {17
evlsl 2
(021) 1vdd0d §
16%9) 3113k 20
90T 0L 09 ¢
84243 (I-NeNILI 90T .
$033x3xN/121 SO
2'rég=n T 00 %Ot
vzt £4%
(¥)i83S=y 20%
Iz ® $
=1 ¥0%
(IEHE X6/ THTX6TT

/0007 0L T 4022 SUIGUNAN ININ¢ 40 1SIN V¥V ST ONINOVNI0S W2S) LvWucd @
4849) 3LI¥N 80T

:ardurexy

60305600 A

1-2-2

Z°r0

‘2 m1

*¥ILOVHVHI ISNV-NON v SI N9IS Snd

$330°M3 “3N0°HI ‘03SN NIIB SYH SKAOZ ISNV-NON INIMOTN04 3IHL 40 3NO
*ISNY-NOM ST ONIWLS HITEATIOH INIMOTTI04 VO 1VEVHIS 01314 30 NOISSIHO
ISMY-NON SI INVISNOJ HLIIYIVTIOH 40 SKI0J 1Y ¥C INVLISNOD w130
*SINIY INIWWOI ISNV-NON N9IS ¥VII00 ¥0 NSIAY3IISY 40 SIININANII0
*ISNV-NON SI 1dT¥3SEeNS OHVONVLIS-NON

NOTIVYEYID30 3dAl 40 WA04 ISNV-NON

1N3IN3LIVIS ViVO JO WA0J ISNV-NON

HYRI0Ud NI GIWYNII0 SCAVD ANVIE ISNV-NON

ISNV-NON ST IN3IK3ILIVIS JSIT3WHVYN

SISNV-NON ST IN3WILVIS INIHIIVIdIH I4ILTINK

*ISNVY-NON SI NOTSSIUIXT OININSYKW

ISNY-NON ST 39YSN INVISNOD ¥0 ¥01VY3I40 TWII9071

“ISNV-NON ST IN3IWIIVIS 1131ITdRI

*ISNY NON SI STOPWAS A8 03ILV3INITI0 INIALS HLTHITI0H

SINZRIEVLIS VAVO ¥ NI ¥C IN3WILVLIS 1IvS v 340 1SI7 INIWN9aV NV NI NVH! ¥3H10 SAVIddY INVLISNOD HLITI¥3ITIOH

S3IOVEN ISNVY-NON SNIVINOCD IN3H3IVIS 01 09

"HOIVYNIIS3N #4013vd 3TWIS ONIMOTITI04 03103d4X3 ¥OL4I¥ISIO0 1d INILVOIL
ISNV-NON €I IN3WIIVIS A¥INI

ISNV-NON SI Ndani3¥ Vv SY INI IOV IN3IWILIVLIS ON3

ASYSN ISNV-NON ST d0ivHVdIS INIWILIVIS NIIS ¥v¥II00

*ISNV-NON ST NOTLIVIT4IO3dS X HIIM 4N ONINJVE

“3INC NWPTICT 1V 13S 38 Ol ONINOTLISOd 3SNYD TIIM NWNTOD 1SUI4 ONCA3E dN XNOvE 01 LdW3ILLY

*AVYYY 40 ALITNINOISNIWIG NVHL S1dINISENS ¥IMTS HITIM QIONIUISIH IHUN AVAHRY

G3Sr 38 T1IM IN3WITI 1SHI L4 ‘031dT1UNSENS 10N ONVIIJO IRVN AVAHIY
29YSe ISNVY NON ST 1SI7T 0/1 INIWILILLS INdINO0 NY NI NOISSIddXI NV

*ONVY dO X3ITHHOD Vv SYH TWYNOTLVI3Y V

ISNY
ISNY
1SNV
1SNV
ISNY
ISNY
ISNY
ISNY
ISNV
ISNY
ISNY
ISNY
ISNY
ISNY
ISNV
1SNV
ISNY
ISNV
ISNY
ISNY
ISNY
ISNY
ISNV
1SNV
ISNY
ISNV

ISNVY

3 ®

~

HI-

60305600 D

*+ 30

*ISNV-NON SI

S-JON**-%°NIUVE 1457 CANVISNOD *3INVN ¥V A8 CGIMOTI04 38 ISNH *ONV°® 20 $eu0*t= *°NIYVd 1337 *VHHOD ¥

INVISNOD ¥V A G3IMOTI04 38 LSNW NIIS - ¥0 +

*SPI¥Vd AHIIY ¥O *INVISNOOD *“3WVN A8 0303033d 38 ION AVW °“1O0N°

Sd0071 0 ANVW 001 SVH Wv¥903d80NS SIHL

734 ISYIAINI ‘dVIIA0 S38VL

T4 3ISYIAINT “MOTIHIA0 378Y1

MOT1443A0 3178V1 TTO0BHAS

NOISVHY0SNT QUVI 0¥ JNCD AVINIA0 11V GI0H 01 F9VH0LS ONINHOM NI WO0Y¥ HINON3 ION
IN3W3ILIVIS 00 NO 738¥7 JONVE 40 1N0 YO0 INISSIK

NOISNVAX3 d4SV ININNO MO THUIA0 AAOWIW

MOTSY3IA0 3I8VI1 J0UAT

ISNV-NON SI 3JWVYN DITOBWAS ATFLIIVHVHI L

ISNY-NON ST INIWILVLIS G3NNILINOD NI O¥VD INIRWOD 40 3SN

*ISNV-NGN SI 3WVYN NJO0Tf NOWWOJ 03138V SV ¥IBWAN ¥ 30 3ISN

*ISNV-NON ST IN3W31V1S dJI HONVYE-OML

*IN3K3ILVLS ISNV-NON ¥V SI INIWILVIEIS SIHY

ISNY-NON ST NOXLIVYVIO30 BVHAOL SIHIL

SNOTAVOIAI Z3dS ISNV 01 WH0ANOD 10N S300 INIWIIVLIS 0/1 NV 40 HH¥04 STHL

*TSNY-NON ST ¥(iv¥3Id0 ININOdX3 NV J0 SONV¥3J0 3HL 40 NOTIVNIPHOOD 3dAL 3HIL

(ae NUM] ¥THI0) ¥0O1V¥IL0 IT13WHIINY 3O TWNOILVII¥ V 40 SONVXIH0 3HL 40 NOTLVNIBWOD 3dAl IHA

*JTSNV-NON S1 ¥0XV¥3d0 N9IS-1WnD3 NV 40 SONV¥3Id0 IHL 40 NOILVNIBWOD 3IJALl 3HL
ISNV-NON ST IN3IWI1VIS N3NL3Y QYVONVIS-NON 3HL

*SNO1IVII-103dS ISNV 01 WAGINOTD ION S300 3NIT GNI SIHL JO 1VREOJ 3Hi
*X3TdWOD 3dAL ST IN3RILVES 4T NV NI NOISSI¥dX3 3IHL

*ISNV-NON SI YOIVNOIS3Q INIL113S 8Vl

CINIWTLLES TTVI NT S¥ILIWVAVY SNANL Y

*ISNV-NON ST d01d1¥3S30 071314 INIA3IT3Ad

EE]
34
34
34
ME}
HE]
a4
a4
a4
34
34
ISNY
ISNY
ISNV
ISNV
ISNY
ISNY
ISNV
ISNY
ISNY
ISNY
ISNY
ISNYV
ISNY
1SNV
ISNV

ISNY

S600 D

6030

5

-

"03¥3INNOINT XVINAS QOvE

1W1S AINDI NI 1d47¥07S6NS (va

J3MOTIV NVHL SU3IIIKYNYI AWWNG IUCK TYH 4S5V

S1dT33SENT IWOITIT HLIIM AVIIV

TUYNAZLIXI Q3FVII3C0 I8 10 AVK 3TBVIIVA NOWWOD a0 AvduY

SidI¢J:8NS 33XHL NVHLI JUOW SVYH Avddv

*SIS3HIN3YVY LHOIY¥ ¥C VWWOD A€ O3M01704 IO0N IN3WNOUY

NOISS3udX3 NV 38 ION AVH 4307 01 9Suv

JAVH OINOHS 3T8VINVA V FU3IHM 024Y3ddV

*SA1dIdISENS ANVK 001 SVYH 3IONIYIATH AvdAVY NV

M3078 NOWWOO V NI ¥V3iddVY ISNW SW31T SU3 W

YILIHVAVD TVR204 Vv ION ST NOISNIWIG 278VISVA V HLIIM JWVN AVAAY 3H1 0 NOISNIWIG II6VIAVA
ONISSINW ¥3I13RVEVd ¥V SYH JSv STHL 03 3ININI 43N

1STIT ¥ILINVIVA FHE NTIHLIM SISIHINIYYCD G3IINV VENN SYH NOIIINNA INIWIALVLIS DTLI3WHIINY SIHLI 01 3IONINIITY
“¥IVIINTI 3AdAL JON SI1 1dIHISENS IETEISArOY 03NOTINIR ATISNOTAIAd

T:8Y7T SIHL1 01 ¥34SNVAL IW9TIT1T1 NV S3INVH INIWILIVLES SNOTAIdL

“INVISNGD V. A6 03IMOTTI04 36 LON AVH WVYN

*1SI7 INIHNIAY NV SAVINDIY FONIY3I4IY NOXLINNS

“3TOVI™YVA §3931MT NV ¥0 INVISNOD ¥IA9IAINI 3IAIIISO4 Vv 38 L1SNH A4313WVAVL 0O

INIW3LVLS J0 3IdA) STIHE NO 31VYNIWAIL L1ON AVW dO0O7T 04

INIHILVES LVHA04 ¥V NO JLVNIWYIL ION AVH 4007 0Q

*3LINISION] 80 IINVY¥ 40 1IN0 ST NOTIV¥IHC TWw3IY ¥V 40 ONVI3IH0 INVISNOD

*INVISNOJ ¥IHIONY YO ‘*3HYN *NOIS TvAD3I NV AS UIMOTTI04 38 L1ON AVR INVISNOD

XTET ONV 0 N3I3MLIIE 34 1SNW 2ILIWVIVL 00 INVISNOD

*10NVLSNOD 33408d 304 INVISNOD NIIHD *I31Y3ANOCD 78 I1CNNVI INVISNOD

*1INS 3T 3INVE-40-IN0 ¥0 IL1INIAIONT NV 3ATIS TITM NCTIVE3dO OIL13IWHLIIU¥V LNV ISNOD

YIMOd YITIUINT NV 01 O7'S1yvd I8 ATINO AVK ISYE XIWIWOD

v

v

EE]

33

34
3
34
34
34
33
33
34
34
34
34

34

34
34
34
34
34
34
14
34

34

[1-2-5

60305600 D

INJRIINIS 00 Vv 40 JONVY FHL NIHLIIM ¥NID0 10N AVH SEN3WILIVIS
03736vY 38 10N AVH IN3W3LVIS
HY¥908d V NI 2V3IddV ION AVH INIWIIVIS

WYNICEdENS SIHL NI 03SN A7SN01A3xd N3I3FE SYH 3INC SIHL - INDINN 38 1SOK S3INVN INIOd

A¥INT

AYIN3I

A¥IN3

AYIN3I

INTLINOY TYNEIIXTF NV 01 INIWNNSHY 3INOTV-ONVIS ¥ 38 1SNW 3INI¥ISIN WOT/S03

738y IN3W3LAVLIS F1viIdnad

198V IYVA 1dI¥DSBNS ANV HOLVKW INS300 ¥0 X3GNI d007T 31v3INdng

3OIM1 G3¥NJI0 NOILINII3Q 4SV NI AU313IWVEV

ARKNG

¥ 13WVIVd TIWWY04 O3INI430 AT8n00

(031S3IN ATYIJOBAHT IV 130V7 SIHI NO INILVNIK¥3L Sd4007 GO

NTET CNV T NI3MLIIE JNVISNOD L0 ¥0 ¥39IINI NV 38 1SNW ¥0LIV4 d3¥ A0 1IWIT 00

*0¥3IZ AINVISNOOD Afi NOISIAIQ

“QN¥T NILNOD 15071 #0 ¥JLIWTIIC 2 INISSIK *¥0d23 INNOD ¥331JIVHVHI 03 WI3H3 "INVISNOD H1I¥ITIOH 3IAT1LD3430

IININDIS J0 1IN0 INIWILVIS IATIVHVIOIC

SHOY¥H3I 1VIV3 TA0EV 20 IWNLVN OL 3N0 0ISSIUJANS NOTLdO NOIIN33IX3 9n830

YOY¥I XVINAS 1SIT 3IBVINVA Vvivd

d330 T QI1SIN 38 AINO AVW SISIT HW31I vivad

INIWIIVIS A4TICHIS H0 379Vi IOUVINICOILVINNAI ININILVIS-0IMOTIYIA0 SYOISNOD 378VL INVISNOD

SNOISNIRTA AVNHAY SOH3IIX3 3ANTVA 1d4TAJSANS INVISNOD

}INVd LHIIY ¥O 7 * W AG 03IMN0OTI04 38 1SAH WILT VIVO INVISNOD

%0018 NOWWOI SIHI NI I1SIX? SNOTIVIVIO3C TIAIT ONILIIT4NOD

YOUUI IONITTVAINDI-NOKKROD

“ZRYN V97111 30 NOWKWOD NI 03¥V1330 ATISNOIA3UM ¥0 AILIKVAVL TVHIO0S SI 3718VINVA NOWHOD

SIHSYIS NI M3ISOTIINI 10N FWYN HI0T8 NOWWOD

*SOYOM TZO0TST SO3I3IXI HIONIT X0018 NOHHWOD

1M00T INIKNOEY 1D3INAOINT NV HITM NOILIIONNS DOISNI¥INT ¥O

INIRNSHY dAl ONOMM HI1IM 03717V0 NOTLONNd OJISNIWINI A0 TYN¥ILXF

J1Sve

J1sve

34
34
34
34
34
34
34
34
34
34
34
34
EE]
34
a4
34
34
34
34
34
34
34
34
34
34
343

34

g

60305600 D

® I}1-2-6

“3¥3H SHULS 1VHY¥04 STHI ¥0J4 NVIS AOUYUI ‘YOLdTYISIA fd ONILVOIS INIQIHITHud SMOTI104 I3FLIVAVYHI
“3¥3H SdO1S LYWY0J STIHL W04 NVIS dO¥W3I °“¥0I4I¥DS3IN Z H0*¥*0*T1*I*V 9INIA3L5Iud SMOTI0 4 YILIVHYHID
TININILIVIS ST0T14WT NI ONNOE JILOVAVHI

“IVHAO04 VD

LYKY04 VO

IHYN 0078

*Y0A¥I XVINAS |
HO¥YI XVINAS OHuVD

INIHILVLIS 1SVUT4 ION OAVO

w9371
w9311
o3
w931
w931
Rl ERNEH
HIS 0/1
Y3IAVIH

430V3H

IX3INCD ¥IHIONV NI O037N3I¥IIIY AISNOTAIUNdD TIWYN dNOAD

SHSYTT A€ O3IONNOWANS 10N IWVN dNOA9

d0¥AA XVINAS - INIWILVIS 01 09

HYY<0¥dB8NS STH1 NI 3TEVIYVA V SV UV3IddV 10N S300 3IWYN NOILDNNS

° H 1V SdOIS IVWIC4 SIHL ¥0J NVIS HONW3 "I1Z7dW0D ST INNCD HIT¥ITIOH JSVT 380478 SONI INIRILVLS
*3¥3H SdOLS ININNVIS W¥Y3I "9INT¥IES HEII¥ITIOH 40 ON 3I¥C43I8 SONI INIWIIVIS

STVO3ITTIT IONIWISIY

SIHIS AINT3 VO NOWHOD NI UV 'ddV ION AVH SHILIWVNVA

W31l Tv9317I NY A8 ©

LYWA0d

LYRB04

1VRA0

BALR-DE

4M01704

TIA3T 3WYS 3IHLD NI 38 ISCH ¥JIC18 NOISSIWSNVYE VIVO 40 €3ISSIVA0Y OFOM 1SV ONV OHOM L1SNI4

03NT430 ATISNOTIAINL 3KYNITIS

SHIIOVUVYHD 9 NVHL ¥31V3I¥9 ST 3IWYNITIA

°SdO1S ONINNVIS °“TZ0*T:¢T NVHI d3iv3I¥9 ST HIQIP G314

INIWILINES ASTITINYN v NI QIMOTIV ION SNOTSNIWIO IIGVIHVA HIL

IM *d°4d

NOISS3ddX3 3IHL A4INGNIS °O0IMOTAYIA0 OIVLISHO) 378v1 ¥OIVISNYNL NOISSINdX3I

NOISSIVIXI 3IFHI AJITJIKIS “QIMOTIYIA0 (€1S¥) I10¢] HOIVISNYYEL NOISS3INdXT

SNOISSIAAXT IFHI A4TTIWIS *O0IMOTHYIA0 (1STTYY) 278V 1 HOIVISNVML MOTSSINDXT

03INTH430 AISNOTIAIYd ION IWYNITIT4

[SENRAIIE]

34
34

EE]

34

34

EE]

34

34

34

EE]

34

34

34

EE

34

34

EE

34

2.7

e

60305600 D

—~—

~—

*SH0LVHI40 TVI1901-NON HIIM 03SN ONVAE3IJO VII907

*INIHILIVICS 4T HONVAHE-£ NI NOISSI¥dX3I WIIS07

03XIW 38 10N AVH SONVY¥3d0 TVII90T-NON ONV 1TW31907

IN3IHIIVIS IINITVAINDI NV NI ¥v3IddV ION AVW FTEVI¥VA € T13AIT

*v93711I SI INIHILVIS INIHIOVIdId 40 F0IS 1437

0IINIIVAINDI 38 10N AVW 39VWA0L1S 40 ST3IAIT INI¥ISITA NI SH3ILT
INIONITVAINDI AYOLIIQVHINOD NI QG3IATOANI

U3141I93d4S ¥IBWNN T3A3T CITVANI

ANIHNOYY NV <Y JWUN NCILONNS ¥V 3SN JON AVW FONIUISIIY NOILONNS JTSNIVINI

f 3INYN A¥EINI) SI WH04 378VMOTIV AINO *INTWILVIS AYINI 340 HY0S WIdOUIWI
0109 G3IN9ISSY A0 NIISSY NI Q1314 INYN ITEVINVA WIITNI

*N9IS 1¥ND3 3H1 40 3Sn TVIIT

*IN3IWILVLIS 1I0ITWdNI NI 03I4I03dS 3IdAl WIITII

ININILVIS LIJITNARI NI XVINAS V937711

ININILIVIS TUNNILX3 NI ¥OL1VEVd3S WI3111

*03¥3LINNOONI ¥0LIVIVLIAS WIITX

SIGVIBVA NIIML13IE WOLVIVIIS WIITN

*YILINVAYA SNAINLIY TWI31TX

JEGVINVA 1STII3WYN Vo3I

*3IIN3NB3S 1SID 0/1 NV NI G3¥3ILINNOOINI W3ILI 1SIT W93

*IN3NILVIS 41 NI ST38VT w931

IN3WILVLS SIHI NI 01314 738VI Tv93TX

SVHHOD ¥V 30 3SN 3IH1 INIATOANI W¥O03 93T

NIOI¥0 %2018 NOWWOD 40 NOISN3IX3I WI3II

*N311dW00 38 _wz IIM INFWILIVLS STHL 40 ¥ONIVHIY 3IHL *AdIFLIVEVHI vI3lll
*JY3H SHOIS LVYWRO- SIH! W03 NYJS ¥O¥WI *YOLVNOISHIC INTI13S 8VI SMOTIT0F UILIVIVHI TWI3TI

*3YIH SAOLS 1VWE0Z STHI %04 ININNVI S BO¥¥I *¥ILIJIVUVHI NIIS INIC3IDIdud SMOTI0I ¥3IL1OVEVYHO W3]

34

34

EE]

EE

34

34

34

34

EE

34

34

34

34

33

34

34

34

34

34

34

34

34

EE

34

34

34

60305600 D

2-8

-

SUILIVAVHO 3IATS NVYHL 3FYOW ST 13I8V CIINI¥ILIY

CTZ0TET NYHL ¥31v3¥9 ST HIONIY GH033d

S3SN SNOIA3Y¥d HIIM S1JTTV4NOD 138V SIHI 40 3I<N INISIVd

“3¥3H SdOIS ININNVIS *INNOD V AE 030333dd LON SI YOIVIIONI HIIN3TIOH INIG3IN3INd

®3¥3H SdOLS 1VHEOS4 SIHL A0 ININNVIS d0¥33 °0¥3IZ 01 IWND3I ST INNOD HIINYITIIOH 9INIQ3IDINd

"3d43KH Sd01S 1VHEO0: STKIL ¥04 ININNVIS dO¥Y¥3I °"G3103dX3 0LIDVH ITWIS *1IW93I1NI ¥ILJOVNVHD ONICIDVIud

“3Y3H SdO4LT 1VHAIO3 SIHL ¥O: NVOS HOUUZ °*ONI¥LS VILOVEVHI NI INICd STHL 1V TV¥93T11 UILJVHVHI ONIOG2TIdd

U3L13IWVAYd TYRP0S SNANLIY ¥V 10N ST AINIWILYLS NYNLII¥ OYVONVIS~-NON NO NIL1IHVHVI

dNOYI IONITWAINTI NI IWYN OTT0BHWAS 3INO AINO

INIINIIVAIRD3 INIFNG SNOISNIRIO 40 ¥3EWNAN FHI HLIIM 3IETIVINOINT SI SIdINISBNS 40 JITWNN
ITEVIYVA 20 INVICNOD ¥3I9IINTI NV 38 ISNKW INIWILVIS 30003N/300INI NV NI SHILIVEVHI 40 ¥ 3BHNN
HY3908d8NS NOTLONNI V NI ¥V3ddV LON AVR IN3IWILIVIS NUYNL3IN OHYONYLS-NON

N3¥Vd 13371 A8 03MOTT04 S¥V3IAIVY IWYN QINOISNINIC NON

JATAI3¥IA B30VOT NI SISIHININVLG LHOTY ONILVYNIW&31 ON

SISIHINIYYL LHITYH INIHOIVW ON

"1dIYISENS NI STSIHINIYVD 1HIIY INIHILVW ON

"1SIT INIWNI¥Y NT SISIHINIUYD 1HITY ONIHILYH ON

" *SISIHININVL 1437 INIHOLVH ON

20AVI XVINAS INIWILIVIS ISTIIWYN

S1ISTT INIWNOYY NI SIN3IWNOWY £9 NVHI FA0W

G¥VI NOTLONAS ¥0 INILINOWE(S V NO SIILINVUVA £ WO 0BYD WYAD0Ud NO SITIJ 06 NVH1 TH0MW
*NCISSI¥dX3 TYNOILIVIIY Vv NI ¥OLv¥IH0 TUYNOILVIIY 3INO NVHL IJOW

S738V7 YIASNVYL 40 L1SIT NI HO¥¥I XVINAS d0 INISSIN

NOKHOJ JNVIE8 NI ¥0 °d*d *TUYNYIIXI *NOIIONNS4 30 ION AVH

“3¥3H SdO01S LVYHAOS4 STIHY ¥04 NVIS HO¥H3 *030330X3 TIATT INTISIN SISTHINIUVY KNKIXVH

d330 04 NVHI 3Y0W N31S3IN 34V S4001

S1IX3 ON SVYH ONV 39NVY SI1T 30ISIN0 WO¥4 G3UIINI ST ON OuV3 SIHL 1v ONINNIOSIE 4007

34

34

EE]

34

34

33

34

34

34

34

34

34

a4

34

34

34

34

33

33

34

34

34

34

33

34

29

-

60305600 D

41 Tv3I<07T Y3HIONY uC 0N ¥V NVHL dHLIC INIW3LIVIS 378viN03X3

T

20 0 38 1SNK INIWIIVIS O/1 ¥34308 Vv NI ¥CLVIICONT ALINVd THLI 30 INTVA 3HL

MOISSIYAXE ANV 303 TVIIT JON ST HITSTINIOI SIHL 40 3dAL 3JHL

11 S3I0333dd 00 SIHL 4C INIWILVIS TUNIKAN31 3HL

SWETH=T ¥O ¢R*ZHCTH=T 38 ISNHK SPI1INVIVL 00 J0 XVINAS 3HIL

ANV 38 AVW 4T VYOIO907T V NI IN3WI{VLIS 3IML

"CISIHINIBYG 1427 30 “IWVYN ‘INVISNOD ¥V AT T3MOTT04 38 ISOW (ax O */¢a®+°-) O3IVOIONT A0LVAIJO 3HIL

"4 U0 - “CNIANYA 1437 CIWUYN CINVEISNCT V A8 CIMOTI04 38 1SNK (TYNOTILVI3N v A0

“1ON®) O031VIOIONI A401VY¥3d0 3IHIL

ONT¥IS C31TRINIO-31CAT v ¥0 SITI9IC AVID0 €S37 20 w\mm 1€NKW 3SNvd V0 401S ONIMOTI04 GI3I4 3HL

Iv3I90T 3d4AL LION ST 41 Av3I9071 ¥ NI NOISSIdIX3F 3HIL

II18VIYVA N39TEINT I1TdWIC v 3t 1SAKW 4007 CIITVIWNI 00 ¥0 00 vV 40 3TEVIYVA T0YINOD 3IHI

*ARYN

*Sd01S ININNVIS *TZ0°TST NVH!I ¥3iV¥3¥9 SI 9INIi13S 8vi

ZNOZ+¥VYAT«TNOD W¥04 30 38 ISNH*ISIT 14I¥ISENS
193N 00 G3INdWI

IN3HILVLIS FONITIVAINDGI

ININILIVIS ViVvO

1SIT WILIT Vviveo

NOT1INI330 4SVY

HOILINIZ43Q 4SV

NI

NI

NI

NI

NI

NI

NI~

AOVY3
YO¥Y3
YOI 3
oA
YOAA3
AF0YUA3

oA

XVINAS
XVINAS
XVLINAS
XVINAS
XVINAS
XVINAS

XVLEINAS

SYFLIVIYHI ANVH 002 SYH 3FWYN DIT0CHAS

SNIINOHENS~-NON v SV 3¥3HMISTI 07ISN ST 1vI 28 0L CIYPId3d 3WYN INILINOHEBNS

INIWI VLS AIATIVAVIOIN v NI O3ITNIYISIY 368 10N AVH SHYN WVHI0A34BNS

ONOT 001 IN3W31VIS

SSISIHEINIXVD 1437 A8 O3M0TITI04 INVISNOD ¥0 3T18VINVA IIIWIS

*SISIHINIWVA 1437 40 *INVISNOD *3WUYN V AP (O3MOTI04 SISIHININVLE LHOTY

SINIWILNLIS INTIVEVITI0 NI BVIddY 1ON AVH SIHYN TUYNXIEIXT

H0 SNAN13IY

YOoAuy3 1SIT SNIN13E

WVH90dd NI*H NI SYv3dd¥ IN3WIIVIS NuN13Fy

EE!

44

33

33

34

33

EE]

34

34

34

34

34

34

34

34

34

34

34

34

EE!

