
CDC® VSOS VERSION 2

FOR USE WITH
CYBER 200 SERIES

, COMPUTER SYSTEM

Volume 1 of 2

REFERENCE MANUAL

60459410

VSOS CONTROL ST A TEMENT INDEX

This index lists each VSOS control state.lJl.ent and interactive request line and the number of
the page on which it is described.

ATTACH
AUDIT
BEGIN
CHARGE
COMMENT
COMPARE
COPY
COPYL
DAYFILE
DEFINE
DEBUG
DIVERT
DMAP
DROP
DUMP
DUMPF
EDITPUB
ELSE
ENDIF
EXIT
FILES
GIVE
IF
LABEL
LIMITS
LISTAC
LOAD
LOAD PF
LOGIN
LOOK
MFGIVE
MFLINK
MF QUEUE
MFTAKE
NO RERUN
OLE
PACCESS
PASSWORD
PATTACH

60459410 J

4-13
4-15
4-6.3
4-21
4-22
4-23
4-25
4-28
4-30
4-30.1
6-2
4-34
4-34.2
4-36
6-23
4-36.2
4-46
4-6.2
4-6.2
4-48
4-49
4-53
4-6.1
4-55
4-60.1
4-61
4-65
4-80
3-6
6-13
3-25
4-88
4-91
3-25
4-93
4-94
4-97
4-98
4-99

PCREATE
PDE LE TE
PDE STROY
PDETACH
PERMIT
PF ILES
PROC
PROCEED
PURGE
Q
REQUEST
RERUN
RESOURCE
RETURN
REWIND
SET
SKIP
SLGEN
SUBMIT
SUMMARY
SWITCH
TASKATT
TV
UPDATE
USER
$BB
$BYE
$HELLO
$I
$LC
$OP
$P
$PR
$S
$SU
$T
$UC
$X
$?

4-100
4-101
4-102
4-102
4-103
4-105
4-6.3
4-106
4-106.l
4-107
4-112.l
4-120
4-121
4-124
4-126
4-127
4-128.1
4-129
4-132
4-134
4-136
4-139
4-140
5-1
4-142
3-8
3-10.1
3-10.1
3-10
3-9
3-10
3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-8

CDC® VSOS VERSION 2

FOR USE WITH
CYBER 200 SERIES
COMPUTER SYSTEM

Volume 1 of 2

REFERENCE MANUAL

60459410

~~
CONTl\.OL

DATA

REVISION

A
(04-16-82)

B
(10-15-82)

c
(07-29-83)

D
(03-30-84)

E
(10-31-85)

F
(04-18-86)

G
(12-05-86)

H
(10-23-87)

J
(11-15-88)

Publication No.

60459410

REVISION RECORD

DESCRIPTION

Manual released.

Manual revised to reflect VSOS 2.0 CCR changes (level 575). New features documented include the
GDWC LOAD parameter, individual access permission sets, and conversion routines for CYBER 170
arithmetic data formats.

Manual revised to reflect VSOS 2.1 PSR level 592 changes. New features include on-line magnetic
tape support, the DAYFILE control statement, and the Q5MEMORY subroutine. Because extensive changes
have been made, change bars and dots are not used and all pages reflect the latest revision level.
This edition obsoletes all previous revisions.

Manual revised to reflect VSOS 2.1.5 PSR level 607 changes. New features include the SUBMIT control
statement, additions to the DEBUG directives and additions to the error messages. Due to extensive
changes, change bars and dots are not used and all pages reflect the latest revision level. This
edition obsoletes all previous editions.

Manual revised to reflect VSOS 2.2 PSR level 644 changes. New features include project tracking,
small job throughput, multiple batch jobs per user, dynamic file allocation and device overflow,
system channel expander, and rejected queue files. CYBER 200 FORTRAN is no longer supported. Due
to extensive changes, change bars and dots are not used and all pages reflect the latest revision
level. This edition obsoletes all previous editions.

Manual revised to reflect VSOS 2.2.5 PSR level 654 changes. Changes documented are small job
throughput improvement, explicit I/O performance, automatic job category selection and job
pre-abort, MFQUEUE improvements, on-line DUMPF, purge files by access date, and LIMITS control
statements for restricting tape usage via validation.

Manual revised to reflect VSOS 2.3 PSR level 670. New features described include drop file map
overflow reduction and on/off RHF NADs. This revision also includes updates to control statements,
SIL calls, and messages. This edition obsoletes all previous editions.

Manual revised to reflect VSOS 2.3.5 at PSR level 690. This revision documents managing production
files at security-sensitive sites, and the new ELSE, ENDIF, IF, DIVERT, and DROP control
statements. It also includes updates to existing control statements and SIL subroutines/routines,
and changes to the queue file transfer procedures.

Manual revised to reflect VSOS 2.3.7 at PSR level 712.

REVISION LETTERS I, 0, Q, S, X AND Z ARE NOT USED.

© 1982, 1983, 1984, 1985, 1986, 1987, 1988
by Control Data Corporation
All rights reserved
Printed in the United States of America

2

Address comments concerning this
manual to:

Control Data Corporation
Technology and Publications Division
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover - 2-31 E 4-11 H 4-57 H 4-104 E
Inside Front 2-32 E 4-12 E 4-58 F 4-105 G

Cover J 2-33 E 4-13 E 4-59 F 4-106 G
Title Page - 2-34 F 4-14 E 4-60 F 4-106.1/
2 J 2-35 J 4-15 H 4-60. 1I4-60. 2 H 4-106.2 G
3 J 2-36 J 4-16 H 4-61 E 4-107 E
4 J 2-36.1/2-36.2 J 4-16.1 H 4-62 E 4-108 H
5/6 J 2-37 G 4-16.2 H 4-63 H 4-108.1/
7 F 2-38 E 4-17 H 4-64 E 4-108.2 H
8 E 3-1 H 4-18 H 4-65 H 4-109 G
9/10 E 3-2 E 4-19 H 4-66 G 4-110 H
11 J 3-3 E 4-20 H 4-67 E 4-111 J
12 J 3-4 H 4-21 E 4-68 E 4-112 J
13 J 3-5 E 4-22 G 4-69 F 4-112.1/
14 J 3-6 H 4-23 J 4-70 F 4-112.2 J
15 J 3-7 G 4-24 F 4-71 G 4-113 J
16 J 3-8 G 4-25 J 4-72 H 4-114 J
17 J 3-9 J 4-26 J 4-73 H 4-115 J
18 J 3-10 G 4-27 G 4-74 G 4-116 J
19 J 3-10.1/3-10.2 G 4-28 J 4-74.1 J 4-116.1 J
20 J 3-11 J 4-29 J 4-7 4. 2 J 4-116.2 J
1-1 E 3-12 F 4-30 G 4-74.3 J 4-117 F
1-2 E 3-13 J 4-30.1/4-30. 2 G 4-75 J 4-118 E
1-3 G 3-14 J 4-31 F 4-76 H 4-119 J
1-4 G 3-15 J 4-32 G 4-77 H 4-120 E
1-5 G 3-16 G 4-33 G 4-78 H 4-121 J
1-6 F 3-17 G 4-34 H 4-78.1/4-78.2 J 4-122 J
2-1 E 3-18 G 4-34.1 H 4-79 J 4-123 E
2-2 E 3-19 F 4-34.2 J 4-80 J 4-124 E
2-3 H 3-20 F 4-35 H 4-81 J 4-125 E
2-4 E 3-21 F 4-36 H 4-82 J 4-126 E
2-5 E 3-22 J 4-36.1 H 4-82.1 J 4-127 H
2-6 E 3-22 .1/3-22. 2 H 4-36.2 H 4-82.2 J 4-128 H
2-7 J 3-23 F 4-36. 3 H 4-83 J 4-128.1/
2-8 E 3-24 G 4-37 J 4-84 H 4-128.2 G
2-9 H 3-25 F 4-38 H 4-84.1/4-84.2 J 4-129 F
2-10 E 3-26 H 4-38.1 J 4-85 G 4-130 F
2-11 E 3-27 E 4-38. 2 J 4-86 H 4-131 E
2-12 E 3-28 G 4-39 J 4-86 .1/4-86. 2 H 4-132 H
2-13 E 3-29 H 4-40 H 4-87 G 4-133 H
2-14 E 3-30 G 4-40.1/4-40.2 H 4-88 G 4-134 E
2-15 H 3-31 J 4-41 E 4-88.1/4-88.2 J 4-135 E
2-16 F 3-32 G 4-42 J 4-89 J 4-136 E
2-17 J 3-33 G 4-43 G 4-90 E 4-137 E
2-18 E 4-1 H 4-44 H 4-91 J 4-138 E
2-19 E 4-2 H 4-44.1/4-44.2 H 4-92 J 4-139 G
2-20 E 4-2.1/4-2.2 H 4-45 G 4-92. 1/4-92. 2 J 4-140 E
2-21 E 4-3 H 4-46 E 4-93 E 4-141 E
2-22 E 4-4 F 4-47 E 4-94 F 4-142 J
2-23 E 4-5 F 4-48 G 4-95 F 5-1 E
2-24 G 4-6 H 4-49 E 4-96 F 5-2 E
2-25 E 4-6.1 H 4-50 G 4-97 E 5-3 E
2-26 F 4-6. 2 H 4-51 H 4-98 E 5-4 G
2-27 G 4-6. 3 I 4-6. 4 J 4-52 E 4-99 E 5-5 J
2-28 G 4-7 E 4-53 E 4-100 E 5-6 F
2-28.1/2-28.2 G 4-8 E 4-54 G 4-101 E 5-7 G
2-29 E 4-9 E 4-55 E 4-102 F 5-8 G
2-30 G 4-10 E 4-56 E 4-103 H 5-9 G

60459410 J 3

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

5-10 E 8-13 G 8-84 E 9-58 J 9-58 J
5-11 E 8-14 J 8-85 E 9-59 E 9-59 E
5-12 E 8-15 H 8-86 E 9-60 J 9-60 J
5-13 E 8-16 J 8-87 E 9-61 J 9-61 J
5-14 E 8-17 J 8-88 E 9-62 J 9-62 J
5-15 E 8-18 G 8-89 H 9-63 E 9-63 E
5-16 E 8-19 F 8-90 E 9-64 E 9-64 E
5-17 E 8-20 F 8-91 E 9-65 J 9-65 J
5-18 E 8-21 J 8-92 E 9-66 J 9-66 J
5-19 E 8-22 J 8-93 E 9-67 E 9-67 E
5-20 J 8-23 H 8-94 E 9-68 E 9-68 E
5-21 J 8-24 H 8-95 E 9-69 E 9-69 E
5-21.1 J 8-25 H 8-96 E 9-70 E 9-70 E
5-21.2 J 8-26 H 9-1 E 9-71 J 9-71 J
5-22 J 8-27 H 9-2 E 9-72 E 9-72 E
5-22.1/5-22.2 J 8-28 H 9-3 E 9-73 E 9-73 E
5-23 E 8-29 E 9-4 H 9-74 E 9-74 E
5-24 F 8-30 H 9-5 E 9-75 J 9-75 J
5-25 F 8-31 E 9-6 H 9-76 J 9-76 J
5-26 F 8-32 E 9-7 E 9-77 J 9-77 J
5-26.1/5-26.2 G 8-33 E 9-8 G 9-78 J 9-78 J
5-27 G 8-34 E 9-9 E 9-79 J 9-79 J
5-28 E 8-35 E 9-10 E 9-80 F 9-80 F
5-29 E 8-36 E 9-11 J 9-81 G 9-81 G
5-30 E 8-37 E 9-12 H 9-82 G 9-82 G
6-1 E 8-38 E 9-13 J 9-82.1/9-82.2 J 9-82.1/9-82.2 J
6-2 H 8-39 G 9-14 J 9-83 E 9-83 E
6-2.1/6-2.2 H 8-40 G 9-15 H 9-84 G 9-84 G
6-3 J 8-41 E 9-16 H 9-85 E 9-85 E
6-4 J 8-42 E 9-17 E 9-86 G 9-86 G
6-5 J 8-43 E 9-18 E 9-87 E 9-87 E
6-6 J 8-44 G 9-19 E 9-88 E 9-88 E
6-7 J 8-45 G 9-20 E 9-89 H 9-89 H
6-8 J 8-46 E 9-21 E 9-90 J 9-90 J
6-9 J 8-47 E 9-22 G 9-91 E 9-91 E
6-10 J 8-48 G 9-22.1/9-22.2 G 9-92 E 9-92 E
6-11 J 8-49 J 9-23 G 9-93 E 9-93 E
6-12 J 8-50 E 9-24 E 9-94 E 9-94 E
6-12.1 J 8-51 J 9-25 E 9-95 E 9-95 E
6-12.2 J 8-52 H 9-26 H 9-96 E 9-96 E
6-12.3/6-12.4 J 8-53 E 9-27 G 9-97 E 9-97 E
6-13 E 8-54 H 9-28 H 9-98 E 9-98 E
6-14 E 8-55 H 9-29 G 9-99 E 9-99 E
6-15 E 8-56 E 9-30 E 9-100 G 9-100 G
6-16 E 8-57 H 9-31 E 9-101 E 9-101 E
6-17 H 8-58 J 9-32 F 9-102 F 9-102 F
6-18 J 8-59 E 9-33 F 9-103 H 9-103 H
6-19 E 8-60 J 9-34 F 9-104 E 9-104 E
6-20 E 8-61 E 9-35 F 9-105 G 9-105 G
6-21 E 8-62 E 9-36 E 9-106 E 9-106 E
6-22 E 8-63 J 9-37 J 9-107 E 9-107 E
6-23 G 8-64 E 9-38 J 9-108 G 9-108 G
6-24 E 8-65 J 9-39 H 9-109 E 9-109 E
7-1 E 8-66 J 9-40 G 9-110 G 9-110 G
7-2 E 8-67 E 9-41 J 9-110.1/ 9-110.1/
7-3 E 8-68 E 9-42 J 9-110. 2 G 9-110.2 G
7-4 E 8-69 H 9-43 G 9-111 E 9-111 E
7-5 E 8-70 E 9-44 E 9-112 F 9-112 F
7-6 E 8-71 E 9-45 E 9-113 F 9-113 F
8-1 E 8-72 E 9-46 G 9-114 F 9-114 F
8-2 E 8-73 F 9-47 E 9-115 J 9-115 J
8-3 E 8-74 J 9-48 H 9-116 J 9-116 J
8-4 E 8-75 E 9-49 E 9-117 H 9-117 H
8-5 E 8-76 E 9-50 E 9-118 E 9-118 E
8-6 F 8-77 E 9-51 G 9-119 E 9-119 E
8-7 E 8-78 E 9-52 G 9-120 J 9-120 J
8-8 E 8-79 E 9-53 G 9-121 J 9-121 J
8-9 E 8-80 E 9-54 G 9-122 E 9-122 E
8-10 E 8-81 E 9-55 E 9-123 J 9-123 J
8-11 H 8-82 E 9-56 G 9-124 E 9-124 E
8-12 H 8-83 E 9-57 J 9-125 E 9-125 E

4 60459410 H

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

B-14 H B-85 J F-15 G
B-15 H B-86 J G-1 J
B-16 H B-87 J G-2 J
B-17 H B-88 J G-3 J
B-18 H B-89 J G-4 J
B--19 H B-90 J Index-I J
B-20 H B-91 J Index-2 J
B-21 H B-92 J Index-3 J
B-22 H B-93 J Index-4 J
B-23 H B-94 J Index-5 J
B-24 H B-95 J Index-6 J
B-25 H B-96 J Index-7 J
B-26 J B-97 J Index-8 J
B-27 J B-98 J Index-9 J
B-28 J B-99 J Index-10 J
B-29 J B-100 J Index-11 J
B-30 J B-101 J Index-12 J
B-31 J B-102 J Comment Sheet J
B-32 J B-103 J Inside Back
B-33 J B-104 J Cover J
B-34 J B-105 J Back Cover -
B-35 J B-106 H
B-36 J B-107 H
B-37 J B-108 H
B-38 J B-109 H
B-39 J B-110 J
B-40 J B-111 J
B-41 J B-112 J
B-42 J C-1 E
B-43 J C-2 H
B-44 J C-3 H
B-45 J C-4 H
B-46 J C-5 H
B-47 J C-6 H
B-48 J C-7 H
B-49 J C-8 H
B-50 J C-9 J
B-51 J C-10 J
B-52 J C-11 J
B-53 J D-1 E
B-54 J D-2 E
B-55 J D-3 E
B-56 J D-4 F
B-57 J D-5 J
B-58 J D-6 E
B-59 J D-7 G
B-60 J D-8 E
B-61 J D-9 E
B-62 J E-1 E
B-63 J E-2 E
B-64 J E-3 E
B-65 J E-4 E
B-66 J E-5 E
B-67 J E-6 E
B-68 J E-7 E
B-69 J E-8 E
B-70 J E-9 E
B-71 J F-1 E
B-72 J F-2 E
B-73 J F-3 E
B-74 J F-4 J
B-75 J F-5 E
B-76 J F-6 E
B-77 J F-7 J
B-78 J F-8 F
B-79 J F-9 F
B-80 J F-10 J
B-81 J F-11 E
B-82 J F-12 E
B-83 J F-13 J
B-84 J F-14 J

60459410 J 5/6

PREFACE

This manual describes the CONTROL DATA®
CDC® CYBER 200 Series Computer System.

Virtual Storage Operating System (VSOS) for the
This manual is published in two volumes:

• Volume 1 describes system utilities and system interface language (SIL)
subroutines. It also contains a general description of CYBER 200 hardware and
operating system software, file concepts, and task execution. It is written
primarily for the applications programmer.

• Volume 2 describes system messages and job management tables. It also describes
system accounting file formats, common execute line routines, and loader
conventions. It is written primarily for the system programmer.

RELATED PUBLICATIONS

Related information can be found in the following publications:

Control Data Publication

VSOS Version 2, Reference Manual, Volume 2

FORTRAN 200 Version 1 Reference Manual

CYBER 200 Maintenance Software System Reference Manual

CYBER 200 Assembler Version 2 Reference Manual

CYBER 200/Model 205 Computer System Hardware Reference Manual

CYBER 200/Model 205 Troubleshooting Guide

VSOS Version 2 Operator's Guide

VSOS Version 2 Installation Handbook

Remote Host Facility Handbook (Use with NOS system)

Remote Host Facility Handbook for IBM System (Use with MVS/JES2,
MVS/JES3, and MVS/ASP systems)

Remote Host Facility Handbook (Use with SCOPE 2 system)

Remote Host Facility User's Guide

VSOS Version 2 Site Manager's Handbook

VSOS User's Guide for FORTRAN 200 Programmers

60459410 F

Publication
Number

60459420

60480200

60457200

60485010

60456020

60430060

60459430

60459440

60459060

60459050

60455610

60460620

60461490

60455390

7

Control Data manuals can be ordered from:

8

Literature and Distribution Services
STP005
304 North Dale Street
St. Paul, MN 55103

DISCLAIMER

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features or
parameters.

Control Data no longer supports the FORTRAN
66 compiler.

(

60459410 E
~

UPPERCASE

UNDERLINED UPPERCASE

Lowercase words

[] Brackets

I) Braces

• • • Ellipses

NOTATIONS USED IN THIS MANUAL

Words or character strings that must be entered as shown.
They must be spelled correctly, including any = or I shown.

Words or character strings that can be abbreviated to the
number of underlined characters.

Generic terms that represent the parameters or character
strings supplied by the programmer. When generic terms are
repeated in a format, a number or letter might be appended.

An optional portion of a format. All parameters enclosed
within the brackets can be omitted at the programmer's
option. The brackets are editorial conventions only; they are
not part of the format.

A portion of a format in which only one of the vertically
stacked items can be used. The braces are editorial
conventions only; they are not part of the format.

An indicator of repetition. The portion of the format
immediately preceding the ellipses can be repeated at the
programmer's option.

An indicator of a blank. In a format, this character
indicates that a blank or space should appear.

An indicator that hexadecimal numbers follow. Numbers used in
this manual are decimal unless noted as hexadecimal.

Punctuation characters shown within formats are required unless the text indicates that
another punctuation character can be substituted.

60459410 E 9/10

1 • INTRODUCTION

System Configuration
CYBER 200 Mainframe
CYBER 200 Memory
Maintenance and Control Unit
Loosely Coupled Network (LCN)

Operating System
Resident System
Virtual System
Privileged System Tasks

VSOS User Interface
Remote Host Facility (RHF)
CYBER 200 Comparison
Virtual Memory Addressing
Register File

2. FILE CONCEPTS

File Attributes
File Types

Controllee Files
Data Files
Drop Files

Drop File Naming Convention
Restarting a Task
Bound Explicit and Implicit

Maps
Output Files

Print Files
Print Control Characters

Output File Error Processing
File Duration

Scratch Files
Local Files
Permanent Files

File Usage Controls
File Security Levels
File Patterning
File Ownership

File Search Hierarchy
Private Files
Pool Files
System Pool
Public Files

File Access Permissions
Read Permission
Write Permission
Append Permission
Modify Permission

60459410 J

CONTENTS

1-1

1-1
1-2
1-2
1-2
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6

2-1

2-1
2-2
2-2
2-2
2-2
2-3
2-3

2-4
2-4
2-5
2-5
2-7
2-8
2-8
2-8
2-8
2-9
2-9
2-9
2-9
2-12
2-12
2-12
2-13
2-13
2-14
2-14
2-14
2-14
2-15

File I/O

Execute Permission
Access Permission Sets
Concurrent File Access

Explicit I/O
Implicit I/O

Logical File Structures
Logical Record Formats

ANSI Fixed Length (F)
Record Format

Record Mark Delimited (R)
Record Format

Undefined Structure (U)
Record Format

Control Word Delimited (W)
Record Format

CYBER Record Manager Control
Word (L) Record Format

System Block (B) Record Format
Blocking Types

C Blocking
I Blocking
K Blocking

File Organization
Sequential Access Organization
Direct Access Organization

Device Characteristics
Mass Storage Files

File Space Allocation
Tape Files

Tape Drive Reservation
Volume Assignment
Volume Switching
Tape Labeling
Tape Data Recording
Tape Data Organization
Tape Error Processing
User Error Processing

Connected Interactive Terminal
Files

3. TASK EXECUTION

Initiating Controllee Execution
Virtual Space Mapping
Controllee Chains

. System Access
User Validation
Interactive System Access
VSOS Interactive Login

2-15
2-15
2-16
2-17
2-17
2-17
2-18
2-18

2-18

2-19

2-19

2-20

2-21
2-22
2-23
2-23
2-23
2-24
2-25
2-25
2-25
2-26
2-26
2-26
2-28.1
2-28.1
2-29
2-29
2-29
2-32
2-33
2-36.1
2-37

2-37

3-1

3-1
3-2
3-3
3-4
3-4
3-5
3-5

11 •

Batch System Access
Interactive Session

Break Character
Interactive Request Lines

Changing the Interactive
Request Special Character

Terminal Information Requests
Case Conversion Request
Operator Message Request
Task Interrupt Request
Session Termination Request

Interactive Execute Line
Task Data Input
Dynamic and Static Execution

Batch Job
Batch Input File Structure
Batch Control Statement
Job Scheduling
Job Processing
Job Dayfile
Job Termination

Job Termination Procedure
Job Abort
Abnormal Job Termination

Job Processing Example
Remote Host Facility
Interactive Access
Queue File Transfers

CYBER 200 Job Submission
Output File Routing
Explicit File Routing

RHF Permanent File Requests
Permanent File Requests
Permanent File Audit Request
Direct Access File Transfers

File Archiving
Task Termination

User Reprieve
Abnormal Termination Control

ATC Interrupt Subroutine
Enabling and Disabling ATC

Resource Allocation
Batch Resource Limits
Interactive Resource Limits

Accounting

4. CONTROL STATEMENTS

Control Statement Parameter Format
Interactive Control Statement

Execution
Control Statement Management

Control Statement Variables
Conditional Control Statements

IF Control Statement

• 12

ELSE Control Statement
ENDIF Control Statement

3-6
3-7
3-7
3-7

3-7
3-8
3-9
3-.10
3-10
3-10.1
3-10.1
3-12
3-12
3-14
3-14
3-14
3-15
3-16
3-17
3-17
3-18
3-18
3-18
3-18
3-21
3-21
3-22
3-22
3-23
3-23
3-24
3-24
3-25
3-25
3-27
3-28
3-28
3-28
3-29
3-30
3-31
3-31
3-32
3-33

4-1

4-4

4-5
4-6
4-6
4-6.1
4-6.1
4-6.2
4-6.2

Conditional Statement Processing
Control Statement Procedures

PROC Statement
BEGIN Statement
Control Statement Execution

Sequence
Procedure Nesting
Formal Parameter Substitution

Matching Substitution Values
to Formal Parameters

Omitting Substitution Values
Suppressing Formal Parameter

Substitution
Concatenating Substitution

Values
Suppressing @ or A Character

Removal
ATTACH - Attach Permanent Files
AUDIT - List File Information

File Specification
AUDIT Output

CHARGE - Assign Account and Project
Number

COMMENT - Send Message to Job Dayfile
COMPARE - Compare File Contents

Controllee File Comparison
COPY - Copy a File

Copying to or from a Tape File
Copying to a Mass Storage File
Controllee File Copy

COPYL - Copy Logical Records
DAYFILE - Copy the Job Dayfile
DEFINE - Define a Permanent File

Defining a New File
DIVERT - Change the Destination of

an Output File
DMAP - Provide Information on

Location of File Segments
DROP - Remove a Job from a Queue
DUMPF - Archive Files

Specification of Files to be
Archived

Archive File Format
Archiving to a Front-End System
Archiving to CYBER 200 Mass

Storage
Using DUMPF to Purge Files
Archiving to CYBER 200 On-Line

Tapes
DUMPF Output

EDITPUB - Add or Destroy Public
File

Variable Rate Index Specification
EXIT - Set Abnormal Termination Path
FILES - List File Information

FILES Output
Interactive Utility Execution

GIVE - Change File Owner
LABEL - Label Tape File

Multif ile Sets

4-6.2
4-6.3
4-6.3
4-6.3

4-7
4-8
4-8

4-9
4-10

4-11

4-11

4-12
4-13
4-15
4-17
4-18

4-21
4-22
4-23
4-24
4-25
4-26
4-26
4-27
4-28
4-30
4-30.1
4-33

4-34

4-34.2
4-36
4-36.2

4-40.1
4-41
4-42

4-42
4-43

4-43
4-43

4-46
4-47
4-48
4-49
4-51
4-52
4-53
4-55
4-58

60459410 J

Writing a Multifile Set
Reading a Multifile Set
Rewriting Files in a

Multifile Set
LIMITS - List User Validations
LISTAC - List Access Permission Sets

LISTAC Output
LOAD - Generate Controllee File

Files Used to Generate a
Controllee

Object Code Files
Listing File
Controllee File

Satisfying External References
Dynamic Linking Using the System

Shared Library
Dynamic Linker
Dynamic Execution
Dynamically Linked Controllees

Page Grouping
Grouping Controllee File

Blocks
Grouping Unmapped Blocks
Grouping Parameter Mapping

Space Initialization
Target Page Size
Control Statement Format
Interactive Load Execution

LOADPF - Reload Files
RHF Reloading
Reloading from CYBER 200 Mass

Storage
Reloading from CYBER 200 On-Line

Tapes
User Reloading Capabilities
Specification of the Files to

Be Reloaded
LOADPF Output

MFLINK - Permanent File Transfer
Character Code Conversion
Logical Structure Conversion

MFQUEUE - Explicit File Routing
NORERUN - Set Norerun Status
OLE - Object Library Editor
PACCESS - Authorize Pool Access
PASSWORD - Change User Password
PATTACH - Attach a Pool
PCREATE - Create a Pool
PDELETE - Remove User Access to a Pool
PDESTROY - Destroy a Pool
PDETACH - Detach an Attached Pool
PERMIT - Change Access Permission Set
PFILES - List Pool Information
Proceed - Set Abnormal Termination

Path
PURGE - Destroy Permanent or Pool

Files
Q - List Job Status

604.59410 J

4-58
4-59

4-59
'•-60.1
4-61
4-63
4-65

4-65
4-65
4-66
4-66
4-69

4-70
4-70
4-71
4-71
4-71

4-72
4-72
4-73
4-73
4-74
4-74.1
4-78.1
4-80
4-84

4-84

4-84.1
4-85

4-85
4-86
4-88
4-90
4-90
4-91
4-93
4-94
4-97
4-98
4-99
4-100
4-101
4-102
4-102
4-103
4-105

4-106

4-106.1
4-107

Input Queue Status
Executing Task Status
Output File Status

REQUEST - Create Local File
File Space Allocation
Tape File Request

Tape Labels
Data Format Specification
Processing Options
Operator Message

RERUN - Set Rerun Status
RESOURCE - Set Job Resource Limits

Tape Drive Reservation
RETURN - Evict Local Files or Detach

Permanent Files
Returning Tape Files

REWIND - Rewind a Tape File
SET - Change Job Characteristics
SKIP - Reposition a Tape File
SLGEN - Construct System Shared

Library
SUBMIT - Submit a File to a Queue
SUMMARY - Provide Resource Usage

Information
SUMMARY Output

SWITCH - Change File Attributes
TASKATT - Alter a Task's Attributes
TV - Set Threshold Value
USER - Provide User Validation

Information

5. UPDATE

Examples
General Processing

Update Mode and Files
Input File
New Program Library
Source File
Old Program Library
Compile File
List File
Pullmod File

Creation of Program Library
Card Identification
Correction Run

Deck List and Directory Order
Purge and Yank Directives
Overlapping Corrections

Update Directives
ADDFILE Directive
BEFORE Directive
CALL Directive
COMDECK Directive
COMPILE Directive
DECK Directive
DEFINE Directive

4-108.1
4-109
4-110
4-112.1
4-117
4-118
4-118
4-119
4-119
4-119
4-120
4-121
4-123

4-124
4-125
4-126
4-127
4-128.1

4-129
4-132

4-134
4-134
4-136
4-139
4-140

4-142

5-1

5-2
5-4
5-6
5-7
5-8
5-8
5-8
5-8
5-9
5-9
5-9
5-10
5-11
5-12
5-12
5-13
5-14
5-15
5-16
5-16
5-17
5-18
5-19
5-20

13 •

DELETE Directive
ENDIF Directive
!DENT Directive
IF Directive
INSERT Directive
MOVE Directive
PULLMOD Directive
PURDECK Directive
PURGE Directive
READ Directive
WIDTH Directive
YANK Directive
YANKDECK Directive
I Comment Directive

Update Control Statement

6. DEBUGGING

DEBUG

LOOK

DUMP

DEBUG Control Statement
DEBUG Directives

Dump or Display Directives
Register Directives
Alter Memory Directives
Restore Memory Directive
Program Control Directives

LOOK Control Statement
LOOK Directives

SEARCH Directive
HSEARCH Directive
Disposition of Directive

Output
Display and Dump

Directives
Directives for Entering

Values
Declaration of Directive

Address Type

7. CHECKPOINT/RESTART

Checkpointing a Task
Task Processing After the

CHKPNT Call
Restarting a Task

Restarting a Task That Uses
Tape Files

8. SYSTEM INTERFACE LANGUAGE
(NON-I/O CALLS)

Overview
SIL Error Processing
SIL Call Format
No Operation Keywords

• 14

5-20
5-21
5-21
5-22
5-21.1
5-21.1
5-22
5-22.1
5-23
5-24
5-24
5-25
5-25
5-26
5-26.1

6-1

6-2
6-2.1
6-3
6-5
6-7
6-9
6-11
6-12
6-13
6-13
6-13
6-16
6-17

6-18

6-18

6-20

6-21
6-23

7-1

7-1

7-2
7-5

7-5

8-1

8-2
8-5
8-6
8-7

SIL Non-I/O Calls
Q5ADVISE - Advise System of

Virtual Space Requirements
Q5CPUTIM - Get CPU Time
Q5DCDDST - Decode Disk Status

Table
Q5DCDMSC - Decode Miscellaneous

Table
Q5DCDPFI - Decode Pack File Index
Q5DCDPLB - Decode Pack Label
Q5DESBIF - Destroy Batch Input

File
Q5DISAMI - Disable Message

Interrupts
Q5DISATI - Disable Abnormal

Termination Control
Q5DMPACT - Dump Cumulative

Accounting Buff er
Q5ENAMI - Enable Message

Interrupts
Q5ENATI - Enable Abnormal

Termination Control
Q5GETACT - Get Resource Usage

Statistics
Q5GETCTS - Get Controllee

Termination Status
Q5GETIIP - Get Invisible Package
Q5GETIRF - Get Register File
Q5GETLP - Get Large Page Limits
Q5GETMCE - Get Message from

Control lee
Q5GETMCR - Get Message from

Controller
Q5GETMOP - Get Message from

Operator
Q5GETMPG - Get Minus Page
Q5GETPFI - Get Pack Label and

File Index
Q5GETTL - Get Time Limit
Q5GETTN - Get Task Attributes
Q5GETUID - Get User Number
Q5INIT - Initialize Controllee
Q5INITCH - Initialize Controllee

Chain
Q5LFIHIR - List File Index Entry

By Hierarchical Search
Q5LFIPOL - List Pool File Indices
Q5LFIPRI - List Private File

Indices
Q5LFIPUB - List Public File

Indices
Q5LSTBUT - List Bank Update Table
Q5LSTCH - List Controllee Chain
Q5LSTSTB - List Statistics Buffer
Q5LSTTCB - List Timecard Buffer
Q5MEMORY - Allocate Static Stack
Q5RECALL - Suspend Task Execution
Q5REPREV - Enable or Disable User

Reprieve

8-7

8-8
8-10

8-11

8-13
8-18
8-29

8-31

8-32

8-33

8-34

8-35

8-37

8-38

8-40
8-41
8-42
8-43

8-44

8-45

8-47
8-48

8-49
8-50
8-51
8-53
8-55

8-56

8-58
8-60

8-63

8-66
8-68
8-69
8-71
8-72
8-73
8-74

8-75

60459410 J

9.

SIL

SIL

Q5RFI - Return from Interrupt
Subroutine

Q5RUNBIF - Rerun Batch Input File
Q5SETLP - Change Current Large

Page Limit
Q5SNDMCE - Send Message to

Controllee
Q5SNDMCR - Send Message to

Controller
Q5SNDMDF - Send Message to

Day file
Q5SNDMJC - Send Message to Job

Controller
Q5SNDMJS - Send Message to Job

8-77
8-78

8-79

8-80

8-82

8-84

8-87

Session 8-89
Q5SNDMOP - Send Message to Operator 8-90
Q5SNDSTR - Start Controllee

Execution 8-92
Q5TERM - Terminate Task 8-93
Q5TERMCE - Disconnect Controllee 8-94
Q5TIME - Get System Time 8-95
Q5VRACC - Change Accounting Rate 8-96

SYSTEM INTERFACE LANGUAGE
(I/O CALLS) 9-1

I/O Overview 9-3
Preparing a File for I/O 9-3

FIT Processing 9-3
Opening a File 9-4

Explicit I/O 9-4
Explicit I/0 by Logical

Partition 9-4
Explicit I/O By Physical Block 9-7
Appending Data 9-7

Implicit I/O 9-8
Example of Implicit I/O 9-8

I/O Calls 9-9
Q5ATTACH - Attach Permanent File 9-10
Q5CHANGE - Change File Attributes 9-12
Q5CHECK - Check I/O Request Status 9-16

Tape I/O Requests 9-17
Q5CHECKB - Check Block I/O

Request Status 9-19
Q5CLIOER - Clear Tape I/O Error 9-21
Q5CLOSE - Close File 9-22

Tape Label Processing 9-23
QSDEFINE - Define Permanent File 9-25
Q5ENDPAR - Write Partition

Delimiter 9-29
Tape Partition Delimiters 9-30

Q5GENFIT - Generate FIT 9-31
Tape File FITs 9-36
Accessing the Tapes Table Entry 9-37

Q5GETB - Get a Buffer Record 9-39
Q5GETFIL - Open or Create and

Open a File 9-40
Mass Storage Files 9-47

60459410 J

Opening a File for
Implicit I/O

Files Connected to Terminals
Tape Files

Q5GETFIT - Get FIT Field Values
Q5GETN - Read Partition

Tape Files
Q5GETP - Read Partial Partition

Tape Files
Q5GIVE - Give File Ownership
Q5LABEL - Request File from

Multif ile Set
Multifile Sets

Q5MAPIN - Map In Virtual Space
Q5MAPOUT - Map Out Virtual Space
QSOPEN - Open File

Access Modes
Shared Access
I/O Buffers
Implicit I/O
Files Connected to Terminals
Tape Files

Q5PATACH - Attach Pool
Q5PCREAT - Create Pool
QSPDESTR - Destroy Pool
QSPDTACH - Detach Pool
QSPERMIT - Change Access

Permission Set
Tape Access

QSPGRACC - Grant Access to Pool
QSPOOLS - List Pools
QSPREACC - Remove Access to Pool
Q5PURGE - Purge File
QSPUSERL - List Users With

Access to Pool
QSPUTB - Put a Buffer Record
QSPUTN - Write Partition

Tape Files
QSPUTP - Write Partial Partition

Tape Files
QSREAD - Read Block

Reading Tape Data
Reading PRUs
Reading LRUs
LRU Description Array
Writing Additional Tape

Volume Labels
QSREDUCE - Reduce File Space
QSREELSW - Write Additional Tape

Volume Labels
QSRETFIT - Return FIT
Q5RETURN - Return File

Tape Files
Q5REWIND - Rewind File

Tape Files
Q5ROUTE - Route File
Q5RQUEST - Request Local File

Files Connected to Terminals
Tape Files

9-48
9-48
9-48
9-50
9-55
9-55
9-57
9-59
9-60

9-63
9-67
9-70
9-72
9-74
9-74
9-74
9-82.1
9-83
9-83
9-83
9-85
9-86
9-87
9-88

9-89
9-89
9-91
9-92
9-93
9-94

9-96
9-97
9-98
9-99
9-100
9-102
9-102
9-104
9-104
9-105
9-105

9-105
9-106

9-107
9-109
9-110
9-110.1
9-111
9-111
9-112
9-115
9-115
9-115

15 •

Q5SETFIT - Set FIT Field Values
Q5SKIP - Skip Partition

Repositioning a Sequential
Access File

Tape Files
Q5WRITE - Write Block

I/O Buffers Used
Wait Processing
Appending Blocks
Tape Files
Writing Additional Tape

Volume Labels

10. COMMON EXECUTE LINE SUPPORTING
ROUTINES

Conventions
Supporting Routines

Q7ENVIRN

A.

B.

c.

D.

E.

Q7MODE
Q7PROMPT
Q7KEYWRD

lhs Table
rhs Table

CHARACTER SET

MESSAGES

GLOSSARY

SIL FILE INFORMATION TABLE

FORTRAN DATA CONVERSION ROUTINES

IBM Arithmetic Conversion Routines
IBM to CYBER 200 64-Bit Floating

Point Conversion
IBM to CYBER 200 32-Bit Floating

Point Conversion
CYBER 200 to IBM 64-Bit Floating

Point Conversion
CYBER 200 to IBM 32-Bit Floating

Point Conversion

• 16

9-122
9-126

9-127
9-129
9-130
9-130
9-131
9-132
9-132

9-132

10-1

10-1
10-5
10-5
10-6
10-7
10-8
10-12
10-15

Return Buff er
Special Characters

11. VSOS SCREEN SUPPORT ROUTINES

Q9SCR
Definitions
Synopsis
Calling Conventions
Memory Use
Descriptions of Individual

Routines
Limits

Q9SPRINT
Usage
Examples
Alternate Interfaces

Miscellaneous Definitions and
Guidelines

Format of Display Tables
Guidelines for Implementing Table

Displays
Guidelines for Implementing Display

Tasks

10-19
10-26

11-1

11-1
11-2
11-3
11-4
11~1

11-7
11-15
11-16
11-16
11-18
11-19

11-19
11-19

11-20

11-20

APPENDIXES

A-1 CYB ER 170 Arithmetic Conversion
Routines E-5

Conversion Processing E-5
B-1 Call Format E-6

CYBER 170 to CYBER 200 Integer
Conversion E-6

C-1 CYBER 200 to CYBER 170 Integer
Conversion E-7

CYBER 170 to CYBER 200 Floating
D-1 Point Conversion E-7

CYBER 200 to CYBER 170 Floating
Point Conversion E-7

E-1 CYBER 170 to CYBER 200 Numeric
Data Transfer Example E-8

E-1 CYBER 170 to CYBER 200
Transfer E-8

E-1 CYBER 200 to CYBER 170
Transfer E-9

E-2

E-3 F. TAPE LABELS AND FORMATS F-1

E-3 G. DISPLAY PROGRAM EXAMPLE G-1

60459410 J

INDEX

FIGURES

1-1
2-1
2-2
2-3
2-4
2-5
2-6
3-1
3-2
3-3
3-4

3-5
3-6
3-7
3-8
4-1
4-1.1
4-1.2
4-1.3
4-2
4-3
4-4
4-5
4-6

4-7
4-8

4-9

4-10
4-11
4-12

4-13

CYBER 200 Configuration Example
File Ownership
W Control Word Format
L Control Word Format
I Block Control Word Format
I Format PRU Terminator
SI Format PRU Terminator

1-1
2-11
2-20
2-21
2-24
2-34
2-35

Task Mapping 3-2
LOGIN Command Format 3-6
Interactive Execute Line Format 3-11
Example Batch Input File as

Read by the Batch Processor
USER Control Statement Format
MFGIVE Control Statement Format
MFTAKE Control Statement Format
Interrupt Subroutine Header
IF Control Statement Format
ELSE Control Statement Format
ENDIF Control Statement Format
PROC Control Statement Format
BEGIN Control Statement Format
ATTACH Control Statement Format
AUDIT Control Statement Format
AUDIT Output Example
AUDIT Output Example (if either

the ACCOUNT or the MPN
parameters are specified)

CHARGE Control Statement Format
COMMENT and Control Statement

Format
COMPARE Control Statement

Format
COPY Control Statement Format
COPYL Control Statement Format
DAYFILE Control Statement

Format
DEFINE Control Statement

3-19
3-22.1
3-25
3-25
3-29
4-6.1
4-6.2
4-6.2
4-6.3
4-7
4-13
4-15
4-20

4-20
4-22

4-22

4-23
4-25
4-28

4-30.1

Format 4-31
4-13.1 DIVERT Control Statement

4-14
4-14.1
4-15
4-16
4-17
4-18

4-19
4-20
4-21
4-22
4-23

Format
DMAP Control Statement Format
DROP Control Statement Format
DUMPF Control Statement Format
Directory/Dumped File Format
DUMPF Output Example
EDITPUB Control Statement

Format
EXIT Control Statement Format
FILES Control Statement Format
FILES Sample Output
GIVE Control Statement Format
LABEL Control Statement Format

60459410 J

4-34
4-34.2
4-36.1
4-37
4-41
4-45

4-46
4-48
4-50
4-51
4-53
4-55

4-23.1 LIMITS Control Statement
Format

4-24 LISTAC Control Statement
Format

4-25 Files Used by the LOAD Utility
4-26 Controllee File Format (Code

and Data Bases Separate)
4-27 Controllee File Format (Data

Grouped with Code)
4-28 LOAD Control Statement Format
4-29 Example of Interactive LOAD

Execution
4-30 LOADPF Control Statement

Format
4-31 LOADPF Output Example
4-32 MFLINK Control Statement

Format
4-33 MFQUEUE Control Statement

Format
4-34 NORERUN Control Statement

Format
4-35 NORERUN/RERUN Example
4-36 OLE Control Statement Format
4-37 PACCESS Control Statement

Format
4-38 PASSWORD Control Statement

Format
4-39 PATTACH Control Statement

Format
4-40 PCREATE Control Statement

Format
4-41 PDELETE Control Statement

Format
4-42 PDESTROY Control Statement

Format
4-43 PDETACH Control Statement

Format
4-44 PERMIT Control Statement

Format
4-45 PFILES Control Statement

Format
4-46 PFILES Sample Output
4-46.1 PROCEED Control Statement

Format
4-47 PURGE Control Statement Format
4-48 Q Control Statement Format
4-49 REQUEST Control Statement

Format
4-50 RERUN Control Statement Format
4-51 RESOURCE Control Statement

Format
4-52 RETURN Control Statement

Format

4-60.1

4-62
4-65

4-67

4-68
4-74.1

4-79

4-80
4-87

4-88.1

4-91

4-93
4-93
4-95

4-97

4-98

4-99

4-100

4-101

4-102

4-102

4-104

4-105
4-105

4-106
4-106.l
4-108

4-112
4-120

4-121

4-124

17 •

4-53 REWIND Control Statement 8-10 Q5DMPACT Call Format 8-34
Format 4-126 8-11 Q5ENAMI Call Format 8-35

4-54 SET Control Statement Format 4-127 8-12 Q5ENATI Call Format 8-37
4-55 SKIP Control Statement Format 4-128.1 8-13 Q5GETACT Call Format 8-38
4-56 SLGEN Control Statement Format 4-129 8-14 Q5GETCTS Call Format 8-40
4-57 SLGEN Directive Formats 4-130 8-15 Q5GETIIP Call Format 8-41
4-58 SUBMIT Control Statement 8-16 Q5GETIRF Call Format 8-42

Format 4-132 8-17 Q5GETLP Call Format 8-43
4-59 SUMMARY Control .Statement 8-18 Q5GETMCE Call Format 8-44

Format 4-134 8-19 Q5GETMCR Call Format 8-45
4-60 SWITCH Control Statement 8-20 Q5GETMOP Call Format 8-47

Format 4-137 8-21 Q5GETMPG Call Format 8-48
4-61 TASKATT Control Statement 8-22 Q5GETPFI Call Format 8-49

Format 4-139 8-23 Q5GETTL Call Format 8-50
4-62 TV Control Statement Format 4-140 8-24 Q5GETTN Call Format 8-51
4-63 USER Control Statement Format 4-142 8-25 Q5GETUID Call Format 8-53
5-1 Typical UPDATE Creation Run 5-2 8-26 Q5INIT Call Format 8-55
5-2 Typical UPDATE Correction Run 5-3 8-27 Q5INITCH Call Format 8-56
5-3 Card Identifier Expansion 5-11 8-28 Q5LFIHIR Call Format 8-58
5-4 ADDFILE Directive Format 5-15 8-29 Q5LFIPOL Call Format 8-60
5-5 BEFORE Directive Format 5-16 8-30 Q5LFIPRI Call Format 8-63
5-6 CALL Directive Format 5-16 8-31 Q5LFIPUB Call Format 8-66
5-7 COMDECK Directive Format 5-17 8-32 Q5LSTBUT Call Format 8-68
5-8 COMPILE Directive Format 5-18 8-33 Q5LSTCH Call Format 8-69
5-9 DECK Directive Format 5-19 8-34 Q5LSTSTB Call Format 8-71
5-9.1 DEFINE Directive Format 5-20 8-35 Q5LSTTCB Call Format 8-72
5-10 DELETE Directive Format 5-20 8-36 Q5MEMORY Call Format 8-73
5-10.1 ENDIF Directive Format 5-21 8-37 Q5RECALL Call Format 8-74
5-11 !DENT Directive Format 5-21 8-38 Q5REPREV Call Format 8-75
5-11.1 IF Directive Format 5-22 8-39 Q5RFI Call Format 8-77
5-12 INSERT Directive Format 5-21.1 8-40 Q5RUNBIF Call Format 8-78
5-13 MOVE Directive Format 5-21.1 8-41 Q5SETLP Call Format 8-79
5-13 .1 PULLMOD Directive Format 5-22 8-42 Q5SNDMCE Call Format 8-80
5-14 PURDECK Directive Format 5-22.1 8-43 Q5SNDMCR Call Format 8-82
5-15 PURGE Directive Format 5-23 8-44 Q5SNDMDF Call Format 8-85
5-16 READ Directive Format 5-24 8-45 Q5SNDMJC Call Format 8-87
5-16.1 WIDTH Directive ~ormat 5-24 8-46 Q5SNDMJS Call Format 8-89
5-17 YANK Directive Format 5-25 8-47 Q5SNDMOP Call Format 8-90
5-18 YANKDECK Directive Format 5-25 8-48 Q5SNDSTR Call Format 8-92
5-19 I Comment Directive Format 5-26 8-49 Q5TERM Call Format 8-93
5-20 UPDATE Control Statement 8-50 Q5TERMCE Call Format 8-94

Format 5-26.1 8-51 Q5TIME Call Format 8-95
6-1 DEBUG Control Statement Format 6-2.1 8-52 Q5VRACC Call Format 8-96
6-2 DEBUG Directives 6-3 9-1 QSATTACH Call Format 9-10
6-3 LOOK Control Statement Format 6-13 9-2 Q5CHANGE Call Format 9-12
6-4 LOOK Directives 6-15 9-3 Q5CHECK Call Format 9-16
6-5 DUMP Control Statement Format 6-24 9-4 LRU Description Format 9-18
7-1 CHKPNT Subroutine Format 7-1 9-5 Q5CHECKB Call Format 9-19
7-2 CHKPNT Error Codes 7-3 9-6 Q5CLIOER Call Format 9-21
7-3 Return Word Format 7-4 9-7 Q5CLOSE Call Format 9-22.1
8-1 Q5ADVISE Call Format 8-8 9-8 QSDEFINE Call Format 9-25
8-2 Q5CPUTIM Call Format 8-10 9-9 Q5ENDPAR Call Format 9-29
8-3 QSDCDDST Call Format 8-11 9-10 Q5GENFIT Call Format 9-31
8-4 Q5DCDMSC Call Format 8-13 9-11 Tapes Table Entry Format 9-37
8-5 Q5DCDPFI Call Format 8-18 9-12 Q5GETB Call Format 9-39
8-6 Q5DCDPLB Call Format 8-29 9-13 Q5GETFIL Call Format 9-40
8-7 Q5DESBIF Call Format 8-31 9-14 Q5GETFIT Call Format 9-50
8-8 Q5DISAMI Call Format 8-32 9-15 Q5GETN Call Format 9-56
8-9 Q5DISATI Call Format 8-33 9-16 Q5GETP Call Format 9-57

• 18 60459410 J

9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
9-26
9-27
9-28
9-29
9-30
9-31
9-32
9-33
9-34
9-35
9-36
9-37
9-38
9-39
9-40
9-41
9-42
9-43
9-44
9-45
9-46
10-1
10-2
10-3
10-4
10-5
10-6

10-7
10-8

Q5GIVE Call Format
Q5LABEL Call Format
Q5MAPIN Call Format
Q5MAPOUT Call Format
Q50PEN Call Format
Q5PATACH Call Format
Q5PCREAT Call Format
Q5PDESTR Call Format
Q5PDTACH Call Format
Q5PERMIT Call Format
Q5PGRACC Call Format
Pool List Entry Format
Q5POOLS Call Format
Q5PREACC Call Format
Q5PURGE Call Format
Q5PUSERL Call Format
Q5PUTB Call Format
Q5PUTN Call Format
Q5PUTP Call Format
Q5READ Call Format
Q5REDUCE Call Format
Q5REELSW Call Format
Q5RETFIT Call Format
Q5RETURN Call Format
Q5REWIND Call Format
Q5ROUTE Call Format
Q5RQUEST Call Format
Q5SETFIT Call Format
Q5SKIP Call Format
Q5WRITE Call Format
Key-Dependent Parameter Format
Q7ENVIRN Call Statement Format
Q7MODE Call Statement Format
Q7PROMPT Call Statement Format
Q7KEYWRD Call Statement Format
lhs Table Pointer

Configuration
lhs Table Format
lhs Table Header Format

2-1 Concurrent File Access Modes
2-2 Blocking Type, Tape Format,

and Record Type Combinations
3-1 Program States
3-2 Logical Structure Conversion
4-1 Control Statements
4-2 Interaction of USER and POOL

Parameters for AUDIT, DUMPF,
and LOADPF

4-3 GIVE Default Access Permission
Sets

4-4 Access Permission Sets Listed
4-5 Results of Listing and

Controllee File Searches

60459410 J

9-60
9-63
9-70
9-72
9-75
9-85
9-86
9-87
9-88
9-89
9-91
9-92
9-92
9-93
9-94
9-96
9-97
9-98
9-100
9-102
9-106
9-107
9-109
9-110
9-111
9-112
9-116
9-122
9-126
9-130
10-3
10-5
10-6
10-7
10-10

10-11
10-12
10-13

10-9
10-10
10-11

10-12
10-13
10-14

10-15
10-16

10-17

10-18

10-19

10-20

10-21

10-22

10-23

10-24

10-25

11-1
11-2
D-1
F-1

F-2
F-3

F-4
F-5

TABLES
2-16 4-6

2-33 4-7
3-8 4-8
3-26 4-9
4-1 4-10

4-11
5-1

4-17
5-2

4-54 5-3
4-61 8-1

9-1
4-66 9-2

lhs Table Entry Format
rhs Table Format
rhs Table Entry Format (First

Word)
rhs Table Entry Format, Type 2
rhs Table Entry Format, Type 3
rhs Table Entry Format,

Type 4/6
Return Buff er Format
Return Buffer Entry Format

(First Word)
Return Buffer Entry Format,

Types 1 and 2
Return Buffer Entry Format,

Type 3
Return Buffer Entry Format,

Type 4
Return Buffer Entry Format,

Type 5
Return Buffer Entry Format,

Type 6
Return Buffer Entry Format,

Type 7 with Zeroed Flags
Return Buffer Entry Format,

Type 7 with Set Flags
Return Buffer Entry Formatj

Type 8 with One Set Flag
Return Buffer Entry Format,

Type 8 with Two Set Flags
Symbols Known LOOKUP
Q95SCR Maxima and Minima
FIT Format
ANSI Standard Tape Label

Groupings
Unlabeled Tape Files
Summary of Tape Blocks Per

Group
Single Volume Tapes
Multivolume Tapes

Interaction of USER and
Parameters for LOADPF

Recovery Error Codes

POOL

Logical Structure Conversion
Input Queue Status Identifiers
Task Status Identifiers
Output File Status Identifiers
Summary of UPDATE Call

Parameters
Summary of UPDATE Directives
File Contents and Update Mode
SIL Non-I/O Calls
SIL I/O Calls
Calling Parameter Value Ranges

10-14
10-15

10-16
10-17
10-17

10-18
10-20

10-20

10-21

10-21

10-22

10-23

10-23

10-24

10-24

10-25

10-26
11-5
11-15
D-3

F-3
F-4

F-11
F-13
F-14

4-86.1
4-88
4-90
4-109
4-110
4-111

5-4
5-5
5-19
8-2
9-1
9-9

19 •

9-3

9-4

10-1

11-1
11-2
A-1

• 20

Blocking Type, Tape Format, and
Record Type Combinations

Q5GIVE Default Access
Permission Sets

Execute Line Special
Characters

Symbols Known by LOOKUP

American National Standard Code
for Information Interchange
(ASCII) With Punched Card
Codes and EBCDIC Translation

9-36

9-62

10-27
11-5
11-14

A-2

A-2
A-3
B-1
B-2
B-3
B-4
D-1
F-1
F-2
F-3

Hexadecimal-Octal Conversion
Hexadecimal-Decimal Conversion
Diagnostic Messages
System Utility Error Messages
System Error Codes
Tape Error Codes
File Information Table
Required ANSI Label Formats
Optional Label Formats
Tape Group Separators

A-3
A-4
B-2
B-26
B-104
B-106
D-2
F-5
F-8
F-10

60459410 J

INTRODUCTION 1

The virtual storage operating system (VSOS) controls a CYBER 200 Computer System. This
chapter gives a general description of CYBER 200 hardware and an overview of VSOS.

SYSTEM CONFIGURATION

A CYBER 200 system configuration consists of the CYBER 200 mainframe and peripheral system
components. Peripheral system components include a maintenance control unit (MCU), on-line
mass storage, on-line tapes, and one or more front-end computer systems.

The system configuration must also include hardware for communication between the CYBER 200
mainframe and the peripheral system components. Communication within a CYBER 200 system is
performed by a loosely coupled network (LCN).

Figure 1-1 shows one possible CYBER 200 system configuration.

----<-----------'--+-+----------+--1----FRONT-END

FRONT-END
PROCESSOR

819
DISK UNITS

COMMUNICATIONS
TRUNK

00 00

679 TAPE
UNITS

00554A

Figure 1-1. CYBER 200 Configuration Example

60459410 E 1-1

The components of a CYBER 200 system are as follows:

• CYBER 200 mainframe

• CYBER 200 memory

• Maintenance and control unit (MCU)

• Loosely coupled network (LCN)

CYBER 200 MAINFRAME

A CYBER 200 system configuration is designed for effective use of the CYBER 200 mainframe.
Each CYBER 200 mainframe contains a vector processor, a scalar processor, I/O channels, and
central memory. The CYBER 200 Model 205 can have up to 16 million words of central memory
and up to 16 I/O channels.

The vector processor performs vector instructions (instructions that use streams of operands
to produce streams of results). The scalar processor performs scalar instructions (instruc­
tions that produce one result) and directs vector processing and central memory data trans­
fers. The I/O channels control data communication between the scalar processor and the LCN.

CYBER 200 MEMORY

The CYBER 200 is a virtual memory machine. The program space is limited only by the avail­
able disk space.

Program space (or virtual space) is the range of virtual addr.esses used by the execution of
a program (a task). When a task is executed, its virtual space is mapped to physical space
(central memory and disk space). During execution, the task is assigned central memory only
for the code and data it is currently using. The rest of the task code and data remains on
disk. When the task requires additional code or data that is currently not in memory, VSOS
automatically copies it from disk into central memory.

The process of copying code and data in and out of central memory is called paging or
implicit I/O. The units transferred in and out are called pages. VSOS uses two page sizes,
a small page and a large page. The small page size is selected during VSOS autoload. It
can be one, four, or sixteen 512-word blocks. The large page size is always 128 512-word
blocks (65536 words).

Paging requires high-speed data communication between a CYBER 200 I/O channel and a 7639
disk controller connected to 819 disk units. Disk communication for the CYBER 200 Model 205
is performed by the LCN.

MAINTENANCE AND CONTROL UNIT

Operation control and diagnostic functions for the CYBER 200 mainframe are performed at the
MCU. The CYBER 18 MCU is described in the VSOS Version 2 Operator's Guide.

1-2 60459410 E

LOOSELY COUPLED NETWORK (LCN)

The LCN is a communications network consisting of network access devices (NADs) connected by
trunk lines. Each NAD can connect to as many as four trunk lines; each trunk line can
connect to as many as 24 NADs. A NAD can communicate with another NAD if both are connected
to the same trunk line.

The function of a NAD within the LCN depends on the system component to which it is
connected. A DCD NAD connected to a CYBER 200 disk I/O channel communicates with a NAD I
connected to a 7639 disk controller. A NAD connected to a CYBER 200 tape I/O channel
communicates with a NAD connected to an Advanced Tape System (ATS) controller. A NAD
connected to a CYBER 200 Remote Host Facility (RHF) I/O channel communicates with a NAD I
connected to a front-end computer system. The NAD connected to the MCU may communicate with
all NADs in the LCN.

60459410 G 1-3

OPERA TING SYSTEM
The CYBER 200 operating system has the following three components:

• Resident system

• Virtual system

• Privileged system tasks

RESIDENT SYSTEM

The resident system runs in monitor mode; it is always resident in main memory. It
references memory by physical addresses, rather than virtual addresses. When the CPU is in
monitor mode, ·interrupts are inhibited, and some additional instructions are enabled.

The resident central operating system has the following four primary parts:

• KERNEL - responsible for processor management and message handling

• PAGER - responsible for memory management and page swapping

• XIOCALL - responsible for explicit I/O

• NPSCALL - responsible for tape I/O

All access interrupts (page faults), as well as certain messages dealing with memory alloca­
tion, are passed to PAGER by KERNEL. PAGER dynamically allocates both large and small pages
and performs all required implicit input/output necessary to free memory pages and obtain
the pages causing access interrupts.

PAGER determines dynamically which pages of a user's virtual address space have the most
activity. These pages are the working set of pages for the task at that time.

VIRTUAL SYSTEM

The virtual system is a task that runs in job mode and references memory by virtual
address. It connnunicates with the resident system via system messages and can modify system
tables. The virtual system performs resource allocation, file management, and message
processing functions.

PRIVILEGED SYSTEM TASKS

Privileged system tasks executed for special user numbers. These special user numbers can
issue privileged and nonprivileged system calls and have additional privileges. Unlike

I virtual system tasks, privileged system tasks with the exception of the Input/Queue Manager
(IQM) and the Interactive Transfer Facility Servicer (!TFS) cannot modify system tables
directly.

Privileged system tasks perform some of the work of the virtual system. This results in a
reduction of virtual system overhead and frees the virtual system to process other func­
tions. Work such as operator communication and the handling of job input and output is
currently done by privileged system tasks.

1-4 60459410 G

VSOS USER INTERFACE

The VSOS user interface includes the communications software that allows access to a CYBER
200 system, system utilities, and the system interface language (SIL).

VSOS communications software is the CYBER 200 Remote Host Facility (CYBER 200 RHF).

A system utility is a system-supplied program for performing a common user function.
Utility execution is initiated by execution of its control statement within a job. Usually,
a utility is directed by control statement parameters and/or utility directives. The VSOS
utilities are described in chapters 4, 5, and 6 of this manual.

SIL is a set of subroutines that user programs can call to perform system functions.
Chapter 8 describes SIL procedures that perform non-I/O functions; chapter 9 describes SIL
procedures that perform I/O functions.

REMOTE HOST FACILITY (RHF)

The RHF is the software that communicates with the LCN. Each computer system attached to
the LCN executes its own RHF software.

The RHF software that executes on a CYBER 200 system is called CYBER 200 RHF. CYBER 200 RHF
consists of application programs and a command driver routine. Each application program
(with the exception of MFLINK) executes as privileged system task. An application program I
exists for each RHF function, including sending queue files, receiving queue files, sending
permanent files, receiving permanent files, and receiving interactive requests.

The CYBER 200 RHF user interface is described in chapter 3 of this manual. The CYBER 200
RHF operator interface is described in the VSOS 2 Operator's Guide.

CYBER 200 COMPARISON

Significant differences exist between the hardware and software of a CYBER 200 system and
that of a CYBER 170 front-end system. Some of the differences that affect application
programs are as follows:

• CYBER 200 memory words are 64 bits.

• CYBER 200 uses a hexadecimal, rather than an octal, number system. The hexadecimal
number sequence is: O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

• CYBER 200 character data is a subset of 8-bit ASCII, not 6-bit display code.
Appendix A contains character code tables.

• The CYBER 200 is a virtual memory machine. CYBER 200 programs do not require
overlays or segmentation. An efficient program uses its data in such a way as to
minimize paging for data access. It also uses the appropriate page size for its
data and program (large or small pages).

60459410 G 1-5

VIRTUAL MEMORY ADDRESSING
The execution of a controllee is called a task. Each task has its own virtual space--the
range of virtual addresses that it uses. The CYBER 200 system translates virtual addresses
to physical addresses without affecting the task.

The system page table associates each physical page in memory with a task and a virtual
address range in that task's virtual space. The page table entry also indicates whether the
page can be written or can only be read.

A successful association between a virtual address and an entry in the page table causes
that entry to be moved to the head of the table; all other entries are moved down by one
place.

The first 16 entries in the page table are kept in high-speed registers; the registers are
examined in parallel with a simultaneous associative compare. An unsuccessful compare
results in a sequential search through the remainder of the table held in main memory.
Table entries for infrequently used pages automatically float to the end of the table.

If an address has no entry in the page table, the task requesting the address is
interrupted. Normally, the system provides the space addressed by requesting the page moved
to central memory from the disk. The program continues processing from the point of
interruption.

REGISTER FILE

The CPU contains a file of 256 64-bit registers used for instruction and operand addressing,
indexing, and field length counts, and as a source or destination for register-type
instructions. The register file is accessible to assembly language programs and to FORTRAN
language programs that use special calls.

By convention, its contents are divided into several areas that can be used to pass
parameters to another routine, access data for programs, trace execution, and hold
constants. The contents of the register file are dumped to an output file as part of
abnormal job termination; a similar dump can be obtained during program execution through
the debugging facilities available in the system.

Register file conventions are described in appendix D of volume 2 of this manual.

1-6 60459410 F

FILE CONCEPTS 2

A file is a collection of data accessible to you and to the system by name. File names are
from one to eight characters long. User-created file names must begin with a letter and be
composed of letters and digits; however, they must not begin with the characters Q5 through
Q9. System-created file names can begin with any character.

VSOS is a file-based operating system. Knowledge of file concepts is important for the
understanding of system function and facilities. Not all general concepts apply to all of
the device types supported by the system. This chapter covers file concepts in general and
then relates each to mass storage, magnetic tape, and interactive terminal files.

FILE ATTRIBUTES

VSOS identifies attributes of each file when it is created. These attributes may be
explicitly selected by you (as parameters on the REQUEST statement, for example) or by the
system (default values). Attributes are maintained by the operating system for the life of
the file. They can be permanently changed (via a SWITCH or TASKATT statement) if the owner
chooses to do so (file ownership is described later in this chapter). Some can also be
overridden temporarily within a single task (via a SIL subroutine call); for example, a task
can treat a file as a bit string by temporarily using a record type of "U".

For more information on file attributes, refer to Logical File Structures later in this
chapter.

60459410 E 2-1

FILE TYPES
VSOS recognizes the following file types:

• Control lee files

• Data files

• Drop files

• Output files

The file type determines the way the system uses and disposes of the file.

CONTROLLEE FILES

A controllee file (also called a virtual file or a virtual code file) is an executable
file. It is generated by the LOAD utility (ref~r to LOAD - Generate Controllee File in
chapter 4 of this manual). A task is the execution of a controllee file (refer to
Initiating Controllee Execution in chapter 3).

A controllee file contains all information needed for execution of the object code contained
within the file. Its first 512-word block is called its minus page.

The minus page contains control information used by the operating system.

A detailed explanation of the minus page and other system tables is included in the VSOS 2
Reference Manual, Volume 2.

DATA FILES

A data file (also called a physical file) is any CYBER 200 file that is not a controllee
file or a drop file. A data file is not executable.

For example, an object code file is a data file. Although an object code file is not
executable, it is used as input for generation of an executable controllee file.

A data file does not have a minus page.

DROP FILES

The system creates a drop file for each task it executes. When a task references virtual
address space that is not associated with the controllee file or with another mass storage
file, the system associates the virtual address space with the task drop file.

If the task modifies a page of its controllee file and the page must be swapped out, it is
copied to the task drop file and not to the controllee file. Later, if the page is
referenced again by the task, the modified page from the drop file is paged in, but the
unmodified page from the controllee file is not.

2-2 60459410 E

Modified pages of a mass storage file opened for implicit I/O can be written to the drop
file instead of to the original file (refer to QSOPEN in chapter 9 of this manual).

A task can create its own drop file if no blocks have yet been written to its drop file.
The system-created drop file for the task is then destroyed. Refer to volume 2 of this
manual for more information.

The system creates the drop file with read and execute access permissions. (File access I
permissions are described later in this chapter.)

If you do not specify the drop file length on the LOAD or TASKATT statement, the system
determines an appropriate drop file length for the task, using the controllee file and
common block lengths. The minimum drop file size is an installation parameter (system
release value, #25 blocks).

Drop File Naming Convention

The system derives the name of a drop file from the name of the controllee file. The
controllee name is shifted right one character, truncating the rightmost character (unless
there were fewer than eight characters), and one digit is added as the leftmost character of
the drop file name. The digit added corresponds to the controllee level of the task, as
follows:

• If the task is the batch processor, the digit is 1.

• If the task is initiated by the batch processor or at an interactive terminal, the
digit is 2.

The maximum controllee level is 9.

For more information, ref er to Controllee Chains in chapter 3 of this manual.

Restarting a Task

If a task has terminated because of a time limit condition or entry of the break character,
restart the task by executing its drop file. (The break character is an installation
parameter; the release value is !.)

60459410 H

• At a security-sensitive site that has
imposed the safeguards described in
chapter 7 of the Installation Handbook,
the dump file of a task that has
time-limit aborted may not be restartable
until enabled by the site security
administrator.

• An attempt to restart a task by executing
its drop file fails if the task has
terminated abnormally or the operator has
dropped the task.

Drop file execution fails if VSOS is
using a different small page size than it
used when the drop file was created.

2-3

After abnormal task termination, the task drop file exists as a local file. To save the
task drop file, the job must make the drop file permanent by defining it. For example,
suppose a controllee file named GO, initiated at an interactive terminal, aborts because it
has exceeded its time limit. According to the drop file naming convention, the name of the
task drop file is 2GO. To restart the task, enter the following execute line:

2GO.

Bound Explicit and Implicit Maps

In the drop file, the system maintains tables that associate the addresses of program data
on mass storage with the virtual addresses used by the program.

When a file is opened for explicit I/O, the system enters the information in a table called
the bound explicit map. The information in the bound explicit map is used by the system
routines that process explicit I/O requests.

When a file is opened for implicit 1/0 and then mapped to a program array, the mapping
information is entered in a table called the bound implicit map. Entries in the bound
implicit map associate a range of virtual addresses with mass storage space. An entry
exists for each virtual address range used.

The size of the drop file map tables is limited. An attempt to add an entry to a full drop
file map is a fatal error. To avoid the error, a program that uses numerous virtual address
ranges should create a file, open it for implicit I/O, and map the virtual address ranges
into the file.

OUTPUT FILES

Output files contain data to be processed by an output device. When the file is closed or
the task that created the output file terminates normally, VSOS generates an output file
with a valid disposition code. This file is sent to the appropriate privileged user task
for processing to the output device. After the file is processed, it is destroyed.

Output files with disposition codes not recognized by the front-end system are evicted, and
an informative message is sent to the user.

By default, an output file is returned to the front-end system that submitted the job or to
the interactive terminal that initiated the task. An output file is assigned the default
disposition code and internal and external characteristics unless specified otherwise.

For RHF output files, specify output parameters on the statement that submits the job file
or on an MFQUEUE statement.

2-4 60459410 E

Print Files

Each output file generated by a task within a job is saved as a member of a print family
(refer to Job Processing in chapter 3 of this manual). The print family is not processed
until the job dayfile (PXX:famnm) is added to the print family. In addition, the print
family of an RHF job must end with a last group file (PYYfamnm), which contains routing
information.

VSOS processes a print family before it is routed to the front-end system. It generates a
compressed ASCII file with ANSI carriage control characters as follows:

1. VSOS expands compressed blanks on the file. [Blank compression is described under
Record Mark Delimited (R) Record Format in this section.]

2. VSOS reads the internal characteristics (IC) field of the file's File Index entry.
If its IC is ASCII with ANSI carriage control, VSOS assumes that the carriage
control characters are correct and performs no conversion.

If its IC is ASCII with ASCII carriage control, VSOS converts the ASCII carriage
control to ANSI carriage control. The ASCII form feed control character, FF (#OC),
when it appears as the first character of the file after a unit separator, US (#lF),
is replaced by the ANSI page eject control character 1 (#31). If there is no form
feed control character, an ANSI page eject control character is added. The ASCII
single space, which is a line without the FF after the US, is changed by inserting
the ANSI space-one-line control character, blank (#20), after the US.

3. The files in a print family are linked, forming one file. Each file delimiter
character, FS (#lC), except the last is removed.

Print Control Characters

Print file control characters follow either ASCII or ANSI control character conventions. In
the ASCII schema, print control is governed completely by the appearance of ASCII control
characters. The FF control character must be the first character of a file or must
immediately follow a unit separator (US). The ASCII control characters and their effect on
vertical spacing are as follows:

Control Character

FF (llOC)

US (lllF)

60459410 E

Vertical Spacing

Page eject

Single space

2-5

In the ANSI print control conventions, the first character of a printer/display output
record is not printed or displayed; it is interpreted for vertical spacing control. The
first character of each output record directed to the card punch or to any device other than
a printer or a display unit is transmitted and recorded just as any other character in the
record is, without any special action. Characters and their effects on vertical spacing
before the printing or displaying of the next record are as follows:

Character

blank

0

+

other

2-6

Hexadecimal
Code

1120

1130

1131

ll2B

112D

other

Vertical Spacing

Single space.

Double space.

Page eject.

No vertical advances; move to the first position of
the same line.

Triple space.

Single space.

60459410 E

OUTPUT FILE ERROR PROCESSING

When the system attempts to send the output-file-family to the appropriate output device, a
condition may occur that may temporarily block the output from arriving at the output
device. You may view the status of the output by executing a Q,O command interactively
(refer to chapter 4 of this manual, Control Statements). Further details of the temporary
error condition are contained in the last-group-file of the output-file-family. The
last-group-file contains information needed for routing the file to its destination. It
begins with the prefix QSL or PYY, depending on whether the output is from the MFQUEUE or is
the output from a batch job. You can retrieve the output-file-family by asking the operator
to GIVE the output to its originating user number or to the system user number (refer to the
VSOS Version 2 Operator's Guide, chapter 4). You can then attach the last-group-file and
examine its contents, using the LOOK utility. Details of the error condition are written at
hex word address AO and begin with a 16-character header as follows:

RETRIES = xxxxx

xxxxx is the retry count. A circular error message buffer follows next. The last five
temporary error messages are saved. The circular error message begins at hex word address
18A. Each entry is 112 characters long and has the following format:

hh.mm.ss MESSAGE FROM xxx FOLLOWS: YYY•••YYY

hh.mm.ss is the time of the error encounter;

xxx is either RHF, SIL, or a remote host PID;

yyy ••• yyy indicates a maximum of an 84-character error message sent by xxx.

If the output-file-family is permanently blocked from arriving at the output device, and
your job (either batch or interactive) is still active, the message is sent to your job,
informing you that the file has been evicted and telling you why the file was blocked. If
your job is no longer active, the informative message is sent to the origin of the job.

60459410 J 2-7

FILE DURATION

A file can be categorized by the duration of its existence in the system. Categories of
user files are scratch, local, and permanent. Scratch files are destroyed at the end of the
task that uses them. Local files are destroyed at the job's end. Permanent files are
stored until their owners explicitly destroy them (file ownership is described later in this
chapter).

SCRATCH FILES

A scratch file is a system-created file that VSOS uses while executing a task. VSOS
destroys all scratch files when the task terminates normally. If the task terminates
abnormally, the system saves the files as local files so that it can provide you with
information on the cause of the abnormal termination.

LOCAL FILES

A local file is a temporary file created and used only for the duration of the interactive
session or batch job. Unless you define the file as a permanent file, the system destroys
it at the end of the batch job or interactive session that created it.

VSOS utilities that write local files discard the local file you have specified prior to
writing into the file. This is done because many utilities need special file
characteristics when writing into a file, and allowing the utility to create its own files
relieves you of remembering that sort of detail. However, if you define the file prior to
execution of the utility, the utility does not discard the file.

A local file exists only for the user number and batch job or interactive session that
created the file.

The name of a local file must be unique among both the local files and the attached private
permanent files currently assigned to the job or interactive session.

PERMANENT FILES

A permanent file exists until you explicitly destroy it. It remains stored (on mass
storage) after the termination of the job that created it.

Each permanent file is described in an entry on the disk pack on which it resides. During
VSOS autoload, the pack file entry is copied to a system file; it is later copied to a
system table. Attempts to attach the permanent file search the system table, not the disk
packs themselves.

The system table can hold only 256 permanent file entries per user number. Therefore, even
if you own more than 256 permanent files, only the first 256 files whose entries VSOS finds
and copies are accessible to you. An inaccessible file could become accessible if the
following occurs:

• You, as the owner of the inaccessible file, purge one or more accessible permanent
files.

• During a subsequent VSOS autoload, the entry for the previously inaccessible file is
copied to the system file.

A permanent file must be attached before its data can be accessed.

2-8 60459410 E

-- I
~--~-

---~..... -~

·-----_ ,. ., ... - * c:::c: _

=-··
- - 't ------- - -~·

file

T ~'V\..~ _ . • <>~·ov·~'gf·•··~~ ~-r~-=-
~ .. ~. ~ ~..-~::1:.:313. • Y ~r~r-v·"'~ •.-~.a~ ___ ,,a

F31.F'l!ll Al _L ~ ~ T~ ~ •• ? ~-=- ~. -~EJL:!Z!!o- ~ T YrC"-=- . :- ':>O

. ~ -v-'i.i'i....i..._ ~. - T CIC!~·-~·· 2 "C?CTGc:>: - ~-=- ---~· .i I~..L ~ .JLIL~ - -=i. '=i.
..,. ~-=- T". V~.n...•.._e_~ ~ ~ "t:X : r:::i.._ 1-e=. ~ll

• 'the

~-=--=-Y.~·.n.•~~-~.e.. ~ T ~·ov1L!.A:1LL\::l.bc:>~ •lt::l.L: - ::L..~ fi.
[\" A ...L · _ = -Y:li::L....L _. _ o ~c:::::::.~ =-. __ -- - • TII:''':~·.1111. .. e: f i.

1
le list.

• o c::x:::x:><>·o t.~3:: : • t:n::.~f-~e.~ .:. =E.:L1~.e

0 <> c:::x:><:> <> - • y I::ll'.:":r- -

2-9

·10

FILE USAGE CONTROLS
File usage is controlled by the following means:

• File security levels

• File ownership

• File access permissions

Additional file usage controls that can be imposed at security-sensitive sites are described I
in chapter 7 of the Installation Handbook.

FILE SECURITY LEVELS

VSOS validates eight security levels, from level 1, the lowest security, to level 8, the
highest security. The default security level, if none is specified, is determined by an
installation parameter value. The system released value for default security level is 1.

Each VSOS user number has a maximum security level assigned to it. No job or task belonging
to the user number can execute at a security level higher than the maximum level for the
user number.

The security level of a job or interactive session determines the maximum security level of
the files it references or creates. The following are ways of specifying a security level.

Security Level
Associated with

Interactive terminal session

Batch job submitted via RHF

File

Assigned by

LOGIN line

USER statement

Statement or program call that creates the file

A task cannot attach or purge a file whose security level is higher than that of the task.
A task cannot give a file to a user number whose maximum security level is lower than that
of the file. Similarly, a task cannot give a file to a pool whose pool boss has a maximum
security level lower than that of the file (refer to Pool Files in this chapter).

FILE PATTERNING

Both permanent and local files are patterned when they are purged if the installation
parameter IP PLEV value is greater than or equal to the security level of the file. The
released val~e of IP PLEV is 4.

Local files are patterned either when you explicitly return the, file or when the system does
it automatically at the end of a job.

FILE OWNERSHIP

Each file has an owner. It can be owned by a user number, a pool, or the public file list.
The corresponding file ownership categories are private, pool, and public. The file
ownership category of a file determines certain access characteristics of the file.

A local file is a private file. A permanent file can be private, pool, or public.

60459410 H 2-9

Ownership rights of nonprivileged users depend on the file ownership category of the file.
A privileged user has ownership rights over all files except local files belonging to other
users.

A file name must be unique among the files in its ownership category currently accessed by a
job. A private file could have the same name as a pool file or a public file attached to a
job. However, a private permanent file attached to a job or interactive session cannot have
the same name as a private local file currently belonging to the job or interactive session.

Your job can have a local file with the same name as one of your permanent files, as long as
the permanent file is not attached by that job. Parallel jobs in execution for the same
user number can have local files of the same name.

Figure 2-1 illustrates the use of file management utilities for each file ownership
category. The utilities named in figure 2-1 are described in chapter 4 of this manual.

2-10 60459410 E

Files Attached or Files Unattached
Always Available or Unavailable

to User Until Attached

---------------.---------------------
I ---REQUEST

I
Local I Files

RETURNt I ~

DEFrE I
;;:·
~
CD

I :!!
~ J_ ATTACH _.__ GIVE if

DEFINE Attached I Unattached
I Permanent Permanent

Files RETURNt .J. Files
PURGEtt PUf!..GE

-,
_,,

~ I -I
_l PATTACH GIVE

Attached
-y

Unattached
I]~~ Pool Pool ~g

PURGE Files PDETACHt -1 Files en -

I

I
I
I J~ EQ_ITPUB Public I ,, c:

=o-
Files

I !)! ~

I
---------------L------------------- -

t Or end of batch job or terminal session.

tt1t file is attached to another job, it becomes a local file under that job.

Figure 2-1. File Ownership

60459410 E 2-11

File Search Hierarchy

When searching for a file, VSOS searches the files attached to the job-or interactive
session by file ownership category. The categories are searched in the following order:

1. Private files (local and attached permanent).

2. Pool files, in reverse order of that in which their pools were attached. If
attached, the system pool is always the last pool searched.

3. Public files.

Private Files

A private file is owned by one user number. The owner of a private file is the user number
that created the file or the user number given file ownership by the previous file owner.
Only the file owner can access a private local file.

The file owner and privileged users can access a private permanent file; other users can
access the file if the owner defines one or more access permission sets for the file.
(Refer to File Access Permissions in this chapter.)

For a task to access a private permanent file, the file must be attached to the job or
interactive session. A new private permanent file is attached when it is defined; an
existing private permanent file must be explicitly attached. The file remains attached
until it is returned or the job or session terminates.

Only the file owner can change private file characteristics and ownership. Private file
ownership changes when the file owner gives the file to another user number or to a pool. A
privileged owner can give the file to the public file list.

Pool Files

A pool file is a file owned by a pool. A pool is a mechanism for sharing VSOS files. (The
preferred method of file sharing is via explicit file access permissions as described later,
not via pools.) A pool or pool file acts much like a file catalog. Each pool has an entry
in the pool list. Its name must be unique within the pool list. A pool name must consist
of from one to eight characters, beginning with a letter.

The user who creates a pool by adding a name to a pool list is the pool boss for that pool.
Only the pool boss can perform the following functions.

• Give files belonging to the pool to another user

• Purge files belonging to the pool

• Grant other users access to the pool

• Remove user authorization to access the pool

• Destroy the pool

2-12 60459410 E

A pool member is a user granted access to a pool.

Any user can give files to any pool; pool membership is not required. If, however, the user
gives a file to a pool of which he or she is not a pool member, access to the file is
forfeited because the file now belongs to the pool.

When a pool member attaches a pool, all files belonging to the pool (except files having a
security level greater than the security level of the job or interactive session) are
attached.

A job can have up to four pools attached at one time (including the system pool if one
exists). Pool attaches and detaches are relative to a job rather than to a user number.
When a batch job termi~ates, it detaches all pools it attached. Pools attached by an
interactive task are detached at logout.

When a job is initiated by a user and one or more pools is already attached to the job, VSOS
sends the following message to the job dayfile or to the interactive terminal.

WARNING**ATTACHED POOLS

An interactive user can enter $P to list the attached pools.

System Pool

A system pool is a pool of system files automatically attached when the user logs in or
submits a batch job.

All characteristics of a system pool are the same as those of other pools except its rank in
the file search hierarchy. A file is searched for in the system pool after all other
attached pools have been searched.

Use of a system pool can be selected during VSOS autoload. If system pool use is selected,
VSOS searches the system pool for a file before it searches the public files. This means
that if a system pool file has the same name as a public file, the system pool file
effectively replaces the public file.

Public files instead of system pool files can be used when the system pool is explicitly
detached.

Public Files

The system attaches all public files to a batch job or interactive session when the job or
session is initiated. The job or session can then use any public file.

Public files usually contain assemblers, compilers, and other general-purpose routines.
VSOS stores the utilities described in this manual as executable public files.

All public files belong to user number 000000, indicating system ownership. The site
administrator or another privileged user determines the files owned by user number 000000.

60459410 E 2-13

FILE ACCESS PERMISSIONS

An access permission .to a file grants you a mode of access to that file. The access
permissions are read, write, append, modify, and execute.

Each access permission allows only that mode of access. No access permission implicitly
grants another access permission.

Before processing an access request, VSOS checks the access permissions applicable to you
and to the file. This determines whether the request is valid.

To open a file for explicit I/O, read, write, append, or modify permission to the file is
required (refer to Explicit I/O in this chapter).

To open a file for implicit I/O, read permission to the file is required. To write to a
file using implicit I/O, write and read permission are required (refer to Implicit I/O in
this chapter).

Read Permission

Read permission to a file allows you to read data from the file, to reposition the file by
skipping records or blocks, and to route the file.

With read permission, a file for explicit I/0 or implicit I/O can be opened.

Write Permission

Write permission to a file allows you to write data on the file, overwrite existing file
space, and extend the file space.

With write permission, a file for explicit I/O can be opened. Read permission is required
to open a file for implicit I/O; write permission is required to write to the file after it
is opened.

Append Permission

Append permission to a file allows you to write data on the file, but only at the end of the
existing file data. Append access is valid for sequential access files only.

Append permission allows a mass storage file for explicit I/O to be opened. It does not
allow a file for implicit I/O or a file assigned to a device other than mass storage to be
opened.

To append data to an empty file (a new file that contains no data), only append permission
is required; the file is positioned for appending data when it is opened.

To append data to a file containing data, both read permission and append permission are
required. Read permission is required to position the file at the end of its existing
data. After opening the file, position the file after its data; if the file ends with a
file delimiter, the file must be positioned before the delimiter so that the new data
overwrites the delimiter. For more information on positioning the file, refer to Appending
Data in chapter 9 of this manual.

2-14 60459410 E

Modify Permission

Modify permission to a file allows you to write data to the file if the write operation does
not extend the file. With modify permission, any record within the file or any block from
the beginning of the file through the highest block previously referenced in the file can be
rewritten.

Modify access is valid only for direct access files.

Execute Permission

Execute permission allows you to request execution of the file. The file is executed if it
is in executable format; that is, it must be a controllee file generated by the LOAD utility.

If you have not obtained execute permission to a file, VSOS aborts a request to execute the
file and sends a message to the job dayfile or to the interactive terminal. (It also sends
the message to the system dayfile).

Execute permission does not grant you permission to perform system functions other than
execution of the file.

Access Permission Sets

An access permission set is the set of access permissions you are granted to a file. An
access permission set can explicitly grant any combination of access permissions.

The possible access permission sets differ for each of the file ownership categories as
follows:

• A public file has a general access permission set that applies to all users of the
file.

• A pool file has a general access permission set that applies to all pool members.
It also has a pool boss access permission set that can grant additional access
permissions to the pool boss.

• A private local file has an access permission set applicable to the file owner.

• A private permanent file always has an access permission set applicable to the file
owner. It can also have a general access permission set applicable to all users
(excluding the file owner) and individual access permission sets for individual user
numbers.

If a private permanent file has a general access permission set, every user has at
least the access permissions granted by that set. The file owner can grant
additional permissions to a user with an individual access permission set.

A file can have individual access permission sets for up to 16 users.

60459410 H

I NOTE I
For each file for which individual access
permission sets are specified, the maximum
number of files the owner can have (256) is
reduced by one file.

2-15

I

Concurrent File Access

Private permanent files can be shared with other jobs. Private local files cannot be shared.

A private permanent file cannot be shared between users initially. Sharing becomes possible
when the owner of the file defines one or more access permission sets for other users
(general or individual access permission sets).

A shared file is one whose read access and execute access are available to more than one job
at a time. (The job can belong to the file owner or to another user.) If a job is
accessing a file in read mode and/or execute mode, another job can access the file in read
mode and/or execute mode, but cannot access the file in write, append, or modify mode.

If a job is accessing a file in write, append, or modify mode, no other job can access the
file until the first job terminates access.

Concurrent file access is summarized in table 2-1.

Table 2-1. Concurrent File Access Modes

Another job requests access in:
If a job is
accessing Read Execute Write Append Modify
the file in: Mode Mode Mode Mode Mode

Read Mode Allowed Allowed Denied Denied Denied

Execute Mode Allowed Allowed Denied Denied Denied

Write Mode Denied Denied Denied Denied Denied

Append Mode Denied Denied Denied Denied Denied

Modify Mode Denied Denied Denied Denied Denied

2-16 60459410 F

FILE 1/0

VSOS provides the following two means of reading and writing data:

e Explicit I/O

e Implicit I/O

Both types of I/O can read and write virtual-files and physical files.

EXPLICIT I/ 0

Explicit I/O uses buffers within the program space. An explicit I/O request causes one or
more blocks of data to be copied to or from program buffers.

The system can transfer data to a buffer while the program continues executing. When the
program needs the data from an explicit read request or needs to write more data after an
explicit write request, it must check to see whether the request has been completed. If the
request has not been completed, the program must wait until completion before using the data
(for read) or the buffer (for write).

Explicit I/O is most efficiently used for transferring multiple blocks of data using
multiple buffers.

IMPLICIT I/ 0

Implicit I/O does not use intermediate buffers. A task does not issue implicit I/O
requests. VSOS performs an implicit read operation when a task references data that is not
currently in central memory; it performs an implicit write operation when the file is closed
or the system reassigns the physical central memory space.

To read or write data implicitly, a program opens the file for implicit I/O and then calls
the SIL Q5MAPIN subroutine to map a mass storage file to an array in its virtual space.
When the task references an element in the mapped-in array, VSOS ensures that the data
mapped to that element is available in memory. When the file is closed, the data stored in
the array is copied to the mass storage file.

If a program array is not mapped to a file, VSOS maps the array to space in the drop file
(refer to Drop Files in this chapter for more information).

Implicit I/O is most efficiently used for accessing only one block of data at a time or for
accessing the same file area repeatedly.

60459410 E 2-17

LOGICAL FILE STRUCTURES

The following three levels of file structures are supported by SIL:

• Records

• Groups

• Files

A record is the smallest unit of associated data managed by SIL. Typically, a record is the
result of a write statement in an application program.

The next higher level of file structure is a group of records. A file that contains group
indicators is called a structured file. Multiple groups may appear in a file. Not all
record formats support group structures. An example of a multigroup file is a VSOS job deck
with one input file in it; the control statements comprise the first group, and the input
file is the second group.

The highest level of structure is the file itself. It is known to the operating system by
its file name. It is a single entity to SIL, and programs cannot read beyond the end of a
file.

LOGICAL RECORD FORMATS

A logical record format is the means by which SIL subroutines recognize a logical record
structure. A logical record structure enables you to read and write logical records (and,
if supported, logical groups).

You may specify the record format used for a file you create. SIL supports the following
six record formats (not all record types are supported for all device types):

• ANSI fixed length (F)

• Record mark delimited (R)

• Undefined structure (U)

• Control word delimited (W)

• CYBER Record Manager (L) control word

• System block (B)

ANSI Fixed Length (F) Record Format

SIL writes a fixed number of bytes for each F format record. F format does not support
group delimiters.

You must specify the fixed record length (RLMAX) before reading or writing F format
records. SIL is unable to determine the length of a record if RLMAX is not specified.

When reading F format records, SIL compares the RLMAX and working storage area length (WSL)
values. It returns an error message if the WSL value is less than that of RLMAX.

2-18 60459410 E

When writing F format records, if RLMAX is greater than the length of data to be written as
a record (the working storage area length), SIL appends padding characters to the record.
If the data length is greater than RLMAX, SIL writes a fixed length record and discards the
excess data. SIL error messages are returned for both of these conditions.

Unless a padding character is specified, SIL uses the default character specified by an
installation parameter [system release value, blank character (ASCII code #20)J.

Record Mark Delimited (R) Record Format

The R record format is the released system default record format.

When writing R format records, SIL terminates each record with the record mark character.
You may specify a record mark character or use the default character specified by an
installation parameter lsystem release value, ASCII US (#lF)].

The R format supports group delimiters only if the record mark character is ASCII US or RS
(#lE). If the record mark character is ASCII US or RS, SIL recognizes the ASCII GS (#lD)
character as the group delimiter. If RS is the record mark character, US characters are
considered data. The ASCII FS (#lC) is the file delimiter for R format files.

When reading R format records, SIL searches for the record mark character delimiting the
record. If it does not find the character, SIL reads the number of characters specified by
the WSL value, skips to the beginning of the next record, and returns an error message.

When writing R format records, SIL compresses consecutive blanks unless instructed
otherwise. It replaces strings of more than two blanks with two character codes, ASCII ESC
character (#lB) followed by the number of blanks plus #30. SIL adds #30 to the number so
that the value cannot be mistaken for another ASCII control character code.

When reading R format records, SIL expands compressed blanks unless instructed otherwise.

Undefined Structure (U) Record Format

A U record format file has no structure; it does not support any delimiters.

SIL considers the file as a continuous byte string. You specify the number of bytes that
SIL reads or writes for each call. The data length specified can vary with each call.

60459410 E 2-19

Control Word Delimited (W) Record Format

The W record format uses control words as record, group, and file delimiters. The control
word format is shown in figure 2-2.

Field

' r

p

f d

wcr

ps

be

ps be

Bits Content

0-2 Reserved for installation use.

3-10 Reserved for Control Data's use.

11

12-13

14-15

16-39

40-63

Parity bit used to maintain odd parity in the word.

When the byte count is 0, these two bits indicate whether the
control word is a delimiter.

Bit
12-13
11

l 0
0 1
0 0

End-of-file delimiter
End-of-group delimiter
Deleted record
Normal record

A logically deleted record is not passed to you when the file
is read.

Record continuation flags.

Bit
14 15

0 0
0 l
l 0
l l

Complete record
First piece of record
Middle piece of record
Last piece of record

Number of bytes in previous record piece, including the control
word.

Number of bytes in the record, not including the control word.

Figure 2-2. W Control Word Format

SIL can write a W format record in more than one piece. It prefixes each piece of a record
with a control word describing the piece. The maximum size of a piece is 224-1 bytes.

The group and file delimiters are control words following the last record in the group or
file. They are distinguished by a flag indicating the partition level of the control word.

2-20 60459410 E

SIL prefixes each W format record it writes with a control word. The control word contains
the number of bytes in the record and the number of bytes between the control word and the
beginning of the previous control word.

When reading a W format record, SIL reads the control word and then transfers the number of
bytes of data specified in the control word byte count field. It does not transfer the
control word to the working storage area.

When reading a W format file at the group level, SIL transfers data (including record
control words) until it reads a group control word. When reading at the file level, SIL
transfers data (including group and record control words) until it reads a file control word.

When writing a W format record, SIL writes the control word before writing the record data.

When a group or file is written, the first word in the working storage area must be a record
control word. You can include other control words within the working storage area to
delimit records within the group or delimit groups within the file.

When writing at group or file levels, SIL writes the data and then writes the group or file
control word. It enters zero in the byte count field of the control word and the number of
bytes to the beginning of the previous control word in the previous size field.

CYBER Record Manager Control Word (L) Record Format

The L record format allows VSOS to interchange tapes with a CYBER 170 system. By specifying
L record format, VSOS can read tapes written by a CYBER 170 system, using the CYBER Record
Manager (CRM) control word (W) record format. Similarly, the CYBER 170 system can read
tapes written by VSOS, using the L record format.

Each L record is an integral number of data words, prefixed by a control word. Figure 2-3
shows the L control word format.

Field

p

f d

ps I ubc I WC

Bits Content

0-3 Unused.

4

5-6

Parity bit used to maintain odd parity within the control word.

Flag and delete bits used in combination. If the flag bit is
set, the wc field must be O.

Bit
5-6
T T
1 0
0 1
0 0

End-of-group delimiter
End-of-file delimiter
Deleted record
Normal record

A logically deleted record is not passed to you when the file
is read.

Figure 2-3. L Control Word Format (Sheet 1 of 2)
60459410 E 2-21

Field

wcr

ps

ubc

WC

Bits Content

7-19 Unused.

20-21

22-39

40-45

46-63

Record continuation flags.

Bit
2021
00

0 1
1 0
1 1

Complete record
First piece of record
Middle piece of record
Last piece of record

Number of words in the previous record, including the control
word. If the current record is the first record, this field
is O.

Number of rightmost bits not used in the last word (integer
from 0 through 59).

Number of words in the record piece, not including the control
word.

Figure 2,-3. L Control Word Format (Sheet 2 of 2)

As shown in figure 2-3, the control word contains the size of the previous record and the
size of the current record. VSOS uses this information for two purposes: to position the
file by records and as a data reliability check. VSOS checks to ensure that the number of
words read for a record matches the number of words written, as recorded in its control word.

The VSOS L control word is a 60-bit CYBER Record Manager W control word, right justified
with zero fill, in a 64-bit CYBER 200 word. The conversion between the two control words is
performed by the VSOS assembly/disassembly option (ADO), which automatically converts
between 60-bit and 64-bit word sizes. Specifying the L record format also specifies the ADO.

The L record type is valid with I blocking only. VSOS I blocking is interchangeble with
CYBER Record Manager I blocking (refer to I Blocking in this chapter).

System Block (B) Record Format

A system block (B) record is the one VSOS logical record type that is directly related to
the physical layout of the data. A record is equivalent to a logical record unit (LRU).
LRUs are defined by the tape format used (refer to Tape Formats in this chapter).

The primary use of the B record format is to read tapes not written on a CDC system
(stranger tapes).

Reading a stranger tape requires that the tape data be read block by block. Because a B
record is equivalent to an LRU and, for V format, an LRU is equivalent to a tape block, the
specification of B record type and V tape format means that each QSGETN call reads_ one tape
block.

2-22 60459410 E

BLOCKING TYPES

Blocking refers to the physical layout of the data on the device. The basic unit or block
is called a physical record unit (PRU). On a disk, a sector is a PRU. On a tape, the data
delimited by interblock gaps (IBGs) is a PRU. A block can contain more than one logical
record; records can span blocks.

VSOS supports the following three blocking types:

• Character count (C)

• Internal (I)

• Record count (K)

C Blocking

Character count (C) blocking writes a fixed number of characters per block. The block size
is the maximum physical record unit (MPRU) size. The MPRU size is determined by the device
and format.

For I, SI, and LB tape formats and for disk, the MPRU size is fixed. For V tape format, you
may specify the MPRU size.

The last block in a tape file can be smaller than the MPRU size.

I Blocking

Internal (I) blocking is used for CDC CYBER 170 tape interchange using the L record type.
VSOS I blocking is equivalent to CYBER Record Manager I blocking.

For I and SI tape formats, the PRU size is fixed. For V tape format, you may specify the
MPRU size.

Each I block is an integral number of words, prefixed by a control word. Figure 2-4 shows
the I-block control word format.

60459410 E 2-23

p

Field

p

block
ordinal

record
number

word
off set

block
ordinal

Bits

record number word offset

Content

0-3 Unused.

4 Parity bit used to maintain odd parity within the control word.

5-9 Unused.

10-21

22-45

46-63

Ordinal of the current block ordinal within the file. The
blocks are numbered beginning with 1.

Ordinal of the first record in the block within the file. The
records are numbered beginning with 1. If no record begins in
the block, the field is O.

Word off set of the first control word within the block. The
words are numbered beginning with 1. If no record begins in
the block, the field is O.

Figure 2-4. I Block Control Word Format

The VSOS I-block control word is a 60-bit CYBER NOS Record Manager I block control word,
right justified with zero fill, in a 64-bit CYBER 200 word. The conversion between the two
control words is performed by the VSOS ADO, which automatically converts between 60-bit and
64-bit word sizes. Specifying I blocking also specifies the ADO.

I blocking is valid with the L record type only. The VSOS L record type is interchangeble
I with the CYBER Record Manager W record type (refer to CYBER Record Manager Control Word (L)

Record Format in this chapter).

K Blocking

K blocking writes a fixed number of records per block. Records cannot span blocks. The
records per block (RPB) value must be specified.

K blocking is valid only for variable (V) tape format because if the record length is
variable, K blocks are also variable in length.

The last block in the tape file can have fewer records than the RPB value.

2-24 60459410 G

FILE ORGANIZATION

VSOS supports both sequential and direct access file organizations. Sequential access is
the default organization.

Sequential Access Organization

Sequential access to a file accesses each record in sequence. An explicit I/O call to a
sequential access file reads or writes data at the current file position.

Sequential access files can use any record format. Sequential access file organization is
valid for mass storage files, tape files, and files connected to a terminal.

Direct Access Organization

Direct access to a file accesses a record by its record number. Records in a direct access
file are numbered consecutively, starting with 1.

Direct access file organization is valid only for mass storage files with F format records.

Because each record in a direct access file has a fixed length, SIL can compute the byte
address of the beginning of a record as follows:

(record number - 1) * (fixed record length in bytes)

Unless the site changes the maximum record length installation parameter, specify a maximum
record length when creating a direct access file. The released default value for the
maximum record length is zero. A maximum record length of zero prevents writing on the
direct access file, since zero is used as a special value by SIL, meaning unlimited.

When the record number is omitted on explicit I/O calls, a task can read or write direct
access records sequentially without changing the organization attribute of the file. SIL
sets the current record number to zero when it opens or rewinds the file; it increments the
current record number by one for each record read or written.

60459410 E 2-25

I

DEVICE CHARACTERISTICS

VSOS supports the following three device types:

• Mass storage

• Magnetic tape

• Interactive terminal

MASS STORAGE FILES

Mass storage (disk) is essential to system operation on a virtual memory machine. Each page
of central memory must be allocated the corresponding space on disk. Data is automatically
paged in and out between central memory and disk, as required by the executing tasks. As a
result, most of the concepts described earlier in this chapter apply to mass storage files.

All four file types--controllee, data, output, and drop files--are supported on mass
storage. The three file duration types, scratch, local, and permanent, are supported on
mass storage. Security level is a maintained attribute for mass storage files, and
patterning is done on the disk, depending on the value of this attribute. All three

I ownership categories are supported (private, pool, and public); only mass storage files can
belong to pools or be public files. All five access permissions apply to these files. Only
mass storage files can be shared among users. Both explicit and implicit I/O can be done to
and from mass storage files. Record and blocking types are as follows:

Block Type Record Types

c F

c R

c u

c w

All disk blocks are 512 words. Sequential and direct access file organizations are
supported.

Typical job control statements for creating mass storage files are REQUEST and DEFINE,
specifying file attributes required by the user. DEFINE can create a new permanent file or
can make a local file permanent. File attributes are set for a local file at creation time;
parameters specified on the DEFINE statement are then ignored.

File Space Allocation

A mass storage file can comprise an indefinite number of segments. A segment is a
contiguous area of disk space; all segments do not necessarily reside on the same disk.

Disk space is allocated automatically, as needed by a file. Physical mass storage devices
are treated by the system as a logical unit, called a device set. Files overflow from one
set member to another within the device set. Every device set has a set number of two
hexadecimal digits. The set number concatenated to the string DVST forms the set name
DVSTnn. The set name is stored in the label of the disk. If your private file has
overflowed, one or more segments may not be available because a device is down. The
truncated parameter must be used to access partial information.

2-26 60459410 F

Initial File Space Allocation

When creating a file, specify the following space allocation conditions:

• Initial file length

• Whether the file can be segmented

• Whether the file is extendable

• Device set to include the file

By default, a file is one device allocation unit (DAU) in length; it may be segmented and
extended. The DAU is selected by the site administration.

When creating a file that cannot be segmented, VSOS attempts to allocate the file on the
pack that is least full and that has sufficient contiguous space. When creating a file that
can be segmented, VSOS allocates it on the pack that is least full, in as many segments as
necessary. If the entire file cannot fit on the pack, it overflows to the pack with the
next most available space in the device set.

Files created for internal use by the operating system are contiguous and nonextendable.
All files created by existing programs, utilities, and FORTRAN run-time routines default to
extendable files.

I

Select a device set by specifiying any pack in the set using the PACK= parameter on DEFINE, I
REQUEST, or COPY. Allocation starts with the least full allocatable pack, which is ON.
Specifying the PACK= parameter does not necessarily put a file on a specific pack.

60459410 G 2-27

File Extensions

If a file is extendable, VSOS extends it for either of the following events:

• The length of a file to be mapped in for implicit I/O is less than the current small
page size and has write access permission.

• A task attempts to write data beyond the current end of the file.

Initial File Extension - If no space is available for a file extension, the task is
terminated with a message.

When mapping files for implicit I/O, VSOS extends the file to cover the first page in the
mapped region, providing that the file is extendable and write access is permitted. If the
file is nonextendable with write access permitted, only pages that have allocated disk space
can be mapped. If the file has only read access permitted, the mapped region may include
the last block of the file but may not cover pages for which no file space is allocated.

Additional File Extensions - When a task that is writing on a file references an address
beyond the existing end of the file, VSOS attempts to allocate a new segment if the file is
extendable. The size of each extension can be controlled by the user.

The maximum size to which a file can be extended is limited only by an installation
parameter. The maximum size is 4 billion characters.

When mapping files that are extendable and have write permission, the mapped region may be
arbitrarily large. VSOS extends the file to cover pages as they are accessed.

2-28 60459410 G

TAPE FILES

VSOS provides the following two means of accessing tape data:

• A tape can be read on a front-end system and its data copied to a CYBER 200 mass
storage file via RHF.

• A tape can be read by an on-line tape drive.

The information in this subsection applies only to on-line tape I/O. For information on
transferring a file to or from a front-end system, refer to appendix D in this manual.

VSOS supports all four file types (controllee, data, drop, and output) on tape. However, it
supports only explicit I/O for tape; implicit I/O is not supported. Therefore, although a
controllee or drop file can be copied to tape, the tape copy cannot be executed or used to
restart a task.

Tape files are local private files; they cannot be shared. Read access, write access, or
read and write access are allowed. You can request access to tape labels and tape data
separately on a REQUEST statement. For example, read access to the tape labels and write
access to the tape data can be requested.

Because users often store related files on a single tape volume or set of volumes, VSOS
allows you to specify a set of characteristics applicable to all files on the tape volumes.
This set of general characteristics is specified on the REQUEST statement for the tapes and
is associated with the multifile name (MFN) specified on the statement.

If the tape contains only one file, the file can be referenced by its MFN. However, if the
tape contains more than one file, each file is referenced by a LABEL statement that
specifies the MFN and a logical file name (LFN) for the file. The LABEL statement can also
override any of the characteristics specified on the REQUEST statement; the override applies
only to that file.

Tape Drive Reservation

Because tapes are dynamic to VSOS (instead of permanently mounted as 819 disks are), the
level of tape resources needed by the system must be identified.

The RESOURCE statement of a batch job that accesses tape files must reserve one or more tape
units for use by the job. The initial tape unit reservation count is maintained until the
job terminates unless a RETURN statement or Q5RETURN call decrements the reservation count.

An interactive session cannot use the RESOURCE statement. Therefore, tape drives cannot be
reserved in interactive sessions. Instead, the request for a tape file reserves a tape
drive. If all tape drives are committed, an error message is returned.

60459410 G 2-28.112-28.2 I

Volume Assignment

To read or write data on a tape volume, associate the tape volume with a local file name.
To do so, you must request a tape file with a REQUEST control statement or Q5RQUEST call.
The statement or call specifies the file name and its tape volumes.

A tape volume is identified by its volume serial number (VSN). Each tape volume should have
its VSN on an external label readable by the operator. If it is an ANSI standard labeled
file, it also has its VSN recorded in its VOLl label. A new tape can be blank labeled by
the operations staff with a BLANK control statement so that VSOS can identify the tape.

When VSOS processes a tape file request, it searches a system table for the first tape
volume specified on the request. The system table contains an entry for each volume
currently mounted on an on-line tape unit. If VSOS finds the requested volume and it is not
already assigned to a job, it assigns the tape unit to the file. If VSOS does not find the
volume, it prompts the operator to mount the volume. When the volume is mounted, VSOS
assigns the tape unit to the file.

If the tape file request does not specify a tape volume for the file, VSOS prompts the
operator to mount a tape volume and enter its VSN with a command assigning the volume to the
file.

Volume Switching

VSOS supports multivolume tape files. Up to 255 tape volumes can be associated with a file
name. The volumes are specified in a VSN list on the tape file request.

By default, VSOS performs automatic tape switching; that is, when the end of the current
tape volume is encountered, VSOS switches to the next volume in the file and continues the
interrupted operation.

If you like, you can prevent automatic tape switching. To do so, you must specify the ETP
parameter on the Q50PEN call that opens the tape file. Subsequently, when VSOS encounters
the end of the current tape volume, it terminates the current operation and returns control
to the caller. The caller must then call the Q5REELSW routine to switch the file to the
next volume and issue another request to resume the terminated file operation.

A Q5RQUEST call specifies the order in which the tape volumes in the VSN list are used. The
tape volumes are used in sequential order.

Tape Labeling

VSOS can read and write unlabeled, nonstandard labeled, and ANSI standard labeled tape
files. You specify the labeling type on the tape file request.

60459410 E 2-29

Unlabeled Tape Files

An unlabeled tape file contains no identifying tape labels. When an unlabeled tape volume
is mounted, VSOS cannot read the VSN from the tape. The operator mounts the tape and then
enters the VSN of an unlabeled tape volume.

When an unlabeled tape file is opened, VSOS positions the tape at its load point. The job
can then read or write data on the tape.

After writing data on the tape, VSOS marks the end of the data with an end-of-file
indicator. The end-of-file indicator is either an EOFl label or two tape marks, depending I on the tape format. Figure F-2 in this manual illustrates both unlabeled tape formats.

Tape Files with Nonstandard Labels

A tape file with nonstandard labels contains labels that do not conform to ANSI standard
X3.27-1978. As with an unlabeled tape file, VSOS cannot identify a nonstandard labeled tape
file by a VSN written on the tape. The operator must enter the tape VSN when mounting the
tape.

As is the case for a file with ANSI standard labels, write label processing (LPROC=W) can be
requested for a nonstandard labeled file. Write label processing overwrites existing header
labels when the file is opened. However, the header labels must be specified in an array
specified on the QSOPEN call. End-of-file labels can also be specified in an array on the
QSCLOSE call that closes the file.

VSOS positions the file after its header labels when it opens the file, just as it does for
a file with ANSI standard labels. However, VSOS does not verify the contents of the labels,
and it cannot position the tape by label groups within the tape data.

Tape Files with ANSI Standard Labels

A tape file with ANSI standard labels contains labels that conform to leve·1 2 of ANSI I standard X3.27-1978. The ANSI standard label formats are given in appendix F of this manual.

ANSI standard labels serve to identify and delimit the data on the tape volume and each file
on the volume. A multifile set must use ANSI standard labels to delimit the files in the
set.

Required Labels - The following ANSI labels are required.

Label

VOLl

HDRl

EOFl

EOVl

2-30

Description

Marks the beginning of a tape volume

Marks the beginning of a tape file

Marks the end of a tape file

Marks the end of a tape volume (used only if the end of the volume precedes
the end of the file)

60459410 G

A BLANK control statement writes the VOLl label on a new tape. This function is normally
performed by the operator, who must specify the VSN to be recorded in the label. An
accessibility character that restricts access to the volume can also be specified. If the
VOLl label contains a nonblank accessibility character, attempts to use the volume must
specify the accessibility character.

The HDRl label identifies the file it precedes. It can also contain an accessibility
character to restrict access to the file. As with the VOLl label, if the HDRl label
contains nonblank accessibility characters, attempts to access the file must specify the
accessibility character. Also, if the accessibility character is A, the user attempting to
access the file must be the owner of the volume, as identified in the VOLl label.

The expiration date in the HDRl label prevents attempts to overwrite the file before the
file retention period has expired. You specify a retention period when the file is written,
and the retention period is added to the creation date to determine the expiration date for
the file.

When accessing a file belonging to a multifile set, specify its file identifier, its file
sequence number, or both, as recorded in its HDRl label. When the file is opened, VSOS
searches for the HDRl label containing the specified values. When it finds the specified
HDRl label, it checks to ensure that the accessibility character and expiration date do not
prevent access to the file. If access is not prevented, the tape is positioned at the
beginning of the file data. For more information on multifile sets, refer to the LABEL
control statement or QSLABEL call description in chapter 9 of this manual.

Except on V format unlabeled files, the end of the written data is always marked by an EOFl
label. If the end of the volume precedes the end of the file, the end of the data on the
volume is marked by an EOVl label.

Both EOFl and EOVl labels contain a block count. The EOFl block count is the number of data
blocks in the file. The EOVl block count is the number of blocks (data and labels) written
on the volume. When a file is opened for read access, VSOS keeps count of the number of
blocks read. When it reads an EOFl or EOVl label, it compares its current block count with
the block count in the label. If the values do not match, it returns a dayfile message,
notifying the user of the discrepancy.

Optional Labels - The following additional optional labels can also be specified.

Label

UVLn

HD Rn

UHL a

EOFn

UTLa

Description

Sequence of one to nine additional volume labels (n is a digit, 1 through 9).

Sequence of one to eight additional header labels (n is a digit, 2
through 9).

Sequence of additional header labels (a can be any character).

Sequence of one to eight additional end-of-file labels (n is a digit, 2
through 9).

Sequence of additional trailer labels (a can be any character).

Except for the label identifier and the label length (80 bytes), VSOS does not check the
contents of the optional labels. The optional label formats are shown in appendix. G of this
manual.

60459410 E 2-31

\

l

HDRn and UHLa labels can be specified on the Q50PEN call that opens the file for write
access. EOFn and UTLa labels can be specified on the Q5CLOSE call that closes the file.
Subsequent Q50PEN and Q5CLOSE calls to the file can return the contents of the optional
labels.

To write the optional beginning-of-volume and end-of-volume labels (UVLn and UTLa), perform
end-of-tape processing (refer to Volume Switching in this chapter). Call Q5REELSW to
continue file processing. The call can also specify labels to be written at the end of the
current volume and labels to be written at the beginning of the next volume.

Tape Data Recording

A tape file request can specify the data recording density and data conversion options.
However, if the tape is already labeled, the specified recording density and character set
conversion cannot conflict with the density and character set used for the tape labels.

Recording Densities

VSOS can read and write only 9-track tapes. The 9-track tapes can use either of the
following two r~cording densities:

PE 1600 cpi

GE 6250 cpi

Data Conversion Options

A tape file can be a coded or a binary tape file. VSOS considers coded tape data to be a
stream of character codes; it considers binary tape data to be a stream of bits. Only
character data is stored on coded tape files; binary tape files can store either character
or numeric data.

By default, VSOS assumes that a tape file is binary. To indicate that the file is coded,
the tape file request must specify the CONVERT parameter.

If the CONVERT parameter is specified, VSOS converts the tape data to and from the character
codes in the character set specified by the CM parameter. The CM parameter can specify
either the ASCII or the EBCDIC character set. (The ASCII character set is the default.)

The assembly/disassembly option (ADO) provides for binary tape interchange between the CYBER
170 and CYBER 200 systems. The ADO is valid for binary files only; it is not valid for
coded files •

. If selected, the ADO automatically converts between the CYBER 170 60-bit word size and the
CYBER 200 64-bit word size. For reading data, each 60 bits read is right justified with
zero fill within a 64-bit CYBER 200 word. For writing data, only the rightmost 60 bits of
each 64-bit word are written.

VSOS provides conversion routines to convert 60-bit CYBER 170 numeric data to and from
64-bit CYBER 200 numeric data formats. These routines are described in appendix D. of this
manual.

2-32 60459410 E

Tape Data Organization

Tape data has three levels of organization. Like mass storage data, tape data is organized
into logical records and, if supported by the record type, logical groups. Tape data is
also organized into tape blocks (PRUs). Depending on the tape format used, tape PRUs are
grouped into logical record units (LRUs).

When accessing a tape file, you specify the tape format, blocking type, and record type for
the file or use the default values (release values, LB format, C blocking, and R record
type).

Not all combinations of tape format, blocking type, and record type are valid; table 2-2
shows the valid combinations.

Record

Table 2-2. Blocking Type, Tape Format,
and Record Type Combinations

Blocking Type and Tape Format

BT=C BT=I BT=K

Type I,SI LB V ,NV I,SI LB V,NV I,SI LB V,NV

F -- x x -- -- -- -- -- x

R -- x x -- -- -- -- -- x

B x x x -- -- -- -- -- x

u x x x -- -- -- -- -- x

w -- x x -- -- -- -- -- x

L -- -- -- x -- x -- -- --

x = Valid combination
-- = Invalid combination

60459410 E 2-33

Logical Record Format

Besides the mass storage record types described earlier in this section, the following two
additional record types are available for tape files.

• CYBER Record Manager control word (L)

• System block (B)

The L and B record formats are described with the other logical record formats earlier in
this chapter.

Tape Formats

The tape format determines the PRU size and the definition of an LRU.

I VSOS supports the following five tape formats:

• NOS internal (I)

• SCOPE internal (SI)

• Large block (LB)

• Variable (V)

• Non-ANSI Variable (NV)

I Tape Format - The NOS internal (I) tape format is the default tape format for CYBER 170
NOS systems. It is recommended that I tape format, I blocking, and L record type be used
for tape interchange with NOS systems.

Within the I format, the actual PRU size can range from 6 to 3840 bytes. Each PRU is
terminated by a 48-bit terminator. A 6-byte PRU is a PRU consisting solely of the
terminator (a zero-length PRU). A 3840-byte PRU is a full-length PRU.

The tape hardware driver appends the PRU terminator when it writes a PRU and strips the
terminator when it reads a PRU. The PRU terminator is never copied to an I/O buffer.

The end of an LRU is marked by a short PRU (less the 3840 bytes). As shown in figure 2-5,
the terminator on a short PRU contains the level number of the LRU.

byte count

Field Bits

byte count 0-11

PRU number 12-35

level 36-47

PRU number level

Content

Number of bytes in the PRU, including the PRU terminator.

Number of PRUs since the beginning of the file.

Level number (O indicates the end of an LRU, F indicates
the end-of-file).

Figure 2-5. I Format PRU Terminator

2-34 60459410 F

A PRU consisting of only a PRU terminator containing a level number of F (17 octal) is an
end-of-group indicator. The system ensures that an end-of-LRU always precedes an end-of­
group indicator by writing, if necessary, a PRU terminator with a level number of zero
before the end of group.

An I format tape file always contains an even multiple of bytes.

When reading an I format file, the system checks to be sure that the actual number of bytes
read and the actual current PRU number match the byte count and PRU number in the PRU
terminator. A mismatch is processed as a parity error.

SI Tape Format - The SCOPE internal (SI) tape format is the default format for CYBER 170
NOS/BE systems. It is recommended that SI tape format, I blocking, and L record type be
used for tape interchange with NOS/BE systems.

As in the I format, the actual PRU size in the SI format can range from 6 to 3840 bytes.
However, only the short PRU that ends an LRU has a PRU terminator. As shown in figure 2-6,
the PRU terminator contains the level number of the LRU. If the level number is F (17
octal), the system returns end-of-group status.

The tape hardware driver appends the PRU terminator when it writes a short PRU and strips
the terminator when it reads a short PRU. The PRU terminator is never copied to an I/O
buffer.

The system may write 4 extra zero bits to tape in order to preserve the lower 4 bits of an
8-bit byte.

Field

level

552335522754 octal level

Bit Content

0-41 552335522754 octal

42-47 Level number (O through E indicates the end-of-LRU; F indicates
end-of-file) •

Figure 2-6. SI Format PRU Terminator

60459410 J 2-35

LB Tape Format - The standard PRU size for the LB format is 32768 bytes.

Each PRU in the LB tape format has a 48-bit terminator. The terminator format is shown
in figure 2-7. A PRU shorter than 32768 bytes indicates the end of an LRU. If the
level number is F (17 octal), the system returns end-of-group status.

PRU number byte count level

Field Bit Content

PRu number 0-23 Current PRU number.

byte count 24-39 Number of bytes in the PRU excluding the terminator.

level 40-47 Level number.

Figure 2-7. LB Format PRU Terminator

The tape hardware driver appends the PRU terminator when it writes a short PRU and
strips the terminator when it reads a short PRU. The PRU terminator is never copied to
an I/O buffer.

The system may write 4 extra zero bits to tape in order to preserve the lower 4 bits of
an 8-bit byte.

Only C blocking is valid with the LB tape format. The L record type is not valid with
the LB tape format.

V Tape Format - The V tape format can have variable PRU lengths up to the maximum PRU
(MPRU) size. You may specify the MPRU size, although it cannot be greater than the
buffer size (a maximum of 48 large pages). The default MPRU size is 32768 bytes (4096
words).

Within the V format, each PRU is an LRU. A PRU does not have a terminator; it has no
level number associated with it.

For unlabeled V format tapes, a tape mark embedded in the file data is an end-of-group
indicator if record type B is used.

K and C blocking are valid with the V format. The L record type is not valid with the
V tape format.

• 2-36 60459410 J

NV Tape Format - The NV tape format is the same as the V tape format, with one
exception. The NV tape format uses embedded tapemarks as end-of-group indicators for
both labeled and unlabeled tapes. This allows you to write and read a labeled tape
whose data does not conform to the ANSI standard.

Like the V format, the NV format can have variable PRU lengths up to the MPRU size.
Each PRU is an LRU. All record types and blocking types valid for the V format are
also valid for the NV format.

In addition, specifying the NEOI option on unlabelled NV tapes tells VSOS not to
recognize two consecutive tape marks as EOI. This allows reading or writing tapes
which do not conform to the VSOS EOI conventions for unlabelled NV tapes.

Tape Error Processing

I NOTE I
Tasks (such as COPY and COPYL) reading tapes
with the NEOI option turned on may return
unpredictable errors due to reading past the
end of recorded data, since no EOF or EOI
status is returned by the system.

By default, VSOS attempts to recover each error detected when reading or writing tape data.
It uses the information stored in the system tapes table to reattempt the read or write
operation. If it succeeds in recovering the error, the read or write operation continues.

When it encounters the end of a volume or when a file is closed, VSOS sends messages to the
job dayfile and the system dayfile to report the accumulated recovered errors.

VSOS sends each of the following dayfile messages if the count in the message is not zero:

WRITE RECOVERABLE ERRORS=nnnn
READ RECOVERABLE ERRORS=nnnn
SINGLE TRACK CORRECTABLE ERRORS=nnnn
DOUBLE TRACK CORRECTABLE ERRORS=nnnn
DEVxxx BLOCK COUNT=nnnn

A listing of the system error file may be obtained from site personnel.

60459410 J 2-36.1/2-36.2 •

While reading a file, VSOS maintains a count of the blocks read. If the block count in an
EOVl or EOFl label does not match the block count VSOS has maintained, VSOS sends the
following messages to the job dayfile and the system dayfile:

DEVxxx BLOCK COUNT MISMATCH
CURRENT BLOCK COUNT=nnnn
LABEL BLOCK COUNT=nnnn

User Error Processing

When you request a tape file, disable standard error recovery. Disable hardware error
correction for single-track errors on GCR tapes (6250 cpi).

To replace standard error recovery, specify user error processing (UEP) when opening the
file with a Q50PEN call. When you select user error processing, a tape I/O request that
detects an error returns control to you, with a status code of 1476. You then call Q5GETFIT
with the IOER= parameter to get the specific tape error code from the FIT. The possible I
tape error codes are listed in table B-4.

Now determine further processing of the error. If reading data, the program could skip
forward past the record that returned the error, clear the tape error status by calling the
Q5CLIOER subroutine, and continue reading the file.

CONNECTED INTERACTIVE TERMINAL FILES

A file connected to a terminal allows communication between an executing program and an
interactive user. Only a task initiated by an interactive execute line can request or open
a file connected to a terminal. A connected file cannot be requested or opened by a batch
task or by an interactive task started by anothe! interactive task.

Files connected to terminals are regarded as special purpose files and their characteristics
are more restricted than those of other device types. These files can be used only as data
files. They are always local, private files. They are sequential, with record type R,
block type C, and no blank compression.

Specify the access permissions (read, write, or read and write) and security level for the
connected file when requesting the file.

A program can read and write to a file connected to a terminal, using SIL Q5GETN and Q5PUTN
calls. It cannot perform implicit I/O, FORTRAN unformatted or buffered I/O, or Q7BUFIN and
Q7BUFOUT calls on the file. It also cannot read or write partial records to the file.

As an interactive user, you can enter record, group, and file delimiters through a file
connected to a terminal. To do so, enter one of the following input lines followed by a
carriage return. The $ in the following input lines represents the system special character
that prefixes request lines. '

Input Line

$EOR

$EOG

$EOF

60459410 G

Program Receives

Two consecutive record delimiters (an empty record)

Group delimiter

File delimiter

2-37

Similarly, the following output lines appear when the program outputs logical structure
indicators.

Output Line Program Sent

$EOR Two consecutive record delimiters (an empty record)

$EOG Group delimiter

$EOF File delimiter

The maximum length of an input or output line passed to or from the remote system is 999
characters. If a line exceeds 999 characters, it is truncated to that length, but no error
condition is returned.

The following is the general processing sequence for connected files.

1. While logged in at an interactive terminal, enter a REQUEST execute line to create a
file connected to the terminal. The file name must be that of the file referenced
within the program.

2. Enter an execute line for the program that communicates through the connected file.
The program opens the connected file.

The program can now read or write logical records to the connected file. A record
written to the file appears as a line of output at the terminal. A request to read
a record from the file results in a prompt (••) at the terminal.

3. To respond to a prompt, enter a line of input followed by a carriage return. The
system passes the line, without blank compression, to the working storage area named
on the read request.

4. The program closes the connected file when the program completes its use of the file.

S. Explicitly return the connected file, or let the system return the file when you log
out.

The remote RHF application that supports interactive communication with VSOS adds a carriage
return/line feed to output lines. For more information, refer to the RHF documentation for
the remote system.

2-38 60459410 E

TASK EXECUTION 3

A task is the execution of a controllee file for a user number. A batch job or interactive
session is a sequence of tasks.

INITIATING CONTROLLEE EXECUTION
An interactive or batch execute line initiates a task by naming the controllee file to be
executed. The interactive and batch execute line formats are described later in this
chapter.

VSOS searches for the controllee file among the files assigned to the job or interactive
session. The job or session must have execute access permission to the file. To execute
the file and receive dump information if its execution aborts, the job or session must have
read and execute access permissions to the file.

I NOTE I
At security-sensitive sites, users running
under a production user number can only
execute production controllee files. Refer
to chapter 7 of the Installation Handbook
for details.

Assuming that the job or session can access the controllee file, VSOS creates the task drop
file (refer to Drop Files in chapter 2) and initiates controllee execution.

60459410 H 3-1

VIRTUAL SPACE MAPPING

Code and data references during controllee execution are by virtual address.

The first block of the controllee file (its minus page) is not mapped to task virtual
space. VSOS reads the minus page into a system table, where its information is used to
control task execution. The second block of the controllee file (containing its register
file) is also read into a system table.

The third and subsequent blocks of the controllee file are mapped, beginning at the origin
address recorded by the LOAD utility.

LOAD also records the virtual address ranges to be used for the following areas, which are
required for controllee execution but not stored in the controllee file.

• Labeled common blocks for which no space is assigned within the controllee file
(blocks specified by the GROS and GROL LOAD parameters)

• Blank common

The virtual range for the dynamic stack (used for subroutine linkages and intermediate
vector results) is assigned as required during task execution.

The virtual address ranges for the contents of the controllee file are initially mapped to
physical space in the controllee file. However, after a controllee file page is modified,
the page is mapped to the drop file, and all subsequent paging of the modified page is to
the drop file. In this way, the original controllee file is never modified. The mapping of
task virtual space is shown in figure 3-1.

TASK VIRTUAL SPACE MASS STORAGE SPACE

VIRTUAL BLOCK
ADDRESS NUMBER CONTROL LEE Fl LE

0 1
REGISTER Fl LE UNMODIFIED MINUS PAGE READ INTO

ORIGIN PAGES 2 SYSTEM
CODE MODULES MAPPED TO REGISTER FILE TABLES

CONTROL LEE 3

DATABASES FILE CODE MODULES

LABELED COMMON DATABASES
MODIFIED PAGES

BLANK COMMON MAPPED TO LABELED COMMON
DROP FILE

DYNAMIC STACK
DROP FILE

BOUND IMPLICIT MAP
BOUND EXPLICIT MAP

Figure 3-1. Task Mapping

3-2 60459410 E

CONTROLLEE CHAINS

A task can start another task. It is then the controller of the started task. The started
task is the controllee of its controller.

A controller and its controllee form a controllee chain. Each task within a chain has a
level. The first task (the batch processor) is at level l; it is a controller, but not a
controllee. The second task (a utility or user system) is at level 2; it is a controllee
and can also be a controller if it starts a task; the task it starts is at level 3.

Except for the first and last tasks in the chain, each task in the chain is both a
controller and a controllee. The lowest possible level in a chain is level 9; the maximum
number of tasks in a controllee chain is nine.

In any controllee chain, only one task is eligible for execution at a time. When a
controller starts a controllee, it is suspended until control is returned by the controllee.

The level 1 task of a batch controllee chain is always the batch processor. An interactive
controllee chain does not have a level 1 task, because the interactive processor in the
virtual system is not a task. However, for consistency, the QSLSTCH routine described in
chapter 8 of this manual lists the interactive processor as the level 1 task of an
interactive controllee chain.

As described later in this chapter, a job is a sequence of level 2 tasks initiated by the
batch processor.

60459410 E 3-3

I

SYSTEM ACCESS
To start a task, access VSOS. VSOS supports both batch and interactive access.

To access VSOS interactively, log in at an interactive terminal connected to a front-end
system. After logging in to the front-end system, log in to VSOS.

For batch access to VSOS, send a VSOS batch job file from a front-end system to the CYBER
200 system.

USER VALIDATION

Both batch access and interactive access require user validation. User validation is
performed when VSOS processes a LOGIN line or a USER statement.

User validation requires entry of a valid user number. Entry of the password for the user
number is also required unless the password is blank.

The user number determines your privileges and the files that you can access. The account
identifier can be used to charge you for resource usage. The account identifier default is
the account number to which the operating system automatically charges the usage.

The VSOS user directory defines the valid VSOS user numbers. Each valid user number has an
entry containing the number, its password, and the validations for the user number. The
following are the user number attributes.

• Permission to execute high priority tasks

• Permission to perform privileged functions

• Permission to use the variable rate accounting rate feature (for more information,
ref er to volume 2 of this manual)

• Permission to access tapes via batch processing and/or interactive sessions

• Permission to access the system interactively

• Maximum security level (refer to File Security Levels in chapter 2 of this manual)

• Valid job categories (refer to Resource Allocation in this chapter)

• Valid account identifiers (default account number, master and/or optional account
numbers)

• System seconds available (refer to Accounting in this chapter)

• Default project number

• User project control

Only the installation management user number can change the user directory. For user number
information, ask site personnel.

3-4 60459410 H

INTERACTIVE SYSTEM ACCESS

VSOS supports interactive access through RHF. In each case, perform the following steps:

1. Log in to the front-end system.

2. Request that the front-end RHF software provide a connection between the interactive
terminal and the CYBER 200 system.

3. Log in to VSOS.

The statements required to request a connection to the CYBER 200 system differ, depending on
the front-end system software. The RHF interactive access statements are described in the
RHF manual for the front-end system.

VSOS INTERACTIVE LOGIN

After connecting to the CYBER 200 system, log in to VSOS with a LOGIN command.

The LOGIN command identifies you. The system checks to be sure that the specified user
number is a valid user number and that the specified password is the correct password for
your user number.

The LOGIN command connects you to a job descriptor number (JDN).

The LOGIN command may specify the account identifier to which resource usage during the
session is charged. It may also specify the security level of the session. A task started
during the session cannot access a file with a security level greater than the session
security level.

If you logged out or were disconnected while a task was still active, the LOGIN reconnects
you to the existing job descriptor number. If no tasks were running when you logged out or
were disconnected, a subsequent LOGIN connects you to a new job descriptor number.

The format of the LOGIN command is shown in figure 3-2. A blank, comma, or left parenthesis
must follow the LOGIN verb. A terminating period or right parenthesis is valid but not
required. To send the LOGIN line, press carriage return.

The LOGIN parameters must appear in the order shown in figure 3-2. The parameter separator
is either a blank or a comma. Except for the last parameter, parameter omission is
indicated by two consecutive commas.

60459410 E 3-5

LOGIN,userno,password,account,n

userno

password

account

n

BATCH SYSTEM ACCESS

User number (six decimal digits). This parameter is required.

Password (one to eight characters). To specify a blank password,
omit the parameter. To enter a password that contains special
characters, refer to the discussion of the PASSWORD control
statement in chapter 4 of this manual. Site personnel determine
during system installation whether user password entry is
required or optional.

Account identifier (one to eight characters). This parameter is
optional. If an account identifier is omitted, the user's
designated default account identifier is used.

Optional security level of the interactive session (1 to 8). If
a security level is omitted, the default value chosen by the site
is used.

Figure 3-2. LOGIN Command Format

VSOS processes input in batch mode when it is received as a batch input file.

The CYBER 200 RHF application program, QTFS, receives batch input files sent by RHF software
on front-end systems. QTFS accepts multiple files on one connection. A front-end system
that uses RHF software is called a remote system.

QTFS performs the following functions:

1. Copies the batch input file as R format records to a CYBER 200 mass storage file

2. Validates the user submitting the batch job

3. Gives the batch input file to the input queue manager

I QTFS creates a mass storage file that has an eight-character name. The name is derived by
padding to eight characters the job name supplied by the remote system and ensuring that the
name is unique in the input queue and different from the input job name. To get a unique
name, increment the rightmost characters (A to B to C to Z).

After storing the batch input file in the mass storage file it creates, QTFS reads the USER
statement from the file. The USER statement must be the second statement in the file. The
first statement is used by the remote system (refer to RHF documentation for the remote
system).

QTFS uses the USER statement information to validate your access to the CYBER 200 system.
Assuming that you are a valid user, QTFS removes the first two statements from the file
before it gives the file to the input queue manager (IQM).

!QM processes the RESOURCE statement if you included one in the job. The RESOURCE statement
must be the third statement in the batch input file if one is used. RESOURCE statement
processing is described under Resource Allocation in this chapter.

All other control statements for the job follow the RESOURCE statement. Batch job structure
and the processing of a batch job are described later in this chapter.

3-6 60459410 H

INTERACTIVE SESSION

VSOS login initiates an interactive terminal session. Enter a $BYE request line to end the
session.

To enter an interactive input line, type the line at the terminal keyboard and then press
the carriage return key to send the line to VSOS.

Enter the following types of interactive entries:

• Break character

• Interactive terminal request

• Interactive execute line

• Input to an executing task

BREAK CHARACTER

The break character terminates the task. It transfers control to the immediate controller
of the task.

To terminate a task within a batch job, you must use the $SU command to determine the JDN
and job name of the job, then request that the operator drop or kill the job. Control
returns to the batch processor, which searches for an EXIT statement in the control
statement sequence of the job. If it finds one, it continues execution after the EXIT
statement.

If the terminated task is an interactive task with no controller, it can be restarted by
executing its drop file (refer to Drop Files in chapter 2).

The default break character is !, but it can be changed during system installation.

INTERACTIVE REQUEST LINES

An interactive request line is a special entry that the interactive processor executes
without initiating a new task.

The interactive processor recognizes a request line when an input line begins with the
special character. By default, the special character is $, although the site can change the
special character during system installation. You may change the special character during a
terminal session; the procedure to follow is described next.

Changing the Interactive Request Special Character

The following request line changes the interactive request line special character:

$=sc

60459410 G 3-7

I

I

The single character represented by sc becomes the new special character that must begin all
interactive request lines. VSOS responds with:

(SC)=sc

where sc is the new special character The new character must be a printable ASCII character
between #21 (!) and #7E 0-'). If the new character is not in this range, the special
character is not changed and VSOS responds with the message:

BAD (SC)

Terminal Information Requests

The following request lines list information at the terminal.

Request
Line

$S

$BB

$?

$SU

$PR

$P

Response

RUNNING

WAIT ALT

WAIT TPE

WRT CNTR

WRT CNTE

RCV CNTR

Information Returned

Current date and time in format mm/dd hh.mm.ss; mm/dd gives the month and
day and hh.mm.ss gives the hour, minute, and second.

Current state of the program executing under the current JDN of the
interactive session. Table 3-1 lists the possible responses.

Current accounting information for the program executing under the current
JDN of the interactive session. It lists the remaining time available.

Current date, time, accounting information, program state, and job
descriptor number of the executing program.

Current activity, job descriptor number, and job/session name for all of
the user's jobs in execution.

Number of interactive tasks waiting for execution.

Pools attached to the user's interactive session.

Table 3-1. Program States (Sheet 1 of 2)

Meaning

In execution.

Waiting for CPU assignment.

Waiting for tape assignment.

Waiting for controller to be assigned initial memory resources.

Waiting for controllee to be assigned initial memory resources.

Waiting for message from controller.

3-8 60459410 G

Table 3-1. Program States (Sheet 2 of 2)

Response Meaning

RCV CNTE Waiting for message from controllee.

SND CNTR Waiting to send message to controller.

SND CNTE Waiting to send message to controllee.

SND OPR Waiting to send message to operator.

SND TTY Waiting to send message to teletype.

DUMPING Input/output being dumped to disk.

FINISH Finished; clean-up is in progress.

SUSP OPER · Suspended by system operator.

SUSP SYS Suspended by system.

WAIT MP Waiting for minus page to be assigned.

RCV OPER Waiting to receive message from operator.

WAIT mfx Waiting for mainframe identified.

NIL No tasks in execution.

Case Conversion Request

When a terminal session starts, VSOS translates all input to uppercase before processing.
The following three request lines control this action.

Request
Line Information Returned

$LC Enable lowercase input. VSOS will not translate characters to uppercase.

$UC

$X

Disable lowercase input. VSOS will translate characters to uppercase.

Toggle case translation. If VSOS was translating characters to uppercase,
it will no longer do so. If VSOS was not translating characters to
uppercase, it will begin to.

The response to these requests is either a lowercase L or an uppercase U. If the lowercase
L is returned, VSOS will not be translating characters to uppercase. If the uppercase U is
returned, VSOS will be translating characters to uppercase.

VSOS understands all interactive request lines and connected terminal file delimiters
whether case conversion is being performed or not.

60459410 J 3-9

Operator Message Request

The following request line sends a message to the system operator in the K display:

$OP message

When the message is sent, the system responds with the following line:

[OK]

Task Interrupt Request

The following request line can interrupt and send a message to the interactive task if the
task has been designed to receive this input:

$I message

The message is optional. A $I entry interrupts the task without sending a message.

To be able to process the message interrupt, the program must include the following:

• A call to enable interactive message interrupt processing (a Q5ENAMI call with the
TERMINAL parameter specified).

• The message interrupt subroutine specified on the Q5ENAMI call. The subroutine can
contain one or more Q5GETMCR calls to receive $I input messages and one or more
Q5SNDMCR calls to send messages to the terminal. (The interrupt routine usually
reads and/or sets variables in a common block to monitor or alter the execution of
the main program.) It must contain a Q5RFI call to end interrupt processing.

After you start a task that uses a message interrupt subroutine, a message can be sent at
any time to the interrupt subroutine using a $I interactive request line.

A $I request line interrupts the task. The current state of the interrupted task is saved,
and the interrupt routine specified on the Q5ENAMI call is entered. The interrupt routine
can get the $I message by calling Q5GETMCR. Control returns to the task from the interrupt
routine when it calls Q5RFI; the task resumes its processing as if no interrupt occurred.

The Q5ENAMI description in chapter 8 contains an example of a message interrupt routine.

13-10 60459410 G

Session Termination Request

The following request line terminates the VSOS interactive session.

$BYE

The $BYE request line does not terminate active tasks belonging to the user number; the
tasks execute until they are completed. In a system with an RHF front-end, the $BYE request
line causes control of the terminal to be returned to the front-end system.

The $BYE request line indicates that after all active tasks are completed, the system can
discard the local files created during the interactive session. If the session is
disconnected without a $BYE request line, the local files are not discarded. Logging in
with the same user number reconnects you to the existing JDN.

When interactive access to VSOS is via RHF, it is possible to log out from VSOS without
returning control of the terminal to the front-end system. This is done by typing the
following command:

$HELLO

The $HELLO request line has the same effect as $BYE, except that control of the terminal is
not returned to the front-end system. Instead, a prompt to log in is issued, and a LOGIN
command may be entered. This feature is useful for switching between two or more numbers
with a minimum of effort.

INTERACTIVE EXECUTE LINE

Start execution of a controllee file by logging in to an interactive terminal. Enter an
execute line with the general format shown in figure 3-3.

The execute line must specify the name of the file to be executed. The file can be a local
file, an attached private file, or a public file. The file name becomes the task name.

The execute line can also specify resource limits for the task and a character string to be
passed to the task. The character string can be entered before or after the resource
parameters. If resource parameters are specified, a (blank)/(blank) must precede the
parameters and a second (blank)/(blank) must separate the parameters from the string if it
follows the parameters.

All parameters specified should conform to the conventions used on system-supplied control
statements. All addresses are assumed to be hexadecimal values; any other number is assumed
to be a decimal value unless preceded by #.

60459410 G

I NOTE I
Many VSOS utilities are case sensitive for
input or command lines. If case conversion
is not being done by VSOS, you will have to
enter data in uppercase where required.

3-10.1/3-10.2

taskname I TL=t,PRIORITY=p,WS=w,LP=lp / string

or

taskname string I TL=t,PRIORITY=p,WS=w,LP=lp

taskname

string

Name of task to be placed into execution (one through eight
letters or digits).

Optional character string to be passed to the task. The format of
the character string depends on the coding of the task. The
string is delimited by blanks. The delimiting blanks are not
passed to the task.

Optional Resource Parameters

TL=t

PRIORITY=p

Task time limit in system secondst (decimal integer between 1 and
599940).

If TL=t is omitted, the task time limit is determined by an
installation parameter value (release value, 60).

Task priority, 1 (lowest) to 15 (highest). If the specified
priority exceeds the maximum priority specified by the
installation for interactive tasks, the task priority is set equal
to the maximum priority.

If PRIORITY=p is omitted, the job priority is the
installation-specified default priority for interactive tasks
(release value, 14).

Maximum working set size in blocks (decimal integer).

Specifying WS=* notifies the system that the task requires all
allocatable memory (a machine size task). If the site does not
allow an interactive task to use all allocatable memory, the task
is not started.

If WS=w is omitted, the maximum working set size for the task is
the maximum working set size for interactive tasks.

tA system second is one million STUs. If desired, an installation can substitute
SBUs for system seconds as the time limit unit. The calculation of an STU or an
SBU is described in volume 2 of this manual.

Figure 3-3. Interactive Execute Line Format (Sheet 1 of 2)

60459410 J 3-11

I

LP=lp

TASK DAT A INPUT

I NOTE I
Use the WS parameter only for the following tasks:

• A machine size task requiring all
allocatable memory (specify WS=*)

• A task known to execute efficiently with a
maximum working set size for interactive
tasks

Misuse of the parameter could result in suspension
of the task to prevent system performance
degradation. The system automatically resumes the
task when system resources are available.

Maximum number of large pages that can be assigned to the task
(decimal integer). If the specified limit exceeds the maximum
limit specified by the installation for interactive tasks, the
task is not started.

If the large page limit, when multiplied by 128, exceeds the
working set size limit, the task is aborted.

If LP=lp is omitted, the large page limit is zero.

Figure 3-3. Interactive Execute Line Format (Sheet 2 of 2)

Tasks can be programmed to accept input from a file connected to a terminal. Use of a
connected file is described in chapter 2 of this manual under Connected Interactive Terminal
Files.

DYNAMIC AND STATIC EXECUTION

A controllee may execute statically or dynamically. A controllee executed statically has
all externals loaded at load time. The controllee can be loaded for dynamic execution.
Dynamic execution makes use of a linker utility that satisfies externals on a dynamic basis
when the controllee is executed. The linker utility loads dynamic modules and utilities
from a user dynamic or the system shared library (SHRLIB). Dynamic utilities are system
utilities that do not have any SYSLIB modules on their controllee files. These SYSLIB
modules are called dynamically during execution. All system utilities are dynamic except
the following:

DEBUG
CTX
META

3-12 60459410 F

The SHRLIB allows both batch and interactive users to share the same physical pages in
virtual memory. The system sets aside enough physical pages to satisfy the working set of
SHRLIB. The SHRLIB is a file that is read or partially read during system initialization
into the pages set aside for the shared library region of memory. Those pages are
unavailable for other use.

The shared pages contain directories, a dynamic linker, and a shared SYSLIB that contains
dynamic modules and, optionally, shared utilities.

The only shared utilities are BATCHPRO and FTN200. During execution of a controllee, if a
controllee faults for a page of the SHRLIB that is not in memory, the system reads in the
page for the controllee to use.

For more information on dynamic execution, refer to the LOAD utility in chapter 4 of this
manual.

60459410 G 3-13

BATCH JOB

A VSOS batch job is a sequence of tasks the batch processor starts while it executes for a
user number. The sequence of tasks is specified in a batch input file.

BATCH INPUT FILE STRUCTURE

A batch input file comprises one or more groups of records. The first group contains a
sequence of batch execute lines (control statements) specifying the sequence of tasks to be
performed. Each execute line is a separate record.

Subsequent groups in the file can contain input for tasks initiated by execute lines in the
first group. Input could be source program text, program data, or utility directives.

The input groups must be in the order required by the execute line sequence. For example,
suppose the sequence includes the following statements:

LOAD.
GO. I
FTN200.

The input groups must include a source program text group as input for the FTN200 task,
followed by a group containing any data required for the GO task. The LOAD task does not
require input from a batch input file group.

Only one execute line can use a group from the batch input file. For example, a source
program text in the batch input file can be used by only one compilation statement in the
job.

If a RESOURCE statement is included in the job, it must be the first statement after the
USER statement, if specified. SUBMIT or QTFS processes the RESOURCE statement. The USER
statement is always the first control statement after the job statement. The job statement
is the first statement in a VSOS batch job. The job statement must begin with a 1 through 8
alphanumeric character string with the first letter being alphabetic. The job statement
must end with a valid job control statement terminator. SUBMIT/QTFS removes the job, user,
and RESOURCE (if present) statements from the job file prior to placing it in the input
queue.

BATCH CONTROL STATEMENT

A batch control statement initiates a task within a batch job.

The following is the general format of a batch control statement.

task-name,parameters. comment

Any blanks before the task name are ignored. The task name can be followed by any of the
following separator characters:

blank

If the task name and a parameter are separated by more than one blank, only one blank is
passed to the task.

If a parameter (such as the JCS parameter in the MFLINK statement) specifies a character
string, double quotes (11

) must delimit the string. To include the character 11 in the
string, two consecutive quotes must be specified. The two 11 characters are interpreted as
one " character within the string.

3-14 60459410 J

A control statement is normally translated to uppercase characters before being processed. /
However, if you put character strings within double quotes, this translation is not done.
Thus, you have a way to supply case-sensitive arguments to a task.

A control statement must be terminated by either a right parenthesis or a period. A right
parenthesis or period specified within a character string does not terminate a control
statement. Blanks to the right of the terminator are ignored.

If a terminator does not appear in the line, the line immediately following it is presumed
to be a continuation. (A COMMENT or* control statement cannot be continued.) No special
continuation character exists for a batch control statement.

Any characters after the terminator are presumed to be a comment. These characters are
copied to the <layfile but are not otherwise processed.

{

The parameters of a batch control statement must be checked by the task; the batch processor
does not interpret the parameter string.

The batch input file should not contain an execute line that returns it. If the input file
is returned, it is not purged at the end of the job. This causes the job to be resubmitted
to the input queue at each autoload.

JOB SCHEDULING

Each batch input file entered in the system is processed by the input queue manager. It
assigns each batch job a job selection number that determines its position in the input
queue. The job selection number is based on the job priority and on the time the job
entered the system. The batch user can specify a priority on the RESOURCE statement (refer
to chapter 4 in this manual). Jobs with the same priority are positioned in the queue
according to the time they entered the system; older jobs have a higher job selection number.

When an executing job or task has terminated, the input queue manager determines the next
job to give to the CPU scheduler. Starting with the job with the lowest job selection I
number, the input queue manager selects the first job in the queue that meets scheduling
constraints. The Q control statement (refer to chapter 4 of this manual) lists the status
of the jobs in the system. A job may wait in the input queue for the following reasons:

• The maximum number of executing jobs for the job category has been reached.

• There are not enough uncommitted tape drives available to satisfy the tape drive
requirement for the job.

• Reservation of the requested maximum working set size would overcommit memory beyond
the allowed overcommitment percentage.

• Adding the job's time limit to the sum of the time limits of all executing jobs
would exceed the maximum time limit for all jobs.

These conditions are self-correcting; that is, eventually the condition preventing job
execution ends, and the job leaves the input queue. However, other conditions that can hold
a job in the input queue are not self-correcting. In the following four cases, the job
remains in the input queue until the operator enters a command to remove the job.

• The job category for the job is turned off.

• The operator has entered a command to hold the job in the input queue.

60459410 J 3-15

• The number of tapes requested for the job is greater than the number of tape drives
available at any time on the system.

• The job requires tape files, but the operator has turned off tape processing.

In the following three cases, the job does not enter the input queue. The job returns to
the remote host and the dayfile contains the following message:

NO JOB CATEGORY FOUND FOR SPECIFIED LIMITS

Operator commands are ineffective in trying to change the job category limits to prevent the
job from aborting.

• The job's maximum working set size is greater than the maximum working set size
limit for its job category.

• The job's large page limit is greater than the maximum large page limit for its job
category.

• The job's time limit is greater than the maximum job time limit for its job category.

Interactive tasks go directly to the CPU scheduler without processing by the input queue
manager.

JOB PROCESSING

The batch processor processes a job while executing under the user number of the job. It
uses the batch input file as its input. The batch input file is a permanent file under the
submitter's user number. Its name is derived by padding to eight characters the job name
supplied on the front-end job card, ensuring that the name is unique within the input queue
and different from the input job name. To process a job, the batch processor performs the
following steps:

1. It creates a file named QSJOBFLE and copies the first group in the batch input file
(the control statements) to it.

2. It creates a file named QSJRTHRF and copies the last group in the batch input file
to it.

3. It creates a file named INPUT and copies the next group in the batch input file (if
one exists) to it.

4. It creates a file named QSDAYFLE for the job dayfile (refer to Job Dayfile in this
chapter for more information).

5. It sets the error threshold value at the default value of 4. (The threshold value
can be changed by a TV control statement.)

6. It reads a record from QSJOBFLE. If it reads the end of the file, it initiates
normal job termination. The batch input file is purged upon completion of the job.

7. It determines whether the statement in the record is for a batch processor
function. If it is, it executes the function and continues job processing at step 5.

3-16 60459410 G

8. If the statement is not for a batch processor function, it searches for the file
having the name specified on the execute line. (Refer to File Search Hierarchy in
chapter 2 of this manual.)

If the search fails to find an executable file with the specified name, the batch
processor aborts the job.

9. If the search finds an executable file with the specified name, the batch processor
starts the task as its controllee, passing to it the parameters on the statement.

10. When the task is completed, the batch processor receives the completion status of
the task. If the task abort flag is set, the batch processor aborts the job.

11. If the task did not set its abort flag, the batch processor compares the return code
returned by the task (its termination value) with the error threshold value for the
job. If the termination value is greater than the threshold value, the batch
processor initiates abnormal job termination.

12. If the termination value is not greater than the threshold value and the task
generated an OUTPUT file, the batch processor renames the OUTPUT file as a member of
the print file family for the job. It is named Pnnfamnm. nn is a sequence number
starting with 00, and famnm is the unique family identifier.

13. Returns the current INPUT file if the task terminated normally and the INPUT file
was read by the task. It then creates a new INPUT file and copies the next group in
the batch input file (if one exists) to the new INPUT file.

14. Job processing continues at step 5.

JOB DAYFILE

For each job the batch processor processes, a job dayfile is created. During job
processing, the batch processor, the operator, and the executing tasks record job events,
job status, and comment and error information in the job dayfile.

The batch processor records all operator commands that relate to the job, messages the task
sends to the batch processor, and messages the job or the operator send to the dayfile. The
user can send a message to the job dayfile with a COMMENT control statement or a SIL
QSSNDMDF call.

The job dayfile is printed at the end of the job output.

JOB TERMINATION

A job terminates when one of the following events occurs.

Event

A task sets its abort
flag.

A task returns a termina­
tion value greater than
the job threshold value.

60459410 G

Action

Job abort is processed, followed by abnormal termination
processing and the job termination procedure.

Abnormal job termination is processed, followed by the job
termination procedure.

3-11 I

I

Event

The end of the QSJOBFLE
file is read.

Exit control statement
is read.

Job Termination Procedure

Action

Job termination procedure is processed.

Job termination procedure is processed (refer to the EXIT
control statement description in chapter 4 of this manual).

The batch processor always performs the following steps to terminate a job, regardless of
why the job terminates.

1. It renames the QSDAYFLE file so that it is a member of the print file family of the
job. It is named PXXfamnm.

If the input queue manager received the job from CYBER 200 RHF, a final print file
named PYYfamnm is added to the print file family. It contains the RHF routing
information for the file.

2. It processes the print file family of the job for routing to a front-end system, as
described under Print Files in chapter 2 of this manual.

3. It destroys the batch input file.

Job Abort

If the task abort flag is set, the batch processor performs the following steps:

1. It dumps task information (refer to DUMP in chapter 6 of this manual). To receive a
dump, the file being executed must have read access permission.

2. It initiates abnormal job termination.

Abnormal Job Termination

When abnormal job termination is initiated, the batch processor searches for the next EXIT
I or PROCEED control statement in the job file. If it finds an EXIT or PROCEED statement, it

continues processing with the statement following that statement.

I If the batch processor does not find an EXIT or PROCEED statement, it routes the job output
and terminates the job.

JOB PROCESSING EXAMPLE

Suppose the sequence of information shown in figure 3-4 is an input file for the batch
processor. (The input queue manager has removed and processed the RESOURCE statement.)

3-18 60459410 G

TV, o+.
FTN200.
LOAD.
GO.
DEFINE,DATAOUT.
end-of-group delimiter

FORTRAN 200 source program

end-of-group delimiter

program data

end-of-file delimiter

Figure 3-4. Example Batch Input File as Read by the Batch Processor

The batch processor begins to process the file by copying the first group of the file
(containing the control statements) to a file named QSJOBFLE. If the batch job originated
from a remote system or via SUBMIT, the last group in the file is copied to a file named
QSJRTHRF. The processor then copies the next group (containing a FORTRAN source program) to
a file named INPUT. It also creates a file named Q5DAYFLE and sets the error threshold
value to the default value.

The batch processor reads the first record from Q5JOBFLE. It contains the batch processor
control statement, TV,o+. The batch processor executes the statement, setting the job error
threshold value at zero.

The batch processor then reads the second record from QSJOBFLE. It is the compiler control
statement FTN200. The batch processor does not recognize the statement as one that it
executes, so it assumes that the statement names a controllee file to be executed. It
passes the parameters of the control statement and the file name to the operating system.

The operating system searches for a controllee file with the name FTN200. If the system
finds a controllee file with that name, the batch processor starts execution of the file as
its controllee.

Assuming that the controllee is an FTN200 compiler, the compiler, by default, reads its
input from the INPUT file containing the batch input file group that followed the control
statement group. Assuming that the group is an FTN200 source program, the compiler, by
default, creates the local file BINARY and writes the compiled object code on the file. The
compiler also creates a local file named OUTPUT, on which it writes the FTN200 source
listing.

60459410 F 3-19 I

Assume that the FTN200 task returns a completion status of 0 (normal termination) to the
batch processor. Because the INPUT file was read by the FTN200 compiler, the batch
processor returns the existing INPUT file and creates a new INPUT file, copying the next
group from the batch input file.

The batch processor changes the name of file OUTPUT to POOf amnm. The name f amnm is the
unique identifier of the family of print files belonging to the job.

The next record the batch processor reads from Q5JOBFLE contains the control statement
LOAD. The operating system finds the public file LOAD, containing the LOAD utility. It
initiates execution of the file as a controllee of the batch processor.

I By default, LOAD reads the BINARY file as its input. It creates a local file named GO, on
which it writes a controllee file. It also creates a local file named OUTPUT, on which it
writes the load map.

I LOAD attempts to satisfy external references from the default library SSYSLIB. Remaining
unsatisfied externals are assumed to be dynamic and will be satisfied by the linker when the
GO file is executed.

At the end of LOAD execution, the batch processor again checks the abort flag and compares
the termination value to the error threshold value. LOAD did not read the INPUT file, so
the INPUT file is not returned. LOAD did create an OUTPUT file, so the batch processor
changes the name of the OUTPUT file to POlfamnm.

The next control statement read from QSJOBFLE is GO. The operating system finds the GO file
as the local controllee file the LOAD created. It executes GO as a controllee of the batch
processor.

At the end of GO execution, the batch processor checks the abort flag and compares the
termination value to the error threshold value. GO read the INPUT file, so the batch
processor returns the INPUT file, but no more input groups exist on the batch input file, so
a new INPUT file is not created. GO changes the name of the OUTPUT file created by GO to
P02f amnm.

The next control statement read is DEFINE,DATAOUT. Execution of the DEFINE utility searches
for a local file named DATAOUT. Assuming that execution of GO created a file named DATAOUT,
DEFINE stores the local file DATAOUT as a permanent file. Therefore, the file DATAOUT
continues to exist after job termination; all other files used by the job are destroyed at
job termination.

QSJOBFLE contains no more records to be read, so the batch processor terminates the job.

The job dayfile, QSDAYFLE, created as the job was running, is changed to P:XXfamnn. If it
exists, the last-group-file QSJRTHRF, is renamed PYYfamnn. If the job originated from a
remote system or via SUBMIT, all files in the output-file-family are given to the output
queue as they are renamed.

3-20 60459410 F

REMOTE HOST FACILITY

The remote host facility (RHF) is the set of software that enables communications between
computer systems connected via the loosely coupled network (LCN) hardware. RHF manages the
transfer of control statements and files between systems. It also supports VSOS interactive
access from remote systems. It performs all required character code and logical file
structure conversion.

The RHF software that executes on a CYBER 200 system is called CYBER 200 RHF. The software
includes an application program for each RHF function. These application programs send
control statements to and receive control statements from RHF application programs executing
on other computer systems.

The applications and CYBER 200 RHF control statements executed by the system are described
in this chapter. For a description of the user-executable RHF applications, DUMPF, LOADPF,
MFLINK and MFQUEUE, refer to chapter 4 of this manual.

RHF can send control statements to another system to be executed by the other system. The
control statemen~s are specified as a text string. The text string can be specified as part
of a parameter or as data on a separate file. CYBER 200 RHF takes the control statement
text string from the JCS parameter or from the file specified on the INPUT parameter. For
security reasons, a text string specified on a JCS parameter is not entered in the job
dayfile. The text string is replaced by asterisks.

RHF can transfer copies of queue files, permanent mass storage files, or archived files. A
separate RHF application program manages each file transfer category. The following are the
CYBER 200 RHF applications.

Program

Interactive Transfer
Facility Server
(ITFS)

Queue File Transfer
Facility (QTF, QTFS)

Description

Manages interactive I/O transfers.

Manages queue file transfers.

Permanent File
Transfer Facility
(PTF, PTFS)

Manages requests for permanent file operations, including
permanent file transfers.

Dump/Load Facility
(DLF)

Manages dumping and reloading of CYBER 200 archived files.

The remote operator interface is described in the VSOS 2 Operator's Guide.

INTERACTIVE ACCESS

To log in to the CYBER 200 system via RHF, perform the following steps:

1. Log in to the remote system.

2. Notify RHF that you want to log in to the CYBER 200 system, as described in the RHF
documentation for the remote system.

3. Log in to VSOS as described earlier in this chapter.

After login, interactive access via RHF is as described earlier in this chapter.

60459410 F 3-21

•

QUEUE FILE TRANSFERS

The QTF and QTFS applications manage queue file transfers for VSOS. QTFS receives batch
input queue files with disposition codes of IN and IX and gives them to the input queue
manager as CYBER 200 batch jobs. QTFS also receives output queue files with disposition
codes of LP, CP, P8, PB, or SP, and gives them to user 6 for processing by QTF. QTFS will
also process the following routing directive if received with the queue file:

ROUTE,ST=lid.

lid The logical id of the remote host to receive any output associated with the
queue file.

The remote system's MFQUEUE command is used to send the routing directive with the queue
file. For example, if the ROUTE directive is received with an input queue file, the output
of the batch job is sent to the LID specified in the ROUTE directive. If the ROUTE
directive is received with an output queue file, the output queue file is given to user 6
and QTF sends the output queue file to the LID specified in the ROUTE directive.

If QTFS receives an output queue file without any routing directives, QTFS gives the output
to user 6 and QTF sends the output to a default remote host. Also, if QTFS receives an
input queue file with disposition of IX and no routing directives are received with it, the
output generated by the batch job is sent to a default remote host. The default remote host
is designated initially by an LID specified by the AUTOCON variable OLID (the released value
is NOS; on VSOS it is MEl). However, the remote host may be changed when the system is
autoloaded or by the OLID operator command during system operation.

The QTF application sends queue files to other remote hosts sending information with the
queue file designating the file's disposition.

CYBER 200 JOB SUBMISSION

I
QTFS receives a batch input file for processing as a CYBER 200 job. The job statement is
the first statement in the file and is used by the remote system. QTFS processes the second
statement in the file, the USER statement. If a RESOURCE statement follows the USER
statement, QTFS processes it also. QTFS then strips the first two statements from the file
and the RESOURCE statement (if present) and gives the file to the VSOS input queue manager.

The USER control statement (refer to figure 3-5) identifies the CYBER 200 user number to
which the CYBER 200 job belongs, the account identifier to which its resource usage is
charged (optional), the password for the user number, and the security level of the job.

The RESOURCE control statement for the job must immediately follow the USER statement.

The logical structure of a job file sent to the CYBER 200 input queue must be indicated by
ASCII separator characters. The job file may be transferred to the CYBER 200 only in
character mode (DD=C8, C6, or the default, which causes the file to be handled in the native
character mode of both the sending and receiving systems).

3-22 60459410 J

USER,USER=userno,ACCOUNT=account,PASSWORD=password,SECURITY=n.

USER=userno

ACCOUNT=account

PASSWORD=password

SECURITY=n

60459410 H

CYBER 200 user number (one to six decimal digits). This
parameter is required.

CYBER 200 account identifier (one to eight ASCII
characters). This parameter is optional.

User password (one to eight ASCII characters). Site
personnel determine during system installation whether
user password entry is required or optional.

Security level for the job (1 to 8). If SECURITY=n is
omitted, security level 1 is assumed.

Figure 3-5. USER Control Statement Format

3-22.1/3-22.2 1

OUTPUT FILE ROUTING

Because a CYBER 200 system has no output devices, RHF must transfer all output files to a
remote system. The QTF application performs all output file routing.

As described under Job Processing earlier in this chapter, the final file in an
output-file-family contains the output specifications for the files. The files in the
family, including the job dayfile, are concatenated at job termination into a single print
file. When the RHF software on the remote system receives the file, it interprets the
output specifications to determine the appropriate output queue for the file.

The records of the routed file are terminated by ASCII unit separator characters (#lF). RHF
adds these record termination characters, if necessary, as part of the output file.

EXPLICIT FILE ROUTING

By default, QTF routes an output file to the remote system from which the job that produces
the output file originated. However, an output file can be explicitly routed to another
system. To do so, include an MFQUEUE control statement (refer to chapter 4 of this manual)
in the job that produces the file.

60459410 F 3-23

I

RHF PERMANENT FILE REQUESTS

RHF permanent file requests are handled by a sequence of control statements sent to or from
a remote operating system via RHF. The PTF and PTFS applications manage RHF requests for
permanent file operations. PTFS receives requests from the remote system for operations on
permanent files. PTF sends requests to the remote system, using the MFLINK control
statement, for operations on permanent files.

PERMANENT FILE REQUESTS

PTFS receives requests to define, copy, purge, and give CYBER 200 permanent files. The
following VSOS control statements are acceptable to PTFS:

ATTACH
AUDIT
CHARGE
DEFINE
GIVE
MFG IVE
MF TAKE
PATTACH
PDETACH
PERMIT
PURGE
Q (only if IP SCF
RETURN
SWITCH
USER

1)

The sequence of CYBER 200 control statements that compose a request must adhere to the
following rules:

• It must begin with a USER statement (refer to figure 3-5) specifying the CYBER 200
user number to which the referenced files belong.

• To copy a permanent file, the sequence must include the statements needed to access
the CYBER 200 file and either an MFGIVE or an MFTAKE control statement (refer to
figures 3-6 and 3-7). An MFGIVE statement copies a CYBER 200 file to a remote
file. An MFTAKE statement copies a remote file to the CYBER 200 file.

• Only one MFGIVE or MFTAKE control statement can be specified per request.

• You may omit the ST=lid parameter and the USER card in the JCS parameter string for
second and subsequent MFLINKs in the same job or interactive session on the front
end. In batch jobs, this allows multiple files on one connection for successive
MFLINKs.

If you use multiple copies of PTFS referencing the same permanent file, you may experience
delays on the ATTACH. The default for ATTACH is to wait until access is granted to the
file. Default access permissions are RX (read and execute). Several jobs may access the
file simultaneously to read it, but if one PTFS specifies write access permission on the
ATTACH statement, on all subsequent attempts to ATTACH the file with any access, the job
waits until the file becomes available (unless WAIT=NO was also specified). If the wait
interval becomes too long, MFLINK on the remote system may time out. See chapter 4 of this
manual for additional information on the ATTACH statement. If the remote system sends
successive requests on a single MFLINK connection (MFLINK session), PTFS allows the requests
and completes the session.

3-24 60459410 G

MFG IVE, lfn.

lfn

MFTAKE, lf n.

lfn

Name of the CYBER 200 file to be transmitted (one to eight
alphanumeric characters, beginning with a letter). The statements
required for accessing a permanent file (ATTACH or PATTACH) must be
executed before the MFGIVE statement.

Figure 3-6. MFGIVE Control Statement Format

Name of the CYBER 200 file that receives the file copy. To make
the file permanent, the DEFINE statement must be executed before or
after the MFTAKE statement.

Figure 3-7. MFTAKE Control Statement Format

PERMANENT FILE AUDIT REQUEST

The control statement sequence transferred by an MFLINK statement can incl~de an AUDIT
statement. To transfer the AUDIT listing to the remote host, the AUDIT statement must
specify a listing file and an MFGIVE statement specifying that the listing file must follow
the AUDIT statement. The AUDIT statement cannot specify ·the IPR listing file option. The
listing file contains ASCII data with ANSI carriage control characters.

I NOTE I
The AUDIT statement cannot exc~ed 2000
characters.

The statements required for accessing a permanent file (ATTACH or PATTACH) must be executed
before the MFTAKE statement if the file is permanent prior to the MFTAKE. To determine how
to send a permanent file request to a CYBER 200 system, ref er to the RHF documentation of
the system that is to send the request.

DIRECT ACCESS FILE TRANSFERS

RHF can transfer files with random access structure. However, the ability to access the
file records randomly is maintained only if the file that receives the transferred file copy
is defined with a compatible random access structure.

VSOS supports random record access with the direct access file structure described in
chapter 2 of this manual. When RHF transfers a copy of a VSOS direct access file to a
remote system, random access of the file records on the remote system is possible only if
the file that receives the file copy is defined with a compatible random access structure.

Similarly, when a random access file is transferred to a CYBER 200 system, VSOS can access
the file records randomly only if the receiving file was defined with direct access file
structure.

60459410 F 3-25

For example, suppose a file named IBM.DA.FILE is to be transferred from an IBM system to a
CYBER 200 system. The file has fixed-length BO-character records, compatible with a valid
VSOS direct access file structure. Assuming that the file records are to be accessed
randomly on the VSOS system, a VSOS job should use the following statements to define the
receiving file and transfer the file copy.

DEFINE,A,RLMAX=BO,SFO=D.
MFLINK ,A,ST=IBM,DD=CB ,JCS=" GET ,DSN=IBM.DA.FILE".

Table 3-2 lists the logical structure conversions that can be specified by the data format
declaration parameter (DD=) on the MFLINK control statement. Refer to chapter 4 in this
manual for more information on MFLINK.

Permanent
File Transfer

DD=dd
Parameter

uu

us

CB

C6

omitted

• 3-26

Table 3-2. Logical Structure Conversion

RHF Conversion

No logical structure conversion. RHF transfers
the file as a string of bits terminated by an
end-of-information protocol parameter.

Logical structure indicated by file structure
control words.

Logical structure indicated by ASCII unit
separator, group separator, and file separator
characters. The file contains character data
from a character set with more than 64 character
codes.

The file contains character data from a character
set with 64 or fewer character codes. Logical
structure is indicated by ASCII unit separators,
group separators, and file separator characters.
C6 and CB are treated identically by VSOS but may
be treated differently by the remote host.

The file is treated by both the sending and the
receiving host as being in the native character
set of that host. Logical structure is indicated
by ASCII unit separators, group separators, and
file separator characters •

SIL Format

All SIL record types
can be read/written.

Only control word (W)
format can be
read/written.

All SIL record types
except U format can be
read/written.

All SIL record types
except U format can be
read/written.

All SIL record types
except U format can be
read/written.

60459410 H

FILE ARCHIVING

File archiving is the process of copying permanent files to backup storage and reloading the
backup copies if needed. File archiving preserves a backup copy in the event that the
original copy is inadvertently destroyed. The CYBER 200 file archiving statements, DUMPF
and LOADPF, are described in chapter 4 of this manual.

Using the RHF application DLF, a CYBER 200 system can archive its permanent files on a
remote computer system connected via the LCN. Enter a DUMPF or LOADPF statement as
described in chapter 4. The DLF application interprets the statement. It uses the
following parameter specifications to communicate with the remote system.

Parameter

ST

SI

JCS or
INPUT

60459410 E

Purpose

Specifies the remote system with which DLF communicates.

Specifies the set identifier on the remote system to which the files are
dumped or from which files are loaded.

Specifies the source of the text string sent to the RHF software execut­
ing on the remote system. The text string contains the job control
language required to execute the archiving request on the remote system.

3-27

TASK TERMINATION

Control task termination processing by enabling either or both of the following in the task.

• User reprieve processing

• Abnormal termination control (ATC) processing

User reprieve processing is performed when a task terminates normally or abnormally. ATC
processing is performed only when the task terminates abnormally.

USER REPRIEVE

Enable user reprieve processing with a Q5REPREV call within the task.

The Q5REPREV call specifies the entry point given control when the task terminates. The
entry point must be declared external within the task.

The user-defined reprieve subroutine can save information from the task whether the task
executes successfully or not.

I NOTE I

The reprieve subroutine must return control
to the system with a Q5TERM call.

If the task fails for a reason other than time limit, the reprieve routine is given the
processing time remaining for the task. If the task fails because of a time limit, the
reprieve routine is given an additional one-half system second.

ABNORMAL TERMINATION CONTROL

The ATC feature allows special processing to be set up if the system fails during program
execution. The system failure may or may not be caused by the user's program. (The errors

I are listed in appendix B.) When the failure occurs, normal processing is interrupted, and
all current information about the program is saved. Processing of the abnormal condition is
done in interrupt mode.

ATC does not process computation errors; to process those errors, the task can call the
FORTRAN Library Data Flag Branch Manager routines described in the CYBER 200 FORTRAN
Reference Manual.

3-28 60459410 G

ATC Interrupt Subroutine

To set up interrupt processing, write an interrupt subroutine to perform the error
processing that the program requires. For example, the interrupt subroutine can test the
error code to determine whether the program can continue. It can also print the contents of
the program variables at the time the error occurred to assist in analysis of the error.

The first line of the subroutine must have the format shown in figure 3-8. The system error
codes passed to the subroutine are listed in appendix B, table B-3.

SUBROUTINE subname(errcode,pcounter,invis,regs)

or

ENTRY subname(errcode,pcounter,invis,regs)

err code

pcounter

invis

regs

System error code (refer to table B-3).

Virtual bit address at which the system detected the error
(contents of program counter).

Invisible package of interrupted task (40-word array).

Register file of interrupted task (256-word array).

Figure 3-8. Interrupt Subroutine Header

You can include a QSRFI call in the interrupt routine to return control to or to abort the
interrupted task. If you omit the QSRFI call, the task is aborted when the interrupt
subroutine terminates.

These system messages can cause an interrupt deadlock with ATC, preventing completion of the
task. Explicit I/O requests issued as a result of a FORTRAN statement or an SIL call within
the ATC interrupt subroutine are processed correctly.

Terminal interrupts are ignored within the ATC interrupt subroutine even if the subroutine
contains an SIL call or system message to process terminal interrupts. If the ATC interrupt
subroutine returns control to the interrupted task, the task can then process terminal
interrupts, although it might not process correctly the terminal interrupts received during
ATC processing.

60459410 H 3-29

I

Enabling and Disabling A TC

Insert a QSENATI call in the program where abnormal termination control is to begin. On the
call, specify the interrupt routine to be used. To change the interrupt subroutine used,
issue another QSENATI call, naming another subroutine.

Insert a Q5DISATI call in the program where abnormal termination control is to end.

Abnormal termination control does not function under any of the following conditions:

• The program is already in interrupt mode.

• The program has exceeded its error recovery limit.

• The program encounters a second time limit error.

Interrupt Mode Disable

Abnormal termination control does not function if the program is already in interrupt mode.
The program is in interrupt mode when it is processing a terminal interrupt, when it is
performing certain I/O functions, or when it is in the abnormal termination control
interrupt subroutine. If a fatal error occurs while the program is in interrupt mode, the
program aborts without abnormal termination control processing.

Error Recovery Limit Disable

Abnormal termination control does not function if the program has exceeded its error
recovery limit. Specify an error recovery limit (1 to 256 recoveries) on the Q5ENATI call.
If an error recovery limit is not specified, the default limit of 25 recoveries is used.

Second Time Limit Disable

Abnormal termination control does not function when the program encounters a second time
limit error. After encountering the first time limit, the program is given additional time
for interrupt subroutine processing. (The amount of time is set by an installation
parameter; it is usually 500,000 STUs.)

3-30 60459410 G

RESOURCE ALLOCATION
The maximum of system resources allowed for a job or task depends on the job category to
which the job belongs.

A job category is identified by a one- to eight-character name. The installation defines
the following limitations for jobs belonging to a job category.

• Maximum number of jobs belonging to the category that can concurrently execute

• The following limits for each job in the category:

- Maximum and default priority

- Maximum and default time limit

- Maximum working set size

-· Large page limit

For further details on resource limitations imposed at security-sensitive sites, refer to
chapter 7 of the Installation Handbook.

BATCH RESOURCE LIMITS

The RESOURCE control statement (refer to chapter 4 of this manual) allows specification of
system resources to be used by the job. If the RESOURCE control statement is not included,
the job assumes the limits specified by the JDEFAULT category.

If the RESOURCE control statement is included, the following process is used to determine
resource allocation.

1. The input queue manager collects all limits supplied.

2. If the JCAT=jcat parameter is supplied, that job category is selected. The input
queue manager then performs the normal limits validation for that job category.

3. If the JCAT=jcat parameter is not supplied, the input queue manager selects the job
category automatically, comparing the limits provided on the RESOURCE control
statement with the known limits for each job category valid for the user. All users
are validated automatically for the JDEFAULT category. The category selected is
based on the following criteria.

I

a. The time limit (TL), large page limit (LP), and working set size (WS)
specified on the RESOURCE control statement are compared to all job category
limits for these parameters. A list nf eligible job categories is

60459410 J

selected. If none of these parameters are specified, all job categories are
selected.

b. The priority (PR) and working set size (WS) parameters are then compared to I
all selected job categories. If both are specified, the category with the
closest fit to at least those limits is selected. If PR only is specified,
the category with the minimum working set size and the closest fit to at
least the specified priority is selected. If WS only is specified, the job
category with the maximum priority that has the closest fit to at least the
specified working set size is selected.

c. If neither PR nor WS is specified, the job category with the maximum
priority is selected.

3-31

INTERACTIVE RESOURCE LIMITS

Within an interactive session, resource allocation is independent for each task requested.
The task resource limits can be specified on the interactive execute line (refer to
figure 3-2).

An interactive task is not started if a memory or time limit requested on its execute line
exceeds the limit for the INTRACTV job category. If its requested priority exceeds the
maximum priority for the INTRACTV job category, its priority is set at the maximum.
Otherwise, its requested limits become the initial task limits.

A QSSETLP call can change a large page limit within a task as long as the new limit does not
exceed the initial task limit.

3-32 60459410 G

ACCOUNTING

One of the user number validations is the number of system seconds available for use by
tasks belonging to the user number. A system second is one million system time units (STUs)
or one million system billing units (SBUs). The site determines whether STUs or SBUs are
used and the weighting factors used in the STU or SBU algorithm. For more information,
refer to Accounting in volume 2 of this manual.

As tasks belonging to the user number execute, the system decrements the number of system
seconds available to the user number. The system sends an error message to the job dayfile
or to the interactive terminal when too few system seconds are available to perform the
requested task. For a new allowance of system seconds for the user number, ask site
personnel.

Statistics on jobs and tasks executed are stored in a cumulative accounting buffer and in
the accounting file. The site can use the accumulated statistics to charge the user for
resources used. For more information about accounting statistics, refer to Accounting in
volume 2 of this manual.

Send accumulated resource usage information to the job dayfile by executing a SUMMARY
statement within the job.

60459410 G 3-33 I

CONTROL STATEMENTS

The control statements described in this chapter perform job processing functions or
initiate execution of system-supplied utility programs. Table 4-1 lists the control
statements described in the chapter.

A control statement can be entered as either a batch execute line or an interactive execute
line. The batch and interactive execute line formats are described in chapter 3 of this
manual.

Table 4-1. Control Statements (Sheet 1 of 4)

Batch Job Only

BEGIN Insert a procedure in the control statement sequence.

COMMENT Send a message to the job dayfile.

DAYFILE Copy the job dayfile.

ELSE Terminate/start control statement processing.

END IF Start control statement processing.

EXIT Set abnormal termination path.

IF Test a condition to process or skip control statements.

NORERUN Set norerun status.

PROC Identify a procedure and its formal parameters.

RERUN Set rerun status.

RESOURCE Set job limits.

SET Change job characteristics.

SUMMARY Provide resource usage information.

TV Set threshold value.

USER Validate user access.

4

60459410 H 4-1

I

I

4-2

LIMITS

PASSWORD

USER

CHARGE

COMPARE

COPY

COPYL

FILES

GIVE

LISTAC

PERMIT

Q

REQUEST

RETURN

SWITCH

DIVERT

DROP

MFQUEUE

SUBMIT

Table 4-1. Control Statements (Sheet 2 of 4)

System Access

List user's validation controls and limitations.

Change the. user password.

Identify the user number to which a batch input file belongs.

Assign account and project numbers.

File Management

Compare the contents of two files.

Copy, byte by byte, the contents of one file to another.

Copy logical partitions from one file to another.

List file information.

Change file ownership.

List access permission sets.

Change file access permissions.

List job status.

Create a local file, a tape file, or a file connected to a terminal.

End file access by the job or interactive session.

Change file characteristics.

Queue File Management

Change the destination of an output file.

Remove a job from a queue.

Submit a file to a queue on a remote system.

Submit a job to the input queue on the CYBER 200.