44

34

34

60305600 D

[11-2-10

SIN3W31VLIS L1IJINdKWT NI 03SYIAIY SONNOB AI1IVHVHD

SH¥Y2ddV INIHIIVIS H0VIH ON NIHM IWYN KV290MNd (1IRNSSY

SONAOE NOI NIWIC 30ISING IDN3INTIIIY AVINVY

A3Sf 33 TTIM INIHIT3 1SAT S *‘C31dI¥ISHNS 10N ONVAIAO IHYN AVAHY

“¥(IVd360 JIL3NHITYV NV 40 ONVESdO NV ST INVISNOD HITYIVIOH Vv

VO HTITIT ¥V SI38VT EINIWILVIS 0¥3IZ

*Sd0LS ININNVIS °ONISSIF SIS3IHIN3ISVL 1HO9Id T13A31 038327

Q3IYONITL INIFPTUIVLIS 40 ¥ZONIVKIY *370N0¥L ¥ILS5V NIIAS YILJVHVHI 1SV SUM
Sd00T 0G INOHLIIM V34!V LON AVh S1dIYISENS 3TEVINVA

Tv93771 ST 01 09 3INIISSY B0 NITISSY NI 316VINVA

CO O3ITdKI N1 ALITYNOISNIWIO *19° 0 T °171° SI 1d4I¥3SONS AVINY 40 3INTVA
NOISSI¥dXI NV NI IWVYN 3INTINOAUENS A0 WY UI0dd SIHI 40 3Isn

INIFHILYLIS 037INIOIIUNN

SISIHINIYVC OIHTLVHNN

NOIIONNS INIWSLVLS SIH1 OL IONINFAI¥ v NI INNOD ¥313IKVEVd QIHOLVKNN
S3TEVINVA A0 INVISNOD 2393INI NV 3§ 1SNK AOLVYOIONTI ALT¥Vd ¥O ¥IBHNN LINN
“AAISNTIONI 66 ONV T N3IIMEIE 36 ISNW ¥IGWNN L1INN

MOT38 337 “SUILWNAN INIWIIVIS OINIAIUNN

*ScD1S ONINNYIS “TZO0CTET NvHI »31V3IA9 CI HIONIT 03033 IWIGL

*3ON3¥343n AVNEV NI S1dINISONS ANVH 001

SCIMOTTV. WY SHI0IE S2T AINO *5XI0718 NOWWGD 13138V ANVM €04
WUHO0UdBrs viva %3076 NI 'v93777 ST 3dAL INIWILVLIS SIHL

d00T (M SNOTAJ¥G V OUINI FIJISNYNE T79371IT NV SINVW INIWILVLES SIHL
©477ISAT STIYD LINN WYN90ud SIHL

INLIS Yiv0 ¥ N1 03SN 38 10N AVH 3WYN SIHY

IIEVIHYA €L T8V NIISLY) S) 3T6UMOTITIV ATING “ IVHYO04 ¥ 3d0ndW] SYH INIWIIVES NOISSYy SIHL

EE

33

34

34

34

34

33

EF|

34

34

EE]

34

34

34

34

34

HI-2-11

60305600 D

“INTHOVH 3H1 NIH1IM NOTAVIN3ISIndIN 40 SIIKIT 3QISEN0 ST ¥0IIvd 3TIvIS ONIN3D3dd

YoM A0 £ 38 GMIOHS HIOIM 07313 ININIDIFud

*0¥37 SI HAOIM (314 9NION3D3Ad

“O3KRNSSY VIS O¥3Z *¥0AIVI 3ITWIS INICID2¥4 NI GILITWO OI3T4 NIJIWON

*03NNSSY SI 3NO NKNTCJ *0%¥32 01 TvND3I ST HOLIVNIISIO INTI11S 8vi ONIMOTIO0I 07314 DI¥3IHON

*3°HISS0d 41 O3NIVIAE SII9IC 33080 HIIH *3INVIIJINSIS 3789TSS0d 0330XT AINVISNOD NI SiIOIQ JO *3IBHAN
SINIWILVES T3IAIT NI 3NIJJ0 N30T NOWHWOJ STHLI NI SWILT 17V ION

*CIYONSI 38 TTIM STINOVAIVHI 3S3FI °SISIHINILVD LHOIY T3AITN-0YIZ MOVT04 SHY3ILTVAHVHI NV IE-NON

03INNSSY 3NIT ON3 *0¥YD ON3 ON

“031NAILSENS 38 TTIM 3INO Vv *07313-X 073032384 11910 ON

NOTLVY2IWILdO ¥O4 HOSSIIO0Ud INIWILVIS 00 AG OIFINNIY IIVHO0LS 3YOKW

VRWO) SNOIyNdS 20 1SIT O/ 9NISSIW

INIWALVILIS 9N830 v NI C7SN ION AVK

INIWNOEY ¥03 CILNLITISEBNAS 38 TTIM 09 ¥C 0 40 ASYW V *IINVY 30 1N0 INIWNIAY ANSVKW

SC3INIVLIA: TIAIT TUNIOIYCO °NOTLIVIVIOIC SNOIA¥D HIIM SPIDIT4ANOD 13AIT

CC3YONET INIVA--TNAONINYIW 100 ST NCTIV3IJIO3dS HIONIY ¢344Nn8 0/1

*S1¥¥d WNOIIJVA4 ON FCNTONI ITIM INdINO *03I3I03dS INIOd TVWIDZO0 S107dX3 ¥01dIYIS30 INIOD ONTIvOd

*C31NLILSENS AI002 40 HIONIT CUVONVIS °29Av7T 001 ST QILS3INDIT HION3T 3T 4

*d01dIe"S30 LIVHL ¥Cd 0J14I33dS WNWINIW 1HL1 St 393¥v7 SY 38 QTINCHS ¥01dT¥ISH0 NOISYIANOD Vv 40 HIQIM 01314

*ALIIVEYS TOIA3C O/1 3HI 0333X3 AVN LT *SUILIVEVHI ¢ T NVHI #31V3I¥e S1 HIOQIM Q1374

IN1IOd SIHI ONOA3t 031S17 3€ 7 .IF¥ NCILNIIX3 0L TeiVd FAdY HIIHM IASOHL ATINO *C3IION SHCHII SNOUIWNN IHL 01 3N

$350d3Nd INIONITIVAINDI ¥04 OIONFUIXI ST 3ONvd TYNOISNIKWIO
ocutwwwq SI 0¥3Z v 30 3INC V *¥OIdIVISSA 3K) NO 9NION3IC3I0 S INIOd TYWIOD3O0 ¥I12v 031034XTF SLIDI0 TwWIDA0
awNudcuﬁuZH JON S3INGVIY¥VA SSIOXI *1€17 W. 11 SOI33X3 1SIT 318YIHVA viv0
03¥(N9T CINVAISNOD ©€S3IX3 *ISIT 3 18vIdVA SO33OXT 1STT WILT vive
CILVONNYL INVISNOD *HIONZT FI8VIAVA °19° HIINIV IKVISNGD

“031VYOIGNT FIGVIHVA FJ¥0 438 ONISSIH VHHOD

60305600 D

MI1-2-12

S¥N320 uZAOQQw ON °0¥3Z v A8 (3N323INd 07I3T4-X

03J0N9T “dNOY9 IONFIVAINDI WIAIx)

"ALITYAVO ITIAZ0 0/1 3IHL O03IFIIX3 JuW &1 *SYILIOVIVHI ZET NYHI ¥31V3IN9 ST HIONTI1 OwW0d3x w101l

d007 INIIVIIIK¥IL-NON V 9NI

SINILSTSNCINI

S1KI1S

¥ILIRVAVD 20 IIGVINVA FOUINOD d001 INF¥NNT v SINIJ3OIN INIWTILVIS SIHL
*A313INVEYC B0 ITOVINVA JO0YAINOD 4001 bzu&!Ju V INTH4303% AVW INIWILIVIS SIHL
CIN3N3LVIS £ I3A31 v 38N *31370S80 SI WJO0F IN3IWILIVIS SIHL

*473511 oh SIHONVYY INIWILVIS SINHI

"03LVOTCNI 136V] 3IKL 04 #3IISNVEL 3TdWIS ¥ OINI SIAVHINIOIG 41 SIHJ

~ INIWILVIS SIML O1 Hivd ON ST 3w3HL

“NCO¥d 3WYS 3HL AV OC SIHL 40 318VINVA IONINOD 3HL ONV IIWIT ¥3ddn 318VINVA 3L
ST NOIITNAS TYNYIIXI CISVE-NON v 40 ISIT INTHNONY HI NI SINIHNONY 30 NIGRON 3HL
"INIISTSNOINI SI ISIT INIWNSNY INTINCHENS v NI SINHNGHY 40 HIEWN 3L

00 ¥ 40 LINIT 23ddn INVISNOD 3HI NVHI ¥3LVI4D ST IINIT ¥IM0T INYASNGD 3l

*3ISN NO ONIONIJI0 *3ZIS OWOOIW 03IIIXI AVH ONILIIS §vi

"¥01IV4 37VOS ININND ON103DIUd OTWIINNOONI OIOV4 ITYIS SNONTLBIANS

"1S0T NOISIO3¥d *3 6VINVA X3T¢HOD ¥O 31ENO0°HITM OIHOIVN INVLISNOD ONOM 3I9NIS
*3UIH CINNSSY HOLYNVIIS *ONISSIN YO1VHYIS

*0¥3Z SI ¥04dT¥I3I (1914 INT03IIIUA ¥04 INNOD 1yIdIy

O3MTVA3¥ ST 3dAL UIYIINNOINI ISYT3 *ITEVINVA C3dAL ATSNOIAIng

C3INITI3H 38 TIIM SNOISNIWIO 1SHT4 *AVHNY QINOISKIWIG ATSNOIAING

20830 NI SIINIVINTI0 SNOIAFBD HILWYK L1ON S3ICO IWYN STH1 40 IXFUINOD NI 3SN IN3ISTad

Il-2-13 ®

60305600 D

EXECUTION DIAGNOSTICS

Execution errors are fatal unless a non-standard recovery routine is specified by the user (refer to section 3.

part 3).

Execution diagnostics are printed on the source listing in the following format:
ERROR NUMBER x DETECTED BY routine AT ADDRESS vy
CALLED FROM routine AT ADDRESS 2
or CALLED FROM routine AT LINE 4

y and z are octal addresses, X is a decimal error number, and d is a decimal line number as printed on the
source listing.

Example:

PROGRAM EXERR(INPUT,0UTPUT)
N=56
GO TO (142,3)4N
1 N=Ne¢1
5 2 N=N#2
3 SToOP
END

ERROR IN COMPUTED GOTO STATEMENT- INDEX VALUE INVALID
ERROR NUMBER 0001 DETECTED BY ACGOER AY ADDRESS 000001
CALLED FROM EXERR AT LINE 0003

In the following list of execution diagnostic under class, the letters are interpreted as follows:

F = Fatal A = Always
I = Informative D = Debug
T = Trace

II-2-14 60305600 D

Error
No. Class

1 F A
2 I T
3 I A
4 I A
5 I T
6 I A
7 I A
8 I T
9 I T
10 I T
11 I T

60305600 E

Message

ERROR IN COMPUTED GO TO STATEMENT -

INDEX VALUE INVALID

ABS (ARG) .GT. 1.0
INFINITE ARGUMENT
INDEFINITE ARGUMENT

ARGUMENT ZERO
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

ARGUMENT ZERO
ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

ABS (ARG) .GT.1.0
INFINITE ARGUMENT
INDEFINITE ARGUMENT

ARGUMENT INDEFINITE

ARGUMENT VECTOR ZERO
ARGUMENT INF. OR INDEF.

FLOATING OVERFLOW
INFINITE ARGUMENT
INDEFINITE ARGUMENT

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

INFINITE ARGUMENT
INDEFINITE ARGUMENT

ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TCO LARGE

INFIUITE ARGUMENT
INDEFINITE ARGUMENT

ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TOO LARGE

Routine

ACGOERS$

ACOS |

ALOG

ALOG10

ASIN

ATAN

ATAN2

CABS

Z2TO1

CCOSs

CEXP

I-2-15

Error
ITo. Class
12 I T
13 I A
14 I 7T
15 I T
16 I T
17 I T
18 I T
19 I T
20 I T
21 I T
22 I T

X and Y=real;

11-2-16

Message

ZERO ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

ARGUMENT TOO LARGE, ACCURACY LOST
ARGUMENT INFINITE
ARGUMENT INDEFINITE

INFINITE ARGUMENT
INDEFINITE ARGUMENT

ABS (REAL PART) TOO LARGE
ABS (IMAG PART) TCO LARGE

INFINITE ARGUMENT
INDEFINITE ARGUMENT

FLOATING OVERFLOW

ZERO TO THE ZERO POWER

ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT

INDEFINITE ARGUMENT

INFINITE ARGUMENT
INDEFINITE ARGUMENT

X=Y=0.0t
INFINITE ARGUMENT
INDEFINITE ARGUMENT

FLOATING OVERFLOW

ZERC TO THE ZERO POWER

ZERO TO THE NEGATIVE POWER
NEGATIVFE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

ZERO TO THE ZERO POWER
ZERD TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

FLOATING OVERFLOW IN D**REAL (Z)t
ZERO TO THE ZERO OR NEGATIVE POWEK
NEGATIVE TO THE COMPLEX POWER

IMAG (2Z) *LOG (D) TOO LARGE

INFINITE ARGUMENT

INDEFINITE ARGUMENT

ARGUMENT TOO LARGE, ACCURACY LOCST
INFINITE ARGUMENT
INDEFINITE ARGUMENT

Z=complex; D=double precision

CLOG

COos

CSIN

CSQRT

DTOX (D¥*X)

DATAN

DATAN2

DTOD (D**Dj

DTOI (D**I)

DTOZ (D**Z)

DCOS

60305600 E

Error
No.

23

24

25

26

27

28

29

N 30

31

32

33

34

Class
I T
I T
I T
I T
I T
I T
I T
I A
I T
I T
I T
I 7

— 60305600 E

Message

ARGUMENT TOO LARGE, FLOATING OVERFLOW
INFINITE ARGUMENT
INDEFINITE ARGUMENT

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

ZERO ARGUMENT
NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

DOUBLE PRECISION INTEGER EXCEEDS 96 BITS

2ND ARGUMENT ZERO
INFINITE ARGUMENT
INDEFINITE ARGUMENT

INFINITE ARGUMENT
INDEFINITE ARGUMENT

ARGUMENT TOO LARGE, ACCURACY LOST
INFINITE ARGUMENT
INDEFINITE ARGUMENT

NEGATIVE ARGUMENT
INFINITE ARGUMENT
INDEFINITE ARGUMENT

ARGUMENT TOO LARGE, FLOATING OVERFLOW
ARGUMENT INFINITE

ARGUMENT INDEFINITE

ARGUMENT TOO SMALL

INTEGER OVERFLOW
ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER

INFINITE ARGUMENT
INDEFINITE ARGUMENT

FLOATING OVERFLOW

ZERO TO THE ZERO POWER

ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT

INDEFINITE ARGUMENT

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

Routine

DEXP

DLOG

DLOG10

DMOD

DABS

DSIN

DSQRT

EXP

ITOJ

DSIGN

XTOD (X**D)

XTOI (X**I)

11-2-17

Error

No. Class
35 1 T

36 I A

37 I T
38 I T
39 I A
40 I T
41 I T
42 I T
43 I 7T
L4y I T
45 I T
he I T
47 I 7T

+ Z=complex;

11-2-18

Message

FLOATING OVERFLOW

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

ARGUMENT TOO LARGE, ACCURACY LOST
ARGUMENT INFINITE
ARGUMENT INDEFINITE

ILLEGAL SENSE LITE NUMBER
ILLEGAL SENSE LITE NUMBER

ARGUMENT NEGATIVE
ARGUMENT INFINITE
ARGUMENT INDEFINITE

ILLEGAL SENSE SWITCH NUMBER

ARGUMENT TOO LARGE, ACCURACY LOST
INFINITE ARGUMENT
INDEFINITE ARGUMENT

INFINITE ARGUMENT
INDEFINITE ARGUMENT

MASK OUT OF RANGE

FLOATING OVERFLOW

ZERO TO THE ZERO POWER

ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE DOUBLE POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

FLOATING OVERFLOW

ZERO TO THE ZERO POWER
ZERO TO THE NEGATIVE POWER
NEGATIVE TO THE REAL POWER
INFINITE ARGUMENT
INDEFINITE ARGUMENT

FLOATING OVERFLOW IN I**REAL (Z)f
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER

IMAG (Z) *LOG (I)f TOO LARGE

INFINITE ARGUMENT

INDEFINITE ARGUMENT

FLOATING OVERFLOW IN X**REAL (Z)t
ZERO TO THE ZERO OR NEGATIVE POWER
NEGATIVE TO THE COMPLEX POWER

IMAG (2) *LOG (X)t TOO LARGE

INFINITE ARGUMENT

I=integer, X=real

Routine

XTOY (X*¥*Y)

SIN
SLITE
SLITET

SORT

SSWTCH

TAN

TANH

MASK

ITOD (I**D)

ITOX (I**X)

ITOZ (I*%7Z)

XT02Z

60305600 E

- Brror

Ilo. Class
48 F D
49 I A
50 F A
55 F A
56 F A
57 F A
59 F A
62 F A
63 F A
65 F A
66 I A
I A

F A

F A

F A

F A

F A

F A

F A

F A

F A

F A

67 F A
68 F A
F A

69 F A
70 F A
71 F A
F A

72 F A
73 F A
78 F A
79 F A
83 F A
84 F A
85 F A

60305600 E

Message

FATAL ERROR ENCOUNTERED DURING PROGRAM EXECUTION
DUE TO COMPILATION ERROR

TOO FEW CONSTANTS FOR UNSUBSCRIPTED ARRAY
FATAL ERROR IN LOADER

END~-OF-FILE ENCOUNTERED, FILENAME-XXXXXXX
WRITE FOLLOWED BY READ ON FILE-XXXXXXX
BUFFER DESIGNATION BAD--FWA.GT.LWA

BUFFER SPECIFICATION BAD--FWA.GT.LWA
FILENAME NOT DECLARED-XXXXXXX

END-OF-FILE ENCOUNTERED, FILENAME-XXXXXXX
END-OF-FILE ENCOUNTERED, FILENAME-XXXXXXX

PRECISION LOST IN FLOATING INTEGER CONSTANT
NAMELIST DATA TERMINATED BY EOF, NOT $
NAMELIST NAME NOT FOUND

WRONG TYPE CONSTANT

INCORRECT SUBSCRIPT

TOO MANY CONSTANTS

(,$, OR = FXPECTED, MISSING

VARIABLE NAME NOT FOUND

BAD NUMERIC CONSTANT

MISSING CONSTANT AFTER *

UNCLEARED EOF ON A READ

READ PARITY ERROR

DECODE RECORD LENGTH .LE. 0
DECODE LCM RECORD .GT. 150 CHARACTERS

*TILL-PLACED NUMBER OR SIGN
*ILLEGAL FUNCTIONAL LETTER
*TMPROPER PARENTHESIS NESTING
*EXCEEDED RECORD SIZE
*SPECIFIED FIELD WIDTH ZERO
*BAD NUMBER FOR =

*FIELD WIDTH .LE. DECIMAL WIDTH
*HOLLERITH FORMAT WITH LIST
*TILLEGAL DATA IN FIELD .ft.
*DATA OVERFLOW .T.

OUTPUT FILE LINE LIMIT EXCEEDED

OUTPUT FILE LINE LIMIT EXCEEDED

ENCODE CHARACTER/RECORD .LE. 0
ENCODE LCM RECORD .GT. 150 CHARACTERS

Routine

FTNERR$

NAMEI N=
OVERLAS$

BUFIN=

BUFOUT=

GETFITS

INPB=
INPC=

NAMEIN=

DECODE=

FMTAP=
FMTAP=
FMTAP=
FMTAP=
FMTAP=
FMTAP=
FMTAP=
FMTAP=
OUTC=

NAMOUT=

ENCODE=

11-2-19

Drror
llo.

Class

88
90

91
92

93
94

111-2-20

o g g

L]

Lo I B e B B B e B

ok ERRR P B P BB

Message

WRITE FOLLONED BY READ ON FILE-XXXXXXX
LIST EXCEEDS DATA, FILENAME-XXXXXXX
PARITY ERROR READING (BINARY) FILE-XXXXXXX

WRITE FOLLOWED BY READ ON FILE-XXXXXXX
PARITY ERROR READING (CODED) FILE-XXXXXXX

PARITY ERROR ON LAST READ ON FILE-XXXXXXX
PARITY ERROR ON LAST READ ON FILE-XXXXXXX

INDEX NUMBER ERROR

FILE ORGANIZATION OR RECORD TYPE ERR
WRONG INDEX TYPE

INDEX IS FULL

DEFECTIVE INDEX CONTROL WORD

RECORD LENGTH EXCEEDS SPACE ALLOCATED
6RM/7DM I1/0 ERR NUMBER 000

INDEX KEY UNKNOWN

ECS UNIT HAS LOST POWER OR IS IN
MAINTENANCE MODE

ECS READ PARITY ERROR

Class

INPB=

INPC=

OUTB=
oUTC=

RANMS=

WRITEC

READEC

60305600 D

SYSTEM ROUTINE SPECIFICATIONS -3

The SYSTEM routine handles error tracing, diagnostic printing, termination of output buffers, and transfer
to specified non-standard error procedures. All FORTRAN mathematical routines rely on SYSTEM to
complete these tasks; also, a FORTRAN coded routine may call SYSTEM. Any argument used by SYSTEM
relating to a specific error may be changed by a user routine during execution. The END processor also
makes use of SYSTEM to dump the output buffers and print an error summary. Since the following
routines must always be available, they are combined into one subprogram with multiple entry points.

Q8NTRY. Initializes input/output buffer parameters
STOP. Enters STOP in dayfile and begins END processing
EXIT. Enters EXIT in dayfile and begins END processing

END. Terminates all output buffers, prints an error summary. transfers control to the main
overlay if within an overlay; in any other case exits to monitor.

SYSTEM Handles error tracing, diagnostic printing, termination of output buffers; and depend-
ing on type of error, transfers to specified non-standard error recovery address, termi-

— nates the job, or returns to calling routine.

SYSTEMC Changes entry to SYSTEM’s error table according to arguments passed.

CALLING SYSTEM

The calling sequence 1o SYSTEM passes the error number as the first argument and an error message as the
second argument; therefore, several messages may be associated with one error number. The error summary
at program termination lists the total number of times each error number was encountered.

60305600 A [II-3-1

ERROR PROCESSING

[he error number of zero is aceepted as a speciai call to end the output buffers and return. If no OUTPUT
iile is detined before SYSTEM is called, no errors are printed and a message to this effect appears in the
dayfile. Each line printed is subjected to the line limit of the OUTPUT buffer; when the limit is exceeded. _/

the job is terminated.

The error table is ordered serially (the first error corresponds to error number 1) and it is expandable at
assembly time. The last entry in the table is a catch-all for any error number that exceeds the table length.

An entry in the error table appears as follows:

Print Frequency Print Detection Non-standard
Frequency Increment Limit Total F/NF A/NA Recovery Address
8 8 12 12 1 1 18

Print frequency is used as follows:

Print
Frequency

0

0

IH-3-2

Increment

0

Diagnostic and traceback information are not

listed.

Diagnostic and traceback information are listed

until the print limit is reached.

Diagnostic and traceback information are listed
only the first n times unless the print limit is

reached first.

Diagnostic and traceback information are listed
every nth time until the print limit is reached.

60305600 A

STANDARD RECOVERY

If the error is non-fatal (NF), and no non-standard recovery address is specified; error messages are printed
according to print frequency, and control is returned to the calling routine.

If the error is fatal (F), and no non-standard recovery address is specified, error messages are printed
according to print frequency, an error summary is listed, all output buffers are terminated, and the job is
terminated.

NON-STANDARD RECOVERY

If a non-standard recovery is specified by calling SYSTEMC, the recovery routine is supplied with the follow-
ing information when an error occurs:

At Address of argument list passed to routine detecting the error

X1 Address of first argument in the list

A0 Address of argument list of routine that called the routine detecting the error

Bl Address of a secondary argument list which contains, in successive words:
Error number passed to SYSTEM
Address of diagnostic word available to SYSTEM
Address within auxiliary table if A/NA bit is set, otherwise zero
Instruction consisting of RJ to SYSTEM in upper 30 bits and
traceback information in lower 30 bits for routine that called
SYSTEM

A2 Address of error table entry in SYSTEM

X2 Contents of error table entry

Information in the secondary argument list is not available to FORTRAN-coded routines.

tWhen an 1/O routine detects an error, A1 and X1 will not contain useful information.

60305600 D I-3-3

NON-FATAL ERROR

The routine detecting the error and SYSTEM are delinked from the calling chain, and the non-standard
recovery routine is entered. When the recovery routine exits in the normal manner, control returns to the
routine that called the routine detecting the error.

Thus, faulty arguments can be corrected, and the recovery routine can call the routine which detected the
error, providing corrected arguments. Looping will occur if the recovery routine calls a routine which will
cause the same error to recur.

FATAL ERROR

SYSTEM calls the non-standard recovery routine in the normal fashion, with the registers set as indicated
above. When the non-standard recovery routine exits in the normal fashion, contro! is returned to SYSTEM,
and the job is terminated.

A/NA BIT

The A/NA bit is used only when a non-standard recovery address is specified.

If this bit is set. the address within an auxiliary table is passed in the third word of the secondary argument
list to the recovery routine. This bit allows more information than is normally supplied by SYSTEM to be
passed to the recovery routine. The bit may be set only during assembly of SYSTEM, as an entry must also
be made into the auxiliary table. Each word in the auxiliary table must have the error number in its upper
10 bits. so that the address of the first error number match is passed to the recovery routine. An entry in the
auxiliary table for an error is not limited to any specific number of words.

11-3-4 60305600 D

The traceback information is terminated as soon as one of the following conditions is detected:
The calling routine is a program.
The maximum traceback limit is reached.
No traceback information is supplied.

To change an error table during execution, a FORTRAN call is made to SYSTEMC with the following
arguments: - : ‘

Error number

List containing consecutive locations:

Word 1 Fatal/non-fatal (fatal = 1, non-fatal = 0)

Word 2 Print frequency

Word 3 Print frequency increment (only significant if word 2 = 0) special
values:
word 3 = 0 never list error
word 3 = 1 always list error
word 3 = x list error only the first x times

Word 4 Print limit

| Word 5 Non-standard recovery address
Word 6 Maximum traceback limit

If any word in the argument list is negative, the value already in table entry is not to be altered.

(Since the auxiliary table bit can be set only during assembly of SYSTEM, only then can an auxiliary table
entry be made.)

60305600 A I1-3-5

| EXECUTION TIME OPTIONS

FILE NAME HANDLING BY SYSTEM

The file names in the PROGRAM statement are placed in RA +2 and the locations immediately following
by SYSTEM (Q8NTRY). RA is the reference address, the absolute address where the user’s field length
begins. The file name is left justified, and the file’s file information table (FIT) address is right justified in
the word. ‘

The logical file name (LFN) which appears in the first word of the file information table is determined in
one of three ways:

1.