60459410 H

ATTACH

AUDIT

DEFINE

DMAP

DUMPF

LOAD PF

MFLINK

PURGE

PAC CE SS

PATTACH

PCREATE

PDELETE

PDE STROY

PDETACH

PF ILES

BLANK

LABEL

REWIND

SKIP

60459410 H

Table 4-1. Control Statements (Sheet 3 of 4)

Permanent File Management

Attach permanent files.

List permanent file information.

Create a permanent file, or make an existing local file permanent.

Provide information on the location of permanent file segments.

Copy permanent files to archive storage.

Reload files from archive storage.

Transfer a permanent file between mainframes.

Destroy permanent files.

Pool File Management

Grant pool access.

Attach a pool.

Create a pool.

Remove pool access.

Destroy a pool.

Detach an attached pool.

List pool information.

Tape File Management

Blank label a tape volume. (For more information, ref er to the VSOS
Operator Guide.)

Supply label information for a tape file.

Rewind a tape file.

Position a tape file.

4-2.1/4-2.2

I

Table 4-1. Control Statements (Sheet 4 of 4) I
Code File Management

LOAD Create a controllee file.

OLE Edit or create an object library.

SLGEN Generate a shared library.

TASKATT Alter a controllee attribute.

Debugging

DEBUG Debug a program (refer to chapter 6).

DUMP Dump a drop file (refer to chapter 6).

LOOK Dump virtual space (refer to chapter 6).

File Update

UPDATE Maintain a card image file (refer to chapter 5).

Privileged User Only

EDITPUB Add or destroy a public file.

60459410 H 4-3

CONTROL STATEMENT PARAMETER FORMAT
Control statement parameters use the following formats:

• keyword

• keyword=value

• value

The format used for a parameter is shown in the control statement format. Parameters that
use a keyword can appear in any order within the control statement. A parameter specified
only as a value must appear in its designated position, as shown in the control statement
format.

Control statements recognize abbreviated keywords for many parameters. For example, the
keyword DEVICE can be entered as DEVICE, DEVIC, DEVI, or DEV. The fewest characters
required for keyword recognition are underlined in the parameter description.

A parameter value is passed to the utility as specified in the control statement. In
general, value interpretation follows these conventions:

• Addresses are interpreted as hexadecimal constants unless indicated otherwise in the
parameter description.

• Other digit strings are interpreted as decimal numbers unless a # character precedes
the string. The # character indicates that the number is in hexadecimal
representation. Either decimal or hexadecimal representation is allowed unless
indicated otherwise in the parameter description.

Any errors in the parameters submitted are reported to the dayfile unless otherwise noted.

Standard control statement parameter processing is performed by the Q7KEYWRD routine
described in volume 2 of this manual.

4-4 60459410 F

INTERACTIVE CONTROL STATEMENT EXECUTION
All control statements described in this chapter, except the batch processor control
statements and the RESOURCE statement, can be used in an interactive terminal session. Any
differences between interactive and batch use are described in the control statement
description.

The syntax of a control statement entered at an interactive terminal can have either of the
following formats:

• A control statement with only an optional right parenthesis or period terminator

• A control statement with one or more parameters on one or more lines

When a control statement is entered without parameters, the task responds with a prompting
message, such as PLEASE SPECIFY PARAMETERS. The prompting message might also include more
specific information about appropriate entries, such as a message SPECIFY: FILENAME,
LENGTH, OPTIONS. In response, enter a parameter or a string of parameters separated by
commas. Each entry must be terminated by a carriage return.

When the control statement is entered on a single line, the task name must be followed by a
blank, a comma, or a left parenthesis. Other parameters can be separated by blanks or
commas also. Depending on the utility, some parameters have subfields separated by the
character slash. Any blank immediately adjacent to a parenthesis, comma, slash, or period
is ignored.

Except for the LOAD control statement (described in this chapter), a control statement can
be entered on more than one line. No prompting occurs between continued lines. To continue
a control statement entered interactively, the character & must be the last character before
the carriage return. Thus the next entry line is a continuation of the string of characters
in the previous entry. Several lines can be concaten;::;ed, up to a limit of 4096
characters. If the character & is not entered, the next line is a new statement. The
following entries are equivalent.

RETURN FILE1,FILE2,FILE3,FILE4

RETURN FILE1,FILE2,FI&
LE3,FILE4

Any error in the parameters submitted and any errors encountered during execution of the
utility are reported at the terminal. Almost all control statements notify you of
successful execution.

60459410 F 4-5

CONTROL STATEMENT MANAGEMENT
You can direct the batch processor to process or skip a control statement through a control
statement variable in the IF, ELSE, or ENDIF control statements. This section describes
that procedure.

CONTROL STATEMENT VARIABLES

Use these variables in SET and IF statements. The SET control statement is used to place a
value in a variable; refer to SET - Change Job Characteristics later in this chapter. The
IF statement, described later in this chapter under IF Control Statement, is used to test
control statement variable values.

The names of the global control statement variables follow:

Rn Identifies a global variable that may be set or altered by the SET statement and
referenced in an IF statement. n is an integer from 0 to 9. There is one set
of these variables that exists across all control statement procedures.

TV Returns the current threshold value; this variable cannot be set by the SET
statement.

RC Returns the last return code returned from a controllee; this variable cannot be
set by the SET statement.

Following are some examples of using control statement variables:

SET (R0=25)
COMMENT. VARIABLE RO NOW CONTAINS DECIMAL 25
SET(R2=// l 0)
COMMENT. VARIABLE R2 NOW CONTAINS HEX 10
SET(R3=TV)
COMMENT. VARIABLE R3 NOW CONTAINS THE THRESHOLD VALUE
SET(Rl=R2)
COMMENT. VARIABLE Rl NOW CONTAINS HEX 10
SET(R0=+25)
COMMENT. VARIABLE RO NOW CONTAINS DECIMAL 50
SET(R0=-10)
COMMENT. VARIABLE RO NOW CONTAINS DECIMAL 40
SET (R7="ABC")
COMMENT. VARIABLE R7 NOW CONTAINS THE STRING "ABCxxxxx".

IF, R7= 11ABC".
COMMENT. THIS COMMENT STATEMENT WILL BE PROCESSED
ELSE.
COMMENT. THIS COMMENT STATEMENT WILL NOT BE PROCESSED
ENDIF.

IF ,Rl>RO.
COMMENT. THIS COMMENT STATEMENT WILL NOT BE PROCESSED
ELSE.
COMMENT. THIS COMMENT STATEMENT WILL BE PROCESSED
ENDIF •

• 4-6 60459410 H

CONDITIONAL CONTROL STATEMENTS

The statements described in this section are used to test conditions; the results of the
test then cause the control statements to be processed or skipped.

IF Control Statement

IF tests control statement -~nditions to see if they are true or false.

If a condition that an IF c~ rol statement tests is true, the control statements that
follow the condition are proc~ssed until a matching ELSE or ENDIF statement is found. The
statements between the matchin.1!, ELSE and ENDIF are skipped.

If the condition is false, the control statements that follow are skipped until a matching
ELSE or ENDIF statement is found.

The IF statement format is shown in figure 4-1. A left parenthesis can replace the first
comma in the format and a right parenthesis can replace the terminating period.

IF,condition[,label].

condition

label

60459410 H

The condition to be tested for a true or false value.
The condition has the following format:

valuel op value2

valuel and value2 can be one of the values defined in
the SET statement for assignment to a control
statement variable.

op can be one of the following operators:

Tests for 64-bit equality of valuel and value2.
The operation is true if they are equal.

> value2 is subtracted from valuel. If the
result is greater than zero, the operation is
true.

Optional label used to match with the ELSE and/or
ENDIF statement. label can be a maximum of eight
alphanumeric characters.

Figure 4-1. IF Control Statement Format

4-6 .1 •

ELSE Control Statement

ELSE terminates true condition processing or starts false condition processing. For a true
condition, ELSE causes statements to be skipped until the matching ENDIF is found. For a
false condition, ELSE stops the statement skipping.

The ELSE statement format is shown in figure 4-1.1. A left parenthesis can replace the
first comma and a right parenthesis can replace the terminating period.

ELSE[,label].

label Optional label used to match the IF and ENDIF statements.

Figure 4-1.1. ELSE Control Statement Format

ENDIF Control Statement

ENDIF terminates the skipping of control statements.

The ENDIF statement format is shown in figure 4-1.2. A left parenthesis can replace the
first comma and a right parenthesis can replace the terminating period.

ENDIF[,label].

label Optional label used to match the IF and ELSE statements.

Figure 4-1.2. ENDIF Control Statement Format

CONDITIONAL STATEMENT PROCESSING

The IF statement causes the batch job processor to evaluate the condition. The result of
the condition and label are then saved.

If the condition is false, the batch job processor scans for an ELSE or ENDIF whose label
matches the saved label. When the ELSE or ENDIF is found, the batch job processor clears
the condition and label and starts processing control statements again.

If the condition is true, the batch job processor clears the condition and label and starts
processing control statements.

If an ELSE is found when the condition and label are cleared, the batch job processor skips
control statements until an ENDIF is found that matches the ELSE •

• 4-6.2 60459410 H

CONTROL ST A TEMENT PROCEDURES

A control statement procedure is a sequence of control statements in a mass storage file.
The first statement in the file must be a PROC statement. To begin execution of a
procedure, a job must process a BEGIN statement.

PROC ST A TEMENT

The PROC control statement is the first statement in a procedure file. It identifies the
name of the procedure and any formal parameters used in the procedure statements.

The PROC control statement format is shown in figure 4-1.3. A left parenthesis can replace
the first comma in the format, and a right parenthesis can replace the terminating period.
The parameters must appear in the order shown.

pname

BEGIN ST A TEMENT

Name of the procedure (one to eight letters or digits, beginning
with a letter). This parameter is required.

Optional list of up to 16 formal parameters separated by
commas. Each formal parameter is a string of one to eight
characters; it can contain letters, digits, and the underline
character (). Refer to Formal Parameter Substitution in this
chapter for-more information.

Figure 4-1.3. PROC Control Statement Format

The BEGIN control statement initiates execution of a control statement procedure. A BEGIN
statement can appear in the control statement sequence of a batch input file or in a control
statement procedure; it cannot be entered at an interactive terminal.

I NOTE I

A site might have installed the BEGIN
utility from TOOLPL which can be used
interactively.

A permanent file containing a procedure must be attached before a BEGIN statement can
initiate its execution.

The BEGIN statement format is shown in figure 4-2. A left parenthesis can replace the first
comma in the format, and a right parenthesis can replace the terminating period. The
parameters must appear in the order shown.

60459410 J 4-6.3/4-6.4.

pname

pfile

Pi

Name of the procedure to be executed, as defined on the PROC statement
in the procedure (one to eight letters or digits, beginning with a
letter). If pname is omitted, the procedure on the file specified by
pf ile is executed.

Name of the mass storage file containing the procedure (one to eight
letters or digits, beginning with a letter). If pfile is omitted, the
procedure file name is assumed to be PROCFIL.

Optional list of up to 16 substitution values separated by commas. A
substitution value is a string of one to eight characters; it can
contain letters, numbers, and the underline character (). Other
characters can be included if the string is enclosed in-double quote
characters (").

The editing characters ", @, and A are removed from the substitution
value unless the user specifies two consecutive characters for each
character that is to remain. For example, ""''@@""" indicates that "@"

is the substitution value.

The formats used to specify substitution values are described under
Matching Substitution Values to Formal Parameters in this chapter. The
effect of omitting substitution values is described under Omitting
Substitution Values.

Figure 4-2. BEGIN Control Statement Format

CONTROL ST A TEMENT EXECUTION SEQUENCE

The BEGIN statement changes the control statement execution sequence. After the batch
processor executes a BEGIN statement, it executes as the next statement in the control
statement sequence the first control statement in the procedure specified on the BEGIN
statement.

For example, the following is the control statement group in a batch input file.

BEGIN,MYPROC,MYFILE.
GO.

The following are the statements on file MYFILE.

PROC,MYPROC.
FORTRAN.
LOAD.

The first statement executed is the BEGIN statement, which starts execution of the
procedure.

Each statement in the procedure is executed in sequence. If no errors occur during
procedure execution, the batch processor returns to the BEGIN statement that initiated
execution of the procedure and executes the GO statement that follows the BEGIN
statement.

60459410 E 4-7

If an error occurs, the batch processor searches for the next EXIT statement in the
procedure or in the control statement sequence that called the procedure.

Therefore, if no errors occur, the sequence of control statement execution is BEGIN,
FORTRAN, LOAD, and GO; then the job terminates normally. If an error occurs during
FORTRAN task execution, the sequence of control statement execution is BEGIN, and
FORTRAN; then the job terminates abnormally.

PROCEDURE NESTING

Procedures can be nested. This means that a procedure can contain one or more BEGIN
statements that initiate execution of other procedures. Up to eight nesting levels are
allowed; the count starts with the BEGIN statement in the batch input file.

If an error occurs in a nested procedure, causing the batch processor to search for the
next EXIT statement, the search follows the sequence in which the control statements
would have been executed. The search starts with the remainder of the current
procedure and continues through the remainder of each procedure at each of the nested
levels. It ends with the remainder of the control statement sequence in the batch
input file. If it encounters a BEGIN statement during the search, it ignores the
statement and does not search the specified procedure.

For example, the following are the statements in the control statement record of a
batch input file and in two procedure files.

Batch Input File

ATTACH,FILEl.
BEGIN,PROCl,FILEl.
GO.
EXIT.
DEFINE,BINARY.

File FILE!

PROC,PROCl.
ATTACH,FILE2.
BEGIN,PROC2,FILE2.
LOAD.

File FILE2

PROC,PROC2.
FTN200.

If no errors occur during execution, the following is the control statement sequence.

ATTACH,FILEl.
ATTACH,FILE2.
FTN200.
LOAD.
GO.

If an error occurs, execution continues after the EXIT statement with the DEFINE statement.

FORMAL PARAMETER SUBSTITUTION

A procedure can contain formal parameters for which values are substituted when the
procedure is executed. The BEGIN statement that initiates the procedure specifies the
substitution values.

4-8 60459410 E

Within the procedure, a string of characters is recognized as a formal parameter if the
string matches a formal parameter specified on the PROC statement and if it has a valid
delimiting condition before it and after it. The following are the valid delimiting
conditions.

• A character that is not A through Z, O through 9, or the underline character (_)

• The beginning or end of the statement

For example, in the following statement the character strings that could be specified as
formal parameters on a PROC statement are underlined.

Matching Substitution Values to Formal Parameters

Specify substitution values on the BEGIN statement using either or both of the following
parameter formats:

Format Example

formal parameter=substitution value KEYl=MYFILE

substitution value MYFILE

When both parameter formats are used on the BEGIN statement, all parameters specified as
only the substitution value must precede all parameters specified as formal parameter=
substitution value. This is because changing from one format to the other changes the
method used to match substitution values to formal parameters.

When the first substitution value on the BEGIN statement is specified in the format for
substitution value only, the batch processor matches the substitution value to the first
formal parameter on the PROC statement. It continues to match substitution values to formal
parameters according to their position in the parameter sequence (first with first, second
with second, and so on) as long as the format for substitution value only is used.

When the batch processor encounters a BEGIN statement parameter that uses the formal
parameter=substitution value format, it no longer uses positional parameter matching for the
procedure. It matches substitution values to formal parameters according to their pairing
on the BEGIN statement.

When using the formal parameter=substitution value format, specify parameters in any order.
In this case, the parameters are not dependent on order; matching is by formal parameter
instead of by sequential order.

For example, a procedure on file MYFILE has the following statements:

PROC,MYPROC,IN,OUT.
COPY,IN,OUT.

Each of the following BEGIN statements substitutes A for IN and B for OUT in the procedure.

BEGIN,MYPROC,MYFILE,A,B.
BEGIN,MYPROC,MYFILE,IN=A,OUT=B.
BEGIN,MYPROC,MYFILE,OUT=B,IN=A.
BEGIN,MYPROC,MYFILE,A,OUT=B.

60459410 E 4-9

The following BEGIN statement is invalid because the batch processor cannot return to the
positional matching method after it uses the other method.

BEGIN,MYPROC,MYFILE,IN=A,B.

The following BEGIN statement is invalid because more substitution values are specified than
formal parameters on the PROC statement.

BEGIN,MYPROC,MYFILE,A,B,C.

The following BEGIN statement is invalid because it specifies a substitution value twice for
the same formal parameter.

BEGIN,MYPROC,MYFILE,A,IN=A,OUT=B.

Omitting Substitution Values

If the BEGIN statement does not specify a substitution value for a formal parameter
specified on the PROC statement, the batch processor does not alter the occurrences of that
formal parameter in the procedure. However, the batch processor still removes editing
characters as described under Suppressing Formal Parameter Substitution and Concatenating
Substitution Values in this chapter.

When matching substitution values to formal parameters according to their position in the
parameter sequence, the batch processor assumes that a substitution value is omitted when it
encounters either of the following in the BEGIN statement.

• Two consecutive commas

• Fewer substitution values than required for all formal parameters on the PROC
statement

When matching substitution values to formal parameters according to keyword=substitution
value parameters on the BEGIN statement, the batch processor assumes parameter omission if
both of the following conditions exist.

• When matching substitution values to formal parameters according to position, it did
not match a value with the formal parameter.

• No BEGIN statement parameter exists that equates the formal parameter to a
substitution value (formal parameter=substitution value).

For example, a procedure on file MYFILE has the following statements:

PROC,MYPROC,COMPILE,GO,LIBl.
LOAD,COMPILE,CN=GO,LIB=LIBl.

The following statements omit substitution values for formal parameters COMPILE and LIBl.

BEGIN,MYPROC,,BIN.
BEGIN,MYPROC,GO=BIN.
BEGIN,MYPROC,,GO=BIN.

Each BEGIN statement results in execution of the following statement:

LOAD,COMPILE,CN=BIN,LIB=LIBl.

4-10 60459410 E

Suppressing Formal Parameter Substitution

Prevent value substitution for an occurrence of a formal parameter by prefixing the formal
parameter occurrence with the @ character. The batch processor removes the @ character
before the statement is executed, but the formal parameter occurrence remains unchanged.

For example, file MYFILE contains the following statements:

PROC,MYPROC,OUTPUT.
LOAD,FILEl,@OUTPUT=OUTPUT.

The following statement initiates execution of the procedure.

BEGIN,MYPROC,MYFILE,MYOUTPUT.

After formal parameter substitution, the following statement is executed.

LOAD,FILEl,OUTPUT=MYOUTPUT.

Concatenating Substitution Values

Concatenate substitution values after the values replace formal parameters in a procedure.
Separate the formal parameters with the character/\. After the batch processor substitutes
values for the formal parameters, it removes the/\ character, thereby concatenating the
substitution values.

For example, file MYFILE contains the following statements:

PROC,MYPROC,R,W,X.
DEFINE,FILEl,ACS=R"w/\X.

The following statement initiates execution of the procedure.

BEGIN,MYPROC,MYFILE,W=A.

After formal parameter substitution, the following statement is executed.

DEFINE,FILEl,ACS=RAX.

The following example shows use of concatenation to specify a load address longer than eight
characters. The following are the statements on the procedure file MYFILE.

PROC,MYPROC,Pl,P2.
LOAD,Fl,O=#PlAP2.

The following is the BEGIN statement used.

BEGIN,MYPROC,MYFILE,C000,00400000.

The .following is the LOAD statement executed.

LOAD,Fl,O=#C00000400000.

60459410 H 4-11

I

I

Suppressing@ or /\ Character Removal

You can prevent removal of the@ or /\character from a procedure statement when the
statement is executed. To do so, you must specify two consecutive @ or I\ characters for
each @ or I\ character to remain in the statement.

The batch processor groups multiple@ or /\characters in pairs. For each pair, one@ or I\

character remains in the statement.

If an odd @ character remains after the consecutive @ characters are grouped in pairs and
the consecutive @ characters are the prefix of a formal parameter, the odd @ character
prevents value substitution.

The effect of the /\character remains the same whether an odd or even number of consecutive
characters are specified.

For example, assume the following conditions:

• PARM is a formal parameter.

• SV is the substitution value for the formal parameter PARM.

• NOTPARM is in the procedure but is not a formal parameter.

The following shows the effect of the @ character in the procedure.

Before
Substitution

@PARM
@@PARM
@@@PARM
@@@@PARM
@NOTPARM
@@NOTPARM
@@@NOTPARM
@@@@NOTPARM

After
Substitution

PARM
@SV
@PARM
@@SV
NOTPARM
@NOTPARM
@NOTPARM
@@NOTPARM

The following shows the effect of the I\ character in the procedure:

4-12

Before
Substitution

PARM.PARM
PARMAPARM
PARM I\ I\ PARM
PARM I\ 1\1\ PARM
NOTPARM"NOTPARM
NOTPARM"" NOTPARM
NOTPARM Al\/\ NOTP ARM

After
Substitution

PARMPARM
SVSV
SV"SV
SV"SV
NOTPARMNOTPARM
NOTPARM"NOTPARM
NOTPARM"NOTPARM

60459410 E

ATTACH - ATTACH PERMANENT FILES

The ATTACH control statement (refer to figure 4-3) attaches private permanent files.

A permanent file must be attached before it can be accessed. The permanent files are
attached to the JDN of the job or interactive session in which the ATTACH statement is
executed.

An ATTACH statement can attach any of the following sets of private permanent files.

• All files belonging to you

• The specified files belonging to you

• The specified files accessible to you, but belonging to another user

• Files that have segments unavailable because a device is down

An ATTACH statement cannot attach files whose security level is greater than the security
level of the job or interactive session.

The ATTACH statement can specify the access modes allowed while each specified file is
attached. You must have the corresponding access permission to the file for each of the
specified access modes. Requests to open the file while it is attached can specify one or
more of the access modes specified on the ATTACH statement.

The WAIT parameter determines whether ATTACH waits for a file that is unavailable because
another job has the file attached such that file access cannot be shared (refer to
Concurrent File Access in chapter 2 of this manual).

If WAIT=N is specified, ATTACH does not wait. If WAIT=Y is specified, ATTACH waits until
the file is available or until it exceeds its wait time limit. (The wait time limit is
specified by an installation parameter.) If the ATTACH statement is issued interactively,
it displays a message while it waits for a file.

Format for Attaching Files the User Owns

{
lfn-list}

ATTACH, * ,ACCESS=acs,WAIT=x,TRUNCATED=x.

Format for Attaching Files the User Does Not Own

ATTACH,lfn-list,USER=userno,ACCESS=acs,WAIT=x,TRUNCATED=x.

lfn-list

*

USER=userno

Files to be attached. This parameter is required.

lfn-list

*

List of files (1 through 16 file names separated by
commas).

All private permanent files belonging to you. * is
mutually exclusive with USER=userno and ACCESS=acs.

User number that owns the specified files. If USER=userno is
omitted, the user number of the job or interactive session is
used. USER=userno and * are mutually exclusive.

Figure 4-3. ATTACH Control Statement Format (Sheet 1 of 2)
60459410 E 4-13

ACCESS=acs

WAIT=x

TRUNCATED=x

Access modes allowed while the specified files are attached. The
set of access modes is indicated by a string composed of one or
more of the following letters:

R Read access

w Write access

x Execute access

A Append access

M Modify access

If ACCESS=acs is omitted, only read and execute modes are allowed
during the attach. ACCESS=acs and * are mutually exclusive.

Indicates whether ATTACH waits if a file is currently unavailable.
If WAIT=x is omitted, ATTACH waits.

y ATTACH waits

N ATTACH does not wait

Allows you to access files that have segments unavailable because a
device is down.

y

N

Access in read mode only. The ACCESS=R parameter
must be specified so that truncated files cannot be
written on or executed.

Access is not available to truncated files. N is
the default.

Figure 4-3. ATTACH Control Statement Format (Sheet 2 of 2)

ATTACH cannot attach a file if the file name is the same as that of a private file (local or
permanent) that is already attached to the job.

ATTACH attaches the files in the order specified. If it cannot attach a file, it continues
processing with the next file in the list. It sends a message to the job dayfile or the
interactive terminal if a file cannot be attached. It does not send a message when it
successfully attaches all files.

4-14 60459410 E

AUDIT - LIST FILE INFORMATION
The AUDIT control statement lists information about permanent mass storage files.

A privileged user can list information about any permanent file on the system. A master
user can list information about all private, pool, or public files with the account I
identifier(s) assigned. A system user can list information about the I/O queues. A
nonprivileged, nonmaster user is allowed to list information about only the files that he or
she owns.

To list information about files belonging to a pool, a nonprivileged user must attach the
pool before executing the AUDIT statement; a privileged user need not attach the pool.
Private files can be attached or unattached.

The format of the AUDIT control statement is shown in figure 4-4. All parameters are
optional and can, except for the first, appear in any order. The first parameter, if
specified, must be a list of file names.

AUDIT,lfn-list,USER=userno,POOL=plist,ACCOUNT=alist,JCAT=jcatlist,LID=lidlist, I
MPN=mlist,DSET=devset,PACK=packlist,SELECT=opts,DATE=mmddyy,TIME=hhmm,LO=x,LIST=lfn/len.

lfn-list

USER=userno

List of 1 through 128 file names, separated by commas. The
specified files are assumed to belong to the user number specified
by the USER parameter or to the pools specified by the POOL
parameter. If omitted, all files that belong to userno or plist
are listed. If SEL=O is specified, the lfn-list identifies the
last-group-files(s) of the output-file-family(s). If SEL=O is
specified and lfn-list is omitted, AUDIT lists information about
all output-file-families.

File owners.

For a nonprivileged user:

userno User number of the nonprivileged user.

0 Public files.

For a nonprivileged user with master user status:

u-list

*

List of 1 through 128 user numbers separated by
commas. If user number 0 is specified, AUDIT lists
public file information.

All file owners, private, pool, and public.

I NOTE I

The user must use the ACCOUNT parameter and
must have master user status for all
accounts specified.

Figure 4-4. AUDIT Control Statement Format (Sheet 1 of 4)

60459410 H 4-15

I

POOL=plist

ACCOUNT=alist

JCAT=j catlist

LID=lidlist

MPN=mlist

DSET=devset

PACK=packlist

For a privileged user:

u-list

*

List of 1 through 128 user numbers separated by
commas. If user number 0 is specified, AUDIT lists
public file information.

All file owners, private, pool, and public.

For a system user who has specified SEL=I or SEL=O:

u-list List of 1 through 128 user number(s) that queued the
files (original owner). If omitted, AUDIT lists
information about all queue files.

If both USER=userno and POOL=plist are omitted, AUDIT lists
information for files belonging to the user number under which
AUDIT is executing.

List of 1 through 128 pool names separated by commas. The pools
must be attached for a nonprivileged user.

For a nonprivileged user, alist is a list of one to seven account
identifiers separated by commas. The user must be validated for
all specified account identifiers. For a privileged user, alist is
a list of 1 through 128 account identifiers separated by commas.

If this parameter is omitted, files are candidates for listing
regardless of their account identifiers.

List of 1 through 64 job categories separated by commas. This
parameter is allowed only if SEL=I is specified and applies only to
the input queue. If SEL=I is specified and JCAT is omitted, all
input queue files are listed regardless of job categories.

List of 1 through 128 destination LIDs for input or output files.
This parameter is allowed only if SEL=I or SEL=O is specified and
applies only to the input or output queues. If SEL=I or SEL=O is
specified and LID is omitted, all input/output queue files are
listed regardless of their destination LIDs.

List of 1 through 128 master project numbers separated by commas.
If this parameter is omitted, files are candidates for listing
regardless of their master project number.

List of 1 through 128 device sets separated by commas. Allows
files to be audited on a device set basis. devset is the device
set name (DVSTnn). If this parameter is omitted, all sets are
audited.

Allows files to be audited on a pack basis. packlist is a list of
1 through 128 pack names (PACKnn) separated by commas. Only those
files beginning on a specified pack are audited. Those that merely
continue from another pack are not audited.

Figure 4-4. AUDIT Control Statement Format (Sheet 2 of 4)

• 4-16 60459410 H

SELECT=opts

DATE=mmddyy

TIME=hhmm

60459410 H

File characteristics of all files audited (any combination, except
as noted, of the following letters without separators). A file
must meet all characteristics specified, in order, to be audited.

A

c

I

M

N

0

x

Files accessed on or after the date and time specified
by the DATE and TIME parameters.

Files created on or after the date and time specified
by the DATE and TIME parameters.

Files in the input queue. Only the system user can
select this option. The I option is mutually
exclusive with the PO and PROJ parameters.

Files modified on or after the date and time specified
by the DATE and TIME parameters.

Reverses the meaning of all the A, C, or M options;
that is, NA means not accessed, NC means not created,
and NM means not modified. ANCM means not accessed,
not created, and not modified.

Files in the output queue. Only the system user can
select this option. The 0 option is mutually
exclusive with the PO and PROJ parameters.

Files expired. A file expires when the current date
is greater than the file creation date plus its
retention period.

If SELECT=opts is omitted, AUDIT assumes no options.

Date used by the A, C, and M options on the SELECT=opts parameter.
The first two digits of the date indicate the month, the next two
digits the day of the month, and the last two digits the last two
digits of the year.

If DATE=mmddyy is omitted, AUDIT uses the current date.

Time used by the A, C, and M options on the SELECT=opts parameter.
hh is the hour, based on a 24-hour clock. mm is the minute in the
hour.

If TIME=hhmm is omitted, AUDIT uses midnight.

Figure 4-4. AUDIT Control Statement Format (Sheet 3 of 4)

4-16.1 •

LO=x

~IST=lfn/len

I

4-16.2

Audit information required:

F Full audit.

p Partial audit.

If LO=x is omitted, AUDIT writes partial audit information.

Listing file specifications:

lfn File name (one to eight letters or digits, beginning
with a letter). If lfn is omitted, AUDIT uses file
OUTPUT.

len File length in 512-word blocks. If len is omitted,
the file length is #40 blocks.

Figure 4-4. AUDIT Control Statement Format (Sheet 4 of 4)

60459410 H

FILE SPECIFICATION

The set of files for which AUDIT lists information can be specified by name or by
attributes. The set of files must have all the attributes specified. The USER and POOL
parameters specify file ownership, the DSET and PACK parameters specify file residence, and
the SELECT, DATE, and TIME parameters can specify file usage and age.

If no file names are specified and the USER and POOL parameters are omitted, AUDIT lists
information about permanent files belonging to the user number for which AUDIT is executed.

Table 4-2 summarizes the interaction of the USER and POOL parameters.

Table 4-2. Interaction of USER and POOL Parameters for AUDIT, DUMPF, and LOADPF

Privileged User Nonprivileged User

Files Processed No USER USER=list USER= ALL No USER USER=usernot

No POOL= No POOL= No POOL= No POOL= No POOL=
POOL plist POOL plist POOL plist POOL plist POOL plist

User private files x x

Listed user private x x x x
files (or public files
if user number 0 is
specified)

Listed pool files x x x x

All files regardless x x
of owner (including
public and pool files)

tFor AUDIT, a nonprivileged user can specify his or her own user number or 0, the public
file user number.

60459410 H 4-17

I

AUDIT OUTPUT

The LO parameter on the AUDIT control statement determines whether AUDIT produces a full or
partial output listing. A full listing produces all of the headings described next (with
the exception of ACCOUNT and MPN), while a partial listing contains only the first 12
headings. A full listing does not exceed 132 characters, excluding the carriage return, and
a partial listing does not exceed 80 characters, excluding the carriage return. Dates
appear as month, day, year. Time appears in a 24-hour format. All values are decimal
unless noted otherwise.

AUDIT prints a report of each account identifier, starting at the top of a new page. Print
lines do not exceed 80 characters for partial listings and 132 characters for full listings,
excluding carriage return. Dates appear as month, day, and year; time appears as a 24-hour
clock.

The following is a list of the column headings used in a full AUDIT listing and the
information given under each heading.

Heading

FSN

NAME

OWNER

TYP

FC

RT

BT

4-18

Description

File sequence number. Hexadecimal count of files audited.

File name. The file name is suffixed with an asterisk (*) if the file is a
production file.

File owner: individual user number, public user number (0), or pool name.
If SEL=I or SEL=O is specified, then the user number of the original file
owner is listed.

File type: controllee or data [virtual code (VC) or physical data (PD)].

File category: batch input file (B), input queue file (I), output queue
file (0), user file (U), system-generated drop file (S), or not defined (N).

Record type: ANSI fixed length (F), record mark delimited (R), undefined
(U), or control word (W).

Blocking type: character count (C), internal (I), or record count (K).

60459410 H

Heading

ACS

EXT

SL

DEVICE

DSET

FLEN

FACT

DORG

TORG

DOLA

TLR

DOLM

TOLM

EXP

ACCOUNT

MPN

If SEL=I or
replace ACS

Heading

LID

JCAT

Description

Access permission set: read (R), write (W), execute (X), append (A), modify
(M) permissions, no permissions (NONE), or purge only (PURGE). AUDIT lists
the owner's access permission set for private files and the general access
permission set for pool and public files.

File allocation: segmentable (S) and/or extendable (X).

Security level: 1 through 8.

Device name of mass storage file. An asterisk following the device name
indicates that a portion of the file resides on another disk.

Name of device set.

Number of 512-word blocks in file.

Account identifier.

Creation date (date of origin).

Creation time (time of origin).

Date of last file access.

Time of last file access.

Date of last file modification.

Time of last file modification.

Expiration date (creation date plus retention period).

Account identifier.

Master project number.

SEL=O is specified, the TYP column is deleted and the following column headings
and EXT:

Description

Destination lid for output and/or input queue files.

Job category of input queue files. For all other file types, this field is
left blank.

60459410 H 4-19

I

Figure 4-5 shows an example of a partial AUDIT output listing as produced by the following
control statement:

AUDIT,U=0,040018,LO=P.

FSN NAME OWNER TYP FC RT BT ACS EXT SL DEVICE DSET FLEN

POOLFILI 40018 PD u w c RX sx PACKOl DVSTOl 4321
2 EXECFIL 0 vc u w c x sx PACKOl DVSTOl 22
3 MYFILE 40018 PD u w c RX sx PACKlF DVST14 123
4 NEW FILE 0 PD u w c MAR sx PACK30 DVSTlE 16
5 PU BF ILE 0 PD u w c MAR sx PACK20 DVST14 148000

Figure 4-5. AUDIT Output Example

If the ACCOUNT and/or MPN parameters are specified on the AUDIT control statement, files are
sorted by account, master project number, user number, and file name. For every combination
of ACCOUNT and MPN, a subheader and subtotals are printed on the AUDIT output.

Figure 4-6 shows an example of an AUDIT output listing as produced by the following control
statement:

AUDIT,AC=AAAAAA,MPN=AUD,DEF

CYBER 200 AUDIT - USER 112311 05/14/86 06.o1.32 PAGE 1

ACCOUNT = AAAAAA MPN = AUD

FSN NAME OWNER TYP FC RT BT ACS EXT SL DEVICE DSET FLEN

TRETST 112311 PD u R c XMARW x PACK4F DVSTlF 4

TOTAL SIZE = 4

ACCOUNT = AAAAAA MPN =DEF

FSN NAME OWNER TYP FC RT BT ACS EXT SL DEVICE DSET FLEN

ONETST 112311 PD u R c XMARW x PACKlF DVSTlF 16
2 TWOTST 112311 PD u R c XMARW x PACKlF DVSTlF 16

TOTAL SIZE 32

Figure 4-6. AUDIT Output Example
(if either the ACCOUNT or the MPN parameters are specified)

4-20 60459410 H

CHARGE - ASSIGN ACCOUNT AND PROJECT NUMBER

The CHARGE control statement allows you to change the account identifier and change or
define a project number within a batch job, an interactive session, or PTF processing. The
account identifier specified on the CHARGE statement must be valid for the user number under
which the statement is being executed.

The CHARGE statement can be issued several times during a batch job, interactive session, or
PTFS processing. There is no limit to the number of times the statement can appear. The
CHARGE statement remains in effect until either a new CHARGE statement is issued or the job
terminates. When a new CHARGE statement is processed, the accumulated SBU/STU information
is written to the user and system dayfiles and to the account file. (SBU/STU information is
not written to the user dayfile for interactive sessions or PTFS processing.) Subsequent
job processing is charged to the newly supplied charge number.

There are two SBU/STU accumulators: one to accumulate SBUs/STUs for the job and the other
to accumulate SBUs/STUs for the current account identifier and project number. Both of the
SBU/STU totals are printed in the dayfile and the account file at the end of a batch job if
a project number exists; otherwise only the job SBU/STUs are written to the dayfile.

You, like all users, have a default account identifier assigned to your user number. You
also have the option of being validated with a default project number via validations. At
the start of a batch job or interactive session, if you do not issue a CHARGE statement, the
default project number, if one exists, and the account identifier specified on the USER or
LOGIN statement or the default account identifier are assigned to the job or session. If a
CHARGE statement is entered, both the account identifier and the project number must be
specified on the statement.

If your user number has user project control (UPC) status and no project number assigned as
default, you must supply a CHARGE statement as the first executable statement in the batch
job, interactive session, or PTFS processing. If you do not supply a CHARGE statement as
the first executable statement after the RESOURCE statement in a batch job, the job is
aborted with no exit processing. For an interactive session, no other statements are
accepted until the CHARGE statement is executed. For the transferring of permanment files
to the CYBER 205 from a remote host through PTFS, you must supply a CHARGE statement after
the USER statement if you have UPC status and no project number; otherwise, the transfer
aborts.

The master project number (the first one to three characters of the project number,
excluding the special characters * and -) is appended to the account identifier and assigned
to any mass storage files created during the job or session.

The following are examples of master project numbers extracted from project numbers.

Project Number

ABCDEF
A-B*CDEF
A*B*
*ABC-DEF

60459410 E

Master Project Number

ABC
ABC
AB
ABC

4-21

I

I

Figure 4-7 shows the CHARGE control statement format.

CHARGE,account,project.

account

project

CYBER 200 account identifier (one to eight alphanumeric
characters). This parameter is positional and mandatory.

A project number (1 to 20 alphanumeric characters, in~luding the
special characters *and -). This parameter is positional and
mandatory.

Figure 4-7. CHARGE Control Statement Format

COMMENT - SEND MESSAGE TO JOB DA YFILE

The COMMENT or * control statement enters a message in the job dayfile.

A COMMENT or * statement is only valid within a batch job. The batch processor executes the
COMMENT or * statement itself; it does not initiate execution of a utility program.

Figure 4-8 shows the COMMENT and * control statement format. A period is required after
COMMENT, but no space need appear after the required period; no ending punctuation is needed
at the end of the message. Multiple COMMENT or * control statements are required to send a
message longer than the number of columns available on a single execute line.

4-22

COMMENT.message
* message

message String of characters to be sent to the job dayfile. The string
should contain only characters that can be printed at a line printer.

Figure 4-8. COMMENT and * Control Statement Format

60459410 G

COMPARE - COMPARE FILE CONTENTS

The COMPARE control statement compares, bit for bit, the contents of one file with that of
another. If the contents of the two files do not match, COMPARE lists the contents of the
nonmatching words.

COMPARE can compare mass storage files and tape files. Compared mass storage files can be
attached permanent files or temporary files; they can be data files or controllee files.
COMPARE starts its comparison on both files at the beginning of information plus any
relative word offset.

COMPARE does not detect whether files that have been blank compressed which are otherwise
equivalent when expanded are equivalent if the files were blank compressed using different
formulas.

If a compared file is a labeled tape file, COMPARE compares the contents of the file from
its HDRl label to its EOFl label; it does not compare the contents of the file labels. If a
compared file is an unlabeled tape file, COMPARE compares the contents of the file from load
point to the double tape marks or EOFl label that marks the end of the file.

The compared files should have the same record format. COMPARE reads the contents of each
file as a continuous bit string, not as a sequence of records. Therefore, it compares
record delimiters within the data.

COMPARE lists the nonmatching words in the dayfile of a batch job or at the terminal of an
interactive session.

Figure 4-9 shows the COMPARE control statement format. Only the first two parameters, which
specify the compared files, are required.

COMPARE,alfn,blfn,L=len,A=aadr,B=badr,N=lt.

alfn,blfn

L=len

A=aadr

B=badr

N=lt

Names of the files to be compared.

Hexadecimal number of words to be compared.

If the L parameter is omitted, comparison stops at the end of the
shorter file.

Relative hexadecimal word address in file alfn at which comparison
is to begin, counting the first word of the file as O.

If the A parameter is omitted, comparison begins with the first
word of file alfn.

Relative hexadecimal word address in file blfn at which comparison
is to begin, counting the first word of the file as O.

If the B parameter is omitted, comparison begins with the first
word of file blfn.

Decimal number of nonmatching words allowed before comparison
stops. Both the nonmatching words and their relative locations are
displayed.

If N=lt is omitted, comparison stops at the first nonmatching word.

Figure 4-9. COMPARE Control Statement Format

60459410 J 4-23

I

CONTROLLEE FILE COMPARISON

When comparing controllee files, you might not want to compare the minus page and register
file stored in the first two blocks of the files. To omit the first two 512-word blocks
from the comparison, specify the starting compare address for each file with the A and B
parameters. The starting compare addresses are specified as hexadecimal word addresses.

For example, the following statement omits the first two blocks from the comparison of files
FILE! and FILE2.

COMPARE,FILE1,FILE2,A=400,B=400.

4-24 60459410 E

COPY - COPY A FILE
The COPY control statement copies the contents of one file to another file.

The file copied (the input file) must be an existing file. It can be a mass storage file or
a tape file. The file copied (the output file) can also be a mass storage file or a tape
file, but it need not exist unless it is a tape file. COPY first searches for the local and
attached permanent files and tape files for the specified files. Then, if necessary, it
searches the attached pools. COPY cannot copy to public files or system pool files.

If the file does not exist, COPY creates a local mass storage file. The new file is created
with the name specified for the output file and the same characteristics as the input file,
including its type, access permissions, record format, internal characteristics, and length.

I NOTE I
If the original file is a system-created
drop file, the output file is a user-created
drop file.

By default, the copy begins at the beginning of the input file. However, a different
starting location for the input file may be specified with the I parameter and a different
starting location for the output file with the 0 parameter.

By default, the copy ends when COPY encounters the end of the input file. However, if the L
parameter is specified, the copy ends when COPY has copied the specified number of words.

COPY returns status and error information to the dayfile of a batch job or to the terminal
for an interactive session. It always displays the number of words copied (in hexadecimal).

In a batch job, the COPY control statement cannot copy to a file by the name of INPUT. If
this is attempted, the COPY utility issues an error message that prohibits the file from
being copied to file INPUT.

Figure 4-10 shows the COPY control statement format. The first two parameters specifying
the input and output files are required and must appear in the order shown.

COPY,inlfn,outlfn,L=len,I=inadr,O=outadr,PACK=packid,IRW=irw.

inlfn

outlfn

L=len

I=inadr

Name of file to be copied.

Name of file that contains a copy of all or part of file inlfn.
It can be either an existing file or a new file COPY creates.

Hexadecimal number of words to be copied.

Relative hexadecimal word address in file inlfn at which copying
is to begin, counting the first word of the file as O.

If the I parameter is omitted, inlfn is copied from its beginning.

Figure 4-10. COPY Control Statement Format (Sheet 1 of 2)

6045 9410 J 4-25

I

l

O=outadr

f ACK=packid

.!!}:!_ = i rw

Relative hexadecimal word address in file outlfn at which copied
information is to be placed, counting the first word of the file
as O.

If the 0 parameter is omitted, the copy begins at the beginning
of outlfn.

Identifier for a pack in the device set on which outlfn is to
reside. If outlfn already exists on another pack, the system
ignores this parameter, copies inlfn to the existing outlfn, and
sends a warning message to the job dayfile or interactive
terminal.

If packid is omitted and outlfn does not exist, the system
selects a pack and creates outlfn •

Inhibit rewind of input and output files. This applies to tape
files only.

Y Files are not rewound prior to copying.

N Files are rewound prior to copying.

If IRW=irw is omitted, N is used.

Figure 4-10. COPY Control Statement Format (Sheet 2 of 2)

COPYING TO OR FROM A TAPE FILE

To copy data to or from a tape file, execute the appropriate REQUEST and LABEL statements
before executing the COPY statement. If the tape file is the input file, specify read
access for the file. If the tape file is the output file, specify write access for the file.

If a labeled tape file is the input file, COPY opens the tape file and verifies its HDRl
label. If a labeled tape file is the output file, COPY opens the tape file and verifies or
writes its HDRl label, depending on the label processing option on the LABEL statement for
the file.

When the copy terminates, COPY closes the tape file. The end-of-file indicator is written
as required for the tape format used.

COPYING TO A MASS STORAGE FILE

When a mass storage file is specified as the output file, the output file need not be as
long as the source file, unless the output file has been requested with the noextend
option. COPY extends the output file as necessary. An output file that COPY creates has
the same length as the input file.

However, if the 0 parameter is specified so that the copy does not begin at the beginning of
the output file, the data in the input file does not fit in the output file.

For example, assuming FILE! is a mass storage file, the following statement returns an error
because the file created is not long enough for the data to be copied.

COPY,FILEl,,0=100.

When a tape file is copied to a mass storage file, the mass storage file is created with a
length of 512 blocks if it did not exist previously.

4-26 60459410 J

CONTROLLEE FILE COPY

The first two blocks of a controllee file contain its minus page and register file. To omit
copying the minus page and register file of a controllee file, specify the starting copy
address with the I parameter. The copy address is specified as a hexadecimal word address.
For example, the following COPY statement omits copying the first two 512-word blocks.

COPY,FILE1,FILE2,I=400.

60459410 G 4-27

I

COPYL - COPY LOGICAL RECORDS

The COPYL control statement copies logical partitions of files. Unlike the COPY statement,
COPYL does record type conversion and replication of logical subsets of data files, and it
can interface to files connected to terminals (files created by REQUEST statements that
specify DEV=TE).

The input file must be attached or local. All device types are treated alike in positioning
operations, always starting at the beginning of information.

If the output file is already a local file or attached permanent file, COPYL does not reduce
the file after completing the copy. However, if COPYL creates the file, it does reduce the
file after completing the copy.

If the output file is a file connected to a terminal, COPYL displays the first 24 records at
the terminal; it then displays the following prompt:

ENTER "C" TO CONTINUE "END" TO TERMINATE

If you enter C, COPYL displays the next 24 records and then repeats the prompt. The display
and prompt cycle repeats until you enter END or until the specified copy completes.

The value of the PART parameter determines not only the level of skip and copy, but also the
structure of the output file. Input and output files are always read and written at the
record level, but the output data is guaranteed to be delimited at whatever partition level
was specified. If a partition delimiter with a level higher than that specified on the
execute line is read on either the input to the copy operation or a skip operation, the
operation is stopped; if a partition delimiter of the specified level does not already exist
in the outfile, one is inserted at this point.

Before beginning the copy, COPYL skips forward the number of partitions specified by the
!SKIP and OSKIP parameters. The !SKIP parameter specifies the number of partitions skipped
on the input file; the OSKIP parameter specifies the number of partitions skipped on the
output file.

In a batch job, the COPY control statement cannot copy to a file by the name of INPUT. If
this is attempted, the COPY utility issues an error message that prohibits the file from
being copied to file INPUT.

The copy terminates when the specified number of partitions have been copied or COPYL
encounters a higher-level partition boundary. For example, a record copy terminates if
COPYL encounters a group delimiter.

Figure 4-11 shows the COPYL control statement format.

COPYL,infile,outfile/len,PARTITION=part,NUMBER=number,ISKIP=ipnum,OSKIP=opnum,IRW=irw,
NOCOMP.

infile

out file

Input file. The parameter is positional and required. The
input file must be different from the output file.

Output file. The parameter is positional and required. The
input file must be different from the output file.

Figure 4-11. COPYL Control Statement Format (Sheet 1 of 2)

4-28 60459410 J

len

~ITION=part

NUMBER=numbe r

ISKIP=ipnum

OSKIP=opnum

IRW=irw

NOCOMP

Length at which outfile is created by COPYL. If infile is on
disk, len defaults to the length of infile. If infile is on
tape or connected to a terminal, len defaults to 128 blocks. If
outline is already a local or attached permanent file, len is
ignored.

Indicates whether COPYL copies records or groups.

R Record

G Group

If PARTITION=part is omitted, COPYL copies records.

* (all) or number of partitions (as specified by the part
parameter or default) to be copied. Default is *· If a
higher-level partition delimiter or an end-of-information is
encountered before num is exhausted, the copy operation
terminates. The normal termination message indicates the amount
of data copied. If NUMBER=number is omitted when copying
records, COPYL copies until it encounters a group delimiter or
the end of the file. If NUMBER=number is omitted when copying
groups, COPYL copies until it encounters the end of the file.

Number of partitions (as specified by part or default) to be
skipped on infile before the copy operation is begun; default is
O. If a nonzero value is specified and a higher-level partition
delimiter or an end-of-information is encountered before ipnum
is exhausted, COPYL terminates with a return code of 8.

* (all) or number of partitions (as specified by part or
default) to be skipped on outfile before the copy operation is
begun; default is O. If a numeric value is specified and a
higher-level partition delimiter or an end-of-information is
encountered before opnum is exhausted, COPYL terminates with a
return code of 8.

Inhibit rewind of input and output files. This applies to tape
files only.

Y Files are not rewound prior to copying.

N Files are rewound prior to copying.

If IRW=irw is omitted, N is used.

Indicates that COPYL should not perform blank compression on the
output file. If NOCOMP is omitted, COPYL performs blank
compression.

Figure 4-11. COPYL Control Statement Format (Sheet 2 of 2)

60459410 J 4-29

f

DA YFILE - COPY THE JOB DA YFILE

The DAYFILE control statement copies the job dayfile. Depending on the option selected, it
copies either the entire dayfile or only the portion of the dayf ile written since the last
DAYFILE statement was processed.

I NOTEI

The batch processor processes the DAYFILE
statement. Therefore, the statement is
available only in batch jobs. It is not a
valid entry in an interactive session.

Specify on the DAYFILE statement the file to which the dayfile is copied. The file can be
an attached permanent file or an existing temporary file. It cannot be a public file or a
system pool file. If the file specified does not exist or is not attached, DAYFILE creates
the file.

If a file is not specified on the statement, DAYFILE creates a file named OUTPUT and copies
the dayfile to that file. After processing a statement, the batch processor renames the
OUTPUT file so that it is part of the print family of files for the job (refer to Job
Processing in chapter 3 of this manual). Therefore, if a file is not specified on the
DAYFILE statement, the dayfile is printed with the job output.

DAYFILE copies until it encounters the end of the dayfile or the end of the file on which it
is writing. After copying the dayfile, DAYFILE always reduces the file length to the length
actually used. It reduces an existing file in the same way as it reduces a file it creates.

Figure 4-12 shows the DAYFILE control statement format.

' 4-30
60459410 G

DAYFILE,lfn/len,LO=option.

lf n

len

LO=option

Name of the file on which the dayfile is copied. It can be either
an existing file or a new file created by the utility. If lfn is
omitted, the file name is OUTPUT.

Number of blocks to be allocated for the file. len can be
designated by decimal or hexadecimal number representation. If in
hexadecimal, the number must be preceded by the pound sign (#). If
len is omitted and lfn is not an existing file, eight blocks are
allocated.

Indicates the type of listing generated.

I

F

Requests incremental copy: only that portion of
your dayf ile that is new since the last DAYFILE
request is copied. If this is the first request,
the entire dayfile is copied (same as F).

Requests full copy: the entire dayfile is copied.

If LO=option is omitted, DAYFILE copies the entire dayfile.

Figure 4-12. DAYFILE Control Statement Format

DEFINE - DEFINE A PERMANENT FILE

The DEFINE statement defines a private permanent mass storage file.

Figure 4-13 shows ·the DEFINE control statement format. The first parameter must be the file
name. File length, if specified, must be the second parameter. All other parameters are
optional and can appear in any order.

60459410 G 4-30.114-30.2 I

If the file named on the DEFINE statement does not already exist as a local mass storage
file, a new file is created as an attached permanent mass storage file. Each characteristic
of the new file is given the default value unless a different value is specified using the
corresponding optional DEFINE parameter.

If the file named on the DEFINE statement already exists as a local mass storage file,
DEFINE changes the local file to a permanent file, but it does not change other file
characteristics. All DEFINE parameters except the file name are ignored. To change file
characteristics, use the SWITCH, PERMIT, or ROUTE utilities.

Upon successful completion of this operation, the message CREATED PERMANENT FILE or EXISTING
LOCAL FILE MADE PERMANENT is sent to the job dayfile or the interactive terminal.

DEFINE,lfn/len,ACCESS=acs,RLMIN=rlmin,RLMAX=rlmax,NOEXTEND,NOSEGMENT,PACK=packid,
PC=pc,RMD=rmd,RT=rt,SECURITY=lvl,SFO=org,TYPE=type,AU=blocks.

lfn

len

ACCESS=acs

RLMIN=rlmin

RLMAX=rlmax

Name of the mass storage file. lfn must be one through eight
letters or digits, beginning with a letter (except for the name of
a local drop file).

Number of 512-word blocks initially allocated for the file (decimal
or hexadecimal number between 1 and #FFFFFF.

Access permission set of the file owner (any combination of the
following letters without separators).

R Read permission

w Write permission

x Execute permission

A Append permission

M Modify permission

If ACCESS=acs is omitted, the default access permission set depends
on whether the file is a new file or an existing local file. For a
new file, DEFINE assumes ACCESS=RWXAM. For an existing file,
DEFINE does not change its existing access permission set.

Minimum record length in bytes. If RT=F is specified, the minimum
record length is ignored. If RLMIN=rlmin is omitted, the minimum
length is one byte.

Maximum record length in bytes (fixed record length for F format
records). If RLMAX=rlmax is omitted, the default maximum record
length is an installation parameter value (released value, zero).
A maximum record length of zero prevents writing on a direct access
file.

Figure 4-13. DEFINE Control Statement Format (Sheet 1 of 3)

60459410 F 4-31

I

I

NO EXTEND

NO SEGMENT

f ACK=packid

PC=pc

RMD=rmd

RT=rt

SECURITY=lvl

SFO=org

Indicates that the file cannot be extended. If NOEXTEND is
omitted, the file can be extended as necessary. To create a file
that will always remain contiguous, both the NOEXTEND and the
NOSEGMENT options must be specified.

Indicates that the initial file space allocated must be contiguous.
If NOSEGMENT is omitted, the system can allocate initial file space
in multiple segments. To create a file that will always remain
contiguous, both the NOEXTEND and the NOSEGMENT options must be
specified.

Identifier of a pack in the device set on which the file is
created. Pack identifiers are six characters long, left-justified,
and blank filled. Excess characters are truncated. The pack
parameter is ignored for existing local files. If PACK=packid is
omitted, the system selects a pack.

ASCII padding character used to fill the working storage area. If
PC=pc is omitted, the installation-defined default padding
character (released value, blank) is used.

ASCII record mark character for R format records. If RMD=rmd is
omitted, the installation-defined character [released value, ASCII
US character (#lF)] is used.

Record format. If SFO=D is specified, the only valid record format
is F.

If RT=rt is omitted, the default format depends on the file
organization. For sequential access files, the installation
default format (released value, R) is used. For direct access
files, F format is used.

F ANSI fixed length

R Record mark delimited

u Undefined

w Control word delimited

Security level (1 through 8). The specified security level cannot
be greater than the security level of the job or interactive
session. If SECURITY=lvl is omitted, the security level of the job
or interactive session is used.

File organization. If SFO=org is omitted, the installation-defined
default organization (released value, sequential access) is used.

D Direct access

S Sequential access

Figure 4-13. DEFINE Control Statement Format (Sheet 2 of 3)

4-32 60459410 G

.I.YPE=type

AU=blocks

File type. If TYPE=type is omitted, the file is a physical data
file.

c Controllee file

p Physical data file

Allocation unit. Allows the user to aid performance by giving the
system a guideline on the integer number of 512-word blocks to
allocate when the file is extended. The value range of blocks is 1
to 65,535. If the file is created and blocks is not a multiple of
the DAU (Device Allocation Unit) for the device in which the first
allocation occurs, blocks is rounded up to the next multiple of the
DAU. If the file is already local, this parameter is ignored.

Figure 4-13. DEFINE Control Statement Format (Sheet 3 of 3)

DEFINING A NEW FILE

If the file does not exist, DEFINE creates a new mass storage file. Using the length, disk
pack residence, extendability, and segmentation specifications from the control statement,
DEFINE allocates file space (refer to File Space Allocation in chapter 2 of this manual).
The following lists the effect of each combination of the NOSEGMENT and NOEXTEND parameters.

NO EXTEND NOSEGMENT Effect

Omitted Omitted File has one or more segments. Noncontiguous segments
can be added.

Specified Omitted File has one or more segments. It cannot be extended.

Omitted Specified

Specified Specified

File has one segment. Noncontiguous segments can be
added.

File has one segment. It cannot be extended.

DEFINE also defines the following file attributes for a new file:

• Access permission set of the file owner

• File type (controllee or data)

• Security level

• Record format characteristics

DEFINE cannot define a file with a security level greater than the job or interactive
session security level.

The retention period for the file is an installation option. The SWITCH control statement
can be used to specify a particular number of days the file is to be retained on mass
storage. The retention period determines the expiration date referenced by the DUMPF
utility.

60459410 G 4-33

DIVERT - CHANGE THE DESTINATION OF AN OUTPUT FILE
The DIVERT statement allows you to change the destination LID of any file in the output
queue whose original owner is the user number from which DIVERT is executing.

Output files are specified by their jdn or by the JN=jobname parameter. If jdn or jobname
is not specified and if DIVERT is executed from within a batch job, the output of the batch
job is changed to the LID specified by the ST parameter. If the new LID is associated with
a different PID than the old LID, any routing information sent by the old host with the
input batch file or specified by the JCS or I parameter of the MFQUEUE is ignored. In this
case, the disposition of the output is dependent on the system defaults of the new host.
For example, if MF! and MF2 are LIDs associated with two different NOS systems and JOB! is
the output of a job submitted from MFl but DIVERTed to MF2, the user number and family
information sent with JOB! is lost and it is likely that JOB! will print on the default
printer of MF2 using JOB! as the banner.

DIVERT is executable from both batch jobs and interactive sessions. A successful DIVERT
with either jdn or jobname specified will cause the appropriate output spooler application
to start up (provided OUTPUT is ON and there are not too many applications running already).

Figure 4-13.1 shows the DIVERT control statement format.

DIVERT, {
jdn }

JN=jobname ,ST=newlid.

jdn

JN=jobname

ST=newlid

Job descriptor number (1 through 2047). This parameter is
optional and mutually exclusive with the JN=jobname parameter.
The output-file-family.with the specified jdn has its
destination LID changed to newlid.

Job name (or file name) as specified on the Q,O command. This
parameter is optional and mutually exclusive with the jdn
parameter. The output-file-family(s) with job name specified by
jobname has its destination LID changed to newlid.

Logical ID (LID) of the remote host to which the output
specified by jdn or jobname is to be sent. If neither jdn or
jobname is specified, then the batch job output from which
SUBMIT is executing is sent to newlid. This parameter is
required.

Figure 4-13.1. DIVERT Control Statement Format

e 4-34 60459410 H

Upon successful completion, the following message is issued for each output-file-family that
is diverted:

OUTPUT FILE jobname WITH JDN = jdn DIVERTED TO LID newlid

An unsuccessful completion of the DIVERT command will result in one of the following
messages:

SYNTAX ERROR
SYSTEM MESSAGE #f c ERROR, RCODE + #re, SSCODE = #ss
NO USER OWNED OUTPUT FILES FOUND WITH JDN = jdn
NO USER OWNED OUTPUT FILES FOUND WITH JN = jobname
newlid IS NOT A VALID DESTINATION LID
JDN OR JN MUST BE SPECIFIED WHEN INTERACTIVE
JDN AND JN PARAMETERS ARE MUTUALLY EXCLUSIVE

60459410 H 4-34.1

DMAP - PROVIDE INFORMATION ON LOCATION OF FILE SEGMENTS

DMAP provides information on the locations of segments for individual files. It is not
intended to be a general file listing utility, but rather to be an aid in checking specific
file residence.

If you are an individual nonprivileged user, DMAP is used to list the segments of your files
that are resident on a particular pack (PN=parameter). If a device is to be removed from
the system configuration, you can list the files that would be affected by this and move
them elsewhere. If you know the device sets to use for the DS=parameter, all of the files
on the set are listed.

If you are a privileged user, DMAP lists all file segments on the pack(s) or device set(s)
specified. This listing can be sorted several ways to provide information on the overall
pattern of disk usage, on the amount of fragmentation on files, or on the distribution of
your files.

For allocated space, the file names, type, owner, PFI entry offset, date of or1g1n, date of
last access, highest byte written, length, device set name, pack name, and sectors allocated
are listed in the output. DMAP traces the allocation pointers to other devices, if
necessary, to obtain this information. If the information is not available because a device
is down, it is indicated as an orphan segment, and the pack name that is unavailable is
indicated in the listing. If the PN=parameter is selected and the file has segments on
other devices that were not selected, an asterisk is appended to the pack name.

I ffi1AP expects PFlnn (where nn is the pack number) files to be public. If they aren't, DMAP
will fail when it encounters the pack where the associated PFlnn file is non-public. The
PFlnn file may have been made non-public for performance reasons. Check with your site's
system's analyst if this occurs.

Figure 4-14 shows the DMAP control statement format.

DMAP, {PN=packname} ,LO=options,LIST=lfn
DSET=devset

PN=packname

DSET=devset

LO=options

LIST=lfn

List of pack names for which disk space usage is to be listed.
If the DS parameter is not specified, PN= is required. *
specifies all packs.

List of device sets for which disk space usage is to be listed.
If the PN parameter is not specified, DS= is required. *
specifies all device sets.

options specifies the list of primary and secondary sort keys
for the output. All entries are sorted on first (primary) keys;
then the second key (if present) is used to sort and split the
listing into smaller groupings.

D The file information is printed as a function of
position on disk.

A The file information is printed for each file, and
the files are listed alphabetically.

U The file information is listed by user number. For
each user number, the files are listed as for the A
or D option.

Default is LO=A. Permissible options are D, A, U, AD, AU, UD,
and UA.

This parameter specifies the file to which the output listing is
written. The default file name is OUTPUT.

Figure 4-14. DMAP Control Statement Format

l 4-34.2 60459410 J

(OCFC)
(OCFD)
(OCFE)
(OCFF)

PACK = PACK 37
DAU VALUE 4

DFS INDEX = OCFC

OD3C371709180037
000100C800010129
0001029C000102A2
0001 OCSDOOOl OCEl

PACK = PACK37
DAU VALUE 4
DFS INDEX = OD3C

(OD3C)
(OD3D)
(0 D3 E)
(OD3F)

OD5837370CFC0037
00010DB800010DC9
00010E2300010FB6
00010FE400011544

Option Description

TY

PFIADR

DORG

DOLA

HBW

DSET

PN

The file type (physical data or virtual code)

The bit off set of the entry for the file into the PFI

The date of file creation

The date of last access (the most recent attachment with write,
append, or modify access)

The highest byte written to the FLEN is the allocated file
length in 512-word blocks

The device set name

The pack name

If a file was created prior to the system 2.2 release, an asterisk follows the name of
the file.

If a file has been marked purge-only, two asterisks will immediately follow the file
name. This file could have been created before or after the 2.2 release.

60459410 H 4-35

I

DROP - REMOVE A JOB FROM A QUEUE

The DROP statement allows you to drop user-owned executing jobs or queued files.
(User-owned executing jobs have the same user number as that under which the DROP command is
executing.) If the DC=q parameter on this control statement is not specified, only the
input queue is searched. You cannot drop the job that is executing the DROP command nor can
it drop an interactive session. You may use either jdn or JN=jobname to specify the job.
If the jdn or jobname specified is in the input queue, the associated input file is evicted
and an output file with the same jdn is created containing the following dayfile message:

JOB EVICTED FROM INPUT QUEUE BY USER.

If the jdn or jobname is in the execute queue, the job's currently executing task is
interrupted and the following message is written to the job dayfile:

JOB DROPPED BY USER.

Reprieve is invoked if enabled and the job goes to EXIT processing. If the jdn or jobname
is in the output queue, the associated output file family is evicted without notice. If
KILL is specified and the job specified by the jdn or jobname is in the execute queue, the
job is dropped without EXIT processing and the following message is written to the job
dayfile:

JOB KILLED BY USER.

If more than one queue is specified, the queues are searched in the following order: input,
execute, and output •

• 4-36 60459410 H

Figure 4-14.1 shows the format of the DROP control statement.

DROP, { JN!1:bname} ,KILL ,DC=q.
JN=*

jdn

JN=jobname

JN=*

KILL

DC=q

Job descriptor number (1 through 2047). This parameter is
mutually exclusive with the JN parameter. The job specified by
jdn is dropped from the queue(s) specified by q. Either the jdn
or JN parameter must be specified.

Job name (or file name). This parameter is mutually exclusive
with the jdn parameter. The job(s) whose job name is jobname is
dropped from the queue(s) specified by q.

Drop all user-owned queue files in the queue(s) specified by q.
This parameter is mutually exclus.ive with the jdn parameter.

This parameter is optional and applies only when DC=E. If
specified, the job specified by jdn or jobname is terminated
without EXIT card processing (that is, the job is killed).

Specifies the queue(s) where the job(s) specified by jdn,
jobname, or * resides. This parameter is optional. If q is not
specified, only the input queue is searched. Multiple queues
are searched by specifying combinations of I, E, and 0 or by
specifying *, where:

I
E
0

*

Input queue
Execute queue
Output queue
All queues are searched

Figure 4-14.1. DROP Control Statement Format

If the DROP statement executes successfully, the following message is issued for each job
that is dropped:

JOB jobname WITH JON = jdn WAS DROPPED FROM queue QUEUE

If the DROP statement did not complete successfully, one of the following error messages is
issued:

SYNTAX ERROR
SYSTEM MESSAGE #fc ERROR, RCODE = #re, SSCODE #ss
NO USER OWNED JOB FOUND WITH JON = jdn
NO USER OWNED JOB FOUND WITH JN = jobname
CAN NOT DROP INTERACTIVE JOB
JOB CAN NOT DROP ITSELF

60459410 H 4-36 .1 •

DUMPF - ARCHIVE FILES

I The DUMPF control statement archives permanent files or queue files. File archiving is the
process of copying permanent files to backup storage and reloading the backup copies if
needed. File archiving preserves a backup copy in the event that the original copy is
inadvertently destroyed.

A nonprivileged user can archive only attached private or pool files. A privileged user can
archive all permanent files stored on the CYBER 200 system except attached private files and

I
files belonging to user numbers 1 through 15. A system user can list information about the
1/0 queues. Neither privileged or nonprivileged users can archive the system user directory
or files with the following reserved names:

JOBFILE
Q5DAYFLE
Q6DLFEOT
Q5JOBFLE
Q5JRTHRF
Q6DLFTRC
Q5SDFLFN
Q60UTPUT
*AF
*AF2
HISTRY

Files with reserved file names can be archived by switching or copying them to a nonreserved
file name and then archiving them. Similarly, files under user numbers 1 through 15 can be
archived by switching or copying the files to a different user number.

I NOTE J

The access directory for a file is saved
only if the user archiving the file is
privileged. The access directory is not
saved when a nonprivileged user archives the
file. Therefore, when a file archived by a
nonprivileged user is reloaded, its access
permissions must be redefined.

DUMPF executed in update mode (SELECT=U)
should be used to dump to tape and not to
mass storage. If dumping to mass storage
during production hours, the system table
FILE! may get full and impact the operation
of the system.

The DUMPF control statement bypasses dumping permanent files if either of the following
situations exists:

• Any user has the permanent file attached with write, modify, or append access
permission set.

• Any user has a pool attached and the pool file is currently open with write, modify,
or append access permission set.

DUMPF can execute concurrently with other tasks, including other DUMPF tasks.

4-36.2 60459410 H

DUMPF executed with the DEVICE=O parameter allows privileged and nonprivileged users to
purge files without dumping the permanent file to a device. Using the DATE, SELECT, and
TIME parameters along with DEVICE=O allows users to purge files that have or have not been
modified, accessed, created, or expired within a specified date and/or time period.

The DUMPF control statement format is shown in figure 4-15. All parameters except the first
can appear in any order. The first parameter, if specified, must be a list of file names.

The first format shown in figure 4-15 is used when the RHF application, DLF, dumps the files
to a remote system. The second format is used when the files are archived on CYBER 200 mass
storage or tapes.

60459410 H

NOTE

If a production file is dumped by any user
other than the site security administrator
(refer to chapter 7 of the Installation
Handbook), the file will not retain its
production status when reloaded.

4-36.3

Format for Front-End File Archiving

DUMPF,lfn-list,USER=userno,POOL=plist,DSET=devset,PACK=packlist,ACCOUNT=alist,
JCAT=jcatlist,LID=lidlist,SELECT=opts,DATE=mmddyy,TIME=hhmm,LO=x,LIST=lfn/len,
ST=stid,SI=setid, (JCS=stringsl .

INPUT=lfn • . '

Format for CYBER 200 File Archiving

DUMPF,lfn-list,USER=userno,POOL=plist,DSET=devset,PACK=packlist,ACCOUNT=alist,
JCAT=jcatlist,LID=lidlist,SELECT=opts,DATE=mmddyy,TIME=hhmm,VERIFY=pt,LO=x,
LIST=lfn/len,DEVICE=device,VSN=id-list,TF=tf ,DENSITY=den,RP=days,IU=iu.

File Specification Parameters

lfn-list

USER=userno

POOL=plist

DSET=devset

List of 1 through 128 file names separated by commas. The specified
files are assumed to belong to any or all user numbers specified by
the USER parameter and/or any or all pools specified by the POOL
parameter. If omitted, all files belonging to userno and/or plist
are archived. If SEL=O is specified, lfn-list identifies the
last-group-files(s) of the output-file-family(s) to be archived. If
SEL=O is specified and lfn-list is omitted, DUMPF archives all
output-file-families.

Private file owners.

For a nonprivileged user:

user no User number of the nonprivileged user.

For a privileged user:

u-list

*

List of 1 through 128 user numbers separated by
commas.

All file owners, private, pool, and public.

For a system user who has specified SEL=I or SEL=O:

u-list List of 1 through 128 user number(s) that queued the
files (original owner). If omitted, DUMPF will
archive the queue files of all user numbers.

If USER=userno is omitted and the POOL parameter is not specified,
DUMPF archives files belonging to the user number under which DUMPF
was run.

List of 1 through 128 pool names separated by commas.

Allows files to be dumped to a specific device set. devset is a
list of 1 through 128 device sets (DVSTnn) separated by commas. If
more than one device set is specified, the device sets will be used
in the order they appear in the parameter list, with the first
being filled before the next one is used.

Figure 4-15. DUMPF Control Statement Format (Sheet 1 of 5)

60459410 J 4-37 •

I

File Specification Parameters

PACK=packlist

ACCOUNT=alist

JCAT=j catlist

LID= lid list

SELECT=opts

Allows files to be dumped on a pack basis. packlist is a list of 1
through 128 pack names (PACKnn) separated by commas. Only those
files beginning on a specified pack are archived. Those that
continue from another pack are not archived.

For a nonprivileged user, alist is a list of one to seven account
identifiers separated by commas. You must be validated for all
specified account identifiers in order to archive files with these
accounts. For a privileged user, alist is a list of 1 through 128
account identifiers separated by commas. Only files with the
specified accounts are archived.

List of 1 through 64 job categories separated by commas. This
parameter is allowed only if SEL=I or SEL=O is specified and
applies only to the input queue. If this parameter is omitted,
files belonging to all job categories in the input queue are
archived.

List of 1 though 128 destination LIDs for input or output files.
This parameter is allowed only if SEL=I or SEL=O is specified. If
this parameter is omitted, all queue files are archived regardless
of their destination LIDs.

File characteristics of all files dumped (any combination of the
following letters without separators). A file must meet all
characteristics specified in order to be dumped.

A Files accessed on or after the date and time
specified by the DATE and TIME parameters. An
access is defined as an open.

C Files created on or after the date and time
specified by the DATE and TIME parameters.

I Files in the input queue. Only the system user is
allowed to select this option. The I option is
mutually exclusive with the PO parameter.

M Files modified on or after the date and time
specified by the DATE and TIME parameters.

N Reverses the meaning of the A, C, or M options. For
example, NC specifies files not created since the
date and time specified. This option may appear
anywhere in the string but always reverses the
meaning of all characters specified.

Figure 4-15. DUMPF Control Statement Format (Sheet 2 of 5)

,. . 4-38 60459410 H

File Specification Parameters

E!.!_E=mmdd yy

TIME=hhmm

0

x

p

u

Files in the output queue. Only the system user is
allowed to select this option. The 0 option is
mutually exclusive with the PO parameter.

Files expired. A file expires when more days have
passed since its creation date than the number of
days in the retention period for the file.

Purge the file after successfully dumping it. If
its dump is not successful, the file is not purged.
If the DEV=O parameter is specified, files are
purged and not dumped. Only the pool boss or a
privileged user can purge a pool file.

Indicates update mode. Only files created or
modified since the last update dump are selected.
This option is mutually exclusive with other SELECT
options or date and time parameters. Only a
privileged user can use this option.

If SELECT=opts is omitted, DUMPF assumes no options.

Date used by the A, c, and M options on the SELECT=opts parameter.
The first two digits of the date indicate the month, the next two
digits the day of the month, and the last two digits the last two
digits of the year.

If DATE=mmddyy is omitted, DUMPF uses the current date.

Time used by the A, C, and M options on the SELECT=opts parameter.
hh is the hour, based on. a 24-hour clock. mm is the minute in the
hour.

If TIME=hhmm is omitted, DUMPF uses midnight.

Verification Parameters

VERIFY=opt

60459410 J

Verify the integrity of the archival medium just written.
Mis-compares are noted in the dayfile and verification is halted
after a threshold of errors is reached. If any error and if SEL=P
was selected, no files will be purged by DUMPF. The extent of the
verification is determined by the opt value as follows:

Q

F

Quick verification. The archival medium is scanned,
selected fields are checked for consistency, and the
archival medium contents are compared with the list
of files DUMPF dumped.

Full verification. The quick verification is
performed plus the data of each file is read, to
ensure it is readable. The length of each file read
is compared with the length of the file dumped.
However, a bit for bit comparison of files is not
performed. This option may take 2 - 30 times as
long (or longer) as the Q option depending on the
size of the files and the archival medium involved.

If this parameter is not specifie~, no verification is performed.

Figure 4-15. DUMPF Control Statement Format (Sheet 3 of 5)

4-38. l •

Listing Parameters

LO=x

LIST=lfn/len

Audit information required.

F Full audit.

p Partial audit.

If LO=x is omitted, DUMPF writes partial audit information.

Listing file specifications.

lfn

len

File name (one to eight letters or digits, beginning
with a letter). If lfn is omitted, DUMPF uses file
OUTPUT.

File length in 512-word blocks. If len is omitted,
the file length is #40 blocks.

For Front-End File Archiving Only

ST=stid

SI=setid

~=strings

INPUT=lfn

RHF logical identifier of the other system (three ASCII
characters). This parameter is required.

Set identifier of the archive storage on the other system. This
parameter is required. It must be a name of one to six letters or
digits beginning with a letter.

On NOS/BE, tha SI parameter is the multifile set name and must be
the same name as specified on the VSN directive. For the IBM
remote host, the SI parameter is ignored.

List of one to ten text strings sent to the other system. Each
string must be delimited by double quote (") characters. Strings
within the list are separated by commas.

You cannot use this parameter if you use the INPUT parameter. If
both JCS and INPUT are omitted, then I=INPUT is assumed.

Name of the CYBER 200 file containing the text strings to be sent
to the other system. A text string in the file must appear as it
would if entered on the JCS parameter without the" delimiters.

You cannot use this parameter if you use the JCS parameter. If
both JCS and INPUT are omitted, then I=INPUT is assumed.

For CYBER 200 File Archiving Only

I NOTE I
The following parameters are ignored if
specified with RHF file archiving parameters.

Figure 4-15. DUMPF Control Statement Format (Sheet 4 of 5)

• 4-38. 2 60459410 J

DEVICE=device

VSN=id-list

Device type used to store archived files.

MS

NT

0

Mass storage.

Magnetic tape.

No device to assign (mutually inclusive with
SELECT=P).

If DEVICE=device is omitted, the installation defined default type
(released value, MS) is used. When DEVICE=O is supplied, the files
that are selected are purged without being archived. The VSN
parameter cannot be specified if DEV=O.

Archive storage device identifier (a list of one through six device
sets in the format DVSTnn if DEVICE=MS, or a list of 1 to 255 tape
volume VSNs if DEVICE=NT). VSN is a required parameter if DEVICE
is MS or NT. If DEVICE=O, the VSN parameter is not allowed.

If the listed devices are not sufficient, the operator must assign
additional devices.

For CYBER 200 File Archiving Only

TF=tf

DENSITY=den

~=days

IU=iu

60459410 J

Tape format (for tapes only):

v Variable block size format with block size set to 8K.

LB Large block size format.

If TF=tf is omitted, DUMPF defaults to TF=V. The LB format is the
format used by pre-2.3 DUMPF. This parameter is mutually exclusive
with DEV =MS.

Recording density (for tapes only):

PE

GE

1600 cpi.

6250 cpl.

If DENSITY=den is omitted and DEVICE=NT is specified, the
installation-defined default density (released value, 6250 cpi) is
used. If the density specified or the default density does not
match the density on the tape, processing continues with the
density specified on the tape.

Retention period in days (1 through 999).

If RP=days is omitted, the default set by an installation parameter
is used.

Inhibit unload option indicating whether the system unloads a tape
volume when the utility is complete. This applies to tape files
only.

y Does not unload tape volume.

N Unloads tape volume.

If IU=iu is omitted, N is used.

Figure 4-15. DUMPF Control Statement Format (Sheet 5 of 5)

4-39 •

I VSN=id-list Archive storage device identifier (a list of one through six device
sets in the format DVSTnn if DEVICE=MS, or a list of 1 to 255 tape
volume VSNs if DEVICE=NT). VSN is a required parameter if DEVICE
is MS or NT. If DEVICE=O, the VSN parameter is not allowed.

If the listed devices are not sufficient, the operator must assign
additional devices.

For CYBER 200 File Archiving Only

TF=tf

DENSITY=den

RP=days

Tape format (for tapes only):

v Variable block size format with block size set to 8K.

LB Large block size format.

If TF=tf is omitted, DUMPF defaults to TF=V. The LB format is the
format used by pre-2.3 DUMPF. This parameter is mutually exclusive
with DEV=MS.

Reco-rding density (for tapes only):

PE 1600 cpi.

GE 6250 cpi.

If DENSITY=den is omitted- and DEVICE=NT is specified, the
installation-defined default density (released value, .6250 cpi) is
used. If the density specified or the default density does not
match the density on the tape, processing continues with the
density specified on the tape.

Retention period in days (1 through 999).

If RP=days is omitted, the default set by an installation parameter
is used.

Figure 4-15. DUMPF Control Statement Format (Sheet 5 of 5)

4-40 60459410 H

'\

SPECIFICATION OF FILES TO BE ARCHIVED

The set of files that OUMPF archives can be specified by name or by attributes. The set of
files must have all the attributes specified.

The USER and POOL parameters specify file ownership, the DSET and PN parameters can specify I
file residence, and the SELECT, DATE, and TIME parameters can specify file usage and age.

A maximum of 256 private files and 256 files per pool can be dumped.

I NOTE I
No more than 2048 private files and/or pool
files can be dumped at one time. If you need
to dump more than this number, do two or more
dumps, using a different file specification
for each. For example, specify a different
device set for each dump, or dump users and
pools separately.

If no file names are specified and the USER, POOL, ACCOUN, and SEL=I or SEL=O parameters are
omitted, DUMPF archives files belonging to the user number under which DUMPF is executed
(provided that SEL=I or SEL=O is specified).

Table 4-2 in this chapter summarizes the interaction of the USER and POOL parameters.

If a file cannot be archived, OUMPF returns an appropriate message and continues processing
with the next file.

Files archived are listed in the user dayfile along with the user number or pool to which
the files belong. If two or more consecutive files belong to a single user number or pool,
only the first file lists the user number or pool.

60459410 H 4-40.1/4-40.2

I

ARCHIVE FILE fORMA T

The same archive file format is used whether the file is stored on a remote system or on the
CYBER 200 system.

The first block of each archived file contains the data needed to reload the file. The
archived file format is shown in figure 4-16.

Directory Format

T
PR+LE

FIRST ENTRY

~

T
REMAINING ENTRIES

_!

ENTRIES

MAXENTRY

DOUSER NO

DDPACKID

PFILE 1
FILENAME 1
USERN01
UNUSED1

•
•
•
•

FILENAMEn

UN USE On

where: ENTRIES - number of entries in the directory

Dumped File Format

MAXENTRY - maximum number of entries in the directory (based on size of
directory file)

DD USE RNO - user number

DDPACKID - pack identification

PF I LEi - pseudo file name

FI LENAMEi - original logical file name

USERNOi - user number of file

UNUSEDi - not used

Selected PF I fields t

Contents of FILENAMEi

t For privileged users, the PF I image and file extension entry for FI LENAMEi are also included.

Figure 4-16. Directory/Dumped File Format

60459410 E 4-41

The information in the first block of each archived file includes the contents of selected
fields in the permanent file index entry for the file.

If you are a privileged user and you archive the file, the first block also contains the
following information:

• A copy of the unformatted permanent file index (PFI) entry as it exists after DUMPF
opens the file

• A copy of the permanent file index extension entry if an access directory exists for
the file

The access fields in the permanent file index entry are updated when DUMPF opens the file.
Therefore, the access field information differs, depending on whether you are or are not
privileged. This means that if you specify the A option, the last access date and time used
differ, depending on whether you are or are not privileged.

ARCHIVING TO A FRONT-END SYSTEM

If the RHF application program is present on the system, it interprets the ST, SI, JCS, and
INPUT paramP.ter specifications on the DUMPF control statement. DUMPF uses the ST parameter
specification to determine the remote system on which the file copies are stored. The SI,
JCS, and INPUT parameter specifications determine how the file copies are stored on the
remote system.

DUMPF passes a text string to the remote system before it sends the file copies to be
stored. The string is specified on the JCS parameter or in the file specified on the INPUT
parameter. The required content of the text string depends on the RHF software in the
remote system. For more information, refer to the RHF documentation for the remote system.

ARCHIVING TO CYBER 200 MASS STORAGE

When archiving to CYBER 200 mass storage, use the DEVICE and VSN parameters to specify the
disk packs on which the file copies are stored.

The VSN parameter lists the device set identifiers of the device sets to be used. The
device sets are used in the order listed on the parameter. DUMPF sends a message to the job
dayfile or to the interactive terminal when it switches device sets. If DUMPF exceeds the
specified sets, the operator is prompted for additional device set names.

When DUMPF archives files on CYBER 200 mass storage, the archived file copies are unattached
private files. DUMPF maintains a directory file on each device set for the files dumped to

I that set. The name of the directory file is DVSTnnOO where nn is the archive storage device
identifier (device set number). The directory contains the file names of all archived files
for this user on the device set. The directory format is shown in figure 4-16.

If, during DUMPF processing, a directory entry already exists that has the same name and
owner as a file to be archived, the existing archived file with that name and owner is
destroyed. DUMPF copies the file to be archived and creates a new directory entry.

I
The name of each archived file (called a pseudo file) is specified as DVSTMMNN. mm is the
archive storage device i.dentifier. nn is the fi.le sequence number in hexadecimal represen­
tation. If the sequence number exceeds #FF, the sequence number begins overwriting the
first part of the name (for example, file number #2F3 would be archived on DVST13 as
DVST12F3).

4 ... 42 60459410 J

Using the DEVICE=O parameter, both privileged and nonprivileged users may purge selected
files wi.thout having to dump the permanent files to a device first.

ARCHIVING TO CYBER 200 ON-LINE TAPES

To archive files on CYBER 200 on-line tapes, specify the DEVICE=NT parameter on the DUMPF
statement. Also, specify the VSNs of the tape volumes on the VSN parameter. Optionally,
you may specify the recording density on the DENSITY parameter and the retention period on
the RP parameter. If the density of the tape does not match that specified by the density
parameter, DUMPF uses the density of the tape and issues an appropriate error message.

The tape volumes specified on the VSN parameter are used in the order listed on the
parameter. DUMPF sends a message to the job dayfile or to the interactive terminal when it
switches tape volumes.

DUMPF writes the archived files as a multifile set. It generates a unique 17-character file
identifier for each file in the set. Each file identifier generated has the following
format:

yf ilenameusername

y File owner (U for private file, P for pool file)

filename File name, right-justified with zero character fill

username ASCII user number or pool name, right-justified with zero character fill

For example, if a private file named MYFILE and belonging to user 012306 is archived, its
file identifier is UOOMYFILE00012306.

For the 2.3 release, the default tape format used by DUMPF was changed from LB to V with a
block size of BK. This was done to enhance reliability for both writing and reading on-line
tapes. To maintain compatibility with pre-2.3 releases, a tape format parameter has been
added to both DUMPF and LOADPF. Under normal use, the default format of V should be used.
However, if you plan to create a tape that must be accessible to a pre-2.3 system, specify
TF=LB.

DUMPF OUTPUT

The LO parameter on the DUMPF control statement determines whether DUMPF produces a full or
a partial output listing. A full listing produces all of the headings described next, while
a partial listing contains only the first 13 headings. A full listing does not exceed 132
characters, excluding the carriage return, and a partial listing does not exceed
80 characters, excluding the carriage return. Dates appear as month, day, and year. Time
appears in a 24-hour format. All values are decimal unless noted otherwise.

60459410 G 4-43

I

I

The following are the column headings used in a full DUMPF listing and the information given
under each heading.

Heading

VSN

FSN

NAME

OWNER

TYP

FC

RT

BT

ACS

EXT

SL

DEVICE

DSET

FLEN

FACT

DORG

TORG

DOLA

TLR

DOLM

TOLM

EXP

4-44

Description

Volume serial number: this field is printed only the first time a file is
dumped to a VSN or when the report goes to a new page.

File sequence number: hexadecimal count of files dumped.

File name.

File owner: individual user number, public user number (0), or pool name.
If SEL=l or SEL=O is specified, then the user number of the original file
owner is listed.

File type: virtual code (VC) or physical data (PO).

File category: batch input file (B), input queue file (I), output queue
file (0), user file (UJ, system-generated drop file (S), or not defined
(N) •

Record type: ANSI fixed length (F), record mark delimited (R), undefined
(U), control word (W), system block (B), or lower CYBER (L).

Blocking type: character count (C), internal (I), or record count (K).

Access permission set: read (R), write (W), execute (X), append (A)
and/or modify (M) permissions, no permissions (NONE), or purge-only
(PURGE). DUMPF lists the owner's access permission set for private files
and the general access permission set for pool and public files.

File allocation: segmentable (S) and/or extendable (X).

Security level: 1 through 8.

Device name of mass storage file. An asterisk following the device name
will indicate that a portion of the file resides on another disk.

Name of device set.

Number of 512-word blocks in file.

Accounting information.

Creation date (date of origin).

Creation time (time of origin).

Date of last file access.

Time of last file access.

Date of last file modification.

Time of last file modification.

Expiration date (creation date plus retention period).

60459410 H

If SEL=I or SEL=O is specified, the TYP column is deleted and the following column headings
replace ACS and EXT:

Heading

LID

JCAT

Description

Destination LID for output and/or input queue files.

Job category of input queue files. For all other file types, this field
is left blank.

Figure 4-17 shows an example of an DUMPF output listing as produced by the following control
statement:

DUMPF,U=*,AC=ACCTN01,ACCTN02,ACCTN03,DEV=NT,VSN=CY2091,CY2088,LO=F.

60459410 H 4-44.1/4-44.2

CYBER 200 DUMPF DMP2219 -USER 14000 06/17/86 13.29.21 I
VSN FSN NAME OWNER TYP FC RT BT ACS EXT SL DEVICE DSET FLEN FACT DORG TORG DOLA TLR DOLM TOLM EXP

CY2091 1 TRACE 10955 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTN03 028685 931 050885 948 020885 932 031085
2 CF639B 10955 PD u R c XMARW x l PACK3B DVST3B 80 AC CTN OJ 020685 927 020685 931 020685 927 030885
3 FT70249B FTNDROP PD u R c XMARW x 1 PACK3B DVST3B 80 ACCTN03 102284 1357 112184 1321 102284 1357 112184

4 MAILIST 09151 PD u R c RW x 1 PACK3B DVST3B 16 ACCTN03 032985 927 060785 1014 060785 1007 042885
5 VJ 09151 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTN03 072484 1315 052985 846 052985 846 082384
6 RENAME BOBPOOL vc u u c XR x 1 PACK3B DVST3B 50 ACCTN03 061385 1250 061385 1251 061385 1250 071385
7 DELSRC 10011 PD u R c RW x l PACK3B DVST3B 16 ACCTN03 052485 1451 052985 1046 052885 923 062385
8 PFDL BOBPOOL vc u u c XR x l PACK3B DVST3B 82 ACCTN03 051585 1503 061685 2356 051585 1503 061485

9 DIAG22 9151 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTN03 031185 1031 061785 812 061285 833 041085
A C2700L 14000 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTNOl 053185 618 053185 618 053185 618 063085
B C2700TS 14000 vc u u c XMARW sx 1 PACK3B DVST3B 320 ACCTNOl 053185 618 053185 618 053185 618 063085
c CEBIN 10955 PD u R c XMARW x 1 PACK3B DVST3B 32 ACCTN03 041285 943 050985 1002 041285 943 051285

CY2088 D MINK POOLVRF vc u u c XMARW x 1 PACK3B DVST3B 368 ACCTN03 041285 947 041585 933 041285 947 051285

E CG520L 14000 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTNOl 053185 624 053185 624 053185 624 063085
F CG520TS 14000 vc u u c XMARW x 1 PACK3B DVST3B 320 ACCTNOl 053185 624 053185 624 053185 624 063085

10 CONNECT BP22 vc u u c XR x 1 PACK3B DVST3B 64 ACCTN03 061085 1809 061085 1810 061085 1809 071085
11 DISCONT BP22 vc u u c XR x l PACK3B DVST3B 64 ACCTN03 061085 1809 061085 1811 061085 1809 071085
12 DNAD 9151 vc u u c XR x 1 PACK3B DVST3B 128 ACCTN03 061185 1452 061185 1456 061185 1452 071185

Figure 4-17. DUMPF Output Example

EDITPUB - ADD OR DESTROY PUBLIC FILE

The EDITPUB control statement is valid only for privileged user numbers. It adds or
destroys a public file.

The files specified on the N parameter (the files to become public files) must be attached
private or pool files. Only the pool boss can issue an EDITPUB statement for a pool file.

The EDITPUB control statement format is shown in figure 4-18.

{
D=lfn-list }

EDITPUB, L ,N=lfn-list,P=lfn-list,ACCESS=acs,VRI=index.

D=lfn-list List of public files to be destroyed (1 through 16 names, separated
by commas).

L

N=lfn-list

P=lfn-list

ACCESS=acs

VRI=index

Files to be destroyed are specified interactively. The L parameter
can be specified at an interactive terminal only.

List of files to be added to the public file list without
privileged status .(1 through 16 names, separated by commas).

List of files to be added to the public file list with privileged
status (1 through 16 names, separated by commas).

Access permission set for each file specified by the N and P
parameters (any combination of the following letters without
separators).

R Read permission

w Write permission

x Execute permission

A Append permission

M Modify permission

If ACCESS=acs is omitted, EDITPUB assumes ACCESS=RX.

Index into the Variable Rate Table in the range 1 through 255, for
public files being added with the call. If VRI=index is omitted,
the system uses an index of O.

Figure 4-18. EDITPUB Control Statement Format

4-46 60459410 E

EDITPUB cannot destroy a file open to a task. If it cannot destroy a file, it returns an
error message to the job dayfile or interactive terminal.

If a file that is being made public has the same name as an existing public file (that is,
if a file is being replaced), an EDITPUB.statement can both destroy the existing public file
and add the new public file. For example, to replace public files X and Y, the following
control statement is appropriate:

EDITPUB,D=X,Y,N=X,Y.

When the utility is called with the L parameter from an interactive terminal, it displays
the name of each public file in turn and waits for one of the following terminal user
responses:

User Enters Result

D Destroy file

Carriage return Retain file

STOP Terminate utility

VARIABLE RATE INDEX SPECIFICATION

If the variable rate index (VRI) parameter is used, at least one of the N or P parameters
must be used. In this case, all files being made public in this control statement must be
controllees, and the VRI parameter applies to all. Files made public using the VRI
parameter do not retain read or write access.

If both the L and VRI parameters are used from an interactive terminal and the user response
indicates that any file is to be retained, the VRI for that file is not reset to the VRI
parameter value. The VRI file index entry for any file is 0 until modified by a VRI
specification on an EDITPUB statement.

60459410 E 4-47

EXIT - SET ABNORMAL TERMINATION PATH

The EXIT control statement establishes the point at which the batch processor continues job
processing after a task returns an abnormal termination code.

The EXIT control statement is valid only in a batch job. It is executed directly by the
batch processor.

The EXIT control statement format is shown in figure 4-19. More than one EXIT control
statement can appear in a job.

EXIT.

Figure 4-19. EXIT Control Statement Format

When abnormal job termination is initiated, (refer to Abnormal Job Termination in chapter 3
of this manual), the batch processor searches subsequent statements and continues statement

I processing with the control statement following the first EXIT or PROCEED encountered. If
no EXIT or PROCEED control statement exists, job processing ends.

If the EXIT statement is encountered during normal job advancement to the next control
statement, job processing ends normally at the EXIT statement.

I The threshold value is set to 255 when an EXIT or PROCEED control statement establishes the
execution path.

I
If control transfers to the path established by an EXIT or PROCEED control statement because
the job time limit is reached, no time is available for user job tasks after the EXIT or
PROCEED statement. A short amount of time is available to the job for use by the batch
processor.

4-48 60459410 G

FILES - LIST FILE INFORMATION

The FILES control statement lists information about files.

The PRIVATE, POOL, and PUBLIC parameters indicate the ownership category of the listed
files. The USER parameter specifies the owner of the private permanent files listed.

The names of local and attached private files can be specified either after the FILES verb
or on the PRIVATE parameter. The names of unattached private files must be specified on the
PRIVATE parameter.

The following are examples of FILES statements.

Example 1:

The following statement lists information about all local and private files attached to a
job, including files attached but not owned by you.

FILES.

Example 2:

The following statement lists information about all public- files, all private files owned by
you (including local, attached, and unattached files), and all pool files belonging to the
attached pool MYPOOL.

FILES,PUBLIC=*,PRIVATE=*,POOL=MYPOOL.

Example 3:

The following statement lists information about the private permanent file named HERFILE,
owned by user number 012306.

FILES,HERFILE,USER=012306.

Example 4:

Either of the following statements lists information about all files belonging to user
number 012306 that you can access.

FILES,USER=012306.

FILES,PRIV=*,USER=012306.

The FILES control statement format is shown in figure 4-20. All parameters are optional
and, with the exception of the initial file name list, can appear in any order.

60459410 E 4-49

FILES,lfnl-list,PRIVATE= {1fn;-list} ,PUBLIC= {1fn;-list} ,POOL=pool,lfn4-11st,

USER=userno,LIST=outlfn.

lfnl-list List of local and attached private files (1 to 255 file names
separated by commas).

I PRIVATE= { lf~2-list} Private files (local, attached, or unattached) •

I

lfn2-list List of 1 to 255 file names separated by commas.

* All private files attached to the user's jobs.

PUBLIC= { lfn;-list} Public files.

POOL=pool,
lfn4-list

USER=userno

LIST=outlfn

lfn3-list List of 1 to 255 file names separated by commas.

* · All public files.

Pool and list of files belonging to the pool (pool name followed by
1 to 255 file names separated by commas). A pool name specified
without a list of files specifies all files belonging to the pool.
More than one POOL parameter can be specified on the statement.

Owner of the specified private permanent files (six-digit user
number). The caller must have access to the files.

This parameter is provided to list files owned by another user to
which the caller has access. If the caller's user number is
specified and private permanent files are to be listed, only that
user's private permanent files with general access is listed.

If USER=userno is omitted and private files are to be listed, the
FILES output includes private files, regardless of access
permissions.

Optional name of the file on which output is written.

If LIST=outlfn is omitted, the default output file depends on
whether FILES is executed within a batch job or as an interactive
task. Batch job output is written on file OUTPUT; interactive task
output is displayed at the terminal.

Figure 4-20. FILES Control Statement Format

4-50 60459410 G

FILES OUTPUT

FILES lists information for the files it finds. It then lists the names of the specified
files it did not find, files to which you do not have access, or those whose security level
is greater than the security level of the job or interactive session. These files are
listed under the following heading:

FILES NOT FOUND

File information for the files found is listed in alphabetical order by file name. File
information for files with the same name is listed in the following ownership category
order: private local, private permanent, pool, and public.

If you attach the same permanent file in more than one job, all information columns are
listed for the first job only. The access permission (ACS) and the job descriptor number
(JDN) are the only columns listed for your subsequent attaches of that file. For example,
see the file listing LVIRT22 in figure 4-21.

NAME DUP ACS LEN JDN ORI.DATE OWNER TYPE DT FC BT RT FO
2FILES XRW 0000256 471 09/12/84 *LOCAL VG MS s c u s
ACWI* XMARW 0000004 1465 09/12/84 *PERM PD MS B c R s
Cl955 XMARW 0000001 07/25/84 *PERM PD MS u c R s
CYBIL XMARW 0000994 04/28/84 *PERM vc MS u c u s
CYBSLIB XMARW 0000800 04/28/84 *PERM PD MS u c R s
LVIRT22 XR 0000208 1465 08/ 2 3/ 84 *PERM PD MS u c R s
LVIRT22 XR 471
Q5RHFTRC XMARW 0000008 04/26/84 *PERM PD MS u c R s
RHFXREF XMARW 0001968 03/23/84 *PERM PD MS u c R s
SO SUP XMARW 0000008 07/26/84 *PERM PD MS u c R s
SP SUP XMARW 0000004 07/26/84 *PERM PD MS u c R s
TOOL UP XMARW 0000004 08/09/84 *PERM PD MS u c R s

Figure 4-21. FILES Sample Output

If the USER parameter is specified, file information for files owned by another user is
listed under the following heading:

FILES OF ALTERNATIVE USER

File information is listed under the following column headings:

Heading

NAME

DUP

ACS

60459410 H

Description

File name. An asterisk is appended to the file name if it is a production
file.

Duplicate file name flag. An asterisk in this column indicates that at
least one other file exists with the same name and owner.

Access permission set of the user: read (R), write (W), append (A),
modify (M) and/or execute (X) permissions, no permissions (NONE), or
purge-only (PURGE).

4-51

I

Heading

LEN

JDN

ORI.DATE

OWNER

TYPE

DT

FC

BT

RT

FO

RP

Description

Actual length of each segment of a mass storage file (decimal number of
512-word blocks). Partial files (when not all of the files are available)
are indicated by a minus sign to the right of the LEN field.

Job descriptor number of a blank field. It indicates an unattached
permanent job to which this file is currently attached.

Origin date (the date the file was created).

For mass storage files the user owns: public (*PUBLIC), permanent
(*PERM), local (*LOCAL), or pool (poolname).

For mass storage files the user does not own: the user number of the file
owner.

File type: controllee or data [virtual code (VC) or physical data (PD)].

Device type: mass storage (MS), magnetic tape (NT), or interactive
terminal (TE).

File category: system-generated drop file (S), batch file (B), user file
(U), user-created drop file (D), and not defined (N).

Blocking type: character count (C), internal (I), record count (K), or
non-SIL file (blank).

Record type: ANSI fixed length (F), record mark delimited (R), undefined
(U), control word delimited (W), system block (B), or lower CYBER control
word (L).

File organization: sequential access (S) or direct access (D).

Retention period (the number of days the file is to be retained). This
column is not displayed at a terminal.

INTERACTIVE UTILITY EXECUTION

From an interactive terminal, FILES can be called by name alone; the terminal prompts for
parameters.

Information is displayed 15 lines at a time. When output exceeds display size, enter
CONTINUE to continue the display or !ND to terminate the display.

Figure 4-21 shows an example of FILES output from a terminal.

4-52 60459410 E

GIVE - CHANGE FILE OWNER
The GIVE control statement changes the ownership of a private or pool file. Figure 4-22
shows the GIVE format. Parameters can appear in any order.

GIVE, {lfn-list}, {U=newown l ,PRIVILEGED=x,ACCESS=acs.
* POOL=poolname

lfn-list

*

U=newown

f_OOL=poolname

PRIVILEGED=x

ACCESS=acs

List of 1 through 16 file names, separated by commas, of files
whose ownership is to change. The list must not include files with
the same name as a public file.

Indicates that all local files and attached private permanent files
belonging to you are to change ownership.

User number of the new owner of private files. If newown is 000000
and the user is privileged, the file becomes public.

Name of an existing pool to which the files are given.

Indicates whether the file can issue privileged system calls when
it is executed. The file must be a controllee file given to a pool
by a privileged user.

YES

NO

Privileged system calls are allowed.

Privileged system calls are not allowed.

If the POOL parameter is omitted, the PRIVILEGED parameter is
ignored. If the POOL parameter is specified but the PRIVILEGED
parameter is omitted, PRIVILEGED=NO is assumed.

New access permission set (any combination of the following letters
without separators).

R Read permission

w Write permission

x Execute permission

A Append permission

M Modify permission

The default access permission sets, if ACCESS is omitted, are shown
in table 4-3.

Figure 4-22. GIVE Control Statement Format

The current file owner can give one or more files to any of the following:

• Another user number. The file ownership category remains private, but the user
number changes. The file becomes an unattached permanent file belonging to the new
owner.

• A pool. The file ownership category changes to pool. No user, including the pool
boss, can then access the file without attaching the pool with the PATTACH utility.

• The public file list. The file is given to user number 000000. Only a privileged
user can give a file to the public file list.

60459410 E 4-53

Only the file owner can change the ownership of a private file. Only the pool boss can
change the ownership of a pool file.

You must attach the file before giving it. GIVE cannot change file ownership when the file
is attached by another user or opened by a privileged user.

GIVE cannot change the ownership of a public file. If the file has the same name as a
public file, GIVE can give the file to a pool or to another user but not to the public file
list.

After you give a file, you can no longer access it (unless you give it to a pool to which
you have access or unless the new owner grants you access).

When giving a file, either specify a new access permission set for the file or use the
former file access permission sets. If you specify the ACCESS parameter, its value is used
for each access permission set GIVE defines. If you omit the ACCESS parameter, former file
access permission sets are used (except for public files). The set used depends on whether
the file is a private file or a pool file before it is given. Table 4-3 lists the old and
new file ownership categories of the file and the default access permission sets when the
ACCESS parameter is omitted.

Old File
Ownership

Private

Private

Private

Pool

Pool

Pool

l

Table 4-3. GIVE Default Access Permission Sets

New File
Ownership

Private

Pool

Public

Private

Pool

Public

Default Access Permission Sets

The old owner-s access permission set becomes the
new owner-s access permission set.

The old owner-s access permission set becomes the
general access permission set for all pool
members and the pool boss.

The access permission set contains read and
execute permissions only.

The old pool boss access permission set becomes
the new owner-s access permission set.

The old pool boss access permission set becomes
the new pool boss access permission set; the old
general access permission set becomes the new
general access permission set.

The access permission set contains read and
execute permissions only.

When you give a private file to another user, GIVE immediately changes the stored owner of
the file. However, the account identifier associated with the file does not change until
the file is referenced by its new owner. The system accounting tables· then indicate the
to.tal time that the original account owned the file.

I A SIL error 1709 is returned by GIVE when you attempt to give a file to a user or a pool and
the file size exceeds the maximum allowed file size of the target user or pool.

4-54 60459410 G

LABEL - LABEL TAPE FILE

The LABEL control statement specifies the contents of the HDRl label of a tape file. It
stores the HDRl label specifications for the file specified on the statement in the file
index entry of the file. The information in the file index entry is referenced when the
file is opened.

If the file is opened for write access, the specified values are written in the new HDRl
label. If the file is opened for read access, the specified HDRl values are compared with
the values in the existing HDRl label.

Figure 4-23 shows the LABEL control statement format.

LABEL,lfn,FID=fid,RP=rp,FA=x,OFA=x,RT=rt,BT=bt,RLMIN=rlmin,RLMAX=rlmax,
PC=x,RMD=x,MPRU=mpru,RPB=rpb,CONVERT=cvt,LPROC=lp,ACCESS=acs,MFN=mfn,FSN=fsn.

lfn

FID=fid

RP=rp

FA=x

OFA=x

File name by which the tape file is referenced in the job (one to
eight characters). This parameter is required.

File identifier (1 to 17 characters). If FID=fid is omitted and
the HDRl label is written, the file identifier field in the HDRl
label is all blanks. If FID=fid is omitted and the HDRl label is
read, the contents of the file identifier field are not checked.

Retention period in days. The retention period is added to the
creation date to determine the expiration date for the file. If
RP=rp is omitted, the default value is 30 days.

File accessibility character. If the HDRl label is read, the
specified character must match the accessibility character in the
label. If the HDRl label is written, the specified character is
written in the label. If FA=x is omitted, the default character is
determined by an installation parameter (released value, blank).

Original file accessibility character. If the HDRl label is to be
overwritten, the specified character must match the accessibility
character in the existing label. If OFA=x is omitted, the default
character is determined by an installation parameter (released
value, blank).

I NOTE I
When you add a new file to a multifile set,
the expiration date of the new file cannot
be later than the expiration date of the
first file in the multifile set.

Figure 4-23. LABEL Control Statement Format (Sheet 1 of 3)

60459410 E 4-55

Parameters Used to Override REQUEST Statement Values

RT=rt

BT=bt

RLMIN=rlmin

RLMAX=rlmax

PC=x

RMD=x

MPRU=mpru

RPB=rpb

Record type.

B System block

F ANSI fixed length

L CYBER Record Manager (CRM) control word

R Record mark delimited

u Undefined

w Control word delimited

If RT=rt is omitted, the record type specified on the REQUEST
statement is used (default, R).

Blocking type.

I Internal

c Character count

K Record count

If BT=bt is omitted, the blocking type specified on the REQUEST
statement is used (default, C).

Minimum record length in bytes. If RLMIN=rlmin is omitted, the
minimum record length specified on the REQUEST statement is used
(default, 1).

Maximum record length in bytes. If RLMAX=rlmax is omitted, the
maximum record length specified on the REQUEST statement is used
(default, 0).

Padding character. If PC=x is omitted, the padding character
specified on the REQUEST statement is used (default, blank).

Character used as the record delimiter for R format records. If
RMD=x is omitted, the record mark delimiter specified on the
REQUEST statement is used (default, ASCII US [code #IF]).

MPRU size in bytes; used only if the file uses the V tape format.
If MPRU=mpru is omitted, the MPRU size specified on the REQUEST
statement is used (default, 32768).

Records per block; used only for the K blocking type. If RPB=rpb
is omitted, the records per block value specified on the REQUEST
statement is used (default, 1).

Figure 4-23. LABEL Control Statement Format (Sheet 2 of 3)

4-56 60459410 E

CONVERT=cvt

LPROC=lp

ACCESS=acs

Data conversion option. If CONVERT is omitted, no conversion is
performed and the data is read and written as binary data.

The values for cvt are these:

YES

NO

Tape data is read .and written as character codes,
using the character set specified by the CM
parameter.

No conversion is performed.

If CONVERT= is specified as YES on the REQUEST control statement,
setting either YES or NO on the LABEL control statement has no
effect and conversion is done. If CONVERT= is not specified on
REQUEST, LABEL can set it to either YES or NO with the expected
results.

Label processing option.

R Read existing labels (verify existing HDRl label).

w Write new labels.

If LPROC=lp is omitted, the label processing value specified on the
REQUEST statement is used (default: R if ACCESS=R or RW, W if
ACCESS=W).

Data access requested.

R Read access.

w Write access.

RW Read and write access.

If ACCESS=acs is omitted, the access specified on the REQUEST
statement is used (default is R).

Parameters for Multif ile Sets Only

MFN=mf n

FSN=f sn

Multifile set name (one to eight characters). The multifile set
name must be specified on a previous REQUEST statement. If MFN=mf n
is omitted, the multifile set name is assumed to be the same as the
file name.

File sequence number (O to 9999). If FSN=9999 is specified, the
file is opened with write access. If LPROC=W is specified, the
file is appended to the end of the multifile set. If LPROC=R is
specified, the system searches for a file with FSN=fsn. If the
file is not found, an error is returned.

If FSN=fsn is omitted, the file is identified by its file
identifier as specified on the FID parameter. If neither FSN nor
FID is specified, file sequence number 0001 is used.

Figure 4-23. LABEL Control Statement Format (Sheet 3 of 3)

60459410 H 4-57

Before a LABEL statement is processed, a REQUEST statement must specify the file name.
Unless the operator is asked to mount an unlabeled tape, the REQUEST statement also
specifies the tape volumes for the file.

Several data format parameters can be specified on either the REQUEST statement or the LABEL
statement or both. If the same parameter is specified on the REQUEST and LABEL statements,
the value on the LABEL statement overrides the value on the REQUEST statement.

If the HDRl label of a file is to contain values other than default values, a LABEL
statement is required for the file. A LABEL statement is not required for reading or
writing an unlabeled file or a labeled file whose HDRl label contains only default values.

A LABEL statement is required for reading or writing a file that is a member of a multifile
set.

MUL TIFILE SETS

A multifile set is a set of tape files. The set can reside on one or more tape volumes.
Each file begins with an HDRl label and ends with an EOFl label.

A REQUEST statement specifies the name of the multifile set and the tape volumes that belong
to the set. A LABEL statement must be specified for each file in the set that you intend to
read or write in the job. Each LABEL statement specifies the name of a file and the name of
the multifile set to which the file belongs. Later statements reference the file by the
file name on the LABEL statement.

A file within a multifile set is identified by its file sequence number and its file
identifier. The file sequence number and file identifier of a file are written in its HDRl
label when the file is written.

The data format parameter values on the REQUEST statement for the multifile set apply to all
files in the set unless the parameter is also specified on the LABEL statement for the file.

Specify the same LABEL statement parameters for a file in a multifile set as you specify for
any tape file.

Writing a Multifile Set

To write a multifile set, specify 1 as the file sequence number for the first file of the
set and 9999 as the file sequence number for all subsequent files. If the specified file
sequence number is 9999, the actual file sequence number written is the next number in
sequence for the set. LPROC=W must be specified.

The LABEL statements for the files in a multifile set can be in any order. No error is
returned if a file specified on a LABEL statement is not opened.

For example, suppose a job contains the following statements:

4-58

REQUEST,FILESET,DEV=NT,VSN=(VOL100,VOL101),AC=W.
LABEL,X,MFN=FILESET,FID=FILEl,FSN=l,LPROC=W.
LABEL,Y,MFN=FILESET,FID=FILE2,FSN=9999,LPROC=W.
LABEL,Z,MFN=FILESET,FID=FILE3,FSN=9999,LPROC=W.
COPY ,FIRST ,X.
COPY,LAST,Z.

60459410 F

The REQUEST statement specifies FILESET as the multifile set name for files written on the
tape volumes VOLlOO and VOLlOl. The LABEL statements specify HDRl labels for files in the
multifile set.

The first COPY statement writes the HDRl label specified on the first LABEL statement and
copies any data in file FIRST to the tape file. The file sequence number in the label is 1,
and the file identifier is FILEl. The second COPY statement writes the HDRl label specified
on the third LABEL statement and copies any data in file LAST to the tape file. The file
sequence number in the label is 2 (the next number in sequence for the set), and the file
identifier is FILE3. The second LABEL statement is not used, and its specifications are
discarded when the job ends.

Reading a Multifile Set

To read a file in a multifile set, specify its file sequence number on its LABEL statement.
The file sequence number specifies the HDRl label read when the file is opened.

If the file sequence number of the file is not known but its file identifier is known,
specify the file identifier and omit the file sequence number on the LABEL statement. If a
file identifier is specified, the HDRl labels in the multifile set are searched until the
label containing the specified file identifier is found.

If the HDRl label of the file contains a nonblank accessibility character, specify the
accessibility character on the FA parameter.

For example, suppose a job contains the following statements to read the second file in a
multifile set named FILESET.

REQUEST,FILESET,DEV=NT,VSN=VOL100,VOL101.
LABEL,X,MFN=FILESET,FID=SECOND,FSN=2.
COPY,X,XFILE.

The REQUEST statement specifies the multif ile set name and the tape volumes to be read. The
LABEL statement specifies a local file name for the file, the multifile set name, the file
identifier, and the file sequence number. The COPY statement opens file X and copies it to
file XFILE. To open file X, it reads the second HDRl label in the multifile set and checks
to ensure that its file identifier is SECOND and that its file accessibility character is
blank.

Rewriting Files in a Multifile Set

Files in a multifile set can be rewritten. However, the last file written is always the
last file in the set, so when a file is rewritten in a multifile set, all subsequent files
to be kept in the set must also be rewritten.

The HDRl label of a rewritten file need not be rewritten. To verify the HDRl label but not
overwrite the label, specify LPROC=R and ACCESS=W on the LABEL statement.

60459410 F 4-59 I

For example, suppose a multifile set named FILESET has three files. The following
statements in a job replace the data in the second file.

REQUEST,FILESET,DEV=NT,VSN=VOL100,VOL101,AC=RW.
LABEL,X,MFN=FILESET,FSN=3.
LABEL,Y,MFN=FILESET,FSN=2,LPROC=R,AC=W.
LABEL,Z,MFN=FILESET,FSN=9999,LPROC=W.
COPY,X,TEMP.
COPY,NEW,Y.
COPY,TEMP,Z.

The REQUEST statement specifies the multifile set name, the tape volume containing the
multifile set, and read and write access for the files in the set. The first LABEL
statement is used to read the third file in the set. The second LABEL statement is used to
rewrite the data in the second file without rewriting the HDRl label of the file [the label
processing option (LPROC) is read, but the data access (AC) is write]. The third LABEL
statement is used to rewrite the third file (data and labels). It specifies file sequence
number 9999 because the file is appended to the multifile set.

The first COPY statement copies the third file to a temporary file so that its data is not
lost. The second COPY statement overwrites the data in the second file with the data on
file NEW. The third COPY statement rewrites the data saved in the temporary file.

I 4-60 60459410 F

LIMITS-LIST USER VALIDATIONS
The LIMITS control statement obtains validation controls and limitations for a user number.
You can only obtain the information for the user number executing LIMITS.

The format of LIMITS output follows:

CHARACTERISTICS
USER NUMBER
DEFAULT ACCOUNT NUMBER
ACCOUNT NUMBERS
MASTER ACCOUNT NUMBERS
DEFAULT PROJECT NUMBER
JOB CATEGORIES
CHARGE STATEMENT REQUIRED
INTERACTIVE ACCESS
PRODUCTION USER NUMBER

MAXIMUM NUMBER OF
FILE SIZE
SECURITY LEVEL

VALID USER PERMISSIONS
TAPE ACCESS
PRIORITY SCHEDULING
PRIVILEGED
VARIABLE RATE ACCOUNTING

User number
Uef ault account number
List of accounts
List of master accounts
Default project number
Job categories for user
YES/NO
YES/NO
*YES/NO

Maximum file size
Security level

An asterisk (*) following the user number indicates it is a production user number.
If the user does not have any master accounts, MASTER ACCOUNT NUMBERS is not listed.

Only those permissions which the user is validated for are listed under VALID USER
PERMISSIONS. If the user does not have any this section is omitted.

Figure 4-23.1 shows the LIMITS control statement format.

LIMITS,LIST=outfile.

LIST=outfile

60459410 H

Name of the optional file on which the output is written.

If the LIST parameter is omitted, the default file for batch jobs
is OUTPUT, and, for interactive jobs, the output is printed at the
terminal.

Figure 4-23.1. LIMITS Control Statement Format

4-60.1/4-60.2

I

I

(

LIST AC - LIST ACCESS PERMISSION SETS

The LISTAC utility lists access permission sets.

I NOTE I
The FILES utility must be used to determine
the access permission set of a file you do
not own.

LISTAC uses the following conditions to determine the access permission sets it lists for a
file.

• File ownership category of the file

• User executing the LISTAC utility

• USER parameter specification

The effect of these conditions is shown in table 4-4.

Table 4-4. Access Permission Sets Listed

File Category LISTAC Requestor USER Parameter Specification Access Permission Sets Listed

Private File owner USER=user-list Individual access permission
sets

USER=GENERAL General access permission set

USER=* All access permission sets

omitted Owner-s access permission set

Pool Pool boss USER=GENERAL General access permission set
~

USER=* All access permission sets

omitted Pool boss access permission set

Pool member USER=GENERAL General access permission set

USER=* General access permission set

omitted General access permission set

Public Any user USER=GENERAL General access permission set

USER=* General access permis13ion set

omitted General access permission set

60459410 E 4-61

The LISTAC control statement format is shown in figure 4-24. All parameters are optional,
and all keyword parameters can appear in any order.

If all parameters are omitted, LISTAC lists the owner access permission set of each private
file the user owns.

LISTAC , lf nl - list , PRIVATE= { lf n2; list } , PUBLIC= { lfn3: list } , POOL=pool , lfn4-list ,

USER=user,LIST=outlfn.

lfnl-list

PRIVATE=

POOL=pool,
ITn4-list

USER=user

LIST=outlfn

Private files (1 to 255 file names separated by commas).

Private files.

lfn2-list List of 1 to 255 file names separated by commas.

* All files belonging to the user.

Public files.

lfn3-list List of 1 to 255 file names separated by commas.

* All public files.

Pool and list of files belonging to to the pool (pool name
followed by 1 to 255 file names separated by commas). A pool
name specified without a file list requests that access
permission sets for all files belonging to the pool be listed.

Indicates the access permission set listed.

For private, pool, or public files:

GENERAL General access permission set only.

* All access permission sets.

For private files only (invalid if pool or public files are also
specified on the statement):

user-list List of user numbers whose individual access
permission sets are listed (1 to 16 user numbers,
separated by commas).

Table 4-4 shows the access permission sets listed for each valid
USER parameter specification.

Optional name of the file on which output is written.

If LIST=outlfn is omitted, the default output file depends on
whether LISTAC is executed within a batch job or as an
interactive task. Batch job output is written on file OUTPUT;
interactive task output is displayed at the terminal.

Figure 4-24. LISTAC Control Statement Format

4-62 60459410 E

LIST AC OUTPUT

LISTAC lists file information under the following column headings:

Heading Description

NAME File name. The file name has an asterisk (*) appended to it if the file
is a production file.

OWNER File ownership: owner user number for a private file, pool name for a
pool file, and PUBLIC for a public file.

USER GENERAL or user number. GENERAL indicates the general access permission
set for the file; a user number indicates the user to whom the access
permission set applies.

ACCESS Access permission set: read (R), write (W), execute (X), append (A) and/
or modify (M) access permissions, or no access permissions (NONE).

Example 1:

The user with user number 010101 owns files A and B. The user enters the following
statement to list the owner access permission set of each file.

LISTAC.

The user receives the following output:

NAME

A*
B*

Example 2:

OWNER

010101
010101

USER

010101
010101

ACCESS

RX
RX

A user with access to pool APOOL enters the following statement to list the general access
permission set of public file D and of each file belonging to pool APOOL. The user is not
the pool boss for APOOL.

LISTAC,PUB=D,PO=APOOL.

The user receives the following output:

NAME

D
PFILEl
PFILE2

Example 3:

OWNER

PUBLIC
APOOL
APOOL

USER

GENERAL
GENERAL
GENERAL

ACCESS

R
RW
RW

The file owner requests a listing of all access permission sets for private files A and B
with the following statement:

LISTAC,A,B,USER=*.

60459410 H 4-63

I

I

The file owner receives the following output:

NAME OWNER USER ACCESS

A 010101 010101 RWX
GENERAL RX

B 010101 010101 RWX
GENERAL RX
020202 RW

Example 4:

The file owner requests a listing of individual access permission sets for user numbers
012345 and 012678 for files C and E with the following statement:

LISTAC,C,E,U=Ol2345,012678.

The file owner receives the following output:

NAME OWNER USER ACCESS ---
c 010101 012345 RX

012678 R
E 010101 012345 R

4-64 60459410 E

LOAD - GENERA TE CONTROLLEE FILE

The LOAD utility generates a controllee file.

A controllee file (also called a virtual code file) is an executable file.

FILES USED TO GENERATE A CONTROLLEE

As shown in figure 4-25, the LOAD utility reads input from object code files and libraries
and writes its output on the controllee file and the listing file. The figure also names
the default files LOAD uses.

BINARY

OBJECT CODE
FILES

LIBRARY FILES

SYSLIB

SSYSLIB

INPUT
DIRECTIVES

LOAD
UTILITY

GO

CONTROL LEE
FILE

LISTING FILE

OUTPUT

M02041

Figure 4-25. Files Used by the LOAD Utility

The number of files used by the LOAD utility cannot exceed SO. These files include the
SYSLIB or SSYSLIB file, library files, and object code files.

Library files are generated by the OLE utility described under OLE - Object Library Editor
in this chapter. SYSLIB contains all SIL routines and the runtime routines needed to run
FTN200 FORTRAN programs. SSYSLIB contains all SIL routines that must always be loaded
statically. Whenever the loader builds a dynamic controllee, it always searches SSYSLIB for
externals. Routines on SSYSLIB must also reside in SYSLIB.

Object Code Files

An object code file contains object modules generated by a CYBER 200 assembler or compiler.
The object code file can be an object file generated by the assembler or compiler or a
modmerge file generated by the OLE utility. A modmerge file may contain more than one
object code module, but it does not have a directory.

When a LOAD statement references a modmerge file, LOAD loads all modules in the file.
Because a LOAD statement can specify only ten object code files, specifying modmerge files
enables specification of more code modules for a controllee.

An object code file can be either a local file or an attached private or pool file.

6045%10 H 4-65

I

Listing File

The LIST parameter on the LOAD control statement can specify the name of the listing file.
If the LIST parameter is omitted, LOAD uses the name OUTPUT. If LIST=O is specified, no
listing is generated.

Having determined the listing file name, LOAD searches for the file. Table 4-5 lists the
LOAD processing that results from the file search.

If the file

Does not exist or

t.xists as a local

Table 4-5. Results of Listing and Controllee
File Searches

LOAD

is unattached, requests a new local file.

file, returns the existing file
local file.

Exists as an attached uses the existing private
private permanent file,

and requests a new

permanent file.

LOAD writes a load map on the listing file, showing the locations of all object modules,
databases, and common blocks in the controllee file. If LO=X is specified on the LOAD
control statement, the map also includes a cross-reference list of all common blocks and
entry points.

LOAD writes the load map with ASCII carriage control characters suitable for printing.

Controllee File

The CNTROLEE parameter on the LOAD control statement can specify the name of the controllee
file. lf the CNTROLEE parameter is omitted, LOAD uses the name GO.

Having determined the controllee file name, LOAD searches for the file. Table 4-5 lists the
LOAD processing that results from the file search. If the file does not exist, LOAD creates
the file.

Assuming that the maximum small page size (as set by an installation parameter) is 16
blocks, the default controllee file length is #102 blocks. The controllee file length may
be extended to a maximum of #2000 blocks. If a file length of less than #2000 blocks is
specified on the CNTROLEE parameter, the file may be extended to #2000 blocks. Files with a
length greater than #2000 blocks are never extended by the loader.

When the controllee file is created, its file type must be specified as virtual code.

Read and write access permissions to the controllee file are required. If LOAD creates the
controllee file, read, write, execute, append, and modify access permissions to the file are
granted.

4-66 60459410 G

Controllee File Formats

Figures 4-26 and 4-27 show controllee file formats. The figures show both the virtual bit
addresses used when the controllee is mapped into memory and the mass storage word addresses
used when it is stored on disk.

60459410 E

Virtual
Bit Address

Minus Page

0

Regtster File

Origin
Module 1 Name

Length I Header Address

Module 1 Relocated Code

~
'"rt

Module n Name

Length T Header Address

Module n Relocated Code

Data Bases

Labeled Common

Error Processing Information

\..J""'

Mass Storage
Block Number

2

3

'"'r"'

Figure 4-26. Controllee File Format
(Code and Data Bases Separate)

4-67

Virtual Mass Storage
Bit Address Block Number

Minus Page 1
0

Register File 2
Origin

Module 1 Name

Length J 3
Header Address

Module 1 Relocated Code

Module 1 Data Base

Module 1 $common Block

~ ~
rt

,..,

Module n Name

Length J Header Address

Module n Relocated Code

Module n Data Base

Module n $common Block

Labeled Common

Error Processing Information

Figure 4-27. Controllee File Format (Data Grouped with Code)

The first one or two blocks of the controllee file are always its minus page. The next
block contains its tegister file. LOAD initializes the system information stored in the
minus page and the register file.

LOAD copies object module code to the controllee file, beginning at the default origin
address unless the ORIGIN parameter specifies an origin address. If the ORIGIN parameter is
omitted but the GRLPALL parameter is specified, the default origin address is #400000 lthe
first large page (128-block) boundary]. If the ORIGIN and GRLPALL parameters are both
omitted, the default origin address is 1180000 (the first lo-block boundary).

LOAD copies object modules to the controllee file in the order in which their files are
listed on the LOAD control statement. Modules within modmerge files are copied in the order
in which they exist on the modmerge file.

4-68 60459410 E

Grouping Data With Code

Figures 4-26 and 4-27 show the two possible controllee file formats. The format used is
specified by the GDWC parameter on the LOAD statement.

The format shown in figure 4-26 (specified by GDWC=NO) groups all code modules together
followed by all data bases. The format shown in figure 4-27 (specified by GDWC=YES) groups
each code module with its data base and $co1Illllon block, if any. ($common blocks are used
only by the system implementation language, IMPL).

Grouping each data base with its code module can eliminate page faults during controllee
execution. This is especially true if the system is using a 4-block or 16-block small page
size.

Register File

The register file always occupies bit addresses 0 through #3FFF of the controllee file.
When mapped into virtual space, the register file addresses cannot be directly referenced by
the controllee.

Specify a character string on the VR parameter to be stored in register #A of the register
file. The string can be used as identification in a dump.

LOAD stores the creation date and time for the controllee in registers #B and #C. The date
format is eight ASCII characters, mm/dd/yy, representing the month, day, and year. The time
format is eight ASCII characters, hh.mm.ss, representing the hour (24-hour clock), minute,
and second.

Dynamic Stack

The dynamic stack c-ontains temporary working space used to store the contents of the
register file when a subroutine is called. Upon return from the subroutine, the contents of
the register file are restored, using the values stored in the stack.

Unless otherwise specified by the DSA parameter, the dynamic stack is allocated following
the last virtual address allocated when the task is executed. The dynamic stack address is
included in the load map.

SATISFYING EXTERNAL REFERENCES

When loading with LINK=M, LOAD satisfies the unsatisfied external references in the copied
object modules. To do so, it searches the directories of the specified library files for a
module or entry point name that matches an unsatisfied external reference. When a match is
found, LOAD copies the library module to the controllee file. If no match is found in the
directories of the specified library files, LOAD searches the directory of the SYSLIB file.

When loading with LINK=D, LOAD searches the directory of the SSYSLIB file satisfying all
externals found there. All unsatisfied externals are assumed to be dynamic. Dynamic
externals are satisfied at execution time by the linker.

60459410 F 4-69

I

I

After a library module is copied to the controllee file, LOAD checks all entry points
defined for the module to determine whether they match any currently unsatisfied external
references. When a match is found, LOAD uses the entry point to satisfy the external
reference. Keep this manner of linking in mind when contemplating use of multiple libraries
containing modules that have multiple duplicate entry points.

I The EQUATE parameter can change external reference linking. If the EQUATE parameter is
specified, LOAD performs the requested substitutions of external reference names. The
library modules loaded and the common block names used can be changed.

I

I

DYNAMIC LINKING USING THE SYSTEM SHARED LIBRARY

Controllees may be built to require or not require the system shared library, SHRLIB, by
using the LOAD link option. Controllees built by the loader with LINK=D are completely
linked except for the shared SYSLIB module references. During execµtion of the controllee
the shared SYSLIB modules are used for dynamically satisfying SIL routines. If a controllee
is partially statically loaded with the shared library active, and then run on a system
without the shared library active, the controllee aborts. When the shared library is active
and a controllee references a page in the library region that is not locked or mapped, the
controllee aborts.

During execution of a dynamically linked controllee, the linker (residing in SHRLIB)
performs the functions of LOAD such as data base and common block initialization,
relocation, and satisfaction of externals on a dynamic basis when a call to an object module
is made.

For loading a controllee that requires SHRLIB, there are various options. All SYSLIB
programs can be loaded with the controllee or can be dynamic and linked during execution.
Dynamic SYSLIB programs may or may not call entries or reference common blocks in the
controllee. The linker may or may not backpatch META programs in the controllee.
Backpatching is a modification the linker makes to SYSLIB calls in controllee programs so
that only the first call to the SYSLIB routine is dynamic.

Dynamic Linker

The linker does the loading of dynamic modules and gives control to the called module.

The order for satisfying the called module is as follows:

1. If LINK=D was specified, the linker searches only the shared SYSLIB that resides in
the shared system library.

2. If LINK.=C was specified, the linker first searches the controllee for the entry and
then searches the shared SYSLIB.

Loading rules are as follows:

•

•

•

4-70

Dynamically called modules that reference external data cause the module.that
contains the external data to be loaded and linked by the linker.

Dynamically called modules that define or try to reduce previously loaded common
blocks always use the previous definition.

The linker ignores the presetting of common blocks by dynamically called modules
that preset previously loaded comm.on areas.

60459410 F

Dynamic Execution

Any module that resides in a dynamic library must adhere to the following conventions:

• The module cannot have any external references to code memory sections, data bases,
or common within a code msec (for more information on msec, refer to the CYBER 200
Assembler Reference Manual). All external references must be from either the data
base or a labeled common block.

• The module must follow the register convention defined in appendix D of volume 2 of
this manual.

• The module must not depend on any common to be initialized to zero. Only areas
preset by data statements are initialized.

• The length of blank, labeled, and numbered common is established by the first
dynamically executed module that defines it.

• If more than one module presets the same common block, presetting is done only by
the first module executed. Subsequent presetting of the common block is ignored.

• During dynamic execution, if a module expects a second module to preset a common,
the second module must be called before the first module uses that common.

Dynamically Linked Controllees

Controllees that are not completely statically linked should be aware of the following facts
relating to dynamic execution.

• Shared SYSLIB modules may vary from one execution to the next.

• Controllees are cautioned to follow calling conventions and be aware of the coding
conventions for dynamic modules.

• Controllee files may be smaller, and drop files may be larger.

• Calls from META modules within a controllee file are never backpatched. This means
that dynamic calls from META modules go through the linker each time. The LINK.=B
option can be used to override this restriction.

• IMPL programs should be compiled with OPT=V if possible. This increases dynamic
call execution.

PAGE GROUPING

Each grouping parameter (GRLP, GRSP, GRLPALL, GROS, and GROL) specifies a set of object
modules or common blocks that LOAD is to process as a group. More than one instance of any
grouping parameter can be specified.

Each group of modules or blocks is mapped to a virtual address range. A virtual address
range can include more than one page. It begins at the address specified on the grouping
parameter.

Grouping parameters do not specify the order of the blocks or modules in a group. The order
is determined by the order in which the modules are copied to the controllee file.

60459410 G 4-71

All modules or blocks in a group must be of the same type. The three types are code
modules, labeled common blocks, and blank or numbered common.

A code module is specified by name, a labeled common block is specified by a name with an *
prefix and blank common is specified by an * without a name.

If a virtual bit address on a grouping parameter is specified, ensure that the address has
not been allocated. The address must be prefixed by a # character.

Grouping Controllee File Blocks

The GRSP and GRLP parameters group blocks or modules that are stored in the mass storage
controllee file.

A group specified on a GRSP parameter is mapped to small pages. A group specified on a GRLP
parameter is mapped to large pages.

If the GRLPALL parameter is specified, all modules and blocks are mapped to large pages.

Code modules and labeled common blocks specified on GRSP and GRLP parameters are mapped to
the controllee file. Blank common or numbered common blocks are mapped to the drop file.

If no grouping parameters are specified, all object modules, data bases, and common blocks
are mapped to small pages.

For example, consider the following grouping parameters on a LOAD control statement.

LOAD,GRLP=*BLKl ,GRLP=*BLK2,*BLK3,*BLK4,GRLP=*.

LOAD maps labeled common block BLKl to a large page and labeled common blocks BLK2, BLK3,
and BLK4 to another large page within the controllee file. It maps blank common to a large
page within the drop file. (Blank common is always mapped to the drop file.) LOAD maps all
other common blocks and modules to small pages.

Grouping Unmapped Blocks

I The GROS and GROL parameters group blocks that are not stored in the mass storage controllee
file.

The GROS parameter groups blocks to be mapped to small pages; the GROL parameter groups
blocks to be mapped to large pages.

Specifying labeled common block groups on the GROS and GROL parameters reduces the size of
the stored controllee file because the specified common blocks will be mapped to another
file, which will be either the drop file or other mass storage file.

Use of the GROS and GROL parameters could increase the size of the drop file because the
grouped labeled common blocks will be mapped by default to the drop file instead of to the

I
controllee file. You can increase the allocated drop file size with the DFL parameter.

Object modules and labeled common initialized with data cannot be grouped with GROS or GROL
parameters. Labeled common blocks specified on a GROS or GROL parameter are not preset.

4-72 60459410 H

Grouping Parameter Mapping

LOAD does not perform mapping to a file with GROS and GROL as it does with GRSP and GRLP.
This mapping is left up to the execution of the controllee or the system at run time.

GROS, GROL, GRSP, and GRLP all align the specified groups or modules on their respective
page size boundaries. Specifying GROS or GROL, however, does not determine the unit size of
the mapping to a noncontrollee file that includes the drop file. The unit size is either a
small or large page.

To create a specific mapping to a noncontrollee file when GROS or GROL was specified for the
memory area to map to, the user program calls Q5MAPIN specifying the desired file to map to
and the desired unit size of the mapping. Q5MAPIN associates a virtual address range with a
mass storage file. If Q5MAPIN is not called before a group or module is accessed, the
system creates a small page unit size drop file mapping for the page accessed. Once the
system has created a mapping, QSMAPIN returns an error if it is called with the same virtual
range. The user program must call QSMAPIN for a large page unit size mapping.

When GRSP or GRLP are specified, the LOADER creates a unit size mapping the same size as the
type of page boundary to which a common block is aligned.

SPACE INITIALIZATION

LOAD presets labeled common blocks and data base in the controllee file to zero by default
or to the value specified by the keyword INITCOM and then initializes data in the blocks as
requested by the program. If you specify INITCOM, you may use one of four predefined values
to preset common, or use a fifth option that allows you to specify your own pattern.
The predefined values are integer zero (all zero bits), floating-point zero, indefinite, and
half-word floating-point zero. The predefined constants are represented by the keywords
ZERO, INDEF, FPZERO, and HFPZERO. Labeled common blocks specified on GROS or GROL
parameters are not preset to zero.

When the program first references blank or numbered common, VSOS provides the program with a
page initialized to a memory pattern.

60459410 H 4-73

TARGET PAGE SIZE

Specify a target page size for the controllee file with the TSP parameter on the LOAD
control statement.

The target page size is the small page size for which LOAD optimizes the controllee
structure. If the TSP parameter is omitted, the target page size is the small page size
VSOS is currently using.

The small page size VSOS uses is selected during VSOS autoload. The possible sizes are one,
four, and sixteen 512-word blocks.

A controllee optimized for a small page size can be executed when VSOS is executing with
that small page size or a smaller small page size. For example, a controllee loaded for the
4-block small page size can execute with a 4-block or 1-block small page size, but it cannot
execute with a 16-block small page size.

An attempt to execute a controllee when VSOS is using a small page size larger than the
target small page size of the controllee results in the aborting of the job.

The boundary on which LOAD maps a group depends on its type.

LOAD maps each controllee group except blank or numbered common groups to the next available
address on a 512-word block boundary. It maps a blank or numbered common group to the next
available address on a target page boundary. It maps a group specified by a GROS parameter
to the next available address on a selected page size boundary.

If the TSP parameter is not specified, LOAD assumes the controllee will only be run on a
system with a small page size equal to the one being used by VSOS at the time the controllee
was built. This allows LOAD to make better use of drop file map entries that are generated
by LOAD. LOAD allows a drop file map entry to represent up to 32 times the running small
page size. If the TSP parameter is specified, a drop file map entry generated by LOAD will
never represent more than 32 blocks.

4-74 60459410 G

CONTROL STATEMENT FORMAT

Figure 4-28 shows the LOAD control statement format. All parameters are optional. The list
of binary object code files must appear before any other parameters. All other parameters
can appear in any order.

LOAD,lfn1, ••• ,lfnn,BINARY=lfn1, ••• lfnn,CNTROLEE=lfn/len,
DFL=dlen,INPUT=lfn,LIST=lfn/len,LIBRARY=lib 1, ••• libn,
EQUATE=sub 1,name 1, ••• ,subn,namen,
ENTRY=ept,
INITCOM=opt,
INITFS=opt,
VR=string,ORIGIN=bitadr,TSP=n,GDWC=opt,
GRSP=mod 1 , ••• ,mod ,#bitaddr,
GRLP=mod 1 , ••• ,modn,#bitaddr,
GROS=blk1 , ••• ,blk~,#bitaddr,
GROL=blk 1, ••• ,blk ,#bitaddr,
GRLPALL=,LINK=lin~,DSA=bitadr,LO=X,
VALIDATE=Y/N,ULIB=filename,SLIB=filename.

!INARY=lfni

List of object code files (1 through 10 file names, separated by
commas). If no object code files are listed, LOAD uses file
BINARY.

List of object code files. This option is the same as the
object code list at the beginning of the control statement,
except the B= option may appear anywhere within the control
statement. If BINARY=lfn. is omitted and there is no lfn.

1 1
list at the beginning of the control statement, LOAD uses the
file BINARY.

CNTROLEE=lfn/len Controllee file. lfn is the name of the file. If lfn is
omitted, LOAD writes the controllee on file GO.

DFL=dlen

INITCOM=opt

len is the file length in 512-word blocks. If len is omitted,
the default file length is #102 blocks.

Number of 512-word blocks in the drop file created when this
controllee file is executed. (This value is stored in word #99
of the minus page.) If DFL=dlen is omitted, word #99 of the
minus page is zero and the system determines the drop file size.

If LINK=D is specified or defaulted, dlen defaults to the length
of the controllee plus the length of blank common plus 128
blocks.

If opt is ZERO, labeled common and data base are preset to
integer zero; that is, all bits are set to zero.

If opt is FPZERO, labeled common and data base are preset to
floating-point zero; that is, #8EOOOOOOOOOOOOOO. This pattern
also doubles as an illegal instruction.

If opt is HFPZERO, labeled common and data base are preset to
half-word floating-point zero; that is, #8E0000008EOOOOOO. This
pattern also doubles as an illegal instruction.

Figure 4-28. LOAD Control Statement Format (Sheet 1 of 6)

60459410 J 4-74.1

INITFS=opt

If opt is INDEF, labeled common and data base are preset to an
indefinite value; that is, #7DlE161C701FlDOO. This pattern is:

• An illegal instruction if register 16 contains a value
of integer 1

• A 64-bit and 32-bit indefinite floating-point number

• R-type file delimiters of records, groups, and files

• A UNIX string delimiter

• Even parity to cause control word parity errors on
V-type files

If opt is #hhhhhhhhhhhhhhhh, labeled common and data base are
preset to the user-specified value. The value may consist of
to 16 hexadecimal digits.

If INITCOM=opt is omitted, the default value is equivalent to
INITCOM=ZERO.

If opt is ZERO, free space is preset to integer zero: that is,
all the bits are set to zero.

If opt is FPZERO, free space is preset to floating-point zero:
that is, #8EOOOOOOOOOOOOOO.

If opt is HFPZERO, free space is preset to halfword
floating-point zero: that is, #8E0000008EOOOOOO. This pattern
also doubles as an illegal instruction.

If opt is INDEF, free space is preset to an indefinite value:
that is, #7DlE161C701FlDOO. This pattern is:

• An illegal instruction if register 16 contains a value
of integer 1

• A 64-bit and 32-bit indefinite floating-point number

• R-type file delimiters of records, groups, and files

• A UNIX string delimiter

• Even parity to cause control word parity errors on
V-type files

If opt is #hhhhhhhhhhhhhhh, free space is preset to the
user-specified value. This value may consist of 1 to 16
hexadecimal digits.

If opt is ClFlC, free space is preset to the value
#OOOClFlCOOOClFlC.

If INITFS=opt is omitted, the default value is INITFS=ClFlC.

Figure 4-28. LOAD Control Statement Format (Sheet 2 of 6)

• 4-74.2 60459410 J

INPUT=lfn

LIST=lfn/len

ENTRY=ept

,Y!=string

lfn is a local or attached permanent file from which LOAD reads
parameters.

All parameters are allowed on the file except for I= and the
object code file list. The I= option may be intermixed with the
other options, but it may only be specified once and is
processed as if it were specified last.

The options on the file must be separated by commas, with an
optional comma at the beginning of the file. Blanks are allowed
after any delimiter just as they are in a control card. EOR is
ignored, and a period, right parenthesis, EOG, EOF, or EOI
terminates the option.

lfn is the local or attached permanent file to which LOAD writes
the load map. If this parameter is omitted, LOAD writes the map
on the local file OUTPUT.

If LIST=O is specified, no listing is generated, including the
cross-reference listing specified by the LO=X parameter.

len is the number of 512-word blocks allocated for the file. If
len is omitted, #25 blocks ·are allocated. Unused file space is
released at the end of map construction.

List of library files from which LOAD satisfies external
references. (OLE creates library files.) If LIBRARY=libi is
omitted, LOAD searches only file SYSLIB.

List of external reference pairs. During linking, the second
name in each pair is replaced by the first name in the pair.

Each common block name must be preceded by an asterisk. An
asterisk alone indicates blank common.

The EQUATE parameter cannot change module names.

This parameter cannot be used to change the name of entry points
residing in the system shared library that are to be called
dynamically.

To use this parameter on the system shared library, the
controllee must be statically loaded.

Name of an entry point in a loaded module at which execution is
to begin (the transfer address). If ENTRY=ept is omitted,
Q8MAIN is used.

String of one through eight ASCII characters to be stored, left
justified and blank filled in register #A. The string cannot
contain the characters , •) and blank. If no VR= is specified,
the date and time in the form MMDDHHMM is placed in the register.

Figure 4-28. LOAD Control Statement Format (Sheet 3 of 6)

• 4-75 60459410 J

I

\
GDWC=opt

GRSP=modlist,
//bitaddr

GRLP=modlist,
ilb-itaddr

GROS=blklist,
llbitaddr

Indicates the controllee format used. If GDWC=NO is specified,
code modules and data bases are grouped separately (figure 4-26
format). If GDWC=YES is specified, each code module is grouped
with its data base and $common block, if any (figure 4-27
format). If this parameter is omitted, GDWC=YES is used.

List of modules or common blocks to be grouped, loaded, and
mapped in at the specified bit address.

The names listed for this parameter must all be of the same type
(code modules, labeled common blocks, or blank or numbered
common). Common block names must be prefixed by an *· An *
alone identifies blank common.

If a bit address is specified, it must have a # prefix and be a
multiple of the target small page size (a multiple of 118000,
#20000, or 1180000). If the bit address is omitted, the segment
is loaded at the next available block boundary.

List of modules or common blocks to be grouped in a segment and
loaded at the specified large page address.

The names listed for this parameter must all be of the same type
(code modules, labeled common blocks, or blank or numbered
common). Common block names must be prefixed by an *· An *
alone identifies blank common.

If a bit address is specified, it must have a
large page boundary (a multiple of #400000).
is omitted, the segment is loaded at the next
page boundary.

II pref ix and be a
If the bit address
available large

List of common blocks to be grouped in a segment and loaded at a
selected page size boundary. LOAD does not reserve space for
the common blocks in the controllee file.

The names listed on an instance of this parameter must be either
all labeled common blocks or all blank or numbered common.
Common block names must be prefixed by an * An * alone
identifies blank common.

If a bit address is specified, it must have a # prefix; if the
specified bit address is not a selected page size boundary, LOAD
increases it to the next selected page size boundary (a multiple
of #80000). If the bit address is omitted, the segment is
loaded at the next available selected page size boundary. When
GROS is used more than once, LOAD starts subsequent groups on
block boundaries.

Figure 4-28. LOAD Control Statement Format (Sheet 4 of 6)

4-76 60459410 H

GROL=comlist,
#bitaddr

GRLPALL=A

LINK= link

60459410 H

List of common blocks to be grouped together and loaded at a
large page boundary.

LOAD does not reserve space for the common blocks in the
controllee file.

The names listed for this parameter must be either all labeled
common blocks or all blank or numbered common. Common block
names must be prefixed by an * An * alone identifies blank
common.

If a bit address is specified, it must have a # pref ix and be a
large page boundary. If the bit address is omitted, the segment
is loaded at the next available large page boundary (a multiple
of #400000).

All code modules, data bases, and labeled common blocks are
grouped and loaded on large page boundaries. A blank must
follow the = sign in the parameter.

When LINK=D is specified, this parameter has no effect on
individual modules that are to be dynamically loaded by LINKER.
It does cause the linker to get loading space on the drop file
in 128-block increments.

Indicates a complete static load or a partial static load, with
all unsatisfied externals to be loaded and executed dynamically
by using a linker.

D Causes LOAD to assume that all unsatisfied externals
are to be dynamically loaded and executed. If LINK=D
is used when the system shared library is either
active or not active, LOAD maps the existing file
SHRLIB into its working space and uses it for
constructing the controllee. When LINK=D is used,
LOAD does not use SYSLIB as the default LIB parameter
but uses SSYSLIB instead. A controllee built for
dynamic loading and execution does not execute when
the system shared library is turned off.

M Causes LOAD to move all code to the controllee file,
doing a complete static load and using SYSLIB as the
default for the LIB parameter. LINK=M has the same
effect whether the system shared library is active or
not.

C Causes the same as LINK=D but also allows dynamic
external modules to call controllee file modules and
reference controllee file common blocks.

Figure 4-28. LOAD Control Statement Format (Sheet 5 of 6) I

4-77

DSA=bitadr

LO=X

VALIDATE=Y/N

ULIB=f ilename

SLIB=f ilename

I
4-78

~

B/CB/BC

s

Causes the same as LINK=D/C but also allows META
modules to be backpatched by the linker.

Causes LOAD to do a complete static link of all
externals that would have been dynamic. The code
for the externals is not moved to the controllee but
is left in the dynamic user or shared library.

When the system shared library is active, the LINK default
is D; otherwise, the default is M.

If you expect a dynamic library module to call a controllee
file module, you must specify LINK=C. If LINK=D is specified
instead, the dynamic library module is linked to a library
module instead of to the one being supplied in the controllee
file.

If LINK=B/CB/BC is specified and the call follows the proper
calling sequences, the linker modifies the META program
registers and data (for more information, refer to the Dynamic
Execution subsection of the LOAD control statement in this
chapter).

Virtual address at which the dynamic stack begins. It must be
a page boundary. If DSA=bitadr is omitted, the dynamic stack
begins at the last virtual address allocated.

Indicates that the load map should include a common block and
entry point cross-reference list. All common blocks and entry
points are listed alphabetically, with the modules that
reference them. If LO=X is omitted, the common block and
entry point cross-reference is omitted.

Causes LOAD to validate (make sure they actually exist) all
dynamic externals. The externals are only validated to one
level; externals referenced by the dynamic externals are not
checked. VALIDATE=N is the default. Externals that do not
validate are to be considered unsatisfied externals.

Causes LOAD to use file filename as a user dynamic library.
Externals on this library are satisfied after all libraries
specified by the LIB= have been tried. The default is no user
dynamic library. ULIB=filename implies LINK=D, unless some
other LINK= option is specified.

Causes LOAD to use file filename as a system shared library.
Externals on this library are satisfied after all LIB= and
ULIB= libraries have been tried. If SLIB= is not specified
and the system shared library is ACTIVE, LOAD defaults to the
active shared library. If SLIB= is not specified and the
system shared library is not active LINK=B/C/D is specified,
LOAD defaults to the system shared library file.
SLIB=f ilename implies LINK=D.

Figure 4-28. LOAD Control Statement Format (Sheet 6 of 6)

60459410 H

9. Enter either one or more LOAD parameters or a space to specify no more parameter
input. Each LOAD parameter must be specified with its keyword (for example,
L=PRINTMAP). A comma must separate the parameters if more than one is specified on
a line.

10. If you enter another LOAD parameter, LOAD sends the following message:

continue

Enter another LOAD parameter. LOAD repeats the CONTINUE message until you enter a
space to end parameter input.

When you enter a space, LOAD begins building the controllee file, using the
parameter input.

Figure 4-29 shows an example of interactive prompting for parameter input. LOAD responses
are shown in lowercase letters; user entries are shown in uppercase letters. /CR/ indicates
a carriage return; ~indicates that a blank or space should appear. In figure 4-29, the
user requests that LOAD use object files XA, XB, and XC, controllee file TONY, and listing
file PRINTMAP.

input ? LOAD request.

XA, XB, xc /CR/ Enter names of files containing code modules.

origin ? LOAD request.

28000 /CR/ Enter bit address where first module is to be loaded.

entry ? LOAD request.

ll./CR/ Indicate default entry point.

any other options ? LOAD request.

CN=TONY /CR/ Indicate controllee file name.

continue LOAD response.

L=PRINTMAP /CR/ Indicate listing file.

continue LOAD response.

~/CR/ Terminate parameter input.

Figure 4-29. Example of Interactive LOAD Execution

60459410 E 4-79

I

LOADPF - RELOAD FILES

The LOADPF control statement reloads archived permanent files and queue files. The files
must have been archived by the DUMPF utility. For information on the archived file format,
refer to the DUMPF statement description earlier in this chapter.

LOADPF can execute concurrently with other tasks, including other LOADPF tasks.

The LOADPF control statement format is shown in figure 4-30. All parameters are optional.
All except the first can appear in any order. The first parameter, if specified, must be a
list of file names.

The first statement format shown in figure 4-30 is used when reloading from a remote system.
The second statement format is used when files are reloaded from CYBER 200 mass storage or
tapes.

I NOTE I
A production file will not retain its
production status when reloaded by any user
other than the site security administrator.
A warning message is output for each file as
it is reloaded.

Format for Front-End File Loading

LOADPF,lfn-list,USER=userno,POOL=plist,DSET=devset,PACK=packlist,ACCOUNT=alist,
JCAT=jcatlist,ODSET=oldds,LID=lidlist,SELECT=opts,VERIFY=opt,PURGE=popr,DATE=mmddyy,
TIME=hhmm,NOWNER=nowner,LO=x, LIST=lfn/len,ST=stid,SI=setid, {JCS=strings}

INPUT=lfn

Format for CYBER 200 File Loading

LOADPF,lfn-list,USER=userno,POOL=plist,DSET=devset,PACK=packlist,ACCOUNT=alist,
JCAT=jcatlist,ODSET=oldds,LID=lidlist,SELECT=opts,PURGE=popt,VERIFY=opt,DATE=mmddyy,
TIME=hhmm,NOWNER=nowner,LO=x,LIST=lfn/len,DEVICE=device,DENSITY=den,TF=tf ,VSN=id-list,
IU=iu, IRC=irc.

lfn-list

USER=userno

List of 1 through 128 file names separated by commas. The
specified files are assumed to belong to any or all user numbers
specified by the USER parameter and/or any or all pools specified
by the POOL parameter. If omitted, all files belonging to userno
and/or plist are loaded. If SEL=O is specified, lfn-list
identifies the last-group-file(s) of the output-file-family(s) to
be reloaded. If SEL=O is specified and lfn-list is omitted; LOADPF
reloads all output-file-families.

Private file owners.

For a nonprivileged user:

userno User number of the nonprivileged user.

I Figure 4-30. LOADPF Control Statement Format (Sheet 1 of 6)

• 4-80 60459410 J

POOL=plist

DSET=devset

PACK=packlist

ACCOUNT=alist

JCAT=jcatlist

ODSET=oldds

LID=lidlist

SELECT=opts

For a privileged user:

userno

*

List of 1 through 128 user numbers separated by
commas.

All file owners, private, pool, and public.

For a system user who has specified the SEL=I or SEL=O parameter(s):

u-list List of 1 through 128 user number(s) that queued the
files (original owner). If omitted, LOADPF reloads
the queue files of all user numbers.

If USER=userno is omitted and the POOL parameter is not specified,
LOADPF reloads files belonging to the user number under which
LOADPF was run.

List of 1 through 128 pool names separated by commas.

Allows files to be reloaded onto a specific device set. devset is
a list of 1 through 128 device set names (DVSTnn) separated by
commas. If more than one device set is specified, the device sets
will be used in the order they appear in the parameter list, with
the first being filled before the next one is used.

Allows files to be reloaded onto a specific pack. packlist is a
list of 1 to 128 pack names (PACKnn) separated by commas. If more
than one pack name is specified, the packs will be used in the
order they appear in the parameter list, with the first being
filled before the next is used.

For a nonprivileged user, alist is a list of one to seven account
identifiers separated by commas. You must be validated for all
specified account identifiers in order to archive files with these
accounts. For a privileged user, alist is a list of 1 through 128
account identifiers separated by commas. Only files with the
specified accounts are archived.

List of 1 through 64 job categories separated by commas. This
parameter is allowed only if SEL=l or SEL=O is specified and
applies only to the input queue. If omitted, files belonging to
all job categories in the input queue are reloaded.

Select files to reload that, when dumped, were resident on the
specified device set(s). oldds is a list of 1 through 128 device
set names (DVSTnn). Device sets specified do not need to be in the
configuration of CYBER 200 executing this LOADPF. If omitted,
LOADPF selects files to reload without regard as to their old
device set residency.

List of 1 through 128 destination LIDs for input or output files.
This parameter is allowed only if SEL=I or SEL=O is specified. If
omitted, all queue files are reloaded regardless of their
destination LIDs.

File characteristics of all files loaded. A file must meet all
characteristics specified in order to be loaded. opts can be any
combination of the following letters without separators.

A Files accessed on or after the date and time
specified by the DATE and TIME parameters. An
access is defined as an open but not an attach.

I

Figure 4-30. LOADPF Control Statement Format (Sheet 2 of 6) I
60459410 J 4-81 •

PURGE=popt

• 4-82

c

I

M

N

0

x

R

Files created on or after the date and time
specified by the DATE and TIME parameters.

Files in the input queue. Only the system user is
allowed to select this option. The I option is
mutually exclusive with the PO parameter.

Files modified on or after the date and time
specified by the DATE and TIME parameters.

Reverses the meaning of the A, C, and M options.
For example, NC specifies files not created since
the date and time specified. This option may appear
anywhere in the combination of characters, but it
always reverses the meaning of all characters
specified.

Files in the output queue. Only the system user is
allowed to select this option. The 0 option is
mutually exclusive with the PO parameter.

Files expired. A file expires when more days have
passed since its creation date that the number of
days in the retention period for the file.

If an existing file has the same name as an archived
file, replace the existing file with the archived
file. If the file does not exist, it is created.

If SELECT=opts is omitted, LOADPF assumes no options.

Purge the pseudo files option indicating whether LOADPF should
purge the associated pseudo files of the specified device sets if
reload is from mass storage.

YES Purge the pseudo files.

NO Do not purge the pseudo files.

If PURGE=YES is specified and if the LOADPF completes without
error, all pseudo files on the specified device set(s) are purged.
If PURGE=NO is specified and if the LOADPF completes without error,
no pseudo files are purged. If PURGE is omitted, no pseudo files
are purged. This parameter is ignored if the reload is not from
mass storage.

Figure 4-30. LOADPF Control Statement Format (Sheet 3 of 6)

60459410 J

Verification Parameters

~FY=opt

~E=mmddyy

TIME=hhmm

NOWNER=nowner

LO=x

LIST=lfn/len

60459410 J

Verify the integrity of the archival medium. No reloading of files
takes place, but a list file is generated. The files that are
verified are specified as if they are to be reloaded. Verification
errors are noted in the dayfile and verification is halted after a
threshold of errors is reached. The extent of the verification is
determined by the opt value as follows:

Q

F

Quick verification. The archival medium is scanned
and selected fields are checked for consistency.

Full verification. The quick verification is
performed plus the data of each file is read, to
ensure it is readable. The length of each file read
is compared with the length of the file dumped.
This option may take 2 - 30 times as long (or
longer) as the Q option depending on the size of the
files and the archival medium involved.

If this parameter is not specified, no verification is performed.

Date used by the A, C, and M options on the SELECT=opts parameter.
The first two digits of the date indicate the month, the next two
digits the day of the month, and the last two digits the last two
digits of the year.

If DATE=mmddyy is omitted, LOADPF uses the current date.

Time used by the A, C, and M options on the SELECT=opts parameter.
hh is the hour, based on a 24-hour clock. mm is the minute in the
hour.

If TIME=hhmm is omitted, LOADPF uses midnight.

New owner under which all files selected will be loaded. The
NOWNER parameter can be either a user number or a pool name. This
parameter is only valid for privileged users.

Audit information required.

F Full audit.

p Partial audit.

If LO=x is omitted, LOADPF writes partial audit information.

Listing file specifications:

lfn

len

File name (one to eight letters or digits, beginning
with a letter). If lfn is omitted, LOADPF uses file
OUTPUT.

File length in 512-word blocks. If len is omitted,
the file length is #40 blocks.

Figure 4-30. LOADPF Control Statement Format (Sheet 4 of 6)

4-82.l •

For Front-End File Reloading Only

ST=stid

SI=setid

JCS=strings

INPUT=lfn

RHF logical identifier of the other system (three ASCII
characters). This parameter is required.

Set identifier of the archive storage on the other system. This
parameter is required. It must be a name of one to six letters or
digits beginning with a letter.

On NOS/BE, the SI parameter is the multifile set name and must be
the same name specified on the VSN parameter. For IBM remote
hosts, the SI parameter is ignored.

List of 1 to 10 text strings sent to the remote system. Each
string must be delimited by double quote (") characters. Strings
are separated by commas.

This parameter cannot be used if the I parameter is used. If both
JCS and INPUT are omitted, then I=INPUT is assumed.

Name of the CYBER 200 file containing the text string to be sent to
the other system. Text strings in the file must appear the same as
they would if entered on the JCS parameter without the" delimiters.

This parameter cannot be used if the JCS parameter is used. If
both JCS and INPUT are omitted, then I=INPUT is assumed.

For CYBER 200 File Reloading Only

DEVICE=device

DENSITY=den

I NOTE I
The following parameters are ignored if
specified with RHF file archiving parameters.

Device type from which to load archived files:

MS Mass storage.

NT Magnetic tape.

If DEVICE=device is omitted, the default set by an installation
parameter is used.

Recording density (for tapes only):

PE 1600 cpi

GE 6250 cpi

If DENSITY=den is omitted and DEVICE=NT is specified, the
installation-defined default density (released value, 6250 cpi) is
used. If the density specified or the default density does not
match the density on the tape, processing continues with the
density specified on the tape.

Figure 4-30. LOADPF Control Statement Format (Sheet 5 of 6)

• 4-82 .. 2 60459410 J

TF=tf

VSN=id-list

IU=iu

IRC=irc

60459410 J

Tape format (for tapes only):

v Variable block size format with block size set to SK.

LB Large block size format.

If TF=tf is omitted, LOADPF uses the format in which the tape was
written. The LB format is the format use·d by DUMPF prior to the
2.3 release. This parameter is mutually exclusive with DEV=MS.

Archive storage device identifiers. VSN=id-list must specify all
device sets or tape volumes containing files to be loaded.

If DEVICE=MS, VSN specifies a list of one through six device sets
in the form DVSTnn. nn is #01 through #FF. If DEVICE=NT, VSN
specifies a list of 1 through 255 tape VSNs and can be 1 to 6
alphanumeric characters.

Inhibit unload option indicating whether the system unloads a tape
volume when the utility is complete. This applies to tape files
only.

y Does not unload tape volume.

N Unloads tape volume.

If IU=iu is omitted, N is used.

Inhibit ring check option. This applies to tape files only.

y

N

If a tape is already mounted with the ring in,
LOADPF will accept the tape with the ring in or the
ring out; otherwise, if the tape is not mounted,
LOADPF will request the tape without the ring.

LOADPF will request the tape without the ring.

If IRC=irc is omitted, N is used.

Figure 4-30. LOADPF Control Statement Format (Sheet 6 of 6)

4-83 •

RHF RELOADING

If the RHF application program is present on the system, it interprets the ST, SI, JCS, and
INPUT parameter specifications. LOADPF uses the ST parameter specification to determine the
remote system on which the file copies are stored. The SI, JCS, and INPUT parameter
specifications determine where the file copies are stored on the remote system.

LOADPF passes a text string to the remote system to request the file copies. The string is
specified on the JCS parameter or in the file specified on the INPUT parameter. The
required content of the text string depends on the RHF software in the remote system. For
more information, refer to the RHF documentation for the remote system.

RELOADING FROM CYBER 200 MASS STORAGE

When loading files from CYBER 200 mass storage, enter a LOADPF statement on the same user
number that the DUMPF was performed and that specifies the DEVICE=MS parameter and the
device sets on which files were archived on the VSN parameter.

• 4-84 60459410 J

RELOADING FROM CYBER 200 ON-LINE TAPES

When reloading files archived on CYBER 200 on-line tapes, enter a LOADPF statement that
specifies the DEVICE=NT parameter and the VSNs of the tape volumes on the VSN parameter.
Optionally, you can specify the recording density on the DENSITY parameter. If the density
of the tape does not match that of the density parameter, LOADPF uses the density of the
tape and issues an appropriate message.

Files archived on CYBER 200 tapes are stored within a multifile set. For each file
reloaded, LOADPF generates the file identifier of its archive file copy, using the file name
and owner. (The file identifier format is given in the DUMPF statement description earlier
in this chapter.) LOADPF then searches the multifile set for an HDRl label containing the
generated file identifier and reloads the file.

I NOTE I
If the file was archived by a nonprivileged
user, its access permissions must be rede­
fined. The access directory is not saved
when a nonprivileged user archives a file.

The TF keyword allows you some control over how LOADPF handles the two formats, LB or V. If
this keyword is not specified, LOADPF adapts itself to the format in which the tape was
written. If a particular tape format is specified with the TF keyword, LOADPF will only be
able to read that particular format. If a format different than that specified with the TF
keyword is encountered, LOADPF will abort with an appropriate error message.

60459410 J 4-84.1/4-84.2 •

USER RELOADING CAPABILITIES

Privileged users can reload any file archived using DUMPF. Privileged users can also reload
archived files to a new owner by specifying the NOWNER=nowner parameter. Nonprivileged
users can reload their own user number or pool for which they are the pool boss.

If LOADPF cannot restore pool ownership of the file because the pool no longer exists or
because the user is not the pool boss for that pool, it reloads the file as a private file.

The information in the first block of each archived file includes the contents of selected
fields in the permanent file index entry for the file. If a privileged user archives the
file, the first block also contains the following information:

• A copy of the unformatted permanent file index (PF!) entry as it existed after DUMPF
opened the file

• A copy of the permanent file index extension entry if an access directory existed
for the file

The access fields in the permanent file index entry are updated when DUMPF opens the file.
Therefore, the access field information differs, depending on whether the user is or is not
privileged. This means that if the A option is specified, the last access date and time
used differ, depending on whether the user is or is not privileged.

SPECIFICATION OF THE FILES TO BE RELOADED

The set of files that LOADPF reloads can be specified by the names or the attributes of the
files. The set of files must have all the attributes specified. The USER and POOL
parameters specify file ownership, and the SELECT, DATE, and TIME parameters can specify
file usage and age.

If no file names are specified and the USER and POOL parameters are omitted, LOADPF archives
all files belonging to the user number under which LOADPF is executed.

Table 4-6 summarizes the interaction of the USER and POOL parameters.

If a file cannot be reloaded, LOADPF returns an appropriate message and continues processing
with the next file. LOADPF output includes a list of the files reloaded.

60459410 G 4-85

I
I

LOADPF Output

The LO parameter on the LOADPF control statement determines whether LOADPF produces a full
or a partial output listing. A full listing produces all of the headings described below,
while a partial listing contains only the first 13 headings. A full listing does not exceed
132 characters, excluding the carriage return, and a partial listing does not exceed 80
characters, excluding the carriage return. Dates appear as month, day, and year. Time
appears in a 24-hour format. All values are decimal unless noted otherwise.

The following are the column headings used in a full LOADPF listing and the information
given under each heading.

Heading

VSN

FSN

NAME

OWNER

TYP

FC

RT

BT

ACS

EXT

SL

DEVICE

DSET

FLEN

FACT

4-86

Description

Volume serial number: this field is printed only the first time a file is
loaded from a VSN or when the report goes to a new page.

File sequence number: hexadecimal count of files loaded.

File name.

File owner: individual user number, public user number (0), or pool name.
If SEL=I or SEL=O is specified, then the user number of the original file
owner is listed.

File type: virtual code (VC) or physical data (PD).

File category: batch input file (B), input queue file (I), output queue
file (0), user file (U), system-generated drop file (S), or not defined (N).

Record type: ANSI fixed length (F), record mark delimited (R), undefined
(U), control word (W), system block (B), or lower CYBER (L).

Blocking type: character count (C), internal (I), or record count (K).

Access permission set: read (R), write (W), execute (X), append (A) and/or
modify (M) permissions; no permissions (NONE); or purge-only (PURGE).
LOADPF lists the owner's access permission set for private files and the
general access permission set for pool and public files.

File allocation: segmentable (S) and/or extendable (X).

Security level: 1 through 8.

Device name of mass storage file. An asterisk following the device name
indicates that a portion of the file resides on another disk.

Name of device set.

Number of 512-word blocks in file.

Accounting information.

60459410 H

Heading Description

DORG Creation date (date of origin).

TORG Creation time (time of origin).

DOLA Date of last file access.

TLR Time of last file access.

DOLM Date of last file modification.

TOLM Time of last file modification.

EXP Expiration date (creation date plus retention period).

If SEL=I or
replace ACS

SEL=O is specified, the TYP column is deleted and the following column headings
and EXT:

Heading Description

LID Destination LID for output and/or input queue files.

JCAT Job category of input queue files. For all other file types, this field is
left blank.

Figure 4-31 shows an example of a LOADPF output listing as produced by the following control
statement:

LOADPF,U=*,AC=ACCTN01,ACCTN02,ACCTN03,DEV=NT,VSN=CY2091,CY2088,LO=F,SEL=R.

Table 4-6. Interaction of USER and POOL Parameters for LOADPF

Privileged User Nonprivileged User

Files Processed No USER USER= list USER= ALL No USER USER=usernot

No POOL= No POOL= No POOL= No POOL= No POOL=
POOL plist POOL plist POOL plist POOL plist POOL plist

User private files x x

Listed user private x x x x
files (or public files
if user number 0 is
specified)

Listed pool files x x x x

All files regardless x x
of owner (including
public and pool
files)

tNonprivileged users can specify only their user number.

60459410 H 4-86.1/4-86.2

CYBER 200 LOADPF LOD2219 -USER 14000 06/17/86 13.29.21

VSN FSN NAME OWNER TYP FC RT BT ACS EXT SL DEVICE DSET FLEN FACT DORG TORG DOLA TLR DOLM TOLM EXP

CY2091 1 TRACE 10955 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTN03 028685 931 050885 948 020885 932 031085
2 CF639B 10955 PD u R c XMARW x 1 PACK3B DVST3B 80 ACCTN03 020685 927 020685 931 020685 927 030885
3 FT70249B FTNDROP PD u R c XMARW x 1 PACK3B DVST3B 80 ACCTN03 102284 1357 112184 1321 102284 1357 112184

4 MAI LIST 9151 PD u R c RW x 1 PACK3B DVST3B 16 ACCTN03 032985 927 060785 1014 060785 1007 042885
5 V3 9151 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTN03 072484 1315 052985 846 052985 846 082384
6 RENAME BOBPOOL vc u u c XR x 1 PACK3B DVST3B 50 ACCTN03 061385 1250 061385 1251 061385 1250 071385
7 DELSRC 10011 PD u R c RW x l PACK3B DVST3B 16 ACCTN03 052485 1451 052985 1046 052885 923 062385
8 PFDL BOBPOOL vc u u c XR x 1 PACK3B DVST3B 82 ACCTN03 051585 1503 061685 2356 051585 1503 061485

9 DIAG22 9151 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTN03 031185 1031 061785 812 061285 833 041085
A C2700L 14000 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTNOl 053185 618 053185 618 053185 618 063085
B C2700TS 14000 vc u u c XMARW sx 1 PACK3B DVST3B 320 ACCTNOl 053185 618 053185 618 053185 618 063085
c CEBIN 10955 PD u R c XMARW x l PACK3B DVST3B 32 ACCTN03 041285 943 050985 1002 041285 943 051285

CY2088 D MINK POOLVRF vc u u c XMARW x 1 PACK3B DVST3B 368 ACCTN03 041285 947 041585 933 041285 947 051285

E CG520L 14000 PD u R c XMARW x 1 PACK3B DVST3B 16 ACCTNOl 053185 624 053185 624 053185 624 063085
F CG520TS 14000 vc u u c XMARW x 1 PACK3B DVST3B 320 ACCTNOl 053185 624 053185 624 053185 624 063085

10 CONNECT BP22 vc u u c XR x 1 PACK3B DVST3B 64 ACCTN03 061085 1809 061085 1810 061085 1809 071085
11 DISCONT BP22 vc u u c XR x 1 PACK3B DVST3B 64 ACCTN03 061085 1809 061085 1811 061085 1809 071085
12 DNAD 9151 vc u u c XR x 1 PACK3B DVST3B 128 ACCTN03 061185 1452 061185 1456 061185 1452 071185

Figure 4-31. LOADPF Output Example

1MFLINK --PERMANENT FILE TRANSFER

The MFLINK control statement transfers a permanent file between VSOS and a remote system
(refer to figure 4-32). A permanent file request is embedded in the MFLINK statement. PTF
sends the request to the remote system specified on the statement. The request references
permanent files residing on the remote system.

The RHF software on the remote system determines the validity of the permanent file request
(refer to the RHF documentation for the remote system). The request must use the job
control language required by the RHF software on the remote system.

Under certain conditions, MFLINK attempts to recover a transfer that fails before the file
has been successfully received by its destination. The transfer is retried from the
beginning, and the earlier partial transfer is discarded. In every case, recovery is
attempted for batch MFLINK only. The EP or RT parameters can inhibit MFLINK from recovering
from some types of failures. Recovery error codes are listed in table 4-7. Refer to
appendix B of this manual for an interpretation of the recovery error codes.

Table 4-7. Recovery Error Codes

Recovery Error Code

8020 8230
8023 8231
8028 8232
8033 8233
8062 8234
8063 8235
8102 8236
8103 8305
8105 8306
8108 8307
8154 8308
8155 8309
8176 8310
8178 8311
8192 8312
8202 8313
8215 8314
8216 8315
8221 8317
8227 8318
8228 8322
8229 8323

For example, the following MFLINK statement contains a request for a copy of an IBM data
set. CYBER 200 RHF interprets the control statement and, as specified, sends the text
string on the JCS parameter to the system having logical identifier IBM. The RHF software
executing on the remote system receives the text string and interprets it as a request. As
specified in the text string, it sends a copy of the data set to the CYBER 200 system.
CYBER 200 RHF writes the data set copy on file A.

MFLINK,A,ST=IBM,JCS="GET,DSN=SEQ.DATA.SET".

4-88 60459410 G

MFLINK, lfn, ST= lid, DD=dd, EP, RT, (JCS="stringl 11
,

11 string2 11
, ••• ,

11 stringn11 l .
INPUT= filename

lfn

ST=lid

DD=dd

60459410 J

Name of the CYBER 200 file to be copied or to receive the file copy
(one to eight alphanumeric characters, beginning with a letter).

If the file is to be copied, it may be a local file, an attached
permanent file·, a pool file, or a public file. If MFLINK is to
transfer data into the file, the file may be a local file, an
attached permanent file, or it may not exist. If the file is local
and MFLINK is to transfer data into the file, MFLINK returns the
file and creates a new file with the same name and with a record
type that is compatible with the data format declaration (as it
does when the file is nonexistent).

This parameter can be omitted if the specified control statement
sequence does not copy a file to or from the CYBER 200 system. If
specified, it must be the first parameter.

Specifies the logical identifier (LID) of the remote host to which
MFLINK is to send the directives record. The LID must be a
three-alphanumeric uppercase ASCII character string defined by your
site. You must specify the ST parameter on the first, and only the
first, MFLINK command of a series of MFLINK commands (an MFLINK
session) that are for the same remote host. The ST=lid
specification remains in effect during the entire session. A
successful completion of the initial MFLINK of a session saves any
recovery directives (user or accounting directives) sent to the
remote host. Then these recovery directives must not be specified
for the remainder of the MFLINK session. On subsequent MFLINK
commands in the same session, MFLINK sends the saved recovery
directives for you; however, any other MFLINK parameters not
specified revert to their default values. The occurence of the
ST=lid parameter on a MFLINK command initiates a new MFLINK session
with the specified remote host. Once you have entered an MFLINK
command with an ST=lid parameter, you can resume that session at
any time during your job by entering an MFLINK command without an
ST=lid parameter.

Data format declaration. If DD=dd is omitted, each host treats the
data transferred as being in the character set used for that system.

C8

C6

Character data from a character set with more than
64 character codes. ASCII separator characters
(#lF, #lD, #lE, and #lC) define file structure (SIL
R format).

Character data from a character set with 64 or fewer
character codes.

Figure 4-32. MFLINK Control Statement Format (Sheet 1 of 2)

4-88.1/4-88.2 •

(

~

EP

RT

us

uu

Binary data with file structure indicated by control
words (SIL W format). The logical structure of the
file is transmitted via RHF protocol. No data
conversion is performed.

Binary data without a logical structure. No file
structure or data conversion is performed.

Specifies that RHF should not do error recovery processing if
network problems cause a loss of the link during a file transfer.
Specifying the EP parameter inhibits the retry process. If EP is
omitted, MFLINK attempts to establish a new link and retries the
transfer request from the beginning of the request. Partial file
transfers are discarded. If EP is specified, it must precede the
JCS parameter.

Specifies the real-time action RHF is to take in response to error
conditions such as lid disabled, system application limit exceeded,
or remote host busy, detected prior to establishmP.nt of a link with
a remote host. If RT is specified, MFLINK terminates with no
additional error recovery. If RT is omitted, the task is held in
suspension until the resources become available. In certain
conditions, such as lid disabled, when the condition may persist
for an indefinite period of time, MFLINK requests via the 0 display
that the system operator RETRY, ABORT, or WAIT (for up to 999

·minutes) the task. If RT is specified, it must precede the JCS
parameter.

One or more text strings sent to the other system.
must be delimited by double quote (") characters.
are mutually exclusive.)

Each string
(JCS and INPUT

If the JCS parameter is specified, it must be the last parameter on
the MFLINK execute line.

If both the JCS and INPUT parameters are omitted, then !=INPUT is
assumed.

INPUT=f ilename Name of the CYBER 200 file containing the text string to be sent to
the other system. A text string in the file must appear as it
would if entered on the JCS parameter without the double quote
delimiters.

If INPUT=filename is specified, text strings are read from the
specified file. (JCS parameter cannot be specified.)

If the keyword INPUT is specified and =filename is omitted, text
strings are read from file INPUT. (JCS parameter cannot be
specified.)

If the INPUT and JCS parameters are omitted, then !=INPUT is
assumed.

Figure 4-32. MFLINK Control Statement Format (Sheet 2 of 2)

60459410 J 4-89

,

I

CHARACTER CODE CONVERSION

The DD parameter on the MFLINK statement is used to specify required character code
conversion. If the data format declaration is UU or US, no character code conversion is
performed. If the data format declaration is C8, C6, or omitted, character code conversion
is performed if necessary.

Character code conversion is necessary when the file transfer is between systems using
different character code sets. For example, a CYBER 170 system uses both 6-bit and 12-bit
character codes, while a CYBER 200 system uses only B-bit character codes.

LOGICAL STRUCTURE CONVERSION-

RHF copies logical file structure (end-of-record, end-of-group, and end-of-file separators)
as specified by the DD parameter on the MFLINK statement. Table 4-B lists the logical
structure conversion RHF performs and the SIL logical record format in which VSOS writes a
received file.

MF LINK
DD=dd

Parameter

uu

us

CB

C6

omitted

Table 4-8. Logical Structure Conversion

RHF Conversion

No logical structure conversion. RHF trans­
feri the file as string of bits terminated by
an end-of-information protocol parameter.

Logical structure indicated by file structure
control words.

Logical structure indicated by ASCII unit
separator, group separator, and file
separator characters. The file contains
character data from a character set with
more than 64 character codes.

The file contains character data from a
character set with 64 or fewer character
codes. Logical structure indicated by
ASCII unit separators, group separators,
and file separator characters. C6 and CB
are treated identically by VSOS but may be
treated differently by the remote host.

The file is treated by both the sending and
the receiving host as being in the native
character set of that host. Logical struc­
ture indicated by ASCII unit separators,
group separators, and file separator
characters.

SIL Format

Undefined (U) format.

Control word (W) format.

Record mark (R) format.

Record mark (R) format.

Record mark (R) format.

For FORTRAN data conversion information on sending files to a remote host, refer to
appendix E in this manual. Refer to chapter 3 for more information on the operation of
RHF permanent file transfers. In particular, note the description of direct access file
transfers.

4-90 60459410 E

MFQUEUE-· EXPLICIT FILE ROUTING

The MFQUEUE control statement submits an output file or a job file to the local system or to I
a remote system from the CYBER 200 (refer to figure 4-33).

MFQUEUE,lfn,ST=lid,DD=dd,DC=dc,SAVE,
{

JCS=" stringl"," string2", ••• , "stringn"}
INPUT=f ilename

lfn

ST= lid

DD=dd

Name of the CYBER 200 file to be copied to the remote system (one
to eight aphanumeric characters, beginning with a letter) •. This
parameter is required.

The RHF logical identifier of the local or remote system (three
ASCII alphanumeric characters) to which the file named by lfn is
sent. This parameter is optional. If the specified lid is the
local host, and DC is either IN or IX, the queue file is submitted
as a job to the local host, and the job's output is sent to the
remote system specified by the default output LID listed in the Q,O
or H,O display. If the specified lid is the local host, and DC is
neither IX or IN, the queue file is sent to the remote system
specified by the default output LID. If ST is not specified and if
MFQUEUE is executing from within a batch job, the queue file is
sent to the system that submitted the original batch job. If ST is
not specified and if MFQUEUE is performed interactively, the queue
file is sent to the remote system specified by the default output
LID.