[\

If no arguments are specified on the load card, the logical file name is the file name in the PROGRAM
statement. '

Example:

FTN.
LGO.

PROGRAM TEST1(INPUT,OUTPUT,TAPEl,TAPE2)

Contents of RA +2 before execution of Q8NTRY:

000 ... 000

000 ... 000

Contents of RA +2 after execution of Q8NTRY: The logical file names in the file information
table will be:

INPUT ... fit address INPUT

OUTPUT .. fit address OUTPUT

TAPEI ... fit address TAPEI

TAPE2 ... fit address TAPE2

If file names are specified on the load card, the logical file name is the name specified on the load card. If
no file names are specified on the load card. it is the file name from the PROGRAM statement. A one-
to-one correspondence exists between parameters on the load card and parameters in the PROGRAM
statement.

Example:

FTN.
LGO(,,DATA,ANSW)

PROGRAM TEST2(INPUT,OUTPUT,TAPELl,TAPEZ2,TAPE3=TAPEl)

I11-3-6 60305600 D

—

~

Contents of RA + 2 before execution of Q8NTRY:

000 ... 000
000 ... 000
DATA .. 000
ANSW . 000

Contents of RA +2 after execution of QS8NTRY:

INPUT ... fit address
OUTPUT .. fit address

TAPE!1 ... fit address

TAPE2 ... fit address

TAPE3 ... fit address of TAPE|

The logical file names in the file information
table will be:

INPUT

OUTPUT

DATA

ANSW

uses TAPE1 file information table

If a file name in the PROGRAM statement is equivalenced, the logical file name is the file to the right of

the equal sign. No new file information table is created.

Example:

FTN.
LGO(,,DATA,ANSW)

PROGRAM TEST3(INPUT,OUTPUT,TAPE1=0UTPUT,TAPE2,TAPE3)

Contents of RA +2 before execution of Q8NTRY:

000 ... 000
000 ... 000
DATA .. 000
ANSW .. 000

Contents of RA+2 after execution of Q8NTRY:

INPUT ... fit address

OUTPUT .. fit address

TAPELI ... fit address of OUTPUT
TAPE2 ... fit address

TAPE3 ... fit address

60305600 A

The logical file names in the file information
table will be:

INPUT

OUTPUT

uses OUTPUT file information table
ANSW

TAPE3

I-3-7

| COMPILER OPTIMIZATION

The level of optimization performed by the compiler is determined by the value of m.

OPT=0 Compilation speed increases at expense of execution speed. (Selecting the D
parameter automatically selects OPT=0.)

OPT=1 Normal compilation takes place.
OPT=2 Execution speed increases for certain loops. Two types of optimization are
performed:

Calculations which do not vary are removed from loops.
Variables and constants from the body of a loop are assigned to registers.

The degree of optimization of DO and IF loops varies according to the
following constraints:

It must be the innermost loop (contain no loops).

It must contain no branching statements (GO TO, IF or RETURN)
except a branch back to the start of the loop for IF loops.

The loop does not contain BUFFER IN/BUFFER OUT or ENCODE/
DECODE statements. If input/output or any external calls occur, only
calculations which do not vary are removed.

Control must flow to the statement following the end of the IF loop
when it completes.

Entry into the IF loop must be through the sequence of statements
preceding the start of the loop.

INVARIANT COMPUTATIONS

In many instances, a programmer codes calculations which do not change on successive iterations within a
loop. When these computations are moved outside the loop, the speed of the loop is improved without
changing the results.

Example 1:

DO 100 I=1,2000
100 A(I) = 3*I + J/K+5

A more efficient loop would be:

ITERM = J/K+5
DO 100 I = 1,2000
100 A(I) = 3*I + ITERM

For clarity. the programmer may not wish to write the code in this form. However, if OPT=2 is specified
the more efficient loop structure is produced by the compiler. A message is printed:

n WORDS OF INVARIANT RLIST REMOVED FROM
THE LOOP STARTING AT LINE x

| s ' 60305600 D

RLIST is the intermediate language of the compiler. The source language is translated first into RLIST,
then into COMPASS. Optimization takes place during the RLIST phase, and it is at this point that
invariant code is removed. The message notifies the programmer that his loop has been modified, and
informs him of the magnitude of the change.

Example 2:
I =1
200 J = K+L+4
A(I) = M+I
I = I+1

IF(I.LE.100)G0 TO 200
Use of OPT =2 produces code as if example 2 had been written as shown below:

I=1
J = K+L+4
200 A(I) = M+I
I = I+1
IF(I.LE.100)GO TO 200

Example 3:

DO 300 I=1,2000

A(1) = SQRT(FLOAT(I))

A(I) = A(I) + 3.5*R

300 CONTINUE
The computation of 3.5*R is removed from the loop regardless of the external call. In general, this process
will occur unless R is a parameter to the external routine, or R is in common. When a variable is a member
of an equivalence group, its use is not recognized as invariant if another member of the group is referenced
inside the loop by non-standard subscripts. For standard subscripts, optimization will occur, although the
assumption is made that alf subscripting is within the bounds of array specifications. A standard subscript is
one of the following forms; ¢ and k are integer constants and v is an integer variable.
c*v+k c*v v-k k

c*v-k v+k v

Subscript expressions which do not conform to the above are non-standard subscripts.

REGISTER ASSIGNMENT

For many loops, it is possible to keep commonly used variables and constants in the machine registers.
Eliminating loads and stores from the body of the loop has two advantages:

The reduced number of loads and stores increases execution speed.

The loop is shortened and may fit in the instruction stack. A loop that fits in the instruction stack
usually runs two to three times as fast as a comparable loop which does not fit in the stack.

60305600 D 111-3-9

Presently up to four X registers may be assigned over a loop. The number assigned depends on the number
of candidates available for selection and the complexity of the operations performed within the loop. When
registers are assigned, an informative message is printed:

n REGISTERS ASSIGNED OVER THE LOOP BEGINNING AT LINE x

Register assignment will not be performed for loops containing external references.

Example:

Loop Without register assignment With register assignment

DO 100 1=1,2000
Ay =30

100 CONTINUE

store
into A(l)

store
into A(l)

end of
loop test

end of
loop test

| 11-3-10 60305600 D

Example:

Loop

Without register assignment

With register assignment

X=1.0
DO 200 I=1,100
X =X/5+Y
All} =X

200 CONTINUE

into A(l)

result to
register
holding X

store
into A(l)

end of
loop test

60305600 D

1-3-11

ARITHMETIC | -4

FLOATING POINT ARITHMETIC

Floating point arithmetic is carried out in the functional units of the central processor.

59 48 0
1 11-bits 48-bits
- []
Sign Biased Integer Coefficient Assumed
Exponent binary point

In the 60-bit floating point format shown above, the binary point is considered to be to the right of the
coefficient. The lower 48 bits express the integer coefficient. which is the equivalent of approximately 14
decimal digits. The sign of the number is the highest order bit of the packed word. Negative numbers are
represented by the one’s complement of the 60-bit number.

The exponent portion of the floating point format is biased by 2000 octal. This particular format for
floating point numbers was chosen so that the packed form may be treated as a 60-bit integer for sign.
equality and zero tests. (Refer to 6400/6500/6600 Computer Systems Reference Manual or 7600 Com-

‘puter System Reference Manual for details of the hardware pack instruction.)

The following table summarizes the configurations of bits 58 and 59 and the signs of the possible combina-
tions. The number is negative if bit 59 is 1 and positive if bit 59 is 0.

Bit 59 Coe;'fficient Sign Bit 58 ' Exponent Sign
0 Positive 1 Positive
0 Positive 0 Negative
1 Negative 0 Positive
1 Negétive 1 Negative

60305600 A Hi-4-1

To add or subtract two floating point numbers, the floating point ADD unit enters the coefficient with the
smaller exponent into the upper half of an accumulator and shifts it right by the difference of the expo-
nents. Then it adds the other coefficient into the upper half of the accumulator. The result is a double length
register with the following format:

95 47 0
Most Significant Bits Least Significant Bits
Upper half result Binary Lower half result
point

If single precision is selected, the result is the upper 48 bits of the 96-bit result and the larger exponent.
Selecting double precision causes the lower 48 bits of the 96-bit result and the larger exponent minus 60
octal (or 48) to be returned as the result. The subtraction of 60 octal (or 48) is necessary because effectively,
the binary point is moved from the right of bit 48 to the right of bit 0.

The multiply units generate 96-bit products from two 48-bit coefficients. The result of a multiply operation
is a double length register with the following format:

95 47 0
Most Significant Bits L east Significant Bits
. o Binary
Upper half result Lower half result

When unrounded instructions are used, the upper and lower half results with proper exponents may be
recovered separately; when rounded instructions are used. only upper half results may be obtained.

If single precision is selected, the upper 48 bits of the product and the sum of the exponents plus 60 octal
(or 48) are returned as the result. The addition of 60 octal (or 48) is necessary because, effectively, the
binary point is moved from the right of bit 0 to the right of bit 48 when the upper half of the 96-bit result
is selected. If double precision is selected, the lower 48 bits of the product and the sum of the exponents is
the result.

Some examples of floating point numbers are shown below in octal notation.

1720 4000 0000 0000 0000

Normalized floating point + |

1726 6200 0000 0000 0000

i

Normalized floating point + 100

Normalized floating point -100 = 605115777777 77777777
Normalized floating point 10 = 2245 6047 4037 2237 7733
Normalized floating point 10 = 6404 2570 0025 6605 5317

11-4-2 60305600 B

OVERFLOW (+00 or -oo0)

Overflow of the floating point range is indicated by an exponent of 3777 for a positive result and 4000 for
a negative result. These are the largest exponent values that can be represented in floating point format, as
shown in the floating point table. If the computed value of an exponent is exactly 3777 or 4000, a partial
overflow condition exists. The error mode 2 flag is not set by a partial overflow. However, any further
computation in floating point functional units with this exponent will set an error mode 2 flag. A complete
overflow occurs when a floating point functional unit computes a result that requires an exponent larger
than 3777 or 4000.

In this case the result is given a 3777 or 4000 exponent and a zero coefficient. The sign of the coefficient
remains the same, as if the result had not exceeded the floating point range. Any further computation in -
floating point functional units with this result sets an error mode 2 flag.

In this case, the result is given a 3777 or 4000 exponent and a zero co-efficient. The sign of the coefficient
remains the same, as if the result had not exceeded the floating point range. The coefficient calculation is
ignored, and the overflow condition flag is set in the Program Status Designator (PSD) register. When the
overflow condition occurs, the overflow flag in the PSD register causes an error mode 2 message to be
printed. Printing an error mode 2 message is the default condition; alternative actions can be specified by
the user (refer to SCOPE Reference Manual).

UNDERFLOW (+0 or -0)

Underflow of the floating point range is indicated by an exponent of 0000 for positive numbers and 7777
for negative numbers, the smallest exponent values that can be represented in floating point format. If these
exponent values happen to be the exact representation of a result, a partial underflow condition exists; and
the underflow condition flag is not set. However, further computation in floating point functional units
with these exponents may set the underflow condition flag.

A complete underflow occurs when a floating point functional unit computes a result that requires an
exponent smaller than 0000 or 7777. In this case the result is given a 0000 or 7777 exponent and zero
coefficient. The sign of the coefficient will be the same as that generated if the result had not fallen short of
the floating point range. Thus, the complete underflow indicator is a word of all zero bits, or all one bits,
depending on the sign. It is the same as a zero word in integer format.

1 No underflow indicator is set and no error message is printed.

A complete underflow occurs for this instruction whenever the exponent computation results in less than
-1776 octal. This situation is sensed as a special case. and a complete zero word with proper sign results; the
coefficient calculation 1s ignored, and the underflow condition flag is set in the PSD register. When the
underflow condition occurs, the underflow flag in the PSD register causes an error mode 2 message to be
printed. Printing an error mode 2 message is the default condition; alternative actions can be specified by
the user (refer to SCOPE Reference Manual).

T Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 Series computers.
§ Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

60305600 B 11-4-3

INDEFINITE RESULT

An indefinite result indicator is generated by a floating point functional unit when a calculation cannot be
resolved; such as a division operation where the divisor and the dividend are both zero. Another case is
multiplication of an overflow number times zero. An indefinite result is a value which cannot occur in
normal floating point calculations. An indefinite result is represented by a minus zero exponent and a zero
coefficient (17770 --- 0).

I Any floating point functional unit receiving an indefinite indicator as an operand will generate an indefi-
nite result regardless of the other operand value. and set an error mode 4 flag.

§ When the indefinite result is generated, a flag is set in the PSD register and an error mode 4 message is printed. Print-
ing an error mode 4 message is the default condition; alternative actions can be specified by the user (refer to SCOPE

Reference Manual).

FLOATING POINT REPRESENTATION TABLE

Positive Coefficient Negative Coefficient
OVERFLOW Complete Overflow =37770----0 Complete Overflow =4777 7----17
Partial Overflow =3777 X----X Partial Overflow = 4000 X~ ~ - - X
INTEGERS Largest: *Largest
7----7.x2"V776 | =37767----7 “7----7.x2"176 | -40010----0
Smallest: *Smallest: ,
1.x 20 =2000 0- - - 01 -1.x2° =5777 7--- 76
ZERO Positive Zero =20000----0 Negative Zero =5777 7--~-17
INDEFINITE Indefinite Operand = 1777 0~ - - - 0 |[**Indefinite Operand =6000 7----7
OPERANDS
FRACTIONS Largest: *Largest:
' 7----7.x27%0 =1717 7----17 -7----7.x27%0 = 6060 0----0
Smallest: *Smallest:
1.x 271777 =0000 0- - - 01 “1.x 271777 =77777--- 76
UNDERFLOW | Complete Underflow =00000----0 Complete Underflow =7777 7~-~--17
Partial Underflow =0000 X----X Partial Underflow =7777 X----X
* In absolute value.
** An indefinite operand with a negative sign can occur only from packing or Boolean operations.
I 1 Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 Series computers.
§ Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.
11144 60305600 B

—

NON-STANDARD FLOATING POINT ARITHMETIC
Indefinite result indications:

0000 X------ X posttive zero (+0)
7777X----- X = negative zero (-0)
377X X = positive infinity (+ o0)
4000X------ X = negative infinity (- o)
1777X------ X = positive indefinite (+IND)
= negative indefinite (-IND)

2
2
%
|
x
|

where X is an unspecified octal digit.

If the correct result of an operation coincides with any of the above exponents, no error flag 1s set.

When a floating point arithmetic unit uses one of these six spectal forms as an operand. however, only the
following octal words can occur as results and the associated error mode flag is set.

37770----- 0 = positive infinity (+o0)
40007------ 7 = negative infinity (- oo)
17770------ 0 = positive indefinite (+IND)

00000------ 0 = positive zero (+0)

Overflow condition flag
Overflow condition flag
Indefinite condition flag
Underflow condition flag

The following tabulations show results of the add, subtract, multiply and divide operations using various
combinations of infinite, indefinite, and zero quantities as operands. The designations w and n are defined

as follows:

w = any word except *oo, IND
n = any word except *eoo, IND, or 0

ADD
X1 = X2 + X3
X3
W +00 ~o0 +IND
W - +oo -0 IND
+o0 400 400 IND IND
X2
-o0 —o0 IND —00 IND
+IND IND IND IND IND

603050600 A

111-4-5

11-4-6

X2

SUBTRACT

Xl = X2-X3
X3

w +o0 —o0 tIND

w - oo +o0 IND

400 400 IND +00 IND

X2
—o0 -00 ~00 IND IND
+IND IND IND IND IND
MULTIPLY
X1 = X2*X3
X3
+N -N +0 -0 +00 -o0 +IND
+N - - 0 0 +00 -o0 IND
-N - - 0 0 ~00 400 IND
+0 0 0 0 0 IND IND IND
-0 0 0 0 0 IND IND IND
+o0 +o0 -o0 IND IND +o0 ~00 IND
-0 -o0 +00 IND IND —oo too IND
+IND IND IND IND IND IND IND IND
60305600 A

e

DIVIDE
X1 =X2/X3

X3
+N -N +0 -0 +00 -0 *IND
+N - - +00 ~o0 0 0 IND
-N - - -o0 +o0 0 0 IND
+0 0 0 IND IND 0 0 IND
X2 -0 0 0 IND IND 0 0 - IND
$00 400 -o0 400 ~00 IND IND IND
-00 -co +00 ~o0 +o00 IND IND IND
+IND IND IND IND IND IND IND IND

INTEGER ARITHMETIC

Central processor has no 60-bit integer multiply or divide instructions. Integer multiplication and.division
are performed with 48-bit arguments. The exponent of the result is set to zero. 48-bit integer multiplication
is performed with an integer multiply instruction, but integer division must be performed in the floating
divide unit. Integer arithmetic is accomplished by putting the integers into unnormalized floating point
format using the pack instruction with a zero exponent value.

In integer division, the exponent of the resulting quotient is removed and the result is shifted to compensate
for the fact that the result was normalized. In FORTRAN Extended, integer results of multiplication or
division are expressed within 48 bits. Full 60-bit one’s complement integer sums and differences are
possible internally as the central processor has integer addition and subtraction instructions. However,
because the binary-to-decimal conversion routines use multiplication and division, the range of integer
values output is limited to those which can be expressed with 48 bits.

DOUBLE PRECISION

Although complete arithmetic instructions using double precision arguments are not provided by the hard-
ware, the FORTRAN compiler generates code for true double precision by using instructions which give
upper and lower half results with single precision arguments.

60305600 A 147

COMPLEX

Complex arithmetic instructions are not provided by hardware. The FORTRAN compiler generates code
for complex arithmetic by using single precision floating point instructions.

LOGICAL AND MASKING

Logical and masking operations are provided by hardware logical instructions which operate on the entire 60-bit
word (refer to section 2, part I). Positive values are considered false; negative values are true. The constant
.TRUE. generates -1; the constant .FALSE. generates zero.

ARITHMETIC ERRORS
l Arithmetic errors are classifed at execution time as mode 1 - 7:
Meode Error

1 Address out of range
{Reference to LCM or SCM outside established limits.
LCM or SCM block range

2 Operand is an infinite number

3 Address out of range or operand is infinite number

4 ‘ Indefinite operand

5 Address out of range or indefinite operand

6 Operand is infinite or indefinite number

7 Operand‘is infinite. indefinite or address is out of range

§ Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

11148 60305600 C

Mode | Address out of range. A non-existent storage location has been referenced. Mode 1

errors may be caused by:

calling a non-existent subprogram during execution

using an incorrect number of arguments when calling a subprogram
a subscript assuming an illegal value

no dimensons specified for an array name

Mode 2 Infinite operand. One of the operands in a real operation is infinite. Infinity is the result
whenever the true result of a real operation would be too large for the computer, or when
division by zero is attempted. A value of infinity may be returned when some functions are

referenced. For example, ALOG(0.) would be negative infinity.

Irthie following example, Z would be given the value infinity, and when the addition Z + 56.

is attempted execution terminates with a mode 2 error.

1 FORMAT (F12.3)
Y = 0.
Z = 23.2/Y
PRINT 1, Z
CAT = Z + 586.

When the print statement is executed, an R is printed to indicate an out of range

value.
Mode 3 Address is out of range or operand is infinite number.
Mode 4 Indefinite operand. One of the operands in a real operation is indefinite. An indefinite

result is produced by dividing 0. by 0. or multiplying an infinite operand by 0. An
illegal library function reference may return an indefinite value. For example, SQRT
(-2.) would produce an indefinite result. An attempt to print an indefinite value pro-

duces the letter 1.

Mode 5 Address is out of range or indefinite operand.

Mode 6 Operand is infinite or indefinite. A mode 6 arithmetic error occurs when a real opera-

tion is performed with one operand infinite and the other operand indefinite.

Mode 7 Operand is infinite, indefinite, or address is out of range.

¥ When am arithmetic error occurs the following type of message appears in the dayfile and execution is

terminated:

14.39,06,EPR0R MONE = 2, ANDRESS =002135

1 Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 Series computers.

60305600 B

I11-4-9

When an arithmetic error occurs, the following type of message appears in the dayfile under the headings shown
below:

14.30.36%00012,059%SYS. SCo06 - SCM DIRECT RANGE
CODE xxnnn
xx SCor JM SC indicates System Control; JM, Job Management. System Control provides system

overlay loaders and some communication between operating system overlays. Job Manage- -
ment controls user program input/output, and prepares user programs for execution.

nnn Index number of the message.
MESSAGE AND MEANING The message and an interpretation (if necessary) are printed.
LEVEL Indicates the level of severity of the error as follows:
X Job terminates. No EXIT processing occurs.
F Job terminates. EXIT processing occurs.
w Warning is printed, and error is ignored. Processing continues, although the portion of the

program containing the error may not be executed.

I Informative message is printed.
CODE MESSAGE AND MEANING LEVEL
8C001 LCM PARITY F
SC002 SCM PARITY F
SC003 LCM BLOCK RANGE F
SC004 SCM BLOCK RANGE F
SC00S LCM DIRECT RANGE F
SC006 SCM DIRECT RANGE F
SC007 PROGRAM RANGE F
$C008 BREAKPOINT F
SC009 . STEP CONDITION F
SCo10 INDEFINITE CONDITION F
SCo11 OVERFLOW CONDITION F
5C012 UNDERFLOW CONDITION F
SC040 JOB MAKING 6000 REQUEST IN RAS+1; F

RAS+1 of user area is non-zero.

§ Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

111-4-10 60305600 C

- TRACING ARITHMETIC ERRORS

The following example outlines a method for detecting the location of an arithmetic error. When the
following program is executed:

PROGRAM ERR (OUTPUT,TAPEL1=0UTPUT)
NAMELIST /0UT/T,E
DATA T4E/0e491./
1 WRITE (i,0UT)
5 E = E/T ¢ 1.
T=7T -~ 1.
GO 70 1
END

this message appears in the dayfile:
19,72,57,F°000 MODF = 2, APNPESS =00716%

2153 is one plus the address at which the error was detected. The error was detected at address 2152. To
locate this address in the program, turn to the Load Map and read the entries under PROGRAM AND
BLOCK ASSIGNMENTS.

oLnry ANNNTag LIMGTS = S
Fon 101 2071 el

~ /IPR.TNL/ 2172 174
S A 27725 537 SL="N7TRAN

¥ CETETY= kgl st 23 SL=FNITIAN

/Te.0ue,/ 2N 227
MAMM T 24,7 5772 SL="72T2AM
/JMES PN/ L1L” 14
LR, M LR 123 SL=-<YSTN
/NN, PMY/ L>11 5

The user program ERR occupies storage locations 101 through 2171. Location 2152 lies between 101 and
2171 and is therefore in the main program ERR. It is location 2051 relative to the beginning of ERR (all
locations are relative to the first word address of the program load) 2152 - 100 = 2051 (octal).

l 1 Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 Series computers.
A

60305600 D M-4-11

OBJECT-TIME INPUT/OUTPUT -5

STRUCTURE OF INPUT/OUTPUT FILES

DEFINITIONS

Record

Physical record

Physical Record
Unit (PRU)

File

Logical file

60305600 D

Data created or processed by:
One unformatted WRITE/READ

One card image or a print line defined within a formatted WRITE/READ. The slash
indicates the end of a record anywhere in the FORMAT specification list.

One WRITMS/READMS
One BUFFER IN/OUT

Data between inter-record gaps; it need not contain a fixed amount of data. A physical
record is defined only on magnetic tape.

The largest unit of information that can be transferred between a peripheral storage
device and central memory/small core storage.

A collection of records referenced by one file name.

A portion of a file demarcated by FORTRAN ENDFILE statements.

FORTRAN /0 statements utilize and keep information in the file
information table (FIT) for each file. If a file or its FIT is changed
by other than standard FORTRAN [/O statements, subsequent
FORTRAN 1/0 to that file may not function correctly. Thus, it

is recommended that the user not try to use both standard
FORTRAN and non-standard /O on the same file within a program.

I1-5-1

MAXIMUM PHYSICAL RECORD UNIT SIZE

Physical Record on: Formatted Unformatted
1 Disk 1 640 characters 1 640 characters
Magnetic tape in 1280 characters 5120 characters

SCOPE format

S Tapes 5120 characters 5120 characters

L. Tapes limited only by buffer size

RECORD MANAGER

The following tables provide brief descriptions of the block/record formats supported by the Record
Manager. Detailed information on these formats is available in the Record Manager Reference Manual.

Logical Record Type Description
F Fixed length records
D Record length is given as a character count, in decimal. by a length

field contained within the record.

R Record terminated by a record mark character specified by the user.

T Record consists of a fixed length header followed by a variable num-
ber of fixed length trailers - the header contains a trailer count ficld
in decimal.

U Record length is defined by the user.

w Record length is contained in a control word prefixed to the record by

the operating system.

V4 Record is terminated by a 12-bit zero byte in the low order bvte
position of a 60-bit word.

S One or more physical record units terminated by a short physical
record unit.

§B Record length given as a character count in binary by a length field in
first four characters of record.

t Applies only to CONTROL DATA CYBER 70/Models 72. 73, 74 and 6000 Series computers.
§ Applies onlv to CONTROL DATA CYBER 70/Mode! 76 and 7600 computers.

1H-5-2 60305600 B

Block Type Description

K All blocks contain a fixed number of records; the last block can be
shorter.

C All blocks contain a fixed number of characters; the last block can
be shorter.

E All blocks contain an integral number of records. Block sizes may
vary up to a fixed maximum number of characters.

| A control word is prefixed to each block by the operating system.

The following table specifies combinations of block and record types that can be processed by a FORTRAN
program, where x = legal:

Block Type Record Type
F D R T Ut w z S B
K X x X X X X X X
~ Cc X X X X X X X x
E X X X X X X X
SR N B : |

§ + Must be blocked one record per block

FORTRAN DEFAULT CONVENTIONS (SEQUENTIAL FILES)

File organization = Sequential

Block Typetf = I for unformatted, C for all others

Block Type§ = I for unformatted tape file, unblocked for all others
Record Typef = W for unformatted, Z for formatted, S for BUFFER
Record Type§

W for all file types

External character code = Display code

§ Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.
R 1 Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 Series computers.

60305600 D I1-5-3

Label type = Unlabeled
Maximum block length = 5120 characters
Positioning before first access = No rewind
Positioning of current volume before swap = Unload
Positioning after last access = No rewind
Processing direction = Input/output
1 Error options = A (accépt)
Error options = T (terminate) for READ/WRITE, AD (accept and display) for BUFFER input/output
Suppress multiple buffer = No (Record Manager anticipates user requirements)
Conversion mode = No

A unit record is one W format record. One formatted WRITE can create several unit records. One format-
ted read can process as input several unit records.

The default values for files named INPUT, OUTPUT and PUNCH are:
Block type C and record type Z.

Buffer input/output files default to C type blocks and S type records. Buffer default for the file OUTPUT is C type
blocks and Z type records.

The appropriate conversion mode is set for all buffer input/output operations.

The conversion mode is set prior to the first open and cannot be changed during the processing of 2 file.