Data format declaration. RHF performs any conversion necessary to
maintain the specified data format and job structure (see Character
Code Conversion and Logical Structure Conversion in the description
of MFLINK). If DD=dd is omitted, each host treats the data
transferred as being in the character set used for that system.

CB Character data from a character set with more than
64 character codes. ASCII separators (#lF, #lD,
#lE, and #lC) define file structure (SIL R format).

C6 The file contains character data from a character
set with 64 or fewer character codes. C6 and C8 are
treated identically.

US Binary data with structure indicated by control
words (SIL W format). The file structure is
transmitted via RHF protocol. No data conversion is
performed.

UU Binary data without a file structure. No file
structure or data conversion are performed.

Figure 4-33. MFQUEUE Control Statement Format (Sheet 1 of 3)

60459410 J 4-91

DC=dc Optional disposition code. If DC is not specified, disposition of
LP (print) is assumed.

IN

IX

LP

CP

PB

PB

SP

Route the file to the input queue of the remote
system specified by the ST parameter. The generated
output files are returned as follows:

• If MFQUEUE is executing from within a batch
job, the output is returned to the system
that submitted the original batch job.

If the system that submitted the original
batch job was the local system, the output is
returned to the remote system specified by
the default output LID listed in the Q,O or
H,O display.

• If MFQUEUE is performed interactively, the
output is returned to the remote system
specified by the default output LID.

Route the file to the input queue of the remote
system specified by the ST parameter.

If the LID specified by the ST parameter is a remote
system, the generated output is disposed of by the
remote system. If the LID specified by the ST
parameter is a local system, the generated output is
sent to the remote system specified by the default
output LID.

Route the file to be printed on the remote system.

Route the file to be punched in hollerith code to
the remote system.

Route the file to be punched in 80 column binary to
the remote system.

Route the file to be punched in checksummed data
form to the remote system.

Route the file as special output to the remote
system.

If the LID specified by the ST parameter is the local system, the file is sent to
the remote system specified by the default output LID.

Figure 4-33. MFQUEUE Control Statement Format (Sheet 2 of 3)

• 4-92 60459410 J

SAVE

JCS=string1

Optional standalone parameter to save the lfn. If SAVE is
specified, MFQUEUE will copy lfn to a local file and the copied
file is then sent to the remote system. Thus, lfn remains local.
(This behavior is identical to what happens if lfn is an attached
permanent file.) If SAVE is omitted, and if lfn is a local file,
lfn is sent to the remote system. If SAVE is specified, it must
precede the JCS parameter.

One or more text strings sent to the other system. Each string
must be delimited by double quote(") characters.

INPUT=f ilename Name of the CYBER 200 file containing the text string to be sent to
the other system. The text string must appear as it would if
entered on the JCS parameter without the double quote delimiters.

If INPUT=filename is specified, text strings are read from the
specified file. (The JCS parameter cannot be specified.)

If the keyword INPUT is specified and =filename is omitted, text
strings are read from file INPUT. (The JCS parameter cannot be
specified.)

If the INPUT parameter is not specified, text strings from JCS
parameter are used. If neither JCS nor INPUT is specified, no
explicit text is sent to the other system.

Figure 4-33. MFQUEUE Control Statement Format (Sheet 3 of 3)

To explicitly route an output file by using the MFQUEUE statement, specify the name of the
output file, the identifier of the system to which the file is sent, and any job control
statements that may be required by the other system.

If a job file is being sent, the MFQUEUE statement specifies the name of the file, the
identifier of the system to which the file is sent, and any job control statements that may
be required by the other system. To determine the appropriate job control statements, refer
to the RHF documentation for the remote system. The file data must have the job structure
required by the remote system. Output from job execution is routed to an output device on
the remote system; it is not returned to the CYBER 200 system on which the job originated.

Refer to appendix E in this manual for FORTRAN data conversion information on sending files
to a remote host.

A successful completion of MFQUEUE results in the following message:

lfn MFQUEUED - JDN = jdn

lfn Logical file name of the file being MFQUEUEd.

jdn Job descriptor number assigned by VSOS to the MFQUEUEd file while in the
output queue.

60459410 J 4-92.1/4-92.2

I

NOR ER UN - SET NORERUN ST A TUS

The NORERUN control statement changes the default status for the job from rerun to
norerun, so that when the system is reautoloaded after a system failure, the batch input
file is destroyed.

The NORERUN control statement is valid only within a batch job. It is executed directly
by the batch processor.

Figure 4-34 shows the NORERUN format. An example of NORERUN use is shown in figure 4-35.

NORERUN.

RESOURCE,TL=8.

COMMENT.
NORERUN.

COMMENT.
RERUN.

COMMENT.

Figure 4-34. NORERUN Control Statement Format

Job reruns if the system fails here.

Job does not rerun if the system fails here.

Job reruns if the system fails here.

Figure 4-35. NORERUN/RERUN Example

60459410 E 4-93

OLE - OBJECT LIBRARY EDITOR
I The OLE control statement generates any of the following file types:

• A library file. A library file contains code modules and a directory of module
names and entry points. The LOAD utility uses the library files specified on its
LIBRARY parameter to satisfy external references. It copies the library modules
needed to satisfy external references and to obtain the entry address specified on
its ENTRY parameter.

• A modmerge file. This file is a collection of modules without a directory. When a
LOAD statement references a modmerge file, LOAD copies all modules in the file.
Because a LOAD statement can specify only ten object code files, specifying modmerge
files enables specification of more code modules for a controllee.

• A dynamic library. A dynamic library file contains code modules and a directory of
entry points. The file resides in user space below #800000000000. This library may
be dynamically or statically linked by LOAD for any controllee loaded with the
dynamic library specified. Statically linking to a dynamic library can mean the
code is not moved to the controllee but is left in the dynamic library. This means
the dynamic library must be mapped in by the system whenever the controllee
executes. Dynamic linking to a user dynamic library means that the linker links any
modules that are dynamically called during the execution of the controllee.

OLE can also list modules and characteristics of the modules on library or modmerge files
without creating a new file.

As many as 50 input files can be specified on the OLE statement. An OLE input file must be
a library file, a modmerge file, or an object code file generated by a CYBER 200 compiler or
assembler. An input file can be a local file, an attached private or pool file, or a public
file. The total number of modules and entry points cannot exceed 3000.

Specify the name of the library or modmerge file on the NEWLIB or MODMERGE parameter and the
name of the listing file on the OUTPUT parameter. OLE searches for the specified file. The
following is the result of the search.

If the file

Does not exist or is unattached,

Exists as a local file,

Exists as an attached pool file or
public file with the same name,

Exists as an attached private
permanent file,

OLE

requests a new local file.

returns the existing file and requests a new
local file.

requests a new local file.

uses the existing private permanent file.

Figure 4-36 shows the OLE format. Parameters can appear in any order, but subparameters
cannot be separated.

4-94 60459410 F

I NEWLIB=liblfn }
OLE,INPUT=lfn-list, MODMERGE=modlfn ,OMIT=sfn,mod-list,SELECT=sfn,mod-list,LO=opt,
OUTPUT=lfn/len,DLIB=lfn,ORIGIN=bitaddr.

INPUT=lfn-list

NEWLIB=li blfn

List of 1 through 50 file names, separated by commas, whose
modules are to be written to the file specified by the NEWLIB or
MODMERGE parameter.

If the INPUT parameter is omitted, only the parameters LO and
OUTPUT are valid.

Name of file that is to contain the new library being created.
The name must consist of one through eight letters or digits,
beginning with a letter, and can duplicate a file name specified
with the INPUT parameter.

If the NEWLIB, MODMERGE, and DLIB parameters are omitted and INPUT I
is specified, default is NEWLIB.

MODMERGE=modlf n

OMIT=sfn,mod-list

SELECT=sfn,mod-list

LO=opt

OUTPUT=lfn/len

Name of file that is to contain the modmerge file. The name must
consist of one through eight letters or digits, beginning with a
letter. The name can be the same as the name of a file specified
with the INPUT parameter. No default name exists.

List of modules (mod-list) on file sfn to be omitted from the
library or modmerge file.

One OMIT parameter can be specified for each input file that does
not have a SELECT parameter specified.

List of modules, mod-list, on file sfn to be included in the
library or modmerge file. The SELECT parameter can be specified
for each input file that does not have an OMIT parameter specified.

Listing option:

lfn-list

0

List of file names, separated by commas, whose
contents are to be listed. The module name,
length, creation date, and entry point name for
each file are listed. OLE always lists ·the
contents of the library or modmerge file.

Suppress all listings.

If the LO=opt parameter is omitted, only the library or modmerge
file is listed. Output appears on the file specified by the
OUTPUT parameter.

File to which listing is written:

lfn

len

Name of file. Must consist of one through eight
letters or digits, beginning with a letter. When
the OUTPUT parameter is omitted, default is OUTPUT.

Number of 512-word blocks in file. When /len is
omitted, default is #10.

Figure 4-36. OLE Control Statement Format (Sheet 1 of 2)

60459410 F 4-95

I

DLIB=lfn

ORIGIN=bitadr

OLE is to construct a user dynamic library named filename. DLIB
is mutually exclusive with the NEWLIB and MODMERGE parameters.
OLE checks all modules going to the library to make sure they can
reside in a dynamic library.

Virtual bit address at which the dynamic library resides when the
controllee executes. This address must be at a lower numb~r than
the address #7FFFOOOOOOOO at which DEBUG resides. ORIGIN may be
specified only when DLIB is specified. ORIGIN defaults to
#400000000000.

Figure 4-36. OLE Control Statement Format (Sheet 2 of 2)

During OLE execution, modules are copied to the new file in the order in which they are
read. Input files are read in the order in which they are listed on the INPUT parameter.
The SELECT and OMIT parameters provide for selective inclusion or exclusion of modules
from the new file. If duplicate module names exist in the input files, only the first
module encountered is copied to the new file.

4-96 60459410 F

PACCESS - AUTHORIZE POOL ACCESS

The PACCESS utility establishes the list of users authorized to attach a pool. Only the
pool boss can execute PACCESS. The control statement format is shown in figure 4-37.

PACCESS,poolname,USER= { ul!st } •

pool name

USER= l:list }
Name of an existing pool for which the user is pool
boss

Users who are granted access to the pool

ulist

*

List of 1 through 32 user numbers
separated by commas

All users

Figure 4-37. PACCESS Control Statement Format

60459410 E 4-97

PASSWORD - CHANGE USER PASSWORD

The PASSWORD utility changes the password associated with a user number. Subsequent system
accesses must specify the new password.

VSOS stores user passwords in coded form so that no one can list them. You must, therefore,
keep a record of the password; if you forget it and have kept no record of it, ask the
system operator to change the password. The system operator can change passwords but cannot
list current passwords.

When executed, the PASSWORD statement is written in the job and system dayfiles, but the
passwords specified on the statement are suppressed and are not written in either dayfile.

A password can contain any ASCII character. However, if the password contains any of the
following characters or an embedded blank, it must be enclosed in double quote characters
(II)•

,"./&II()=

To specify a quote character in a password, specify two quote characters for each quote
character in the password. To specify a blank password, enclose one or more blank
characters in quotes.t

For example, the following PASSWORD statement changes a blank password to ="=:

PASSWORD' II "' "=""="

The PASSWORD control statement format is shown in figure 4-38. You must specify the
parameters in the order shown, and both parameters are required. Either a comma or a left
parenthesis can follow the PASSWORD verb; either a period or right parenthesis can terminate
the statement.

PASSWORD,oldpw,newpw.

oldpw Old password (one to eight characters)

newpw New password (one to eight characters)

Figure 4-38. PASSWORD Control Statement Format

tSite personnel determine during system installation whether user password entry ~s
required or optional. If p~ssword entry is required, a blank password is invalid. If
password entry is optional, a blank password is valid.

4-98 60459410 E

PATTACH - ATTACH A POOL
The PATTACH utility attaches a pool to a job. Interactive tasks or batch jobs for a given
user number can access the files belonging to the attached pool.

A job can have up to four pools attached at a time. This includes the system pool if one
exists. (The system pool is automatically attached to each active job.)

The access allowed to each pool file depends on the ACCESS parameter specified when the file
was given to the pool. Refer to output from the AUDIT or FILES utilities to determine the
access permissions.

The control statement format is shown in figure 4-39.

PATTACH,poolname.

pool name Name of an existing pool for which you are granted
access.

Figure 4-39. PATTACH Control Statement Format

60459410 E 4-99

PCREA TE - CREATE A POOL

The PCREATE utility defines a pool entry in the pool list. If you are the user defining the
pool, you become the pool boss. Only the pool boss can perform the following functions for
the pool.

• Give files belonging to the pool to another owner

• Purge files belonging to the pool

• Grant other users access to the pool

• Remove user authorization to access the pool

• Destroy the pool

The control statement format is shown in figure 4-40.

PCREATE,poolname.

pool name Name of the new pool {one to eight letters or
digits, beginning with a letter)

Figure 4-40. PCREATE Control Statement Format

4-100 60459410 E

PDELETE - REMOVE USER ACCESS TO A POOL
The PDELETE utility removes user numbers from the list of authorized users. Only the pool
boss can execute PDELETE for the pool.

If you, as a user, attached the pool prior to the pool boss' executing a PDELETE control
statement to remove your access to the attached pool, the removal of your access becomes
effective after you detach the pool.

If all users were granted access to the pool (universal access), PDELETE cannot remove the
access permission of individual user numbers. The pool boss must first remove access for
all users and then grant access to individual user numbers.

The control statement format is shown in figure 4-41.

PDELETE,poolname,USER- { ul!st} ,

poolname Name of an existing pool for which the user is pool
boss.

USER=

*

Users whose access perulission to the pool is
removed.

USER=* must be specified if all users were granted
access to the pool.

ulist

All users.

List of 1 through 16 user numbers
separated by commas

Figure 4-41. PDELETE Control Statement Format

60459410 E 4-101

I

PDESTROY - DESTROY A POOL
The PDESTROY utility destroys a pool. Only the pool boss can execute PDESTROY for a pool.

A pool cannot be destroyed while either the pool boss or a pool member has the pool
attached. To determine whether any users have the pool attached, the pool boss must enter a
PFILES statement to see whether the user count is zero.

A pool cannot be destroyed while the pool owns files. To list the files belonging to a
pool, the pool boss uses the FILES utility. To remove files from a pool, he or she either
purges the files or gives them to another owner.

The control statement format is shown in figure 4-42.

PDESTROY,poolname.

pool name Name of an existing pool for which the user is pool
boss

Figure 4-42. PDESTROY Control Statement Format

PDET ACH - DEY ACH AN A TT ACHED POOL

The PDETACH utility detaches an attached pool from a job. A pool may not be detached by
PDETACH if there are any open files in the pool.

The control statement format is shown in figure 4-43.

PDETACH,poolname.

pool name Name of pool from which user is to be detached

Figure 4-43. PDETACH Control Statement Format

4-102 60459410 F

PERMIT - CHANGE ACCESS PERMISSION SET
The PERMIT utility can change an existing access permission set.

Only the file owner can change an access permission set of a private file.
boss can change the access permission sets of a file belonging to a pool.
user can change the access permission set of a public file.

Only the pool
Only a privileged

Attach a private file to change its access permission sets. It is not necessary to attach
the pool to change an access permission set of a file belonging to the pool.

The access permission changes specified on a PERMIT control statement are only effective for
subsequent attachments of a private file (or subsequent openings of public or pool files).
The changes do not affect current attachments or openings.

Do not give write access permissions (W, A, or M) to a production file (refer to chapter 7 I
of the Installation Handbook for further details) or a fatal error results and the system
displays a fatal error message. Also, do not give write access permissions to any dayfile.
Any write permissions you specify will be ignored and a warning message displayed.

The PERMIT control statement format is shown in figure 4-44. Specify the permanent file and
the new access permission set. Optionally, you can set the type of access permission.

60459410 H 4-103

{
lfn } PERMIT, POOL=poolname,lfn ,USER=user,ACCESS=acs.
PUBLIC=lfn

lfn

POOL=poolname,lfn

PUBLIC=lfn

USER=user

ACCESS=acs

Attached private file name.

Pool name and pool file name.

Public file name.

Indicates the access permission sets changed:

user-list The individual access permission sets for the
specified user numbers (1 to 16 user numbers
separated by commas). This option is valid only
for a private permanent file.

GENERAL Everyone but the owner is given the permission
set specified by the AC parameter.

* All access permission sets.

If USER=user is omitted, the access permission set changed
depends on the file category as follows:

Private Owner's access permission set

Pool Pool boss's access permission set

Public General access permission set

New access permission set. ACCESS=NONE indicates no access
permissions. Otherwise, access permissions are indicated by a
string composed of one or more of the following letters:

R Read permission

w Write permission

x Execute permission

A Append permission

M Modify permission

The ACCESS parameter is required.

Figure 4-44. PERMIT Control Statement Format

4-104 60459410 E

PFILES - LIST POOL INFORMATION

The PFILES utility produces a list of information about pools in the system. Specific
information listed depends on the parameters selected. The format is shown in figure 4-45.

PFILES displays pool information in alphabetical order by name.

If information being reported exceeds the size of the display screen of an interactive
terminal, the last line of the display instructs you to enter MORE or YES to continue the
display.

{
poolname }

PFILES, USER= { u:list } •

pool name Name of existing pool for which authorized users are to be
listed.

{
u-list}

USER= * Identification of pool bosses:

u-list

*

Figure 4-45.

List of 1 through 16 pool boss user numbers
separated by commas. All pools belonging to
each pool boss are listed by name, along with
the number of users currently attached to the
pool.

All pool names are to be listed along with the
pool boss and number of users currently attached
to each pool.

PFILES Control Statement Format

Figure 4-46 shows output examples. The USER COUNT column lists the number of users to which
the pool is attached.

PFILES(USER=*)

POOL NAME

DEMO
STESTS
TESTPOOL

PFILES(DEMO)

POOL BOSS

300299
333333
333322

USERS GRANTED ACCESS TO POOL

300045 300047 300034 300089
000022

USER COUNT

0
0
2

Figure 4-46. PFILES Sample Output

60459410 G 4-105

I

PRO.CEED - SET ABNORMAL TERMINATION PATH

The PROCEED control statement establishes the point at which the batch processor continues
job processing after a task returns an abnormal termination code and works the same as the
EXIT statement.

If the PROCEED statement is encountered during normal job advancement to the next control
statement, job processing processes the PROCEED statement as if it were a comment. An EXIT
statement terminates processing in this case.

The PROCEED control statement is valid only in a batch job. It is executed directly by the
batch processor.

The PROCEED control statement format is shown in figure 4-46.1. More than one PROCEED
control statement can appear in a job.

PROCEED.

Figure 4-46.1. PROCEED Control Statement Format

• 4-106 60459410 G

PURGE - DESTROY PERMANENT OR POOL FILES
The PURGE control statement destroys one or more permanent mass storage files. It releases
the file space for reassignment.

A PURGE statement can destroy any of the following files:

• Up to 16 private permanent files owned by the caller

• Up to 16 pool files belonging to a pool to which the caller is attached

PURGE cannot destroy a file that is currently attached or opened by a privileged user.

To purge a pool file, the following conditions must be met.

• You must be the pool boss of the pool to which the file belongs.

• You must attach the pool owning the file to be purged before any other pool that
owns a file with the same name is attached.

To destroy a permanent file accessible through RHF, execute an MFLINK statement as described
in this chapter.

The PURGE control statement format is shown in figure 4-47.

PURGE,lfn-list,POOL=poolname.

lfn-list

POOL=poolname

A list of 1 through 16 CYBER 200 private permanent files separated
by commas or a list of 1 through 16 CYBER 200 pool files to be
purged.

Private and pool files cannot both be specified in a single list.

The pool to which the files named in lfn-list belong.. The user
must be the pool boss and must be attached to the pool. If
POOL=poolname is omitted, the files named in lfn-list must be
private files.

Figure 4-47. PURGE Control Statement Format

I

I

60459410 G 4-106.1/4-106.2 I

Q - LIST JOB ST A TUS
The Q control statement can list status information for any or all of the following file or
task categories:

• Batch input files in the input queue

• Executing tasks

• Output files

The Q utility executes in either privileged mode or nonprivileged mode. The site determines
the mode used. If Q is operating in nonprivileged mode, a nonprivileged user receives
status information only for the batch job or files belonging to him or her.

Privileged users

Nonprivileged users

Privileged
Mode

Q lists tasks or files
regardless of owner.

Q lists tasks or files
regardless of owner.

Nonprivileged
Mode

Q lists tasks or files
regardless of owner.

Q lists only the tasks or
files owned by the user.

If the Q statement specifies a file name, the Q utility searches the specified queues for
the file and displays the file entry if it is found. If Q does not find the file entry, it
displays the following message and terminates.

lfn NOT FOUND

If no file name is specified on the Q statement, the Q utility lists all entries in the
specified queues.

If the specified file name is too long, Q displays the following message and then terminates.

INVALID JOBNAME

If executed within a batch job, the Q utility sends status information to the job dayf ile.

At an interactive terminal, Q displays 15 lines of information at a time. If more
information is available, Q displays the following message:

ENTER "C" TO CONTINUE "END" TO TERMINATE

To display additional information, enter .f.ONTINUE; any other entry terminates the utility.

Figure 4-48 shows the Q control statement format.

60459410 E 4-107

I INPUT I
Q , .. EXECUTE.

OUTPUT .
jdn

*
INPUT

EXECUTE

OUTPUT

jdn

*

jobname

,jobname.

Lists status information for batch input files.

Lists status information for executing tasks.

Lists status information for output files.

Job descriptor number. When this parameter is specified, the Q
statement lists only the status information for those batch input
files, executing tasks, and output files that have the specified
jdn. This parameter is mutually exclusive with jobname.

Lists status information for batch input files, executing tasks, and
output files.

Job name of the queue file. When this parameter is specified, the Q
statement lists only the status information for those queue file(s)
that have the specified jobname. This parameter is mutually
exclusive with jdn.

Figure 4-48. Q Control Statement Format

e 4-108 60459410 H

INPUT QUEUE ST A TUS

Q returns input queue information as a table with the following column headings:

Heading

JDN

JOB NAME

USER

LID

PRI

STATUS

TL

ws

LP

NT

JCAT

Description

Job descriptor number associated with the job.

The eight-character batch input file name derived from the job name
supplied on the job card.

User number to which the file belongs (six decimal digits).

Logical mainframe identifier of the remote system to which the job will
return after processing (three characters).

Priority (two decimal digits) and subpriority (three decimal digits).

Job status indicating why the input queue manager has not selected the
job for execution. The possible job status identifiers are listed in
table 4-9.

Time limit for the job in system seconds (decimal integer).

Working set in 512-word blocks (decimal integer).

Large page limit (decimal integer).

Maximum number of tape units that could be assigned to the job at one
time, as specified on the job RESOURCE statement (decimal integer). If
there are none, the field is blank.

Job category identifier (one to eight characters).

If input queue status is requested but no input queue files exist to be listed for the user,
Q sends the following message to the job dayfile or interactive terminal.

NO JOBS IN INPUT QUEUE

60459410 H 4-108 .1I4-108 .2 I

Table 4-9. Input Queue Status Identifiers

Status Meaning

HELD

JMAX

JOFF

MXLP

MXMO

MXNT

MXRR

MXTL

MXWS

NEW

SPRZ

The operator is holding the job in the input queue.

The number of executing jobs for the user or the job category is at
maximum.

The job category is disabled.

The job's large page limit exceeds the maximum large page limit for
the job category. The operator has lowered the limit.

Scheduling the job would exceed the maximum memory overcommitment.

Scheduling the job would exceed the maximum tape drives commitment.

Scheduling the job would exceed the maximum rerun time.

The job time limit exceeds the maximum time limit for the job
category. The operator has lowered the limit.

The job working set exceeds the maximum working set size limit for the
job category. The operator has lowered the limit.

The input queue manager has not yet processed the job.

The job subpriority is zero because more jobs than the maximum allowed
have the same priority as this job.

EXECUTING TASK ST A TUS

Q returns executing task status as a table with the following column headings:

Heading

JON

JOB NAME

USER

LID

PRI

TASK

STATUS

TL

60459410 G

Description

Job descriptor number associated with the job.

For batch jobs, the eight-character batch input file name. For
interactive sessions, the name of the highest level task.

User number to which the task belongs (six decimal digits).

Logical mainframe identifier of the remote system for which the job is
destined (three characters).

Priority (two decimal digits) and subpriority (three decimal digits).

Name of the currently executing task.

Task status identifier. The possible identifiers are listed in
table 4-10.

Available time remaining for the job or interactive session in system
seconds (decimal integer).

4-109

Heading Description

CBC Number of 512-word blocks of memory currently assigned to the task
(decimal integer).

cws

CLP

NT

Current working set size in 512-word blocks (decimal integer).

Current large page count (decimal integer).

Current number of tape units reserved for the job or interactive
session.

If you request executing task status but no tasks exist that can be listed for you, Q sends
the following message to the job dayfile or interactive terminal.

NO JOBS EXECUTING

Table 4-10. Task Status Identifiers

Identifier Meaning

SUSP RECALL Suspended for an event or a time period.

RUNNING Currently executing.

SUSP BY SYSTEM Suspended for a system action.

SUSP BY OPERATOR Suspended by operator.

WAIT SYS I/O Suspended until I/O completes.

WAIT MF xxx Suspended for communication with the specified system.

WAIT ALT/MEM Suspended until the CPU is assigned to the task.

OUTPUT FILE STATUS

Q displays output file status as a table.

The line preceding the table column headings contains the following:

DEFAULT OUTPUT LID lid

where lid identifies the remote host that is to receive queue files not explicitly designated
to go elsewhere. Refer to the description of MFQUEUE or SUBMIT in this chapter or Queue File
Transfers in chapter 3 for a more detailed discussion.

4-110 60459410 H

The output file status table has the following column headings:

Heading Description

JDN Job descriptor number.

JN/FN Job name of batch output or file name of MFQUEUEd file.

LID The remote mainframe logical identifier.

ORIG Original owner's user number.

SIZE File length in 512-word blocks (decimal).

NAME Logical file name of the output-file-family's last group file.

STATUS A message indicating the status of the output-file-family. If
normal status, this field is blank. The possible identifiers are
listed in table 4-11.

Table 4-11. Output File Status Identifiers (Sheet 1 of 2)

Identifier

DESTINATION LID DISABLED

DESTINATION NOT RESPONDING

DESTINATION REJECTING FILE

SIL ERR OCCURRED DURING
FILE XFER

DIVERTED

HARDWARE PATH TO LID
NOT AVAILABLE

SYS ERR OCCURRED DURING
FILE XFER

UNDEFINED STATUS CODE xxx

60459410 J

Meaning

The LID of the remote host to which the output is to
be sent has been turned logically off.

The remote host to which the output is to be sent is
not responding to connection requests.

The remote host to which the output is being sent is
not accepting the file. To obtain a more detailed
explanation of the rejection, refer to chapter 2.

On the last attempt to send the output file to its
destination, a SIL error occurred during I/O. To
obtain a more detailed explanation of the error,
refer to chapter 2.

The operator used the DIVE command to divert the
output to a different LID.

The NAD associated with the LID or path to the
destination has been disabled.

On the last attempt to send the output file to its
destination, an error occurred on a system call. To
obtain a more detailed explanation of the error,
refer to chapter 2.

xxx is the value of OSTAT, the output status code in
the FILE!. This value is not defined; contact the
site analyst.

I

I
4-111

Table 4-11. Output File Status Identifiers (Sheet 2 of 2)

Identifier Meaning

RHF ERROR OCCURRED On last attempt to send output file to its
DURING FILE TRANSFER destination, an internal RHF error occurred during

the transfer.

RWF ERROR OCCURRED On last attempt to send output file to its
DURING FILE TRANSFER destination, an internal RWF error occurred during

the transfer.

If you request output file status but no files exist that can be listed, Q sends the
following message to the job dayfile or interactive terminal.

NO JOBS IN OUTPUT QUEUE

• 4-112 60459410 J

REQUEST - CREATE LOCAL FILE

The REQUEST utility can create a local mass storage file, tape file, or a file connected to
a terminal, depending on the value assigned to the DEVICE parameter.

REQUEST always creates a file index entry for the file, regardless of its device type.

The REQUEST control statement formats are shown in figure 4-49. Specify only those
parameters valid for the device type.

The first parameter specified on the statement must be the file name. For mass storage
files, the file length, if specified, must be the second parameter. All other parameters
can be specified in any order.

REQUEST returns a message response after successful completion only if specified parameters
are incompatible with the device type of file.

REQUEST cannot create a file having a security level higher than that of the job or
interactive session.

The initial retention period for the file is defined by an installation parameter value. To
specify a different retention period, execute the SWITCH utility.

The DEVICE=TE parameter option requesting a file connected to an interactive terminal can
only be used interactively. If a batch job attempts to use it, REQUEST returns a fatal
error.

Format for Mass Storage Files

REQUEST,lfn/len,DEVICE=MS,ACCESS=acs,SECURITY=lvl,RLMIN=rlmin,RLMAX=rlmax,NOEXTEND,
NOSEGMENT,PACK=packid,PC=pc,RMD=rmd,RT=rt,SFO=org,TYPE=type,AU=blocks.

Format for Tape Files

REQUEST,lfn,DEVICE=NT,DENSITY=den,TF=fmt,NEOI=neoi,NOS=noise,CM=cm,LT=lsl,VA=va,
VSN=vsn-list,ACCESS=acs,IU=iu,RU=ru,RETRY=try,HEC=ec,RT=rt,BT=bt,RLMIN=rlmin,
RLMAX=rlmax,PC=pc,RMD=rmd,RA=ra,MPRU=mpru,RPB=rpb,CONVERT=cvt,LPROC=lp,MESSAGE=msg.

Format for Files Connected to a Terminal (valid for interactive use only)

REQUEST,lfn,DEVICE=TE,ACCESS=acs,SECURITY=lvl.

lfn

DEVICE=dev

60459410 J

File name: one to eight letters or digits beginning with a
letter. lfn is a required parameter and must be the first
parameter specified.

Device type on which file resides.

MS Mass storage

NT Magnetic tape

TE Interactive terminal (valid only for interactive
REQUEST).

If DEVICE=dev is omitted, DEVICE=MS is assumed.

Figure 4-49. REQUEST Control Statement Format (Sheet 1 of 7)

4-112.1/4-112.2 •

ACCESS=acs

SECURITY=lvl

Access permission set (any combination of the following letters
without separators).

R Read permission

w write permission

x Execute permission

I A Append permission Applicable to mass
storage files only

M Modify permission

If ACCESS=acs is omitted, ACCESS=RWXAM is assumed for mass storage
files, ACCESS=R is assumed for tape files, and ACCESS=RW is assumed
for files connected to a terminal.

Security level (1 through 8). The specified security level cannot
be greater than that of the job or interactive session. If
SECURITY=lvl is omitted, the security level of the job or
interactive session is used.

Parameters for Mass Storage Files Only

len

NOEXTEND

NOSEGMENT

!ACK=packid

SFO=org

.!_YPE=type

60459410 J

Number of 512-word blocks initially allocated for the file (decimal
or hexadecimal number between 1 and 976563). If len is not
specified, the default is 8 blocks.

Inhibit automatic file extension by VSOS. The file cannot extend
past the length specified. If NOEXTEND is omitted, extension is
allowed.

Inhibit disk segmentation by VSOS. The file must be allocated as a
contiguous area on disk. If NOSEGMENT is omitted, segmentation is
allowed.

A disk pack in the device set on which the file resides. If
PACK=packid is omitted, VSOS chooses the pack.

File organization.

s Sequential

D Direct

If SFO=org is omitted, the installation-defined default file
organization (released value, S) is used.

File data type for VSOS •

p Physical data

c Virtual code

P is suitable for all files except controllees. C is suitable for
controllees only. If TYPE=type is omitted, P is used.

Figure 4-49. REQUEST Control Statement Format (Sheet 2 of 7)

J

I
4-113

Parameters for Mass Storage Files Only

AU= blocks Allocation unit. Allows you to aid performance by giving the
system a guideline on the integer number of 512-word blocks to
allocate when the file is extended. The value range of blocks is 1
to 65,535. If the file is created and blocks is not a multiple of
the DAU for the device where the first allocation occurs, blocks is
rounded up to the next multiple of the DAU. If the file is already
local, this parameter is ignored.

Parameters for Mass Storage and Tape Files Only

RLMIN=rlmin

~=rlmax

PC= pc

RMD=rmd

RT=rt

Minimum record length in bytes. If RLMIN=rlmin is omitted, the
minimum record length is one byte.

Maximum record length in bytes, or for F format records, the fixed
record length. If RLMAX=rlmax is omitted, the maximum record
length is an installation parameter value (released value, zero).

Padding character. It may be specified as a single character or as
a number in the range of 0 - 255. If PC=pc is omitted, the
installation-defined default character [released value, blank (code
1120)] is used.

Character used as the record delimiter for R format records. It
may be specified as a single character or as a number in the range
of 0 - 255. If RMD=rmd is omitted, the installation-defined
default character [released value, US (code #lF)] is used.

Record type.

B

F

L

R

u

w

System block (valid for tape files only)

ANSI fixed length

CYBER Record Manager control word (valid for tape
files only)

Record mark delimited

Undefined

Control word delimited

If SFO=D is specified for a mass storage file, the only valid
record format is F.

If RT=rt is omitted and the file is a sequential access mass
storage file or tape file, the installation-defined default type
(released value, R) is assumed. If RT=rt is omitted and the file
is a direct access mass storage file, F format is assumed.

Figure 4-49. REQUEST Control Statement Format (Sheet 3 of 7)

• 4-114 60459410 J

Parameters for Tape Files Only

DENSITY=den

TF=fmt

NEOI=neoi

NS=noise

CM= cm

60459410 J

Recording density.

PE 1600 cpi

GE 6250 cpi

If DENSITY=den is omitted, the installation-defined default density
(released value, 6250 cpi) is used.

Tape data format.

I NOS internal format

SI System internal format

LB Large block format

v Variable block format

NV Variable format tape with embedded tape marks

If TF=fmt is omitted, the installation-defined default format
(released value, LB) is used.

No EOI detection. Valid only for TF=NV, LT=V tapes.

y

N

Does not return EOI status.

Returns EOI status when two consecutive tape marks
are encountered.

If NEOI=neoi is omitted, N is used.

Noise size in bytes; this is used only while reading tapes
generated on a non-CYBER 200 system. 0 ~noise ~ 31. Default
value is zero.

Character conversion mode. If the tape is labeled, the conversion
mode must match the conversion mode used when the labels were
written. Conversion is performed only if CONVERT is specified on
the REQUEST or LABEL statement for the file.

AS ASCII character set

EB EBCDIC character set

If CM=cm is omitted and the tape is labeled, the default mode is
the conversion mode used when the labels were written. If CM=cm is
omitted and the tape is unlabeled, the installation-defined default
mode (released value, ASCII) is used.

Figure 4-49. REQUEST Control Statement Format (Sheet 4 of 7)

4-115 •

Parameters for Tape Files Only

LT=lsl

VA=va

VSN=vsn-list

IU=iu

RU=iu

RETRY= try

Indicates the types of labels.

AN ANSI standard labels

NS Nonstandard labels

u Unlabeled file

If LT=lsl is omitted, the file is assumed to be an ANSI standard
labeled file.

Volume accessibility character in the VOL! label. This parameter
is required if the character is nonblank.

List of tape volumes associated with the file name (1 to 255 VSNs
separated by commas; each VSN consists of one to six characters).
If VSN=vsn-list is omitted, the operator assigns tape volumes to
the file as needed.

Inhibit unload option indicating whether the system unloads a tape
volume when its file is returned.

y Does not unload tape volume

N Unloads tape volume

If IU=iu is omitted, N is used.

Read unconditional option indicating whether the system allows
reads past the end-of-tape (EOT) reflective marker on the tape
volume.

y Allows reads past EOT

N Does not allow reads past EOT

If RU=ru is omitted, N is used.

Error retry option indicating whether, if a data error is detected,
the system performs its standard error recovery procedures.

y Error recovery performed

N Error recovery not performed

If RETRY=try is omitted, error recovery is performed.

Figure 4-49. REQUEST Control Statement Format (Sheet 5 of 7)

• 4-116 60 4 5 9410 J

Parameters for Tape Files Only

HEC=hec

BT=bt

RA=ra

MPRU=mpru

~=rpb

CONVERT=cvt

Hardware error correction option for GCR tapes (6250 cpi). If
enabled by an installation parameter, the option indicates whether
the system allows the writing of single-track errors that can be
corrected as the tape is read (on-the-fly correction).

y

N

Single-track errors allowed

Standard error recovery performed for single-track
errors

If HEC=hec is omitted, Y is used.

Blocking type.

I Internal

c Character count

K Record count

If BT=bt is omitted, character count blocking is used.

Ring access option. Not valid if ACCESS= is specified.

y

N

If a tape is already mounted with ring in,
Read/Write access is assigned; otherwise, Read only
access is assigned.

Access defaults to Read only consecutive tape marks
are encountered.

If RA=ra is omitted, N is used.

Maximum PRU size in bytes; used only if the file uses the V tape
format. If MPRU=mpru is omitted, the MPRU size for V format is
32768 bytes.

Records per block; used only for the K blocking type. If RPB=rpb
is omitted, one record per block is assumed.

Data conversion option. If CONVERT is omitted, no conversion is
performed and the data is read and written as binary data.

The values for cvt are these:

y

N

Tape data is read and written as character codes,
using the character set specified by the CM
parameter.

No conversion is performed.

If CONVERT= is specified as YES on the REQUEST control statement,
setting either YES or NO on the LABEL control statement has no
effect and conversion is done. If CONVERT= is not specified on
REQUEST, LABEL can be set it to either YES or NO with the expected
results.

Figure 4-49. REQUEST Control Statement Format (Sheet 6 of 7)

60459410 J 4-116.1 •

Parameters for Tape Files Only

~=lp

MESSAGE=msg

Label processing option.

R Read existing labels (verify existing HDRl label).

w Write new labels.

If LPROC=lp is omitted, label processing depends on the value of
the ACCESS parameter. For ACCESS=R or ACCESS=RW, LPROC=R is
assumed. For ACCESS=W, LPROC=W is assumed.

Message displayed on the operator's 0 display (1 to 64
characters). If MESSAGE is omitted, no-message is displayed. The
msg is enclosed by quotation marks. The message appears in the 0
display after the system mount message.

Figure 4-49. REQUEST Control Statement Format (Sheet 7 of 7)

• 4-116.2 60459410 J

FILE SPACE ALLOCATION

REQUEST determines whether a given pack has adequate space to hold a file of the required
size; if not, the utility returns a fatal error code. This utility allocates mass storage
for the file and controls whether the file space is contiguous at creation and whether the
file can be extended.

The NOSEGMENT and NOEXTEND parameters determine how space is allocated for a mass storage
file. For more information, refer to File Space Allocation in chapter 2 of this manual.
The interaction between the NOSEGMENT and NOEXTEND parameters is as follows:

Extendable
File

No

No

Yes

Yes

60459410 F

Segment able
File

No

Yes

No

Yes

Result

One segment. File cannot be extended.

File created as one or more segments.
File cannot be extended.

File created as one segment.
Noncontiguous segments cannot be added.

File created as one or more segments.
Noncontiguous segments can be added.

4-111 I

TAPE FILE REQUEST

A REQUEST statement that specifies DEVICE=NT can request either a single tape file or a
multifile set. The same parameters are valid for either a single file or multifile set.

NOTE

To request a tape file, reserve one or more
tape drives on the RESOURCE statement of the
job.

For an interactive job, the resource
allocations for tape drives are done at
request time. If all drives are committed,
an error is returned and the request is
terminated.

The REQUEST statement specifies the VSNs of the tape volumes associated with the file or
multifile set. If a tape volume is not specified, the operator assigns tape volumes to the
job as needed.

T a-pe Labels

The REQUEST statement specifies whether the file is unlabeled or labeled and, if labeled,
whether it is an ANSI standard labeled file or nonstandard labeled file.

NOTE

Nonstandard labels cannot be read or written
unless the site changes the released value
of the IP TPNSL installation parameter.

If the REQUEST statement specifies ANSI standard labels and the ANSI standard label VOLl has
already been written on the first tape volume (the tape is blank labeled), the label
determines the recording density and conversion mode for the volume.

If the accessibility character in the VOLl labels of the tape volumes is nonblank, specify
the accessibility character on the VA parameter.

' 4-118 00459410 E

Data Format Specification

Only the tape data format can be specified on the REQUEST statement. However, other data
format parameter values specified on the REQUEST statement can be overridden if you specify
the same parameter on the LABEL statement for the file.

For a multifile set, the REQUEST parameter values apply to all files in the set. If the
LABEL statement for a file in the set overrides a REQUEST data format parameter value, the
changed value applies only to that file.

Processing Options

The following tape processing options can be specified only on the REQUEST statement.

• IU: Inhibit unload option indicating whether a tape volume is unloaded when its
file is returned.

• RU: Read unconditional option. If the option is allowed by an installation
parameter, this option can enable reading past the end-of-tape reflective marker.

• RETRY: Error retry option indicating whether the standard error recovery procedures
are used.

• HEC: Hardware error correction option for GCR tapes (6250 cpi). If enabled by an
installation parameter, specify that the system is to allow the writing of
single-track errors that can be corrected as the tape is read (on-the-fly
correction).

• NEOI: No EOI detection option for NV format tapes indicating whether an EOI status
is returned when two consecutive tape marks are encountered.

Operator Message

A message to the operator can be specified on the REQUEST statement. It appears on the
operator's 0 display after the prompt requesting that the operator mount the tape.

For example, suppose the job contains the following statement:

REQUEST, X, DEV=NT, VSN=MYVSN,MESSAGE="TAPE IS
IN I/O BOX ARHN". .

The following prompt appears on the 0 display.

MOUNT VSN=MYVSN DENSITY=GE RING=OUT
TAPE IS IN I/O BOX ARHN

A message can also direct the operator to mount an unlabeled tape. For example, suppose a
job contains the following statement:

REQUEST ,X, DEV=NT, MESSAGE="MOUNT SCRATCH TAPE".

The following prompt appears on the O display.

NO INITIAL VSN SPECIFIED. TYPE j.VSN,vsn
MOUNT SCRATCH TAPE

60459410 J 4-119

I

RERUN - SET RERUN STATUS

The RERUN control statement reverses the effects of a preceding NORERUN control statement.
The statement is valid only within a batch job.

If rerun status is set for a job, the batch input file can be rerun from its beginning (at
whatever priority it was running) when VSOS is reautoloaded after a system failure that
terminated the batch processor.

An installation parameter can prevent the rerunning of jobs.

RERUN format is shown in figure 4-50. Figure 4-35 shows RERUN use.

RERUN.

Figure 4-50. RERUN Control Statement Format

4-120 60459410 E

RESOURCE - SET JOB RESOURCE LIMITS

The RESOURCE control statement (refer to figure 4-51) can establish the time limit, job
category, priority, working set size limit, and large page limit for a batch job. It can
also reserve tape drives for use by the job.

The RESOURCE statement is only valid in a batch job.

The RESOURCE statement is optional; each of its parameters is also optional. If the
statement or any of its parameters are omitted, the system uses default values.

If specified, the RESOURCE statement must follow the USER statement in the job file. (The I
first statement in the file is called the job statement and is used by the software that
received the file from the front-end system; it is then removed from the file. The second
statement in the file is the USER statement. RHF uses the USER statement.)

The RESOURCE statement can specify the job category of the job. Job categories are
described under Resource Allocation in chapter 3 of this manual. Except for the default job
categories, JDEFAULT, for batch jobs and INTRACTV for interactive tasks, you must ask
installation personnel for the job categories for which you are validated.

The RESOURCE statement can specify a job priority. The effect of the priority specification
is described under Job Scheduling in chapter 3 of this manual.

RESOURCE,TL=t,JCAT=j,PRIORITY=p,WS=w,LP=lp,NT=nt.

TL=t

JCAT=j

Job time limit in system secondst (decimal integer between 1 and
599940).

If TL=t is omitted, the job time limit is the default for the job
category selected.

Job category name (one to eight letters or digits). (Site
personnel define the job category names and limits.)

I NOTE I
Do not specify a job category whose maximum
working set size is less than the maximum
working set size required by the job. If
the job requires all allocatable memory (a
machine-size job), the maximum working set
size of its job category must be all
allocatable memory.

tA system second is one million STUs. If desired, an installation can substitute
SBUs for system seconds as the time limit unit. The calculation of an STU or an
SBU is described in volume 2 of this manual.

Figure 4-51. RESOURCE Control Statement Format (Sheet 1 of 2)

60459410 J 4-121

I

\

l

PRIORITY=p

WS=w

LP=lp

NT=nt

Job priority, 1 (lowest) to 15 (highest). If the specified
priority exceeds the maximum priority for the job category, the job
priority is set at the maximum for its category.

If PRIORITY=p is omitted, the job priority is the
installation-specified default priority for its category.

Maximum working set size in blocks (decimal integer).

If WS=w is omitted, the maximum working set size for the job is the
maximum working set size for its job category. Specifying WS=*
notifies the input queue manager that the job requires all
allocatable memory (a machine-size job).

I NOTE I

Use the WS parameter only for the following
jobs:

• A machine-size job requiring all
allocatable memory (specify WS=*)

• A job known to execute efficiently with
a maximum working set size less than the
maximum working set size of its job
category

Misuse of the parameter could result in
suspension of the job to prevent system
performance degradation. The system
automatically resumes the job when system
resources are available.

Maximum number of large pages necessary for any task in the job
(decimal integer).

If the large page limit, when multiplied by 128, exceeds the
working set size limit, the job is aborted.

If any task in the job exceeds the limit, the job is aborted.

If LP=lp is omitted, the large page limit is set by an installation
parameter (released value, O).

Maximum number of tape drives needed by this job at any one time.
This parameter is required if the job uses tape files. If NT=nt is
omitted, the default value is O.

Figure 4-51. RESOURCE Control Statement Format (Sheet 2 of 2)

4-122 60459410 J

TAPE DRIVE RESERVATION

If a job uses tape files, specify the NT parameter on its RESOURCE statement. The NT
parameter specifies the maximum number of tape drives needed by the job at one time.

The input queue manager holds the job in the input queue until the number of drives
requested is available. If the number requested is greater than the number of tape drives
configured in the system, the job is held in the input queue ~ntil the operator evicts it.

The requested number of drives are reserved for the job during its execution unless a RETURN
statement decrements the reserve count when it returns a tape file.

60459410 E 4-123

RETURN - EVICT LOCAL FILES OR DETACH PERMANENT FILES
The RETURN control statement (refer to figure 4-52) can per-form any one of the following
functions:

• Release mass storage space allocated to one or more local files

• Detach one or more permanent files from the job

• Release reserved tape drives

RETURN, { lfn-!ist} , DRC=drc.

lfn-list

*

DRC=drc

List of 1 through 16 private file names. Each name must consist of
from one to eight letters and digits, beginning with a letter
(except drop file names).

Indicates that the system should return all files attached or
assigned to the job or interactive session, including files
attached but not owned by the user.

Decrement reservation count option. This determines whether RETURN
decrements the number of tape drives reserved for the job when it
returns a tape file.

YES Decrement the number of reserved drives.

NO Do not decrement the number of reserved drives.

If DRC=drc is omitted, DRC=NO is assumed.

Figure 4-52. RETURN Control Statement Format

Files cannot be returned while they are open to a task.

Only files assigned or attached to this job can be returned.

If RETURN cannot return a specified file, it sends an error message to the job dayfile or to
the interactive terminal.

When the RETURN statement specifies the * parameter, all files are returned except the
following:

• Batch input file opened by the batch processor

• The job dayfile (file QSDAYFLE)

• File Q5JOBFLE containing the control statement group of the executing batch job

• The drop file for the RETURN utility

• File Q5INPUT containing the input for the next task of the executing batch job

If RETURN returns files required by an executing job, the job can terminate abnormally.

4-124

RETURNING TAPE FILES

When RETURN returns a multifile set, it returns all files in the multifile set.

When a tape file is returned, RETURN checks whether the DRC parameter is specified. If
DRC=YES is specified, it decrements the number of tape drives reserved for the job. The
RESOURCE statement for the job specifies the initial tape drive reservation number. For a
labeled tape, the DRC option is ignored if a local file (of a multifile set) is returned.

For an interactive user, the DRC parameter is ignored. The system always decrements the
number of reserved drives.

60459410 E 4-125

REWIND - REWIND A TAPE FILE

The REWIND control statement rewinds one or more tape files.

A rewound tape file is positioned at the beginning of information (BOI). The BOI of an
unlabeled tape file is the load point of the current tape volume. The BOI of a labeled tape
file is immediately after its HDRl label. If the file is a multivolume file and its HDRl
label is on a previous volume, the file is reassigned to the previous volume, which is
positioned after the HDRl label of the file.

REWIND attempts to rewind each specified file. It returns a message for each file it cannot
rewind.

If more than one file on a multif ile set is specified, the tape is positioned at the
beginning of the last lfn in the list at the completion of the statement.

If a file that is not a tape file on a REWIND statement is specified, no action is taken for
the file.

Figure 4-53 shows the REWIND control statement format.

REWIND,lfn-list.

lfn-list List of one or more file names separated by commas or blanks. This
parameter is required.

Figure 4-53. REWIND Control Statement Format

4-126 60459410 E

SET - CHANGE JOB CHARACTERISTICS
The SET control statement (refer to figure 4-54) can change the current memory limits (the
working set size limit or the large page limit) and the automatic dayfile routing for the
job.

The current large page limit cannot exceed the current working set limit.

The initial memory limits for the job are specified on the job RESOURCE statement or by
default values.

SET,WS=w,LP=lp,DAYFILE= f oN l ,DUMP=dp,TASKDUMP=dp,TASTL=. t,TL=t,Rn=op value.
\OFF ·

WS=w

LP=lp

DAY FILE=

60459410 H

Current working set size limit in blocks (decimal integer). If the
specified limit exceeds the maximum working set size limit for the
job category or if the specified limit is smaller than the current
large page limit (multiplied by 128), the job is terminated.

If WS=w is omitted, the current working set size limit is not
changed.

Current large page limit (decimal integer). If the specified limit
exceeds the maximum large page limit for the job or the current
working set limit, the job is terminated.

If LP=lp is omitted, the current large page limit is not changed.

Specifies the current state of job dayfile routing. The job
dayf ile routing state at job termination determines whether the
dayfile is routed or suppressed. If the state is ON, the dayfile
is routed after the output files. If the state is OFF, the output
files are routed but the dayf ile is suppressed. Instead of the
dayfile, the following message is sent.

SET(DAYFILE=OFF) USER DAYFILE SUPPRESSED

The job dayfile routing state can be changed at any time within the
job, but only the state at job termination affects dayfile
processing. The initial dayfile routing state is ON.

Figure 4-54. SET Control Statement Format (Sheet l of 2)

4-127

I

I

DUMP=dpt

TASKDUMP=dpt

TASKTL=t

TL=t

Rn=op value

dp=O

dp=controllee

dp=O

dp=controllee

Turns off dump processing for the job.

Substitutes another dump processor for DUMP
during the job.

Turns off dump processing for only the next task
in the job.

Substitutes a dump processor only for the next task
in the job.

Sets the maximum time allowed for the next task. The actual time given
for the next task will be no greater than the remaining time for the job.

Changes the job's remaining time limit from its current value to the
specified value. This stays in effect until the next SET,TL= or end of
job.

t is a decimal integer between 1 and 599940, specifying seconds.

Sets or alters the control statement variable Rn.

Rn

op

value

Identifies a global control statement variable. n is
a number from 0 through 9.

Defines the operation to be performed on Rn. If
omitted, the value is placed in Rn. If positive, the
value is added to the current Rn value. If negative,
the value is subtracted from the current Rn value.

Defines the value to be placed in, added to, or
subracted from Rn. The value may be one of the
following:

m

Rn

RC

TV

"string"

A decimal value. If preceded by#, the
value is hexadecimal.

A global control statement variable.

The last return code returned by a
controllee.

The current threshold value.

A character string (eight characters)
maximum, preceded and followed by " The
string may not include ". If the string
is less than eight characters, it is
left-justified and blank-filled.

The new value assigned to Rn is echoed back to the dayfile with the
following message:

Rn=#value in hex

Figure 4-54. SET Control Statement Format (Sheet 2 of 2)

tBoth DUMP and TASKDUMP can be specified, with TASKDUMP taking precedence •

• 4-128 60459410 H

SKIP - REPOSITION. A TAPE FILE
The SKIP control statement (figure 4-55) repositions a tape file forward or backward one or
more partitions. The partition used can be logical record unit (L), tape group (G), or file
(F).

If, while attempting to reposition the file, SKIP encounters a partition delimiter at a
higher level than the specified partition, it stops repositioning the file. If it was
skipping forward, the file is left positioned before the partition delimiter. If it was
skipping backward, the file is left positioned after the partition delimiter.

If the specified file is not a tape file, no action is taken.

SKIP, lf n,PARTITION=part ,NUMBER=n.

lfn Name of tape file to be repositioned.

PARTITION=part Partition type.

NUMBER=n

G Tape group

F File

L LRU

If PARTITION=part is omitted, L is used.

Number and direction of partitions to skip. The direction is
indicated by the sign of the number; a negative number causes a
backward skip. If NUMBER is omitted, 1 is used.

Figure 4-55. SKIP Control Statement Format

60459410 G 4-128.1/4-128.2 -,

SLGEN - CONSTRUCT SYSTEM SHARED LIBRARY
This control statement constructs the system shared library file. If you use SLGEN, you
must supply the SYSLIB and the binaries of any utilities that are to be placed on the system
shared library file.

The recommended method of building a new system shared library is as follows:

• Use OLE to build a dynamic library containing SYSLIB. Let ORIGIN default.

• Use SLGEN to build the new system shared library specifying the dynamic library as
the old library used as input. Let ORIGIN default.

This method enables the various modules and utilities included in the new system shared
library to be loaded more compactly than otherwise. This has a beneficial effect on paging
during operation of the system using the system shared library.

The control statement format is shown in figure 4-56.

SLGEN,oldlib,LIBRARY=libfile,VERSION=version,LIST=listfile/len,INPUT=infile,ORIGIN=bitaddr. I
oldlib

LIBRARY=li bf ile

VERSION=version

LIST=listfile

INPUT=inf ile

If specified, SLGEN updates the specified old attached system shared
library file, oldlibs, based on the directives specified by the
INPUT parameter, and places the results on the file specified by the
LIBRARY parameter. If not specified, SLGEN constructs a new system
shared library file, based on the directives specified by the INPUT
parameter, and places the results on the file specified by the
LIBRARY parameter. The file specified on the LIBRARY parameter may
be the same as oldlib.

When oldlib is specified, utilities being replaced are always put at
the end of the library file. This causes the system shared library
to grow in length. A new library must be built without an oldlib to
get a compact system shared library.

SLGEN places the new system shared library on this file. libfile is
the name of the shared library. The default is NEWSLIB. SLGEN
creates libfile to the exact size needed. libfile is always created
by SLGEN as a local file.

version is the user-defined version (up to eight characters in
length) to be placed in the system shared library header. Default
is blanks.

listfile is a local or attached file to which SLGEN writes the
system shared library map. If omitted, the map is produced on the
file OUTPUT. If LIST=O, no map is produced.

inf ile is a local or attached file from which SLGEN reads the
directives (listed in figure 4-57). The default is INPUT. If there
are no directives, the new system shared library is equivalent to
the old one. The directive file is terminated by an EOF or the END
directive.

Figure 4-56. SLGEN Control Statement Format (Sheet 1 of 2)

60459410 F 4-129

I

I

I

ORIGIN=bitaddr Starting bit address for the shared library. ORIGIN defaults to
11800000000000 and, if specified, it must be less than
117FFFOOOOOOOO. ORIGIN is used to construct a shared library that
can be used and debugged in the user's address space. ORIGIN cannot
be used if the oldlib parameter is specified.

Figure 4-56. SLGEN Control Statement Format (Sheet 2 of 2)

The SLGEN directive formats are shown in figure 4-57.

LIB, dirfile. dirfile is the name of an attached or local OLE generated library
file that contains the SYSLIB modules that are to be placed in the
new system shared library file. If LIB is not specified, SLGEN
retains the SYSLIB that is in the old system shared library file.
If LIB is specified, the SYSLIB in the old system shared library
file is deactivated and the new one is added. Only one LIB
directive may be specified in the directive file. The new system
shared library file must contain an active SYSLIB. This directive
must be specified before any UTL directive that expects to use the
SYSLIB.

UTL,utname,loader options.

END.

Parameter

utname

loader
options

Description

utname is the name of a utility that is to be
added or replaced on the new system shared library
file. utname is required. If utname exists on
the old system shared library, it is deactivated
and the new utility is added. The new system
shared library file must contain the link.er
utility. The linker utility must be added before
SYSLIB is added and before any other utilities.
When a utility is replaced, the code for the old
copy still exists in the system shared library,
and any copies of the old controllee file that
were statically linked to the shared library will
still execute.

This parameter tells how to load the utility.
The only loader options that are required are the
list of object code files (they must appear first)
and the CNTROLEE parameter. The syntax and rules
of the option are the same as those on the LOAD
control statement. The option ORIGIN cannot be
specified as it is supplied by SLGEN. No grouping
of code blocks or origining of code blocks is
allowed. The defaults for unspecified options are
the same as those specified by the LOAD control
statement. It is your responsibility to ensure
that there are no output file name conflicts
between directive loader options.

Indicates that there are no more directives.

Figure 4-57. SLGEN Directive Formats

4-130 60459410 F

An example of a directive file for building a library follows.

a) UTL, linker, BLINKER,EN=Q9LINK,TSP=l,LINK=M.
LIB, SYSLIB.
UTL, utility that needs SYSLIB
UTL, utility that needs SYSLIB

END.

b) UTL, linker,BLINKER,EN=Q9LINK,TSP=l,LINK=M.
UTL, utility that does not need SYSLIB

LIB, SYSLIB.
UTL, utility that needs SYSLIB, ••• •

END.

60459410 E 4-131

SUBMIT - SUBMIT A FILE TO A QUEUE
SUBMIT allows you (whether as an interactive or a batch user) to submit a file to the local
CYBER 200 input queue directly and route output as desired. The submitted job may specify
the user number currently in use or some other user number. Once the job enters the input
queue, its subsequent processing conforms with the processing of any other job in the system.

The file being submitted must begin with a job card followed by a valid user control
statement. The job card must contain through 8 alphanumeric characters, the first being
alphabetic, and must be terminated by a valid job control statement terminator.

The file that is submitted to the input queue is a copy of the file with last group
characters and routing information attached. Your file remains unmodified with the
job/ session.

The format of a SUBMIT control statement is shown in figure 4-58.

SUBMIT,lfn,ST=lid,JN=yyy, f INPUT=filename, l
\ JCS="stringl", "string2", ••• ,"stringn" •

lfn

ST= lid

JN=yyy

The logical name of the file being submitted. This file must
be either a local file or an attached permanent file. This
parameter is required.

The RHF logical identifier of the remote system (three ASCII
alphanumeric characters) to which output is sent. The
identifier is checked for validity as a logical identifier and
is matched against the set of available logical identifiers.
This parameter is optional.

If ST is not specified and if SUBMIT is executing from within a
batch job, the output is sent to the remote system that
submitted the original batch job. If ST is not specified and
if the SUBMIT is performed interactively, the output is sent to
the remote system specified by the default output LID listed in
the H,O display or the Q,O display.

Specifies the job name of the submitted job. This parameter is
optional. If JN = yyy is omitted, the job card name is used.
yyy must be a one- to eight-character sequence that is a valid
file name.

Figure 4-58. SUBMIT Control Statement Format (Sheet 1 of 2)

4-132 60459410 H

INPUT= filename

JCS=" string 111
,

11 s t r i ng 2 11
, • • • ,

11 stringn11

If INPUT=filename is specified, text strings are read from
filename. Each text string is interpreted as a line of text by
the front end and is subject to the restrictions of that
machine.

If the keyword INPUT is used in stand-alone fashion (using the
second-level default), text strings are read from file INPUT.

If this parameter is not specified, text strings from the JCS
parameter are used; if neither JCS nor INPUT is specified, no
explicit text is sent to the other system. For a batch job
SUBMIT, if neither JCS nor INPUT is specified, the implicit
text of the batch job will be used to determine output routing.

The JCS and INPUT parameters cannot both be specified in one
control statement.

If JCS= is specified, these text strings are control cards that
are to be executed as explicit routing text when the submitted
job has terminated. Each text string is interpreted as a line
of text and executed by the front end (ST=lid), and each is
subject to the restrictions of that machine.

The INPUT parameter may not be specified when this parameter is
used.

Figure 4-58. SUBMIT Control Statement Format (Sheet 2 of 2)

A successful completion of SUBMIT results in the following message:

JOB SUBMITTED. JOBNAME=jobname,JDN=jdn.

60459410 H

I

4-133

SUMMARY - PROVIDE RESOURCE USAGE INFORMATION

The SUMMARY control statement provides information on cumulative resource usage of a batch
job. The information is sent to the job dayfile.

The SUMMARY statement is valid only within batch jobs. It is executed by the batch
processor itself.

Figure 4-59 shows the SUMMARY statement format. It has no parameters.

SUMMARY.

Figure 4-59. SUMMARY Control Statement Format

SUMMARY OUTPUT

The following are the messages SUMMARY can send to the job dayfile. SUMMARY sends a message
only if the resource usage describea by the message is greater than zero. Each of the
following messages is preceded by the time at which the message was sent.

Message

SUMMARY.

CHARGE,account,project number

SYSTEM TIME UNITS (STU)

SYSTEM BILLING UNITS (SBU)

USER CPU TIME (SECS)

SYSTEM CPU TIME (SECS)

USER MEMORY USAGE BLOCKS *
[BLOCKS * (SECS)j

USER AVERAGE WORKING SET
SIZE (BLOCKS)

NUMBER OF VIRTUAL SYSTEM
REQUESTS

NUMBER OF SMALL PAGE FAULTS

4-134

Description

Initial message always sent.

Number of SBUs/STUs used for the account and project
number listed.

Number of STUs used (real value). The algorithm used
to compute STUs is described in volume 2 of this
manual.

Number of SBUs used (real value.) The algorithm used
to compute SBUs is described in volume 2 of this
manual.

Number of seconds of CPU time used. This does not
include the CPU time used for virtual system requests.

Number of seconds of CPU time used for virtual system
requests.

Memory used as computed by multiplying the number
of blocks in the current working set by the number of
CPU seconds used.

Total memory usage in blocks divided by the user CPU
time value.

Number of calls to virtual system routines.

Total number of small page requests minus the small
page requests resulting from task swapping.

60459410 E

Message

NUMBER OF LARGE PAGE FAULTS

NUMBER OF DISK I/O REQUESTS

NUMBER OF DISK SECTORS
TRANSFERRED

60459410 E

Description

Total number of large page requests minus the large
page requests resulting from task swapping.

Number of explicit read and write requests and
implicit write requests to mass storage.

Number of disk sectors transferred by explicit read
and write requests and implicit write requests.

4-135

SWITCH - CHANGE FILE ATTRIBUTES
The SWITCH utility can change the attributes of a local file, an attached private file, or a
public file. The changes made in file attributes are entered in the permanent file index
entry for the file and therefore are kept until they are changed again or until the file is
purged.

Only the file owner can change private file attributes. Only privileged users can change
public file attributes.

Pool file attributes cannot be changed. However, the pool boss can use a GIVE statement to
change a pool file to a private file, then use a SWITCH statement to change the private file
attributes, and finally use another GIVE statement to give the private file to the pool.

SWITCH can change the following attributes of files residing on mass storage. The
significance of the file structure attributes is described under Logical Record Format in
chapter 2 of this manual.

• File name

• Account identifier

• Master project number

• File extension size

• Maximum or minimum record length

• Record type

• Padding character

• Record mark character

• File organization

• File type (controllee or data)

• File retention period

• Internal characteristics

File attributes cannot be changed while another user has the file attached or while a
privileged user has the file open.

The SWITCH control statement format is shown in figure 4-60. The current name of the file
must be the first parameter specified. If specified, the new name for the file must be the
second parameter specified.

All other parameters are optional and can appear in any order.

4-136 60459410 E

SWITCH,olfn,nlfn,ACCOUNT=acct,MPN=mpn,IC=ic,RLMIN=rlmin,RLMAX=rlmax,RT=rt,PC=pc,
RMD=rmd,SFO=sfo,TYPE=type,AU=blocks,RETENTION=days,BT=bt,LPROC=lp,
MPRU=mpru,RPB=rpb.

olfn

nlfn

ACCOUNT=acct

MPN=mpn

RLMIN=rlmin

RLMAX=rlmax

RT= rt

PC= pc

RMD=rmd

SFO=sfo

Current name of the file whose attributes are to be changed. This
parameter is required.

New name for the file (one through eight letters or digits,
beginning with a letter).

New account identifiers (one to eight characters) assigned to the
specified file.

New master project number (one to three alphanumeric characters)
assigned to the specified file.

New minimum record length in bytes. Valid values are 1 < rlmin <
232-1.

New maximum or fixed record length in bytes. Valid values are 1 <
rlmax < 232-1.

New record type.

F ANSI fixed length

R Record mark delimited

u Undefined

w Control word delimited

B System block

L Lower CYBER Record Manager control word

New ASCII padding character. Any ASCII character is valid.

New ASCII record mark character. Any ASCII character is valid.

New SIL file organization. If SFO=D is specified, the record
format must be F and the file must be a mass storage file.

D Direct access

S Sequential access

Figure 4-60. SWITCH Control Statement Format (Sheet 1 of 2)

60459410 E 4-137

For Mass Storage Files Only

!,YPE=type New file type.

c Virtual code file (executable)

p Physical data file (not executable)

AU=blocks Allocation unit. The number of 512-word blocks to be allocated
when the file is extended. The value range of blocks is 1 to
65,535. If blocks is not a multiple of DAU for the device on which
the segment is allocated, the system rounds it upward to the next
multiple of the DAU.

RETENTION=days Number of days the file is to be retained on mass storage (O
through 1023).

IC=ic New file format.

AS 8-bit ASCII code; ANSI carriage control if the file
is a print file

Bl Binary

PA 8-bit ASCII code; ASCII carriage control if the file
is a print file

For Tape Files Only

BT=bt New blocking type.

LPROC=lp

MPRU=mpru

~=rpb

I

c
K

Internal

Character count

Record count

If BT=bt is omitted, the blocking type is no~ changed.

New label processing option.

R

w
Read existing labels (verify existing HDRl label)

Write new labels

If LPROC=lp is omitted, the label processing option is not changed.

New MPRU size in bytes; used only if the file uses the V tape
format. If MPRU=mpru is omitted, the MPRU size is not changed.

New records per block; used only for the K blocking type. If
RPB=rpb is omitted, the records per block is not changed.

Figure 4-60. SWITCH Control Statement Format (Sheet 2 of 2)

4-138 60459410 E

T ASKA TT - ALTER A TASK'S ATTRIBUTES

TASKATT is a utility that is used to alter a task's attributes that exist in the
controllee's minus page. TASKATT uses the hierarchical search to find the file and must
have write permission to alter the file.

The TASKATT control statement format is shown in figure 4-61.

TASKATT,filename,DFL=nn,SAVE=x,VALIDATE=N/Y,ULIB=lfn,SLIB=lfn,MAP=N/Y.

Parameter

filename

DFL=nn

SAVE=x

VALIDATE=N/Y

ULIB=f ilename

SLIB=f ilename

MAP=N/Y

Description

Name of attached or local controllee file. Required parameter.

nn is the controllee new drop file length in blocks. If the parameter
is not specified, the length is not changed.

x is either Y or N. Y indicates that the dropfile is to be saved on
termination of this controllee. N indicates that drop files are saved
only on controllee aborts. If the parameter is not specified, the
saving or retaining of drop files is left as is.

Y indicates the system checks every time this task runs to make sure the
task is using the same user dynamic and system shared library with which
it was loaded. N indicates no validation is done. Y causes a warning
message to be issued when the task is run using libraries with which it
was not loaded.

ULIB is used to change the user dynamic library with which this
controllee runs. filename is the name of the user's dynamic library
file. TASKATT must have read access for this file.

SLIB is used to change the system shared library with which this
controllee runs. filename is the name of a system shared library file.
TASKATT must have read access for this file.

Y indicates the drop file is to be mapped in by the linker during
dynamic execution. This helps prevent the drop file map getting full,
but does slow the execution. N is the default and causes the linker to
fault for free space with no prior system map message issued.

Figure 4-61. TASKATT Control Statement Format

60459410 G 4-139

I

TV - SET THRESHOLD VALUE

The TV control statement (refer to figure 4-62) is valid only within a batch job. It can
perform either of the following functions, depending on whether or not a+ follows the
specified value:

• Set a threshold value to be compared to the return codes only from succeeding job
tasks (+ specified)

• Set a threshold value to he compared to the highest return code from preceding and
succeeding job tasks (+omitted)

TV,value+.

value

+

Threshold value (0 through 255).

Indicates that the specified value should be compared against the
return codes of succeeding job tasks. If + is omitted, the
specified value is compared against the highest return code from
preceding job tasks.

Figure 4-62. TV Control Statement Format

Each job task returns a code (its return code) to the batch processor upon completion of the
task. The batch processor compares the return code to the current threshold value to
determine whether job processing should continue. The released value is 4.

The return codes are compared to the current threshold value as follows:

• If the return code is less than or equal to the current threshold value, the job
continues with the next job task.

• If the return code is greater than the current threshold value, the batch processor
searches for the next EXIT statement in the job. If it finds an EXIT statement, the
threshold value is set at 255 and job processing continues with the statement
following the EXIT statement. If it does not find an EXIT statement, the job
terminates immediately.

The threshold value is not checked if the system aborts a task. For more information, refer
to Job Termination in chapter 3 of this manual.

With a TV control statement test, the return codes of preceding job steps can be tested
independently from the batch processor test. If the + following the value specified on the
TV statement is omitted, the batch processor compares the specified value with the highest
return code returned by a preceding job task to determine whether job processing should
continue.

4-140 60459410 E

If the highest return code is greater than the specified threshold value, the batch
processor searches for an EXIT statement to terminate the job. If the highest return code
is less than or equal to the specified value, the specified value becomes the new threshold
value for the subsequent tasks in the job.

Utilities described in this manual return only codes ERROR and FATAL. Code ERROR
corresponds to return code 4; code FATAL corresponds to return code 8.

The value a given task returns is established by a QSTERM SIL call or a TERMINATE system
message executed within the task.

60459410 E 4-141

USER - PROVIDE USER VALIDATION INFORMATION

I
The USER control statement, which always follows the job statement in a VSOS batch job or is
the first statement in a set of PTFS file transfer directives (refer to figure 4-63),
identifies the CYBER 200 user number to which the job belongs. Entry of the password for
the user number validates its use.

The USER statement also specifies the account identifier to which job resource usage is
charged and the security level of the job. A task within the job cannot access a file with
a security level greater than the job security level.

USER,USER=userno,ACCOUNT=account,PASSWORD=password,SECURITY=n.

USER=userno

ACCOUNT=account

PASSWORD=password

SECURITY=n

4-142

CYBER 200 user number (one to six decimal digits). This
parameter is required.

CYBER 200 account identifier (one to eight ASCII
characters). This parameter is optional. If ACCOUNT=
account is omitted, the user's default account identifier is
used.

User password (one to eight ASCII characters). Site
personnel determine during system installation whether user
password entry is required or optional.

Security level for the job (1 to 8). If SECURITY=n is
omitted, the security level is the default value chosen by
the site.

Figure 4-63. USER Control Statement Format

60459410 J

UPDATE

UPDATE is a utility used to maintain and manipulate a mass storage file containing images of
coded punch cards or their equivalent. The utility provides you with features that are a
subset of the UPDATE capabilities available under the NOS or NOS/BE operating systems. The
UPDATE card image file cannot be interchanged between these systems, however, since internal
file structures differ between the operating systems.

Typical use of UPDATE involves maintenance of a group of FORTRAN subroutines or assembly
language routines. For convenience, you may often specify each routine as a separate deck,
so that one routine can be changed or extracted without affecting other routines in the
file. Because each card image in the deck has its own UPDATE-supplied sequence number, each
can be referenced individually. A card can be deleted and replaced by two others, for
example, in order to correct a routine or to increase its functions. A deck can be
extracted from the card image file in a format acceptable to a compiler or assembler and
used as if it had been entered into the system as a punch deck. Once a source card is in
the UPDATE card image file, any physical punch card can be destroyed.

A source deck that is to be maintained through UPDATE must be made a part of a special
format file known as a program library. Creation of a program library is accomplished
through UPDATE itself. Subsequently, the program library can be changed on an UPDATE
correction run: new decks can be added, existing decks removed, or the contents of any deck
changed.

The contents of a deck need only be images of coded cards. UPDATE makes no assumptions
about card contents. While programs are customary contents, they are not required contents,
and UPDATE is equally applicable to a set of data cards or any other text.

You control UPDATE operations through the parameters on the UPDATE control statement and
through a file containing directives and text. The directives are supplementary
instructions for UPDATE; the text consists of cards to be made part of the UPDATE card image
file. Together, the directives and text are called the input stream.

60459410 E ~l

s

EXAMPLES
An example of an UPDATE creation run in which several FORTRAN routines become a program
library with three decks is shown in figure 5-1. The UPDATE control statement indicates
that a new library is to be created, with the name MYDECKS. The input for UPDATE is
specified as the file INPUT, which is also the default file name when the I parameter is
omitted.

USER,U=012306,AC=ACCT1,PA=MINE.
RESOURCE,TL=5.
UPDATE,I=INPUT,N=MYDECKS.
DEFINE,MYDECKS.
7/8/9
*DECK MAIN

PROGRAM MAIN

END
*DECK SUBPROG

SUBROUTINE SUB! • • •

SUBROUTINE SUB2 • • •

*DECK ERRPROG
SUBROUTINE SUB3

6/7/8/9

Figure 5-1. Typical UPDATE Creation Run

The first directive encountered in figure 5-1 is *DECK; therefore, UPDATE recognizes a
creation run and begins construction of a new program library. All cards following *DECK,
up until the second *DECK directive, are written as a deck with the name MAIN. The first
card is assigned the identifier MAIN.2, the next MAIN.3, and so forth. (The *DECK directive
itself is also part of the library and has the identifier MAIN.I.)

A new deck, with card identifiers in the form SUBPROG.n, begins when UPDATE encounters the
second *DECK directive. In this example, the main program is in a deck with the same name
as the program, two subroutines are in a deck with the name SUBPROG, and a third subroutine
is in a deck with the name ERRPROG. At the end of the UPDATE run, a program library exists
with three decks.

The DEFINE control statement makes the local file MYDECKS a permanent file. The file
MYDECKS remains in the system after job termination.

Figure 5-2 shows a correction run using the program library created in figure 5-1 •. This
example adds a new card with text DIMENSION UP(50) near the beginning of subroutine SUB2.
The location of the insertion is identified by the card identifier assigned within the deck
SUBPROG, not by the subroutine name.

5-2 60459410 E

USER,U=012306,AC=ACCT1,PA=MINE.
RESOURCE,TL=S.
UPDATE (Q,P=MYDECKS)
FORTRAN (!=COMPILE)
LOAD.
GO.
7/8/9
*!DENT FIXIT
*INSERT SUBPROG. 89

DIMENSION UP(SO)
*COMPILE SUBPROG,MAIN
6/7/8/9

Figure 5-2. Typical UPDATE Correction Run

The UPDATE control statement iµ figure 5-2 identifies the existing program library with the
P parameter. Since the Q parameter appears, it also instructs UPDATE to operate in quick
mode rather than full mode. When UPDATE begins execution, it reads the next input group in
the batch job, which is presumed to contain the input stream. The first card in this stream
gives a name (FIXIT) to the corrections being made. The second card identifies the location
at which the new card is to be added; namely, after the card with the identifier
SUBPROG.89. Since the third card in the input stream does not correspond to a directive, it
is considered a text card. Within the program library, it becomes identified as FIXIT.l.
The last card in the input stream instructs UPDATE to write decks MAIN and SUBPROG to a file
in a format suitable for input to the FORTRAN compiler. By default, in the absence of a C
parameter on the UPDATE control statement, the file name is COMPILE.

The FORTRAN compiler call in figure 5-2 names a file COMPILE as having the program to
compile. Output of compilation is then loaded and executed with the LOAD and GO control
statements.

Neither the FORTRAN call nor execution is required in figure 5-2. They are shown only to
provide the programmer with a source listing of active cards in the deck with their card
identifiers or to confirm proper program execution.

60459410 E 5-3

I

GENERAL PROCESSING

During execution, UPDATE manipulates several files; they are known as the input file, new
program library, source file, old program library, compile file, and listable output file.
File operations depend on whether UPDATE is performing a creation run or a correction run.

An UPDATE run is defined as all operations having a program library that results from a
single UPDATE call. Any given run is a creation run or a correction run. Creation and
correction runs are described as follows:

• A creation run constructs a program library. It is the original transfer of punch
cards or card images into UPDATE format.

• A correction run changes an existing program library. As a result of the run, a new
program library might be generated; but the program library is new only in the sense
that the changes are incorporated into the existing program library. All history
information remains.

File names are specified by parameters·of the UPDATE control statement, which are summarized
in table 5-1. Table 5-2 shows a summary of UPDATE directives used during a run.

5-4

Table 5-1. Summary of UPDATE Call Parameters

Parameter Function

C Specify name of compile file.

D Define compile file card image width, excluding UPDATE sequence information.

F

G

I

K

L

N

0

p

Q

s

T

8

*
I

Select full update mode and source file and compile file contents.

Select recreation of specified idents and specify file name to receive
recreated idents.

Specify name of file with input stream.

Determine the order of decks in the compile file.

Select listable output file contents.

Specify name of new program library file.

Specify name of listable output file; content is determined by L parameter.

Specify name of old program library file.

Select quick update mode.

Specify name of source file; content includes common decks and is
determined by mode.

Same as S, but omits common decks.

Define compile file card image width, including UPDATE sequence information.

Redefine master control character for directives.

Redefine control character for comments.

60459410 G

Directive
Keyword

Abbreviation

*AF

*B

*CA

*CD

*C

*DF

*DK

*D

*EI

*ID

*IF

*I

*M

*PM

Table 5-2. Summary of UPDATE Directives (Sheet 1 of 2)

Directive
Format

*ADDFILE lfn, deck

*ADDFILE lfn,ident.seqnum

*BEFORE ident,seqnum

*CALL deck

*COMDECK deck,NOPROP

*COMPILE deckl,deck2, ••• ,deckn

*COMPILE deckl.deck2

*DEFINE,name

*DECK deck

*DELETE identl.seqnum,ident2.seqnum

*DELETE ident.seqnum

*END IF

*IDENT idname,B=n,K=ident,U=ident

*IF type,name,num
*IF -type,name,num

*INSERT ident.seqnum

*MOVE deckl,deck2

Use

Read creation directives and
text from named file and
insert after deck identified.

Read creation directives and
text from named file and
insert after card identified.

Write subsequent text cards
before card identified.

Write common deck to compile
file.

Define common deck and
propagation parameter.

Write specified decks to
compile file, source file,
and new program library.

Write inclusive range of
decks to these files.

Define name to be used in
evaluating *IF conditions.

Define deck to be included
in program library.

Deactivate inclusive range
of cards.

Deactivate specified card.

End conditional text.

Define correction set, bias
for seqnum, and whether
specified correction sets
must be known or unknown to
process this set.

Conditionally write text
following *IF to compile
file.

Write subsequent text cards
after card identified.

Move deckl to follow deck2.

*PULL.MOD identl.ident2 Recreate inclusive range of
from old program library.

I

I

I

*PULLMOD identl,ident2, ••• identn Recreate specified idents I
from old program library.

~-~------J

60459410 J 5-5

Table 5-2. Summary of UPDATE Directives (Sheet 2 of 2)

Directive
Keyword

Abbreviation

*PD

*P

*RD

*WI

*Y

*YD

*I

Directive
Format

*PURDECK deckl,deck2, ••• , deckn

*PURDECK deckl.deck2

*PURGE idnamel,idname2, ••• ,idname3

*PURGE idnamel.idname2

PURGE idname,

*READ lfn

*WIDTH datlen,idlen

*YANK idnamel,idname2, ••• ,idnamen

*YANK idnamel.idname2

*YANKDECK deckl,deck2, ••• ,deckn

*I comment

UPDATE MODE AND FILES

Use

Permanently remove
specified decks from
program library.

Permanently remove
inclusive range of decks.

Permanently remove
specified correction sets
from program library.

Permanently remove
inclusive range of
correction sets.

Permanently remove
specified correction set
and all sets introduced
after it.

Read directives and text
from specified file.

Reset size of line image
written to compile file.

Temporarily remove
specified correction sets
from program library.

Temporarily remove
inclusive range of
correction sets.

Temporarily deactivate
decks specified.

Copy text to·listable
output file.

All files used by UPDATE must reside on mass storage; all files created by UPDATE reside on
mass storage. Default length of all of these files is #100 512-word blocks. Any of the
UPDATE default files are opened and used if they exist as attached permanent files. If the
files do not already exist, UPDATE uses Q5GETFIL to create them as local files. An
intermediate processing file created by UPDATE when a new program library is being created
has the file name TEMNEWPL. Its default length is #400 512-word blocks or the length of the
new program library, whichever is larger.

5-6 60459410 F

The files that UPDATE creates or uses are as follows:

• Input file

• New program library

• Source file

• Old program library

• Compile file

• List file

• Pullmod file

Each of these files has a default file name, but any other name can be specified through the
appropriate parameter on the UPDATE control statement.

I

With one exception, all files used must be separate and distinct files: that is, using the I
same file name for both list and compile causes an execution-time error. However, either
source or compile can be directed to the file OUTPUT if no list is desired (L=O) or the list
output is directed to another file~ The one exception is that the source file and the
pullmod file can be the same file.

The content of any compile file, source file, or new program library produced during a
correction run is affected by the UPDATE mode. The mode of an UPDATE run is determined by a
combination of the omission or specification of the F and Q parameters on the UPDATE control
statement.

Select normal (selective), full, or quick UPDATE mode by the following:

Parameter

Both F and Q
omitted

F specified

Q specified

Both F and Q
specified

Input File

Mode

Normal selective mode in which the only decks processed are those
modified or otherwise selected for processing

Full mode in which all decks on the old program library are processed

Quick mode in which only decks specified on COMPILE or ADDFILE
directives are processed

Quick mode

The input file contains the input stream. The input stream consists of directives that
provide the details of UPDATE processing and any new cards to be added to the program
library. The file name is specified by the I parameter of the UPDATE call; the default file
name is INPUT. Input file records cannot be longer than 256 characters.

60459410 G 5-7

New Program library

The new program library is the file of card images and internal information in a special
format that only UPDATE can process. It contains a deck list of the names of all decks in
the file and a directory of all correction sets introduced into the file. Each card is
represented in a format that adds a card identifier and adds history and status information
known as correction history bytes. Blanks are compressed out of the card image.

A new program library is an output file created by UPDATE. Initially, it is generated on a
creation run. For subsequent correction runs, the previous new program library is used as
an input file and identified as the old program library; a new program library that
incorporates the changes made during a correction run is then output from the correction
run. The file name is specified by the N parameter of the UPDATE call; the default file
name is NEWPL.

Normally the new program library contains all of the information on the old program library
as well as any new cards added during the run creating the new.program library. The only
operations that remove card images are PURGE, PURDECK directives, or an editing update run.
(PURGE and PURDECK are described in this chapter). During an editing update run, only
active cards are written to the new program library. Inactive cards are discarded. No
sequence numbers are changed. Idents from which cards have been permanently removed by
editing are marked on the list output file, on the new program library, and on all future
new program libraries.

Source File

The source file is an output file during a correction run. It consists of card images that
allow regeneration of a new program library in resequenced format during a subsequent
creation run. Only active cards and decks are part of the source file. The file name is
specified by the S parameter of the UPDATE call; the default file name is SOURCE. The
content of the file is controlled by the T, F, and Q parameters. You are responsible for
routing the file to a punch or other output device.

Old Program Library

The old program library is the file generated as a new program library in a previous
creation or correction run. It contains a record of changes made since the program library
was created. It is required for any correction run. The file name is specified by the P
parameter of the UPDATE call; the default file name is OLDPL. The old program library is an
R format file with blank compression.

Compile File

The compile file is an output file that contains a copy of a deck in the program library
restored to a format that can be processed by a compiler or assembler. Only active cards in
the deck are part of the compile file. The file name is specified by the C parameter of the
UPDATE call; the default file name is COMPILE. The content of the file is controlled by the
directives and the F, Q, or K parameters of the UPDATE call, with the Dor 8 parameters or
the *WIDTH directive selecting the number of columns in the image of each card. The compile
file is an R format file with blank compression.

You can generate a compile file without sequence numbers by selecting both the D and 8
options.

I 5-s 60459410 G

List File

The listable output file is the print file. It shows the card identifiers assigned by
UPDATE. The programmer must use them to reference a card image in any future correction
run. The file name is specified by the 0 parameter of the UPDATE call; the default file
name is OUTPUT. Content of the file is controlled by the L parameter, with options that can
select a listing of directives processed, errors, comments, and a list of card images in the
program library.

Pullmod File

The pullmod file can be output during a correction run. It contains card images of
recreated idents generated by *PULLMOD directives. The pullmod file has the same format as
an input file and can be used as input to a subsequent UPDATE execution. The file name is
specified by the G parameter of the UPDATE call. By default, the file name specified by the
S parameter of the UPDATE call will be used if the S parameter is present. If not, the
default file name is SOURCE.

CREATION OF PROGRAM LIBRARY

A creation run exists when the first directive of the input file, other than a comment, is
DECK or COMDECK. If the first directive is READ and the first directive of the file being
read is DECK or COMDECK, a creation run also exists. Even if an old program library file is
assigned to the job, UPDATE ignores its existence and processes the run in creation mode.

Directives that can be used in a creation run are limited to the following:

• READ

• DECK

• COMDECK

In a creation run, each DECK or COMDECK directive defines a deck to be inserted into the
program library under construction. UPDATE decks can be one of two types: regular decks or
common decks. They differ in that common decks can be called by name so that they are
inserted into the text of another deck when the compile file is being generated. One copy
of the common deck exists on storage, but multiple copies can be part of an output file.

In practice, the text written to a program library is often FORTRAN or assembly language
routines in punch card format. UPDATE considers all cards to be a string of characters and
takes no recognition of card contents. For convenience, you might assign a different UPDATE
deck name to each routine, but there is no requirement to do so. UPDATE divides text cards
into decks, following directive instructions.

You control the order of decks in the program library; decks appear in the order in which
they are found in the input stream. A common deck must precede any regular deck that might
call the common deck.

All cards following a DECK or COMDECK directive, until the next DECK or COMDECK directive,
are considered to be part of the deck, and each receives a unique sequence number. The
directive defining the deck itself is assigned a sequence number 1. Any READ directive
among the text cards causes UPDATE to temporarily stop reading from the current input stream
and to read from the specified file until an end-of-file is encountered; reading then
resumes from the main input stream. Text cards read from the file specified by READ are
numbered as if they were part of the original input text.

60459410 G 5-9

CARD IDENTIFICATION

The image of each card stored in a deck contains information known as correction history
bytes. This information, generated by UPDATE, maintains the history and status of a card
and is the means by which UPDATE can reverse status. Deletion of a card, for example, is
accomplished by the addition of a correction history byte to the card image, rather than by
a physical deletion of the image. Consequently, the card can be reactivated at some later
time. Only purge operations are irreversible.

A DECK or COMDECK directive is written to the program library as part of the deck text.
Consequently, these directives can be referenced just as can any other card in the text.
Deactivating a DECK directive, for example, has the effect of making its following text a
part of the deck that precedes it in the library.

UPDATE recognizes one full form and two short forms of card identifiers. The full form card
identifier is as follows:

ident.seqnum

ident.

seqnum

One- through eight-character name of a correction set or deck. A
period terminates the ident name.

Decimal ordinal (1 through 65535) representing the sequence number
of the card within the correction set or deck. Any character
other than 0 through 9 terminates the sequence number.

The two short forms of card identifiers can be used on INSERT or DELETE directives. The
short forms are expanded as follows:

seqnum

• seqnum

Expands to idname.seqnum; idname is a correction set identifier,
whether or not it is also a deck name.

Expands to dname.seqnum; dname is a deck name •

In the short form, idname is assumed to be the last explicitly named ident given on an
INSERT or DELETE directive, whether or not it is a deck name. The dname is assumed to be
the last explicitly named ident given on an INSERT or DELETE directive that is known to be a
deck name. Both of these default idents are originally set to YANK$$$, so the first
directive using a card identifier must use the full form to reset the default.

All deck names are also idents (but all idents are not decks). Thus, if EXAMPLE is the deck
name last used and there is no subsequent explicit reference to a correction set identifier,
both .281 and 281 expand to EXAMPLE.281 as the identifier. If there is an explicit
reference to a correction set identifier after the explicit reference to the deck name, 281
expands to the correction set identifier, while .281 expands to EXAMPLE.281 as the
identifier.

Figure 5-3 shows differences in identifier expansion, depending on the order of directive
records, assuming that A is a deck name and B is a correction set identifier on an UPDATE
old program library.