FORTRAN DEFAULT CONVENTIONS (RANDOM FILES)

When a file is processed using mass storage subroutines, the following file attributes are provided by the
FORTRAN compiler:

File organization = Word addressable
Record type = W

Positioning before first access = 1 None §(Rewind)

1 Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 Series computers.
§ Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

11154 60305600 B

This deck illustrates the use of the FILE card to override default values supplied by the FORTRAN :cumpiler‘
Assuming the source program is using formatted writes and 100-character records are always written, the file will
be written on magnetic tape in 1000-character blocks (except possibly the last block) with even parity, at 800 bpi.
No labels will be recorded, and no information will be written other than that supplied by the user. Records will be
blocked 10 to a block. The following values are used:

Block type = character count

Maximum block length = 1000 characters

Record type = fixed length

Record length = 100 characters

Conversion mode = YES

6
7
8
9 L
ya
yA
/Data Deck
i 8 [—— =
| M~ 9 [L——Y—FORTRAN‘soufce program e
\ S - /A ,
‘ | /7 |
| 8
9
i

_ |
{LGO.» _ a

F.DSET(FI LES=TAPE1)

(FILE(TAPE1,BT=C,MBL=1’000,RT=F,FL=100,CM%YES)

(REQUEST(TAPE1,MT,HY,VSN=HAVEN)

(FTN.

/JOB' CARD

60305600 D 11-5-7

e

BACKSPACE/REWIND

Backspacing on FORTRAN files repositions them so that the last logical record becomes the next logical
record.

§ BACKSPACE is permitted only for files with F, S, or W record format or tape files with one record per
block.

The user should remember that formatted input/output operations can read/write more than one record:
unformatted input/output and BUFFER IN/OUT read/write only one record.

The rewind operation positions a magnetic tape file such that the next FORTRAN input/output operation
references the first record. A mass storage file is positioned to the beginning of information.

The following table details the actions performed prior to positioning.

BACKSPACE/REWIND
Condition Device Type Action
Last operation was Mass Storage Any unwritten blocks for the file are written.
WRITE or BUFFER
ouT If record format is W, a deleted zero length re-
cord is written,
Unlabeled Magnetic Any unwritten blocks for the file are written.
Tape

If record format is W, a deleted zero length re-
cord is written.

Two file marks are written.

Labeled Magnetic Any unwritten blocks for the file are written.
Tape ¥ record format is W, a deleted record is written,
A file mark is written.

A single EOF label is written.

Two file marks are written.

8§ Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.
t Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 Series computers.

I11-5-8 60305600 B

Condition

Device Type

Action

Last operation was
WRITE. BUFFER
OUT or ENDFILE

Mass storage (no
blocking)

Any unwritten blocks for the file are written.

If record format is S, a zero length level 17 block
is written.

Unlabeled Magnetic
Tape or Blocked
Mass Storage

Any unwritten blocks for the file are written.

If record format is S, a zero length level 17 block
is written.

Two file marks are written (on tape).

Labeled Magnetic

Any unwritten blocks for the file are written.

Tape or Labeled .
Blocked Mass .If rec-ord format is S, a zero length level 17 block
is written,
Storage
A file mark is written.
A single EOF label is written.
Two file marks are written.
Last operation Mass Storage None
was READ,
BUFFER IN or Unlabeled None
BACKSPACE Magnetic Tape
Labeled if the end of information has been reached,
Magnetic Tape labels are processed.
No previous Magnetic Tape If the file is assigned to on-line magnetic tape, a
operation REWIND request is executed.

§ If the file is staged, the REWIND requaest has no
effect. The file is staged and rewound when it is
first referenced.

Mass Storage REWIND request causes the file to be rewound
when first referenced. '
Previous Current REWIND is ignored.
operation was
REWIND

60305600 B

§ Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

111-5-9

ENDFILE

The ENDFILE operation introduces a delimiter into an input/output file. The following table shows the
effect of ENDFILE on various record types.

Record Type » Action
W Write end-of-partition.
S Terminate current block for magnetic tape file. Write level 17 zero

length block.

Z with C

blocking Terminate current block for magnetic tape file. Write level 17 zero
length block.

D,BR,T

FU,orZ Terminate current block for magnetic tape file. Write level 17 zero

length block.

A WRITE/BUFFER OUT can follow an ENDFILE operation. If the file has records of the format WS, or
Z with C blocking or it is a mass storage file with any other block/record formats, no special action is
performed. However, if the file is assigned to magnetic tape and has a record format other than W,S,0orZ
with C blocking a tape mark is written preceding the requested record.

Meaningful results are not guaranteed if an ENDFILE is written on a random access file, and subsequently a
random file subroutine, such as READMS, is called.

HI-5-10 60305600 C

LABELED FILES

Only files recorded on magnetic tape can be labeled files..

If a file is declared to be labeled on a REQUEST control card, the label (HDR1 only) is compared with the
label expected by the user. If the information does not compare and the use of the file is input, the job
continues after instructions are entered from the system console. For output, a default label is written, and the
job continues.

An object time subroutine, LABEL, is provided for the FORTRAN programmer to set up label information
for Record Manager. If label information is properly set up, and subroutine LABEL is referenced prior to
any other reference to the file, when the file is opened, the label and the information are compared for an
input tape; or the information is written on an output tape.

Form of the call:

7
, CALL LABEL (u,fwa)

u Unit number

fwa Address of first word containing the label information which must be in the mode and format
discussed in the Record Manager Reference Manual.

§ The subroutine LABEL performs no operation under SCOPE 2.0, which does not support labeling conventions;
however, SCOPE 2.1 provides labeling support.

8 Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

60305600 D I-5-11

BUFFER INPUT/OUTPUT

 The maximum lengths for physical records on tape can be exceeded using the BUFFER input/output
statements if the L parameter on the SCOPE REQUEST control card is specified.

BUFFER IN/OUT statements can be used to achieve some degree of overlap between the user program
and input/output with an external device (mass storage or tape). However, the memory area specified in the
BUFFER IN/OUT statement will not be used as the physical record buffer. These buffers are maintained
within an operating system buffer area in LCM. The execution of a BUFFER IN/OUT statement, there-
fore, involves movement of a record between system buffers in LCM and the memory area specified in the
BUFFER IN/OUT statement. Correspondence between individual BUFFER statements and physical rec-
ords on a device depends upon the block specification. For example. K blocking with a record count of one
ensures that each BUFFER IN/OUT corresponds to a block.

BUFFER IN

1. Only one record is read each time a BUFFER IN is performed. If the length specified by the BUFFER
statement is longer than the record read, excess locations are not changed by the read. If the record read
is longer than the length specified by the BUFFER statement, the excess words in the record are ignored.
The number of central memory words transferred to the program block can be obtained by referencing
the function LENGTH or the subroutine LENGTHX (section 8, part I).

2. When records do not terminate on a word boundary (such as might occur on a file not created by BUFFER
statements), and if the number of words requested in a BUFFER IN is greater than or equal to the number
of words in the record, the exact length of the record can be determined by using the LENGTHX library
subroutine. LENGTHX returns the number of unused bits in the last word of the data transfer as well as
the number of central memory words transferred (section 8, part I).

3. After using a BUFFER IN/OUT statement on unit u, and prior to referencing unit u or the contents of
storage locations a through b, the status of the BUFFER operation must be checked by a reference to the
UNIT function (section 8, part I). This status check ensures that the data has actually been transferred,
and the buffer parameters for the file have been restored.

4. If an attempt is made to BUFFER IN past an end-of-file without testing for the condition by referencing
the UNIT function, the program terminates with the diagnostic: ~END OF FILE ENCOUNTERED file name

5. If the last operation on the file was a write operation, no data is available to read. If a read is attempted,
the program terminates with the diagnostic: ~WRITE FOLLOWED BY READ ON FILE

6. If the starting address for the block is greater than the terminal address, the program terminates with the
diagnosticc: = BUFFER DESIGNATION BAD FWA.GT.WA, file name

7. If an attempt is made to BUFFER IN from an undefined file (a file not declared on the PROGRAM card),
the program terminates with the diagnostic: ~UNASSIGNED MEDIUM, file name

tApplies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 Series computers.
§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

II1-5-12 60305600 E

BUFFER OUT

I. One record is written each time a BUFFER OUT is performed. The length of the record is the terminal
address of the record (LWA) — starting address (FWA) + 1.

2. As with BUFFER IN, a BUFFER OUT operation must be followed by a reference to the UNIT func-
tion. This reference must occur prior to any other reference to the file.

3. If the terminal address is less than the first word address. the program terminates and the following
diagnostic is issued:

BUFFER SPECIFICATION BAD FWA.GT.LWA. file name

4. The UNASSIGNED MEDIUM diagnostic is similar to that issued from a BUFFER IN.

STATUS CHECKING

UNIT FUNCTION (BUFFERED INPUT/OUTPUT)

The UNIT function is used to check the status of a BUFFER IN or BUFFER OUT operation on logical
unit u. The function returns the following values:

-1 Unit ready, no error
+0 Unit ready, end-of-file encountered on the previous operation

+ 1 Unit ready, parity error encountered on the previous operation
Example:

IF (UNIT(S5)) 12,14,16
Control transfers to the statement labeled 12, 14 or 16 if the value returned was -1.. 0.. or + 1. respectively.
If 0. or + 1. is returned. the condition indicator is cleared before control is returned to the program. If the
UNIT function references a logical unit referenced by input/output statements other than BUFFER IN/
BUFFER OUT, the status returned will always indicate unit ready and no error (-1.).

Any of the following conditions encountered during a read result in end-of-file status:

End of information
Non-deleted W format flag record
Embedded tape mark

Terminating double tape mark

60305600 B II-5-13

Terminating end of file label
Embedded zero length level 17 block
At end of section on INPUT file only

EOF FUNCTION (NON-BUFFERED, INPUT/OUTPUT)

The EOF function is used to test for an end-of-file read on unit u. Zero is returned if no end-of-file is
encountered. or a non-zero value if end-of-file is encountered.

Example:
IF (EOF(5)) 10,20

returns control to the statement labeled 10 if the previous read encountered an end-of-file; otherwise, control
goes to statement 20.

If an end-of-file is encountered. EOF clears the indicator before returning control.

If the previous operation on unit u was a write, EOF will return a zero value. An end-of-file condition exists
only when an end-of-file is read.

This function has no meaning when applied to a random access file. If the EOF function is called in
reference to such a file, a zero value would be returned.

Refer to the UNIT function for a list of conditions which result in an end-of-file status.
The user should test for an end-of-file after each READ statement to avoid input errors. If an attempt is made to

read on unit u and an EOF was encountered on the previous read operation on this unit, execution terminates
and an error message is printed.

On the file INPUT, reading either a 6/7/8/9 card or a 7/8/9 card will set the end-of-file indicator. On files
other than INPUT, reading an end-of-record does not set the end-of-file indicator.

I1-5-14 60305600 D

Example:

If the values in storage are A = 10.. B = 44, and C = 3., and an EOF is reached after A is read,
B and C are not read nor altered in memory.

6
7 \
8
9 /
ya
va
B—»/ 25
[data deck
7
8
9 —

READ 1, A,B,C
1 FORMAT (F4.2)

After the read statement, A will contain 24., B = 44. and C = 3. The end-of-file flag will be set. The job
will be terminated if a subsequent READ is attempted without first executing an EOF check.

IOCHEC FUNCTION

The IOCHEC function tests for parity errors on non-buffered reads on unit u. The value zero is returned if
no error occurs.

Example:

J = IOCHEC(6)
IF (J) 15,25

zero value would be returned to J if no parity error occurred and non-zero if an error had occurred; control
would transfer to the statement labeled 25 or |5 respectively.

If a parity error occurred, IOCHEC would clear the parity indicator before returning. Parity errors are
handled in this way regardless of the type of the external device.

60305600 B 15 |

PARITY ERROR DETECTION

1 A parity error status indicates that a parity error occurred within the current record. For non-buffered
formatted files, the error did not necessarily occur within the last record requested by the program because
the input/output routines read ahead one record whenever possible.

§ Parity errors are detected by the status checking functions on all read operations. When the write check
option is specified on the REQUEST statement for the file (7600 SCOPE V2.0 Reference Manual) parity
status may be checked on write operations which access mass storage files. Write parity errors for other
types of devices (staged/on-line tape) are detected by the operating system. and a message is written in the
dayfile.

When parity error status is returned, this does not necessarily refer to the immediately preceding operation
because of the record blocking/deblocking performed by the Record Manager input/output routines via
buffers in large core memory.

DATA INPUT ERROR CONTROL

The subprogram ERRSET allows a complete READ with FORMAT to be processed in one pass without premature
termination because of errors in the format of the data; a listing is produced of all data errors and input diagnostics.

ERRSET (a,b) is called before a READ statement; it initializes an error count cell. a, and establishes a
maximum number of errors, b. The program does not terminate when fatal errors are encountered until the
limit,b, is reached. A maximum limit of 2*-1 can be specified.

The limit coritinues in effect for any subsequent READ statements until the number of errors specified has
accumulated. The limit can be reset before a READ statement or turned off by setting b=0: b=0 is the
equivalent of a normal read.

Example:

The following example illustrates the use of ERRSET to suppress normal fatal termination when
large sets of data are being processed. ‘

1 Applies only to CONTROL DATA CYBER 70/Models 72, 73, 74 and 6000 Series computer.
§ Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.

| mesie 60305600 B

When ERRSET is called, a limit of 200 errors is established. The number of errors will be stored in
KOUNT. After ARAY is read, KOUNT is checked. If errors occur, the following statements are
not processed and a branch is made to statement 500. Had ERRSET not been called, fatal errors
would have terminated the program before the branch to statement 500. At statement 500,

ERRSET once more initializes the error count and execution continues.

CALL ERRSET(KOUNT,200)

READ(1,125) (ARAY(I),I~1,1500)
125 FORMAT (3F10.5,E10.1)

IF (KOUNT.GT.0) GO TO 500

.

500 CALL ERRSET(KOUNT,200)
READ(1,125)(BRAY(I),I=1,1500)
IF (KOUNT.GT.O0) GO TO 600

600 CALL ERRSET(KOUNT,100)
READ(1,230) (LRAY(I),I=1,500)
PRINT 99, KOUNT
READ(4,127) (MRAY(I),I=1,500)
PRINT 99, KOUNT
READ(4,225)(NRAY(I),I=1,50)

IF (KOUNT.GT.0) GO TO 700

700 CALL EXIT
END

Data errors and diagnostics are listed, providing the programmer with a list of errors for the entire
program:

60305600 C HI-5-17

ERROR MESSAGES

ERROR IN COMPUTED GOTO STATEMENT- INDEX VALUE INVALID
ERROR NUMBER 0001 DETECTED BY ACGOER AT ADDRESS 000301
CALLED FROM EXERR AT LINE 0003

DIAGNOSTICS
1. lllegal Data in Field

ERROR DATA INPUT ILLEGAL DATA IN FIELD
**FORMAT NO. 125

2. Data overflow, exponent subfield has exceeded 323 (decimal) (data underflow, exponent less than -323.)

ERROR DATA INPUT DATA OVERFLOW
** FORMAT NO. 125

3. Both illegal data and data overflow have been detected.’

ERROR DATA INPUT ILLEGAL DATA IN FIELD **
AND DATA OVERFLOW ** FORMAT NO. 125

An error summary appears at the end of the program.

Error Summary:

ERROR TIMES
0078 0003
0079 0001

111-5-18 60305600 B

PROGRAMMING NOTES

Meaningful results are not guaranteed in the following circumstances:

1.

Mixed formatted and unformatted read/write statements on the same file (without an intervening REWIND).

Mixed buffer input/output statements and read/write statements on the same file.

Requesting a LENGTH function or LENGTHX call on a buffer unit before requesting a UNIT function.

Two consecutive buffer input/output statements on the same file without the intervening execution of a
UNIT function call.

Attempting to process a mass storage input/output file when specifying (either explicitly or implicitly) a
file organization other than word addressable, or a record type other than W.

Failing to close a mass storage input/output file with an explicit CLOSMS in an overlay program.

60305600 E 111-5-19

FORTRAN — RECORD MANAGER INTERFACE? -6

Thé FORTRAN user can access Record Manager facilities by calling. external subprograms that use the COMPASS
Record Manager macros. The subprograms described here allow limited access to the Record Manager macros without
requiring the user to write his own subprograms in COMPASS. Subprograms are provided to create, access, modify
the file information table, position, and process the files. The Record Manager Reference Manual, publication
number 60307300, includes a complete description of each macro and its parameters.

FILE INFORMATION TABLE CALLS
To place values in the file information table the user can call one of the following subroutines:

FILESQ for sequential files
FILEWA for word addressable files
FILEIS for indexed sequential files
FILEDA for direct access files
FILEAK for actual key files
[TcALL FiLExx (fit,keyword, ;value,, . . . keyword, value,)

All parameters, with the exception of fit, are paired; the first parameter is the keyword which indicates the field in
the file information table, the second parameter is the value to be placed in the field. Only the pertinent parameters
need be specified, and they may appear in any order. Since a FORTRAN call can contain a maximum of 63 param-
eters, 31 file information table fields can be specified with a FILExx call.

XX SQ, WA, IS, DA, or AK

fit Name of an array. Record Manager resides in the user’s field length, and the array must be
large enough to contain both the file information table (FIT) and the file environment table
(FET). 35 words should be -allocated; 20 words for the file information table and 15 words
for the file environment table. The FIT is created by the subroutine FILExx, beginning in
the first word of the array. Record Manager supplies the information which is placed in
the user’s array after the FIT.

1This information applies only to the CONTROL DATA CYBER 70/Modeis 72, 73 and 74 and 6000 Series
‘computers.

6030%%0°C : 11-6-1

INFORMATION ON THIS PAGE APPLIES ONLY TO THE CONTROL DATA
CYBER 70/MODELS 72, 73 AND 74 AND 6000 SERIES COMPUTERS.

Keyword Specifies a file information table field. An FIT field mnemonic is passed as an L format
Hollerith constant. FIT mnemonics are described in the Record Manager Reference Manual.

Example:

3LFWB
3LLFN
21KL

Value Value to be placed in the FIT field specified by keyword. The following three types of values
are allowed:

Names of arrays or external subroutines,
Example: Specify the array RCD as the user’s record area.
...,3LWSARRCD,...
Integer constants or integer variables.
Example: Set the key length field to ten characters.
..., 2LKL10, ...
Symbolic option keywords. The value of some FIT fields must be supplied symbolically
(see Record Manager Reference Manual). Symbolic option keywords are passed as L format
Hollerith constants.

Example: Select the duplicate key processing option.

...,3LKDI3LYES,...

ACCESSING FILE INFORMATION TABLE FIELDS

Contents of the FIT can be accessed by using the integer function IFETCH.

IFETCH (fit,keyword)
fit Names of the array containing file information table.
keyword Character name of the field.

If the keyword specifies a one-bit field, negative result is returned if the bit is on and can be sensed by a positive-
negative check; otherwise it is returned as an integer value.

Example:
M=IFETCH(FILE,2LRL)

The record length is returned to the function IFETCH and replaces the value of M.

111-6-2 60305600 C

INFORMATION ON THIS PAGE APPLIES ONLY TO THE CONTROL DATA
CYBER 70/MODELS 72, 73 AND 74 AND 6000 SERIES COMPUTERS.

FILE COMMANDS

After the file information table is created using CALL FILExx file accessing commands can be issued. The first
command must be OPENM, and the last CLOSEM. '

In file commands, the parameters are identified strictly by their position; thus, parameters can be omitted only from
the right. In FORTRAN, unlike COMPASS macros, adjacent commas are illegal in a subroutine call. When parameters

are omitted the current value of the corresponding FIT fields remain unchanged. If the same subroutine is called
twice, each with a different number of parameters, the compiler issues an informative diagnostic.

In some file commands a parameter position can have two meanings, for example {traa} in CALL PUT, the top

parameter always applies to index sequential or direct access files, and the bottom to word addressable files.
In the following description of the file commands, fit is the name of the array containing the file information table.
Example:
The following call sets up the FIT for a direct access file:

CALL FILEDA (FILE,3LLFN,7LSDAFILE,3LFWB,BUFFER,3LBFS,400,3LBCK,3LYES)
The FIT and the FET are to be constructed in the array named FILE. The file name (LFN) is SDAFILE. The buffer
is to be placed in the 400-word array BUFFER. 3LBCK,3LYES selects the block checksumming option.
UPDATING FILE INFORMATION TABLE

After the file information table is created, it can be updated by calls to the subroutine STOREF.

7 v
CALL STOREF (fit,keyword, value)

— v —— o

fit Array where the file information table was created.
keyword File information table field.
value Value to be placed in the field.

Example:

CALL STOREF (FILE,2LRL,250)

Sets record length in the FIT, in the array FILE, to 250 characters.

60305600 C 111-6-3

INFORMATION ON THIS PAGE APPLIES ONLY TO THE CONTROL DATA
CYBER 70/MODELS 72, 73 AND 74 AND 6000 SERIES COMPUTERS.

7
CALL OPENM (fit,pd,of)

|
|
|
|
OPENM prepares a file for processing. Each file must be opened before processing.

pd Processing direction established when file is opened:

SLINPUT Read only

6RPOUTPUT Write only

3LI-0 Read and write

3LNEW Indexed sequential or direct access file to be created (write only)

of Open flag specifies position of file when it is opened:

1LR Rewind; file is rewound before any other open procedures are
performed.

1LN No file positioning is done before other open procedures.

1LE File is positioned immediately before end of information to allow

extensions to a mass storage file.

7
CALL CLOSEM (fit)

Terminates processing.

7
T
| CALL GET (fit,wsa,{:a },kpfmkl,rl,{*”‘ })
I
|

a dx

GET reads a record from an input/output device and delivers it to the user’s record area.

wsa Address of user’s record area.
ka Address of user’s key area for direct access or indexed sequential record to be read.
wa Word address on file where reading is to start.

' tkp is not applicable to AK files.
I1-6-4 60305600 C

INFORMATION ON THIS PAGE APPLIES ONLY TO THE CONTROL DATA
CYBER 70/MODELS 72, 73 AND 74 AND 6000 SERIES COMPUTERS.

ka Beginning character position of key within ka. Key positions are ordered from left to right
(0-9).

mkl Major key length on indexed sequential files.

| Record length in characters.

ex Address of exit subroutine to be entered when an error occurs (word addressable, index

sequential or direct access files). The value of ex must not be zero.

dx Address of end of the external subroutine to be entered at end of data for sequential files.
7
! CALL PUT (fi ka | ol
| (fit,wsa,rl wa kp!pos,ex)
!
l
PUT places a record in a file.
pos For duplicate key processing, value may be lLP’ to precede the current record or 1LN to

make it the next record.

wsa,rl,ka,wa kp,ex are the same as for GET.

7
CALL GETN (fit,wsaka,ex)

GETN accesses the next record on the file.

7
!
| CALL DLTE (fat{""’ },kapos,ex)
| wa ,
!
]
DLTE deletes a record from the file.
ka Key address of record-to be deleted.
wa Word address of record to be deleted.
pos Value may be 1LC to specify the current (last referenced) record to be deleted, or zero to

delete the first record in a duplicate key chain.

tkp is not applicable to AK files.

60305600 C I11-6-5

INFORMATION ON THIS PAGE APPLIES ONLY TO THE CONTROL DATA
CYBER 70/MODELS 72, 73 AND 74 AND 6000 SERIES COMPUTERS.

7
CALL REPLC (fitwsa,rl,ka,kplpos.ex)

REPLC replaces an existing record with a record from the user’s record area.

pos Value may be 1LC to specify the current (last referenced) record to be replaced, or zero
which will replace the first record in a duplicate key chain.

7
CALL CHECK ({fit)

T
|
|
I

CHECK determines whether input/output operations on a file are complete and upon completion returns control.

7
CALL SKIP {fit,+count)

Repositions a file.

count’ Number of logical records to be skipped; positive for a forward skip, negative for a backward
skip.

7
CALL SEEKF (fit,ka,kpimki,ex)

SEEKF allows central memory processing to overlap input/output operations.

7
CALL WEOR (fit,lev)

WEOR terminates a section, and an S type record.

lev Level number (any value O to 16B) to be appended if record type is S; default is zero.

| +kp is not applicable to AK files.

111-6-6 60305600 C

INFORMATION ON THIS PAGE APPLIES ONLY TO THE CONTROL DATA
CYBER 70/MODELS 72, 73 AND 74 AND 6000 SERIES COMPUTERS.

7
CALL WTMK (fit)

7
CALL ENDFILE (fit)

Writes an end of partition.

7
CALL REWND (fit)

REWND positions a tape file to the beginning of the current volume. It positions a mass storage file to the beginning
of information.

7
CALL GETP (fitwsa,ptl,4LSKIP dx)

GETP retrieves partial records; it may be used to retrieve an arbitrary amount of data from a record.

wsa Name of user’s record area to receive the record.
ptl Partial transfer length. Number of characters to be transferred.
skip Causes Record Manager to advance to next record before getting data if the value is 4LSKIP.

Otherwise zero should be used.

dx Name of end-of-data routine.

60305600 C I11-6-7

INFORMATION ON THIS PAGE APPLIES ONLY TO THE CONTROL DATA
CYBER 70/MODELS 72, 73 AND 74 AND 6000 SERIES COMPUTERS.

7
CALL PUTP (fitwsa,ptirlex)

Writes a portion of a record.

wsa Address of user’s record area from which the record portion will be taken.
ptl Partial transfer length specifies the number of characters to be transferred.
il Record length in characters (required only for U, W, and R type records).
ex Address of error subroutine.

KEY — HASHING SUBROUTINE FOR DIRECT ACCESS FILE
A hashing subroutine is used to generate, from the key, an integer value for locating the record.

A user-coded randomizing subroutine.may be specified for a DA file instead of the system-supplied default hash
subroutine. A key analysis utility is available to help the user decide if his hash subroutine is more suitable for the
file than the default subroutine. This subroutine should be added to a user library, as it must be supplied each time
the file is processed.

In the user’s main program the entry address of the hash subroutine must be declared external and set into the HRL.
field of the FIT prior to the first open of the file. During processing of the file the hash subroutine is called by DA
with the following argument list:

Key length, in characters

Key, left justified and zero filled
Number of home blocks
Returned result

All arguments are integer, and the returned result must be non-negative. The value used is the returned result mod
(number of home blocks minus one).

The following example illustrates how subroutine MYHASH is specified for file MYFILE. The hash result is the
product of the words of the key.

I1-6-8 60305600 C

INFORMATION ON THIS PAGE APPLIES ONLY TO THE CONTROL DATA
CYBER 70/MODELS 72, 73 AND 74 AND 6000 SERIES COMPUTERS.

PROGRAMS

INTEGER FIT(3%)

EXTERNAL MYHASH

CALL FILEDA(FITo3LLFNySLMYFILEs3LHRLIMYHASHY o o o)

END
SUBROUTINE MYHASH (KL +KEY+HMBsRESULT)
INTEGER KEY (1) ¢sHMBsRESULT
KW= (KL+9)/10
00 20 I=1.KW
20 RESULT=RESULT#KEY (1)
RFTURN
END

ERROR CHECKING

FORTRAN/Record Manager routines perform limited error checking to determine whether the call can be inter-
preted, but actual parameter values are not checked.

The following error conditions are detected, and a message appears in the dayfile:

FIT ADDRESS NOT Array name was not specified.
SPECIFIED
FORMAT ERROR Parameters were not paired (FILExx), or required parameters were not speci-

fied (STOREF, IFETCH or SKIP).
UNDEFINED SYMBOL A file information table field mnemonic or symbolic option was specified
incorrectly; for example, an incorrect spelling, or the of parameter in OPENM
was not specified as R, N or E.
Example of error message:

ERROR IN STOREF CALL

UNDEFINED SYMBOL IMPUT

60305600 C HI-6-9

MASS STORAGE INPUT/OUTPUT -z

Mass storage input/output subroutines allow the user to create, access, and modify multi-record files on a
random basis without regard for their physical position or internal structure. A random file can reside on
any mass storage device for which Record Manager word addressable file organization is defined. Each
record in the file may be read or written at random without logically affecting the remaining file contents.
The length and content of each record is determined by the user.

Six object time input/output subroutines control the transfer of records between central memory and mass
storage. These routines employ thc word addressable feature available through Record Manager (refer to
Record Manager Reference Manual or 7000 SCOPE Reference Manual for details of this feature).

7
CALL OPENMS ({(u,ix,Ingth,t)

OPENMS opens the mass storage file and informs Record Manager that it is a random (word addressable)
file. The array specified in the call arguments is automatically cleared to zeros. If an existing file is being
reopened, the master index is read from mass storage into the index array.

u ‘ Unit designator
ix First word address in central memory of the array which will contain the index
Ingth Length of index

for a number index, Ingth 2 (number of records in file) + 1
for a name index, Ingth 2 2*(number of records in file) + 1

t t = 0 file is referenced through a number master index

-

I file is referenced through a name master index

Example:

DIMENSION I(11)
CALL OPENMS (5,1,11,0)

Prepares for random input/output on unit 5 with an |1-word master index of the number type. If
the file already exists, the master index is read into memory starting at address .

60305600 C MI-7-1

7 ,
CALL READMS ({u,fwa,nk)

Transmits data from mass storage to central memory.

u Unit designator

fwa Address in central memory of first word of record

n Number of 60-bit central memory words in the record to be transferred
k Number index: k = 1< k< Ingth - 1

Name index: k = any 60-bit quantity except £0
Example:

CALL READMS (3,DATAMOR,25,2)

7
CALL WRITMS (u,fwa,nk,r.s)

Transmits data from central memory to the selected mass storage device.
u, fwa,'n, k are the same as for READMS.

r r=1 rewrite in place. Unconditional request; fatal error occurs if new record length
exceeds old record length.

r=-1 rewrite in place if space available, otherwise write at end of information
r=0 no rewrite; write normally at end of information
! The default value for r is 0 (normal write). The r parameter can be omitted if the s parameter is omitted.
s s=1 write sub-index marker flag in index control word for this record
s=0 do not write sub-index marker flag in index control word for this record
Default value is 0 if s is omitted.

The s parameter is included for future random file editing routines. Current routines do not test the flag,
but the user should include this parameter in new programs when appropriate to facilitate transition to a
future edit capability.

Example:

CALL WRITMS (3,DATA,25,6,1)

I1-7-2 ' 60305600 A

7
CALL STINDX (u,ix,Ingth,t)

STINDX selects a different array to be used as the current index to the file. The call permits a file to be
manipulated with more than one index. For example, when the user wishes to use a sub-index instead of
the master index, he calls STINDX to select the sub-index as the current index. The STINDX call does not
cause the sub-index to be read or written; that task must be carried out by explicit READMS or WRITMS
calls. It merely updates the internal description of the current index to the file.

u, ix, Ingth and t are the same as OPENMS.
Examples:

DIMENSION SUBIX (10)
CALL STINDX (3,SUBIX,10,0)

DIMENSION MASTER (5)
CALL STINDX (2,MASTER,5)

7
CALL CLOSMS (u)

The CLOSMS call is optional since its function is identical to that performed automatically by the FOR-
TRAN object time routine SYSTEM when the run terminates. (SYSTEM and CLOSMS both write the
master index from central memory to the file, and close the file.) CLOSMS is provided so that a file can be
returned to the operating system before the end of a FORTRAN run, or to preserve a file created by an
experimental job that may subsequently abort, or for other special circumstances.

Example:

CALL CLOSMS (2)

ACCESSING A RANDOM FILE

Random file manipulations differ from conventional sequential file manipulations. In a sequental file,
records are stored in the order in which they are written, and can normally be read back only in the same
order. This can be slow and inconvenient in applications where the order of writing and retrieving records
differ and, in addition, it requires a continuous awareness of the current file position and the position of the
required record. To remove these limitations, a randomly-accessible file capability is provided by the mass
storage input/output subroutines.

In a random file, any record may be read, written or rewritten directly, without concern for the position or

structure of the file. This is possible because the file resides on a random-access rotating mass storage device
that can be positioned to any portion of a file. Thus, the entire concept of file position does not apply to a

60305600 A HI-7-3

random file. The notion of rewinding a random file is, for instance, without meaning.

To permit random accessing, each record in a random file is uniquely and permanently identified by a
record key. A key is an 18- or 60-bit quantity, selected by the user and included as a READMS or
WRITMS call parameter. When a record is first written, the key in the WRITMS call becomes the perma-
nent identifier for that record. The record can be retrieved later by a READMS call that includes the same
key, and it can be updated by a WRITMS call with the same key.

When a random file is in active use, the record key information is kept in an array in the user’s field length.
The user is responsible for allocating the array space by a DIMENSION, type or similar array declaration
statement, but must not attempt to manipulate the array contents. The array becomes the directory or index
to the file contents. In addition to the key data, it contains the word address and length of each record in
the file. The index is the logical link that enables the mass storage subroutines, in conjunction with Record
Manager, to associate a user call key with the hardware address of the required record.

The index is maintained automatically by the mass storage subroutines. The user must not alter the contents
of the array containing the index in any manner; to do so may result in destruction of the file contents. (In
the case of a sub-index, the user must clear the array before using it as a sub-index; and read the sub-index
into the array if an existing file is being reopened and manipulated. However, individual index entries
should not be altered.)

Under SCOPE, when a permanent file that was created by mass storage input/output routines is to be modified, the
EXTEND control card should be used to ensure that the new index is made permanent.

In response to an OPENMS call, the mass storage subroutines automatically clear the assigned index array.
If an existing file is being reopened, the mass storage subroutines will locate the master index in mass
storage and read it into this array. Subsequent file manipulations make new index entries or update current
entries. When the file is closed, the master index is written from the array to the mass storage device. When
the file is reopened, by the same job or another job. the index is again read into the index array space
provided, so that file manipulation may continue.

INDEX KEY TYPES

There are two types of index key, name and number. A name key may be any 60-bit quantity except +0 or
-0. A number key must be a simple positive integer, greater than 0 and less than or equal to (Ingth - 1). The
user selects the type of key by the (t) parameter. The key type selection is permanent. There is no way to
change the key type, because of differences in the internal index structure. If the user should inadvertently
attempt to reopen an existing file with an incorrect index type parameter, the job will be aborted. (This does
not apply to sub-indexes chosen by STINDX calls, proper index type specification is the sole reponsibility
of the user.) In addition, key types cannot be mixed within a file. Violation of this restriction may result in
destruction of a file.

The choice between name and number keys is left entirely to the user. The nature of the application may
clearly dictate one type or the other. However, where possible, the number key type is preferable. Job
execution will be faster and less central memory space will be required. Faster execution occurs because it is
not necessary to search the index for a matching key entry (as is necessary when a name key is used). Space
1s saved due to the smaller index array length requirement.

I11-7-4 60305600 E

—

Example:

aaoaaaao

99

(]

oOaQaaaaaq

Q Q

Q aaa

PROGRAM MS1 (TAPE3)

CREATE RANDOM FILE WITH NUMBER INDEX.

DIMENSION INDEX(11), DATA(25)
CALL OPENMS (3,INDEX,11,0)

DO 99 NRKEY=1,10

(GENERATE RECORD IN ARRAY NAMED DATA.)

CALL WRITMS (3,DATA,25,NRKEY)

STOP
END

PROGRAM MS2 (TAPE3)

MODIFY RANDOM FILE CREATED BY PROGRAM MS1l.
NOTE LARGER INDEX BUFFER TO ACCOMMODATE TWO NEW
RECORDS.

DIMENSION INDEX(13), DATA(25), DATAMOR(40)
CALL OPENMS (3,INDEX,13,0)

READ 8TH RECORD FROM FILE TAPE3.
CALL READMS (3,DATA,25,8)

(MODIFY ARRAY NAMED DATA.)

WRITE MODIFIED ARRAY AS RECORD 8 AT END OF
INFORMATION IN THE FILE
CALL WRITMS (3,DATA,25,8)

READ 6TH RECORD.
CALL READMS (3,DATA,25,6)

(MODIFY ARRAY.)

60305600 A

H1-7-5

c .

¢ REWRITE MODIFIED ARRAY IN PLACE AS RECORD 6.
CALL WRITMS (3,DATA,25,6,1)

¢ READ 2ND RECORD INTO LONGER ARRAY AREA.

CALL READMS (3,DATAMOR,25,2)
c .
C .
C (ADD 15 NEW WORDS TO THE ARRAY NAMED DATAMOR.)
C .
c .
¢ CALL FOR IN-PLACE REWRITE OF RECORD 2. IT WILL
¢ DEFAULT TO A NORMAL WRITE AT END-OF-INFORMATION
¢ SINCE THE NEW RECORD IS LONGER THAN THE OLD ONE,
¢ AND FILE SPACE IS THEREFORE UNAVAILABLE.

CALL WRITMS (3,DATAHOR,40,2,—1)‘

¢ READ THE 4TH AND 5TH RECORDS.
CALL READMS (3,DATA,25,4)
CALL READMS (3,DATAMOR,25,5)

.
.

(MODIFY THE ARRAYS NAMED DATA AND DATAMOR.)

oo Qa

C WRITE THE ARRAYS TO THE FILE AS TWO NEW RECORDS.
CALL WRITMS (3,DATA,25,11)
CALL WRITMS (3,DATAMOR,25,12)

STOP
END

PROGRAM MS3 (TAPE7)
¢ CREATE A RANDOM FILE WITH NAME INDEX.

DIMENSION INDEX(9), ARRAY(15,4)
DATA REC1,REC2/7HRECORD1,#RECORD2%/

.
.

(GENERATE DATA IN ARRAY AREA.)

.

o aoaaaq

I-7-6 60305600 C

C WRITE FOUR RECORDS TO THE FILE. NOTE THAT
C KEY NAMES ARE RECORD(N). '
CALL WRITMS (7,ARRAY(1,1),15,REC1)
CALL WRITMS (7,ARRAY(1,2),15,REC2)
CALL WRITMS (7,ARRAY(1,3),15,7RRECORD3)
CALL WRITMS (7,ARRAY(1,4),15,>RECORD4>)

C CLOSE THE FILE.
CALL CLOSMS (7)

STOP
END

MULTI-LEVEL FILE INDEXING

When a file is opened by an OPENMS call, the mass storage routines clear the array specified as the index
area, and if the call is to an existing file, locates the file index and reads it into the array. This creates the
initial or master index.

The user can create additional indexes (sub-indexes) by allocating additional index array areas, preparing
the area for use as described below, and calling the STINDX subroutine to indicate to the mass storage
routine the location, length and type of the sub-index array. This process may be chained as many times as
required, limited only by the amount of central memory space available. (Each active sub-index requires an
index array area.) The mass storage routine uses the sub-index just as it uses the master index; no distinc-
tion is made. ~

A separate array space must be declared for each sub-index that will be in active use. Inactive sub-indexes
may, of course, be stored in the random file as additional data records.

The sub-index is read from and written to the file by the standard READMS and WRITMS calls, since it 1s
indistinguishable from any other data record. Although the master index array area is cleared by OPENMS
when the file is opened, STINDX does not clear the sub-index array area. The user must clear the sub-index
array to zeros. If an existing file is being manipulated and the sub-index already exists on the file, the user
must read the sub-index from the file into the sub-index array by a call to READMS before STINDX is
called. STINDX then informs the mass storage routine to use this sub-index as the current index. The first
WRITMS to an existing {ile using a sub-index must be preceded by a call to STINDX to inform the mass
storage routine where to place the index control word entry before the write takes place.

If the user wishes to retain the sub-index, it must be written to the file after the current index designation
has been changed back to the master index, or a higher level sub-index by a call to STINDX.¥

#Since the file is closed automatically at job termination, it is no longer necessary as it was under previous
versions of FORTRAN Extended, for the user to reset the master index before closing the file.

60305600 A 111-7-7

INDEX TYPE

MASTER INDEX

The master index type for a given file is selected by the t parameter in the OPENMS call when the index is
created. The type cannot be changed after the file is created: attempts to do so by reopening the file with
the opposite type index are treated as fatal errors. :

SUB-INDEX

The sub-index type can be specified independently for each sub-index. A different sub-index name/number
type can be specified by including the t© parameter in the STINDX call. If t is omitted, the index type
remains the same as the current index. Intervening calls which omit the t parameter do not change the most
recent explicit type specification. The type remains in effect until changed by another STINDX call.

STINDX cannot change the type of an index which already exists on a file. The user must ensure that the t
parameter in a call to an existing index agrees with the type of the index in the file. Correct sub-index type

specification is the responsibility of the user; no error message is issued.

Example:
PROGRAM MS4 (TAPER2)

¢ GENERATE SUBINDEXED FILE WITH NUMBER INDEX. FOUR
SUBINDEXES WILL BE USED, WITH NINE DATA RECORDS
¢ PER SUBINDEX, FOR A TOTAL OF 36 RECORDS.

Q

DIMENSION MASTER(5), SUBIX(10), RECORD(50)
CALL OPENMS (2,MASTER,5,0)

DO 99 MAJOR=1,4

¢ CLEAR THE SUBINDEX AREA.
po 77 1=1,10
77 SUBIX(I)=0

¢ CHANGE THE INDEX IN CURRENT USE TO SUBIX.
CALL STINDX (2,SUBIX,10)

¢ GENERATE AND WRITE NINE RECORDS.
DO 88 MINOR=1,9

c .

c .

I1.7-8 60305600 A

C WRITE A RECORD.
88 CALL WRITMS (2,RECORD,50,MINOR)

C CHANGE BACK TO THE MASTER INDEX.
CALL STINDX (2,MASTER,5)

C WRITE THE SUBINDEX TO THE FILE.
CALL WRITMS (2,SUBIX,10,MAJOR,0,1)

99 CONTINUE

C READ THE 5TH RECORD INDEXED UNDER THE 2ND SUBINDEX.
CALL READMS (2,SUBIX,10,2)
CALL STINDX (2,SUBIX,10)
CALL READMS (2,RECORD,50,5)

C .
C .
C (MANIPULATE THE SELECTED RECORD AS DESIRED.)
C .
c .
STOP
END

PROGRAM MS5 (INPUT,OUTPUT,TAPE9)
¢ CREATE FILE WITH NAME INDEX AND TWO LEVELS OF SUBINDEX.

DIMENSION STATE(101), COUNTY(501), CITY(501), ZIP(100)
INTEGER STATE, COUNTY, CITY, ZIP

10 FORMAT (A10,110)

11 FORMAT (I10)

12 FORMAT (5X,8115)

CALL OPENMS (9,STATE,101,1)
C READ MASTER DECK CONTAINING STATES, COUNTIES, CITIES
C AND ZIP CODES.

DO 99 NRSTATE=1,50

READ 10,STATNAM, NRCNTYS
C CLEAR THE COUNTY SUBINDEX.

DO 21 I=1,501
21 COUNTY(I)=0

60305600 A -7.9

c

31

96

97

98

99

c

HI-7-10

DO 98 NRCN=1,NRCNTYS

READ

10, CNTYNAM, NRCITYS

CLEAR THE CITY SUBINDEX.
DO 31 I=-1,501
CITY(I)=0

CALL

STINDX (9,CITY,501)

DO 97 -NRCY=1,NRCITYS

READ

10, CITYNAM, NRZIP

DO 96 NRZ=1,NRZIP

READ
CALL

CALL
CALL

CALL
CALL

FILE IS

CALL
CALL
CALL
CALL
CALL
CALL

11,ZIP(NRZ)
WRITMS (9,ZIP,100,CITYNAM)

STINDX (9,COUNTY,501)
WRITMS (9,CITY,501,CNTYNAM)

STINDX (9,STATE,101)
WRITMS (9,COUNTY,501,STATNAM)

GENERATED. NOW PRINT OUT LOCAL ZIP CODES.

STINDX (9,STATE,101)

READMS (9,COUNTY,501, #CALIFORNIA#)
STINDX (9,COUNTY,501)

READMS (9,CITY,501,#*SANTACLARA)
STINDX (9,CITY,501)

READMS (9,ZIP,100, #SUNNYVALE)

PRINT 12, ZIP

CALL

STOP
END

STINDX (9,STATE,101)

60305600 A

R

ERROR MESSAGES

Random ﬁléprdcessing'érrors are fatal; the job terminates and one of the following error messages is
printed:
97 INDEX NUMBER ERR

The index number key is negative, zero, or greater than the index buffer length minus one.

98 FILE ORGANIZATION OR RECORD TYPE ERR

During the initial OPENMS call, mass storage routines set the file organization as word address-
able (FO=WA) and the record type to W (RT=W). A conflicting file organization or record type
was specified in an external subroutine call or FILE control card.

99 WRONG INDEX TYPE
An attempt was made to open an existing file with the wrong index type parameter. File index type
is permanently determined when a file is created. '

100 INDEX IS FULL
WRITMS was called with a name index key. and the end of the index buffer occurred before a
match was found. Either the name key is in error. or the buffer must be lengthened.

101 DEFECTIVE INDEX CONTROL WORD
This message may occur for either of two reasons:

I. An OPENMS for an existing file found the master index control word has been destroyed. Since
this word was properly set when the file was last closed. the user should check for an external
cause of file destruction.

2. A READMS or WRITMS call has encountered a defective index control word. Check for an
improperly cleared sub-index array, for a program sequence that writes into an index array (other
than the required initial zeroing) or for an external cause of file destruction.

102 RECORD LENGTH EXCEEDS SPACE AVAILABLE

1. During an OPENMS call, not enough index buffer space was provided for the master index of an
existing file.

2. During a WRITMS call with in-place rewrite requested (r= + 1), the new record length exceeded
the old record length.
103 6RM/7DM [0 ERR NUMBER 000
Record Manager has detected an error; the actual error number appears in the message. Refer to
Record Manager Reference Manual to identify the source of the error.
104 INDEX KEY UNKNOWN

No data record exists for the user’s index key. This error may be diagnosed for a READMS call or
for a WRITMS call with rewrite requested (r= +1).

60305600 A HI-7-11

COMPATIBILITY WITH PREVIOUS MASS STORAGE ROUTINES

FORTRAN Extended mass storage routines and the files they create are not compatible with mass storage
routines and files created under earlier versions of FORTRAN Extended. Major internal differences in the
file structure were necessitated by adding the Record Manager interface. However. source programs are
fully compatible. Any source program that compiled and executed successfully under earlier versions will do
so under this version, provided that all file manipulations were and continue to be executed by mass storage
routines.

I-7-12 60305600 A

RENAMING CONVENTIONS -8

The following information will be useful only to the assembly language programmer.

REGISTER NAMES

The compiler changes some legal FORTRAN names so that FORTRAN object code can be used as COM-
PASS input. When a two-character name begins with A. B. or X and the last character is 0 to 7. the
compiler adds a currency symbol ($) to the name for the object code histing. (A0-A7. BO-B7. and X0-X7
represent registers to the COMPASS assembler which may be used by the FORTRAN Extended compiler).

EXTERNAL PROCEDURE NAMES (PROCESSOR SUPPLIED)

CALL-BY-VALUE

The name of a system supplied external procedure called by value is suffixed with a decimal point. The
entry point is the symbolic name of the external procedure and a decimal point suffix. For example. EXP.
COS. CSQRT.

The names of all external procedures called by value are listed in table 8-2 Basic External Functions. section

8. part 1. A procedure will not be called by value and the name will not be suffixed with a decimal point if
it appears in an EXTERNAL statement or if the control card options T. D. or OPT =0 are specified.

CALL-BY-NAME

The call-by-name entry point is the symbolic name of the external procedure with no suffix.

External procedures called by name appear in section 8. part | under the heading Addjtional Utility
Subprograms. Any name which appears in table 8-1 Intrinsic Functions or table 8-2 Basic External Func-

tions will be called by name also if the control card options T. D. or OPT =0 are specified or if it appears
in an EXTERNAL statement.

60305600 D HT-8-1

PROGRAM AND MEMORY STRUCTURE

-9

The following table shows the general form of a FORTRAN program unit. Statements within a group may
appear in any order, but groups must be ordered as shown. Comment lines can appear anywhere within the

program.

STATEMENTS

OVERLAY

PROGRAM*
FUNCTION*
SUBROUTINE*
BLOCK DATA

IMPLICIT

type

COMMON
DIMENSION
EQUIVALENCE
EXTERNAL®
LEVEL

Statement function”
definitions

ENTRY*
Executable
statements”

NT

A
M
E
L

|

S
T

>»=2>»0

4> ZTDOM

7

END

* Not allowed in BLOCK DATA Subprograms
T Namelist group name must be defined before it is used

The following description of the arrangement of code and data within PROGRAM, SUBROUTINE and
FUNCTION program units does not include the arrangement of data within common blocks because this
arrangement is specified by the programmer. However, the diagram of a typical memory layout at the end

of this section illustrates the position of blank common and labeled common blocks.

60305600 B

11-9-1

SUBROUTINE AND FUNCTION STRUCTURE

The code within subprograms is arranged in the following blocks (relocation bases) in the order given.

START.

VARDIM.

ENTRY.

CODE.

DATA.

DATA..

HOL.

FORMAL

PARAMETERS.

I1-9-2

Code for the primary entry and for saving A0

Address substitution code and any variable dimension initialization
code

Either a full word of NO’s or nothing

Code generated by compiling:
Executable statements

Parameter lists for external procedure references within the current
procedure

Storage statements

DO loops and optimizing temporary use

Storage for simple variables, FORMAT statements, and program
constants

Storage for arrays other than those in common
Storage for Hollerith constants
One local block for each dummy argument in the same order as they

appear in the subroutine statement, to hold tables used in address
substitution for processing references to dummy arguments

60305600 A

s

MAIN PROGRAM STRUCTURE

START.

CODE.

DATA.
DATA..
HOL.

Input/output file buffers and a table of file names specified in the
program statement

Transfer address code plus the code specified for the subroutine and
function CODE. block

Same as SUBROUTINE and FUNCTION structure

MEMORY STRUCTURE

Memory is not cleared, and subprograms are loaded as they appear in the input file starting at the pro-
gram’s reference address (RA) + 100B, toward the user’s field length (FL). RA to RA + 100B is the
communication region used by the operating system. Labeled common blocks are loaded prior to the
subprogram in which they are first referenced. Library routines are loaded immediately after the last

subprogram and are followed by blank common.

Typical memory layout:

60305600 A

RA

RA + 1008

FL

Communication Region

Common block ABLE

PROGRAM TEST
includes 1/0 buffer area

SUBROUTINE SUB

SYSTEM$
OUTPTC=
KODER$
SIN.
GETFITS$

Biank Common

[1-9-3

INTERMIXED COMPASS SUBPROGRAMS i-10

Both SUBROUTINES and FUNCTIONS may be written in COMPASS Assembly language and called from a
FORTRAN source program. For either, register AO is the only register that must be restored to its initial condition
when the subprogram returns control to the cailing routine.

When a FORTRAN generated subprogram is called, the calling routine must not depend on values being preserved
in any registers other than AO.

COMPASS CODED SUBROUTINES

Subroutines always use the call by name sequence described in section I-7 and discussed below with the description
of COMPASS coded functions. SUBROUTINES need not load a value into registers X6 and X7, otherwise the rules
are the same as for FUNCTIONS described below.

CALL BY NAME SEQUENCE
The FORTRAN compiler uses the call by name sequence in the following circumstances:

A subroutine or function name differs from any of those listed in tables 8-1 and 8-2.

A listed subroutine or function also appears in an EXTERNAL statement, or the program unit specifies D, T,
or OPT=0 on the FTN control card.

The call by name sequence generated is shown below:
SAl Address of the argument list (if parameters appear)
+RJ Subprogram name
-VFD 12/line number, 18/trace word address
line number Source line number of statement containing the reference

trace word
address . Address of the trace word for the calling routine

Arguments in the call must correspond with the argument usage in the called routine, and they must reside in
— the same level.

60305600 B I11-10-1

The argument list consists of consecutive words of the form:
VFD 60/address of argument
followed by a zero word.

| The sign bit will be set in the argument list for any argument entry address that is LCM§ or ECS.¥

ENTRY POINT

For subprograms written in FORTRAN, the compiler uses the following conventions in generating code:
The entry point of the subprogram (for reference by an RJ instruction) is preceded by two words. The first is a trace
word for the subprogram; it contains the subprogram name in left justified display code (blank filled) in the upper
42 bits and the subprogram entry address in the lower 18 bits. The second word is used to save the contents of A0
upon entry to the subprogram. The subprogram restores AOQ upon exit.

Trace word: VFD 42/name, 18/entry address

A0 word: DATA 0

Entry point: DATA 0

COMPASS SUBPROGRAMS

Subprograms in COMPASS assembly language can be intermixed with FORTRAN coded subprograms in the source
deck. COMPASS subprograms must begin with a card containing the word IDENTD, in columns 11-16, and
terminate with a card containing the word ENDb, in columns 11-14 (b denotes a blank). Columns 1-10 of the
IDENT and END cards must be blank.

blank

1 11 14

blank

§Applies only to CONTROL DATA CYBER 70/Model 76 and 7600 computers.
1This information applies only to the CONTROL DATA CYBER 70/Models 72, 73 and 74 and 6000 Series
computers.

111-10-2 60305600 C

If the COMPASS subprogram changes the value of AQ, it must restore the initial contents of AQ upon returning
control to the calling subprogram. When the COMPASS subprogram is entered by a function reference, the result of
that function must be in X6 or X6 and X7 with the least significant or imaginary part of the double precision or
complex result appearing in X7.

Example:

The following page contains an example of a simple COMPASS Function and the calling FORTRAN main program.
The parity function, PF, returns an integer value, therefore, it must be declared mteger in the calling program. The
argument to PF may be either real or integer.

The title and comments are unnecessary; they are included to encourage good programming practice. The following
statement is a recommended convention:

PF EQ *+1S17 ENTRY/EXIT
It will cause a jump to 400,000 plus the location of the routine if the function is not entered with a return jump,

a mode crror will occur that can quickly be identified. Since AO is not used in this subprogram it need not be
restored.