5-10 60459410 E

*ID C
*INSERT A.2

data card
*INSERT B.l

data card
*D 2, 3 expands to *DELETE B.2, B.3
*D 4, .5 expands to *DELETE B.4, A.5
*D • 7, 5 expands to *DELETE A.7, B.5
*D .Y, .10 expands to *DELETE A.Y, A.10

whereas:

*ID D
*INSERT B. l

data card
*INSERT A.2

data card
*D 2, 3 expands to *DELETE A.2, A.3
*D 4, .5 expands to *DELETE A.4, A.5
*D • 7, 5 expands to *DELETE A.7, A.5
*D • 9, .10 expands to *DELETE A.9, A.10

Figure 5-3. Card Identifier Expansion

CORRECTION RUN

A correction run, which is the most common use of UPDATE, introduces changes into the
existing program library. UPDATE recognizes a correction run, as opposed to a creation run,
under either of the following circumstances:

• The first directive, other than a comment, is IDENT.

• The first directive, other than a comment, is READ or ADDFILE and the first
directive on the alternative file is IDENT (in the case of READ) or DECK or COMDECK
(in the case of ADDFILE).

All directives can be used during a correction run.

The IDENT directive establishes a name for the correction set. Any cards inserted into the
library are sequenced within this name. On subsequent correction runs, individual cards in
the correction set can be referenced by sequence number. The entire correction set can also
be referenced as a whole.

When a new program library is being generated, all corrections must be part of a correction
set, with the exception of ADDFILE, MOVE, PURDECK, and PURGE. That is, IDENT must be the
first directive other than a comment. If READ is the first directive, the alternative input
file must have IDENT as its first directive. If a new program library is not being
generated (that is, routines are being extracted, but no changes made), directives can
appear without a correction set identifier.

60459410 E 5-11

The following directives need not be part of a correction set. They are directives PURGE,
PURDECK, and ADDFILE (which cause the current set to be terminated) and COMPILE and MOVE.
The COMPILE and MOVE directives, like the comment directive, can appear anywhere inside or
outside a correction set. A COMPILE directive is not processed until all corrections have
been made. A MOVE directive is processed immediately.

More than one correction set can be introduced during a single run. The correction set
established by the first !DENT directive remains in effect until UPDATE either encounters
another !DENT directive or encounters a PURGE, PURDECK, or ADDFILE directive. The
subsequent !DENT directive establishes a second correction set name.

A correction run can include the addition of new decks to the program library when a new
program library is created. Decks to be added are identified by a DECK or COMDECK directive
following an INSERT, DELETE, or ADDFILE directive.

Deck list and Directory Order

UPDATE maintains a list of all decks in the program library, known as a deck list. The
order of entries in the deck list is under your control; original deck list entries
correspond to the order in which decks are written during the creation run. Subsequent
additions of decks are made at the location you specify by using a preceding INSERT, DELETE,
or ADDFILE directive.

The location of an entry in the deck list is significant in terms of parameters for PURDECK,
YANKDECK, and COMPILE directives, in which a range of decks is referenced. The order of
names in a range reference must be the same as the order in the deck list. The decks named
and all those between are then processed in accordance with the directive. An error exists
if they are in reverse order.

Similarly, as each correction set is introduced into the program library, UPDATE creates an
entry in an internal directory in chronological sequence. The location of an entry in the
directory is significant in terms of parameters for PURGE and YANK, directives in which a
range of correction sets is referenced. The order of reference must be the same as the
order of the directory. The identified correction sets and all those between are processed
in accordance with the directive. An error exists when a correction set range is not
referenced in the order in which the sets were introduced into the library.

Purge and Yank Directives

The two purge directives are PURGE and PURDECK. PURGE operates on all cards identified by
correction set name, while PURDECK operates on all cards within an identified deck.
(Introduction of a new deck on a creation run must be made as part of a correction set, but
that addition usually is the only change within that correction set.) The two yank
directives are YANK and YANKDECK. As with the purge directives, the former operates with
correction sets and the latter with decks.

The purge directives differ from the yank directives in that yank operations are temporary.
Cards yanked from the program library are temporarily deactivated. They can be reactivated
by a subsequent yank, delete, or purge of the yank directive that inactivated the cards.

In contrast, any change made to a program library through a purge directive is permanent. A
reversal of a purge operation is possible only through the reintroduction of the c.ards into
the library, as if they had not previously existed~

5-12 60459410 E

Since the YANK directive itself must be introduced as part of a correction set, a future
correction set that deactivates the cards in the correction set containing the YANK
reactivates the cards in the original correction set. The following are examples.

To inactivate all cards added by !DENT PSR003:

*!DENT TAKEOUT
*YANK PSR003

To reactivate the same cards:

*!DENT PUTBACK
*YANK TAKEOUT

Overlapping correction messages might be produced as a result of these procedures.

UPDATE stores all YANK directives in a deck having the deck name YANK$$$. The YANK$$$ deck
cannot be referenced on UPDATE directives. Individual cards in the YANK$$$ deck can be
deactivated by another yank, as in the previous example, or by a delete or purge. For
example, the card *YANK PSR003 in the previous example can be deleted by the following:

*!DENT PUTBACK
*D,TAKEOUT.l

Cards in a correction set that have been yanked are physically present but logically
inactive. A reference to a card in a yanked correct set generates an advisory message
indicating an overlapping correction.

Overlapping Corrections

UPDATE can detect four overlapping correction situations. When any of these types is
detected, UPDATE prints the offending line with the words TP.n OVLP appended on the far
right.

Meaning

1 Two or more modifications are made to one card during a single update run.

2 A modification attempts to activate an already active card.

3 A modification attempts to deactivate an already inactive card.

4 A card is inserted after a card that was inactive on the OLDPL.

Detection of an overlap does not necessarily indicate a user error. Overlap messages are
advisory, and they point to conditions in which the ,probability of error is greater than
normal.

Type TP.2 and TP.3 are detected by comparing existing correction history bytes with those to
be added. Complex operations involving YANK and PURGE might generate these overlap messages
even though no overlap occurs.

Modifications for each correction set are performed by UPDATE in the order in which sets are
introduced. The order is irrelevant if no correction is dependent on another. I~ a
dependent relationship exists, however, order is of paramount importance.

60459410 E 5-13

UPDATE DIRECTIVES

Directives are instructions for UPDATE to follow in creating its output files. A directive
must begin in column 1 of the card with the master control character. Each directive has
both a full keyword and an abbreviated keyword, as shown in table 5-2.

The general format is as follows:

*keyword p-list

*

keyword

p-list

Master control character that distinguishes a directive from a text card.
Must appear in column 1. This character can be changed through the *=c
parameter of the UPDATE control statement.

Name of one of the UPDATE directives or an abbreviation for a directive.
No blanks can occur between the master control character and the keyword;
a comma or blank terminates the keyword.

Parameters identifying decks, cards, or files. Multiple blanks can appear
between the keyword and parameters. Parameters in the list are separated
by commas; embedded blanks cannot appear in the list.

Notice that several parameters contain a period as part of a single
parameter.

No terminator appears at the end of a directive.

The master control character is recorded in the program library. For a correction run, the
master control character should match the character used when the program library was
created; if the characters do not match, UPDATE uses the character stored as part of the
program library.

Any card in the input stream that cannot be recognized as a directive or as a comment is
assumed to be text.

The directives are described in alphabetical order.

5-14 60459410 E

ADDFILE DIRECTIVE

The ADDFILE directive causes UPDATE to add a file of new decks to the new program library.
It differs from the READ directive in that contents of the specified file are limited to
those that add decks. The first card of the specified file must be a DECK or COMDECK
directive. No directives other than comments, DECK, or COMDECK can appear in the file.

The ADDFILE directive format is shown in figure 5-4. If only one parameter appears, it is
assumed to be lfn.

Add after card identified

*ADDFILE lfn,ident.seqnum

lfn

ident.seqnum

Name of file from which decks to be added are taken. Default is
the file specified by the I parameter of the UPDATE call.

Identifier of card after which decks are to be placed on the
program library. If omitted, the addition is made at the end of
the program library.

Add after deck identified

*ADDFILE lfn,deck

lfn

deck

Name of file from which decks to be added are taken. Default is
the file specified by the I parameter of the UPDATE call.

Name of deck after which decks are to be placed on the program
library. If omitted, the addition is made at the end of the
program library.

Figure 5-4. ADDFILE Directive Format

When the specified file is not INPUT, UPDATE reads directives and text cards until an
end-of-file (#lC) is encountered. UPDATE then returns to the file specified by the I
parameter of the UPDATE call and continues processing the main input stream. When the file
specified on the ADDFILE directive is INPUT, however, UPDATE reads directive and text cards
only until either an end-of-file or an UPDATE directive other than DECK, COMDECK, or CALL is
encountered.

An ADDFILE directive cannot appear among directives read from a file specified by a READ
directive; otherwise, it can appear anywhere in the input stream, but its appearance
terminates the current correction set.

60459410 E 5-15

BEFORE DIRECTIVE

The BEFORE directive adds the text cards that follow it to the program library before the
card specified.

New cards receive card identifiers established by the correction set name of the preceding
!DENT directive.

The BEFORE directive format is shown in figure 5-5.

*BEFORE ident.seqnum

ident.seqnum

CALL DIRECTIVE

Card identifier of the card before which the insertion is to be
made.

Figure 5-5. BEFORE Directive Format

The CALL directive causes UPDATE to write the text of a previously encountered common deck
onto the compile file. The directive itself is stored as part of a deck and can be
referenced by its sequence number. It is effective only within a deck.

The CALL directive format is shown in figure 5-6.

*CALL deck

deck Name of an existing common deck to be written to the compile
file.

Figure 5-6. CALL Directive Format

Neither the CALL directive nor the COMDECK directive, which defined the deck, becomes part
of the compile file.

A common deck can call other common decks, but it must not call itself or call a deck that
contains a call to the common deck.

5-16 60459410 E

COMDECK DIRECTIVE

The COMDECK directive establishes a common deck that can be called from other decks as they
are being written to the compile file. It is one of the two directives that establish the
existence of a creation run. The directive can be used in any correction run to add a
common deck to a particular location in the program library.

The COMDECK directive format is shown in figure 5-7.

*COMDECK deck,NOPROP

deck

NO PROP

Name of common deck being added. Must consist of one through eight
characters, A through Z, 0 through 9, or+ - I * () $ • Must
not duplicate the name of an existing deck.

Indicates that decks calling this common deck are not to be
considered as modified when the common deck itself is modified;
that is, the effects of common deck changes are not to be
propagated during a normal UPDATE mode. Optional.

Figure 5-7. COMDECK Directive Format

The COMDECK directive itself is part of the program library and has a sequence number of 1
within the name established by the directive. For a creation run, the deck order in the
input stream determines the location of the common deck in the program library. For a
correction run, the location in the program library is determined by the preceding INSERT
directive or by the location resulting from a preceding DELETE or ADDFILE. Common decks
need not appear first on the program library, but they must appear before any decks from
which they are called during a creation run.

The NOPROP parameter of the COMDECK directive that created a common deck determines whether
a deck calling a corrected common deck will also be considered corrected.

60459410 E 5-17

COMPILE DIRECTIVE

The COMPILE directive affects the decks to be written to the compile file and to any new
program library or source file during normal or quick UPDATE mode. The directive is ignored
during a.full UPDATE. Compile directive processing in normal and quick modes is as follows:

Mode

Normal

Quick

Description

Decks specified on COMPILE directives and corrected decks are written to
the compile file.

Decks specified on COMPILE directives and any common decks they call are
written to the compile file.

The COMPILE directive format depends on whether decks to be written are specified
individually by name or as a range of deck names, as shown in figure 5-8.

Compile listed decks

*COMPILE deckl,deck.2, ••• ,deckn

deck Name of deck to be written to the compile file, new program library
file, and source file.

Compile range of decks

*COMPILE deckl.deck2

deckl.deck2 Names of first and last decks in range, inclusive, to be written to
the compile file. The name of deckl must appear in the old program
library deck list before deck2.

Figure 5-8. COMPILE Directive Format

Decks are written to the compile file in the order in which they exist on the old program
library, except in K mode. When K is specified on the UPDATE control statement, decks are
written in the order of their occurrence on COMPILE directives. If COMPILE directives
specify two different orderings for a deck or decks, the latest ordering is used. K mode is
ignored during a full update. Decks are always written to the new program library and the
source file in the order in which they exist on the old program library, regardless of any
compile file ordering during a K mode update. If K is specified for a normal mode update
(neither F nor Q specified) any corrected decks not mentioned on COMPILE directives are
written at the end of the compile file.

COMPILE directives can appear anywhere within the input stream. They do not affect the
current correction set name.

The COMPILE directive also affects the contents of any new program library and source file,
as shown in table 5-3.

5-18 60459410 E

Table 5-3. File Contents and Update Mode

File

New program
library

Normal Mode
Contents

All regular and common
decks after corrections
made in library.t

Compile File All decks corrected or listed
on COMPILE directives, and
any deck calling a corrected
common deck (unless NOPROP
specified on COMDECK).

Source File All currently active DECK,
COMDECK, and CALL directives
and active text required to
recreate library.

tT parameter excludes common decks.

DECK DIRECTIVE

Full Mode
Contents

Same as normal
mode source file.

Quick Mode (Q)
Contents

Decks specified on COMPILE
directives, any common
decks they call, and any
common decks encountered
on old program library
prior to all decks of
COMPILE or ADDFILE.

All active decks on All decks on COMPILE or
old program library. ADDFILE directives and any

common decks they call.

Same as normal mode Currently active cards re-
source file. quired to create new

program library resulting
from quick mode.

The DECK directive establishes a deck in the program library. It is one of the two
directives that establish the existence of a creation run. The directive also can be used
in any correction run to add a deck to the location indicated by a preceding ADDFILE
directive.

The DECK directive format is shown in figure 5-9.

Each deck must have a unique name within the program library.

The DECK directive itself is part of the program library and has a sequence number of 1
within the name established by the directive.

*DECK deck

deck Name of deck. Must consist of one through eight characters, A
through Z, 0 through 9, or+ - I * () $ = Must not duplicate
the name of any other deck in program library.

Figure 5-9. DECK Directive Format

60459410 E 5-19

DEFINE DIRECTIVE

The DEFINE directive establishes a name to be tested by IF,DEF or IF,-DEF. The names
on a DEFINE DIRECTIVE are unrelated to ident or deck names. DEFINE directives must
appear in a correction set and can be placed anywhere in a correction set. DEFINE
directives are placed in the YANK$$$ deck on the program library.

The format of the DEFINE directive is shown in figure 5-9.1.

*DEFINE,namel,name2, ••• namen

name Name for testing by IF,DEF or IF,-DEF directives.

Figure 5-9.1 DEFINE Directive Format

DELETE DIRECTIVE

The DELETE directive deactivates a card or group of cards and optionally adds text
cards following the directive. A deactivated card remains on the library unless it is
removed by editing. It retains its sequencing and can be referenced just as if it were
not deactivated. A deactivated card is not written to any compile file or source file,
however.

The DELETE directive format depends on whether cards to be deactivated are specified by
card identifier or by a range of cards, as shown in figure 5-10.

Delete specified card

*DELETE ident.seqnum

ident.seqnum Card identifier for single card to be deleted.

Delete range of cards

*DELETE identl.seqnum,ident2.seqnum

identl.seqnum,
ident2.seqnum

Card identifiers of first and last cards, inclusive, in
seqence of cards to be deleted. Card identl.seqnum must appear
before ident2.seqnum in the existing library. The range can
include cards in a deactivated state.

Figure 5-10. DELETE Directive Format

• 5-20 60459410 J

ENDIF DIRECTIVE

The ENDIF directive is used to indicate the end of conditional text. ENDIF is used
when the numbers of lines to skip is omitted from the IF directive. If num is given on
the IF directive, an ENDIF appearing within the range of num can cause the wrong number
of lines to be skipped, or the ENDIF directive to be written to the compile file.

The format of the ENDIF directive is shown in figure 5-10.1.

*END IF

Figure 5-10.1 ENDIF Directive Format

INDENT DIRECTIVE

The IDENT directive establishes the name for the set of corrections being made. Cards
added in this correction set are sequenced within the name specified. Any card whose
status is changed by this set receives a correction history byte that references the
name from IDENT. All correction set names must be unique.

The IDENT directive format is shown in figure 5-11.

*IDENT ident,B=num,K=ident,U=ident

ident

B=num

K=ident

U=ident

Name to be assigned to this correction set. Must consist of one
through eight characters, A through Z, 0 through 9, or + - I * (
$ = Must not duplicate the name of another correction set or
deck.

Bias to be added to sequence numbers within deck.

Indicates that specified correction set name must exist in the
directory of the library before corrections can be made.

Indicates that specified correction set name must not exist in the
directory of the library.

Figure 5-11. IDENT Directive Format

The B, K, and U parameters can appear in any order. More than one K or U parameter can be
specified; in this instance, all correction set names specified must meet the criteria
before the correction set is processed. If the criteria of these parameters are not met,
UPDATE skips the correction set and resumes processing with the next IDENT, PURGE, PURDECK,
or ADDFILE directive.

60459410 J 5-21 •

IF DIRECTIVE

The IF directive conditionally writes text to the compile file. When UPDATE encounters an
IF directive, the text following the directive is written or skipped depending on the
condition.

The format of the IF directive is shown in figure 5-11.1.

Name must be known in run

*IF type,name,num

type

name

num

Type of condition.

DECK Name is a deck name.

IDE NT Name is an ident name.

DEF Name is defined by a DEFINE directive.

Deck name, ident name or defined name according to type.

Number of active line images to be skipped (not written to compile file)
if name is not known. Optional. If num is omitted, and the name is not
known, lines will be skipped until an ENDIF directive is encountered.

Name must be unknown in run

*IF -type,name,num

type

name

num

Type of condition.

DECK Name i~ a deck name.

IDE NT Name is an ident name.

DEF Name is defined by a DEFINE directive.

Deck name, ident name or defined name according to type.

Number of active line images to be skipped (not written to compile file)
if name is known. Optional. If num is omitted, and the name is known,
lines will be skipped until an ENDIF directive is encountered.

Figure 5-11.1 IF Directive Format

• 5-22 60459410 J

INSERT DIRECTIVE

The INSERT directive adds text cards following it to the program library at the
location specified.

The INSERT directive format is shown in figure 5-12.

New cards receive card identifiers established by the correction set name of the
preceding IDENT directive.

* INSERT ident.seqnum

ident.seqnum Card identifier of card after which the insertion is to be made.

Figure 5-12. INSERT Directive Format

MOVE DIRECTIVE

The MOVE changes the order of the existing decks on the program library.

A MOVE directive can appear anywhere in the input stream. It does not terminate insertions
or the current correction set.

The YANK$$$ deck containing all YANK directives in a deck cannot be moved.

A MOVE directive cannot reference a deck added in the same run.

A MOVE directive takes effect before any modifications entered in the same run.

The MOVE directive format is shown in figure 5-13.

*MOVE deckl,deck2

deckl Name of deck to be moved.

deck2 Name of deck after which the moved deck is to be placed.

Figure 5-13. MOVE Directive Format

60459410 J 5-22.1/5-22.2 •

PURGE DIRECTIVE

The PURGE directive permanently removes a correction set or group of correction sets from
the program library. Every card in the correction set is purged, regardless of its status
as active or inactive. Purging, unlike yanking, cannot be rescinded.

The PURGE directive format depends on whether correction sets to be purged are specified
individually by correction set name, by a range of correction set names, or by relative time
of introduction into the program library, as shown in figure 5-15.

A PURGE directive can appear anywhere in the input stream, but it terminates the current
correction set. Any directive following PURGE must begin a new correction set.

Purge listed correction sets

*PURGE identl,ident2, ••• ,identn

ident Identifies a correction set to be purged. Identifiers can appear
in any order.

Purge range of correction sets

*PURGE identl.ident2

identl.ident2 Identify first and last correction sets, inclusive, to be purged.
Identifiers must appear in the relative order in which the
correction sets were introduced into the program library; that is,
they must appear in the order in which they exist in the directory.

Purge later correction sets

PURGE ident,

ident

*

Identifies correction set to be purged along with all
correction sets introduced after the one specified.

Indicates that the program library is to return to an earlier
level. Intervening purge directives prevent complete return.

Figure 5-15. PURGE Directive Format

60459410 E 5-23

READ DIRECTIVE

The READ directive causes UPDATE to temporarily stop reading the current input stream and to
begin reading an input stream from the file specified on the READ directive. READ differs
from ADDFILE in that the content of the file specified by READ is not restricted except to
prohibit the appearance of either another READ directive or an ADDFILE directive. UPDATE
reads from the specified file until an end-of-file (#lC) is encountered. Processing then
continues with the main input stream.

The READ directive format is shown in figure 5-16.

*READ lfn

lf n Name of alternate file containing input stream.

Figure 5-16. READ Directive Format

WIDTH DIRECTIVE

The WIDTH directive overrides the default compile file line image width settings as
specified by default or by D and/or 8 on the UPDATE control statement. The format for
the WIDTH directive is shown in figure 5-16.1.

*WIDTH datlen,idlen

datlen

idlen

Number of characters of line image text that is written.

Width of the identification field following the line image. If
the idlen is too small to hold the full identifier name and
sequence number, the sequence number overwrites the identifier
name.

Figure 5-16.1. WIDTH Directive Format

The sum of the length of datlen and idlen must be less than or equal to 256 characters. If
idlen is set to zero, the identification field is suppressed. If *WIDTH is specified with
no parameters, the run default settings are restored. If only the length of the
identification field is specified (*WIDTH ,idlen), then datlen is the previous setting
used. If only datlen is specified (*WIDTH datlen), the previous setting of idlen is used.

5-24 60459410 F

YANK DIRECTIVE

The YANK directive temporarily removes a correction set or group of correction sets
from the program library. Cards activated by the correction set are deactivated; cards
deactivated by the correction set are reactivated. YANK differs from PURGE in several
respects: YANK must be part of a correction set; it does not terminate the current
correction set; its effects can be rescinded.

If the library has been edited, it may not be possible to rescind the effects of a YANK.

The YANK directive format depends on whether correction sets to be yanked are specified
individually by correction set name or by a range of correction set names, as shown in
figure 5-17.

UPDATE places the YANK directive in the YANK$$$ deck. If a correction has been yanked,
it is ignored during compile file or source file generation.

Yank listed correction sets

*YANK identl,ident2, ••• ,identn

ident Identifies a correction set to be yanked. Identifiers can
appear in any order.

Yank range of correction sets

*YANK identl.ident2

ident1.ident2

YANKDECK DIRECTIVE

Identifies first and last correction sets, inclusive, to be
yanked. Identifiers must appear in the relative order in which
the correction sets were introduced into the program library;
that is, they must appear in the order they exist in the
directory.

Figure 5-17. YANK Directive Format

The YANKDECK directive temporarily deactivates all cards within the decks specified. All
cards are deactivated, regardless of the correction set to which they belong. YANKDECK
differs from PURDECK in several respects: YANKDECK must be part of a correction set; it
does not terminate the current correction set; its effects can be rescinded.

If the library has been edited, it may not be possible to rescind the effects of a YANK.

The YANKDECK directive format is shown in figure 5-18.

*YANKDECK deckl,deck2, ••• ,deckn

deck Name of deck to be yanked. Names can appear in any order.

Figure 5-18. YANKDECK Directive Format

60459410 F 5-25 I

The deck YANK$$$ cannot be deactivated as a whole. Individual YANK directives within this
deck can be yanked by a YANK directive, however.

/ COMMENT DIRECTIVE

The I comment directive introduces a comment into the listable output file. UPDATE ignores
this card except to copy it to the output file. A comment can appear at any place in the
input stream.

The I comment directive format is shown in figure 5-19. The slash must appear in column 2.
Column 3 must be a comma or a blank. The slash can be redefined as another character
through the /=c parameter of the UPDATE call.

*/ comment

Figure 5-19. I Comment Directive Format

I 5-26 60459410 F

UPDATE CONTROL STATEMENT
The format of the control statement that calls UPDATE to execution is shown in figure 5-20.
All parameters are optional and can appear in any order. A comma must separate parameters.

Update, { c=~ile} ,D,E,F, { r=ifn } , { K=~fn} ,L=opt, { N=~fn/llnnn} , { o=~fn/llnnn} ,

{p ... ifn} ,Q, { S=~fn/llnnn}, { T=ifn//lnnn} ,U,8,*=c,/=c.

C Compile file name. The content of the compile file is determined by the
UPDATE mode.

omitted
or C

C=lfn
or
C=lfn/llnnn

C=PUNCH

c=o

Decks are written to file named COMPILE.

Decks are written to file named lfn. File length is
11100 small pages or the number of pages specified by
nnn.

Decks are written to file named PUNCH. The D and 8
parameters are implied.

Compile file suppressed.

D Data width on compile file excluding UPDATE sequence identifiers.

omitted

D

E Edit mode.

omitted

E

F Full UPDATE mode.

omitted

F

G Pullmod file name.

72 columns of data.

80 columns of data.

No editing is performed.

New program library contains only active cards. !dents
from which inactive cards have been removed are marked
with an E.

Normal selective UPDATE mode, as long as Q is not speci­
fied. The compile file contains only those decks corrected
in this run or otherwise specified on COMPILE directives.

Full UPDATE mode. The compile file contains all active
decks in the program library. F overrides K.

omitted No pullmod file will be written.

G R~created idents will be written to the file specified
by the S parameter, if S is present. If S not present,
idents will be written to the file named SOURCE.

G=lfn Recreated idents will be written to file named lfn.

Figure 5-20. UPDATE Control Statement Format (Sheet 1 of 5)

60459410 G 5-26.1/5-26.2

I Input stream file name.

omitted
or I

I=lfn

Directives and text are on the file named INPUT.

Directives and text are on file named lfn.

K Write compile file in the order in which compile directives are encountered
in the input file.

omitted

K

K=lfn

Decks on the compile file are ordered as they exist on
the old program library. The compile file is COMPILE or
the file specified by C=lfn.

Decks on the compile file (COMPILE or the file specified
by C=lfn are ordered by their occurrence on COMPILE
directives in the input stream.

Decks are written to the file named lfn in COMPILE
directive order. K=lfn overrides C=lfn.

L Listable output options to be written to file named with the 0 parameter.

60459410 G

omitted

L=c ••• c

For a creation run, options A, 1, and 2.

For a correction run, options A, 1, 2, 3, and 4.

Each character in string c ••• c selects one of the
following options:

A Error decks, correction set identifiers, common
decks, and decks written to the compile file are
listed.

F Full listing.

0 The character 0 overrides any other options
specified and suppresses the entire listing.

1 List all input lines in error and associated
error messages.

2 List all directives from the input file with
****** preceding each valid directive. List
active CALL directives encountered on the old
program library. Directives from the old
program library are preceded by the deck name in
which the directive appears.

Figure 5-20. UPDATE Control Statement Format (Sheet 2 of 5)

5-27 I

L=O

3 Comment on each card changed. Comments include
the deck name, card image, card identifier and
sequence number, and an indicator of action
taken for that card:

I Card added.

A Inactive card reactivated.

D Active card deactivated.

P Card purged. If the card was
active, ACTIVE also appears.

4 List text cards of input stream established by
directives. Cards read as a result of a READ
directive are identified to the right with the
file name; cards inserted as a result of an
ADDFILE directive are listed only when option 4
is explicitly selected. *ERROR* accompanies any
cards in error.

5 List all active DECK, COMDECK, and CALL
directives encountered on the old program
library that are preceded by the name of the
deck in which the directive appears.

7 List all active cards (options 2, 3, 4, and 5
override option 7).

9 List all active and inactive cards with status.

I Inactive

A Active

Option 3 overrides option 9.

Suppress all listings.

N New program library file name.

omitted In a correction run, suppress new program library
generation. In a creation run, write a new program
library on the file named NEWPL.

N Write new program library on file named NEWPL.

N=lfn Write new program library on file named lfn. File
or length is #100 512-word blocks or the number of blocks
N=lfn/#nnn specified by nnn.

Figure 5-20. UPDATE Control Statement Format (Sheet 3 of 5)

5-28 60459410 E

O Listable output file name.

omitted
or 0

O=lfn
or
O=lfn/llnnn

Write list output to file named OUTPUT.

Write list output to file named lfn. File length is
#100 512-word blocks or the number of blocks specified
by nnn.

P Old program library file name.

The P parameter is valid only for a correction run.

omitted
or P

P=lfn

Old program library resides on file named OLDPL.

Old program library resides on file named lf n.

Q Quick UPDATE mode. The source file and the new program library are
described in table 5-3.

omitted

Q

Normal selective UPDATE mode when F is also omitted.

Only those decks specified on COMPILE directives are
processed. Corrections to decks not specified on
COMPILE directives are not processed; the corrections
normally produce a fatal error (refer to the U parameter
description). The unprocessed corrections are listed,
and no compile, source, or new program library is
produced. The compile file contains only decks
referenced on COMPILE directives and the common decks
they call.

The Q parameter takes precedence when both F and Q are specified.

S Source file name. The content of this file is determined by the UPDATE mode.

omitted Suppress source output file unless it is selected by the
T parameter.

S Source output file to be written on file named SOURCE.

S=lfn Source output file to be written on file named lfn.
or File length is #100 512-word blocks or the number of
S=lfn/#nnn blocks specified by nnn.

Figure 5-20. UPDATE Control Statement Format (Sheet 4 of 5)

60459410 E 5-29

T Omit common decks from source file. The content of the source file is
determined by the UPDATE mode, with the T parameter excluding common decks.

omitted

T

T=lfn
or
T= lf n/11 nnn

Suppress source output unless it is selected by the S
parameter.

Source output file to be written on file named SOURCE,
with common decks excluded.

Source output file to be written on file named lfn, with
common decks excluded. File length is #100 512-word
blocks or the number of blocks specified by nnn.

The T parameter takes precedence over the S parameter.

U Override abort for unprocessed modifications.

omitted

u

In Q mode, corrections to decks not specified on COMPILE
directives cause the update run to abort. No compile,
source, or new program library is produced.

Corrections to decks not specified on compile directives
are listed as errors, but the run does not abort and all
output files are produced. The termination value for
the run is 4.

8 Card image width on compile file, including UPDATE sequence identifiers.

omitted

8

90-column card image, which preserves columns 73 through
80 of original card.

80-column card image, with UPDATE sequence information
in columns 73 through 80.

* Master control character for directives.

omitted

*=c

* is the first character of each directive.

c is the first character of each directive for this
UPDATE run. c can be any character, A through Z, 0
through 9, or + - * I $ or =. If the character
specified for a correction run is not the same as the
character used when the old program library was created,
the old program library character is used.

I Comment control character in column 2.

omitted Comment control character is /.

/=c c is the comment control character. c can be any
character, A through Z, 0 through 9, or + - * I $ or =.

Figure 5-20. UPDATE Control Statement Format (Sheet 5 of 5)

5-30 60459410 E

DEBUGGING

DEBUG, LOOK, and DUMP are utilities for testing and debugging a correctly compiled or
assembled program that executes unsatisfactorily. These utilities can be executed either
interactively or in batch mode.

Differences among these three utilities include the following:

• DEBUG displays or alters the contents of selected locations during program
execution. It is valid only with controllee files.

• LOOK displays or alters the contents of selected locations in any type of file. It
can be used with controllee files, drop files, or data files. Its most common use
is through an interactive terminal.

• DUMP displays a preselected set of elements from a drop file.

Both LOOK and DEBUG use a set of directives supplied by a programmer to receive detailed
control information. A batch job must have the directives on a file available to the job.

6

You can enter directives interactively and receive output as it is generated in response to
the directive. Output from most directives is returned to the terminal; some directives can
specify a file to receive output. When the utility is ready for another directive, the
character ? appears at the terminal. Directives must be entered on a single line.

Typical use of the debugging utilities involves using LOOK to edit a FORTRAN source program
interactively until the program compiles successfully; executing the compiled program and
possibly receiving a dump on a fatal error condition, or else possibly forcing such a dump
by making a DUMP request; using DEBUG to observe intermediate program values during
reexecution of the program under DEBUG control; and subsequently using DEBUG or LOOK to
modify the program until it executes satisfactorily.

60459410 E 6-1

DEBUG
Through DEBUG you can set instruction breakpoints and a memory reference breakpoint in a
program and then issue EXECUTE and CONTINUE directives to step through the execution of the
program from one breakpoint to the next. At each breakpoint, current values of variables in
the program can, for example, be dumped. DEBUG can also be used to modify, display, and
dump user registers and areas in virtual memory designated by hexadecimal addresses.

An FTN200 program being executed under DEBUG must have been compiled without the SDEB
compile option or with SDEB=O if symbolic addresses--labels, names, line numbers--are to be
used in the DEBUG directives. DEBUG executes entirely within your virtual space, starting
at hexadecimal virtual bit address #7FFFOOOOOOOO and extending upward; therefore, the
program being debugged must not use or reference this area.

Modules that reside in a user dynamic library or the system shared library, SHRLIB, can be
debugged and altered with no effect on the other users of the shared library. The shared
library resides in virtual memory above #800 000 000 000 and below #COO 000 000 000. If a
breakpoint is set in this region, it has no effect on other users of the system shared
library. When a controllee that uses the SHRLIB is debugged, DEBUG issues the following
message:

WARNING. CONTROLLEE REQUIRES DYNAMIC LINKING

After the DEBUG control statement is issued, DEBUG remains in execution until an EXECUTE,
STEP, or CONTINUE directive causes it to relinquish control to the user program. Control
does not return to DEBUG until a user-specified breakpoint is reached during execution.
When the user program terminates, DEBUG terminates also; more DEBUG directives can be
processed only after another DEBUG control statement has been issued.

I NOTE I
When using DEBUG, SIL modules used dynam­
ically may be linked in a different order
than that found on the dynamic load map
produced by DUMP. Your controllee may fail
in a different order due to a possible
reordering of dynamic modules if DEBUG uses
them before the program does.

The dynamic load map that is displayed by
DUMP when a dynamically loaded controllee
aborted in execution should not be used if
the same controllee is executed again under
the control of DEBUG, as the address of the
dynamically linked modules might change.

When running DEBUG in interactive mode, the program being debugged is supplied with the
parameters normally provided on the execute line. However, in batch mode there is no
mechanism for providing those parameters. Debugging in batch mode, therefore, is possible
only for programs that can execute meaningfully by using built-in default values for all
parameters.

l
At security-sensitive sites with production user numbers and production files (refer to
chapter 7 of the Installation Handbook for details), DEBUG cannot be used by production user
numbers on production controllees.

6-2 60459410 H

DEBUG CONTROL STATEMENT

The control statement that initiates execution of DEBUG is shown in figure 6-1. The
parameter fname must always be the first parameter, but the order of the I= and O=
parameters can be reversed.

NOTE

Regarding the selection of the iname and
oname parameters: When invoking DEBUG, the
files specified by the iname or oname
parameters (or the respective default file
names) are opened by the DEBUG processor in
its initialization phase. The controllee
that is subsequently invoked under control of
DEBUG must not attempt to open and use files
that conflict with the files specified by
those parameters. This often happens if an
FTN200 controllee, which writes to file
OUTPUT, for example, is invoked under the
control of DEBUG without an oname specified
on the command line (oname, therefore,
defaults to OUTPUT). This will result in the
FTN200 program failing when it tries to open
file OUTPUT again in its initialization,
after DEBUG has already opened OUTPUT. Note
that DEBUG always opens oname, even if it
never has to write anything to that file.

DEBUG,fname,I=iname,O=oname/olen.

£name

I=iname

O=oname/olen

Name of the existing permanent or local file that is to be the
controllee file for DEBUG. It must be a virtual code file
produced by the LOAD utility, and you must have both read and
execute access permissions for the file.

For batch mode only, a file containing the DEBUG directives. If
I=iname is omitted, directives are read from INPUT.

For batch mode, the file to which all DEBUG output is written; for
interactive mode, the file to which data generated by the SNAP
command is written. olen is the length of the output file in
512-word blocks.

The default file is OUTPUT. The default file length is #100
512-word blocks.

If the user program opens the file OUTPUT, oname must not be
output.

Figure 6-1. DEBUG Control Statement Format

60459410 H 6-2.1/6-2.2

I

The following are sample DEBUG control statements.

e DEBUG(MYCTEE)

• DEBUG(MYCTEE,I=MYINP,O=MYOUT/tl2C3)

• DEBUG(MYCTEE,O=MYOUT,I=MYINP)

DEBUG DIRECTIVES

The general format of each DEBUG directive is as follows:

directive,parameter-set

Each directive name can be abbreviated to the minimum character string needed to distinguish
it from all other directive names. The minimum abbreviation for each directive is
underlined in figure 6-2.

Parameters are positional and can be separated from each other and the directive name by
either a blank or a comma. A null parameter must be indicated by commas delimiting its
position.

DEBUG directives are listed in alphabetical order in figure 6-2. The subsequent directive
descriptions are grouped according to a common function.

Directive Description

ASCII Enter data in ASCII form.

BACK Display the data preceding the last display location.

BKPT
0r BKPTR

Set or remove breakpoints.

CONTINUE Continue execution from the last user breakpoint.

DDECIMAL Display data in hexadecimal and decimal.

DDREG Display register contents in hexadecimal and decimal.

DECIMAL Enter data in decimal form.

DFLOAT Display data in hexadecimal and floating point.

DFREG Display register contents in hexadecimal and floating point.

DISPLAY Display data in hexadecimal and ASCII.

DREG Display register contents in hexadecimal.

EDREG Enter decimal data into register.

Figure 6-2. DEBUG Directives (Sheet 1 of 2)

60459410 J 6-3

I

I

I

Directive

EFREG

END

EREG

EXECUTE

FLOAT

HEX

IDISPLAY

IDREG

MBKPT
or MBKPTR

RESTORE

ROLL

SNAP

STAT

STEP

TRACE

Description

Enter floating point data into register.

Terminate execution of both DEBUG and user program.

Enter half-word hexadecimal data into a register.

Begin execution of user program at a specified location.

Enter data in floating point.

Enter half-word hexadecimal data.

Display the data contained at the address found at the specified
location.

Display the data found at the address specified in the given register.

Set or remove a memory reference breakpoint.

Restore original contents of the system shared library.

Display the data following the last display location.

Dump to an output file.

Provide status information such as breakpoints set, last routine
referenced, and last directive issued.

Step through execution of user code one or more instructions at a time.

Display traceback information.

Figure 6-2. DEBUG Directives (Sheet 2 of 2)

The following are examples of DEBUG directives:

• 6-4

DI SUBR=500+4,5

If this is the first directive entered under DEBUG or if the last type referenced
(if referenced at all) was S, this directive displays five words, starting at four
words after location 500 in module SUBR. If SUBR does not contain a label 500, this
message is displayed: NO SUCH SYMBOL.

DI 0=(14)/x+((l5))/W

Register 14 contains the base address of an array. Register 15 contains the address
of an index into the array. This directive displays the location indicated by that
index •

60459410 J

HEX SUBR=SOO/X lOOOOC 880

Enters two half-words of hexadecimal <lata at bit address 500 in module SUBR.

BKPT 111/L

Sets a breakpoint at the location corresponding to source line number 111 in the
current module. An error message is displayed if the current module is not at least
111 lines long.

DE/H 4AO/ X-10

Places -10 (in decimal form) in the half-word at 4AO from the beginning of the
current module.

DI O=C840/X

Displays the word with the absolute virtual address of C840.

C tfF

Continues through 15 (#F) breakpoints before returning control to you.

Dump or Display Directives

Enter one of the following to display the contents of up to 16 words of virtual memory.

DISPLAY,[name=][location][/type][,:t_offset/type][,nwords]

Displays nwords of hexadecimal and ASCII data.

DDECIMAL[/H] ,[name=][location][/type][:t_offset/type][,nwords]

Displays nwords of hexadecimal and decimal data.

DFLOAT[/H] ,[name=][location][/type][:t_offset/type][,nwords]

Displays nwords of hexadecimal and floating point data.

IDISPLAY,[name=][location][/type][:t_offset/type][,nwords]

Displays nwords of hexadecimal and ASCII data, starting at the location indicated by
the address specified by the location parameter (indirect addressing).

The dump or display directives use the following parameters:

/H

Indicates that the data to be displayed is half-word data.

60459410 J 6-5 •

• 6-6

name

Name of a module, within the file, relative to which the location parameter is a
reference; or O, in which case the location is an absolute virtual address• An
equal sign must immediately follow the name and precede the location, without
intervening blanks, in the form name=location. Default name when DEBUG is first
started is the main program (or the first module loaded, for non-FORTRAN-generated
code); otherwise, the default name is the name last referenced. If the last
reference was of the form O=location, the location is assumed to be an absolute
address and an associated type of S or L is disallowed.

location

A hexadecimal address, source line number, statement label, simple variable name,
descriptor name, array name, or (hexreg), indicating location at which display is to
originate or, for !DISPLAY, the location containing the address indicating the
location at which display is to originate. When the offset parameter is present,
the location parameter indicates a location relative to which display is to
originate. If the location parameter is omitted, the directive uses the address and
word count from the last display or alter memory directive.

If the location parameter is omitted, the directive uses the address and word count
from the last display or alter memory directive.

type

One of

s

L

x

w

p

the following characters indicating the type of location designated.

Statement label, simple variable name, descriptor name, or array name
(FORTRAN programs only; not applicable to offset parameter)

Source line number (FORTRAN programs only; not applicable to offset
parameter)

Hexadecimal bit address

Hexadecimal word address

Hexadecimal page address

At the beginning of DEBUG execution, default type for the location parameter is S,
default type for location specified as (hexreg) is X; default type for location when
name is specified as 0 is X. For offset, default type at the beginning of execution
is X. After the first use of type for a given parameter, the default type for all
subsequent uses of the parameter is the type that was last referenced.

off set

Hexadecimal number or (hexreg), indicating an upward or downward offset, in words,
from the location indicated by the location parameter. A plus sign or minus sign
must immediately precede the number. The only types that are valid with offset are
X, W, and P.

nwords

Number of words or half-words to be displayed. Default value is 1; maximum allowed
value is 16.

If the number has a# prefix (such as #10), DEBUG interprets the number as a
hexadecimal value; otherwise, DEBUG interprets the number as a decimal value.

60459410 J

(hex reg)

The hexadecimal number of a full-word register containing either the desired value
or a pointer to an indirect chain culminating in the desired value for a location or
offset. hexreg must be enclosed in one set of parentheses. Any additional sets or
parentheses indicate another level of indirect addressing. Any type specification
attached to the parameter applies only to the ultimate value. Intermediate links in
a chain must be hexadecimal bit addresses.

When the controllee file for DEBUG is a FORTRAN program that has been compiled without the S
option, dynamic space fields, variables in common areas, and variables that are parameters
can be displayed and altered using DEBUG directives. Variables in areas declared common can
be displayed by referencing them in the module specified or last referenced. Referencing a
descriptor associated with the currently allocated dynamic space fields for the breakpointed
module and its higher-level modules displays the contents of those fields. (Higher-level
modules are those that have led to the call to the breakpointed module and are linked to it
through previous stack pointers) Variables that are parameters in the breakpointed module
can be displayed by referencing them in the usual way after the prologue of the breakpointed
module has been executed and the variables thereby set to their passed values; during the
prologue, their values are indeterminate.

The following directives display virtual memory forward or backward from the last display
location.

_!OLL [,nwords]

Displays area following last location •

.!!_ACK[,nwords]

Displays area preceding last location.

nwords

Number of words to be displayed, starting from last location displayed. Default
value is the number of words specified by the previous directive; maximum allowed
value is 16.

If the number has a # prefix (such as #10), DEBUG interprets the number as a
hexadecimal value; otherwise, DEBUG interprets the number as a decimal value.

Register Directives

Issue one of the following to display and alter the contents of the program registers.

~G,[/H][,hexreg][,nregisters]

Displays the contents of a full-word or half-word register as hexadecimal and
decimal.

~G, [/H] [,hex reg] [,nregisters]

Displays the contents of a full-word or half-word register as hexadecimal and
floating point.

60459410 J 6-7 •

DREG,[/H][,hexreg] [,nregisters]

Displays the contents of a fullword or halfword register is hexadecimal.

EDREG,[/H] ,hexreg,decidata

Enter full-word or half-word decimal data in registers •

.§f!.EG,[/H] ,hexreg,fltpt

Enter full-word or half-word floating point data in registers.

~G,[/H],hexreg,hexdata

Enter fullword or halfword hexadecimal data into registers •

.!Q!EG,hexreg[,nwords]

Displays data found at the address that is given in the specified register.

The register directives use the following parameters:

• 6-8

/H

Indicates that the data to be displayed in half-word data.

hex reg

Full-word or half-word hexadecimal register number that contains data to be
displayed or into which data is to be entered. If the register number is omitted,
the display register directives use the number and word count from the last display
or the entered register directive. Default is the last value used.

nregisters

Number of registers to be displayed, starting with hexreg. Default value is l;
maximum value allowed is 16. If hexreg is also omitted, default is the last value
used.

If the number has a # prefix (such as #10), DEBUG interprets the number as a
hexadecimal value; otherwise, DEBUG interprets the number as a decimal value.

hexdata

Hexadecimal full-word or half-word data to be entered into n consecutive
registers, starting with hexreg. Values are right-justified with zero fill.

f ltpt

Floating point data to be entered into consecutive full-word or half-word registers,
depending on data type parameters, starting at specified register. E or F format
can be used.

decidata

Full-word or half-word decimal data to be entered into consecutive full-word or
half-word registers, starting at specified register •

60459410 J

nwords

Number of words to be displayed. Default value is l; maximum value allowed is 16.

If the number has a# prefix (such as #10), DEBUG interprets the number as a
hexadecimal value; otherwise, DEBUG interprets the number as a decimal value.

Alter Memory Directives

Memory locations can be altered in either the controllee's region or the system shared
library region. There is a system limitation of only one alteration per word in the shared
region. For example, two FLOAT/H directives cannot be used to set the two half-words in a
word. However, a single FLOAT/H can be used with two floating point values. Also, the
total number of words changed plus breakpoints set in the shared region cannot exceed 20.

Enter one of the following to alter virtual memory •

.!!,EX,[name=]location[/type][_:,offset[/type)][,halfhex]

Enters hexadecimal data.

!SCH, [name=] [location] [/type] [:!:_offset[/type]] [, "ASCildata"]

Enters an ASCII character string.

DECIMAL[/H],[name=][location] [/type] [.:t,offset[/type)][,decidata]

Enters decimal data.

E:.LOAT[/H],[name=][location) [/type) [.:t,offset[/type))[,fltpt)

Enters floating point data.

The alter memory directives use the following parameters:

/H

name

Indicates that the data to be displayed is half-word data.

Name of a module, within the file, relative to which the location parameter is a
reference; or O, in which case the location is an absolute virtual address. An
equal sign must immediately follow the name and precede the location, without
intervening blanks, in the form name=location. Default name when DEBUG is first
started is the main program (or the first module loaded, for non-FORTRAN-generated
code); otherwise, the default name is the name last referenced. If the last
reference was of the form O=location, the location is assumed to be an absolute
address and an associated type of S or L is disallowed.

location

A hexadecimal address, source line number, statement label, simple variable name,
descriptor name, array name, or (hexreg), indicating location at which data is to be
entered. When the offset parameter is present, the location parameter indicates a
location relative to which the data is to be entered.

60459410 J 6-9 •

• 6-10

type

One of

s

L

x

w

p

the following characters indicating the type of location designated.

Statement label, simple variable name, descriptor name, or array name
(FORTRAN programs only; not applicable to offset parameter)

Source line number (FORTRAN programs only; not applicable to offset
parameter)

Hexadecimal bit address

Hexadecimal word address

Hexadecimal page address

Default type when DEBUG is first started is S; otherwise, the default type is the
type last referenced.

At the beginning of DEBUG execution, default type for the location parameter is S,
default type for location specified as (hexreg) is X; default type for location when
name is specified as 0 is X. For offset, default type at the beginning of execution
is X. After the first use of type for a given parameter, the default type for all
subsequent uses of the parameter is the type that was last referenced.

off set

Hexadecimal number or (hexreg), indicating an upward or downward offset, in words,
from the location indicated by the location parameter. A plus sign or minus sign
must immediately precede the number. The only types that are valid with offset are
X, W, and P.

half hex

Half-word hexadecimal data values to be entered into consecutive half-word memory
locations, starting at location specified. Values are right-justified with zero
fill.

ASCIIdata

String of ASCII data to be entered into consecutive character locations, starting at
the position given by location parameter. The ASCII data string must be enclosed in
quotation marks.

decidata

Full- or half-word decimal data to be entered into consecutive full- or half-word
memory locations, beginning at the location specified.

flt pt

Floating point data to be entered into consecutive half- or full-word memory
locations, depending on data type parameters, starting at location specified. E or
F format can be used •

60459410 J

DEBUG limits the number of breakpoints to 8. However, the total number of words
changed plus breakpoints set in the shared region cannot exceed 20. Breakpoints are
set on half-word boundaries. The system restriction of one alteration per word in
the shared region allows only one breakpoint per word in the shared region.

!_KPT,[name=]location[/type][~ offset],IIF } (lname=]location[/type][~ offset][.op.]
[name=]location[/type](~ offset]) IFF

Defines a conditional breakpoint; the condition to be tested must be enclosed in
parentheses. The words IF or IFF ale optional for integer quantities. If the
quantities to be tested are floating-point, IFF must be specified. IFF results in
use of floating-point comparisons; otherwise, the operands are evaluated using
integer (48 bits) compare. If the specified condition is met, user program
execution stops before the instruction located at the breakpoint address is
executed. If the condition is not met, execution continues.

Conditional breakpoints can be set on half-word boundaries, but this uses two
half-words in the user program. If the conditional breakpoint overlaps part of a
full-word instruction in the user program, results can be undefined. When the
condition is not met, the user instructions(s) are executed in a debug buffer area,
not in the original position in the user program. If the conditional breakpoint is
placed at a relative branch, the branch will not execute correctly and the failure
might not be apparent. In addition, if the conditional breakpoint is placed so that
the second half-word is branched to, an illegal instruction abort will usually
result.

For FORTRAN programs, it would be safest to avoid setting conditional breakpoints at
CONTINUE, GOTO, and IF statements. Conditional breakpoints should be set at least
one full word before any label that is branched to in the routine being debugged.
When this is too restrictive, the DISPLAY command can be used to examine the code at
the desired breakpoint location and determine whether the location contains a branch
or part of a full-word instruction.

BKPTR,[name=jlocation[/type][~offset]

Removes an instruction breakpoint. If no parameters are given, all breakpoints in
the program are removed.

EXECUTE,[name=]location[/type][~offset]

Causes DEBUG to start executing the user program at the location specified. If no
parameters are given on the EXECUTE directive, DEBUG starts at the transfer
address. Only one EXECUTE directive can be given per DEBUG run, and it must appear
before any CONTINUE directive.

~ONTINUE [,nbkpts]

Causes DEBUG to continue executing the user program until it encounters the
specified number (nbkpts) of instruction breakpoints. The CONTINUE directive can be
entered at any time after entry of the EXECUTE directive.

60459410 H 6-10.1

MBKPT [/qual],(name=]location[/type][,*]

Defines a memory reference breakpoint. Execution of the user program stops as a
result of a CPU reference to the location specified. Since the breakpoint is
achieved via a data flag branch, execution stops at some time after the actual
reference (see discussion of the data flag branch in the CYBER 200 Model 205
Hardware Reference Manual). It is possible to hit only a single breakpoint as a
result of several very nearly simultaneous references. Only one memory reference
breakpoint may be in use at any time, so setting one implies a removal of any
previous one. The optional trailing '*' specification is available for batch use
only. It allows DEBUG to continue execution after having encountered the memory
reference breakpoint and having recorded it in the output file. This way, you can
record a chronology of reference to a location in a single batch run.

MB KP TR

Remove the memory reference breakpoint.

6-10.2 60459410 H

(hex reg)

The hexadecimal number of a full-word register containing either the desired value
or a pointer to an indirect chain culminating in the desired value for a location or
offset. hexreg must be enclosed in one set of parentheses. Any additional sets or
parentheses indicate another level of indirect addressing. Any type specification
attached to the parameter applies only to the ultimate value. Intermediate links in
a chain must be hexadecimal bit addresses.

Restore Memory Directive

Restores original content of the system shared library that resides in the shared space. If
the directives HEX/ASCII/DECIMAL/FLOAT were used to alter the shared library, then RESTORE
can be used to restore the original contents of the shared library. RESTORE with no
parameters restores all system shared library changes except breakpoints. Breakpoints can
be removed by BKPTR.

RESTORE,[name=][location] [/type] [:t,offset[/type]]

name

Name of a module, within the file, relative to which the location parameter is a
reference; or O, in which case the location is an absolute virtual address. An
equal sign must immediately follow the name and precede the location, without
intervening blanks, in the form name=location. Default name when DEBUG is first
started is the main program (or the first module loaded, for non-FORTRAN-generated
code); otherwise, the default name is the name last referenced. If the last
reference was of the form O=location, the location is assumed to be an absolute
address and an associated type of S or L is disallowed.

location

A hexadecimal address, source line number, statement label, simple variable name,
descriptor name, array name or (hexreg), indicating location at which data is to be
entered. When the offset parameter is present, the location parameter indicates a
location relative to which the data is to be entered.

type

One of

s

L

x

w

p

the following characters indicating the type of location designated.

Statement label, simple variable name, descriptor name, or array name
(FORTRAN programs only; not applicable to off set parameter)

Source line number (FORTRAN programs only; not applicable to offset
parameter)

Hexadecimal bit address

Hexadecimal word address

Hexadecimal page address

Default type when DEBUG is first started is S; otherwise, the default type is the
type last referenced.

60459410 J 6-11 •

off set

Hexadecimal number or (hexreg), indicating an upward or downward offset, in words, I
from the location indicated by the location parameter. A plus sign or minus sign
must immediately precede the number.

Program Control Directives

Issue one of the following to set and remove breakpoints that start and stop program
execution, to dump portions of virtual memory to an output file, or to find the status of
DEBUG directives issued earlier •

.!!_KPT,[name=]location[/type][.!_offset]

Defines an instruction breakpoint. User program execution stops before the
instruction located at the breakpoint address is executed. Setting breakpoints
within the dynamic linker in SHRLIB can produce undefined results.

DEBUG limits the number of breakpoints to 8. However, the total number of words
changed plus breakpoints set in the shared region cannot exceed 20. Breakpoints are
set on half-word boundaries. The system restriction of one alteration per word in
the shared region allows only one breakpoint per word in the shared region •

.!!_KPT,[name=]location[/type][.!_ offset[/type]],

[name=]location[/type][± offset[/type]

[.op.][name]location[type][[± offset[/type]]]

Defines a conditional breakpoint; the condition to be tested must be enclosed in
parentheses. The words IF or IFF are optional for integer quantities. If the
quantities to be tested are floating-point, IFF must be specified. IFF results in
use of floating-point comparisons; otherwise, the operands are evaluated using
integer (48 bits) compare. If the specified condition is met, user program
execution stops before the instruction located at the breakpoint address is
executed. If the condition is not met, execution continues.

When the condition is not met, the user instructions(s) are executed in a debug
buffer area, not in the original position in the user program. If the conditional
breakpoint is placed at a relative branch, the branch will not execute correctly and
the failure might not be apparent.

BKPTR,[name=]location[/type][±offset[/type]]

Removes an instruction breakpoint. If no parameters are given, all breakpoints in
the program are removed.

EXECUTE,[name=]location[/type][.!_offset[/type]]

Causes DEBUG to start executing the user program at the location specified. If no
parameters are given on the EXECUTE directive, DEBUG starts at the transfer
address. Only one EXECUTE directive can be given per DEBUG run, and it must appear
before any CONTINUE directive.

f.ONTINUE [,nbkpts]

Causes DEBUG to continue executing the user program until it encounters the
specified number (nbkpts) of instruction breakpoints. The CONTINUE directive can be
entered at any time after entry of the EXECUTE directive.

60459410 J 6-12

I

I

I

MBKPT [/qual] ,[name=]location[/type] [,*]

Defines a memory reference breakpoint. Execution of the user program stops as a
result of a CPU reference to the location specified. Since the breakpoint is
achieved via a data flag branch, execution stops at some time after the actual
reference (see discussion of the data flag branch in the CYBER 200 Model 205
Hardware Reference Manual). It is possible to hit only a single breakpoint as a
result of several very nearly simultaneous references. Only one memory reference
breakpoint may be in use at any time, so setting one implies a removal of any
previous one. The optional trailing '*' specification is available for batch use
only. It allows DEBUG to continue execution after having encountered the memory
reference breakpoint and having recorded it in the output file. This way, you can
record a chronology of reference to a location in a single batch run.

MBKPTR

Remove the memory reference breakpoint.

STEP [,ninstr]

END

Causes user program execution to continue for ninstr number of instructions from the
last breakpoint encountered. Stepping through a dynamic call to a system shared
library module can produce undefined results.

Terminates both the user program and DEBUG.

~,[name=]location[/type][:t_offset[/type]][,nwords]

Dumps nwords words of virtual memory, starting from location, to an output file.
Output data is in hexadecimal and ASCII.

SNAP,hexreg,R [,nwords]

Dumps the contents of nwords registers, starting with register numbered hexreg.
Output is in hexadecimal and ASCII.

The program control directives use the following parameters:

name

Name of a module, within the file, relative to which the location parameter is a
reference; or O, in which case the location is an absolute virtual address. An
equals sign must immediately follow the name and precede the location, without
intervening blanks, in the form name=location. Default name when DEBUG is first
started is the main program (or the first module loaded, for non-FORTRAN-generated
code); otherwise, the default name is the name last referenced. If the last
reference was of the form O=location, the location is assumed to be an absolute
address and an associated type of S or L is disallowed.

location

A hexadecimal address, source line number, statement label, simple variable name,
descriptor name, or array name, indicating location at which data is to be entered.
When the offset parameter is present, the location parameter indicates a location
relative to which the data is to be entered.

60459410 J 6-12.1 •

type

qual

One of the

s

L

x

w

p

R

RH

H

following characters indicating the type of location or offset designated.

Statement label, simple variable name, descriptor name, or array name
(FORTRAN programs only; not applicable to offset parameters)

Source line number (FORTRAN programs only; not applicable to offset
parameters)

Hexadecimal bit address

Hexadecimal word address

Hexadecimal page address

Register number (conditional breakpoint only)

Half-word register number (conditional breakpoint only)

Hexadecimal half-word address (conditional breakpoint only)

At the beginning of DEBUG execution, default type for the location parameter is S,
default type for location specified as (hexreg) is X; default type for location when
name is specified as 0 is X. For offset, default type at the beginning of execution
is X. After the first use of type for a given parameter, the default type for all
subsequent uses of the parameter is the type that was last referenced.

One of the following mnemonic acronyms denoting the kinds of memory references for
the breakpoint.

R Read

W Write

RW Read or write

off set

Hexadecimal number or (hexreg), indicating an upward or downward offset, in words,
from the location indicated by the location parameter. A plus sign or minus sign
must immediately precede the number. The only types that are valid are X, W, or P.

ninstr

Number of instructions. Default value is l; maximum value allowed is 16.

If the number has a U prefix (such as #10), DEBUG interprets the number as a
hexadecimal value; otherwise, DEBUG interprets the number as a decimal value.

nwords

• 6-12.2

Number of words or registers. Default value is 1.

If the number has a U prefix (such as #10), DEBUG interprets the number as a
hexadecimal value; otherwise, DEBUG interprets the number as a decimal value •

60459410 J

nbkpts

op

Number of instruction breakpoints DEBUG must encounter before it returns control to
you.

The number is interpreted as a decimal number unless it is preceded by the character
#, which indicates that it is a hexadecimal number.

When an nbkpts specification greater than 1 is satisfied, DEBUG displays a frequency
count for each breakpoint hit. Encountering a memory reference breakpoint clears
any unsatisfied nbkpts count. Frequencies of hits for instruction breakpoints are
displayed, but a new CONTINUE[,nbkpts] is needed to resume.

Default value is 1; maximum value is 99999.

Acronym denoting condition for the conditional breakpoint. Values are:

EQ
NE
LT

Equal
Not equal
Less than

LE
GT
GE

Less than or equal to
Greater than
Greater than or equal to

(hexreg)

STAT

The hexadecimal number of a full-word register containing either the desired value
or a pointer to an indirect chain culminating in the desired value for a location or
offset. hexreg must be enclosed in one set of parentheses. Any additional sets or
parentheses indicate another level of indirect addressing. Any type specification
attached to the parameter applies only to the ultimate value. Intermediate links in
a chain must be hexadecimal bit addresses.

Produces a listing of the breakpoints set, the last DEBUG and BKPT directive issued,
the last routine name or common block referenced, the last type referenced, and the
next execution address in the user program; also displays the last module referenced.

TRACE

Displays the current program address and the stack of callers up to the current
callee.

60459410 J 6-12.3/6-12.4 •

LOOK

You can use the LOOK utility to examine statically any mass storage file to which you have
access. It cannot be used during program execution.

After you initiate LOOK execution with the LOOK control statement, the utility responds to
directions received from directives. The modifications made through LOOK directives persist
for the life of the file modified. LOOK remains in execution until an END is received.

LOOK CONTROL STATEMENT

The control statement that initiates execution of LOOK is shown in figure 6-3. The
parameter fname must always be the first parameter, but the order of the INPUT and LIST
parameters can be reversed.

LOOK,fname,INPUT=iname,LIST=onname/olen/disp.

fname

INPUT=iname

LIST=oname/
olen/disp

LOOK DIRECTIVES

Name of the existing mass storage file being modified or examined
by LOOK. To change the file, you must have write access permission
to the file.

Optional. Name of an existing ASCII file containing directives for
LOOK. Default is INPUT=INPUT.

Optional. For batch mode, describes the file to which all LOOK
output is written. For interactive mode, describes the file to
which output is written when the PRINT directive is issued.

oname

olen

disp

Name of the file. Default is OUTPUT.

Integral length of oname in 512-word blocks in
decimal; must be greater than 0 and less than
1001. Default is 128 512-word blocks.

Disposition of oname, currently PR only. Default
is PR.

If oname exists already, it is destroyed before being created.

Figure 6-3. LOOK Control Statement Format

All numbers in all LOOK directives, unless otherwise specified, must be hexadecimal.
Directives can be concatenated by slashes. For example, V/W/HEX,1000, 10 is valid, and it
indicates three directives that LOOK processes consecutively, just as if they had been
issued separately in the same order.

When the parameters for a given directive are meaningless, missing, or illegal, the
directive is ignored and an error message is issued.

60459410 E 6-13

The response format for the directive is as follows:

COMMAND=command keyword
output

The following are examples of LOOK directives.

PRINT/PAGE/HEX,0,8

PRINT indicates that all successive output is to be written to the file OUTPUT.
PAGE indicates that all addresses entered subsequently are page addresses. HEX,0,8
causes a dump of eight full words from the beginning of the first page in the file.

HEX, ,8

Display eight words at the beginning of the first page in the file, assuming the
previous PAGE directive. The three columns displayed indicate the word address,
hexadecimal contents, and contents in ASCII.

SEARCH,'/', ,3

Search the file for the third appearance of the character /, beginning at the start
of the file. The address at which the specified occurrence is found is reported on
the output file.

BIT /EASCII , CO,
'1111' /HEX,CO,l

BIT indicates that all addresses entered subsequently are bit addresses. EASCII
places the ASCII character string 1111 at the half-word address CO. The next
directive displays the word just entered in hexadecimal and ASCII.

Optional parameters can be omitted, and a default value is assigned. If an embedded
parameter is to be omitted, commas must be used to maintain positional integrity; for
example, HEX,,2 defaults the beginning address to O. If the last one or more parameters are
to be omitted, the command must end with the last specified parameter. For example, HEX
defaults address to 0 and length to l; HEX,100 defaults length to 1.

The LOOK directives in figure 6-4 are listed in alphabetical order. The subsequent
directive descriptions are grouped according to a common function.

6-14 60459410 E

Directive

BACK

BASE

BIT

DEC

DISPLAY

EASCII

EDEC

EFL OAT

EHDEC

EHEX

EHFLOAT

END

FLOAT

HDEC

HEX

HFLOAT

HS EAR CH

IDEC

I FLOAT

IHDEC

IHEX

1HFLOAT

Description

Display file portion that immediately precedes portion last displayed.

All addresses in other LOOK directives are to be offset by a specified
amount.

All addresses in other LOOK directives are to be interpreted as bit
addresses.

Dump or display file in full-word decimal format.

All output is to go to the terminal.

Enter ASCII character string in file at specified location.

Enter full-word decimal data items into file at specified location.

Enter full-word floating point data items into file at specified
location.

Enter half-word decimal data items into file at specified location.

Enter half-word hexadecimal data items into file at specified location.

Enter half-word floating point data items into file at specified
location.

End LOOK.

Dump or display file in full-word floating point format.

Dump or display file in hexadecimal and half-word decimal format.

Dump or display file in hexadecimal and ASCII format.

Dump or display file in hexadecimal and half-word floating point

Search file for appearance n of a specified hexadecimal value.

format.

Dump or display file in full-word decimal format (indirect addressing of
file).

Dump or display file in hexadecimal and half-word floating point format
(indirect addressing of file).

Dump or display file in hexadecimal and half-word decimal format
(indirect addressing of file).

Dump or display file in hexadecimal and ASCII format (indirect
addressing of file).

Dump or display file in hexadecimal and half-word floating point format
(indirect addressing of file).

Figure 6-4. LOOK Directives (Sheet 1 of 2)

60459410 E 6-15

Directive

PAGE

PATTERN

PRINT

ROLL

SEARCH

VIRTUAL

WORD

Description

All addresses in other LOOK directives are to be interpreted as page
addresses.

Enter pattern into portion of file.

All output from directives is to go to the output file.

Display file portion that immediately follows portion last displayed.

Search file for appearance n of a specified character string.

All addresses in other LOOK directives are to be interpreted as
sequential from this point on.

All addresses in other LOOK directives are to be interpreted as being
virtual.

All addresses in other LOOK directives are to be interpreted as word
addresses.

Figure 6-4. LOOK Directives (Sheet 2 of 2)

SEARCH Directive

LOOK searches a file for an occurrence of a specified string of characters when the SEARCH
directive is issued as follows:

SEARCH,'string',[addr],[n]

string

addr

n

A string of ASCII characters. The string must be enclosed in single
quotes.

Position in file at which search for the character string is to begin,
designated by a byte address. If addr does not lie on a byte boundary,
it is truncated to the nearest byte boundary. Default is O.

Integer constant greater than zero, indicating the occurrence of the
character string that is to be selected. Default is 1.

Beginning at addr, the file is searched for n occurrences of string, and the address of the
last is returned. If LOOK is in virtual mode, the search goes through the file virtually.
If LOOK is in sequential mode, the search goes through the file sequentially.

If no occurrences of the character string are found, the following message is issued.

CHARACTER STRING NOT FOUND

If m, but fewer than n, occurrences are found when the end of the file is reached, the
following message is issued.

ONLY m OCCURRENCES WERE FOUND

6-16 60459410 E

If the search is successful, the following message is issued.

CHARACTER STRING FOUND AT address

address is the bit address of the first character of the selected string.

HSEARCH Directive

An HSEARCH directive causes LOOK to search the file for a hexadecimal value. The directive
can specify a mask indicating the word fields to be searched.

The following is the directive format.

HSEARCH,hexval,[mask],[addr],[n]

hexval Hexadecimal value to be found (1 to 16 hexadecimal digits).

mask 64-bit mask r presented by 1 to 16 hexadecimal digits. HSEARCH only
searches the bits that are set to 1 in the mask. For example, the mask
OOOOOOOOOOOOOOOF indicates that only the rightmost four bits of each
word are to be searched.

Default is a mask of all 1 bits (all bits are searched).

addr Bit, word, or page address at which the search is to begin. Default is
o.

n Occurrence of the value to be found (integer constant greater than O).
For example, 2 indicates the second occurrence of the value.

0 is processed as 1. Default is 1.

LOOK examines a full 64-bit word. If the value being searched for is not right-justified,
the value specified on the search command must be adjusted accordingly. For example, if you
are searching for the hexadecimal value 7B in the second byte from the right of a word, the
command would be:

HSEA,7BOO,FFOO

If LOOK is in virtual mode, it searches the file by virtual address. If LOOK is in
sequential mode, it searches the file sequentially.

Beginning at the specified address, LOOK searches the file for n occurrences of the
hexadecimal value. It searches until it finds n occurrences or encounters the end of the
file.

If LOOK finds n occurrences of the value, it returns the hexadecimal bit address of the last
occurrence with the following message:

HEX VALUE FOUND AT address

If LOOK finds no occurrences of the specified value, it returns the following message:

HEX VALUE NOT FOUND

If LOOK finds fewer than n occurrences of the value, it returns the following message:

ONLY m OCCURRENCES WERE FOUND

60459410 H 6-17

I

Disposition of Directive Output

If you are an interactive user, you can select whether output is to be displayed at the
terminal or dumped onto the -·output file that was specified in the LOOK control statement.
Initial mode is DISPLAY. The directives that control the disposition of output are as
follows:

PRINT

This indicates that from the time of this directive, or until a DISPLAY or END
directive is entered, all output is to be written to the output file.

DISPLAY

This indicates that from the time of this directive, or until a PRINT or END
directive is entered, all output is to be sent to the terminal.

END

End LOOK.

Display and Dump Directives

The following directives cause dump or display of a specified number of words of the file,
starting at a specified location in the file. For interactive users in display mode, the
display is one word or half-word per line. On the output file, four words are placed in one
line, with duplicate lines being suppressed. The directives are as follows:

DEC,[addr] ,[len]

Displays/dumps file portion as hexadecimal and full-word decimal data.

FLOAT,[addr] ,[len]

Displays/dumps file portion as hexadecimal and full-word floating point data.

HDEC , [hadd r] , [len]

Displays/dumps file portion as hexadecimal and half-word decimal data.

!!§_X,[haddr],[len]

Displays/dumps file portion as hexadecimal and ASCII data.

HFLOAT,[haddr],[len]

Displays/dumps file portion as hexadecimal and half-word floating point data.

6-18

WARNING I
LOOK will extend a file if the file is
attached with write permission, and the user
displays an address past the end-of-file
marker.

60459410 J

The display and dump directives use the following parameters:

addr

len

Position in file at which display/dump is to begin, designated by a word address.
If addr is not on a word boundary, it is truncated to the nearest word boundary.
Default is O.

The number of words displayed/dumped. If len is not specified, it is taken to be 1.

haddr

Position in' file at which display/dump is to begin, designated by a half-word
address. If haddr is not on a half-word boundary, it is truncated to the nearest
half-word boundary.

Corresponding to each of the preceding directives is another LOOK directive. This directive
performs the identical operation, except that the address parameter specified must be the
indirect, rather than the direct, address of the position at which display or dump is to
begin. The directives are:

IDEC,laddr],[len]

Displays/dumps file portion as hexadecimal and full-word decimal data.

IFLOAT,laddr],[len]

Displays/dumps file portion as hexadecimal and full-word floating point data.

IHDEC,[haddr],[len]

Displays/dumps file portion as hexadecimal and half-word decimal data.

IHEX,[haddr],[len]

Displays/dumps file portion as hexadecimal and ASCII data.

IHFLOAT,[haddr],[len]

Displays/dumps file portion as hexadecimal and half-word floating point data.

The display and dump directives use the following parameters:

addr

Address of word containing position in file at which display/dump is to begin; if
addr is not a full-word address, the value of addr is interpreted to be the first
word boundary preceding addr. The low 48 bits of the word at addr is the file
position at which the display or dump begins; if the 48 bits do not constitute a
word address, the display/dump begins on the first word boundary preceding the
address. Default is O.

60459410 E 6-19

len

The number of words displayed/dumped. If len is not specified, it is taken from the
top 16 bits of the word at addr or haddr. Default is 1.

haddr

Address of word containing position in file at which display/dump is to begin; if
haddr is not a full-word address, the value of haddr is interpreted to be the first
word boundary preceding haddr. The low 48 bits of the word at haddr is the file
position at which the display or dump begins; if the 48 bits do not constitute a
half-word address, the display/dump begins on the first half...;..word boundary preceding
the address. Default is O.

Additional data can be displayed or dumped with either of the following directives:

ROLL

Displays or dumps the file portion that immediately follows the portion last
displayed or dumped. The number of words and format are the same as those of the
previous display/dump.

Displays or dumps the file portion that immediately precedes the portion last
displayed or dumped. The number of words and format are the same as those of the
previous display/dump.

Directives for Entering Values

LOOK offers seven directives for entering values.into the file. The directives cause values
to be placed in the file, beginning at a particular location. The operation performed is
not an insertion; that is, it does not cause expansion of the size of the file but is,
instead, a replacement of the current value with another.

Any file on which these operations are performed must have write access. The directives are
as follows:

PATTERN,haddr,laddr,dataol,data1•••,datanl

Enters half-word data pattern into the file between haddr and laddr inclusive.

EASCII,haddr,'string'

Enters character string, starting at haddr.

EDEC,haddr,datao[,data1•••,datanJ

Enters full-word decimal data items, starting at haddr.

EFLOAT,addr,datao[,data1•••,datanl

Enters full-word floating point data items, starting at addr.

6-20 60459410 E

EHDEC,haddr,datao[,data1•••,datanJ

Enters half-word decimal data items, starting at haddr.

EHEX,haddr,dataoldata1•••,datanJ

Enters half-word hexadecimal data, starting at haddr.

EHFLOAT,haddr,datao[,data1•••,datanJ

Enters half-word floating point data items, starting at haddr.

The directives for entering values use the following parameters:

haddr

Position in file at which entry is to begin, designated by a hexadecimal half-word
address; haddr must be on a half-word boundary.

Ladd t·

Position in file at which the last half word entered is to be placed, designated by
a lwxadt.~cimal half-word address; laddr must be on a half-word boundary.

The data to be entered; either a half word or a full word of data, depending on the
directive. Also depending on the directive, datai is a hexadecimal, decimal, or
floating point number that can be represented in a half word or full word.

string

addr

A string of ASCII characters. The string must be enclosed in single quotes. If the
number of characters in the string is not a multiple of 4, the last half word is
blank filled on the right.

Position in file at which entry is to begin, designated by a hexadecimal full-word
address; addr must be on a full-word boundary.

Declaration of Directive Address Type

You can indicate whether addre$ses in LOOK directives specify a quantity of bits, words, or
pages by entering one of the following:

WORD Specifies that all addresses in LOOK directives are to be interpreted as word
addresses.

PAGE Specifies that all addresses in subsequent LOOK directives are to be interpreted
as small page addresses.

BIT Specifies that all addresses in subsequent LOOK directives are to be interpreted
as bit addresses.

60459410 E 6-21

Enter the following to indicate that all addresses in LOOK directives are to be offset.

BASE,offset

off set

Offset to be added to all addresses. The offset is in bits, words, or pages,
depending on the address mode established by BIT, WORD, or PAGE directives.

Initially, BASE is O.

Enter one of the following directives to indicate whether the virtual file being manipulated
is to be accessed as a virtual or physical file.

VIRTUAL

Declares that from this point on, or until VIRTUAL or END is entered,
all addresses referred to in other directives are sequential addresses.
This allows access to the one or two minus pages of a virtual file,
which are not virtually addressable.

Declares that from this point on, or until SEQ or END is entered, all
addresses referred to in other LOOK directives are virtual addresses.

For physical files, directives are meaningless and if entered are ignored; physical files
are always in SEQ mode. At the beginning of a LOOK run, mode is VIRTUAL (unless the file is
physical).

These specifications hold until another of these directives is entered or LOOK ends. The
initial address mode is BIT.

6-22 60459410 E

DUMP
The DUMP utility produces a drop file and a controllee file dump as well as a controllee
load map and controllee cross-reference map. The load map and cross-reference include all
dynamic modules referenced. If DUMP is used on a controllee file, only a controllee load
and cross-reference map are produced.

The following describes the information listed in a dump if the LO=D option is chosen and a
drop file name is specified.

• Program address.

• Last executed instruction, in hexadecimal.

• System error code of the fatal error condition and the address where the error
occurred (also returned in word 139 of the first minus page). Codes are defined in
volume 2 of this manual.

• Subroutine traceback. If the error occurred in a subroutine, the address of each
CALL statement that led to that subroutine is listed.

• List of the open (active) files at the time the error occurred, along with each
file's virtual page address and its length in pages.

• Alpha and Beta words if the word preceding the program address contains an exit
force instruction (refer to System Messages in volume 2 of this manual).

• Contents of the first minus page, in hexadecimal and ASCII. Duplicate lines are
suppressed.

• Contents of the second minus page, in hexadecimal and ASCII.

• Contents of the third minus page, in hexadecimal and ASCII.

• Contents of memory, in hexadecimal and ASCII, from 50 words preceding the program
address to 50 words following the address.

• If the error occurred in a subroutine, the register save area for each caller is
dumped. Dumps are output in reverse sequence of the CALL occurrences that led to
the failing subroutine. Subroutines are always dumped, regardless of whether they
are system-supplied or user-supplied.

The format of the DUMP control statement is shown in figure 6-5. It can be issued either
interactively or from within a batch control sequence.

60459410 G

I NOTE I
The batch processor always dumps the task
drop file information if the task sets its
abort flag and the controllee file has read
access permission. It saves the drop file
as a private file belonging to the user
number executing the task.

6-23 •

DUMP,filename,LIST=listfile,LO=n.

filename

LIST=listf ile

LO=n

Name of drop file or controllee file. This is a required parameter.

Name of output listing file. The default is OUTPUT.

List options in which n can be combinations of the following letter:

D

M

x

F

Produce a drop file and controllee file dump. If
the filename specified is a controllee file, DUMP
does not produce a dump.

Produce a load map.

Produce a cross-reference map, where X implies M.

Produce a register trace back that includes the
contents of the location to which each register
points. This is the default for the controllers
that do not contain any FORTRAN modules. F implies
D.

If LO is not specified, the default is LO=D when filename is a
drop file for a static controllee, LO=DM when the drop file is
for a dynamic controllee, and LO=X when filename is a
controllee file. During batch execution, if a controller
aborts, the batch processor automatically calls dump with LO=D
and LIST=OUTPUT.

Figure 6-5. DUMP Control Statement Format

6~24 60459410 E

CHECKPOINT/RESTART 7

When a task requires large amounts of system resources or a long time to execute, it should
include one or more checkpoint calls. A checkpoint call writes the current state of the
task on a file. If the task later terminates abnormally, the file can be used to restart
the task at the point in its processing at which the last checkpoint call was processed.
Restarting a large task at an intermediate point in its processing saves system resources
and time.

The checkpoint call not only saves the current state of the task containing the checkpoint
call, it also saves the current state of any tasks at lower levels in the controllee chain.
Restarting the task also restarts the tasks at lower levels in the controllee chain.

CHECKPOINTING A TASK

To provide checkpoints for a task, insert one or more calls to the CHKPNT subroutine in the
program. The format of a CHKPNT call is shown in figure 7-1.

CALL CHKPNT (lfn, rst, err, erlfn)

lfn

rst

err

erlfn

Name of file to which the checkpoint information is to be written.
Must consist of one through eight letters or digits, beginning with
a letter, expressed as a Hollerith constant or as a variable, left
justified and blank filled.

Variable to which the system returns a response after checkpoint
and restart.

0 Checkpoint executed

1 Restart executed

Variable to which the system returns a code for any error found in
either checkpoint or restart.

Variable to which the system returns the name, left-justified and
blank filled, of any file in which errors were encountered during
checkpoint or restart. The particular error that causes this
variable to be set is documented in the err variable. If the error
is not associated with a file, blanks are returned in the erlfn
variable.

Figure 7-1. CHKPNT Subroutine Format

60459410 E 7-1

You must ensure that each checkpoint occurs at a logical breaking point in task execution.
Although the CHKPNT routine restores system message control for the checkpoint task and for
any tasks at lower levels in its controllee chain, any messages outstanding when a
checkpoint occurs are discarded. Therefore, you should ensure that the checkpoint occurs
when no messages could be outstanding.

The CHKPNT call specifies the checkpoint file. CHKPNT copies the current state of the task
drop file to the checkpoint file. This file is created by the CHKPNT subroutine. If a file
with the same name already exists, it is returned and/or purged by CHKPNT.

IE low·er-level tasks exist in the controllee chain, CHKPNT creates a checkpoint file for
each task. It forms the checkpoint file names by modifying the file name specified in the
call with an ending digit, 1 through 9. The ending digits correspond to the level of the
controllee in the controllee chain.

The checkpoint files CHKPNT creates are temporary files. To save them as permanent files,
the program could call Q5DEFINE to save the temporary checkpoint files or the job could
include an EXIT statement followed by a DEFINE statement. Execute the EXIT and DEFINE
statements if the task terminates abnormally. The controllee file must also be made
permanent, since it must be attached when the task is restarted.

When a program contains more than one CHKPNT call, -each call could specify the same
checkpoint file name. CHKPNT first copies the drop file to an intermediate file. At the
end of its processing, it renames the intermediate file to the name on the call and destroys
the existing file having that name. Therefore, if the ·task aborts during checkpoint
processing, the previous checkpoint file still exists.

The intermediate checkpoint file name for the task that contains the CHKPNT call is Q5CKP1;
intermediate files for lower-level controllees have the names Q5CKP2 through Q5CKP9.

TASK PROCESSING AFTER THE CHKPNT CALL

After inserting a CHKPNT call in a program, you should also insert statements that check the
values returned in variables specified on the call. These statements are executed
immediately after checkpoint processing and immediately after the task is restarted.

The first check should be of the return state (rst) variable. The variable value indicates
whether the statement is being processed after checkpoint processing or after the task is
restarted.

If rst value indicates that checkpoint processing has just completed, statements should then
check to see whether a checkpoint error code is returned in the error file (err) specified
on the call. Figure 7-2 lists the checkpoint error codes. A Q5DEFINE call could also save
the temporary checkpoint files as permanent files.

If the rst value indicates that restart processing has just completed, statements should
then check to see whether a restart error code is returned in the err variable. Figure 7-2
lists the restart error codes.

7-2 60459410 E

Checkpoint Errors

Code

0

1

2

3

4

)4

-1

Restart Errors

Code

0

10

11

13

14

15

17

18

19

)19

Meaning

No error.

Checkpoint file name specified in erlfn duplicates an existing
local or attached permanent file name.

Input/output connector error.

Mass storage or system table space not available.

Invalid file name supplied by program.

System error with return word formatted as shown in figure 7-3.

Error in bound implicit map entry for file OUTPUT.

Meaning

No error.

Controllee cannot be initialized because system tables are full.

More than nine controllee levels.

Controllee file specified in erlfn cannot be found.

Insufficient time to run controllee specified in erlfn.

System error; restart failed.

Controllee file specified in erlfn is not executable.

Mass storage error for file specified in erlfn.

Error in controllee file or drop file input/output connector
specified in erlf n.

System error with return word formatted as shown figure 7-3.

Figure 7-2. CHKPNT Error Codes

60459410 E 7-3

HI fc cerr

Field Bits

b 0

1-3

f c 4-15

cerr 16-23

serr 24-47

re 48-63

serr re

Meaning

Busy bit; set if I/O in progress.

Unused.

Function code indicating system function in program (refer
to volume 2 of this manual).

Central system error code (cerr) for system function.

Peripheral system error code (serr) for system function.

Respon~e code for system function.

Figure 7-3. Return Word Format

7-4 60459410 E

REST ART ING A TASK
You can restart a checkpointed task by executing the checkpoint file. To execute the
checkpoint file, enter a control statement consisting of the name of the checkpoint file.
The controllee file must be attached at this point, as must any other files that the task is
using.

Restart verifies that all files open at checkpoint time still exist and still occupy the
same file space. The file OUTPUT is recreated if necessary.

Executing the checkpoint file system restarts all controllees in the controllee chain of the
checkpointed task. Once the controllee chain is reestablished, the system returns control
to the checkpointed program at the statement immediately following the CHKPNT call. It
returns any restart error in the err variable specified on the CHKPNT call.

If the restarted task processes another CHKPNT call and the checkpoint file specified on the
call is the same one used to restart the task, the subsequent checkpoint fails. Therefore,
it is recommended that the SWITCH statement be used to change the name of the checkpoint
file before it is used to restart the task.

RESTARTING A TASK THAT USES TAPE FILES

Tape files that were open in the checkpointed task are opened when you restart a task. They
are not repositioned to reflect their positions at checkpoint.

The following are examples of a job containing a checkpointed task and the job that restarts
the checkpointed task:

Job Containing a Checkpointed Task

JOB,ST501.
USER,u=69N777,AC=0076A.
RESOURCE,TL=1999,NT=2.
ATTACH,TAPE1,TAPE2
FTN200.
LOAD.
GO.
EXIT.
DEFINE,GO.
DEFINE,CKGO.
End-of-group indicator

PROGRAM X (INPUT,OUTPUT)
statements to declare variables

CALL Q50PEN('LFN=','TAPE1')
CALL Q50PEN('LFN=' ,'TAPE2')

other processing
CALL CHKPNT('CKGO',IRST,IERR,IERFL)

other processing
CALL QSCLOSE('LFN=','TAPEl')
CALL Q5CLOSE('LFN=','TAPE2')
STOP
END

End-of-information indicator

The preceding job saves the checkpoint file, CKGO, only if the job terminates abnormally and
the DEFINE statement after the EXIT statement is processed.

60459410 E 7-5

Job That Restarts the Checkpointed Task

JOB,STSOl.
USER,u=69N777,AC=0076A.
RESOURCE,TL=1000,NT=2.
ATTACH,TAPE1,TAPE2.
ATTACH,CKGO,GO.
CKGO.
End-of-information indicator

The job that restarts the task requests the tapes, using the same control statements that
were used to request the tapes in the job that checkpointed the task.

7-6 60459410 E

SYSTEM INTERFACE LANGUAGE (NON-1/0 CALLS)

Chapters 8 and 9 of this manual describe the system interface language (SIL). SIL is a set
of subroutines callable by user programs. The user program can be written in FORTRAN, IMPL,
or the META assembler language.

Each SIL subroutine formats and issues a system message. The subroutine description lists
the system message used. All system messages are described in volume 2 of this manual.

The routines described in chapter 9 of this volume perform functions related to I/O. The
routines described in this chapter perform non-I/O functions that enable a task to exchange
information with the operating system.

8

60459410 E 8-1

OVERVIEW
Table 8-1 lists the routines described in this chapter, grouped according to a shared
function.

8-2

Table 8-1. SIL Non-I/O Calls (Sheet 1 of 3)

Inform the system of the task's requirements.

QSADVISE

QSDESBIF

Informs the system of the task's virtual space requirements.

Informs the system that the task should not be rerun if the
system fails.

QSDMPACT Dumps the cumulative accounting file and terminates its use.

QSMEMORY

QSRECALL

QSREPREV

QSRUNBIF

QSSETLP

QSVRACC

Allocates a static stack.

Suspends task execution.

Enables or disables user reprieve processing.

Informs the system that the task should be rerun if the
system fails.

Changes the current large page limit.

Changes the task's accounting rate.

Communicate with the system operator.

QSGETMOP Gets a message sent by the system operator.

QSSNDMOP Sends a message to the system operator.

Determine task processing if the task encounters an error.

QSDISATI

QSENATI

QSRFI

Disables abnormal termination control.

Enables abnormal termination control.

Returns cont~ol from an interrupt routine.

Determine user reprieve processing.

QSREPREV Enables or disables user reprieve processing.

Determine message interrupt processing for the task.

QSDISAMI

QSENAMI

QSRFI

Disables message interrupt processing.

Enables message interrupt processing.

Returns control from an interrupt routine.

60459410 E

Table 8-1. SIL Non-I/O Calls (Sheet 2 of 3)

Initialize and terminate a controllee chain.

QSINIT

QSINITCH

QSSNDSTR

QSTERM

QSTERMCE

Control message

Get

Get

QSGETMCE

QSGETMCR

QSSNDMCE

QSSNDMCR

QSSNDMDF

QSSNDMJC

information

QSGETCTS

QSLSTCH

information

QSCPUTIM

QSDCDDST

QSDCDMSC

QSDCDPFI

QSDCDPLB

QSGETACT

QSGETLP

QSGETTL

QSGETTN

QSGETUID

QSTIME

60459410 E

Initializes or initializes and starts a controllee.

Initializes a controllee chain.

Starts controllee execution.

Terminates a task and its controllee chain.

Disconnects a controllee.

flow within a controllee chain.

Gets a message from a controllee.

Gets a message from a controller.

Sends a message to a controllee.

Sends a message to a controller.

Sends a message to a dayfile.

Sends a message to the job controller.

about the controllee chain.

Gets the controllee's termination status.

Gets information about each task in the controllee chain.

about the system and the task.

Gets the CPU time the task has used.

Gets and decodes information from the Disk Status Table.

Gets and decodes information from the Miscellaneous Table.

Decodes permanent file indices.

Decodes a pack label.

Gets the system resources the task has used.

Gets the task's large page limits.

Gets the task's time limit.

Gets the task's characteristics.

Gets the user number under which the task is running.

Gets the system time and date.

8-3

8-4

Table 8-1. SIL Non-I/O Calls (Sheet 3 of 3)

Get permanent file indices to be decoded by QSDCDPFI.

QSGETPFI

QSLFIHIR

QSLFIPOL

QSLFIPRI

QSLFIPUB

Copy system tables

QSGETIIP

QSGETIRF

QSGETMPG

QSLSTBUT

QSLSTSTB

QSLSTTCB

to

Copies the label and permanent file indices from a pack.

Copies attached permanent or local file index entries,
depending on a hierarchical search.

Copies pool file index entries.

Copies private file index entries.

Copies public file index entries.

user-defined arrays.

Copies the interrupted task's invisible package.

Copies the task's register file.

Copies the interrupted task's minus page information.

Copies the Bank Update Table.

Copies the statistics buffer.

Copies the timecard buffer.

60459410 E

SIL ERROR PROCESSING
You can specify three parameters that return information on the last error (if any)
encountered during call processing. The three parameters are as follows:

• 'STATUS=',stat

• 'ERRMSG=',msg

• 'ERRLEN=',len

SIL returns the status code of the last error encountered in the variable stat (if
specified).

The status code categories are as follows:

0

1-199

200-249

250-9999

10000-11000

Meaning

No errors.

User parameter specification error.
The code number is the ordinal of the parameter within the calling
sequence.

Internal error. Consult a systems analyst.

Error detected by SIL or the operating system.

Error defined by the site.

Each status code is listed with its associated error message in appendix B of this manual.

If the ERRMSG= parameter is specified, SIL returns an 80-byte error message in the variable
specified by the parameter. If the message text is shorter than 80 characters, blanks are
appended until the message is 80 characters long. The actual length of the message text is
returned in the error message length variable specified by the ERRLEN= parameter.

Each error has a severity level, either fatal or warning. Warning errors return control to
the caller. Fatal errors also return control to the caller if the STATUS= parameter is
specified on the call. If the STATUS= parameter is omitted from the call and a fatal error
occurs, the task is terminated, and a return code of 8 is returned to the controller (refer
to Job Termination in chapter 3 of this manual).

Error message routing depends on whether the ERRMSG= parameter is specified and whether the
task is to be aborted as a result of the error. The possible actions are summarized as
follows:

Action

Task to be aborted

Task not to be aborted

ERRMSG=,msg
Specified

Message sent to controller
and to msg variable

Message sent to msg variable

ERRMSG=,msg
Omitted

Message sent to controller

Message sent to controller

Messages sent to the task's controller usually appear in the dayfile of a batch job or at
the terminal of an interactive task.

60459410 E 8-5

SIL CALL FORMAT
Calls to SIL routines have the following general format:

Q5xxxxxx is the name of an SIL routine. SIL parameters, Pi, have two formats, paired and
standalone.

Paired parameters have two parts, a keyword and an option, separated by a comma. The
keyword of a paired parameter always ends with an = character. Specify a keyword as a
literal or as a variable name containing the keyword. Depending on the parameter, the
option may be character data such as an identifier or mnemonic, numeric data such as a
buffer or file length, an array address specified by a subscripted variable name, the name
of a descriptor, or the name of an external subroutine.

The methods of specifying FORTRAN data formats are described in the CYBER 200 Language f Version 1 FORTRAN 200 Reference Manual.

For example, the following call sends a message to the controller. The message is PLEASE
ENTER NAME, and it is 12 bytes long. The request status is returned in a variable called
STATUS.

CALL Q5SNDMCR('MSG=','PLEASE ENTER NAME',
'LEN=',12,'STATUS=',STATUS)

Standalone parameters consist of a keyword only. The keyword does not end with an =
character. A standalone parameter indicates a logical value (yes or no, on or off) by its
presence or omission. Specify the parameter as a literal ('WAIT') or as the name of the
variable containing the parameter (refer to the example in the description of No Operation
Keywords).

The FORTRAN and IMPL compilers convert the call formats shown in this chapter to the
appropriate calling conventions as described in appendix D of volume 2 of this manual. The
descriptor of each character parameter (calling or return) must contain a valid length
portion specifying the length of the parameter in bytes. SIL considers a length portion of
zero as equivalent to a length portion of eight. If the length specified (or assumed) is
longer than the actual literal, the literal must be left justified and the remaining
characters blanks.

SIL parameters are either required or optional. Required parameters are specified in the
individual call formats given later in this chapter. If a required parameter is omitted in
a call, SIL returns a fatal error. Certain calls require one parameter specified from a
required set. If no parameter is specified from the set, the error message specifies the
set number. If an optional parameter is omitted, SIL uses the default value.

Certain calls forbid specification of more than one parameter of a mutually exclusive set of
parameters. If more than one parameter is specified from the set, the error message
indicates that the second parameter specified from the set is illegal.

When a variable containing character code data is specified, the contents of the variable
must be left justified and blank filled to the length specified (or eight bytes). Binary
numeric data (such as buffer and file lengths) must be right justified and zero filled.

Keyword and byte (8-bit bytes) parameters begin on byte boundaries unless otherwise stated
in the parameter description. Binary numeric data must begin on word boundaries.

8-6 60459410 F

NO OPERATION KEYWORDS

SIL recognizes two special no operation keywords, 'NOP=' for paired parameters and 'NOP' for
standalone parameters.

The following example illustrates use of the NOP keyword. The following FORTRAN code tests
a condition and then either terminates a task abnormally, with an error issued, or normally,
with no error issued.

EC = 'NOP'
IF (ERROR) EC = 'ABORT'
CALL QSTERM (EC)

SIL NON-1/0 CALLS

This chapter contains a figure for each SIL routine. The figure contains a call format
specifying the required parameters, followed by parameter descriptions.

The parameter descriptions are divided between calling parameters and return parameters. A
calling parameter specifies a value used by the SIL routine. A return parameter specifies
the name of the variable in which SIL returns a value.

Parameter keywords are listed as FORTRAN literals in the call formats.

60459410 E 8-7

QSADVISE - ADVISE SYSTEM OF VIRTUAL SPACE REQUIREMENTS

The Q5ADVISE subroutine (refer to figure 8-1) informs the operating system of the task's
current virtual space needs. The system uses this information to minimize task paging
requirements. It keeps the virtual space that the task indicates it needs paged in, and it
pages out the virtual space that the task indicates it no longer needs.

Q5ADVISE recognizes the following two methods of specifying a virtual region:

• Specifying a descriptor word containing the address and length of the virtual
region. (Descriptor declaration and initialization are described in the CYBER 200
FORTRAN Language Version 2 Reference Manual.)

• Specifying the name of the first array element in the virtual region. Specify the
length of the region. If the length of the region is not specified, Q5ADVISE
assumes the default value.

Q5ADVISE uses the Advise system message.

Call Format

CALL Q5ADVISE(
{

'INADDR=' ,addr }
'INDESC=' ,desc
'OUTADDR=' ,addr
'OUTDESC=' ,desc

,optional parameters)

Calling Parameters

'INADDR=' ,addr

'INDESC=' ,desc

'INLEN=' ,len

'OUTADDR=',addr

'OUTDESC=' ,desc

Starting virtual bit address of memory the program needs. If
INDESC= is specified, omit INADDR=.

Descriptor containing both the length and the address of memory the
program needs. The upper 16 bits of the word contain the memory
length; the lower 48 bits contain the starting virtual bit address.
If INADDR= is specified, omit INDESC=.

Integer number of memory words the program needs. If INADDR is
specified but INLEN= is omitted, SIL assumes that the task needs the
512 words starting at the address specified by INADDR=. If INLEN=
and INDESC= are specified, SIL uses the length specified by the
INLEN= parameter.

Starting virtual bit address of the memory the program no longer
needs. If OUTDESC= is specified, omit OUTADDR=.

Descriptor containing both the length and the address of memory the
program no longer needs. The upper 16 bits of the word contain the
memory length; the lower 48 bits contain the starting virtual bit
address. If OUTADDR= is specified, omit OUTDESC=.

Figure 8-1. Q5ADVISE Call Format (Sheet l of 2)

8-8 60459410 E

Calling Parameters

'OUTLEN=',len Integer number of memory words the program no longer needs. If
OUTADDR= is specified but OUTLEN= is omitted, SIL assumes that the
task needs the 512 words starting at the address specified by
OUTADDR=. If OUTLEN= and OUTDESC= are specified, SIL uses the
length specified by the OUTLEN= parameter.

Return Parameters

'ERRLEN=',len Error message length in bytes (integer).

'ERRMSG=',msg 80-byte array to which SIL returns an error message.

'STATUS=',stat Status code. Possible values: 0 through 202, 250, 450 through 464.

Figure 8-1. Q5ADVISE Call Format (Sheet 2 of 2)

The following examples of FORTRAN source lines illustrate the two methods of specifying a
virtual region. In each case, the Q5ADVISE call advises the system that it should keep
ARRAY! paged in, but it can page out ARRAY2.

Virtual region specified by address:

DIMENSION ARRAY1(1024), ARRAY2(1024)
CALL Q5ADVISE('INADDR=',ARRAY1(1),
+'INLEN=',1024,'0UTADDR=',ARRAY2(1),
+'OUTLEN=',1024)

Virtual region specified by descriptor:

DIMENSION ARRAY1(1024),ARRAY2(1024)
DESCRIPTOR ADRIN, ADROUT
DATA ADRIN,ADROUT/ARRAY1(1;1024),
+ARRAY2(1;1024)/
CALL Q5ADVISE('INDESC=',ADRIN,
+'OUTDESC=',ADROUT)

60459410 E 8-9

QSCPUTIM - GET CPU TIME

The Q5CPUTIM subroutine (refer to figure 8-2) gets the CPU time (in microseconds) that the
task has used. A task can issue this call ten times (unless the site changes the
installation parameter setting the limit).

Q5CPUTIM uses the Miscellaneous system message.

Call Format

CALL Q5CPUTIM('TIME=',time,optional parameters)

Calling Parameters

None.

Return Parameters

'ERRLEN=' ,len

'ERRMSG= ... ,msg

... TIME= ... , time

Error message length in bytes (integer).

80-byte array to which SIL returns an error
message STATUS= ... ,statStatus code. Possible values: 0 through 202,
250, 375.

Task CPU execution time in microseconds (integer). The variable
must be a full word on a word boundary. It is a required parameter.

Figure 8-2. Q5CPUTIM Call Format

8-10 60459410 E

QS DCDDST - DECODE DISK ST A TUS TABLE

The QSDCDDST subroutine (refer to figure 8-3) copies the disk status table into a buffer it
defines, and it retrieves information from the table copy.

SIL returns the information specified by the return parameters on the call. Specify at
least one return parameter (other than ERRLEN=, ERRMSG=, or STATUS=).

Call Format

CALL QSDCDDST (one or more parameters)

Calling Parameters

'ENTRY=' ,n

Return Parameters

.... PNUM=' , num

.... LABEL= , add r

'DAU=' ,dev

'DSNUM,=' ,dsnum

'DSTDROP=',ddsnum

'DSTPUl=' ,unit

'DSTZIPl=', zip

'ERRS=' , errs

I NOTE I
Specify at least one return parameter (other
than ERRLEN=, ERRMSG=, or STATUS=).

Entry number (1 through 128) from which information is retrieved.
If ENTRY= is omitted, the entry following the entry specified in the
last QSDCDDST call is used. If this call is the first QSDCDDST call
in the task, the information is retrieved from the first entry in
the table.

Pack number (last two characters of the pack name); integer value in
the range 1 to 128.

Address (block number) of the disk label; integer value in the range
11140 to ll9BO.

Device allocation unit; integer value in the range 4 to 180.

Device set number (last two characters of the device set name);
integer value in the range 1 to 128.

Flag indicating whether the set to which the device belongs is
available for drop file allocation; integer value.

0 Not a drop file device

1 Available for drop file allocation

Primary physical unit number; integer value.

Primary zip code; integer value.

Number of fatal errors from AUTOLOAD to first call of QSDCDDST in
the current task.

Figure 8-3. QSDCDDST Call Format (Sheet 1 of 2)

60459410 H 8-11

I

I

I

I

Return Parameters

.... DTYPE=', dtype

'DSTDVNO=' ,dnum

'DSTPRI=' ,flg

'DSTUP=', up

'ERRLEN=', len

'ERRMSG=', msg

'NPACK=', n

'STATUS=' ,stat

Device type; integer value in the range 1 to 5 with the following
meanings:

1 Reserved

2 81912 (18-sector, single density 819)

3 81922 (18-sector, double density 819)

Device number; integer value.

Public pack flag.

0 Public pack

Not a public pack

Flag indicating whether pack is logically up.

0 Pack not up

1 Pack up

Error message length in bytes (integer).

80-byte array in which SIL returns an error message.

Number of entries in the disk status table.

Status code. Possible values: 0 through 202, 250, 505.

Figure 8-3. Q5DCDDST Call Format (Sheet 2 of 2)

8-12 60459410 H

QSDCDMSC - DECODE MISCELLANEOUS TABLE

The Q5DCDMSC subroutine (refer to figure 8-4) copies the miscellaneous table into a buffer
it defines, and then it retrieves information from the table copy.

SIL returns the information specified by the return parameters on the call. Specify at
least one return parameter (other than ERRLEN=, ERRMSG=, or STATUS=).

Call Format

CALL Q5DCDMSC (one or more parameters)

Return Parameters

'A=' ,alt

'AA=' ,alt

'ATIME=',time

'CALDLAY=',flg

'CEUSRNO=' , un

'DATE=' ,date

'DBLOCK=' ,db

'ERRLEN=',len

I NOTE I
Specify at least one return parameter (other
than ERR.LEN=, ERRMSG=, or STATUS=).

Alternator currently running.

Alternator for which the virtual system is running.

Time in the format hh.mm.ss (ASCII characters). The variable must
begin on a word boundary.

Write history delay flag.

User number (in ASCII) that can run on-line diagnostics. The
variable must begin on a word boundary.

Date in ASCII characters. The variable must begin on a word
boundary.

Descriptor block number for whom all pages are locked.

Error message length in bytes (integer).

Figure 8-4. Q5DCDMSC Call Format (Sheet 1 of 5)

60459410 G 8-13

I

Return Parameters

'ERRMSG=' ,msg

'HILGBLK=' ,n

'HISTBET=' ,b

'HISTEXT=', flg

'HISTOFF=' ,off

'HISTSAV=' ,adr

'HISTSIZ=' ,len

'HISTWRT=', flg

'HISTZIP=' ,zip

'IQMN=' ,iqm

'LASTALT=' ,alt

'LPP=' ,n

'MACHID=' ,id

'MACHINE=' ,flg

'MARKER=' ,flg

'MAXPAGE=' , n

'MCLOCK=',clok

'MILLSEC=' ,sec

'MLPG=' ,n

80-byte array in which SIL returns an error message.

Number of large pages minus one.

Beta word for history write.

Record history flag.

History pointer offset.

Starting sector address of the history file.

Length of history file.

Outstanding write history flag.

Zip code of the station containing the history file.

User number of the input queue manager (integer).

Standby alternator.

Default lines per page (IP_LPP value).

Machine identifier.

Hardware type flag. The possible integer values returned are as
follows:

5 CYBER 200 Model 205

Indicator written in the pack label to indicate pack usage at a
particular autoload.

Maximum available page number.

ASCII value of the master clock (Wyman clock). The value is in the
format yymmddhhsspppp where yy is the year, mm is the month, dd is
the day, hh is the hour, ss is the second, and pppp is the decimal
fraction of a second.

Elapsed milliseconds since an arbitrary time base.

Large page limit for the overall machine.

Figure 8-4. Q5DCDMSC Call Format (Sheet 2 of 5)

8-14 60459410 J

Return Parameters

'MXBYCNT=',mb

'MXMO=' ,mx

'MXRR=' ,mxr

'NOPAGE=', n

'NPIPES=',n

'OCCPA=',n

'OPRID=',un

'OPTB2=',op

'OPTCKSM=',op

'OPTHBIT=',op

'OPTLKVS=',op

'OPTNODM=',op

'OPTSPRG=',op

'OPTTSBI=' ,op

'OPTTYOT=',n

'OPZIP=',zip

'OSVERS=',os

Maximum bypass count for a job in the input queue. Refer to Job
Scheduling in chapter 3 of this manual for more information.

Integer indicating the percentage of memory overcommitment allowed.
This value is used when determining whether a job can be scheduled.

Maximum rerun time in system seconds. The combined time limits of
all executing jobs cannot exceed this value.

Number of pages in page table.

Number of floating-point pipelines in the mainframe.

0 One- or two-pipe machine

1 Four-pipe machine

Number of occupied small pages minus one.

Operator user number; the value is hexadecimal, right-justified,
zero-filled.

Copy virtual system option.

Checksumming option.

Record history option.

Virtual system lock option.

No drum option.

Special dedicated memory region option.

Time stamp option.

Operator output TTY number.

Zip code of the first-level station used to communicate with the
AUTOCON module. The value is hexadecimal and right-justified.

Version of operating system that is in use.

0 Version 2.0 or earlier

1 Version 2.1

2 Version 2.2

3 Version 2.3 or later

Figure 8-4. Q5DCDMSC Call Format (Sheet 3 of 5)

60459410 H 8-15

I

Return Parameters

'P=' ,db Descriptor block number currently running the alternator.

'PP=' ,db Descriptor block number for alternator AA.

'PFADDR=',adr Physical disk address of paging file.

'PFLEN=' ,len Length in small pages of paging file.

'PFUNIT=',unt Physical unit of paging file.

'PFZIP=' ,zip Zip code of paging file.

'RECOVFG=' ,n Number of recoveries since last deadstart.

'RERUN=' ,rer Batch job rerun flag.

Y Batch input files are rerun.

N Batch input files are destroyed at autoload.

'RSRTFN=',rsrtinfo File information from which the checkpointed system was restarted.

'RVER=' ,ver

'SDFCOM=' ,flg

'SHPAR=' ,cnt

'SLWS=' ,slws

'SLWSN=',filename

'SLWSO=' ,owner

'SMBKS=' ,n

'SMPLG=' ,n

'STATUS= ... , stat

'SYSID= ... ,id

If RESTART=NO or RESTART=RECOVER was specified for the current
autoload, then rsrtinfo is zero.

Version number of the resident system.

Comments sent to system dayfile flag (integer).

0 Comments do not go to the system dayfile.

Comments do go to the system dayfile.

Shift count for large pages.

Current working set size in blocks for the shared library; zero if
shared libraries are not active.

Retrieve the shared library filename.

Retrieve the name of the shared library owner (user name in binary,
pool name in ASCII, or 0 for public.)

Current small page size in 512-word blocks (integer, 1, 4, or 16).

Number of blocks per large page (always 128).

Status code. Possible values: 0 through 202, 250, 505.

If the current system uses a system pool, the system pool name is
returned; otherwise, the system identifier is returned (one to eight
characters, left-justified, blank filled).

Figure 8-4. QSDCDMSC Call Format (Sheet 4 of 5)

8-1 f> 60459410 J

Return Parameters

'SYSPOOL=',n

'SYSUSER=',sysun

'TIME=' ,elk

'TLSBU=', tl

'VPTI=' , vpt

'VSSADDR=',adr

'VSSLEN=' ,len

'VSSUNIT=' ,unt

'VSSZIP=' ,zip

'VVER=', ver

'WSZIP=',zip

System pool flag (left-justified, blank-filled).

Y System pool used in the current system. SYSID returns
the system pool name.

N System pool not used in the current system.

Binary value of the system user number.

Microsecond clock.

Units in which the job time limit is measured. SIL returns one
of the following binary values:

0 System seconds

1 SBUs

Virtual process table index.

Physical disk address of virtual system recovery file.

Length of virtual system recovery file.

Unit number for virtual system recovery file.

Zip code of station for virtual system recovery file.

Version number of virtual system.

Workstation zip code.t

tThe necessary software and hardware to support a workstation connection are products of
ETA Systems, Inc.

Figure 8-4. Q5DCDMSC Call Format (Sheet 5 of 5)

60459410 J 8-17

I

I

QSDCDPFI - DECODE PACK FILE INDEX

The Q5DCDPFI subroutine (refer to figure 8-5) retrieves information from a pack file index
entry. Call the Q5GETPFI, Q5LFIPRI, Q5LFIPUB, or Q5LFIPOL subroutine to get a copy of the
file index entry before issuing the Q5DCDPFI call.

SIL returns PFI information according to the parameters specified on the Q5DCDPFI call.
Specify at least one return parameter (other than ERRLEN=, ERRMSG=, and STATUS=).

The return parameters specified must be appropriate for the device type of the file index
entry. If the QSDCDPFI call specifies mass storage or tape parameters for a file connected
to a terminal, Q5DCDPFI returns a warning error (status code 263).

Call Format

CALL QSDCDPFI(optional parameters)

Calling Parameters

'ENTRY=' ,n

'MYFILE=' ,ary

'MYLEN=' ,len

'STLEN=' ,stlen

Return Parameters

'ACS=' ,acs

I NOTE I
Specify at least one return parameter (other
than ERRLEN=, ERRMSG=, or STATUS=).

Relative entry number (beginning with 1) of the file index entry to
be decoded. If ENTRY= is omitted, SIL uses the entry number
specified on the previous QSDCDPFI call plus one. If the task has
not previously called the QSDCDPFI routine, the default is 1. The
ENTRY= parameter and the MYFILE= parameter are mutually exclusive.

Sixteen-word array containing a user-supplied file index entry. The
array must begin on a word boundary. If MYFILE= is omitted, SIL
decodes the file index entry obtained by the last Q5GETPFI,
QSLFIPOL, QSLFIPRI, or QSLFIPUB call and specified by the ENTRY=
parameter. The MYFILE= parameter and the ENTRY= parameter are
mutually exclusive.

Length of the array specified by the MYFILE= parameter. MYLEN= is
required if MYFILE= is specified. The length specified must be 16.

Segment table length used with the SEGADR= and SEGLEN= parameters.
The length specified must be 4.

Access permission set (left-justified, blank filled).

If the file is

Private file

Pool file

Public file

QSDCDPFI returns

Access permission set of caller.

Pool boss access permission set.

General access permission set.

Figure 8-5. Q5DCDPF1 Call Format (Sheet 1 of 11)

8-18 60459410 G

Return Parameters

'APF=',x

'ATT=',cnt

'AU=',blocks

'BT=',bt

'DOLA=',dat

ACS=,acs returns a one- to five-character string. If no access is
allowed, the string is NONE. Otherwise, the string is composed of
the following letters:

R Read permission

w Write permission

A Append permission

M Modify permission

x Execute permission

Access permission flag.

0 File does not have a file index table entry extension.

File has a file index table entry extension.

Attached count (integer). For private files, the value returned is
the number of users that have the file attached or privileged open;
for pool and public files, the value is the number of users that
have the file open.

Allocation unit. The number of 512-word blocks that are allocated
when the file is extended. Blocks is an integer value in the range
of 1 to 65,535.

Blocking type (ASCII, left justified, blank filled).

blank Non-SIL file

c Character count blocking

I Internal blocking

K Record count blocking

Date of last access to the file returned in the following
format (right justified, zero filled). An access is defined as
an open but not an attach. For more information, refer to the
FILE! description in volume 2 of this manual.

yy ddd

Figure 8-5. Q5DCDPFI Call Format (Sheet 2 of 11)

60459410 F 8-19

Return Parameters

'DOLM=',dat

'DORG=' ,dat

'DT=' ,dt

'DUP=' ,dup

'ERRLEN=',len

'ERRMSG=' ,msg

'FACT=',acct

.... FC=' ,fc

Field Bits

0-47

yy 48-54

ddd 55-63

Content

Unused

Last two digits of the year

Number of days since the beginning of the
year, 1 through 366

Date of last open request to this file with write access (right
justified, zero filled). The date is returned in the same format as
the date returned by the DOLA=parameter. For more information,
refer to the FILEI description in volume 2 of this manual.

Date this file was originated (right justified, zero filled). The
date is returned in the same format as the date returned by the
DOLA= parameter. For more information, refer to the FILEI
description in volume 2 of this manual.

File device. SIL returns one of the following ASCII values (left
justified, blank filled).

MS Mass storage

NT Magnetic tape

TE Interactive terminal

Duplicate file name flag. It is set to #D if a duplicate file entry
exists; otherwise, it is set to 1.

Length of the error message in bytes (integer).

80-byte array to which SIL returns an error message.

ASCII account number (8 bytes, left justified, blank filled).

File category. SIL returns one of the following ASCII values (left
justified, blank filled):

B Batch input file

N Not defined

s System-generated drop file

u User file

D User-generated drop file

Figure 8-5. Q5DCDPFI Call Format (Sheet 3 of 11)

8-20 60459410 F

Return Parameters

'FG=', f g

'FI=', f i

'LFN=' ,lfn

'LOCAL=',loc

'MNR=' ,mnr

'MPN=' ,mpn

'MXR=' ,mxr

'OSTAT=' ,ostat

File acquisition method. SIL returns one of the following ASCII
values (left-justified, blank filled):

Y The user created the file.

N The user was given the file.

Privileged task flag. SIL returns one of the following ASCII values
(left-justified, blank filled):

Y Task is privileged.

N Task is not privileged.

File name (ASCII, 8 bytes, left-justified).

Indicates that the file is local or permanent. SIL returns one of
the following ASCII values (left-justified, blank filled):

N Not local (permanent)

Y Local

Minimum record length in bytes.

A master project number consisting of one to three alphanumeric
characters.

Maximum record length in bytes.

Output file family status code. Possible values 1 through 31:

ostat

0

2

3

4

5

6

7

8

9

Status

Normal status.

Destination LID disabled.

Destination not responding.

Destination rejecting file.

SIL error occurred during file tran.sfer.

Diverted.

Hardware path to LID not avilable.

System error occurred during file transfer.

RHF error occurred during file transfer.

RWF error occurred during file transfer.

10-27 Reserved by Control Data.

28-31 Reserved for installations.

Figure 8-5. Q5DCDPFI Call Format (Sheet 4 of 11)

60459410 J 8-21

I

I
Return Parameters

... PC= ... ,pc

... PRODTN= ... ,prod

... PTRPFIL= ... , pfi

'PURGE=',purge

... RCT= ... ,rct

... REF= ... ,n

'RMK= ... ,rmk

... R~= ... , rp

... RT= ... ,rt

Padding character (ASCII, 1 byte, left-justified) •

Indicator of whether a file is a production file or not. SIL
returns one of the following ASCII values (left-justified,
blank-filled):

Y File is a production file.

N File is not a production file.

Pointer into pack file index (PFI) for this entry relative to the
first page of the PFI. It is set to #FFFF for local files.

Indicator of whether the file has been flagged as purge only. SIL
returns one of the following ASCII values (left-justified, blank­
filled):

Y File has purge-only access.

N File does not have purge-only access.

Front-end communication type. SIL returns one of the following
ASCII values (left-justified, blank-filled):

RHF Remote Host Facility

NRHF No Remote Host Facility

RWF Remote Workstation Facility

Number of times the file has been opened or executed.

Record mark character (ASCII, 1 byte, left-justified).

Retention period of the file in days (integer) •

Record type. SIL returns one of the following ASCII values:

B System block

F ANSI fixed length

L CYBER Record Manager control word

R Record mark delimited

u Undefined structure

w Control word delimited

Figure 8-5. QSDCDPFI Call Format (Sheet 5 of 11)

8-22 6fr459410 J

Return Parameters

'SFO=',sfo

'SLEV=',sl

'ST=',st

'STATUS=',stat

'TLR=',tlr

'TOLM=',time

'TORG=',time

'TYPE=',typ

'USER=',un

'VRI=',vri

'WLEN=',len

'XCL=',x

'ZIP=',zip

SIL file organization. SIL can return the following ASCII
values (left-justified, blank-filled):

D Direct access

S Sequential access

Security level. SIL returns an integer from one through eight.

Site identifier. (ASCII, 3 bytes, left-justified). The
installation determines the site identifiers. Refer to the
FILE! description in volume 2 of this manual for more
information.

Status code. SIL returns one of the following values: 0
through 199, 250, 261, 262, 263, 504, 505, 506, 508.

Time of last open request. SIL returns an integer representing
the system clock time, in seconds since midnight, at which the
file was last opened.

Time of last write access. SIL returns an integer representing
the system clock time, in seconds since midnight, at which the
file was last opened for write access.

Time of file creation. SIL returns an integer representing the
system clock time, in seconds since midnight, at which the file
was created.

File type. SIL returns one of the following ASCII values
(left-justified, blank-filled):

PD Physical data file

VC Virtual code file

User number (binary).

Index into variable rate accounting table (applies to virtual
code files only).

File length in 512-word blocks.

Indicates whether the file can be shared.

0 No task has exclusive use of the file.

1 A task has exclusive use of the file.

Zip code for the site identifier specified by the ST parameter.

Figure 8-5. Q5DCDPFI Call Format (Sheet 6 of 11)

60459410 H 8-23 I

I

I

Return Parameters for Mass Storage Files Only

'ACT=',act

'ATJDN=',jdn

'CKJDN=',jdn

'CM=',cc

'CONT=',con

'DC=',dc

'DI=',di

Number of active I/O connectors for the file.

The job descriptor number to which the file is attached
(right-justified, zero-filled). The possible integer values are
through 2047. If multiple jdns have the file attached, multiple
returns are made (one per top).

The job descriptor number of the checkpointed file (right-justified,
zero-filled). The possible integer values are 1 through 999.

Code conversion to be performed at the access station. SIL can
return one of the following ASCII values (left-justified,
blank-filled):

BI Binary.

DI Display code (64-character set).

EC Extended display code (128-character set).

File contiguity as set when the file was created. SIL returns one
of the following ASCII values (left-justified, blank-filled):

y File is contiguous.

N File is not contiguous.

Disposition code. If DC= is omitted, SIL assumes that the file is a
scratch file. SIL returns one of the following ASCII values
(left-justified, blank-filled):

IN Input for batch processing.

LR Print on a 580-12 line printer.

LS Print on a 580-16 line printer.

LT Print on a 580-20 line printer.

NONE No disposition code set.

PR Print on any available printer.

PU Punch.

Pl Print on a 501 line printer.

P2 Print on a 512 line printer.

SC Scratch file; destroy at task termination.

Job name (eight 6-bit display code characters, right-justified,
zero-filled).

Figure 8-5. Q5DCDPFI Call Format (Sheet 7 of 11)

8-24 60459410 H

Return Parameters for Mass Storage Files Only

""DUMP="" ,dmp

""EC="" ,ec

""EXT="" ,ext

""FIJDN="" ,jdn

""FISTID="" ,id

""FO="" ,fo

Dump flag. Integer value flag indicates whether the file has been
dumped since it was created or last modified.

0 File has not been dumped

1 File has been dumped

Print or punch representation of the file. SIL returns one of the
following ASCII values (left-justified, blank-filled):

26 026 punch format

29 029 punch format

80 80-column binary punch format

B4 BCD 48-character set

B6 BCD 64-character set

A4 ASCII 48-character set

A6 ASCII 64-character set

A9 ASCII 95-character set

NONE No external characteristics set

Extension permission flag as set when the file was created. SIL can
return one of the following ASCII values (left-justified,
blank-filled):

Y File is extendable

N File is not extendable

Job descriptor number (binary). Upon return, jdn is set to the FI_
JDN field of FILEI and may have integer values from 1 through 2047.

Terminal identifier (two 6-bit display code characters, right­
justified, zero-filled). For more information, refer to the FILEI
description in volume 2 of this manual.

File organization. SIL returns one of the following ASCII values
(left-justified, blank-filled):

B Unstructured binary

S Non-SIL structured

U Unstructured ASCII

Figure 8-5. Q5DCDPFI Call Format (Sheet 8 of 11)

60459410 H 8-25

I

I 8-26

Return Parameters for Mass Storage Files Only

'GAGS=' ,acs

'GIVETUl=',un

'HBW=',ibyte

'IC=' ,ic

'LODLEN=',len

... ORGOWNR=' , un

'OSVERS=',os

General access permission set. GACS=,acs returns a one- to five­
character string (left-justified, blank-filled). If no access is
allowed, the string is NONE. Otherwise, the string is composed of
the following letters:

R Read permission

w Write permission

x Execute permission

A Append permission

M Modify permission

Binary user number of the user who gave this file to the privileged
system task.

The highest byte written to the file. ibyte is an integer in the
range of 0 to ·8 billion.

File format. SIL can return one of the following ASCII values
(left-justified, blank-filled):

AS 8-bit ASCII; ANSI carriage control

BI Binary

PA 8-bit ASCII; ASCII carriage control

NONE No internal characteristic set

Length, in 512-word blocks, of the program's drop file. If the file
is not a virtual code file, this field is zero.

User number of the originator (binary) •

Returns a value indicating the release system version on which the
file was created.

0 Version 2.0 or earlier

1 Version 2.1

2 Version 2.2 or later

Figure 8-5. Q5DCDPFI Call Format (Sheet 9 of 11)

60459410 H

Return Parameters for Mass Storage Files Only

'OT=',ot

'OVFL=',overflow

'PARTIAL=',part

'PNUM=',pnum

'POOL=',pool

'RERUN=',flg

'SADDR=',adr

'SEGADR=',adr

'SEGLEN=',len

'TID=' ,tid

60459410 H

Origin type of a file destined for the access station. SIL returns
one of the following ASCII values (left-justified, blank-filled):

B Batch origin

E Remote batch origin

I Interactive origin

Indicates whether one or more segments of the file have overflowed
onto another device. overflow is an ASCII character, either Y or N,
left-justified, blank-filled, full-word aligned.

Indicates whether the entry being decoded is for a f i.le that has
some of its segments unavailable because a device is down or lost
because of file truncation. part is an ASCII character, either Y or
N, left-justified, blank-filled, full-word aligned.

The pack number on which the file resides. The number is
hexidecimal, right-justified, and zero-filled.

Pool name (ASCII, left-justified, 8 bytes).

Rerun flag (applies to batch input files only). SIL returns one of
the following ASCII values:

Y Rerun batch job

N Do not rerun batch job

Disk address of the first block of the file.

Four-word array in which SIL returns the file segment addresses, one
address per word. The array must begin on a word boundary. If
SEGADR is specified, the STLEN parameter is required. Zero values
are returned for files created on a 2.2 or later release system.

Array in which SIL returns the file segment lengths, one length per
word. The array must begin on a word boundary. If SEGLEN is
specified, the STLEN parameter is required. Zero values are
returned for files created on a 2.2 or later release system.

Terminal identifier for the front end (seven 6-bit display code
characters, right-justified, zero-filled). Refer to the FILE!
description in volume 2 of this manual for more information.

Figure 8-5. Q5DCDPFI Call Format (Sheet 10 of 11)

8-27 I

I 8-28

Return Parameters for Tape Files Only

'ADO=' ,ado

'CCS=' ,cm

'CONVERT=',cvt

'DEN=',den

'LPROC=',lp

'MFN=' ,mfn

'MPRU=' ,mpru

'REEL=' , reel

'RPB=', rpb

'TF=',tf

Assembly/disassembly option used for CYBER 170/CYBER 200 tape
interchange (ASCII, left-justified, blank-filled). If selected,
each 60-bit portion of tape data read is stored in a CYBER 200
64-bit word, with the upper 4 bits being zero.

BI Binary; no assembly/disassembly performed

BW 60 to 64; assembly/disassembly performed

Character conversion mode for tape files (ASCII, left-justified,
blank-filled).

AS ASCII character set

EB EBCDIC character set

Indicates whether tape data is converted to and from character codes
(ASCII, left-justified, blank-filled).

Y Character conversion is performed

N Character conversion is not performed

Tape recording density (ASCII, left-justified, blank-filled).

PE 1600 cpi

GE 6250 cpi

Tape label processing option (ASCII, left-justified, blank-filled).

R Read existing labels (position and verify HDRl label)

W Write new labels

Multifile set name (eight ASCII characters).

MPRU size in bytes for V format tapes (integer).

Reel number of the current volume within the multivolume file
(integer from 1 through 255).

Records per block for K blocked tapes (integer).

Tape format (ASCII, left-justified, blank-filled).

I Internal

LB Large block

SI Scope internal

V Variable

NV Non-ANSI, variable

Figure 8-5. QSDCDPFI Call Format (Sheet 11 of 11)
60459410 H

Q5DCDPLB - DECODE PACK LABEL

The Q5DCDPLB subroutine (refer to figure 8-6) retrieves information from a copy of a pack
label. Issue a QSGETPFI call to get a copy of the pack label before issuing the Q5DCDPLB
call.

SIL returns the information specified by the return parameters on the call. Specify at
least one return parameter (other than ERRLEN=, ERRMSG=, or STATUS=).

Call Format

CALL Q5DCDPLB('PN=',pn,optional parameters)

Calling Parameters

'PN=' ,pn

Return Parameters

'BADSFN=',badsfn

'CREATE=' , da t

'DAU=',blocks

'DSET=',devset

'ERRLEN=',len

'ERRMSG=' ,msg

'EXPIRE=' , da t

'LABEL=',adr

'PACKLEN=',len

'PFIE=' ,n

I NOTE I
Specify at least one return parameter (other
than ERRLEN=, ERRMSG=, or STATUS=).

Name of the pack from which SIL gets the pack label. This parameter
is required.

Bad sector filename (ASCII, 8 bytes, left-justified).

Creation date (ASCII characters in the format mm.dd.yy).

The disk allocation unit value for the device. blocks is the
integer number of 512-word blocks per allocation unit. The value
range is from 4 blocks to one cylinder (180 blocks on 819s).

The device set name to which this pack belongs. devset is an ASCII
string of eight characters, word aligned, left-justified, and blank
filled.

Error message length in bytes (integer).

80-byte array in which SIL returns an error message.

Expiration date (ASCII characters in the format mm.dd.yy).

Disk block address of this label.

The length (an integer value) of the device in 512-word blocks.

Entry number of this entry within the pack file index, counting from
zero.

Figure 8-6. Q5DCDPLB Call Format (Sheet 1 of 2)

60459410 E 8-29

I

Calling Parameters

"'PFIL="' ,len

"'PFILOC="',adr

"'SERIES="', s

'STATUS="',stat

"'TYPE="',typ

"'UPDATE="',dat

"'VOLN=',vol

Original length of the pack file index.

Disk block address of the first block of the permanent file index.

The ASCII characters, " ~ l" (2 bytes, binary value 112031).

Status code. Possible values: 0 through 199, 202, 250, 261, 505.

Type of disk pack. The possible values returned are 2 (81912) and 3
(81922).

Date of the last update of the disk (ASCII characters in the format
mm.dd.yy).

Volume field (ASCII, 8 bytes, left-justified).

Figure 8-6. Q5DCDPLB Call Format (Sheet 2 of 2)

8-30 60459410 H

QSDESBIF - DESTROY BATCH INPUT FILE

The QSDESBIF subroutine (refer to figure 8-7) requests that the system destroy the specified
batch input file if the system fails.

QSDESBIF uses the Miscellaneous system message.

The following example of FORTRAN source lines requests that the system destroy the batch
input file if the system fails. The name of the batch input file is obtained from a copy of
its file index entry via calls to QSLFIPRI and QSDCDPFI.

CHARACTER*8 LFN

CALL Q5LFIPRI('BATCH','ATTACHED')
CALL Q5DCDPFI('LFN=',LFN)
CALL QSDESBIF('LFN=',LFN)

Call Format

CALL QSDCDDST(one or more parameters)

Call Format

CALL QSDESBIF('LFN=',lfn,optional parameters)

Calling Parameters

'LFN=' ,lfn

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=' ,stat

Name of the batch input file to be destroyed. The name must be left
justified, with blank fill in a full word on a word boundary. This
is a required parameter. Specify the LFN= parameter on a QSDCDPFI
call to determine the name of the batch input file.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 202, 250, 303, 400.

Figure 8-7. QSDESBIF Call Format

60459410 E 8-31

QSDISAMI - DISABLE MESSAGE INTERRUPTS

The Q5DISAMI subroutine (refer to figure 8-8) disables message interrupt processing by the
task. Message interrupt processing is enabled by a Q5ENAMI call.

Q5DISAMI uses the Program Interrupt system message.

Call Format

CALL Q5DISAMI(optional parameters)

Calling Parameters

None.

Return Parameters

'ERRLEN=' ,len Error message length in bytes (integer).

'ERRMSG=' , msg 80-byte array to which SIL returns an error message.

'STATUS=' ,stat Status code. Possible values: 0 through 202, 250.

Figure 8-8. Q5DISAMI Call Format

8-32 60459410 E

QSDISATI - DISABLE ABNORMAL TERMINATION CONTROL

The QSDISATI subroutine (refer to figure 8-9) disables the abnormal termination control
feature described under Abnormal Termination Control in chapter 3 of this manual.

QSDISATI uses the Abnormal Termination Control system message.

Call Format

CALL QSDISATI(optional parameters)

Calling Parameters

None.

Return Parameters

'ERRLEN=',len Error message length in bytes (integer).

'ERRMSG=' ,msg 80-byte array to which SIL returns an error message.

'STATUS=' ,stat Status code. Possible values: 0 through 202, 250.

Figure 8-9. QSDISATI Call Format

60459410 E 8-33

QSDMPACT - DUMP CUMULATIVE ACCOUNTING BUFFER

The Q5DMPACT subroutine (refer to figure 8-10) dumps the cumulative accounting file to
permanent storage and terminates the temporary file. Only a privileged user can issue the
Q5DMPACT call.

Q5DMPACT uses the Accounting Communication system message.

Call Format

CALL Q5DMPACT(optional parameters)

Calling Parameters

None.

Return Parameters

'ERRLEN=' ,len Error message length in bytes (integer).

'ERRMSG=' ,msg 80-byte array to which SIL returns an error message.

'STATUS=', stat Status code. Possible values: 0 through 202, 250.

Figure 8-10. Q5DMPACT Call Format

8-34 60459410 E

QSENAMI - ENABLE MESSAGE INTERRUPTS

The QSENAMI subroutine (refer to figure 8-11) enables messages from an interactive terminal
to interrupt the task. When the task is interrupted, the specified interrupt subroutine is
executed. To return control to the interrupted task, the interrupt subroutine must issue a
QSRFI call.

QSENAMI uses the Program Interrupt system message. Message interrupt processing is
described in the Program Interrupt system message description in chapter 2 of this manual.

Call Format

CALL QSENAMI('SUBNAME=' ,sub,optional parameters)

Calling Parameters

'SUBNAME=',sub

'TERMINAL'

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' , ms g

'STATUS=' ,stat

Name of your interrupt subroutine. The subroutine (declared
external in the calling program) is called if a message interrupt
occurs. This is a required parameter.

Indicates that you interrupted the program with terminal messages
preceded by the left justified characters (sc)I; (sc) is a special
character defined by the installation (refer to Interactive Request
Lines in chapter 3 of this manual). If 'TERMINAL' is omitted, all
messages from a terminal interrupt the program.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 202, 250, 380.

Figure 8-11. QSENAMI Call Format

The following example of FORTRAN source lines enables message interrupt processing and
specifies INTRUPT ·as the interrupt subroutine. A $I interactive request line interrupts the
task and gives control to the INTRUPT subroutine.

EXTERNAL INTRUPT

CALL QSENAMI('SUBNAME=',INTRUPT,'TERMINAL')

60459410 E 8-35

The following example of an interrupt subroutine returns a status message for each
interrupt. A status message is assigned by referencing an index variable and an array of
character strings in a common block. It is assumed that the main program updates the status
index variable.

SUBROUTINE INTRUPT
COMMON/COMl/STATINDX, STATABLE(S)
INTEGER STATINDX
CHARACTER*80 STATMSG, STATABLE
STATMSG = STATABLE(STATINDX)
CALL Q5SNDMCR ('MSG=',STATMSG,'LEN=' ,80)
CALL QSRFI
RETURN
END

60459410 E

QSENATI - ENABLE ABNORMAL TERMINATION CONTROL

The Q5ENATI subroutine (refer to figure 8-12) enables the abnormal termination control
feature described under Abnormal Termination Control in chapter 3 of this manual.

Q5ENATI uses the Abnormal Termination Cont~ol system message.

Call Format

CALL Q5ENATI('SUBNAME=' ,sub,optional parameters)

Calling Parameters

'ERRLIM=', lim

'SUBNAME=' ,sub

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=', stat

The maximum number (1 to 256) of error recoveries (excluding time
limit errors). When this limit is exceeded, abnormal termination
control aborts the task. If lim exceeds 256, the value of its
lowest 8 bits is used (no error is recorded). If ERRLIM=,lim is
omitted, the default limit is 25 recoveries.

The name of your interrupt subroutine or an entry point within your
interrupt subroutine. Control transfers to the entry point if a
predefined system fatal error occurs. You must declare the
subroutine as external in the calling program. This is a required
parameter.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 299, 380, 381.

The following example of FORTRAN source lines enables abnormal termination control and
specifies ATSUB as the interrupt subroutine.

EXTERNAL ATSUB

CALL QSENATI('SUBNAME="",ATSUB)

Figure 8-12. QSENATI Call Format

60459410 E 8-37

QSGET ACT - GET RESOURCE USAGE ST A TISTICS

The Q5GETACT subroutine (refer to figure 8-13) obtains user accounting information from the
controllee minus page. Specify at least one return parameter (other than the ERRLEN=,
ERRMSG=, and STATUS= parameters).

The task can use the values returned in the SYSCHRG= and USRCHRG= variables to determine
whether it is approaching its time limit. The SYSCHRG= and USRCHRG= parameters return the
number of system time units (STUs) and system billing units (SBUs) used by the task. Either
STUs or SBUS are used by the system to limit resource usage; the unit used depends on a
system variable setting.

Q5GETACT uses the User/Accounting Communication system message.

Call Format

CALL Q5GETACT(parameters)

Calling Parameters

None.

Return Parameters

"'CPUTIME="' ,tim

"'CWSSIZ="' ,siz

"'DPLPEXP="' ,n

"'DPLPFLT="',n

"'DPLPIMP="', n

"'DPSPEXP="' ,n

"'DPSPFLT="' ,n

"'DPSPIMP="', n

"'DPXFEXP="' ,n

I NOTE I
Specify at least one return parameter (other
than ERRLEN=, ERRMSG=, or STATUS=).

User execution CPU time in microseconds.

Current working size.

Number of large page explicit reads and writes to or from mass
storage.

Number of mass storage reads due to large page faults.

Number of large page implicit writes to mass storage.

Number of small page explicit reads and writes to and from mass
storage.

Number of mass storage reads .due to small page faults.

Number of small page implicit writes to mass storage.

Number of sectors transferred to mass storage for explicit reads and
writes.

Figure 8-13. Q5GETACT Call Format (Sheet 1 of 2)

8-38 60459410 E

Return Parameters

'DPXFIMP=' , n

'ERRLEN=',

'ERRMSG=-' ,msg

'LLPC=',lpc

'LSPC=',lpc

'MEMUSE=' ,usg

'MTACCES=',access

'MTNONIO=' ,nio

'MTXFER=',xfer

'SYSTIME=',tim

'STATUS=',stat

'SYSACCT=',astu

'SYSCHRG=' ,n

'USRACCT=',asbu

'USRCHRG=' , s bu

'VSCALL=' ,n

'WS2SM=' ,n

Number of sectors transferred to mass storage for implicit writes.

Error message length in bytes.

80-byte array to which SIL returns an error message.

Lost large page count; number of large page requests resulting from
swapping of the task (integer).

Lost small page count; number of small page requests resulting from
swapping of the task (integer).

Memory usage. At the end of each account period, the current
working set size is multiplied by the user CPU time for the current
accounting period and the product is added to a running total kept
in this field.

Number of magnetic tape reads and writes.

Number of non-I/O magnetic tape operations.

Number of 16-bit byte transfers to and/or from magnetic tape.

System CPU execution time used by the task in microseconds.

Status code. SIL returns one of the following values: 0 through
202, 250, 261.

Number of STUs accumulated for the account block (integer).

Number of STUs used by the task.

Number of SBUs accumulated for the account block (real value).

SBUs used by the task (real value).

Number of virtual system user calls made.

Cumulative CPU time, in microseconds, that this task's working set
limit appeared to be too small. The working set limit is specified
on the RESOURCE statement or the interactive execute line.

Figure 8-13. Q5GETACT Call Format (Sheet 2 of 2)

60459410 G 8-39

I

Q5GETCTS - GET CONTROLLEE TERMINATION STATUS

The Q5GETCTS subroutine (figure 8-14) gets the termination status of the task's controllee.

Q5GETCTS also returns the system return code for the controllee.

Q5GETCTS uses the Miscellaneous system message.

Call Format

I { 'CTS=',cts }
CALL Q5GETCTS('RETCODE=',ret, optional parameters)

Calling Parameters

None.

Return Parameters

'CTS=' ,cts

'ERRLEN=',len

'ERRMSG=' ,msg

'RETCODE=',ret

'STATUS=',stat

Controllee termination status (ASCII, left-justified, blank
filled). The variable must be a full word on a word boundary. CTS=
must be specified if RETCODE= is omittedo

AB Controllee aborted.

OB Operator transferred control to end-of-job card.

OD Operator dropped job.

OE Operator transferred control to EXIT card.

SA Controllee still active.

TN Controllee terminated; files not saved.

TS Controllee terminated; files saved.

UB User entered terminal message transferring control to
EXIT card.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

System return code (ASCII, left-justified, blank filled). The
variable must be a full word on a word boundary. RETCODE= must be
specified if CTS= is omitted.

blank No error

ERROR Warning error (nonfatal)

FATAL Fatal error

Status code. Possible values: 0 through 202, 250.

Figure 8-14. Q5GETCTS Call Format

8-40 60459410 G

QSGETllP- GET INVISIBLE PACKAGE

The Q5GETIIP subroutine (refer to figure 8-15) gets a copy of the task's invisible package
after the task has been interrupted. The invisible package contains the address and control
information required to continue execution of the task. The format of the invisible package
is described in appendix E of volume 2 of this manual.

Q5GETIIP uses the Miscellaneous system message.

Call Format

CALL QSGETIIP('INVPACK=',inv,optional parameters)

Calling Parameters

None.

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'INVPACK=' ,inv

'STATUS=', stat

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

40-word array in which SIL returns the invisible package. This is a
required parameter.

Status code. Possible values: 0 through 202, 250, 383.

Figure 8-15. Q5GETIIP Call Format

60459410 E 8-41

QSGETIRF - GET REGISTER FILE

The QSGETIRF subroutine (refer
the task has been interrupted.
200 hardware registers when the
job is interrupted. The format
of this manual.

to figure 8-16) gets a copy of the task's register file after
The register file consists of the contents of the 256 CYBER
task is interrupted. The register file is saved when the
of the register file is described in appendix D of volume 2

Q5GETIRF uses the Miscellaneous system message.

Call Format

CALL QSGETIRF('REGFILE=',rf,optional parameters)

Calling Parameters

None.

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'REGFILE=',rf

'STATUS=' ,stat

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

256-word array in which SIL returns the register file. This is a
required parameter.

Status code. Possible values: 0 through 202, 250, 383.

Figure 8-16. Q5GETIRF Call Format

8-42 60459410 E

Q5GETLP - GET LARGE PAGE LIMITS

The QSGETLP subroutine (refer to figure 8-17) gets the large page limits for the task. The
maximum large page limit is set by the job RESOURCE statement, the task execute line, or an
installation-defined default value. The current large page limit is either the maximum
large page limit or the limit specified on a previous SET statement or QSSETLP call.

QSGETLP uses the Process System Parameter system message.

The following is an example of a call requesting that SIL return the maximum large page
limit in variable LPAGES and the current large page limit in variable NPAGES.

CALL QSGETLP('NLP=',LPAGES,'RLP=',NPAGES)

Call Format

CALL QSGETLP ('NLP=',nlp,optional parameters)

Calling Parameters

None.

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'NLP=' ,nlp

'RLP=',rlp

'STATUS=',stat

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Integer variable in which SIL returns the maximum large page limit
for the task.

Integer variable in which SIL returns the current large page limit
for the task.

Status code. Possible values: 0 through 202.

Figure 8-17. QSGETLP Call Format

60459410 E 8-43

I

QSGETMCE - GET MESSAGE FROM CONTROLLEE

The Q5GETMCE subroutine (refer to figure 8-18) obtains a message from the task's controllee.

Q5GETMCE uses the Get Message From Controllee system message.

Call Format

CALL Q5GETMCE('MSG=' ,msg,optional parameters)

Calling Parameters

'LEN=' ,len

'NULLFILL'

'RJUSTIFY'

'SAVE'

'STD'

'SYD'

Return Parameters

'DB=' ,db

'ERRLEN=' , len

'ERRMSG=' ,msg

'LEVEL=' , lev

'MSG=' ,msg

'MS GLEN=' , n

'STATUS=' ,stat

Message buffer length in bytes. If LEN= is omitted, SIL assumes an
80-byte message buffer. The maximum possible length is 4096 bytes.

Indicates the fill character used if STD or SYD is specified. If
NULLFILL is specified, binary zero is used. Otherwise, blank fill
is used. NULLFILL must be omitted if STD and SYD are omitted.

Indicates justification of symbols if STD or SYD is specified. If
RJUSTIFY is specified, symbols are right-justified. Otherwise,
symbols are left-justified. RJUSTIFY must be omitted if STD and SYD
are omitted.

Indicates that the system buffer space is to be saved. If SAVE is
omitted, the buffer space is released.

Indicates use of standard delimiters (period, blank, comma, slash,
equal, plus, minus, left parenthesis, and right parenthesis). STD
and SYD are mutually exclusive. If neither is specified, the
message is unedited, left-justified, and null filled.

Indicates use of system delimiters (defined by an installation
parameter). STD and SYD are mutually exclusive. If neither is
specified, the message is unedited, left-justified., and null filled.

Descriptor block number of the controllee that sent the message.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Level, within the controllee chain, of the controllee that sent the
message.

Array to receive (optionally edited) message. This is a required
parameter.

Number of bytes received. The value returned is the number of
characters unless STD is specified, in which case it is the number
of items (words).

Status code. Possible values: 0 through 202, 250, 261, 340, 341,
342, 344, 345.

Figure 8-18. Q5GETMCE Call Format

8-44 60459410 G

QSGETMCR - GET MESSAGE FROM CONTROLLER

The Q5GETMCR subroutine (refer to figure 8-19) obtains a message from the task's controller.

If a controllee other than a batch processor or interactive processor controllee (level 3 or
greater) issues a Q5GETMCR call when it has no message waiting for it, controllee execution
is suspended and its controller executes until it sends a message to the controllee.

Q5GETMCR uses the Get Message From Controller system message.

Call Format

CALL Q5GETMCR('MSG=' ,msg,optional parameters)

Calling Parameters

'LEN=' ,len

'NULLFILL'

'REJECT'

'RJUSTIFY'

'SAVE'

'STD'

'SYD'

'TIME=' ,sec

Message buffer length in bytes. If LEN= is omitted, SIL assumes an
80-byte message buffer. The maximum possible length is 4096 bytes.

Indicates the fill character used if STD or SYD is specified. If
NULLFILL is specified, binary zero is used. Otherwise, blank fill
is used. NULLFILL must be omitted if STD and SYD are omitted.

Indicates that SIL should return an error code if a message is not
waiting. If REJECT is omitted, SIL suspends task execution until a
message is available.

Indicates justification of symbols if STD or SYD is specified. If
RJUSTIFY is specified, symbols are right-justified. Otherwise,
symbols are left-justified. RJUSTIFY must be omitted if STD and SYD
are omitted.

Indicates that the system buffer space is to be saved. If SAVE is
omitted, the buffer space is released.

Indicates use of standard delimiters (period, blank, comma, slash,
equal, plus, minus, left parenthesis, and right parenthesis). STD
and SYD are mutually exclusive. If neither is specified, the
message is unedited, left-justified, and null filled.

Indicates use of system delimiters (defined by an installation
parameter). STD and SYD are mutually exclusive. If neither is
specified, the message is unedited, left-justified, and null filled.

Minimum time interval to elapse before control is returned to the
task if a message is not available in seconds (30 through 1800). If
the value is greater than 1800, SIL sets the value to 1800; if the
value is less than 30, SIL sets the value to 30. The elapsed
interval may exceed this time by up to 30 seconds.

If TIME=,sec is omitted, SIL suspends controllee execution until a
message is available.

Figure 8-19. QSGETMCR Call Format (Sheet 1 of 2)

60459410 G 8-45

I

Return Parameters

'DB=',db

'ERRLEN=',len

'ERRMSG=',msg

'LEVEL=',lev

'MSG=',msg

'MSGLEN=',n

'STATUS=',stat

Descriptor block number of the controller that sent the message.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Level within the controllee chain of the controller that sent the
message.

Array to receive (optionally edited) message. This is a required
parameter.

Number of bytes received (decimal integer). If the number of bytes
received is zero and the status code returned is zero, SIL returns
control to the task when the specified time interval elapses, and no
message is available. The value returned is the number of
characters unless STD is specified, in which case it is the number
of items (words).

Status code. Possible values: 0 through 202, 250, 261, 340 through
3~.

Figure 8-19. Q5GETMCR Call Format (Sheet 2 of 2)

8-46 60459410 E

QSGETMOP-GET MESSAGE FROM OPERATOR

The Q5GETMOP subroutine (refer to figure 8-20) obtains a message from the operator.

Q5GETMOP uses the Get Message From Operator system message.

Call Format

CALL Q5GETMOP('MSG=',msg,optional parameters)

Calling Parameters

'LEN=',len

'NULLFILL'

'REJECT'

'RJUSTIFY'

'STD'

'SYD'

Return Parameters

'DB=',db

'ERRLEN=' ,len

'ERRMSG=' ,msg

'MSG=' ,msg

'MSGLEN=' , n

'STATUS=',stat

Message buffer length in bytes. If LEN= is omitted, SIL assumes an
80-byte message buffer.

Indicates the fill character used if STD or SYD is specified. If
NULLFILL is specified, binary zero is used. Otherwise, blank fill
is used. NULLFILL must be omitted if STD and SYD are omitted.

Indicates that SIL should return an error code if a message is not
waiting. If REJECT is omitted, SIL suspends task execution until a
message is available.

Indicates justification of symbols if STD or SYD is specified. If
R.JUSTIFY is specified, symbols are right-justified. Otherwise,
symbols are left-justified. RJUSTIFY must be omitted if STD and SYD
are omitted.

Indicates use of standard delimiters (period, blank, comma, slash,
equal, plus, minus, left parenthesis, and right parenthesis). STD
and SYD are mutually exclusive. If neither is specified, the
message is unedited, left-justified, and blank filled.

Indicates use of system delimiters (defined by an installation
parameter). STD and SYD are mutually exclusive. 'If neither is
specified, the message is unedited, left-justified, and blank filled.

Descriptor block number of the operator task.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Array to receive (optionally edited) message. This is a required
parameter.

Number of bytes received. The value returned is the number of
characters unless STD is specified, in which case it is the number
of items (words).

Status code. Possible values: 0 through 202, 250, 261, 340 through
342.

Figure 8-20. Q5GETMOP Call Format

60459410 E 8-4 7

QSGETMPG - GET MINUS PAGE

I The Q5GETMPG subroutine (refer to figure 8-21) gets a copy of the task's first and second
minus page information. It does not return the third minus page information even if the
third minus page exists. The operating system uses the minus page information during task
execution, as described in chapter 2 of volume 2 of this manual.

I

I

Q5GETMPG uses the Miscellaneous system message.

Call Format

CALL Q5GETMPG('MPAGE=',mpage,optional parameters)

Calling Parameters

None.

Return Parameters

'BUFLEN=',len

'ERRLEN=' , len

'ERRMSG=' ,msg

'MPAGE=' ,mp

'STATUS=',stat

Length of the MPAGE buffer. The length must be 512, 1024, or 1536
to get first, second, and third minus pages. If this parameter is
not specified, the buffer must be 1024.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

1536-word array in which SIL returns information from the task's
minus pages. The array must be on a word boundary. Word 513 or
1025 contains the value #FFFF if a second or third minus page is not
returned. This is a required parameter.

Status code. Possible values: 0 through 202, 340, 250.

Figure 8-21. Q5GETMPG Call Format

8-48 60459410 G

QSGETPFI - GET PACK LABEL AND FILE INDEX

The Q5GETPFI subroutine (refer to figure 8-22) gets a copy of the file indices from the
specified disk pack. Only a privileged user or a master user of an account identifier can
call Q5GETPFI.

SIL copies the file indices into a buffer it defines. All the PFI entries are returned for
a privileged user. If you are a master user, only those PFI entries for which you are a
master user of the account identifier will be returned for the specified pack. Retrieve
information from the file indices with the Q5DCDPFI subroutine.

The buffer used by the Q5GETPFI routine is the same buffer used by the Q5LFIHIR, QSLFIPRI,
QSLFIPOL, and QSLFIPUB routines. A call to any of these routines overwrites the contents of
the buffer.

Because Fortran I/O uses the Q5LFIXXX routines, invoking Fortran I/O will cause the buffer
to be overwritten. All QSDCDPFI processing following a QSLFIXXX or Q5GETPFI call must be
done without any intervening Fortran I/O calls.

Q5GETPFI uses the Get Pack Label and PFI system message for an unformatted PFI.

Call Format

CALL QSGETPFI('PN=',pn,optional parameters)

Calling Parameters

'PN=' ,pn

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'NFILES=', n

'STATUS=' ,stat

Name of the pack from which SIL gets the pack label and file
indices. Pack name is 6 ASCII characters, left justified, blank
filled, of the form PACKnn where nn is the pack number. This
parameter is required.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Number of file indices returned.

Status code. Possible values: 0 through 202, 250, 261, 300, 310
through 312.

Figure 8-22. Q5GETPFI Call Format

60459410 J 8-49

I
I

I

Q5GETTl -GET TIME UMIJ

The QSGETT'L subroutine (refer to figure 8-23) gets the exis·ting time li·mit of the task.

Q5GETTL uses the Misc,ellaneous system .message .•

Call Format

CALL QSGETTL(""'OLM'IME.= ... ,t:l "o,p.:ti:onal parameters)

Calling Parameters.

None .•

Return Paramet:ers

'ERRLEN="" , len

'ERRMSG=' ,msg

'OLDTIME=', tl

'STATUS=' ,st

Error me·s:sage length in bytes {integer).

80-byte array to which SIL returns an error message.

Existing time limit. This parameter is required.

Status code. Possible values: 0 through 202, 250.

Figure 8-23. Q5GETTL Call Format

8-50 6045-9410 E

QSGETTN - GET TASK ATTRIBUTES

The Q5GETTN subroutine (refer to figure 8-24) can get the following information about a task:

• Source file name

• Drop file name

• Job descriptor number

• Level in the controllee chain

• Name of associated batch jobs

• User number

• Originating site identifier

• Privileged status

Q5GETTN uses the Miscellaneous system message.

Call Format

CALL Q5GETTN(one or more parameters)

Calling Parameters

None.

Return Parameters

'BINARY=" ,lfn

"DROPFIL=" ,lfn

"ERRLEN=", len

'ERRMSG=" ,msg

I NOTE I
Specify at least one return parameter (other
than ERRLEN=, ERRMSG=, or STATUS=).

Source file name for the task, (ASCII, left justified, blank filled).

Drop file name for the task, (ASCII, left justified, blank filled).

Length of error message in bytes (integer).

80-byte array in which SIL returns an error message •

I

I

.... JOB NAME=" ,j obname Job name (ASCII, left justified, blank filled). (For interactive I
tasks, all blanks returned.)

'LEVEL=' ,lev

"PRIV=" ,prv

Level of this task in the controllee chain.

Privileged user flag. SIL returns one of the following ASCII values
(left justified, blank filled):

Y Privileged

N Nonprivileged

Figure 8-24. Q5GETTN Call Format (Sheet 1 of 2)

60459410 J 8-51

Return Parameters

... ST=', siteid

'STATUS=',stat

... JDN=' ,jdn

'USER=' ,un

Originating site identifier (three-character ASCII, left-justified,
blank-filled).

Status code. SIL returns one of the following values: 0 through
202' 250' 261.

The job descriptor number to which the task belongs
(right-justified, zero-filled). Specify an integer value from 1
through 2047.

User number (ASCII, left-justified, blank-filled).

Figure 8-24. Q5GETTN Call Format (Sheet 2 of 2)

8-52 60459410 H

QSGETUID - GET USER NUMBER

The Q5GETUID subroutine (refer to figure 8-25) gets the user number under which the job is
executing, the amount of execution time available for completion of the job, the account
identifier, project number, and privileged status.

The ACCOUNT parameter determines whether the account identifier specified is valid for you,
and the MU parameter indicates whether the account identifier specified on the ACCOUNT
parameter is a valid master user account by returning the status. If the MU parameter is
specified, the ACCOUNT parameter is required.

Q5GETUID uses the Miscellaneous system message.

Call Format

CALL Q5GETUID({
'ACCTIME=' ,sec }
'USER=',user ,optional parameters)

Calling Parameters

'ACCOUNT=',acctno

Return Parameters

'ACCTIME=',sec

'ERRLEN=',len

'MU=' ,mu

'PRIV=' ,priv

'CACC=' ,acctno

'PROJECT=',projno

'ERRMSG=' ,msg

One- to eight-character account identifier to be validated.

Number of system microseconds available to you. ACCTIME= is
required if USER= is omitted.

Error message length in bytes (integer).

Return values:

y You are the master user of the account.

N You are not the master user of the account.

Return values:

y You are a privileged user.

N You are a nonprivileged user.

acctno is a one- to eight-ASCII-character account identifier under
which task is currently executing.

projno is a 1- to 20-alphanumeric-character project number (three­
word array) currently in process. This includes the characters *
and -.

80-byte array to which SIL returns an error message.

Figure 8-25. Q5GETUID Call Format (Sheet 1 of 2)

60459410 E 8-53

Return Parameters

'FLMAX=',len

'PRODTN=' ,prodtn

'STATUS=',stat

'USER=',un

Maximum file length for which you have been validated. len is an
integer number of 512-word blocks, ranging from 4 to 1,953,125.

Return values:

Y You are a production user.

N You are not a production user.

Status code. Possible values: 0 through 202, 250.

User number (ASCII, left-justified, 6 bytes). The variable must be
on a word boundary. USER= is required if ACCTIME= is omitted.

Figure 8-25. Q5GETUID Call Format (Sheet 2 of 2)

8-54 60459410 H

QSINIT - INITIALIZE CONTROLLEE

The Q5INIT subroutine (refer to figure 8-26) initializes a controllee.

Q5INIT uses the Initialize Controllee system message.

Call Format

CALL Q5INIT('LFN=',lfn,optional parameters)

Calling Parameters

'LFN=',lfn

'TLIMIT=',tl

'WAIT'

Return Parameters

'DB=',db

'ERRLEN=',len

'ERRMSG=',msg

'STATUS=',stat

Name of the controllee file to be initialized. This is a required
parameter.

Time limit for the controller program in microseconds. If TLIMIT is
greater than the time limit for the controller, the time limit for
the controller is used and no error message is returned. If TLIMIT
is omitted, SIL uses the time limit of the calling program.

Indicates that after the controllee is initialized, the calling task
is suspended and the controllee starts executing. If WAIT is
omitted, the calling task continues execution after controllee
initialization.

Descriptor block number identifying the initialized controllee. Its
descriptor block number can change if the controllee is disconnected.

Error message length in bytes (integer).

80-byte array in which SIL returns an error message.

Status code. Possible values: 0 through 202, 250, 258, 261, 303,
350 through 367, 368, 369, 385, 516, 1726, 1730, 1735.

Figure 8-26. Q5INIT Call Format

60459410 H 8-55

I

QSINITCH - INITIALIZE CONTROLLEE CHAIN

The QSINITCH subroutine (refer to figure 8-27) initializes a chain of controllees. The
calling task is the controller of the chain.

The maximum number of tasks in a controllee chain is nine. The calling task is already
within the controllee chain. A task started by either a batch execute line or an
interactive execute line is at level 2 of a controllee chain.

Call Format

CALL QSINITCH('LFN=',lfnlist,'NTASKS=',n,optional parameters)

Calling Parameters

'LFN=', lfn

'NTASKS=',n

'TMLIMIT=',tl

Return Parameters

'CEDB=',db

'CRDB=' ,db

'DB=',db

I NOTE I
The NTASKS= parameter specifies the number
of controllee tasks. All other parameters
must specify arrays with one word for each
controllee task.

Array of one through seven ASCII filenames. The names are those of
the controllee or drop files that comprise the controllee chain to
be initiated. The order of the names in the array is the order of
the tasks in the chain. This is a required parameter.

Number of controllee tasks (1 through 7) to be initiated (number of
entries in the LFN= array). This is a required parameter.

Array of integers corresponding to the files in the LFN=array. Each
integer indicates the time limit in microseconds for that task. If
TMLIMIT is greater than the time limit for its controller, the time
limit for its controller is used. If TMLIMIT is omitted, each task
is given the time limit of its controller.

Array of integers corresponding to the files specified in the LFN=
array. Each integer returned is the descriptor block number of the
corresponding task's controllee.

Array of integers corresponding to the files specified in the LFN=
array. Each integer returned is the descriptor block number of the
corresponding task's controller.

Array of integers corresponding to the files specified in the LFN=
array. Each integer returned is the descriptor block number of the
corresponding task.

Figure 8-27. QSINITCH Call Format (Sheet 1 of 2)

8-56 60459410 E

Return Parameters

'ERRLEN=',len

'ERRMSG=',msg

'LEVEL=',lev

'STATUS=',stat

Array of integers corresponding to the files in the LFN= array.
Each integer returned is the error message length for the
corresponding message in the ERRMSG= array.

Array of 80-byte arrays corresponding to the files specified in the
LFN= array. The error message corresponding to the file is returned
in the appropriate 80-byte array.

Array of integers corresponding to the files specified in the LFN=
array. Each integer returned is the absolute level of the
corresponding controllee task.

Array of status codes. Possible values: 0 through 202, 250, 258,
303, 350 through 361, 367, 368, 369, 384, 385, 516, 520, 1726, 1730,
1735.

Figure 8-27. Q5INITCH Call Format (Sheet 2 of 2)

60459410 H 8-57

QSLFIHIR - LIST FILE INDEX ENTRY BY HIERARCHICAL SEARCH

The QSLFIHIR subroutine (refer to figure 8-28) copies the file index entry of an attached
file to a buffer SIL defines. To retrieve information from the copied file index entry,
call the Q5DCDPFI subroutine.

Q5LFIHIR determines the entry it copies by the qualifiers specified on the call and by a
hierarchical search. Each qualifier specified on the call must match the corresponding
field in the file index entry.

The file index is searched in the following steps:

1. Private file entries are searched.

2. If the entry is not for a private file, pool file entries are searched in the order
in which the task attached the pools. The system pool, if attached, is searched
last.

3. If the entry is not for a private file or a pool file, public file entries are
searched.

4. If the entry is not for a private, pool, or public file, Q5LFIHIR returns an error
status.

QSLFIHIR copies the entry only if the file is attached.

The buffer used by the Q5LFIHIR routine is the same buffer used by the Q5GETPFI, Q5LFIPOL,
QSLFIPRI, and Q5LFIPUB routines. A call to any of these routines overwrites the buffer
contents.

I
Because Fortran I/O uses the Q5LFIXXX routines, invoking· Fortran I/O will cause the buffer
to be overwritten. All Q5DCDPFI processing following a Q5LFIXXX or Q5GETPFI call must be
done without any intervening Fortran I/O calls.

Q5LFIHIR uses the List Unformatted File Index system message.

Call Format

CALL QSLFIHIR(optional parameters)

Calling Parameters

'DC=' ,de

8-58

Disposition code. The copied file index entry must have the
specified disposition code. If DC= is omitted, the file disposition
code is not a qualifier.

'IN'
'LR'
'LS'
'LT'
'PR'
'PU'
'Pl'
'P2 ...
'SC'

'*'

Figure 8-28.

Batch input.
Print on a 580-12 line printer.
Print on a 580-16 line printer.
Print on a 580-20 line printer.
Print on any available line printer.
Punch.
Print on a 501 line printer.
Print on a 512 line printer.
Scratch file; discard at task termination.
Any disposition code.

Q5LFIHIR Call Format (Sheet 1 of 2)

60459410 J

Calling Parameters

'EC=' ,ec

'FNCOUNT=' , n

'IC=' ,ic

'LFN=' ,lfn

'ST=', st

'STRING'

'ZIP=', zip

Return Parameters

'ERRLEN=', len

'ERRMSG=' ,msg

'NFILES=', n

'STATUS=', stat

External characteristic. The copied file index entry must have the
specified external characteristic. If EC= is omitted, the external
characteristic is not a qualifier.

'26' 026 punch format
'29' 029 punch format
'80' 80-column binary punch format
'B4' BCD 48-character set
'B6' BCD 64-character set
'A4' ASCII 48-character set
'A6' ASCII 64-character set
'A9' ASCII 95-character set
'*' Any external characteristic

Number of file names in the LFN= array. If LFN= is specified but
FNCOUNT= is not, SIL assumes that LFN= contains only one file name.

File format. The copied file index entry must have the specified
internal characteristic. If IC= is omitted, the file format is not
a qualifier.

'AS' 8-bit ASCII format; ANSI carriage control
'BI' Binary format
'PA' 8-bit ASCII format; ASCII carriage control
'*' Any internal characteristic

Array of file names (one to eight ASCII characters, left justified,
blank filled). The copied file index entry must have one of the
specified file names. If LFN= is omitted, the file name is not a
qualifier.

Site identifier. The copied file index entry must have the
specified site identifier. If ST= is omitted, the site identifier
is not a qualifier. The site determines the site identifiers.

Indicates that the entries in the LFN= array are strings of
characters. The file name in the file index entry must begin with
one of the strings. If STRING is omitted, Q5LFIHIR assumes that the
LFN= array contains file names.

Zip code. The zip code field of the copied file index entry must
match the specified zip code. If ZIP= is omitted,· the zip code is
not a qualifier.

Length of the error message in bytes (integer).

80-byte array to which SIL returns an error message.

Number of file index entries returned in the SIL-defined buffer.

Status code. SIL returns one of the following values: 0 through
202, 250, 261, 303, 304.

Figure 8-28. Q5LFIHIR Call Format (Sheet 2 of 2)

60459410 E 8-59

Q5LF1POL- UST POOL FILE INDICES

The Q5LFIPOL subroutine (refer to figure 8-29) copies a set of file index entries to a
buffer SIL defines. The set of entries is determined by the qualifiers specified on the
call. Each qualifier specified must match the corresponding field in the file index entry.

Q5LFIPOL copies only entries for files that belong to the specified attached pool. The
PATTACH control statement and Q5PATACH routine attach pools.

To retrieve information from the copied file index entries, call the Q5DCDPFI subroutine.

The buffer used by the Q5LFIPOL routine is the same buffer used by the Q5GETPFI, Q5LFIHIR,
Q5LFIPRI, and Q5LFIPUB routines. A call to any of these routines overwrites the buffer
contents.

I Because Fortran I/O uses the Q5LFIXXX routines, invoking Fortran I/O will cause the buffer
to be overwritten. All Q5DCDPFI processing following a Q5LFIXXX or Q5GETPFI call must be
done without any intervening Fortran I/O calls.

Q5LFIPOL uses the List U~formatted File Index system message.

8-60

Call Format

CALL Q5LFIPOL('POOL=',pool,optional parameters)

Calling Parameters

'ACCOUNT=',acctno

'DC=' ,de

Account identifier (one to eight· ASCII characters). File index
entries are returned only for files with the specified account
identifier. If this parameter is omitted, the file account
identifier is not used to determine the set of files.

Disposition code. File index entries are returned only for files
with the specified disposition code. If DC= is omitted, the file
disposition codes are not used to determine the set of files. The
disposition codes are as follows:

'IN'
'LR'
'LS'
'LT'
'PR'
'PU'
'Pl'
'P2'
'SC'

'*'

Figure 8-29.

Batch input.
Print on a 580-12 line printer.
Print on a 580-16 line printer.
Print on a 580-20 line printer.
Print on any available line printer.
Punch.
Print on a 501 line printer.
Print on a 512 line printer
Scratch file; discard at task termination.
Any disposition code.

Q5LFIPOL Call Format (Sheet 1 of 3)

60459410 J

Calling Parameters

'EC=',ec

'FNCOUNT=' ,n

'IC=',ic

'LFN=',lfn

'MPN=',mpn

'POOL=',pool

'ST=',st

'STRING'

'ZIP=',zip

External characteristic. File index entries are returned only
for files with the specified ·EC. If EC= is omitted, the file
external characteristic is not used to determine the set of
files.

'26' 026 punch format
'29' 029 punch format
'80' 80-column binary punch format
'B4' BCD 48-character set
'B6' BCD 64-character set
'A4' ASCII 48-character set
'A6' ASCII 64-character set
'A9' ASCII 95-character set
'*' Any external characteristic

Number of file names in the LFN= array. If LFN= is specified

4
but FNCOUNT= is not, SIL assumes that one file name is
specified.

File format. File index entries are returned only for files
with the specified internal characteristic. If IC= is omitted,
the file format is not used to determine the set of files.

'AS' 8-bit ASCII format; ANSI carriage control
'BI' Binary format
'PA' 8-bit ASCII format; ASCII carriage control
'*' Any internal characteristic

Array containing names of pool files for which PFI entries are
obtained (ASCII, left justified, blank filled). If LFN= is
omitted, file names are not used to determine the set of files.

Master project number (one to three alphanumeric characters).
File index entries are returned for files with the specified
master project number. If this parameter is omitted, the file
master project number is not used to determine the set of files.

Name of the attached pool containing the files for which file
index entries are to be obtained. POOL= is a required
parameter.

Site identifier. File index entries are returned bnly for
files with the specified identifier. If ST= is omitted, the
site identifier is not used to determine the set of files. The
installation determines the site identifiers.

Indicates that the entries in the LFN= arrays are strings.
File index entries are returned only for files that have a name
beginning with one of the strings. If STRING is omitted, SIL
does not perform string matching.

Zip code for the site identifier. If ZIP=,zip is omitted, the
zip code is not used to determine the set of files.

·Figure 8-29. QSLFIPOL Call Format (Sheet 2 of 3)

60459410 E 8-61

Return Parameters

'ERRLEN=' , len

'ERRMSG=' ,msg

'NFILES=' , n

.... STATUS=' , stat

Length of the ·error message in bytes (integer).

80-byte array to which SIL returns an error message.

Number of file index entries returned in the SIL-defined buffer.

Status code. SIL returns one of the following values: 0 through
202, 250, 261, 262, 300, 301, 303, 304.

Figure 8-29. QSLFIPOL Call Format (Sheet 3 of 3)

8-62 60459410 E

QSLFIPRI - LIST PRIVATE FILE INDICES

The QSLFIPRI subroutine (refer to figure 8-30) copies a set of file index entries to a
buffer SIL defines. The set of entries is determined by the qualifiers specified on the
call. Each qualifier specified must match the corresponding field in the file index entry.

With the USER=,un parameter omitted, QSLFIPRI copies entries for the following private files
that meet the specified qualifications.

• Local and permanent files belonging to the task's user number

• Permanent files attached to the job or interactive session, but belonging to another
user

With the USER=,un parameter specified, QSLFIPRI copies entries for private permanent files
belonging to the specified user number that the caller can access. (The files must also
meet the other qualifications specified on the call.)

To retrieve information from the copied file index entries, call the QSDCDPFI subroutine~

The buffer used by the QSLFIPRI routine is the same buffer used by the QSGETPFI, QSLFIHIR,
QSLFIPOL, and QSLFIPUB routines. A call to any of these routines overwrites the buffer
contents.

Because Fortran I/O uses the QSLFIXXX routines, invoking Fortran 1/0 will cause the buffer
to be overwritten. All QSDCDPFI processing following a QSLFIXXX or QSGETPFI call must be
done without any intervening Fortran I/O calls.

QSLFIPRI uses the List Unformatted File Index system message.

Call Format

CALL QSLFIPRI(optional parameters)

Calling Parameters

'ACCOUNT=',acctno

'OACS'

'ATTACHED'

'BATCH'

Account identifier (one to eight ASCII characters). File index
entries are returned only for files with the specified account
identifier. If this parameter is omitted, the file account
identifier is not used to determine the set of files.

Flag determining the access permission set returned by the ACS=,acs
parameter on a QSDCDPFI call. If OACS is specified, the owner's
access permission set is returned whether or not the file is
attached.

If OACS is omitted, the access permission set returned depends on
whether the file is attached. ·1f the file is attached, the access
permission set in effect is returned. If the file is unattached,
the owner's access permission set is returned.

If ATTACHED is specified, QSLFIPRI copies file index entries for
only those files attached to the executing job. If ATTACHED is
omitted, the file need not be attached to the job.

If BATCH is specified, QSLFIPRI copies file index entries for only
batch input files. If BATCH is omitted, the file need not be a
batch input file.

Figure 8-30. QSLFIPRI Call Format (Sheet 1 of 3)

60459410 J 8-63

I

Calling Parameters

'DC=' ,de

'EC=' ,ec

'FNCOUNT=' ,n

'IC=' ,ic

'LFN=' ,lfn

'MPN=' ,mpn

'QF'

Disposition code. File index entries are returned only for files
with the specified disposition code. If DC= is omitted, the file
disposition code is not used to determine the set of files. The
disposition codes are as follows:

'IN' Batch input via an access station.
'LR' Print on a 580-12 line printer.
'LS' Print on a 580-16 line printer.
'LT' Print on a 580-20 line printer.
'PF' Store as a permanent file at access station.
'PR' Print on any available line printer.
'PU' Punch.
'Pl' Print on a 501 line printer.
'P2' Print on a 512 line printer.
'SC' Scratch file; discard at task termination.
'*' Any disposition code.

~External characteristic. File index entries are returned only for
files with the specified EC. If EC= is omitted, the file external
characteristic is not used to determine the set of files.

'26' 026 punch format
'29' 029 punch format
'80' 80-column binary punch format
'B4' BCD 48-character sat
'B6' BCD 64-character set
'A4' ASCII 48-character set
'A6' ASCII 64-character set
'A9' ASCII 95-character set
'*' Any external characteristic

Number of file names in the LFN= array. If LFN= is specified but
FNCOUNT= is not, SIL assumes that one file name is specified.

File format. File index entries are returned only for files with
the specified internal characteristic. If IC= is omitted, the file
format is not used to determine the set of files.

'AS' 8-bit ASCII format; ANSI carriage control
'BI' Binary format
'PA' 8-bit ASCII format; ASCII carriage control
'*' Any internal characteristic

Array containing names of private files for which PFI entries are
obtained (ASCII, left justified, blank filled). If LFN= is omitted,
filenames are not used to determine the set of files.

Master project number (one to three alphanumeric characters). File
index entries are returned for files with the specified master
project number. If this parameter is omitted, the file master
project number is not used to determine the set of files.

QSLFIPRI lists only the batch input files that have not yet entered
the input queue. If QF is omitted, the queue flag is not used to
determine the set of files.

Figure 8-30. Q5LFIPRI Call Format (Sheet 2 of 3)
8-64 60459410 E

Calling Parameters

'ST=' ,st

'STRING'

'USER=' ,un

'ZIP=' ,zip

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'NFILES=' ,n

'STATUS=' ,stat

Site identifier. File index entries are returned only for files
with the specified identifier. If ST= is omitted, the site
identifier is not used to determine the set of files.

Indicates that the entries in the LFN= arrays are strings. File
index entries are returned only for files that have a name that
begins with one of the strings. If STRING is omitted, SIL does not
perform string matching.

User number (ASCII, left justified, blank-filled). If USER=,un is
specified, Q5LFIPRI returns information for files the caller can
attach that belong to the specified user number. If USER=,un is
omitted, Q5LFIPRI returns information for files the caller owns or
has attached.

Zip code for the site identifier. If ZIP=,zip is omitted, the zip
,code is not used to determine the set of files.

Length of the error message in bytes (integer).

80-byte array to which SIL returns an error message.

Number of file index entries reburned in the SIL-defined buffer.

Status code. SIL returns one of the following values: 0 through
202, 261, 262, 300, 301, 303, 304.

Figure 8-30. Q5LFIPRI Call Format (Sheet 3 of 3)

60459410 J 8-65

I

QSLFIPUB - LIST PUBLIC FILE INDICES

The Q5LFIPUB subroutine (refer to figure 8-31) copies a set of file index entries to a
buffer SIL defines. The set of entries is determined by the qualifiers specified on the
call. Each qualifier specified must match the corresponding field in the file index entry.

Q5LFIPUB copies only file index entries ·for public files.

To retrieve information from the copied file index entries, call the Q5DCDPFI subroutine.

The buffer used by the Q5LFIPUB routine is the same buffer used by the QSGETPFI, Q5LFIHIR,
QSLFIPOL, and Q5LFIPRI routines. A call to any of these routines overwrites the buffer
contents.

I Because Fortran I/O uses the QSLFIXXX routines, invoking Fortran I/O will cause the buffer
to be overwritten. All Q5DCDPFI processing following a Q5LFIXXX or Q5GETPFI call must be
done without any intervening Fortran I/O calls.

QSLFIPUB uses the List Unformatted File Index system message.

Call Format

CALL QSLFIPUB(optional parameters)

Calling Parameters

'ACCOUNT=',acctno Account identifier (one to eight ASCII characters). File index
entries are returned only for files with the specified account
identifier. If this parameter is omitted, the file account
identifier is not used to determine the set af files.

8-66

'DC=',dc Disposition code. File index entries are returned only for files
with the specified d·isposition code. If DC= is omitted, the file
disposition code is not used to determine the set of files. The
disposition codes are as follows:

'IN'
'LR'
'LS'
'LT'
'PR'
'PU'
'Pl'
'P2'
'SC'

'*'

Figure 8-31.

Batch input.
Print on a 580-12 line printer.
Print on a 580-16 line printer.
Print on a 580-20 line printer.
Print on any available line printer.
Punch.
Print on a 501 line printer.
Print on a 512 line printer
Scratch file; discard at task termination.
Any disposition code.

Q5LFIPUB Call Format (Sheet 1 of 2)

60459410 J

Calling Parameters

'EC=',ec

'FNCOUNT=' ,n

'IC=' ,ic

'LFN=',lfn

'MPN=',mpn

'ST=' ,st

'STRING'

'ZIP=',zip

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'NFILES=',n

'STATUS=' ,stat

External characteristic. File index entries are returned only for
files with the specified EC. If EC= is omitted, the file external
characteristic is not used to determine the set of files.

'26' 026 punch format
'29' 029 punch format
'80' 80-column binary punch format
'B4' BCD 48-character set
'B6' BCD 64-character set
'A4' ASCII 48-character set
'A6' ASCII 64-character set
'A9' ASCII 95-character set
'*' Any external characteristic

Number of file names in the LFN= array. If LFN= is specified but
FNCOUNT= is not, SIL assumes that one file name is specified.

File format. File index entries are returned only for files with
the specified internal characteristic. If IC= is omitted, the file
format is not used to determine the set of files.

'AS' 8-bit ASCII format; ANSI carriage control
'BI' Binary format
'PA' 8-bit ASCII format; ASCII carriage control
'*' Any internal characteristic

Array containing names of public files for which PF! entries are to
be obtained (ASCII, left justified, blank filled). If LFN= is
omitted, file names are not used to determine the set of files.

Master project number (one to three alphanumeric characters). File
index entries are returned for files with the specified master
project number. If this parameter is omitted, the file master
project number is not used to determine the set of files.

Site identifier. File index entries are returned only for files
with the specified identifier. If ST=is omitted, the site identifer
is not used to determine the set of files.

Indicates that the entries in the LFN= arrays are strings. File
index entries are returned only for files whose names begin with one
of the strings. If STRING is omitted, SIL does not perform string
matching.

Zip code for the site identifier. If ZIP=, zip is omitted, the zip
code is not used to determine the set of files.

Length of the error message in bytes (integer).

80-byte array to which SIL returns an error message.

Number of file index entries returned in the SIL-defined buffer.

Status code. SIL returns one of the following values: 0 through
202, 261, 262, 300, 303, 304.

Figure 8-31. QSLFIPUB Call Format (Sheet 2 of 2)

60459410 E 8-67

QSLSTBUT - LIST BANK UPDATE TABLE

The QSLSTBUT subroutine (refer to figure 8-32) gets a copy of the Bank Update Table.

QSLSTBUT issues the List System Table system message.

Call Format

CALL QSLSTBUT('BUT=',but,optional parameters)

Calling Parameters

None.

Return Parameters

'BUT=',but

'ERRLEN=' , len

'ERRMSG=' ,msg

'STATUS=',stat

32-word array in which SIL returns the bank update table. The array
must be a word boundary. This parameter is required.

Error message length in bytes (integer format).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 202, 250.

Figure 8-32. QSLSTBUT Call Format

8-68 60459410 E

QSLSTCH - LIST CONTROLLEE CHAIN

The Q5LSTCH subroutine (refer to figure 8-33) gets information about one or all tasks in the
controllee chain. The subroutine can return the levels, descriptor block numbers, file
names, drop file names, and time limits of the tasks in the chain. The descriptor block
numbers are useful for identifying a task directly in other SIL calls.

The number of words in the arrays specified to receive information must match the number of
tasks in the chain (one through nine). The information returned in the arrays is ordered by
level number, beginning with the lowest level (that is, the top of the chain).

QSLSTCH uses the List Controllee Chain system message.

Call Format

CALL QSLSTCH({

'CONTROLE'}
'CONTROLR'
'NLVL=',n
'PROGRAM'

,optional parameters)

Calling Parameters

'CONTROLE'

'CONTROLR'

'NLVL=',n

'PROGRAM'

Return Parameters

... BINARY=' , lf n

'CEDB=' ,db

'CRDB=' ,db

I NOTE I
The calling parameters CONTROLE, CONTROLR,
NLVL=,n, and PROGRAM are mutually
exclusive. One call parameter must be
specified, indicating the tasks within the
chain for which information is returned.

Indicates that SIL obtains information only on the task's controllee.

Indicates that SIL obtains information only on the task-s controller.

Number of tasks for which information is returned (integer from 2
through 9). All return arrays must be this size.

Indicates that SIL obtains information only on the calling task.