60305600 B i1-10-3 o

SOURCE DECK

job card
MAP (OFF)
FIN(R=0)
LGO,
7?/8/9 in column 1.
PROGPAM NPSAMP (OUTPUT)

INTFGFER PFe PVAL (24)
0011=1+24
1 PVAL(T)=PF (]) main program
PRINTZs (Teal=1024) +PVAL
? FOPMAT (I2HOINTEGFRS AND THEIR PARITY RELUW/(2413))
STOP
END
INENT PF
ENTRY PF
PF TITLE PF ~ COMPUTE PARITY OF WURD.
COMMENT COMPUTE PARITY OF WORD,
PF SPACE 4e11
Ere PF - COMPUTE PARITY OF WORD,
»
FORTRAN SOURCE CALL ==
u
* QARTITY = PF (ARG)
R
® PESULT = ls IFF ARG HAS ODD NIMRER OF WITS SET,
s = 0y NTHERWISE,
s ENTRY (X1) = ADNRFSS OF ABGUMENT,
* EXIT (XA) = RESULT,
PF FNn *+1517 ENTRY/EXIT40e
SA2 Xle get the argument value
cx3 X P count the 1 bits in X2 and leave result in X3
MX 0 -1 form a mask in X0
RX6 -X0#X3 ISOLATE LOWFEST HI Tes— put result into X6
F0 PF EXTTaa
END

6/7/5/9 in'calumn 1.

OUTPUT

INTECGERS ANC THEIR PAFRITY BELOW
i ¢ 2 4 ¢ €& 7 8
1 ¢+ 0 1 G 6 1 21 0 0 1

1i1-104

9 10 11 1z 13 14 15

1€ 17 18 19 20

6 1 4 0 ¢ 0 0 ¢+ 0 1 210

21 22 23 24

60305600 B

LIBRARY FUNCTION CALL BY VALUE SEQUENCE

For increased efficiency the compiler generates a call by value code sequence for references to library functions if
the function name does not appear in an EXTERNAL statement and the D, T, or OPT=0 options on the FTN
control card are not specified. The name of any library function called by value or generated in line must appear in
an EXTERNAL statement in the calling routine if the call by name calling sequence is required (section 8, part 1 lists
the library functions called by value and generated in-line).

The call by value code sequence consists of code to load the arguments into X1 through X4, followed by an RJ
instruction to the function. The second register loaded for a double precision or complex argument contains the least
significant or imaginary part of the argument.

RESTRICTIONS ON USING LIBRARY FUNCTION NAMES

Functions written in FORTRAN that have library function names listed in tables 8-1 or 8-2, such as AMAXI1 or
SQRT, must be declared EXTERNAL in the calling program unit. This declaration is necessary because the compiler
produced functions always use the call by name calling sequence.

Functions written in COMPASS that have basic external library names listed in table 8-2, such as SQRT, should be
written using the call by name sequence when they are declared EXTERNAL in the calling routine; or they should
use the call by value rules if they are not declared EXTERNAL.

Functions written in COMPASS that have intrinsic library names listed in table 8-1, such as AMAXI1, must be
declared EXTERNAL in the calling routine; otherwise in-line coding is generated for them (the COMPASS coding is
ignored). Furthermore, the call by name sequence must be used.

If a library function, called by value, is to be overridden by a routine coded in COMPASS, the COMPASS routine
must use the library function name with a period appended as the entry point name (e.g., SIN.) to use the call by
value calling sequence.

The following sample illustrates the code generated for: a library function call, SQRT; an external function call,
ZEUS; and a reference to an intrinsic (in-line) function, AMAX1.

The coding generated for the external function, ZEUS, is illustrated also.

MAP (OFF)
FTM(R=04L0)
7/8/9 in column 1
PROGRAM SURLNK
X=SQRT (7.0)
Y2ZEDS (Xe1a0)
ENU
FUNCTTON ZEUS(ARGL «ARG2)
ZEUS=AMAX] (ARG] s ARG290,)
RETUKN
END
6/7/8/9 in column 1

60305600 C 11-10-5

PRCGRAM

SUBLNK

FROGRANM SLUBLNK
X=SQRT(7.0)

Y= ZEUS(Xy1.0)
END

~__ff‘--__’,__,a/"—"‘\-——~_.\\",,——~_,_/,——~._——-~__-—\‘_,a—-\._—-__,,—-.______________~_

6ocoo00
000001

cog002

600013
000043
C6Co14

c0c01s
600016

6oo0c2
COGOC4H
Gocaos
6o0J0€E
600007
600010
600010

600011
600912

11-10-6

FRCGRAY

START.
START.

CODE.

DATA,
0ATA.
CATA.

CATA.
DATR.

COQE.
COoCE.

‘CCOE.

ccce.

CCDE.
CODE.
COOE.
CCDE.
CcCE.

SUBLNK

000000
000002
000002
600002
000013
600017
000017

god002
600000
600000
000011
000004
000000
00000C

EXTERNALS

END.

17777770777 777766167
23250214161 355000002

5110000000
01660C0000

1722700606060€0600000
17204000C000006000000

£110000013
01600000090
5110000010
5166000045
6400000000
0063000001
5110006001
5166000016
gucgooocac

ggoooo00000UCCO000LS
006000060000000000044
00C00000C30006CECG0000

ZEUS

START.
<EXT>

DATA.
<EXT>
CODE.
DATA.
<EXT>
START .
START.
OATA.
<EXT>

DATA.
OATA.

IDENT SUBLAK

USEBLK
LDSET LI8=FORTRAN/SYSIC
USE START.

START . LOCAL

VARDIM. LOCAL

ENTRY . LOCAL

COOE . LOCAL

DATA. LOCAL

DATA. . LOCAL

HOL. LOCAL

SQRT. CQSNTRY.

FILES. BSS 0@
DATA PITTITITITTITITEEL6TH
TRACE SUBLNK,SUBLNK
USE CODE.
" PENTRY SUBLNK
SAL FILES.
RJ GBNTRY.
USE DATA.
USE DATA..
USE DATA.
CON. BSS ae
DATA 1722700000000006000008
DATA 1720400000000000000CB
EXT END.
EXT 2EUS
EXT SQRT.
EXT QONTRY.
X 8SS 1@
Y 8SS 18
USE CODE.
¢ SAL CON.w
RJ SORT,
+ SAL (APl
SA6 X
¢ RJ ZEUS
« VFD 12/ 38,18/TRACE je—— source line number and a pointer to
+ SAL TRACE. the name of the program unit.
SA6 Y
€Q END.
tart ,ess 08
VFD 60/X
VFD 60/CON,¢18 (Paremeter sddrem list
OATA 08
END

}mumuut

ot actusl perameter into X1

get address of parameter list into X1.

SueLNK

60305600 B

FUNCTION

ZEUS

FUNCT ION ZEUS(ARG1,ARG2)
ZEUS=AMAX1(ARG1,4ARG2,0.)

RETURN
END

— T~ Te— ——

FUNCTION

GOGGCO0 START.
GUGOC1 START.

ZEUS

000000
000004
000004
000004
600013
G00G14
000014
000014
G0O04i4

0000G4
000060
ggococ
000007
000001
060000
0go0uc
0900060
gcoaoec

USEBLK
LDSET"

START,
VARDIM.
ENTRY .
CODE .
DATA.
DATA. .
HOL »
ARG1
ARG2

I0ENT

ZEUS

LIB=FORTRAN/SYSIC
USE START.

LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL

32[52523555555000002‘/5000DU

TRACE

ZEUS,ZEUS 4 2E

6000062
ccogo3

START.
START,

6000000000000000000 0~
04LCOL400CG2610004600

PENTRY

ZEUSHENTRY,

74€005461051€0000001~

name of program unit
and entry point address

cell to save AQ in

enlry point
saves AO and sets AQ

FORPAR
FORFAR

ARG1
ARG2

e

600012 DATA.

C66ocy CCCE.

6o00C5 CCOE.

600006 CCOE.

600307 CCDE.

LuGO1G CODE.

C00011 CCOE.

000012 CCDE.

60305600 B

54€00
5046000001
43000
53350
53540
3173¢
46000
5140000001
53040
21773
15€37
11475
3674€
31670
21€73
11560
15076
36750
10€77
51700600013
46000
040600600002

START.

DATA.

START.

VALUE.

+

USE DATA.
USE DATA..
USE DATA.
B8SS 18
USE CODE.
SAS AD

SA4 AO+18
MX0 0

SA3 X5

SAS5 X4

FX7 X3-X5
NO

SA4 TEMPAOD.
SAD X4

AX7 738
BX® ~X7*x3
BX4 X7*X5
IX7 Xk¢X6
FX6 X7-X0
AXe 738
BX5 X6*X0
BX0 -X&6*X7
IX7 X5+X0
BX6 X7

SA7 VALUE.
NO

EQ ENTRY.
END

to the new Al

i11-10-7

TERMINAL 1/0 WITH FORTRAN n-n

If a FORTRAN program to be run under SCOPE’s INTERCOM or the KRONOS Time-Sharing System calls for
input/output operations through the user’s remote terminal, all files to be accessed through the terminal must
be formally associated with the terminal at the time of execution.

In particular, the file INPUT must be connected to the terminal if data is to be entered there and an alternate
logical unit is not designated in the READ statement. The file OUTPUT must be connected to the terminal if
execution diagnostics are to be displayed or printed at the terminal,or if data is to be displayed or printed
there and an alternate logical unit is not designated in the WRITE or PRINT statement. These files are auto-
matically connected to the terminal when the program is executed under the RUN command of the EDITOR

utility of INTERCOM.

For a FORTRAN program run under INTERCOM, any file (including INPUT and OUTPUT) can be connected
to the terminal by the CONNECT command. In addition, the user can connect any file from within the pro-
gram by using either of the statements:

CALL CONNEC (fd cs)

CALL CONNEC (fd)

fd file designator: fd can be a logical unit number u, a Hollerith constant nLfilename, or a
simple integer variable with a value of u or nLfilename. u is an integer constant.
1 to 99 (associated by the compiler with the file name TAPEu); filename is a file name of
1 to 6 letters or digits beginning with a letter.

cs character set designator: cs should be an integer constant or an integer variable with a
value of 0 to 2, in accordance with the character code set to be used for the data entered
or displayed at the terminal:

0 display code
1 ASCII9S code
2 ASCII-256 code

TApplies only to CONTROL DATA CYBER 70/Models 72, 73, 74, and 6000 Series computers using INTER-
COM or the KRONOS Time-Sharing System. For more information about INTERCOM, see the INTERCOM
Reference Manual and the INTERCOM Interactive Guide for Users of FORTRAN Extended. For more infor-
mation about KRONOS, see the KRONOS 2.1 Reference Manual and the KRONOS 2.1 Time-Sharing User’s

Reference Marual.

60305600 E II-11-1

If cs is not specified, it is set to 0. If display code is selected, input/output operations should be formatted,
list-directed, NAMELIST, or buffered. If either of the ASCII codes is selected, input/output operations should
be either formatted or buffered. When a CALL CONNEC specifies a file already connected with the character
set specified, the call is ignored. If the file specified is already connected with a character set other than that
specified, cs is reset accordingly.

Data input or output through a terminal under INTERCOM is represented ordinarily in a CDC 64-character,
ASCII 64-character, or CDC 63-character set, depending on installation option. For these sets, ten characters
in 6-bit display code are stored in each central memory word. As described above, a terminal user can specify
from within 2 FORTRAN program that data represented in an ASCII 95-character set (providing the capability
for recognizing lowercase letters) or an ASCII 256-character set (providing the capability for recognizing lower-
case letters, control codes, and parity) be input or output through the terminal. For the ASCII 95-character
and 256-character sets, characters are stored in five 12-bit bytes in each central memory word. Characters in
the ASCII 95-character set are represented in 7-bit ASCII code right justified in each byte with binary zero
fill; characters in the ASCII 256-character set are represented in 8-bit ASCII code right justified in each byte
with binary zero fill. When data represented in either ASCII character set code is transferred with a formatted
I/O statement, the maximum record length should be specified in the PROGRAM statement as twice the number
of characters to be transferred (see section 1-7).

When the ASCII 95-character or 256-character set has been specified for terminal input/output under INTER-
COM, blanks following the end of data on each line are not translated into ASCII code but are retained in
display code (as 55g). Unless the user eliminates them, these blanks will appear on output as lowercase m
characters (two blanks in display code translates to one m in ASCII code). For formatted input, the user

can identify the end of data on a line by scanning data entered in nR2 format until the Hollerith constant
2Rbb (b = blank) is found. For buffered input, the end can be determined by reading the data into an array,
manipulating it with a DECODE statement, and then scanning as with formatted input.

For a FORTRAN program run under KRONOS, any file can be connected to the terminal by the ASSIGN
command. In addition, the user can connect any file from within the program by using the statement:

CALL CONNEC (fd)
fd, the file designator, should be specified as described above for programs run under INTERCOM.

Data input or output through a terminal under KRONOS is represented ordinarily in a standard 61-character
set. On input, the user can elect to enter data represented in an ASCII 128-character set (which provides the
capability for recognizing control codes and lowercase letters) by entering the ASCII command. Characters
contained in the standard set are stored internally in 6-bit display code, whether or not the ASCII command
has been entered. The additional characters which complete the ASCII 128-character set are stored internally
in 12-bit display code if the ASCII command has been entered; otherwise, they are mapped into the standard
61-character set and stored internally in 6-bit display code. On output, all data is represented in the standard
set; thus, when data is input through the terminal with the ASCII command in effect, it is mapped into the
standard set on output. (See the KRONOS 2.1 Reference Manual, section 9.)

Under both SCOPE and KRONOS, if a file specified in a CALL CONNEC exists as a local file but is not
connected at the time of the call, the file’s buffer is flushed before the file is connected to the terminal.

Any file can be disconnected from within a FORTRAN program by the statement:

CALL DISCON (fd)

e III-11-2 60305600 E

—

This request is ignored if the specified file is not connected. After execution of this statement, the specified

file remains local to the terminal. In addition, if the file existed prior to connection, the file name is

re-associated with the information contained on the device where the file resided prior to connection. Data

written to a connected file is not contained in the file after it is disconnected.

All files to be connected or disconnected during program execution must be declared in the PROGRAM
statement. An attempt to connect or disconnect an undeclared file results in a diagnostic fatal to execution.

Calls to CONNEC and DISCON are ignored when programs are not executed under INTERCOM or KRONOS.

Examples:
CALL CONNEC

K = 4LAGES
CALL CONNEC

CALL COnNEC
CALL CONNEC

CALL DISCON

60305600 E

(6)

(K)
(692}
(4LDATA.1)

(o)

m-11-3 @

~—

LISTINGS - n-12

During a typical compilation and execution, the following listings are produced:
source program
reference map

core map

A header line at the top of each page of compiler output contains the program unit type and name, the
machine used and the target machine for which the compiler was assembled, control card options, compiler
version and mod-level, date, time, and page number.

The source program is listed 60 lines per page (including headers); every fifth source line is numbered. These
numbers are used in the error messages and in the cross reference map.

The compiler produces a reference map for each routine compiled. The compiler generated addresses assume

loading of program units starts at location 0. A description of the reference map is described in section IlI-1.

A map is produced by the loader at load time. In this map, the user program starts at relative address 101g
(The first 101 words, 0-100, serve as the communication region between the operating system and the user
program.) Refer to the Loader Reference Manual for details of the load map.

To find the address of a variable, add the address of the program unit, which appears in the load map, to the
address of the variable which appears in the reference map. All locations and addresses in the reference map
and the core map are in octal. For example,

For example.

VARTABLES SN TYPE
0 A REAL
17 AVG REAL
CPD 1 INTEGER
0 J INTEGER
PROGRAM AND BLOCK ASSIGNMENTS.
BLOCK ADDRESS LENGTH FILE
VARDIM2 101 2141 LGO
SET 2242 34 LGO
10TA 2276 15 LGO
PVAL : 2313 33 LGO
AVG 21 LGO
MULT 2367 20 LGoO
/08.10.7 = 2407 134 :
FORSYS= 2543 537 SL-FORTRAN
GETFIT= 3302 33 SL-FORTRAN
/10.8BUF ./ 3335 227
NAMOUT= 3564 573 SL=-FORTRAN

60305600 D M1-12-1

the address of the location generated for the variable I would be:

2346
+20

2366

DMPX.

When a program does not compile or execute successfully, a partial dump is produced. A DMPX includes the
contents of the registers, the first 101 words of the user’s field length (the communication region), and the

contents of the 101 (octal) words immediately preceding and immediately following the addresses where the
job terminated.

I P Address of program step to be executed next if job had not terminated

2. RA Reference address: absolute address where user’s field begins. All other addresses are
relative to this address.

3. FL Field length of job

4. EM Default exit mode

5. RE Extended core storage reference address

6. FE Field length assigned to job in extended core storage

7. MA Address used for linkage between the operating system and user program

8. Address registers

9. Contents of address registers

10. Index registers

1. Contents of index registers

12. Operand registers.

13. Contents of operand registers

14. Contents of locations specified in the A register. For example, items 8 and 9 show

register A2 contains the address 002155, and item 14 shows location 002155 contains
1725 2420 2524 0000 0133.

15. Address of 60-bit word in central memory. followed by contents of that word (in octal)
16. Indicates that contents of previous locations are repeated up to but not including this
location

MI-12-2 60305600 D

"

15902
9TIEY
15902
Ti8E7
£9SET
00094
60094
£59¢7
25017
Teheg
00894
[24114
6009h
44501
LT6ET
00094
Go09n
4046E7T
90702
90102
01407
12000
00084

00000
12000
20949

cdood

60000

17411
LE500

19921
15102
19921
0TEE0
00090
43184
09102
611£0
000%0
[1233
veiet
2848h
00019
0T5E9
SeRl
0¥£L9
"E£E9E
01280
0iL28%
8LigEN
0%0£0
00T09
w22t

G000n
00000
69000

80000

80000
0ste2

00000 0COOO 0ODOD 0CDOD¥259E1
9T992 £09TL 00600 00000 00000 00000 L2687 00040 £2702 91319¢
L2587 07280 £2102 0T9£4 19721 22902 00094 000TS FOSEF 90040
91942 £09TL 0009% 000F9 0.SET 00040 16060 0GTTL £2561 0T3S0
£2102 097§ 2999§ 25982 41802 20934 00000 00000 7SEL0 00B%D
#1£02 209TL S94£T OTTS0 10000 00335 0003% 00019 S9SET %0040
00070 25902 0SSET 000T0 T0000 00FIS 0009% TT90% TSEST 009%S
0ET00 00TTL 09S£T 00040 0SSET 00FTS £5SEV 0TEL0 99000 00FTS
10000 80TTS 00000 00CB0 %2%%0 00048 00000 00000 00000 00£TO
9S4ET 00919 07296 2TLST 02202 01292 ST800 00105 0TL%S 14427
ST000 00705 LEEST QLEO2 94.iSh TOLWS 8107 0T2E0 ST000 00T0S
09194 $LLTY 90702 0z28% 23000 00785 03416 79202 SESET SIEED
ST000 00705 0T/%S 99202 2£S8T SHEE0 00099 %22 12411 90702
9TSET 00090 092 0£%02 02000 00%0S 0003% D4EE9 DEL9S 45492
12000 00108 S25ET 009TS %444i2 0LEYS 9%221 0000 22SET 00979
9422V TV 0ET02Z 25.6% 02000 00T0S 0009% 29m2f 949221 07250
LTTST 90702 0l2€% 02000 00105 0££9S 0T2%5 TISET S£E€0 £4227
0TZ07 04080 00034 000T9 0009% 0TS T4427 T0.S% $T000 00T0S
£1T28 0SSES 7TTLE OEEEL STOOD 00£0S 0009% LIIST DET02 9vigw
Z1000 8030 05SEL 0£502 STO00 00S0S 0T20T 00890 03L%S 99202
02000 0070S TEE99 TINOT £L4CT JFEEN S944L 19722 THN9E LTTST
£9%28 20802 £99.8 £LE69 LUE9E L0292 £220% %5920 DOETS 90222
95%£T 00979 2zh41 0T2%S 99102 TLITF 90702 02.5% 02000 GOTOS
92%ET 0T2£0 0009% T0T82 ST000 00T0S 0003% TI40T 95451 0££E0
20000 00T05 959ET 0T2£0
00000 00000 80700 00000 00000 0000% 209£T 00040 00800 00000
00008 00000 T0000 009TS 09000 0v0.0 95010 OY0ED 92244 29979
0u0g0 gHeel 00000 09080 00000 00000 0009% 00000 00520 05549
60000 00000425000 00000 0VCOO 00000 00000 29565 55656 SS655 SGGSS¥IN000
30705 00000 00800 0B800<E9000
00000 00000 #9005 00000 00000 00000¢Z£000 00GCO 00008 0000 00080
00000 00000 00000 00000 00000 0£S5€ SOE2L BYEED
10000 0O0%T 92.1% 2TE£242T000
00000 80000 19705 00000 00POO 00008 00008 00009 08600 00000 k_
2£282 £2ges S0£80 00000 £2025 TLIEO 22800 0w122 2£2fc s2ges O
££T20 00042 52024 252.% 00700 00080 %2520 29TTT+20000
0000 0000 000D 0000 0000 =(28)3 S9T2 0000 O00T0 0000 0060 =(iV)2
£T9% 0000 0wz %00 045 =(38)3 0006 0000 000D QOO0 000D =(SV)I
0000 0000 D0POC 0000 000D =(58)0 0000 0O00% 0%20 0000 0000 =(SV)D
6000 0000 O0OOC 0000 0000 =(v8)O %000 0000 0000 0800 006D =(av)d
0000 0000 0000 0000 0000 =(£8)3 $9%2 0000 00T0 0000 0000 =(£V)D
0000 0000 0000 0000 0000 =(2@)9 00 _%eGe 02% S2I1> =(2v)d
G000 0000 0000 00DO 0000 =(T@)J 0000 0000 0000 D000 0006 =(T¥)3
@

S~

00000 €0000 GO0OO 06000 0I9ET

0994, 909£T 00935 98902 %OSET

0009% 0DOT9 25387 000T0 0095%

10000 BOTTS TLSET 0T0£0 #26E7

29SET 00070 3999€ 05702 DLSET

29553 O0TTED TO0D0 QOTIS %95E%

06069% ¥99ET TOIET TYOET G9SET

0009% TSGET 000#0 0I9%S WSSET

00000 00000 £9GST 000%0 0SSET

24402 01292 ST000 08%0S 99SET

BT.%5 99202 O%GET GTEE0 0%SEY

00099 TL22% 05T%Z TLLTT %E5ET

0.4€% 02060 BOTOS OEEH"9 OESET

0009% GODT9 HEOTT 00520 %2S£T

0009% 0249€9 0T.95 %4202 025ET

7ZTLE O0£SET 00979 04969 9ISET

TL43% 2G28% 5Y000 DOTOS OTSET

000S% 29700 009TZ T9w9g #HOGET

900008 0BIBS O0TSE9 LTTST 0OSET

/98T GHEE0 MILZT TLLVT wLNED

90702 02Z8% 02000 00T0S DAWwEY

0009% %£O0TT 00620 0TSES 49wEl

0009% 09£99 S9%ET 02280 09%ET

TaLZE ZTEST 0ET02 whigh %%%El

0009% TO0T02 T2000 00T0S 269ET

00000 00000 %2520 23TI%« 0O0TOO

00000 6G000 0ODOO 00000 62000

00000 00000 00DO0Z Ti04T 43000

22972 STHET QIEEY %2719 09008

#5000 OTTSO TO0DCO OOTTS %5000

00000 00000 00060 00000 £5000

00000 00000 000OD 00000 %4000

00088 00000 Q0000 00060 9%00D

20000 60000 00000 00OO00Y Z2E000

ST000 00000 0O0DODD 00000Y 2000

25158 00000 00041 22030 02060

00000 00000 00000 00000 4T000

n6C00 00227 28282 £2£28 OTOOO

00000 00DGO 00COD 000DO w0DOB

060000 00600 00DGO0 00000 00000 @&

4

$9T2 0806 00TG 0000 0000 iX
0000 0000 0000 BCHZ 20%0 9X
2000 0000 0000 000U Q000 X
5000 000C 0000 00600 0000 &X
%000 0000 0005 9120 0000 €£X
9ii% 0000 0000 0000 0080 2X
0000 0000 0080 0080 0000 X
SlLl L2212 il kL2 1241 BX

302200 48 G41200 2v @ O

9£9%00 98 100000 9v 00900 VK

100000 S8 S£T200 SV 000000 33

0ST000 %8 %zvh00 hv 000000 3¥-&

O%0000 £68 091200 £V 000040 wWI-()

180000 28 (G5120D 2v 000S90 14—

100000 T@ TOUDOO v 00T2TE vy (3

000000 08 ££T200 OV 2S5G8E0 o
e @ © ©

*XdKG

I-12-3

60305600 A

4] . J
v o H 000C0CCCIACILCEI020T 0CCOGIG6S65000CC030CY TI092T30000CC0305700 0CC000000060600T70000 2£7000 JS
o w3 600COCSCI7GCCC336300 2223000060000C50000C S1L00C0000060600€200 0000000000000000000° OET000 IS
na [{(F] s 00CHTEECOrOCNEN 20000 S2EC0000DD0CESH0900R 6CCO00200%0000000000 0000NOORDOCOOOCI00LD 221000 IS
s HE - NIG 000CRGCOIITCOR3NGLLD CAC3CNAN0HSSLEL0230L0 GEGTO02000T099920C0C 00002000000700933120 027900 JS
Hd H G00GEA0CESCLGLR00C0 COPIRCNONNOCQANCOQI0L #S0T020000CL 00000000 0000009005009CCT3000 211000 3S
=8 rv rd 962007602030 6G0I0000 2FT06000030600(06C0C 2¥£09090600000006020 000C0000000000903000 017000 JS
n [L*F] $ 0000CEELENLUCN020GE0 SIEDH0LB0D02NC2EN09000 NOC00DICOHIC0CD0C000 oogacocooocopococooe %063000 OS
28 ds o4 Vi - gW3l 252¢0COFPEONECCII00CD G50009029495€00000000 #%900430290099924008 00C00C000000025T53%92 003000 IS
v $ G9TCC0L402CC000U008G 0000CI0NNICOOCOOCOIS CLPNCAO0000C0CO0LNI0 0000000000000CC00009 ©20000 2S
(d*NIB*dW3LIMSAdOS DRONCOOCERCOC0020000 €0020000600M0C500000 0L2026502959T7TT209502 §I5C2T5922821£024380 020000 38
e ddd e MSAdOD 2C0CGOINODOOCCC2E0£0 COCO0GOOCCOG30030000 COENI0NCO0OD00000000 £0020000L282T8C22TL0 790000 JS
£90030 okl 1TWN03 000C000000000CC00290 440000 JS
MSAdOQ 007C0I0CO0CCE0CD00CO 0BPS0000003000000009 GC0006004282FE0224T120 00000000000006€00000 ¢20000 28
MSAGOY $0IC0200NICECECO0OCE GPEODO0DGOOC0BN0D00G €CLOGII0LEEETEDESLTED 000C000700000CCDT000 %£0000 IS
v 00000096CPO5C023G0C0 GCAPOODOGONOGCSI0006 £0NON0IDCNCO00I00E20 F000000000C300000030 0£0000 23S
vs H (6 T00%E9050600C"T2900 2544 000N0S0C00CC0AND 2C00I00N0060000005UI0 £000000D00000C0I0020 20000 IS
£(s sy vs HIX 9,256005000%00230000% 10C0060NGCN020002GIC TLONEICNOCLCH00T2900 9£0£00900000000060000 020000 s
fty) X38 iV %292 100 C00CCLEt20u0 929.1C00u0000CL00000 £LO0PGIDICOC0O5000C00 0000000I000I00COCI00 ~T000D as
£ X H 00YEGO00NCIOCCISI000 £2992292009005700060 CT00CAL0GLOCON000C0D 2020000900000009000C 0TC000 Js
0 adJ8 1S 0 4 2T000NCLONIL0992E0£0 2uCI600C03000000%282 0£002060800000000C020 £3000000000003003202 200000 IS
v NIBY dnll T60060257990309FTT23 10000930900C0251359%2 00000000000600000000 C0D20C00020000CO5000 oo0000 3S
0062 0000 G0LK 33C% 23CH =€2x)JY 2090 000D 2000 0CCO 2300 =(LXIUS 00p0 J000 0000 9000 0000 ZX
0067 0000 GOC™ RGGC 2000 =(9Xx)I7 09090 0000 3387 3690 0098 =(ux)IS 0000 0000 CcCOD 009T 1TY¥20 9X
0000 9COG LOGH CC3C CCD =(Sx)J7 0800 GCOC 000C 0T0N 0000 =(sx)US 00C0 0000 DCOD 9000 2000 SX
=(9X)u ={(9Xx) 35 W2lL Le2l tidE LLLL lllL WX
=(Ex)J7 =(aX)US Qlid 2224 it L&l 221 €X
£063 0000 €000 GICC 20LN =¢2x)07 30O0 000G 3000 GCOC 600 =€2X)IS eG00 4000 CROG 0000 0000 2X
=(TXIV1 ={TXIUS %279 IT60 0000 0000 €000 IX
6007 0DOL CCCC ¢OGC 3163 =(GAID7T J00OO 00C2 50CC 0CO0 0807 =(GXIUS 0000 0000 £COO D000 0024 OX
G067 600D LOCO CL2C 6C =(Zu)uS 0000 0000 0OC® 0CGO 0008 =(2v)4S 000630 Lu 000000 Zv 094010 00 v3a3
09C0 0000 SOCO CL2C 20 =(9&}vS 3000 0GGC 0GOC 0DCO¥ T¥20 =(9vidS 000000 9& 027000 9V 020ST0 00 V3N
27€3 900C O06LD OGO €0 =(Gu)IUS $2£0 00GC 0JCOE 264D 9000 =¢(sv)IS TIT000 S6 9210060 Sv 000020 00 714
00032 0000 00CC OCCY S0 =(hulUs 9020 006D 0000 OCOC 000C =¢Hy)3S T000G0 %b CO0O000 %v 000452 00 ¥
00008 GGEP 0OCL €DCC 13509 =(Su)JS 00UO CGOD 050D OCEO 0O2C =(gLvius 0J00°0 £u 00COCO £¢ 000090 0C GSd
G007 D000 7°FC CTLL GSLC =(cu}dd 000C DGGE GUCC 0CO0 O00C =(2v)OS 0000CO 28 s0C0O0 2v 700790 00 S
0000 900D COCL ©7°PC OCE¢ =(Te)3S 24302 CPCLS NICO 0CGD ©002 =(Tvw)Ls I0LLOC T& 9000GC Tv 00%STO 00 Sy
Tr2g0 3000 C0eT COCC CPETO =(©)US =(LV)I5S 00000C oo COOYIG6 Cv 222000 0O d
dRNG dfx

60305600 A

m-12-4

1

39vd

H19N31 WO

alnh

"s10}ndwod 009. PUE 9/ [PPOW/0L AEAD VIVA TOYLNOD 01 A[uo sarddy'§ |

KT H

HL1ON3T WIS

L30E

Yeie

15%

€408 =uidino
2nse =400RVN
9T7E =J1ldino
1sie =1iN0OWYN
as7 SWIUAVA
£at SRIUBYA
a342 =J1lalfo
ééic =31dino
£g1e =LINOWUN
652 ZHIUYVA
hGY 10w
YA ZHIUGVA
£97 SRIGYVA
PAAY SW1GYVA
anl SHIGAYA
133 cnltavA
SION3da543Y

hhl

hhl

1407

0

PA.X

FEE]

R At

133

124

g2

s

Sz

69

Gat

HLION3

z7) EnlGavA
eI V]

3R 29
nalg

0g g
2e0¢g
$10¢
Nele

hhge
0832

218

494

G4y

32
i9¢
ége

Si2
262

LET
£07
0ct

SS3x0a0v

Theh
THeh
0sT:
gote
1642
wele
91s
EEA
hhh
hén
538
ggg
0se
S

S83eu0v

HEUSH

WIT*NIT
$MILSAS
S1d1Nn0
*X31n0
*4d4in0
*131n0
=31aiN0
NidiN0
*LACKHYN
=S NOWYN
“AI00N
$a300X

£114439
$114439

170K
L0k

OAY
SAV

viol
vicl

IVAd
VAd

ON1

138
138

ek IGYVA

=iNdino

=93avi
SHIGAVA

AaliN3

’/
144
PHIALSAS
/&3d4008/
=01d1N0
=1N0OWIN
Fa300M
114139
L0n
GAY
viol
I Aa
138
CHICYUVA

AVC Y

Lv C3&83iN3 3o Tk

WY¥908d

dew peo 009c §

)

)

I11-12-5

60305600 B

SAMPLE DECK STRUCTURES - 13

FORTRAN SOURCE PROGRAM WITH CONTROL CARDS

Refer to the operating system reference manual for details of contro! cards.

Ooo~ND

/ END

W
Y
A
Va
(FORTRAN statements

SUBROUTINE RVIE (C,J,L)

. ,
{ END FORTRAN

L b SOURCE
/ FORTRAN statements ‘ PROGRAM

FUNCTION RTSM (A,B)

/ END .

—
(FORTRAN statements

/ PROGRAM MAIN

7 |

S / L6o. f
{ FTN.]
T‘Account card.
(é;)rndtsrol / Job card N
-

T Account card follows the job card in KRONOS and should be in all KRONOS decks.

60305600 D [11-13-1

COMPILATION ONLY

O o0o~N®

VA

/

/A

/A

FORTRAN source deck

/ FTN (Q.X)
/ Job card

g

|

COMPILATION AND EXECUTION

X - Warnings printed for
non-ANSI usage

Q- Full syntactic error
scan of program.
Diagnostics and
partial reference
map printed

6
7
8 A
9 7~
L
(data
7
8 —
9 Ve
{ FORTRAN source deck }
/7 i
8
9
/ LGO H
/ FTN. -
/Tob card
=

1-13-2

60305600 D

“

FORTRAN COMPILATION WITH COMPASS ASSEMBLY AND EXECUTION

FORTRAN and COMPASS program unit source decks can be in any order. COMPASS source decks must
begin with a card containing the word IDENTb in columns 11-16 and terminate with a card containing the
word ENDb in columns 11-14 (b denotes a blank). Columns 1-10 of the IDENT and END cards must be

blank.

6
7 =
8 Vs
9 (data
/7
8 N
9 1
1
COMPASS source deck an
ya
V4
y4
(FORTRAN source deck
/7
8
9 / LGO.
(/ FTNILX) -]

/ EV103,T6000,CM55000,EC100.

60305600 A

L - Source program
diagnostics, and
short reference
map listed

X - ANSI diagnostics
listed

m-13-3

COMPILE AND EXECUTE WITH FORTRAN SUBROUTINE AND COMPASS
SUBPROGRAM

W0 ~;
N

N

/ data

w oo~

D L
.
ya

/__EN
ENTRY A1 |
(IDENT SUB
/

/' 'SUBROUTINE S1(P1,P2)

/) 5

L
1
1

(ﬁ PROGRAM DONE (INPUT, TAPE2)

/ 7 D>-— Data will be written
8 / to OUTPUT rather
9] than TAPE2.
/ LGO (OUTPUT)4—

/ ETN.
/" DMW13,T200,CM55000,EC1000.

I1-134 60305600 A

~—

COMPILE AND PRODUCE BINARY CARDS

CoOoN®

60305600 A

source deck

(PROGRAM BOB(INPUT,OUTPUT,TAPE1)

/_

/7
8
9

v

/

/ FTN (B=PUNCHB,0PT=2)4
/ CBSP,T600,CM70000,EC1000,P2.

OPT=2 specifies
full optimization

I1-13-5

LOAD AND EXECUTE BINARY PROGRAM

6
7
8
9 1
|
1
: 1
data
7
8
9 /5)
8
9 / IL
(r binary deck
/7
8
9
/ INPUT.
/ MAP(OFF)

/ REQUEST FILE.

/' MARGO,T2000,CM15000,EC100,P7.

IM-13-6 60305600 A

COMPILE AND EXECUTE WITH RELOCATABLE BINARY DECK

- 6
7
8
9
—
z
I y 4
ya
(data
7
8
9 7
8 ¥4
9 /
VA
(binary deck
7
8
9
Wan
V4
— yA
_ /
/ source deck

(PROGRAM ALFR ED(INPUT,OUTPUT,T:APE 1,TAPES, TAPEG)

/ 7 in
’ |
9
/ EXECUTE.
[LOAD(LGO)
—1 LOAD(INPUT)
/ FTN
/ REQUEST TAPE 1.

/ EACF24,T770,CM55000,EC400.

60305600 A 1I1-13-7

COMPILE ONCE AND EXECUTE WITH DIFFERENT DATA DECKS

6
7
8
9 —d
Fjata #2
7
8
9
/ 4
1
((data #
/1 ’
8
9 f -
PROGRAM SUBS (INPUT,OUTPUT)
/ Output will be on
two separate files;

/7 / data #1 will be on
8 TAPE1, data #2
° - on TAPE2.
/1LGO, TAPE2. 4~
/LGO, TAPEL. 4"

/ FTN.
/" KSCED,T500,CM60000, EC500.

II-13-8 60305600 A

PREPARATION OF OVERLAYS

6 I

17 A

8 L

9/ Data
7 |
8 / END Secondary Overlay
9 1 (1,1

OVERLAY(FRANK,1,1)
END

/ CALL OVERLAY (BHFRANK,1,1,0)

Z
p-
L=

Primary Overlay
(1,0 PROGRAM RDY
Source Deck OVERLAY({FRANK,1,0)
I
SUBROUTINE GROUCH(X) '
| END
Main Overtay CALL OVERLAY(5HFRANK,1,0,0) — :::/u (;Serla

©00) CALL GROUCH(40,0) FRANK 10
Source Deck

PROGRAM LEO(INPUT,OUTPUT,TAPE1)

VERLAY(FRANK 0,0)
-
FRANK.
NOGO.
/ LOAD(LGO)
FTN.
—
Job Card

60365600 C 11139

COMPILATION AND 2 EXECUTIONS WITH OVERLAYS

I11-13-10

/6
7
8 =
9 -
p
V4
y 4
[source deck
(OVERLAY(CH,0,0)
i
/7
8
9
/ CH. (ABSOLUTE OVERLAY)
/ x. (RELOCATABLE)
/ FTN(B=X)
/ JOBTWO,T100,CM50000.

60305600 A

STANDARD CHARACTER SETS A

Since the character set is selected when FORTRAN Extended is installed. the user should check with his
installation to determine which character set is being used.

Installation options allow the user to select an 026 or an 029 keypunch. or to override this selection by
punching a 26 or 29 in columns 79 and 80 of the SCOPE job card. or any 7/8/9 end-of-record card. The
keypunched 26 or 29 remains in effect for the remainder of the job or until it is reset by a different mode
selection on another 7/8/9 card.

Under KRONOS 2.1, a 5/7/9 card is used to change the card read mode depending on column 2 of the card.
The following codes are valid on the 5/7/9 card:

blank 026

9 FORTRAN 029
8 COBOL 029
8/9 SNOBOL 029

4/5/6/7/8/9 LITERAL INPUT
See KRONOS 2.1 Batch User's Reference Manual for the definition of these codes.

When the 63-character set is used, the display code character 00g under A or R FORMAT conversion will be
converted to a space, display code 558 for ENCODE and DECODE as well as FORMATTED I/0 statement.

No conversions occur with the A or R FORMAT element when the 64-character set is used.

60305600 D -] A-]

-Ajuo 1ndut Joy pajdadoe ale sayound (6Z0) 11DSV Pue (9Z0) U 3|I0H 21eussljedy) +id
Eoc:a Z-8) uoj0D 3yl st £g ap0od Aejdsip :8p0J YlLid||OH 1O a1ydesB peieioosse ou sey QQ apod Aejdsip “1as olydesb-£9 Dgo aul Buisn suolle|{eIsul upi

€91 Q08 euwssixa
01 Pa1JAAUOD SI JEW 3Ul|-30-PUT "SUOJOD OM] UBY] JBYIEI JJew dUl|-40-pua se palaidielul aJe pJoM 11G-09 € 4O pus 8yl 1e s1q 0182 310W 10 AA|M] }

ac 9811 ¥ L-82L LL (uojodtwas) ! {uojooiwsas) - Sg 5 S0] ov S S
as 811 9 98Z1 9L (xapywnd19)~ - ve v 0 v LE v 44
25 80 SL -5:241 S \ Z €€ € €0 € 9c £ €
oy v-8 Gi S8 vL ® > € z z0 z SE z 4
3¢ 980 LS 2 ! €L < < 1€ L 0 l vE l t
1110t 11z8ze ot 0 4} 0 €e 0 0
o€ 10 871 zL 10021 L > > VS 60 e 60 ze z z
J€ L'80 96 981l 1 ¢ t 6S 80 o¢ 80 e A A
Lz S8 S5 S8 oL {(aydo.isode) , 1 85 L0 (e L0 ot X X
9z zL LE L-80 L9 L] Y LS 90 9 90 Lz M M
1401l 1347811 95 S0 74 S0 9z A A
1z 10 {-8-CL z5 001l 99 i A =1} v0 vz v-0 sz n n
45 580 [S-8-0 G9 (autsapun) - vs €0 £z €0 12 1 1
zT L8 vt ¥8 ¥9 (a10nby) #* €5 z0 zz z0 £z S S
=74 v-80 9t 98 €9 % 4% zs 6t 1S 611 ze Y d
as 8t zc z-80 29 { { 15 g1l 0S gl (¥4 6] o]
as A 4! L L8 19] | 0s L Ly L1 oz d d
€T €8 9t 980 09 # = BT gl ov gl I o) o}
ET4 £8ZL £t €8zl LS (pouad) * {(pouiad) * Iy St Sy St 9l N N
foY4 €80 €€ £80 95 (ewwo2) (ewwod) av vl 144 il Sl W W
oz yound ou (V74 yound ou G5 Jueig juelq 14 1l v el vl g 1
ae 98 €1 €8 ¥S = av L 44 it £l P |
ve €8 il £S5 €81l €5 $ $ vy Lt 184 -l zl r r
62 S8l vL 8zl z5 { { 6v 6Ct 1L 6l L | i
8¢ §8C1 ve ¥-8-0 LS)) 14 g8zl oL 8zl ot H H
C14 1-0 1z t-0 05 / / A4 Lzt L9 Lt L0 9 9
ve 8Ll ¥S 8Lt s . " 9y 9zl 99 9zl 90 4 4
ac L oy Nl o - - St G-zl 59 Szl S0 3 3
8¢ 9-8-ZL 09 zt Sy + + 147 vzl v9 vzl ¥0 a a
6€ 6 1L 6 144 6 6 1% 4 €zt €9 -zt €0 o} o)
8¢ 8 ot 8 X7 8 8 A4 el z9 zzl z0 9 8
LE L L0 L 4’4 L L iy -zt 19 1-zi L0 v v
9€ 9 90 9 17 9 9 veE 8 00 z8 100 }:
apo) (620) 8po)d (9z0) 3pod 195qng aiydes apod | (620) 2pod (920) apod 19sqng d1ydesn
110SVY young aos young Aeidsig aiyder 202 HIOSY | ydund aong young Aeidsig | owdesn 200
HoSsvY jeusaix3 | yi3(oH 110SV 110SY | 1eusdix3 | yia|oH 1108V

S13S H31OVHVHI AYVANVILS

60305600 C

A2

HEXADECIMAL-—-OCTAL CONVERSION TABLE

First Hexadecimal Digit

0 1 2 3 4 5 6 7 8 9 A B Cc D E F
Second 000 | 020 { 040 | 060 | 100 | 120 | 140 | 160 j 200 | 220 | 240 } 260 | 300 | 320 | 340 | 360
Hexadecimal

Digit 001 | 021 | 041 J 061 | 101 | 121 | 141 | 161 | 201 | 221 | 241 | 261] 301 | 321 | 341 | 361
002 | 022 1 042 {062 {102 | 122 | 142 | 162 | 202 | 222 | 242 | 262 | 302 | 322 | 342 } 362

003 | 023 | 043 {063 | 103 | 123 | 143 | 162 | 203} 223 | 243 | 263 | 303 | 323 | 343 | 363

004 | 024 | 044 | 064 {104 | 124 (144 | 164 | 204 | 224 | 244 | 264 | 304 | 324 | 344 | 364

005 [025 | 045 | 065 | 105 | 125 } 145 | 165 | 205 | 225 | 245 | 265 | 305 | 325 | 345 | 365

006 | 026 | 046 | 066 | 106 | 126 | 146 | 166 | 206 | 226 | 246 | 266 | 306 | 326 | 346 | 366

007 | 027 { 047 {067 | 107 | 127 | 147 | 167 | 207 | 227 | 247 | 267 | 307 | 327 | 347 | 367

010 | 030 | 050 | 070 | 110 {130 {150 | 170 | 210] 230 | 250 | 270 | 310 | 330 | 350 | 370

011 J 031|081 |o71 t111 [131 {181 | 171 | 211] 231 | 251 | 271 | 311} 331 | 351 | 371

012 032 {052 {072 | 112 | 132 {152 § 172 {212 | 232 | 252 {272 | 312} 332 | 352 | 372
0131033053 |o73 | 113 | 133 } 153 | 173 | 213 | 233 | 253 | 273 } 313 } 333 | 353 | 373

014 | 034 | 054 {074 | 114 | 134 | 154 | 174 | 214 | 234 | 254 | 274 | 314 | 334 | 354 | 374

015 | 035 055 | 075 | 115 | 135 | 155 | 175 | 215 | 235 | 255 | 275 | 315 | 335 | 3565 | 375

016 | 036 | 056 | 076 | 116 | 136 | 156 | 176 | 216 | 236 | 256 | 276 | 316 | 336 | 356 | 376

017 0371057 o077 | 117 1137 {157 | 177 | 217 | 237 | 257 | 277 | 317 | 337 | 357 § 377

Octal 000 - 040 — 100 — 140 — 200 — 240 — 300 — 340 —
037 077 137 177 237 277 337 377
60305600 B

A-3

——

INDEX

Actual

Pefinitions of Procedure Subprograms, Actual and Dummy Arguments I-7-4
Adjustable

Adjustable or Variable Dimensions I-6-7

Using Variable or Adjustable Dimensions in a Subprogram I-7-18
ANSI

FORTRAN ANSI Standard v
AREA

AREA Debug Statement and AREA Bounds I-13-26
Arguments

Definitions of Procedure Subprograms, Actual and Dummy Arguments I-7-4
Arithmetic

Arithmetic Expressions and Operators I-3-1

Mixed-Mode Arithmetic Expression Type Conversion I-3-5

Arithmetic Assignment Statements I-4-1

Arithmetic IF Two and Three Branch I-5-6

Floating-~Point Arithmetic III-4-1

Integer and Double Precision Arithmetic III-4-7

Arithmetic Mode Errors III-4-9

Tracing Arithmetic Errors III-4-11

Complex, Logical and Masking Arithmetic III-4-8
Array

Array Structure and Array Element Location I-2-15
Arrays

Arrays and Subscripts I-2-~12

Arrays in NAMELIST I-9-19

ARRAYS Debug Statement I-13-4

ASSIGN

ASSIGN Statement I-5-4
Assigned

Assigned GOTO Statement I-5-5
Assignment

Arithmetic Assignment Statements TI-4-1
Assignment Statement Conversion to Integer I-4-2
Assignment Statement Conversion to Real I-4-3
Assignment Statement Conversion to Double Precision I-4-3
Assignment Statement Conversion to Complex I-4-4
Logical and Masking Assignment Statements I-4-5
Multiple Assignment Statement I-4-6
Aw
Aw Input and Output Conversion I-10-19

BACKSPACE
REWIND and BACKSPACE Statements I-9-12

BACKSPACE REWIND Table III-5-8

60305600 D Index-1

Basic

Basic External Library Functions I-8~7
Blanks

Conversion of Blanks on Input I-10-6
Block

COMMON Statement and Block Names and Numbers I-6-8
BLOCK DATA Subprogram I~6-25

Body

Statement Body Col 7-72 1I-1-2
Bounds

ARFA Debug Statement and AREA Bounds I-13-26
Buffer

PROGRAM Statement and File and Buffer Length Specifications I-7-1
BUFFER IN Statement I-9-~13

BUFFER OUT Statement TI-9-14
BUFFER Input/Output III-5-12

C
Comment line C * or $ in Col 1l I-1-3
CALL
CALL Statement I-7-14
Calling
Calling an Overlay I-12-5
CALLS

CALLS Debug Statement I-13-6
Call~by-Nane

Call-by-Value and Call-by~Name and Processor Entry Names IIT-8-1
Call~by-Value

Call-by-Value and Call-by-Name and Processor Entry Names III-8-1
Carriage
Printer Carriage Control Characters I-9-2
CDC
Related CDC Manuals iv
Character
FORTRAN Character Set, also see Appendix A I-1-
Hollerith or Character Constants Strings I-2~-
Character Sets and 026, 029 Punch Codes A-1
Printer Carriage Control Characters I-9-2
CHECK
File Processing Subroutines REPLC CHECK SKIP SEEKF WEOR III-6-6
CLOSEM
File Processing Subroutines OPENM CLOSEM GET III-6-4
CLOSMS
Utility Subroutines CLOSMS STRACE I-8-13
Mass—-Storage Subroutines READMS WRITMS STINDX CLOSMS III-7-2
Codes
Character Sets and 026, 029 Punch Codes A-1l
Coding
Coding Form Sample Program PASCAL I-1-4

1
6

Index-2 60305600 E

Comma

FORMAT Field Separators Slash and Comma I-10-7
Cormment

Comment line C * or $§ in Col 1 1I-1-3
COMMON

COMMON Statement and Block Names and Numbers I-6-8
EQUIVALENCE and COMMON implications I-6-12°
Transferring Values to a Subprogram with COMMON I-7-17
COMMON BLOCKS Line in Reference Map III-1-14 -
COMPASS
Linkage of COMPASS Coded Subprograms Owncode III-10-1
Sample COMPASS Subprogram III-10-4
Compilation ' ‘
Compilation Diagnostics or Error Messages III-2-1
Compilation and Execution Listings III-12-1
Sample Deck for Compilation Only III-13-2
Compile
Sample Deck for Compile and Execute III-13-1
Complex . .) R :
Complex Constants 1I-2-4
Integer, Real, Double Precision, Complex, and Logical Variables I-2-10
Assignment Statement Conversion to Complex I-4-4
Type Declaration Statements INTEGER REAL COMPLEX I-6-2
Complex, Logical and lasking Arithmetic TIII-4-8

Computed .)
Unconditional and Computed GOTO Statements I-5-1
Conflicts
Conflicts with Library Function Names I-7-8
Constants)

Integer Constants Fixed-Point I-2-1
Real Constants Floating-Point -2-2

Double Precision Constants I-2-3

Complex Constants I-2-4

Octal Constants I-2-5

Hollerith or Character Constants Strings I-2-6
Logical Constants .TRUE. or .FALSE. I-2-8

Continuation

Continuation Designation Col 6 I-1-2
CONTINUE :

CONTINUE and PAUSE Statements I-5-14
Control

Printer Carriage Control Characters I-9-2
Printer Control Characters I-10-32
FORTRAN FTN Control Card and Default Options I-11-1
FTN Control Card Sample I-11-9
OVERLAY Control Card 1I-12-4

Conversion :
lMixed-Mode Arithmetic Expression Type Conversion I-3-5
Assignment Statement Conversion to Integer I-4-2
Assignment Statement Conversion to Real I-4-3
Assignment Statement Conversion to Double Precision I-4-3
Assignment Statement Conversion to Complex I-4-4
Conversion of Blanks on Input I-10-6

60305600 D Index-3 @

Cross

Symbolic or Cross Reference Map III-1l-l
Cc$

C$ Debugging Statements I-13-3

DATA
DATA Statement I-6-21
BLOCK DATA Subprogram I-6-25
List Directed Input Data Forms I-9-10
List Directed Output Data Forms I-9-11
NAMELIST Input Data Form I-9-17
NAMELIST Output Data Form I-9-18
DATE '
Utility Subroutines DISPLA RANGET RANSET SECOND DATE I-8-10
Debug
Debug Deck Structure I-13-19
Example of Debug Statements Interspersed in Deck I-13-20
Example of External Debug Deck I-13-21
Example of Internal Debug Deck I-13-22
Example of External Debug Deck on Separate File 1I-13-23
DEBUG Statement I-13-24
File Name DEBUG I-13-30
Debugging
Debugging Facility, See also DEBUG USER'S GUIDE I-13-1
C$ Debugging Statements I=-13-3
STRACE Debugging Subprogram for Traceback I-13-30
Deck
Debug Deck Structure I-13-19
Sample Deck for Compile and Execute III-~13~-1
Sample Deck for Compilation Only III-13-2
Sample Deck for Overlays III-13-9
Declaration
Type Declaration Statements INTEGER REAL COMPLEX I-6-2
Type Declaration Statements DOUBLE PRECISION LOGICAL I-6-3
DECODE
DECODE Statement I-9-24

Default

FORTRAN FTN Control Card and Default Options I-11-1
Definition

FUNCTION Subprogram Definition and Reference I-7-6
Diagnostics

Compilation Diagnostics or Error Messages III-2-1

Execution Diagnostics or Error Messages III-2-14
Dimension

Dimension Information in Type Statements 1I-6-5

DINENSIONM Statement I-6-6

Adjustable or Variable Dimensions I-6-7

Using Variable or Adjustable Dimensions in a Subprogram I-7-18
Directed

List Directed WRITE I-9-7

List Directed READ -- Free Form Input I-9-9

List Directed Input Data Forms I-9-10

List Directed Output Data Forms 1I-9-11

DISPLA
Utility Subroutines DISPLA RANGET RANSET SECOND DATE I-8-10

® Index-4 60305600 D

DLTE
File Processing Subroutines PUT GETN DLTE. III-6-5
DIMPX '
Description of DMPX III-12-2
DO
DO Statement and Definition of the Extended Range I-5-8
Double

Double Precision Constants I-2-3
Integer, Real, Double Precision, Complex, and Logical Variables I-2-10
Assignment Statement Conversion to Double Precision I-4-3
Type Declaration Statements DOUBLE PRECISION LOGICAL I-6-3
Integer and Double Precision Arithmetic III-4-7
DO-LOOPS :
DO-LOOPS Line in Reference Map III-1-13
Dummy
Definitions of Procedure Subprograms, Actual and Dummy Arguments I-7-4
DUMP '
Utility Subroutines DUMP PDUMP SSWTCH REMARK I-8-9
Dw.d
Dw.d Input and Output Conversion I-10-17

ENCODE -

ENCODE Statement I-9-21
END

sTOP and END Statements I-5-15
ENMDFILE '

Effect of ENDFILE on Various Record Types III-5-10
File Processing Subroutines WTMK ENDFILE REWND GETP ITI-6-7
ENDIFLE ’
ENDIFLE Statement TI-9-13
End-of-Record
/ FORMAT End-of-Record Specification I-10-29
EIITRY .
ENTRY Statement I-7-20
ENTRY POINTS Line in Reference lap III-1-6
Call-by~-Value and Call-by-Name and Processor Entry Names III-8-1
EOF
Utility Functions RANF LOCF UNIT EOF I-8-13
UNIT and EOF Functions to Check I/O Status III-5-13
EQUIVALENCE
EQUIVALENCE Statement and Equivalence Groups I-6-12
EQUIVALENCE and COMMON implications I-6-12
EQUIVALENCE CLASSES Line in Reference Map IITI-1-15
ERROR
CRROR MESSAGES Caused by Insufficient Storage III-1-6
Compilation Diagnostics or Error Messages ITI-2-1
Execution Diagnostics or Error Messages III-2-14
SYSTEM Routine for Error Tracing III-3-1
Mon-Standard Error Recovery III-3-3
FORTRAN /Record !lanager Error Checking ITI-6-9
Errors
Arithnetic Mode Errors III-4-9
Tracing Arithmetic Errors III-4-11
TOCHECK Function to Test for Parity Errors III-5-15

60305600 D Index-5 ®

ERRSET
Utility Subroutines TIME ERRSET LABEL MOVLEV I-8-11
ERRSET Function to Bypass Data Errors III-5-16
Evaluation
Evaluation of Expressions and Unary Operators I-3-2
Exponentiation Order of Evaluation and Types of Operands I-3-6
Evaluation of Relational Expressions I-3-8
Ew.d
Ew.d Ew.dEe and Ew,dDe Output Conversion I-10-9
Fw.d Ew.dEe and Ew.dDe Input Conversion I-10-11
Ew.d with Scaling I-10-24
Example
Generated Code for Function Linkage Example III-10-6
Execute
Sample Deck for Compile and Execute I111-13-1

Execution
Execution Diagnostics or Error Messages I11-2-14

File-Name Handling by SYSTEM at Execution Time 1L.GO Card III-3-6

Compilation and Execution Listings TIII-12-1

EXIT

Compatibility Subroutines FTNBIN SLITE SLITET EXIT I-8-14
Exponentiation

Exponentiation Order of Evaluation and Types of Operands I-3-6
Expressions

Subscript Expressions I-2-17
Arithmetic Expressions and Operators I-3-1
Precedence or Hierarchy of Operators in Expressions I1-3-2
Evaluation of Lxpressions and Unary Operators I-3-2
lHixed-lMode Arithmetic Expression Type Cor.version I-3-5
Evaluation of Relational Expressions I-3-8
Logical Operators .NOT. .AMND. .OR. in Expressions I-3-9
Masking Expressions I-3-13
Extended
DO Statement and Definition of the Extended Range I-5-8
EXTERNAL
EXTERMAL Statement I-6-18
Basic External Library Functions I-8-7
Example of External Debug Deck I-13-21
Example of External Debug Deck on Separate File I-13-23
EXTERNAL REFERENCES Line in Reference Map III-1-10

Features

Features of FORTRAMN Extended Version 4,1 iii
Field

FORMAT Field Separators Slash and Comma I-10-7

® Index-6

60305600 D

File
PROGRAM Statement and File and Bu.lfer Length Specifications I-7-1
TAPEu File Name and Logical I/0 Unit Designation I-7-1
File Name DEBUG I-13-30
FILE NAMES Line in Reference Map III-1-9
File Definitions Physical Record Unit PRU III-S-1
FILE Card in Sample Deck III-5-7
File Labels Subroutine LABEL III-5-11
File Information Table Updating Subroutine STOREF III-6-3
Multi-Level File Index III-7-7

FILEAK

Record Manager Subprograms FILESQ FILEWA FILEIS FILEDA FILEAK III-6-1

FILEDA

Record Manager Subprograms FILESQ FILEWA FILEIS FILEDA FILEAK III-5-1

FILEIS

Record Manager Subprograms FILESQ FILEWA FILEIS FILEDA FILEAK III-6-1

Files
Sequential Files Default Conventions ITI-5-3
Random Files Default Conventions III-5-4
FILESQ

Record Manager Subprograms FILESQ FILEWA FILEIS FILEDA FILEAK III-6-1

FILEVIA

Record Manager Subprograms FILESQ FILEWA FILEIS FILEDA FILEAK III-6-1

File-llame

File-Name Handling by SYSTEM at Execution Time LGO Card TIII-3-6
FIT

IFETCH Function to Get Information from the FIT III-6-2
Fixed-~Point

Integer Constants Fixed-Point I-2-1
Floating-Point

Real Constants Floating-Point I-2-2

Floating-Point Arithmetic III-4-1

Floating-Point Representation Table III-4-4

Form ‘
Coding Form Sample Program PASCA I-1-4
List Directed REAL -- Free Form Input I-9-9
FORMAT

FORMAT Statement I-10-5
Repeated FORMAT Specification I-10-31
Variable FORMAT Statements I-10-36
Formatted
Formatted WRITE Statements I-9-5
Formatted READ Statements I-9-7
Forms
Index of Statement Forms or Syntax xi
FORTRAN
Features of FORTRAN Extended Version 4.1 iii
FORTRAN ANSI Standard v
FORTRAN Character Set, also sec Appendix A I-1-1
I-1

FORTKAN FTN Control Card and Default Options 1-1
Free

List Directed READ -- Free Form Input I-9-93
FTN

FORTRAN FTN Control Card and Default Options I-11l-1

FTN Control Card Sample I-11-9
FTNBIN

Compatibility Subroutines FTNBIN SLITE SLITET EXIT I-8-14
FUNCS

FUNCS Debug Statement I-13-8

€0305600 D

Index~-7 @

FUNCTION
FUNCTION Suwvprogram Definition and Reference I-7-6
Conflicts with Library Functicn Names I~7-8
Restrictions on Using Library Function Names III-10-5
Generated Code for Function Linkage Example III-10-6
Functions
Statement Functions I-7-9
Intrinsic Library Functions I-8-2
Basic External Library Functions I-8-7
Utility Functions RANF LOCF UNIT EOF I-8-13
Utility Functions LENGTH IOCHECK LEGVAR I-8-14
Fw.d
Fw.d Output Conversion I-10-13
Fw.d Input Conversion I-10-14
Fw.d with Scaling I-10-23

Generated

Generated Code for Function Linkage Example 1IXII-10-6
GET

File Processing Subroutines OPENM CLOSEM GET III-6-4
GETN

File Processing Subroutines PUT GETN DLTE III-6-5
GETP

File Processing Subroutines WTHMK ENDFILE REWND GETP III-6-7
GOTO

Unconditional and Computed GOTO Statements I-5-1

Assigned GOTO Statement I-5-5
GOTOS

GOTOS Debug Statement I-13-15
Groups

EQUIVALLNCE Statement and Equivalence Groups I-6-12
Group-hiane

NAMELIST Statement and Group-Name Definition I-9-15
Gw.d

Gw.d Input and Output Conversion I-10-15

Gw.d with Scaling I-10-24

H
H L or R to Denote Hollerith Constants I-2-6
H FORMAT Element I-10-25
Hexadecimal
Hexadecimal Octal Conversion Table A-3
Hierarchy
Precedence or hierarchy of Operators in Expressions I-3-2
Hollerith

Hollerith or Character Constants Strings I-2-6
H L or R to Denote Hollerith Constants 1I-2-6
* ,.* and =...= Delineating Hollerith Fields I-10-27

Hollerith Data Interpreted by STORES Statement I-13-14

® Index~8

60305600 D

Identification

Statement Identification Field Col 73-80 1I-1-3
NG

Arithmetic IF Two and Three Branch I-5-6

Logical IF Statement I~5-7
IFETCH

IFETCH Function to Get Information from the FIT III-6-2
IMPLICIT

IMPLICIT Type Statement I-6-3
Indefinite

Indefinite Result III-4-4

Result of Infinite, Indefinite, and Zero Operands III-4-5
Index

Index of Statement Forms or Syntax xi

lfass~Storage Index Key Types III-7-4

Multi-Level File Index III-7-7
Indexing

Indexing or Looping Using the DO Statement I-5-10
Infinite

Result of Infinite, Indefinite, and Zero Operands III-4-5
INLINE

INLINE FUNCTIONS Line in Reference Map III-1-11

Input
Input Output Record Lengths I-9-2
List Directed READ -- Free Form Input I-9-9

List Directed Input Data Forms I-9-10
NAMELIST Input Data Form I-9-17
Input Output Lists I-10-1
Object-Time Input Output ITI-5-1
Input/Output
BUFFER Input/Output III~5~12
Integer
Integer Constants Fixed-Point I-2~1
Integer, Real, Double Precision, Complex, and Logical Variables
Assignment Statement Conversion to Integer I-4-2
Type Declaration Statements INTEGER REAL COMPLEX I-6-2
Integer and Double Precision Arithmetic III-4-7
INTERCOL!
Terminal I/0 III-11-1
Internal
Example of Internal Debug Deck I-13-~22
Interspersed
Example of Debug Statements Interspersed in Deck I-13-20
Intrinsic
Intrinsic Library Functions I-8-2
TOCKECX
Utility Functions LENGTH TIOCHECK LEGVAR I-8-1&
IOCHECK Function to Test for Parity Errors III-5-15
Iw
Iw and Iw.z Input and Output Conversion I-10-8
Iw and iw,z Input and Output Conversion I-10-8
I1/0
TAPEu File Name and Logical I/0 Unit Designation I-7-1
UNIT and EOF Functions to Check I/O Status IIXI-5-13

Key
Mass-Storage Index Key Types III-7-4

KRONOS
Card Read lMode A-1
Terminal I/0 III-11-2

60305600 E

I-2-10

Index-9

L
H L or R to Denote Hollerith Constants I-2-6
LABEL
Utility Subroutines TIIE ERRSET LABEL MOVLEV I-8-11
File Labels Subroutine 'LABEL III-5-11
Labels
Statement Numbers or Labels Col 1-5 1I-1-3
File Labels Subroutine LABEL III-5-11

Layout
Object Time llemory Layout III-9-3
LEGVAR
Utility Functions LENGTII IOCHECK LEGVAR I-8-14
LEMGTH
Utility Punctions LENGTH IOCHECK LEGVAR I-8-14
Lengths
Input Output Record Lengths I-9-2
LENGTHX
Subroutine LENGTHX I-8-13
LEVEL
LEVEL Statement I-6-17
Levels
Levels in Debug Statements I-13-6
LGO

File-Name Handling by SYSTEM at Execution Time LGO Card III-3-6
Library

Coriflicts with Library Function Names I-~7-8

Intrinsic Library Functions I-8-2

Basic External Library Functions I-8-7

Restrictions on Using Library Function Names III-10-%
Linkage

Overlays, Linkage and Creation I-12-3

Linkage cf COMPASS Coded Subprograms Owncode III-10-1

Generated Code for Function Linkage Example III-10-6
List

List Directed WRITE I-9-~7

List Directed READ —-- Free Form Input 1~-9-9

List Directed Input Data Forms I-9-10

List Directed Output Data Forms I-9-11

Listings
Compilation and Executicn Listings ITI-12-1
Lists
Input Output Lists I-10-1
Location
Array Structure and Array Element Location I-2-15
LOCF
Utility Function LOCF I-8-5
Logical
Logical Constants .TRUE. or .FALSE. I-2-8
Integer, Real, Double Precision, Complex, and Logical Variables 1I-2-10

Logical Operators .lIOT. .AND. .OR. in Expressions I-3-9
Logical and llasking Assignment Statements I~-4-5

Logical IF Statement I~5-7

Type Declaration Statements DOUBLE PRECISION LOGICAL I-6-3
TAPEuU File Name and Logical I/O Unit Designaticn I-7-1
RECORD-MANAGER Logical Receord Types III-5-2

Complex, Logical and Masking Arithmetic III-4-8

Index-10 60305600 E

Locping

Indexing or Looping Using the DO Statement I-

Lw
Lw Input and Output Conversion I-10-22

Manuals

Related CDC Manuals iv
Map :

Symboli¢ or Cross Reference Map III-1-1
Masking

Masking Expressions I-3-13
Logical and Masking Assignment Statements

I-4-5
Complex, Logical and Masking Arithmetic TII-4-8

Mass-Storage
Mass-Storage Subroutines OPENMS III-7-1

5-10

Mass-Storage Subroutines READMS WRIT!S STINDX CLOSMS

lass~Storage Index Key Types III-7-4
Memory ‘
Object Time !lemory Layout III-9-3
MESSAGES
ERROR MESSAGES Caused by Insufficient Storage

III~-1-6

Compilation Diagnostics or Error Messages III-2-1
Execution Diagnostics or Error Messages III-2-14

Mixed-Mode

Mixed-Mode Arithmetic Expression Type Conversion

Mode
Arithmetic Mode Errors III-4-9
MOVLEV)
Utility Subroutines TIME ERRSET LABEL MOVLEV
Multiple

Multiple Assignment Statement I-4-6
Multi-Level
Multi-Level File Index III-7-7

NAMELIST
NAMELIST Statement and Group-Name Definition
NAMELIST Input Data Form 1I-9-17
NAMELIST Output Data Form I-9-18
Arrays in NAMELIST I-9-19
NAMELIST Line in Reference Map III-1-11
Names
Variable Names and Implied Types I-2-9
COMMON Statement and Block Names and Numbers
Conflicts with Library Function Names I-7-8
Restrictions on Using Library Function Names
NOGO
MOGO Debug Statement I-13-18
Null

I-8-11

I-9-15

Program Unit and Null Program Definitions I-7-1

Numbers
Statement Numbers or Labels Col 1-5 1I-1-3
COMMON Statement and Block Names and Numbers

60305600 D

I-6-8

I-3-5

Index-11 ©

Object-Time
Object-Time Input Output III-5~1
Octal
Octal Constants I-2-5
Hexadecimal Octal Conversion Table A-3

OFF
OFF Debug Statement I-13-28
OPENM
File Processing Subroutines OPENM CLOSEM GET III-6-4
OPENMS :
llass-Storage Subroutines OPENMS III-7-1
Operands

Exponentiation Order of Evaluation and Types of Operands I-3-6
Result of Infinite, Indefinite, and Zero Operands III-4-5
Operators
Arithmetic Expressions and Operators I-3-1
Precedence or Hierarchy of Operators in Expressions I-3-2
Evaluation of Expressions and Unary Operators I-3-2
Relational Operators ,GT. .GE. .LT. .LE. .EQ. .NE. I-3-7
Logical Operators .MOT. .AND. .OR. in Expressions I-3-9
Optimization
Compiler Optimization III-3-8
Options
FORTRAN FTN Control Card and Default Options I-11-1
Order
Statement Order of a Program Unit III-9-1
Output
Input Output Record Lengths I-9-2
PRINT Output Statements I-9-3
PUNCH Output Statements I-9-4
List Directed Output Data Forms I-9-11
NAMELIST Output Data Form I-9-18
Input Output Lists I-10-1
Object-Time Input Output III-5~1
Overflow
Arithmetic Overflow and Underflow III-4-3
OVERLAY
OVERLAY Control Card 1I-12-4
Calling an Overlay 1I-12-5
Overlays
Overlays, Linkage and Creation I-12-3
Sample Deck for Overlays III-13-9
Oow ~ ,
ow and Ow.d Input and Output Conversion I-10-18
Ow and Ow.d Input and Output Conversion I-10-18

Owncode
Linkage of COMPASS Coded Subprograms Owncode III-10-1

P

P Scale Factors 1I-10-22
Parity

IOCHECK Function to Test for Parity Errors III-5-15
PASCAL

Coding Form Sample Program PASCAL I-1-4

® Index-12 ‘ 60305600 D

PAUSE
CONTINUE and PAUSE Statements I=-5-14

PDUMP

Utility Subroutines DUMP PDUMP SSWTCH REMARK I-8-9
Physical

File Definitions Physical Record Unit PRU ITII-5-1
Precedence

Precedenge or Hierarchy of Operators in Expressions I-3-2
Precision
Integer, Real, Double Precision, Complex, and Logical Variables I-2-10
PRINT
PRINT Output Statements I=-9-3
Printer
Printer Carriage Control Characters I-9-2
Printer Control Characters I-10-32
Procedure
Definitions of Procedure Subprograms, Actual and Dummy Arguments I-7-4
Program
Coding Form Sample Program PASCAL I-1-4
Program Unit and Null Program Definitions I-7-1
PROGRAM Statement and File and Buffer Length Specifications I-7-1
PROGRAM STATISTICS Line in Reference Map III-1-16
Statement Order of a Program Unit III-9-1
PRU
File Definitions Physical Record Unit PRU III-5-1
PUNCH
PUNCH Output Statements I-9-4
Character Sets and 026, 029 Punch Codes A-1
PUT
File Processing Subroutines PUT GETN DLTE III-6-5
PUTP
File Processing Subroutine PUTP III-6-8

R

H L or R to Denote Hollerith Constants I-2-6 !
Random

Random Files Default Conventions III-5-4
RANF

Utility Function RANF I-8-5
Range

DO Statement and Definition of the Extended Range I=-5-8
RANGET

Utility Subroutines DISPLA RANGET RANSET SECOND DATE I-8-10

RANSET

Utility Subroutines DISPLA RANGET RANSET SECOND DATE I-8-10
READ

Formatted READ Statements I-9-7

Unformatted READ Statements I-9-8

List Directed READ ~- Free Form Input I-9-9
READEC

Compatibility Subroutines WRITEC READEC I-8-15
READMS

Utility Subroutines READMS WRIT!MS STINDX I~-8-12
Mass-Storage Subroutines READMS WRITMS STINDX CLOSMS IITI-7-2

60305600 E Index-13

Real
Real Constants Floating-Point I-2-2
Integer, Real, Double Precision, Complex, and Logical Variables I-2-10
Assignment Statement Conversion to Real I=~4-3
Type Declaration Statements INTEGER REAL. COMPLEX I-6-2
Record
Input Qutput Record Lengths I-9-2
File Definitions Physical Record Unit PRU III-5-1
Record Manager Subprograms FILESQ FILEWA FILEIS FILEDA FILEAK ITT-6-1
RECORD-MANAGER
RECORD-MANAGER Logical Record Types III-5-2
Reference
FUNCTION Subprogram Definition and Reference I-7-6
Symbolic or Cross Reference Map III-1-1
Related
Related CDC Manuals iv
Relational
Relational Operators ,GT. .GE. .LT. .LE. .EQ. .NE. I-3-7
Evaluation of Relational Expressions I-3-8

REMARK

Utility Subroutines DUMP PDUMP SSWTCH REMARK I-8-9
Repeated

Repeated FORMAT Specification I-10-31
REPLC

File Processing Subroutines REPLC CHECK SKIP SEEKF WEOR III-6-6
Restrictions

Restrictions on Using Library Function Names III~10-5
RETURN

RETURN Statement I-5-16
REWIND

REWIND and BACKSPACE Statements I-9-12

BACKSPACE REWIND Table TIII-5-8
REWND

File Processing Subroutines WTMK ENDFILE REWND GETP III-6-7
Rw

Rw Input and Output Conversion I-10-21

Sample
Coding Form Sample Program PASCAL I-1-4
FTM Control Card Sample I-11-9
Sample COMPASS Subprogram III-10-4
Sample Deck for Compile and Execute III-13-1
Sample Deck for Compilation Only III-13-2
Sample Deck for Overlays III-13-9
Scale
P Scale Factors I-10-22
Scaling
Fw.d with Scaling I-10-23
Ew.d with Scaling I-10-24
Gw.d with Scaling I-10-24
SECOND
Utility Subroutines DISPLA RANGET RANSET SECOND DATE I-8-10

SEEKF
File Processing Subroutines REPLC CHECK SKIP SEEKF WEOR III-6-6

Index-14 60305600 D

Separator
$ Statement Separator I-1-2
FORMAT Field Separators Slash and Comma I-10-7
SKIP
File Processing Subroutines REPLC CHECK SKIP SEEKF WEOR IITI-6-6
Slash
FORMAT Field Separators Slash and Comma I-10-7
SLITE
Compatibility Subroutines FTNBIN SLITE SLITET EXIT I-8-14
SLITET
Compatibility Subroutines FTNBIN SLITE SLITET EXIT I-8-14
SSWTCH
Utility Subroutines DUMP PDUMP SSWTCH REMARK I-8-9
Standard
FORTRAN ANSI Standard v
Statement
Index of Statement Forms or Syntax xi
Statement Mumbers or Labels Col 1-5 1I-1-3
$ Statement Separator I-1-2
Statement Identification Field Col 73-80 I-1-3
Statement Body Col 7-72 I-1-2
Statement Functions I-7-9
STATEMENT LABELS Line in Reference lMap III-1-12
Statement Order of a Program Unit III-9-1
STINDX
Utility Subroutines READMS WRITMS STINDX I-8-12
Mass-Storage Subroutines READMS WRITMS STINDX CLOSMS IIXI-7-2
STOP
STOP and END Statements I=5-15
STOREF
File Information Table Updating Subroutine STOREF III-6-3
STORES
STORES Debug Statement I-13-11
Hollerith Data Interpreted by STORES Statement I-13-14
STRACE
Utility Subroutines CLOSMS STRACE I-8-13
STRACE Debugging Subprogram for Traceback I-13-30
Strings
Hollerith or Character Constants Strings I-2-6
Subprograms
Definitions of Procedure Subprograms, Actual and Dummy Arguments I-7-4
FUNCTION Subprogram Definition and Reference I-7-6
Transferring Values to a Subprogram with COMMON I-7-17
Linkage of COMPASS Coded Subprograms Owncode ITI-10-1
Sample COMPASS Subprogram III-10-4
SUBROUTINE
SUBROUTINE Subprograms I-7-12
Utility Subroutines DUMP PDUMP SSWTCH REMARK I-8-9
Utility Subroutines DISPLA RANGET RANSET SECOND DATE I-8-10
Utility Subroutines TIME ERRSET LABEL MOVLEV I-8-11
Utility Subroutines READMS WRIT!S STINDX I-8-12
Utility Subroutines CLOSMS STRACE I-8-13
Subscript
Subscript Expressions I-2-17
Arrays and Subscripts I-2-12

6Q305600 D Index-15 @

gl

\Y4
V Variable FORMAT Element I-10-35
Variable
Variable Names and Implied Types I-2-9
Adjustavle or Variable Dimensions I-6-7
Using Variable or Adjustable Dimensions in a Subprogram I-7-13
V Variable FORIAT Element I-10-35
Variable FORMAT Statements I-10-36
Variables
Integer, 'Real, Double Precision, Complex, and Logical Variables I-2-10
VARIABLLS Line in Reference Map III-1-7

WEOR
File Processing Subroutines RLPLC CHECK SKIP SEEKF WEOR III-6-6

WRITE
Formatted WRITE Statements I-9-5
I-9-

Unformatted WRITE Statenents 6

List Directed WRITE 1I-9-7
WRITEC

Compatibility Subroutines WRITEC READEC I-8-~15
WRITHS

Utility Subroutines READMS WRITMS STINDX I-8-12

Mass-Storage Subroutines READMS WRITMS STINDX CLOSMS III-7-2
WTHMK

File Processing Subroutines WTMK ENDFILE REWND GETP III-6-7

X
¥ FORMAT Element I-10-24
Zero
Result of Infinite, Indefinite, and Zero Opcrands III-4-5
v
Zw Input and Output Conversion I-10-19
*
Comment line C * or $§ in Col 1 1I-1-3
Comment line C * or $ in Col 1 I-1-3
$ Statement Separator I-1-2
* ..* and =...= Delineating Hollerith Fields I-10-27
* ..* and =...= Delineating Eollerith Fields I-10-27
/ FORMAT End-of-Record Specification I-10-29
.AND.

Logical Operators .NOT, .AND. .CR. in Expressions 1I-3-9
.EQ.

Relational Operators .GT. .GE. .LT. .LE. .EQ. .NE. I-3-7
.FALSE.

Logical Constants ,TRUE. or ,FALSE. .I-2-8
.GE.

Relational Operators .GT. ,GE. .LT, .LE. .EQ, .NE. I-3-7

60305600 D - Index-17

'GTﬁelational Operators .GT, .GE. .LT. .LE. .EQ. .NE. I-3-7
.LEéelational Operators .GT. .GE. .LT. .LE. .EQ. .NE. I-3-7
'LTﬁélational Operators .GT, .GE. ,LT. .LE. .EQ. .NE. 1I-3-7
.NEﬁelational Operators .GT, .GE, .LT. .LE. .EQ. ,NE. I-3-7

MOT.
Logical Operators .NOT, .AND, .OR, in Expressions I-3-9

.OR.

Logical Operators ,NOT, .AND. .OR, in Expressions I-3-9
.TRUE.

Logical Constants .TRUE. or .FALSE. I-2-8

® Index~18 60305600 D

Address out of range. A non-existent storage location has been referenced. Mode |
~ errors may be caused by:

calling a non-existent subprogram during execution
using an incorrect number of arguments when calling a subprogram
a subscript assuming an illegal value

no dimensons specified for an array name
T

Infinite operand. One of the operands in a real operation is infinite. Infinity is the result
whenever the true result of a real operation would be too large for the computer, or when
division by zero is attempted. A value of infinity may be returned when some functions are
seferenced. For example, ALOG(0.) would be negative infinity.

in'ﬁie following example, Z would be given the value infinity, and when the addition Z + §6.
is attempted execution terminates with a mode 2 error. :

1 FORMAT (F12.3)

'Y - 0.
Z - 23.2/Y
PRINT 1, 2 : . . .
CAT = Z + 56, , ' ' S

When thc prmt statement s cxccmed an R is printed to indicate an out of range
value.

Address is out of range or operand is infinite number.

Indefinite operand. One of the operands in a real operation is indefinite. An indefinite
result is produced by dividing 0. by 0. or multiplying an infinite operand by 0. An
illegal library function reference may return an indefinite value. For example, SQRT
(-2.) would produce an indefinite result. An attempt to print an indefinite value pro-
duces the letter I.

Mode 5 © Address is out of range or indefinite operand.

Mode 6 Operand is infinite or indefinite. A mode 6 arithmetic error occurs when a real opera-
' tion is performed with one operand infinite and the other operand indefinite.

Mode 7 Operand is inﬁnite, indefinite, or address is out of range.

$ When an amhmeuc error occurs the following type of message appears in the dayfile and execution is
terminated:
L 4

.14.39,06.5990@ MONF = 2. ANDRESS =002135

$Applies only to CONTRO-L DATA CYBER 70/Models 72, 73, 74 and 6000 Series computers.

60305600 B