One- to nine-word array in which SIL returns the file names (in
ASCII) of the controllees in the chain.

One- to nine-word array of integers corresponding to the file names
in the BINARY= array. Each integer is the descriptor block number
of the corresponding task's controllee.

One- to nine-word array of integers corresponding to the file names
in the BINARY= array. Each integer is the descriptor block number
of the corresponding task's controller.

Figure 8-33. QSLSTCH Call Format (Sheet 1 of 2)

60459410 H 8-69

I

Return Parameters

'DB=',db

'DROPFIL=',lfn

'ERRLEN=',len

'ERRMSG=',msg

'ISUDB=' ,db

'ISULVL=' ,lev

'LEVEL=' ,lev

'RNLVL=' ,n

'STATUS=' ,stat

'TMLIMIT=',tl

One- to nine-word array of integers corresponding to the file names
in the BINARY= array. Each integer is the descriptor block number
of the corresponding task. If the task is interactive, #FF is
returned.

One- to nine-word array of file names (in ASCII) corresponding to
the file names returned in the BINARY= array. Each file name is the
name of the drop file for the corresponding task.

Error message length in bytes (integer format).

80-byte array to which SIL returns an error message.

Descriptor block number of the calling program.

Level of the calling program.

One- to nine-word array of integers corresponding to the file names
returned in the BINARY= array. Each integer is the level of the
corresponding task.

Number of levels the call returned in the LEVEL= array.

Status code. Possible values: 0 through 202, 250.

One- to nine-word array of integers corresponding to the file names
returned in the BINARY= array. Each integer is the time limit in
microseconds for the corresponding task.

Figure 8-33. Q5LSTCH Call Format (Sheet 2 of 2)

8-70 60459410 E

" I

QSLSTSTB - LIST STATISTICS BUFFER

The QSLSTSTB subroutine (refer to figure 8-34) gets a copy of the statistics buffer. The
statistics buffer is a system table that can contain system performance data.

QSLSTSTB uses the List System Table system message.

Call Format

CALL QSLSTSTB('STB=',stb,optional parameters)

Calling Parameters

None.

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'STATUS=',stat

'STB=',stb

60459410 E

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 202, 250.

100-word array in which SIL returns the statistics buffer. The
array must be on a word boundary. This is a required parameter.

Figure 8-34. QSLSTSTB Call Format

8-71

QSLSTTCB - LIST TIMECARD BUFFER

The Q5LSTTCB subroutine (refer to figure 8-35) gets a copy of the timecard buffer. The
timecard buffer is a buffer that can contain accounting information.

QSLSTTCB uses the List System Table system message.

8-72

Call Format

CALL Q5LSTTCB('TCB=',tcb,optional parameters)

Calling Parameters

None.

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS-=' ,stat

'TCB=' ,tcb

Error message length in bytes (integer format).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 299.

512-word array in which SIL returns the timecard buffer. The array
must be on a word boundary. This is a required parameter.

Figure 8-35. Q5LSTTCB Call Format

60459410 E

Q5MEMORY - ALLOCATE ST A TIC ST ACK

A Q5MEMORY call (refer to figure 8-36) allocates memory space for a static stack.

A stack is a data structure in which data is added from the top down. Q5MEMORY allocates
free space from the high address 11800000000000 to a lower address.

The Q5MEMORY call specifies the number of words to be allocated. Q5MEMORY returns the
starting address of the stack. For example, if the Q5MEMORY call requests a 512-word stack,
the starting address returned is #7FFFFFFF8000.

QSMEMORY maps in drop file space for the stack, using as few drop file map entries as
possible. After the space is allocated, it cannot be freed.

Q5MEMORY calls both the Q5DCDMSC and Q5MAPIN routines.

If 'NOMAP' is specified, Q5MEMORY allocates space starting at #700000000000 to a high
address, with no mapping of the drop file.

Call Format

CALL Q5MEMORY('WRDS=',wrds,'ADDR=',addr,optional parameters)

Calling Parameters

'WRDS=',wrds

'NOMAP'

Return Parameters

'ADDR=',addr

'ERRLEN=',len

'ERRMSG=', msg

'STATUS=',stat

Number of words to allocate in the stack. This is a required
parameter.

Space that is allocated for which no mapping of the drop file is
done.

Hexadecimal bit address of the start of the stack (integer). The
address is always on a double-word boundary. This is a required
parameter. If 'NOMAP' is specified, addr is always on a small page
boundary.

Error message length in bytes (integer).

80-byte array in which SIL returns an error message.

Status code (integer). Possible values: 0 through 202, 250, 505,
1516, 1519, 1537, 1539, 1550, 1553, 1559.

Figure 8-36. Q5MEMORY Call Format

60459410 F 8-73

I

QSRECALL - SUSPEND TASK EXECUTION

The QSRECALL subroutine (refer to figure 8-37) suspends task execution for a minimum
specified length of time.

QSRECALL uses the Recall system message.

Call Format

CALL QSRECALL(optional parameters)

Calling Parameters

'TIME=' ,sec

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'STATUS=',stat

Minimum number of seconds (O through 2100) that SIL suspends task
execution. If TIME= is omitted, SIL suspends the task for a minimum
of 30 seconds.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 202, 250, 410.

Figure 8-37. QSRECALL Call Format

8-74 60459410 J

QSREPREV - ENABLE OR DISABLE USER REPRIEVE

The QSREPREV subroutine (refer to figure 8-38) either enables or disables user reprieve
processing.

User reprieve processing is performed when a task terminates. If enabled, the reprieve
subroutine is called whether task termination is normal or abnormal.

Only one reprieve subroutine can be enabled for a task.

To enable user reprieve processing, the Q5REPREV call must specify an entry point within the
reprieve subroutine. The entry point is called when the task terminates. The subroutine
must be declared external.

I NOTE I
The reprieve subroutine must return control
to the system with a QSTERM call.

Call Format to Enable User Reprieve

CALL Q5REPREV ('SUBNAME=',sub,optional parameters)

Call Format to Disable User Reprieve

CALL Q5REPREV(optional parameters)

Calling Parameter

'SUBNAME=',sub

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'STATUS=',stat

Indicates that user reprieve processing is to be enabled and names
the entry point called for user reprieve processing. The name must
be declared external within the task calling Q5REPREV. This
parameter is required when enabling user reprieve processing; it
must not be specified when disabling user reprieve processing.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0, 201, 378, 381, 382.

Figure 8-38. QSREPREV Call Format

60459410 E 8-75

Q5REPREV gets the entry point address, the data base address, and the data base length for
the reprieve subroutine and saves the information for use during termination processing.
During termination processing, the information is passed to the system by a User Reprieve
system message.

The user reprieve routine can perform cleanup processing for the task. If the task aborts
because of a time limit error, the user reprieve routine is given an additional one-half of
a system second for cleanup processing.

User reprieve processing is performed after any ATC processing that may be performed (refer
to Abnormal Termination Processing in chapter 3 of.this manual).

If a site accounting routine enables the user reprieve option, user reprieve processing is
not available to you.

8-76 60459410 E

QSRFI - RETURN FROM INTERRUPT SUBROUTINE

The QSRFI subroutine (refer to figure 8-39) returns control from an interrupt subroutine to
the interrupted task. Choose one of the following processing options for the interrupted
task.

• Abort at the point of the original interrupt.

• Continue processing at the point of the original interrupt.

• Continue processing at a specified entry point.

If you choose to abort processing or if the task aborts after control is returned from the
interrupt subroutine, you receive the normal dump and traceback information; however, the
interrupt subroutine is not shown in the traceback information. If you specify the RFISUB=
parameter on the QSRFI call and the task subsequently aborts, the traceback information
shows the RFISUB= entry point as being called from the original point of interrupt.

QSRFI issues the Return From Interrupt system message.

Call Format

CALL QSRFI(optional parameters)

Calling Parameters

'ABORT'

'RFISUB=' ,sub

Return Parameters

'ERRLEN=' , len ·

'ERRMSG=' ,msg

'STATUS=',stat

Indicates that the program should abort at the point of the original
interrupt. Do not specify both the ABORT and the RFISUB=
parameters. If neither is specified, the program continues
processing at the point of interruption.

Entry point name (in ASCII) at which processing continues. The
entry point must be declared external in the interrupted program.
When a fatal error occurs, the point of interrupt appears to call
the entry point. Do not specify both the ABORT and RFISUB=
parameters. If neither is specified, the program continues
processing at the point of interruption.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0, 381, 420.

Figure 8-39. QSRFI Call Format

60459410 E 8-77

Q5RUNBIF - RERUN BATCH INPUT FILE

The QSRUNBIF subroutine (refer to figure 8-40) informs the system that the specified batch
input file is to be rerun if the system fails.

QSRUNBIF uses the Miscellaneous system message.

The following example of a FORTRAN source line requests that the system rerun the batch
input file if the system fails. The name of the batch input file is obtained from a copy of
its file index entry via calls to Q5LFIPRI and QSDCDPFI.

8-78

CHARACTER*8 LFN
CALL QSLFIPRI('BATCH' ,'ATTACHED')
CALL QSDCDPFI('LFN=',LFN)
CALL QSRUNBIF('LFN=' ,LFN)

Call Format

CALL QSRUNBIF('LFN=',lfn,optional parameters)

Calling Parameters

'LFN=' ,lfn

Return Parameters

"ERRLEN=',len

'ERRMSG=' ,msg

"STATUS=',stat

Name of the batch input file to be rerun. The name must be left
justified and blank filled in a full word on a word boundary. This
is a required parameter. You can determine the name of the batch
input file by specifying the LFN= parameter on a Q5DCDPFI call.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 262, 303, 400.

Figure 8-40. Q5RUNBIF Call Format

60459410 E

Q5SETLP - CHANGE CURRENT LARGE PAGE LIMIT

The QSSETLP subroutine (refer to figure 8-41) can change the current large page limit for
the task. The specified current large page limit must not exceed the maximum large page
limit for the job or task. Determine the maximum large page limit and the current large
page limit with a QSGETLP call.

If the task has more large pages allocated than the specified current large page limit, the
contents of the excess large pages are immediately paged out of memory.

QSSETLP uses the Process System Parameter system message.

The following example of a call sets the current large page limit at six pages.

CALL QSSETLP ('NLP=',6)

Call Format

CALL QSSETLP('NLP=', nlp, optional parameters)

Calling Parameter

'NLP=', nlp Current large page limit for task (decimal integer).

Return Parameters

'ERRLEN=' , len Error message length in bytes (integer).

'ERRMSG=' ,msg 80-byte array to which SIL returns an error message.

'STATUS=',stat Status code. Possible values: 0 through 202, 250.

Figure 8-41. QSSETLP Call Format

60459410 E 8-79

QSSNDMCE.- SEND MESSAGE TO CONIROLLEE

The QSSNDMCE subroutine (refer to figure 8-42) sends a message to the calling task's
controllee.

If the controllee is a compiled FORTRAN program that has been initialized but whose
execution has not begun, the first message sent to the controllee must be for reassignment
of the files named in the PROGRAM statement (refer to Execution-Time File Reassignment in
the CYBER 200 FORTRAN Language 2 Reference Manual).

QSSNDMCE uses the Send Message to Controllee system message.

Call Format

CALL QSSNDMCE('MSG=',msg,optional parameters)

Calling Parameters

'DB=',db

'EOF'

'EOG'

'EOR'

'LEN=' ,len

'MSG=' ,msg

'REJECT'

Descriptor block number identifying the controllee to receive the
message. If DB= is omitted, the message goes to the next lower
controllee in the chain.

Indicates that the ASCII end-of-file character (#lC) is to be
appended to the end of the message. EOR, EOG, and EOF are mutually
exclusive.

Indicates that the ASCII end-of-group character (#lD) is to be
appended to the end of the message. EOR, EOG, and EOF are mutually
exclusive.

Indicates that the ASCII end-of-record character (released value,
#lF) is to be appended to the end of the message. EOR, EOG, and EOF
are mutually exclusive.

Length in bytes of the message. If LEN= is omitted, SIL assumes
that the first character of the message is a delimiter and that the
message consists of the second character through the character
preceding the next occurrence of the delimiter.

The length does not include any specified delimiting character (EOR,
EOG, or EOF) unless the length equals or exceeds 2000. In that
case, the delimiting character replaces byte 2000 of the message.

SIL sends a maximum of 2000 bytes. If the message exceeds that
length, SIL truncates it but does not return an error.

Message to be sent. This parameter is required.

Indicates that SIL should return an error code if the message cannot
be sent immediately. If REJECT is omitted, this message replaces
any existing message.

Figure 8-42. QSSNDMCE Call Format (Sheet 1 of 2)

8-80 60459410 E

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=',stat

Error message length in bytes (integer).

80-byte array in which SIL returns an error message.

Status code. Possible values: 0 through 202, 250, 261, 320, 321,
325.

Figure 8-42. Q5SNDMCE Call Format (Sheet 2 of 2)

60459410 E 8-81

QSSNDMCR - SEND MESSAGE TO CONTROLLER

The QSSNDMCR subroutine (refer to figure 8-43) sends a message to the calling task's
controller. If the controller is the batch processor, the message is written in the task's
job dayfile. If the task was initiated at an interactive terminal, the message is sent to
the te,rminal.

QSSNDMCR uses the Send Message to System Controller system message.

Call Format

CALL QSSNDMCR('MSG=' ,msg,optional parameters)

Calling Parameters

'DB=',db

'EOF'

'EOG'

'EOR'

Calling Parameters

'LEN=',len

'MSG=' ,msg

'REJECT'

'RETURN'

Descriptor block number identifying the controller to receive the
message. If DB= is omitted, the message goes to the next higher
controller in the chain.

Indicates that the ASCII end-of-file character (#lC) is to be
appended to the end of the message. EOR, EOG, and EOF are mutually
exclusive.

Indicates that the ASCII end-of-group character (#lD) is to be
appended to the end of the message. EOR, EOG, and EOF are mutually
exclusive.

Indicates that the ASCII end-of-record character (released value,
#lF) is to be appended to the end of the message. EOR, EOG, and EOF
are mutually exclusive.

Length in bytes of the message. If LEN= is omitted, SIL assumes
that the first character of the message is a delimiter and that the
message consists of the second character through the character
preceding the next occurrence of the delimiter.

The length does not include any specified delimiting character (EOR,
EOG, or EOF) unless the length equals or exceeds 2000. In that
case, the delimiting character replaces byte 2000 of the message.

SIL sends a maximum of 2000 bytes. If the message exceeds that
length, SIL truncates it but does not return an error.

Message (1 through 2000 bytes). This is a required parameter.

Indicates that if the message replaces an existing message, SIL
suspends task execution until the message can be sent. If REJECT is
omitted, this message replaces any existing message. If REJECT is
specified, RETURN must be omitted.

Indicates that SIL returns an error code if the message cannot be
sent immediately. If RETURN is omitted, this message replaces any
existing message. If RETURN is specified, REJECT must be omitted.

Figure 8-43. QSSNDMCR Call Format (Sheet 1 of 2)

8-82 60459410 E

Return Parameters

"'ERRLEN="', len

"'ERRMSG="' ,msg

'STATUS="', stat

Error message length in bytes (integer).

80-byte array in which SIL returns an error message.

Status code. Possible values: 0 through 202, 250, 261, 320 through
324.

Figure 8-43. Q5SNDMCR Call (Sheet 2 of 2)

60459410 E 8-83

QSSNDMDF - SEND MESSAGE TO DA YFILE

The QSSNDMDF subroutine (refer to figure 8-44) can write a message on the job's dayfile, the
system dayfile, or both.

All users can request the following from a batch job.

• A message written to the job's dayfile only

• A message written to both the job's dayf ile and the system dayfile

Tasks belonging to privileged user numbers, the installation management user number, the
customer engineer user number, and operating system tasks themselves have additional
capabilities. These tasks can write on the system dayfile only and can specify the type of
entry when writing on the system dayfile only, using the SDFDIAG, SDFLABL, SDFSYST, and
SDFUSER parameters. The system dayfile entry types are described in volume 2 of this manual.

If the specified message is longer than 2000 bytes, SIL truncates the message without
returning an error code.

Illegal characters (#00 through #IE, #7F through #FF) are changed to blanks, except for
#ODOA, which is changed to ti201F. The system adds an end-of-line character (lllF) if none is
specified.

If this message fills the job's dayfile, the system replaces it with the message DAYFILE
FULL. After that is written, no more messages can be written on the job's dayfile.

When the system dayfile is full, it is renamed Ddddnn (ddd is the day the file became the
system dayfile and nn is a sequence number). The backup system dayfile is renamed and
becomes the current system dayfile. A new backup system dayfile is created. (The names of
the current and backup system dayfiles are specified during system installation.)

QSSNDMDF uses the Send Message to Dayfile system message.

The following Q5SNDMDF call writes the message THIS IS A MESSAGE on the job's dayfile.

CALL Q5SNDMDF('MSG=','*THIS IS A MESSAGE*')

t

8-84 60459410 E

Call Format

CALL Q5SNDMDF('MSG=',msg,optional parameters)

Calling Parameters

'LEN=', len

'MSG=',msg

'BOTH'

NOTE

The BOTH, SDFDIAG, SDFLABL, SDFSYST, and
SDFUSER parameters are mutually exclusive.
If none of these parameters is specified,
the message is written on the job's dayfile
only.

Message length in bytes. If LEN= is omitted, SIL assumes that the
first character of the message is a delimiter and that the message
consists of the second character through the character preceding the
next occurrence of the delimiter. SIL sends a maximum of 2000 bytes
after removing the delimiters. If the message exceeds that length,
SIL truncates it but does not return an error status.

Message to be sent. This parameter is required.

Indicates that the message is written on both the job's dayfile and
the system dayfile. It is written as a USER type entry.

Calling Parameters for Tasks Having Additional Capabilities

'SDFDIAG'

'SDFLABL'

'SDFSYST'

'SDFUSER'

Indicates that the message is written on the system dayfile only and
that it is written as a diagnostic (DIAG) entry. The message must
be formatted as a diagnostic entry (excluding time and entry type)
as described in volume 2 of this manual. The system generates
continuation lines as necessary.

Indicates that the message is written on the system dayfile only and
that it is written as a label (LABL) entry. The message must be
formatted as a label entry (excluding time and entry type) as
described in volume 2 of this manual. The system generates
continuation lines as necessary.

Indicates that the message is written on the system dayf ile only and
that it is written as a system (SYST) entry. The message must be
formatted as a system entry (excluding time and entry type) as
described in volume 2 of this manual. The system generates
continuation lines as necessary.

Indicates that the message is written on the system dayf ile only and
that it is written as a user (USER) entry. The message must be
formatted as a user entry (excluding time and entry type) as
described in volume 2 of this manual. The system generates
continuation lines as necessary.

Figure 8-44. Q5SNDMDF Call Format (Sheet 1 of 2)

60459410 E 8-85

Return Parameters

'ERRLEN=',len

'ERRMSG=',msg

'STATUS=',stat

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 202, 250, 261, 310, 320,
327 through 330.

Figure 8-44. Q5SNDMDF Call Format (Sheet 2 of 2)

8-86 60459410 E

QSSNDMJC - SEND MESSAGE TO JOB CONTROLLER

The Q5SNDMJC subroutine (refer to figure 8-45) sends a message to the calling task's job
controller (batch processor or virtual system interactive processor). If the job controller
is the batch processor, the message is written in the job dayfile. If the task was
initiated at an interactive terminal, the message is sent to the terminal.

Q5SNDMJC uses the Send Message to Controller system message.

Call Format

CALL Q5SNDMJC('MSG=',msg,optional parameters)

Calling Parameters

'EOF'

'EOG'

'EOR'

'LEN=' ,len

'MSG=',msg

'REJECT'

'RETURN'

Indicates that the ASCII end-of-file character (#lC) is to be
appended to the end of the message. EOR, EOG, and EOF are mutually
exclusive.

Indicates that the ASCII end-of-group character (#lD) is to be
appended to the end of the message. EOR, EOG, and EOF are mutually
exclusive.

Indicates that the ASCII end-of-record character (released value,
#lF) is to be appended to the end of the message. EOR, EOG, and EOF
are mutually exclusive.

Length in bytes of the message. If LEN= is omitted, SIL assumes
that the first character of the message is a delimiter and that the
message consists of the second character through the character
preceding the next occurrence of the delimiter.

The length does not include any specified delimiting character (EOR,
EOG, or EOF) unless the length equals or exceeds 2000. In that
case, the delimiting character replaces byte 2000 of the message.

SIL sends a maximum of 2000 bytes. If the message exceeds that
length, SIL truncates it but does not return an error.

Message to be sent. This parameter is required.

Indicates that if the message replaces an existing message, task
execution is suspended until the message can be sent. If REJECT is
omitted, this message replaces any existing message. If REJECT is
specified, RETURN must be omitted.

Indicates that if the message replaces an existing message waiting
for the controller, SIL returns an error code of 323, 324, 332, or
337 (refer to appendix B of this manual). If RETURN is specified,
REJECT must be omitted.

Figure 8-45. Q5SNDMJC Call Format (Sheet 1 of 2)

60459410 E 8-87

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=' ,stat

Error message length in bytes (integer).

80-byte array in which SIL returns an error message.

Status code. Possible values: 0 through 202, 250, 261, 320, 321,
323, 324, 337.

Figure 8-45. Q5SNDMJC Call Format (Sheet 2 of 2)

8-88 60459410 E

QSSNDMJS - SEND MESSAGE TO JOB SESSION

The Q5SNDMJS subroutine (refer to figure 8-46) allows a privileged task to send a message to
a job session (for example, an interactive terminal or a batch job dayfile). If the
specified message exceeds 2000 characters, SIL truncates the message and issues a warning
message.

Call Format

CALL Q5SNDMJS('JDN=',jdn,'USER=',user,'JOBNAME=',jobname,'MSG=',msg,
optional parameters)

Calling Parameters

'JDN=',jdn Job descriptor number (integer value from 1 through 2047) of the job
session to which the message is to be sent. This parameter is
required.

'USER=',user User number (ASCII, left justified, blank filled) associated with
the jdn. This parameter is required.

'JOBNAME=',jobname Job name (ASCII, left justified, blank filled) associated with the
jdn. This parameter is required.

'MSG=',msg

'LEN=',len

Return Parameters

'ERRMSG=',errmsg

'ERRLEN=',errlen

'STATUS=',status

Message (1 through 2000 bytes). This parameter is required.

Length (integer) in bytes of the message. If LEN is not specified,
SIL assumes that the first character of the message is a delimiter
and that the message consists of the second character through the
character preceeding the next occurrence of the delimiter. If the
delimiter is not found by the 2000th byte, the delimiting character
replaces byte 2000 of the message. SIL sends a maximum of 2000
bytes. If the message exceeds that length, SIL truncates it and
reports an error.

80-byte array in which SIL returns an error message.

Error message length in bytes (integer).

Status code (integer). A status code of zero indicates that the
message was sent successfully. Possible error codes: 1 through
202, 250, 261, 310, 324, 509, 511.

Figure 8-46. QSSNDMJS Call Format

60459410 H 8-89

I

QSSNDMOP - SEND MESSAGE TO OPERATOR

The Q5SNDMOP subroutine (refer to figure 8-47) sends a message to an operator. SIL adds the
appropriate control characters to the message. If the specified message is longer than 54
characters, SIL truncates the message without returning an error code.

The operator can be either the local CYBER 200 MCU operator or a remote operator. The
REMOTE parameter specifies that the remote operator receive the message. The remote
operator is the user logged in with the remote operator user number. The remote operator
user number is intended for use by the operator of a remote system.

Call Format

CALL Q5SNDMOP('MSG=',msg,optional parameters)

Calling Parameters

'EOF'

'EOG'

'EOR'

'LEN=' ,len

'MSG=' ,msg

'REMOTE'

'RETURN'

'SAVE'

Indicates that the ASCII end-of-file character (#lC) is to be
appended to the end of the message. EOR, EOG, and EOF are mutually
exclusive.

Indicates that the ASCII end-of-group character (#lD) is to be
appended to the end of the message. EOR, EOG, and EOF are mutually
exclusive.

Indicates that the ASCII end-of-record character (released value,
#IF) is to be appended to the end of the message. EOR, EOG, and EOF
are mutually exclusive.

Length in bytes of the message. If LEN= is omitted, SIL assumes
that the first character of the message is a delimiter and that the
message consists of the second character through the character
preceding the next occurrence of the delimiter.

The length does not include any specified delimiting character (EOR,
EOG, or EOF) unless the length equals or exceeds 80. In that case,
the delimiting character replaces byte 80 of the message.

SIL sends a maximum of 54 bytes. If the message exceeds that
length, SIL truncates it but does not return an error. The operator
display can show only 54 characters per line.

Message to be sent. This parameter is required.

Indicates that the message is to be sent to the remote operator. If
REMOTE is omitted, the message is sent to the local operator.
REMOTE and SAVE are mutually exclusive.

Indicates that if the message replaces an existing message, SIL
returns a status code of 0326. If RETURN is omitted, SIL suspends
task execution until it can send the message.

Indicates that SIL saves the message for response by the operator.
The message is displayed in the 0 display. If SAVE is omitted, the
message is displayed on the local operator K display. REMOTE and
SAVE are mutually exclusive.

Figure 8-47. Q5SNDMOP Call Format (Sheet 1 of 2)

8-90 60459410 E

Return Parameters

'ERRLEN=',len Error message length in bytes (integer).

'ERRMSG=',msg 80-byte array to which SIL returns an error message.

'STATUS=',stat Status code. Possible values: 0 through 202, 250, 261, 320, 326.

Figure 8-47. QSSNDMOP Call Format (Sheet 2 of 2)

If you do not specify the SAVE parameter on the QSSNDMOP call, QSSNDMOP queues the message
to be sent to the operator's K display and then returns control to the task so it can resume
execution. However, if the system message buffer is full, QSSNDMOP cannot queue the message
and returns abnormal status (status code 0326) to the caller.

If you specify the SAVE parameter on the QSSNDMOP call, QSSNDMOP suspends the task until the
operator accesses his 0 display, sees the message, and enters a CFO command in response to
the message. The CFO command causes QSSNDMOP to return control to the task, which can then
get the operator response by calling QSGETMOP.

If the QSSNDMOP call specifies the REMOTE parameter and the remote operator user number is
logged in, QSSNDMOP sends the message to the remote operator's terminal. If the remote
operator user number is not logged in, QSSNDMOP returns a fatal error (status code 326).

QSSNDMOP uses the Send Message to Operator system message.

60459410 E 8-91

QSSNDSTR - ST ART CONTROLLEE EXECUTION

The Q5SNDSTR subroutine (refer to figure 8-48) starts a controllee task. You previously
initialized the controllee with a Q5INIT call.

QSSNDSTR uses the Send Message to Controllee system message, although it does not send a
message to the controllee.

Call Format

CALL QSSNDSTR(optional parameters)

Calling Parameters

'DB=' ,db

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=',stat

Descriptor block number identifying the controllee to be started.
If DB= is omitted, SIL starts the next lower controllee in the
controllee chain.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values: 0 through 202, 250, 321.

Figure 8-48. Q5SNDSTR Call Format

8-92 60459410 E

QSTERM - TERMINATE TASK

The QSTERM subroutine (refer to figure 8-4.9) terminates a task and its lower-level
controllees.

If you do not specify the RESTART parameter, QSTERM calls an SIL subroutine to close all
task files.

QSTERM uses the Terminate system message.

Call Format

CALL QSTERM(optional parameters)

Calling Parameters

'ABORT'

'ERROR'

'FATAL'

'RESTART'

'RESUME=' ,adr

Return Parameters

'ERRLEN=', len ·

'ERRMSG=',msg

'STATUS=' ,stat

Indicates a termination state of ll3D (task aborted). ABORT
overrides RESTART if both are specified. If ABORT is omitted, the
termination state is #3E (normal termination). Refer to QSGETCTS
call description.

Indicates that the system return code is 4 (nonfatal errors). ERROR
and FATAL are mutually exclusive. If ERROR and FATAL are omitted,
the system return code is 0 (no errors).

Indicates that the system return code is 8 (fatal errors). ERROR
and FATAL are mutually exclusive. If ERROR and FATAL are omitted,
the system return code is 0 (no errors).

Indicates that the drop file, scratch files, and output files are to
be saved so that the program can be restarted. If RESTART is
omitted, the files are not saved. If restarted, the program
restarts at the point of termination.

Virtual bit address at which the restarted program should resume
execution. The address specified must be in the same subroutine
that issued the QSTERM call.

Error message length in bytes (integer).

80-byte array in which SIL returns an error message.

Status code. Possible values: 0 through 199, 261.

Figure 8-49. QSTERM Call Format

60459410 E 8-93

QSTERMCE - DISCONNECT CONTROLLEE

The Q5TERMCE subroutine (refer to figure 8-50) disconnects a previously initialized
controllee.

Q5TERMCE uses the Disconnect Controllee system message.

Call Format

CALL Q5TERMCE(optional parameters)

Calling Parameters

None.

Return Parameters

... ERRLEN= ... ,len Error message length in byte~ (integer) •

'ERRMSG= ... ,msg 80-byte array in which SIL returns an error message •

... STATUS=' ,stat Status code. Possible values: 0 through 202, 261, 370.

Figure 8-50. QSTERMCE Call Format

8-94 60459410 E

QS TIME - GET SYSTEM TIME

The Q5TIME subroutine (refer to figure 8-51) gets the system time and date. Specify the
TIME=, DATE=, JULIAN=, or MASTER= parameter on the call.

Q5TIME uses the Miscellaneous system message.

Call Format

CALL Q5TIME(l=~~~~~~:~7~:te } ,optional parameters)
'MASTER=' , time
'TIME=', time

Calling Parameters

None.

Return Parameters

'DATE=', date

'ERRLEN=' , len

'ERRMSG=' ,msg

.... JULIAN=', date

'MASTER=' ,elk

'STATUS=' ,stat

'TIME=' , time

ASCII character string in the format mm/dd/yy. The variable must
begin on a word boundary.

Error message length in bytes (integer).

80-byte array in which SIL returns an error message.

Binary Julian date in the following format (right justified, zero
filled):

yy ddd

Field Bits Content

0-47 Unused

yy 48-54 Last two digits of the year

ddd 55-63 Number of days since the beginning of
the ye_ar, 1 through 366

Binary value of the master system hardware clock The value is
in the format yymmddhhmnsspppp where yy is the year, mm is the
month, dd is the day, hh is the hour, mn is the minutes, ss is
the seconds, and pppp is the decimal fraction of a second.

Status code. Possible values: 0 through 202, 250, 261.

ASCII character string in the form hh.mm.ss. The variable must
begin on a word boundary.

Figure 8-51. Q5TIME Call Format

60459410 E 8-95

QSVRACC - CHANGE ACCOUNTING RATE

The Q5VRACC subroutine (refer to figure 8-52) changes the accounting rate for the task.

If the specified variable rate entry has a password, a Q5VRACC call specifying the entry and
its password is valid for any user. If the specified password does not match the password
in the entry, Q5VRACC returns a fatal error (status code 0473).

If the specified variable rate entry does not have a password, a Q5VRACC call is valid for a
public controllee or a controllee executed for a user number having the variable rate
accounting permission.

The site can set an installation parameter that prevents accounting rate changes.

The site can also specify a test routine to restrict use of variable accounting rates. If
the call fails the test, it returns a fatal error (status code 0473).

Q5VRACC uses the Variable Rate Accounting system message.

Call Format

CALL Q5VRACC(optional parameters)

Calling Parameters

'AAF'

'PW=',pw

'VRI=',vri

Return Parameters

'ERRLEN=', len

'ERRMSG=' ,msg

'STATUS=', stat

Site accounting flag. A site accounting interface routine can
specify this parameter so that it, and not the task, determines
reprieve processing. If AAF is omitted, the task can enable its own
reprieve subroutine (refer to the Q5REPREV subroutine description in
this chapter).

Password to the specified variable rate entry (eight-character
string). If the variable rate entry has a password, it must be
specified.

Index into the variable rate table (integer from 0 through 4096).
If VRI= is omitted, SIL uses index O.

Error message length in bytes (integer).

80-byte array to which SIL returns an error message.

Status code. Possible values~ 0 through 202, 250, 470 through 473.

Figure 8-52. QSVRACC Call Format

8-96 60459410 E

SYSTEM INTERFACE LANGUAGE (1/0 CALLS)

This chapter describes the SIL routines that perform I/O operations or functions related to
file I/O. Chapter 8 describes SIL routines that are not related to file I/O operations.

Table 9-1 lists the routines described in this chapter, grouped according to a shared
function. To use the routines, you must be familiar with the file concepts discussed in
chapter 2 of this manual.

Permanent file access

QSDEFINE
QSATTACH
QSRETURN
QSCHANGE
QSGIVE
QSPURGE

Local file access

QSRQUEST
QSCHANGE
QSRETURN
Q5LABEL

Pool access

QSPCREAT
QSGIVE
QSPGRACC
QSPATACH
Q5PDTACH
QSPREACC
QSPURGE
QSPDESTR
QSPOOLS
QSPUSERL

Public file creation

QSGIVE

FIT manipulation

QSGENFIT
QSSETFIT
QSGETFIT
QSRETFIT

Table 9-1. SIL I/O Calls (Sheet 1 of 2)

Defines a permanent file
Attaches a permanent file
Returns a permanent file or discards a temporary file
Changes file attributes
Gives file ownership to another user
Purges a permanent file

Creates or accesses a local file
Changes file attributes
Returns a local file
Creates or accesses a local file in a multiple set

Adds a pool to the pool list
Gives a file to a pool
Grants access to a pool
Attaches a pool of files
Returns a pool of files
Removes access to a pool
Purges pool file
Removes a pool from the pool list
Lists the pools
Lists the users granted access to a pool

Adds a file to the public file list

Generates a FIT
Changes FIT fields
Retrieves contents of FIT fields
Returns a FIT

9

60459410 E 9-1

9-2

Table 9-1. SIL I/O Calls (Sheet 2 of 2)

I/O preparation

QSOPEN
QSGETFIL
QSCLOSE
QSREELSW

Implicit I/O preparation

QSMAPIN
QSMAPOUT

Opens a file for I/O
Opens or requests and opens a file
Closes a file for I/O
Continues processing with next tape volume.

Associates a virtual address range with a mass storage file
Disassociates a virtual address range from a mass storage file

Explicit I/O by physical blocks

QSREAD
QSWRITE
QSCHECK

Reads data from a file
Writes data to a file
Checks to see whether I/O operation is complete

Explicit tape I/O by blocks

QSGETB
QSPUTB
QSCHECKB

Reads buffer record
Writes buffer record
Checks to see whether the buffer I/0 operation is complete

Explicit I/O by logical partitions

QSGETN
QSGETP
QSPUTN
QSPUTP
QSENDPAR

File positioning

QSREWIND
QSSKIP

Other functions

QSCLIOER
QSREDUCE

QSROUTE
QSPERMIT

Reads complete partition
Reads partial partition
Writes complete partition
Writes partial partition
Writes partition delimiter

Rewinds file
Skips file partitions forward or backward

Clears tape I/O error
Releases allocated mass storage space that is not in use by
the file
Routes a file
Changes access permission set

60459410 E

SIL 1/0 OVERVIEW

To perform file I/O using SIL calls, the program must first issue calls to prepare the file
for I/O and then issue calls to perform the I/O operations. SIL calls are also provided to
perform cleanup operations after completion of I/0 to a file, although the system performs
these operations at task completion if the program does not perform them itself.

PREPARING A FILE FOR 1/0

To prepare a file for I/O, the program must call SIL routines to perform the following
operations:

• Access or create the file if the file is not attached to the job

• Create a FIT for the file

• Open the file

To create a file means to create a file index entry for the file. A program can create or
access files using utilities described in chapter 4 or using SIL calls.

The following

SIL Call

QSATTACH

QSPATACH

The following

SIL Call

QSDEFINE

QSRQUEST

QSGETFIL

FIT Processing

SIL calls access existing files.

SIL

File Type

Private permanent mass storage file

Pool mass storage file

calls create files.

File Type

Private permanent mass storage file

Local mass storage file or a file connected to a terminal

Local mass storage file or a file connected to a terminal if the file
specified on the call does not exist

To perform I/O operations on a file, the file must have a file information table (FIT)
associated with it. The FIT is the table SIL uses to coordinate I/O processing for the file
during the task.

When the task creates a file using a QSDEFINE, Q5RQUEST, or QSGETFIL call, the call also
generates a FIT for the file. If the task does not create the file, it can generate a FIT
for the file with the QSGENFIT call. If a FIT does not exist for the file when it is
opened, the QSOPEN call generates a FIT for the file.

60459410 E 9-3

After a FIT exists for a file, the task can reference the file on SIL calls using either the
file name or the number SIL assigned to the FIT for the file. The number is called the file
logical unit number (flun). File specification by number, instead of by name, is recom­
mended because file specification by name requires that SIL associate the name with a FIT.

The FIT format is in appendix D of this manual. When SIL generates a FIT, it takes field
values from the following sources, in this order:

1. Parameter specifications on the SIL call that generates the FIT

2. File index entry field values

J. Default values

The task can change FIT field values with the QSSETFIT call and retrieve FIT field values
with the QSGETFIT call.

SIL discards FITs when task processing completes. The task can discard a FIT with a
QSRETFIT call or with the RETFIT parameter on the QSCLOSE or QSRETURN call.

Openin,g a File

To open a file for I/O, the task must specify the file on a QSOPEN or QSGETFIL call. SIL
opens the file for explicit I/O unless the IMP parameter is specified on the call.

The QSOPEN call can specify the access modes that the task requires. For explicit I/O, the
call should specify read, write, modify, and/or append modes, depending on the operations to
be performed. For implicit I/O, the call should specify read mode or read and write modes.

EXPLICIT I/ 0

After opening a file for explicit I/O, the task must issue an SIL call for each read
operation from the file or each write operation to it. SIL can perform explicit I/O by
logical partition or by physical block.

Explicit 1/0 by Logical Partition

A task can perform explicit I/O by logical partitions. A logical partition within an F or U
format file is a record or the entire file. A logical partition within an R, L, or W format
file is a record, a group, or the entire file. A logical partition for a B format file is
the entire file.

Explicit I/O by logical partition uses a working storage area and an I/O buffer. Explicit
I/O calls copy data between the working storage area and the I/O buffer.

I
The working storage area is an array the task defines. It must be large enough for the
largest amount of data the task reads or writes with one SIL call. The I/O buffer(s) must
be assigned by the task via the QSOPEN or QSGETFIL call. A QSSETFIT call may also be used
to define the I/O buffer.

9-4 60459410 H

Reading Data By Logical Partition

QSGETN and QSGETP are the SIL calls that read data by logical partition. When a task calls
QSGETN or QSGETP to read data, the system copies the physical block of data from the mass
storage file to the I/O buffer. Each QSGETN or QSGETP call then copies a logical partition
of data from the I/O buffer to the working storage area, where the task can reference the
data. The system copies new blocks of data to the I/O buffer as required.

QSGETN copies data to the working storage area until it encounters a partition delimiter.
QSGETP copies data until the specified working storage area is full or until it encounters a
partition delimiter.

QSGETN and QSGETP do not copy the partition delimiter of the requested partition. The
partition delimiters of lower-level partitions are copied. For example, if QSGETN copies a
group, it copies the record delimiters within the group, but it does not copy the group
delimiter.

Writing Data By Logical Partition

QSPUTN and QSPUTP are the SIL calls that write data by logical partition. Similar to QSGETN
and QSGETP, QSPUTN and QSPUTP also use a working storage area and an I/O buffer, but the
copying of the data is from the working storage area to the I/O buffer. When the I/O buffer
is full, the system copies the data to the storage file.

QSPUTN copies a full partition of data from the working storage area to the I/O buffer and
then terminates the partition. Q5PUTP copies the data in the working storage area but does
not terminate the partition unless the TERM parameter is specified on the call. The task
can also terminate a partition with a Q5ENDPAR call.

Example of Explicit I/O By Record

The following is an example of a FORTRAN program that uses SIL calls to read and write
logical records.

The program uses two files, FILEl and FILE2. FILEl is a permanent mass storage file
containing R format records; the maximum size of a record is 10 words. FILE2 is a local
mass storage file that the program creates.

Using SIL calls, the program reads a logical record from FILEl and checks to see whether the
first word of the record contains a value greater than 500. If it does, it writes the
record on FILE2.

60459410 E 9-5

I

I

When the program reaches the end of the FILEl data, it closes both files. It then checks a
count variable to determine whether it wrote any records to FILE2. If it did, it stores
FILE2 as a permanent file.

9-6

c
c
c

c
c
c

c

PROGRAM RECIO
COMMON/BUF/BUF1(8192),BUF2(8192)
INTEGER FLl, FL2, WSA(lO), COUNT, !STAT,

+ IERMSG(lO)
CHARACTER*8 FP

PREPARATION FOR FILE I/O

CALL Q5ATTACH('LFN=','FILE1')
CALL Q5RQUEST('LFN=','FILE2')
CALL Q50PEN('LFN=','FILE1' ,'ACS=','R' ,'0001=',BUFl,'BUFLl=' ,16,

+ 'RFLUN=' ,FLl)
CALL Q50PEN('LFN=','FILE2' ,'ACS=','W','BUFl=' ,BUF2,'BUFL1=',16,

+ 'RFLUN=' ,FL2)

COUNT=O
READ LOGICAL RECORD

1 CALL Q5GETN(' FLUN=', FLl, 'WSA=', WSA, 'WSL=' ,80,
+ 'STATUS=' ,!STAT ,'ERRMSG=', IERMSG)

C CHECK FOR END OF FILE
c

c

IF (ISTAT .EQ. 1416)
+ GO TO 2

C DETERMINE IF RECORD IS WRITTEN
c

c

IF (WSA(l) .GE. 500)
+ CALL Q5PUTN('FLUN=', FL2, 'WSA=' , WSA,
+ 'WSL=' , 80)

COUNT = COUNT+ 1
GO TO 1

C CLOSE FILES
c

c

2 CALL QSCLOSE('FLUN=',FLl)
CALL Q5CLOSE('FLUN=',FL2)

C DETERMINE IF FILE2 IS SAVED
c

IF (COUNT .GT. O)
+ CALL Q5DEFINE('FLUN=',FL2)

'STOP
END

60459410 H

Explicit I/ 0 By Physical Block

A task can perform explicit I/O by physical block, using the Q5READ, Q5WRITE, and Q5CHECK
calls.

A block is 512 contiguous words. Its starting word address must be a multiple of 512. A
Q5READ call copies one or more blocks of data· from a mass storage file to an I/O buffer in
the program space. A Q5WRITE call copies one or more blocks of data from an I/O buffer in
program space to a mass storage file.

The FIT for a file can define two I/O buffers for the file. The QSREAD and QSWRITE calls
can specify which buffer the call uses. The buffer must be large enough for the data copied.

Unless the WAIT parameter is specified, SIL performs the read or write operation while
execution of the calling task continues. When necessary, the task should issue a Q5CHECK
call to determine whether the I/O operation has completed. If the WAIT parameter is
specified, SIL suspends task execution until the I/O operation completes.

The task specifies the I/O operation on a Q5CHECK call, using its request number. SIL
returns the request number of a Q5READ or QSWRITE call if the RSN parameter is specified on
the call.

Appending Data

Appending data to a file means writing data at the end of the file only. If the record
format of the file uses a file delimiter, the data must overwrite the file delimiter.

To append data, a task must perform the following steps:

1. Position the file at its end by reading data until the end of file is read or by
skipping to the end of the file with a QSSKIP call that specifies the 'PART=','F'
parameter.

2. Position the file before the file delimiter with a QSSKIP call that specifies the
'COUNT=',-1 parameter to skip backwards over the file delimiter.

3. Write data to the file. The data overwrites the existing file delimiter. A new
file delimiter is written when the file is closed.

60459410 E

I NOTE I
If the existing data on a file was written
by QSPUTN or QSPUTP calls, do not use a
QSWRITE call to append additional data to
the file. Data written by QSPUTN or Q5PUTP
calls could end within a block. Using a
QSWRITE call to append data overwrites the
last block of the file if it ends with a
partial block.

9-7

I

I

IMPLICIT I/ 0 ·

After opening a file for implicit I/O, the task must map the file into a virtual address
range. Once mapped in, the system implicitly performs the I/O operations needed to read and
write data from the file.

The virtual address range must be declared as an array in a common block that is not mapped
into the controllee file. To prevent the mapping in of the common block, specify the common
block on a GROS parameter on the LOAD statement for the program.

To map in a file, the task issues a Q5MAPIN call that associates the file with the common
block array. The call must specify the name of the file, the subscripted name of the first
element of the array, and the length of the array. The array specified must begin on a page
boundary.

After the array is associated with a file, a task reference to an array element causes the
system to copy the appropriate block of data from the file to the array.

Data can also be stored in the array. If the task has write access to the file, the
contents of the array are written to the file when the file is mapped out. A file is mapped
out when it is disassociated from its virtual address range. A file open for implicit I/O
is mapped out when the file is closed or when a Q5MAPOUT call specifies the file.

Example of Implicit 1/0

The following job compiles, loads, and executes a program that uses implicit I/O. The
program accesses file space, using a 1,000,000-word array assigned to a common block named
BUFFER. The LOAD statement specifies the BUFFER common block on a GROS parameter so that it
is not mapped into the controllee file.

The program creates and opens file TEST for implicit I/O and maps the BUFFER array into the
file. It then sets the contents of the BUFFER array to zero. The contents of the BUFFER
array are implicitly stored in file TEST.

9-8

FTN200.
LOAD(GROS=*BUFFER,CN=IMPLICIT,L=O)
IMPLICIT.
*EOR

PROGRAM CLEAR
IMPLICIT INTEGER (A - Z)
PARAMETER (MAXFILE=lOOOOOO)
DATA LFN / 4HTEST /
DIMENSION BUFFER (MAXFILE)
COMMON / BUFFER / BUFFER
CALL Q5GETFIL ('LFN=' , LFN, 'IMP' , RLEN=*, FILELEN)
CALL Q5MAPIN ('LFN=', LFN,

+ 'VBA=', BUFFER,
+ 'LEN=' , FILELEN)

DO 1 I=l, MAXFILE
1 BUFFER (I) = 0

CALL Q5CLOSE ('LFN=', LFN)
STOP
END

60459410 G

The Q5MAPIN call maps in the initial file length (RLEN). However, the file is extended up
to MAXFILE words long as the DO loop references space beyond the initial file length.

SIL I/ 0 CALLS

This section contains a figure for each SIL routine. The figure contains a call format
specifying the required parameters followed by parameter descriptions •

. The parameter descriptions are divided between calling parameters and return parameters. A
calling parameter specifies a value used by the SIL routine. A return parameter specifies
the name of the variable in which SIL returns a value.

Parameter keywords are listed as FORTRAN literals. Options are listed as lowercase variable
names. The available mnemonic values for calling parameter options are listed as FORTRAN
literals.

Table 9-2 lists the value ranges for calling parameters commonly used by SIL I/O calls. If
a parameter value is specified outside of the valid range, SIL returns abnormal status
(status codes 1 through 100).

Table 9-2. Calling Parameter Value Ranges

Lower Bound Upper Bound
Parameter (Inclusive) (Inclusive)

'FLUN=' 0 109
32

'MNR=' 0 2 -1
32

'MXR=' 0 2 -1

'PC=' 0 255

'RMK=' 0 255

'RP=' 1 65535

'RSN=' 1 6

'SLEV= ... 1 8

'BUFLl=' 1 48

'BUFL2=' 1 48

'ERL=' 0 65 535
32

'WSL=' 0 2 -1

32
'REC=' 1 2 -1

'VRI= ... 1 255

'BUFLEN=' 1 6144

'BYTCNT= - l 524288
48 48

'COUNT=' -(2) 2 -1

·60459410 E 9-9

QSATTACH - ATTACH PERMANENT FILE

Call the QSATTACH routine (refer to figure 9-1) to attach any of the following:

• A private permanent file belonging to the caller

• All private permanent files belonging to the caller

• A private permanent file to which you have access, but which you do not own

If the call attaches only one file, specify the set of access modes to be.allowed while the
file is attached. You must have permission for each access mode specified. Subsequent
calls to open the file can specify any of the allowed access modes.

If, while attaching all of your permanent files, QSATTACH encounters an error preventing it
from attaching a file, it records the error and continues attaching files; therefore, the
status code returned is that of the last error encountered.

QSATTACH cannot attach a local mass storage file, or a file connected to a terminal. An
attempt to do so returns a fatal error (status codes 0302 or 1502).

When you call QSATTACH for a file that has some unavailable segments because one or more
devices are down, a fatal error status 1619 is returned.

QSATTACH issues the ATTACH FILE system message.

Call Format

{
'LFN=' lfn }

CALL QSATTACH ('*' ' ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'ACS=',acs

Name of an unattached permanent file. LFN=,lfn must be specified if
* is omitted.

Indicates that SIL attaches all unattached, permanent files
belonging to you. * must be specified if LFN=,lfn is omitted. If *
is specified, the ACS=,acs and USER=,un parameters cannot be
specified.

Access modes allowed while the file is attached (specified by a
string composed of the following letters).

R Read access

W Write access

X Execute access

A Append access

M Modify access

If ACS=,acs is omitted, only read and execute modes are allowed
while the file is attached. The ACS=,acs and* parameters·are
mutually exclusive.

Figure 9-1. QSATTACH Call Format (Sheet 1 of 2)

9-10 60459410 E

Calling Parameters

'USER=' ,un

'PARTIAL=',x

Return Parameters

'ERRLEN=',len

'ERRMSG=',msg

'STATUS=',stat

User number that owns the file (ASCII, left justified
blank-filled). If USER=,un is omitted, SIL assumes that the file
belongs to the caller. The USER=,un and * parameters are mutually
exclusive.

Specifies whether or not segments can be attached even if some
segments of the file are on down devices. x has the value of Y
(yes) or N (no). To use Y, the parameter ACS=R must also be used.
N is the default value for x.

Error message length in bytes.

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 205, 258, 302,
303, 1501, 1502, 1504, 1510, 1543, 1617, 1618, 1619, 1682, 1726,
1730, 1735.

Figure 9-1. Q5ATTACH Call Format (Sheet 2 of 2)

60459410 J 9-11

I

QSCHANGE - CHANGE FILE ATTRIBUTES

Call the Q5CHANGE routine (refer to figure 9-2) to change file attributes.
the specified changes in the file's file index entry FILE! and in its FIT.
attribute changes are permanent for a permanent file.

Q5CHANGE records
The file

Unless you are privileged, you can change the attributes of your private files only.

If a parameter on a QSCHANGE call is not valid for the device type of the file, QSCHANGE
returns a warning error. If the parameter is a mass storage parameter, Q5CHANGE returns
status code 1454; if it is a tape parameter, QSCHANGE returns status code 1472.

QSCHANGE iss~es the CHANGE FILE ATTRIBUTES system message.

Call Format

CALL QSCHANGE({
'LFN=' lfn l
'FLUN=~ ,rflun ,optional parameters)

Calling Parameters

""LFN=' ,lfn

'FLUN=', rflun

'MNR=' ,mnr

'MXR=' ,mxr

File name. LFN=,lfn must be specified if FLUN=,rflun is omitted.

File logical unit number SIL assigned to the FIT. FLUN=,rflun must
be specified if LFN=,lfn is omitted.·

Minimum record length in bytes. For record types other than F, SIL
checks to see that a record is not shorter than this value. SIL
does not use this value when writing F format records. If MNR=,mnr
is omitted, SIL does not change the minimum ~ecord length.

Maximum record length. For F format records, the maximum record
length is the fixed ·record length. For other record formats, SIL
checks to see that the record length does not exceed this value. If
MXR=,mxr is omitted, SIL does not change the maximum record length.

Calling Parameters for Mass Storage Files Only

'ACCOUNT=',acctno

'CT=' ,ct

'DFLEN=' ,dfl

Account identifier (one to eight ASCII characters). If this
parameter is omitted, SIL does not change the account identifier.

Front-end communication type. If CT=,ct is omitted, SIL does not
change the communication type.

'NRHF' No Remote Host Facility

'RHF' Remote Host Facility

Remote Workstation Facility

Drop file length in 512-word blocks. If DFLEN=,dfl is omitted, SIL
does not change the drop file length.

Figure 9-2. Q5CHANGE Call Format (Sheet 1 of 4)

9-12 60459410 H

Calling Parameters for Mass Storage Files Only

'FC=' ,fc

'IC=' ,ic

'MPN=',mpn

'OSTAT=',ostat

'RP=' ,rp

'SFO=',sfo

'TYPE=',typ

File category. If FC=,fc is omitted, SIL does not change the file
category.

'B' Batch file

'U' User file

'D' User-created drop file

File format. If IC=,ic is omitted, SIL does not change the file
format.

'AS' 8-bit ASCII code; ANSI carriage control if the file is
a print file

'BI' Binary

'PA' 8-bit ASCII code; ASCII carriage control if the file
is a print file

Master project number (one to three alphanumeric characters). If
this parameter is omitted, SIL does not change the master project
number.

Output-file-family status. If OSTAT=,ostat is omitted, SIL does not
change the output-file-family status. Only privileged tasks are
allowed to use this parameter.

0
1
2
3
4
5
6
7
8
9

10-27
28-31

Normal status.
Destination LID disabled.
Destination not responding.
Destination rejecting file.
SIL error occurred during file transfer.
Diverted.
Hardware path to LID not available.
System error occurred during file transfer.
RHF error occurred during file transfer.
RWF error occurred during file transfer.
Reserved by CDC.
Reserved for installations.

Retention period in days. If RP=,rp is omitted, SIL does not change
the retention period.

File organization. If SFO=D is specified, the file must be a mass
storage file and use the F record format. If SFO=,sfo is omitted,
SIL does n-0t change the file organization.

'D' Direct access

'S' Sequential access

File type. If TYPE=,typ is omitted, SIL does not change the file
type.

'PD' Physical data file (not executable)

'VC' Virtual code file (executable)

Figure 9-2. Q5CHANGE Call Format (Sheet 2 of 4)

60459410 J 9-13

I

I

Calling Parameters for Mass Storage Files Only

.... AU=', blocks

'USER="" ,userno

""RSTDF="" ,df

Allocation units. The number of 512-word blocks to be allocated
when the file is extended. The value range of blocks is I to
65,535. If blocks is not a multiple of the DAU for the device at
which the first allocation occurs, it is rounded to the next higher
multiple of the DAU.

Owner user number (ASCII, left-justified, blank filled). Valid only
if RSTDF= is specified. If omitted, the site security administrator
user number is assumed to be the owner.

Specify df=y to enable the restart of a drop file that has been
flagged by the system as nonrestartable.

The USER= and RSTDF= parameters can only be used by the site
security administrator user number (refer to chapter 7 of the
Installation Handbook for details).

Calling Parameters for Mass Storage and Tape Files Only

'BT="" ,bt

""NFNAME="", nf

'PC="' ,x

'RT="" ,_rt

'RMK="" ,x

Blocking type. If BT=,bt is omitted, SIL does not change the
blocking type.

""C"" Character count

""I' Internal (tapes only)

""K' Record count (tapes only}

New file: name. If NFNAME=,nf is omitted, SIL does not change the
file name.

Padding character used to fill the working storage area. If PC=,x
is omitted, SIL does not change the padding character.

Record format. If SFO=D is specified, the only valid record format
is F. If RT=,rt is omitted, SIL does not change the record format.

"":S"" System block (tapes only)

""F"" ANSI fixed length

"'L"' CYBER Record Manager control word (tapes only)

"'R' Record mark delimited

"'U"" Undefined structure

""W"" Control word

Record mark character. If RMK=,x is omitted, SIL does not change
the record mark character.

Figure 9-2. QSCHANGE Call Format (Sheet 3 of 4)

9-14 60459410 J

Calling Parameters for Tape Files Only

'CONVERT=',tm

'LPROC=' ,lp

'MPRU=',mpru

'RPB=',rpb

Return Parameters

'ERRLEN=',len

'ERRMSG=',msg

'STATUS=',stat

Data conversion mode; indicates whether the tape data is to be
stored as binary or character data.

'Y' Character data; convert data to and from character
codes.

'N' Binary data; do not convert data.

Label processing option.

'R' Read and verify existing labels.

'W' Write new labels.

MPRU size in bytes; applicable to V format files only. If
MPRU=,mpru is omitted, SIL does not change the MPRU size.

Records per block; applicable to K format files only. If RPB=,rpb
is omitted, SIL does not change the records per block.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 303, 308, 0510,
0517, 0519, 1402, 1425, 1429, 1454, 1470 through 1472, 1505, 1586,
1704, 1800, 1802, 1803.

Figure 9-2. Q5CHANGE Call Format (Sheet 4 of 4)

60459410 H 9-15

I

I

QSCHECK - CHECK 1/0 REQUEST STATUS

Call the Q5CHECK routine (refer to figure 9-3) to determine the status of a Q5READ or
Q5WRITE request. If more than one Q5READ or Q5WRITE request is outstanding, the request can
be identified by its request ordinal. The RSN parameter on the Q5READ or Q5WRITE call
retur~s .the request ordinal.

After determining the request status by examining the appropriate fields in the FIT, SIL
returns control immediately to you by default. If the WAIT parameter is specified on the
Q5CHECK call, however, SIL suspends program execution until the I/O request has completed.

Call Format

{
"'LFN="', lfn }

CALL QSCHECK("'FLUN="',flun ,"'IOSTAT="',sts,optional parameters)

Calling Parameters

"'LFN="' ,lfn

"'FLUN="',flun

"'RSN="' ,rsn

'WAIT'

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

Request number of the request to be checked. SIL assigns request
numbers to identify concurrent I/O request. QSREAD and QSWRITE
return an RSN value. If RSN=,rsn is omitted, SIL checks the last
issued I/O request.

Indicates that SIL should wait for completion of the I/O request
(specified by RSN) before returning control to the caller.

Calling Parameters for Tape Files Only

"'LRUA="',addr

"'LRUL="' ,n

Return Parameters

"'ERRLEN="', len

"'ERRMSG="' ,msg

Address of an array in which Q5CHECK returns one-word descriptions
of the LRUs read or written. The array must begin on a word
boundary. If LRUA=,addr is omitted, QSCHECK does not return LRU
descriptions.

Number of words in the LRU description array; the maximum is 40
words. If LRUL=,n is omitted, 1 is assumed.

Error message length in bytes.

Error message. The variable msg must be 80 bytes long.

Figure 9-3. QSCHECK Call Format (Sheet 1 of 2)

9-16 60459410 H

Return Parameters

'IOSTAT=' ,sts

'RL=' ,rl

'STATUS=', stat

Status of the I/O request. SIL can return the following ASCII
values:

COM I/O request completed without errors.

EOF I/O request completed; end of file encountered.

ERR I/O request completed with errors.

PEN I/O request pending; errors encountered.

Record length (in bytes) actually transferred.

Status code. Possible values: 0 through 199, 204, 206, 207, 303,
1403, 1409, 1411, 1416, 1422, 1472, 1580, 1596, 1604, 1605, 1653,
1708.

Return Parameters for Tape Files Only

'RLRUL=' ,n

'RLEVEL=' ,lev

Number of entries returned in the LRU description array. If
RLRUL=,n is omitted, the number of entries is not returned.

Level number of the first LRU read (one ASCII character, 0 through 9
or A through F, right justified, zero filled). The level number is
returned if the read request reads the LRU terminator. (This
parameter does not apply to V tape format.)

Figure 9-3. Q5CHECK Call Format (Sheet 2 of 2)

Q5CHECK is not used for a file connected to a terminal, because no concurrent I/O can be
performed for that device type. If a connected file is specified on a Q5CHECK call, Q5CHECK
always returns either the COM response and a zero status code or the EOF response and a 1416
status code. It performs no other action.

QSCHECK issues the GIVE UP CPU (#FF02) resident system message for tapes. Q5CHECK uses the
GIVE UP CPU (#52) virtual system message for disk.

Tape I/ 0 Requests

The I, SI, and LB tape formats support the grouping of PRUs into logical record units
(LRUs). A tape I/O request can read or write one or more LRUs. Q5CHECK can return a
description of each LRU read or written.

QSCHECK returns each LRU description as a one-word entry in the array specified with the
LRUA and LRUL parameters. Figure 9-4 shows the format of each entry. The RLRUL parameter
returns the number of entries returned in the array.

60459410 E 9-17

As shown in figure 9-4, if the LRU terminator is read or written, the LRU description
contains the level number of the LRU. However, if desired, Q5CHECK can return a level
numberwithout returning the LRU description. If the I/O request is a request to read one
LRU and the request reads the LRU terminator, Q5CHECK returns the level number of the LRU in
the variable specified on the RLEVEL parameter.

If a Q5CHECK call specifies tape I/O request parameters for a nontape file, Q5CHECK returns
a warning error (status code 1472).

Field

lev

ed

par

eor

eof

eoi

lrsz

lrsz

Bits Content

0-3 Unused.

4-7 Level number (0 thru F); applicable only if the end-of-LRU flag
is set. (Not applicable to V tape format.)

8-10 Reserved.

11

12

13

14

15

16-31

32-63

Excess data flag; set to 1 if a read operation fills the buffer
before it encounters the end of the LRU.

Parity flag; set to 1 if a read operation detects a parity error
in the LRU.

End-of-LRU flag. A read operation sets the flag to l when it
reads the LRU terminator. A write operation must set the flag to
terminate the LRU.

End-of-file flag. A read operation sets the flag to l when it
reads the end of the file or the end of information. A write
operation must set the flag to terminate the file.

End-of-information flag. A read operation sets the flag to l if.
it encounters the end of information.

Reserved.

Number of bytes in the LRU. Set for a write operation; returned
by a read operation.

Figure 9-4. LRU Description Format

9-18 60459410 E

QSCHECKB - CHECK BLOCK 1/0 REQUEST STATUS

A QSCHECKB call (refer to figure 9-5) determines,,the status of a QSGETB or QSPUTB request.
The QSCHECKB call identifies the request by the request serial ordinal (RSN) returned by the
QSGETB or QSPUTB call.

After determining the request status by examining the buff er operations status word in the
FIT, QSCHECKB, by default, returns control immediately to the caller. However, if the
QSCHECKB call specifies the WAIT parameter, QSCHECKB suspends program execution until the
block I/O request has completed.

A QSCHECKB call is valid only for QSGETB or QSPUTB calls. To check QSREAD and QSWRITE
requests, call the QSCHECK routine.

QSCHECKB issues the GIVE UP CPU system message.

Call Format

CALL QSCHECKB(I 'LFN=',lfn }
'FLUN=',flun ,'IOSTAT=' ,sts,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=',flun

'NOREDUCE"

'RSN=',rsn

'WAIT'

Return Parameters

'ERRLEN=', len

'ERRMSG=',msg

'IOSTAT=',sts

File name. 'LFN=,lfn must be specified if FLUN=,flun is omitted.

File logical unit number SIL assigned to the FIT. FLUN=,flun must
be specified if LFN=,lfn is omitted.

Indicates that a file should not be reduced in length at close time.

Request serial number returned by the QSGETB or QSPUTB call. If
RSN=,rsn is omitted, SIL checks the last issued QSGETB or QSPUTB
request.

Indicates that SIL should wait for completion of the I/O request
(specified by RSN) before returning control to the caller.

Error message length in bytes.

Error message. The variable msg must be 80 bytes long.

Status of the I/O request (ASCII, left justified, blank filled).
This parameter is required.

COM I/O request completed without errors.

EOF I/O request completed; end of file encountered.

ERR I/O request completed with errors.

PEN I/O request pending.

Figure 9-5. QSCHECKB Call Format (Sheet 1 of 2)

60459410 E 9-19

Return Parameters

'RL=',rl

'STATUS=',stat

Record length (in bytes) actually transferred.

Status code. Possible values: 0 through 1Y9, 204, 206, 207, 303,
1403, 1409, 1411, 1416, 1422, 1580, 1596, 1605, 1653.

Figure 9-5. Q5CHECKB Call Format (Sheet 2 of 2)

9-20 60459410 E

QSCLIOER - CLEAR TAPE I/ 0 ERROR

A QSCLIOER call (refer to figure 9-6) clears an I/O error status on a tape file.

Once the system returns a fatal tape I/O error (within the message for status code 1476),
subsequent I/O requests continue to return the error status until the program calls QSCLIOER
to clear the error.

QSCLIOER issues the TAPE FUNCTION system message with a subfunctiori code of clear I/O error
condition.

Call Format

CALL QSCLIOER({
""LFN="", lf n l
""FLUN="", flun ,optional parameters)

Calling Parameters

""LFN="" ,lfn

""FLUN="", flun

Return Parameters

'ERRLEN="", len

""ERRMSG="" ,msg

'STATUS="" ,stat

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

File logical unit number SIL assigned to the FIT. FLUN=,flun must
be specified if LFN=,lfn is omitted.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199.

Figure 9-6. QSCLIOER Call Format

60459410 E 9-21

QSCLOSE - CLOSE FILE

Call the Q5CLOSE routine (refer to figure 9-7) to close one or all open files before the end
of a task. Normal task completion closes all open files.

I The file must be opened with Q50PEN or Q5GETFIL before Q5CLOSE is called; otherwise, or else
Q5CLOSE terminates with fatal error 1406.

Q5CLOSE performs the appropriate I/O completion functions. If the last I/O operation for
the file was a write operation, Q5CLOSE writes any data remaining in the output buffers and
writes the appropriate end-of-file delimiter for the file format.

If the file was opened for explicit I/O with write access, the modified blocks are written
on mass storage. If the file does not have write access, Q5CLOSE returns an error.

If the file is an output file as described in chapter 2 and no other tasks are accessing the
file, the file is copied to a front-end system for output.

If the file is connected to a terminal, Q5CLOSE ignores the FC= parameter if specified.

If, while closing all open files, Q5CLOSE encounters an error preventing it from closing a
file, it records an error status code and continues closing files; therefore, the status
code returned is that of the last error encountered.

The system limits to 110 the number of FITs that can be concurrently associated with a job.
Specify the RETFIT parameter on the Q5CLOSE call, or issue a Q5RETFIT call to return a FIT.
After SIL returns a file's FIT, it cannot reopen the file until a new FIT is generated.

9-22 60459410 G

Call Form.at

CALL QSCLOSE(I 'LFN=',lfn
'FLUN=',flun
'*'

} ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=' ,flun

'*'

'FC=' ,cat

'RETFIT'

File name. LFN=,lfn must be specified if * and FLUN=,flun are
omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if * and LFN=,lfn are omitted.

Indicates that QSCLOSE should close all open files. * must be
specified if LFN=,lfn and FLUN=,flun are omitted.

Indicates that when SIL closes the file, it should change the
category of the file.

'D' Drop file.

Indicates that SIL should discard the FIT for the file.- If RETFIT
is omitted, SIL can reopen the file with this FIT.

Calling Parameters for Mass Storage Files Only

'DUMP' Sets a flag in the FILE! indicating that the file has been dumped.
This parameter is allowed only for privileged user calls.

Figure 9-7. QSCLOSE Call Format (Sheet 1 of 2)

60459410 G 9-22.1/9-22.2 I

Calling Parameters for Tape Files Only

'LABA=' ,addr

'LABL=' ,n

'ULABA=' ,addr

'ULABL=' ,n

Return Parameters

'ERRLEN=' , len

'ERRMSG=' ,msg

'STATUS=' ,stat

Address of an array to which Q5CLOSE returns the labels it writes.
The array must begin on a word boundary. If LABA=,addr is omitted,
Q5CLOSE does not return the labels written.

Number of words in the array to which QSCLOSE returns the labels it
writes. The length should be a multiple of 10; if it is not, the
length is reduced to a multiple of 10. The valid range is from 10
through 510 words.

If LABL=,n is omitted, the length is assumed to be 10 words.

Address of an array containing user-specified labels to be written
after the EOFl label. The array must begin on a word boundary. If
ULABA=,addr is omitted, Q5CLOSE writes no user-specified labels.

Number of words in the array containing the user-specified labels.
The length should be a multiple of 10; if it is not, the length is
reduced to a multiple of 510. The valid range is from 10 through
510 words.

If ULABL=,n is omitted, the length is assumed to be 10 words.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 205, 303, 430,
1407, 1408, 1517, 1566, 1685.

Return Parameter for Tape Files Only

'RLABL=' ,n

Tape Label Processing

Length in bytes of the labels written. The length returned is
always a multiple of 80. If RLABL=,n is omitted, Q5CLOSE does not
return the length.

Figure 9-7. Q5CLOSE Call Format (Sheet 2 of 2)

When a tape file opened for write access and write label processing (LPROC=W) is closed, SIL
writes the labels or tapemarks that indicate the end of the file. If the file is an ANSI
labeled file, SIL writes an EOFl label. The contents of the EOFl label match the contents
of the HDRl label for the file (except for the label identifier and block count).

Write additional end-of-file labels after the EOFl label. The valid user-specified ANSI
labels are EOF2 through EOF9 and UTL. (The ANSI label formats are shown in appendix G of
this manual.)

To write additional labels, store the label contents in an array and specify the array
address and length with the ULABA and ULABL parameters. If invalid labels in the array are
specified, SIL returns a fatal error (status code 1475).

60459410 G 9-23

I

Q5CLOSE returns the contents of the labels it writes if an array to receive the labels using
the LABA and LABL parameters is specified. The array should be long enough for all labels
written (80 bytes for the EOFl label, plus the length of any user-specified labels). If the
array is too short, SIL returns a warning error (status code 1474).

If the RLABL parameter is specified, SIL returns the length of the labels written.

If tape label parameters for a nontape file are specified, SIL returns a warning error
(status code 1473).

If the QSOPEN call specifies user error processing, the QSCLOSE call returns status code
1476 if a fatal I/O error occurs.

9-24 60459410 E

QSDEFINE - DEFINE PERMANENT FILE

Call the Q5DEFINE routine (refer to figure 9-8) to create a permanent file. The new
permanent file can be a newly created file or an existing local file. File attributes for a
newly created file can be specified; existing file attributes cannot.

The action Q5DEFINE performs depends on the file name or number specified.

Q5DEFINE
Specified

Permanent file

Local file

Nonexisting file

File connected to
a terminal

Result

Error status returned.

The local file becomes a permanent file attached to the job.
The Q5DEFINE call does not change the open or closed status of
the file.

A new permanent file is created, closed, and attached to the job.

Fatal error returned (status code 1453).

Q5DEFINE cannot create or make permanent a file having a security level higher than the
security level of the task.

The new permanent file is not attached to other jobs running under the same user number. If
necessary, Q5DEFINE generates a FIT for the new file. If an error occurs during processing,
Q5DEFINE does not destroy the FIT.

Privileged Q5DEFINE calls
NOSEG, FITE=, and FILEL=.
Q5DEFINE call does not use
for the file, it generates
used are those you specify

use only the following parameters: LFN= or FLUN=, EXT=, LEN=,
Any other parameters specified are ignored. A privileged
the values stored in an existing FIT. If a FIT does not exist
one using default values for each field; however, the FIT values
via a privileged Q50PEN call.

Q5DEFINE issues the CREATE FILE system message.

Call Format

CALL Q5DEFINE({
'LFN=',lfn }
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=', f lun

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the FIT or local file. FLUN=,flun
must be specified if LFN=,lfn is omitted.

Figure 9-8. Q5DEFINE Call Format (Sheet 1 of 4)

60459410 E 9-25

Calling Parameters Used Only When Creating a File

'ACS=',acs

-Au=-,blocks

-BT=-,bt

'CT=',ct

"'EXT="' ,ext

'FC="',fc

"'LEN=' ,fl

Access permission set (any combination of the following letters
without separators).

R Read permission

w Write permission

A Append permission

M Modify permission

x Execute permission

If ACS=,acs is omitted, 'ACS=','RWAMX- is assumed if the file is a
new file and if its FIT does not contain access permission
information provided by a Q5SETFIT call. Otherwise, the existing
access permission set remains unchanged.

Allocation unit. blocks is an integer specifying the number of
512-word blocks to be used to create or extend the file. The value
range is 1 to 65,535. If blocks is not a multiple of DAU, it is
rounded up to the next DAU value. If the file is already local,
this parameter is ignored.

Blocking type. If BT=,bt is omitted, the file has fixed character
count blocking.

'C' Character count

Front-end communication type. If CT=,ct is omitted, SIL does not
change the communication type.

-RHF' Remote Host Facility

"'NRHF"' No Remote Host Facility

"'RWF' Remote Workstation Facility

File extendability indicator. If EXT=,ext is omitted, the file is
extendable.

'Y"' The file is extendable

"'N' The file is not extendable

File category. If FC=,fc is omitted, the file is a user file.

"'B"' Batch input file

"'U"' User file

File length in 512-word blocks. If LEN=,fl is omitted, the file is
eight 512-word blocks.

Figure 9-8. Q5DEFINE Call Format (Sheet 2 of 4)

9-26 60459410 H

Calling Parameters Used Only When Creating a File

'MNR=' ,mnr

'MXR=' ,mxr

'NOSEG'

'PN=' ,pn

'PC=' ,pc

'RMK=' ,rmk

'RT=',rt

'SFO=' ,fo

'SLEV=' ,sl

Minimum record length in bytes. For record formats other than F,
SIL checks to see that the record is not shorter than this value.
SIL does not use this parameter when writing F format records. If
MNR=,mnr is omitted, SIL assumes that the minimum record length is
one byte.

Maximum record length in bytes. For F records, mxr is the fixed
record length. For other record formats, SIL checks to see that the
record is not longer than this value. If MXR=,mxr is omitted, SIL
assumes that maximum record length is the default set by an
installation parameter (released value, O).

Indicates that the initial file space allocated must be contiguous.
If NOSEG is omitted, the system can allocate initial file space in
multiple segments. To create a file that will always remain
contiguous, both the NOSEG and EXT=N parameters must be specified.

Six-character identifier of the disk pack on which SIL creates the
file. If PN=,pn is omitted, the system assigns mass storage space
for the file.

Padding character for F format records. If PC=,pc is omitted, SIL
pads with the installation-defined padding character (released
value, blank).

Record delimiting character for R format records. If RMK=,rmk is
omitted, SIL uses the installation-specified character [released
value, ASCII US (#lF)].

Record format. If SFO=,D is specified, the only valid record format
is F. If RT=,rt is omitted, SIL assumes the installation-defined
format (released value, R) for sequential access files and F format
for direct access files.

'F' ANSI fixed length

'R' Record mark delimited

'U' Undefined

'W' Control word

File organization. If SFO=,fo is omitted, SIL assumes the
installation-defined default organization (released value,
sequential access).

'D' Direct access

'S' Sequential access

Security level (1 through 8, but less than or equal to that of the
calling task). If SLEV=,sl is omitted, SIL sets the file security
level equal to that of the calling task.

Figure 9-8. QSDEFINE Call Format (Sheet 3 of 4)

60459410 G 9-27

I

Calling Parameters Used Only When Creating a File

'TYPE="', typ File type. If TYPE=,typ is omitted, SIL assumes that the file is a
physical data file.

'PD"' Physical data file

"'VC"' Virtual code (controllee) file

Calling Parameters for Privileged Users Only

'FADE="' ,aray

'FITE="' ,array

"'FITEL="' ,alen

Return Parameters

"'CONT="',con

'DA:::"' ,da

"'ERRLEN="',len

"'ERRMSG="' ,msg

"'RFLUN="',rflun

"'RPN="' ,pn

"'STATUS="',stat

Name of the 16-word array that is to receive a copy of the file
access directory entry for the file if one exists.

Name of the array containing a copy of a file index entry.
the copy to initialize the file index entry for the file.
FITE=,array is omitted, SIL generates the file index entry.

SIL uses
If

Length (in words) of the array named by the FITE=,array parameter.
The system checks to see that this length is the length of a file
index entry. If FITEL=,alen is omitted, SIL generates the file
index entry.

Initial contiguity of the mass storage file (ASCII, left-justified,
blank filled).

y One segment allocated

N One or two segments allocated

Action performed by the Q5DEFINE call (ASCII, left-justified, blank
filled).

N New permanent file created

y Local file made permanent

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

File logical unit SIL assigns to the FIT. Number assigned to the
file.

Six-character identifier of the disk pack on which the file resides.

Status code. Possible values: 0 through 199, 204, 205, 521, 1453,
1505, 1685, 1688, 1710, 1711, 1716, 1720, 1722, 1724, 1804.

Figure 9-8. Q5DEFINE Call Format (Sheet 4 of 4)

9-28 60459410 H

QSENDPAR - WRITE PARTITION DELIMITER

Call the Q5ENDPAR routine (refer to figure 9-9) to write a partition delimiter on the file.
Q5ENDPAR can write delimiters to mark the end of a record, a group, or a file.

If the user calls Q5ENDPAR to write a group or file delimiter after writing one or more
partial W, R, or L records, Q5ENDPAR terminates the record before writing the group or file
delimiter. It terminates an R record by writing a record mark character; it terminates a W
or L record by writing a last piece control word.

R format uses group and file delimiters only if the record mark character is ASCII US (#lF)
or RS (lllE).

Call Q5ENDPAR to write a record or file delimiter on an F or U format file. Q5ENDPAR
terminates the partition but does not write a delimiter character on the file. If the _

1 Q5ENDPAR is called to write a group delimiter on an F or U format file, Q5ENDPAR writes a
file delimiter.

If you call QSENDPAR to terminate a partition on an F format file in which the last record
is not filled (to RLMAX characters), Q5ENDPAR pads the record (RLMAX characters) and returns
a warning (status code 1452).

The Q5PUTN routine automatically writes partition delimiters. When Q5PUTN calls are issued
to write a file, Q5ENDPAR calls are not necessary.

If the specified file is connected to a terminal, Q5ENDPAR displays the following output
line at the terminal, depending on the value given the PART= variable. The $ in the output
line represents the system special character that prefixes request lines. (For more
information, refer to Interactive Request Lines in chapter 3 of this manual).

PART= Output Line

F
G
R

Call Format

CALL Q5ENDPAR(

$EOF
$EOG
$EOR

{
'LFN=' ,lfn }
'FLUN=' ,flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=' ,flun

'PART=' ,part

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigns to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

File partition delimiter. If PART=,part is omitted, SIL writes a
record delimiter.

'R' Record delimiter

'G' Group delimiter

'F' File delimiter

Figure 9-9. QSENDPAR Call Format (Sheet 1 of 2)
60459410 G 9-29

Calling Parameter for Tape Files Only

'LEVEL=',lev

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=',stat

Tape Partition Delimiters

Level number written in the record terminator when writing B records
on a tape file (ASCII character, 0 through 9 or A through F). If
LEVEL=,lev is omitted, 0 is used.

Error message length in bytes (integer).

Error message. The variable msg is 80 bytes long.

Status code. Possible values: 0 through 199, 303, 1422, 1430, 1444,
1452, 1477, 1478, 1726.

Figure 9-9. Q5ENDPAR Call Format (Sheet 2 of 2)

When writing B format records to a tape file with Q5PUTP calls, the caller can terminate a
record or group by calling Q5ENDPAR and specifying PART=,R or PART=,G. The LEVEL=,lev
parameter determines the level number written in the record terminator. To terminate a
record, the level number must be one of the ASCII characters O through 9 or A through E. To
terminate a group, specify either PART=,G or PART=,R and LEVEL=,F.

If a Q5ENDPAR call specifies the LEVEL=,lev parameter for a nontape file or a V format tape
file, Q5ENDPAR returns a warning error (status code 1477).

9-30 60459410 E

QSGENFIT - GENERATE FIT

Call the QSGENFIT routine (refer to figure 9-10) to generate and initialize a FIT for the
specified file name. QSGENFIT uses parameter specifications and default values to
initialize the fields in the FIT.

SIL requires a FIT for each file it reads or writes. The QSDEFINE and QSRQUEST calls
generate FITs for their files. The system discards those FITs at completion of the task;
however, the local and attached permanent files remain attached to the job. A new FIT can
be generated for a file attached by a previous task with a QSGENFIT call or a QSOPEN call.

By specifying the BUFl= and BUF2= parameters, the virtual address range that is to be the
I/O buff er for the file can be assigned. After the task opens the file and executes the
first I/O request for the file, the buffe~ can file data at any time until the file is
closed. (SIL flushes the I/O buffers when the file is closed.)

I NOTE I
Do not assign the same virtual memory space
to be an I/O buffer for two files that are
open at the same time. Data for one file
could overwrite data for the other.

If the specified DT value differs from the device type of an existing local file with the
specified name, QSGENFIT returns a fatal error (status code 1455).

Call Format

CALL Q5GENFIT('LFN=',lfn, optional parameters)

Calling Parameters

'LFN=' ,lfn

'ACS=',acs

Name of the file for which SIL generates a FIT. This parameter is
required.

Access permission set (any combination of the following letters
without separators). The access permission set can be overridden by
an access permission set on the subsequent call for the file.

R Read permission

w Write permission

A Append permission

M Modify permission

x Execute permission

If ACS=,acs is omitted, the access permission set for the file is
not changed.

Figure 9-10. Q5GENFIT Call Format (Sheet 1 of 5)

60459410 E 9-31

I
I

Calling Parameters

'BT=',bt

'BUFLl=',bll

'BUFL2=',bl2

'BUFl=',bl

'BUF2=',b2

'CFP=' ,cfp

'DT=',dt

'ERL=',erl

Blocking type

c Character count blocking

I Internal blocking (tape files only)

K Record count blocking (tape files only)

If BT=,bt is omitted, character count blocking is assumed.

Length of buffer 1 to 24*N, where N is the number of blocks per page
(with N=l, 4, 16 or 128). The parameters are validated when I/O is
performed.

Length of buffer 1 to 24*N, where N is the number of blocks per page
(with N=l, 4, 16 or 128). The parameters are validated when I/O is
performed.

Array to be used as data buffer 1. The buffer must be on a page
boundary (specified by a LOAD utility parameter). If the buffer is
128 blocks (a large page), it must be on a large page boundary.

Array to be used as data buffer 2. The buffer must be on a page
boundary (specified by a LOAD utility parameter). If the buffer is
128 blocks (a large page), it must be on a large page boundary.

File positioning when the file is closed. If CFP=,cfp is omitted,
SIL does not rewind the file.

If the file is a direct access file, the parameter specification is
ignored; the file is not rewound.

'N' Do not rewind the file.

'R' Rewind the file.

Device type.

'MS' Mass storage

'NT' Magnetic tape

'TE' Interactive terminal

If DT=,dt is omitted, the DT FIT field value depends on whether a
local file with the specified name exists. If the file exists, the
DT value indicates the device type of the existing local file;
otherwise, the DT value is MS.

Maximum number of SIL warning errors allowed for the file before SIL
aborts the task. If a zero limit is specified or ERL=,erl is
omitted, SIL allows an unlimited number of warning errors.

Figure 9-10. QSGENFIT Call Format (Sheet 2 of 5)

9-32 60459410 F

Calling Parameters

'MNR=',mnr

'MXR=',mxr

'OFP=',ofp

'PC=',pc

'RMK=',rmk

'RT=',rt

Minimum record length in bytes. For record formats other than
F, SIL checks to ensure that a record is not shorter than this
value. SIL does not use this value when writing F-type
records. If MNR=,mnr is omitted, SIL assumes that the minimum
record length is 1 byte.

Maximum record length in bytes. For F record format, mxr is
the fixed record length. For other record formats, SIL checks
to ensure that the record is not longer than this value. If
MXR=,mxr is omitted, SIL assumes that the maximum record length
is the default set by an installation parameter.

File positioning when the file is opened.

If the file is a direct access file, the parameter
specification is ignored; the file is not rewound.

'N' Do not rewind the file.

'P' Position the file after the last block read or
written. The TAPETBA and TAPETBL parameters must
specify the array containing the tapes table entry
copied when the file was last open (tape files only).

'R' Rewind the file.

Padding character for F format records. If PC=,pc is omitted,
SIL pads with the installation-defined padding character
(released value, blank).

Record delimiting character for R format records. If RMK=,rmk
is omitted, SIL uses the installation-specified character
(released value, ASCII US, #lF code).

Record type.

'B' System block

'F' ANSI fixed length

'L' CYBER Record Manager control word

'R' Record mark delimited

'U' Unstructured

'W' Control word

Figure 9-10. Q5GENFIT Call Format (Sheet 3 of 5)

60459410 F 9-33 I

I 9-34

Calling Parameters

'SFO=',fo

'SRF',srf

'WSA=',wsa

'WSL=',wsl

File organization. If SFO=,fo is omitted, SIL assumes the
installation-defined default organization (released value,
sequential access).

'D' Direct access

'S' Sequential access

Indicates whether SIL must complete an I/O request before returning
control to the caller. If SRF=,srf is omitted, SIL returns control
to the caller before completing the read or write.

If the file is a direct access file, the parameter specification is
ignored; SIL cannot return control to the caller until after
completing the read or write.

'Y' Suppress overlapped I/O.

'N' Allow overlapped I/O.

Working storage area used by get and put calls.

Length (in bytes) of the working storage area.

Calling Parameters for Tape Files Only

'CONV'

'DEN=',den

'LABEL=',lbl

If CONV is specified, the tape data is character data to be
converted to and from character codes. If CONV is omitted, the tape
data is binary data and no conversion is performed.

Tape recording density (ASCII, left justified, blank filled).

'PE' 1600 cpi

'GE' 6250 cpi

If DEN=,den is omitted, the installation-defined default density is
used (released value, 6250 cpi).

Tape labels (ASCII, left justified, blank filled).

'AN' ANSI standard labels

'NS' Nonstandard labels

'UL' No labels (unlabeled tape)

If LABEL=,lbl is omitted, ANSI standard labeling is assumed.

Figure 9-10. QSGENFIT Call Format (Sheet 4 of 5)

60459410 F

Calling Parameters for Tape Files Only

'MPRU=' ,mpru

'RPB=',rpb

'TAPETBA=',adr

'TAPETBL=',n

'TF=',tf

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'RFLUN=' ,rflun

'STATUS' ,stat

MPRU size in bytes for V format tapes (integer). If MPRU=,mpru is
omitted, the MPRU size is the installation-defined maximum size
(released value, 32768 bytes).

Records per block (integer); valid for K blocking only. If RPB=,rpb
is omitted, one record per block is assumed.

Address of the array to which each tape I/O request copies the
current system tapes table entry for the file. If TAPETBA=,adr is
omitted, tape I/O requests do not copy the tapes table entry.

Number of words in the tapes table entry array (integer). A tapes
table entry is 12 words long.

Tape format (ASCII, left justified, blank filled).

'I' Internal

'LB' Large block

'SI' SCOPE internal

'V' Variable

'NV' Variable format with non-ANSI interchange

If TF=,tf is omitted, the installation-defined default format is
used (released value, LB).

Error message length in bytes (integer).

Error message. The variable msg is 80 bytes long.

Number SIL assigned to the file.

Status code. Possible values: 0 through 199, 204, 303, 1455, 1470,
1471, 1472, 1725, 1800.

Figure 9-10. Q5GENFIT Call Format (Sheet 5 of 5)

60459410 E 9-35

Tape File Fils

A FIT generated for a tape file must specify NT as its device type with the DT=,dt parameter.

As shown in figure 9-10, certain QSGENFIT parameters are for tape files only. If a QSGENFIT
call specifies a tape parameter and a device type other than NT, QSGENFIT returns a warning
error (status code 1472).

The values specified for a tape file FIT must not conflict. The valid combinations of tape
format, blocking type, and record type parameters are shown in table 9-3.

A QSGENFIT call should specify the RPB parameter only if it specifies K blocking for the
file; otherwise, QSGENFIT returns a fatal error (status code 1470).

Similarly, a QSGENFIT call should specify the MPRU parameter only if it specifies V tape
format; otherwise, QSGENFIT returns a fatal error (status code 1471).

Record
Type C/I

B x

F --
L --

R --
u x

w --

9-36

Table 9-3. Blocking Type, Tape Format,
and Record Type Combinations

Blocking Type/Tape Format

C/SI C/LB C/V I/I I/SI

x x x -- --

-- x x -- --

-- -- -- x x

-- x x -- --
x x x -- --

-- x x -- --

I/V K/V

-- x

-- x

x --
-- x

-- x

-- x

60459410 E

Accessing the Tapes Table Entry

A QSGENFIT call can specify an array to which tape 1/0 requests for the file copy the
current tapes table entry for the file. The TAPETBA=,adr parameter specifies the array
address and the TAPETBL=,n parameter specifies the array length.

The tapes table is the system table that coordinates processing of each requested tape
file. A tapes file entry is twelve words long; figure 9-11 shows the entry format.

Word

Reserved for system use

2 Reserved for system use

3 lfn

4 fsn sn

5 Reserved for system use

6 reel vsn

7 bid1 bid2 bid3 bid4

8 bid5 bid6 bi~7 bid8

9 bid9 bid10 bid11 bid12

10 fc l abc ctfp I cbc

11 twre trre stce dtce

12 Reserved for system use

Field Word Bits Content

lfn 3 0-63 File name.

f sn 4 0-15 File sequence number (1 through 9999).

sn 4 1 fr-31 File section number (1 through 9999).

reel 6 0-15 Reel number of the current volume within the
multifile set.

vsn 6 16-63 Volume serial number of the current volume.

bidl- 7-9 0-63 Block IDs of the last twelve good PRUs. The
bidl2 block IDs are in the order in which the blocks

read; bidl2 is the last good PRU, bidll is the
next-to-last good PRU, and so forth.

Figure 9-11. Tapes Table Entry Format (Sheet 1 of 2)

were

60459410 J 9-37

I

Field Word

f c 10

abc 10

ctf p 10

cbc 10

twre 11

trre 11

stce 11

dtce 11

Bits

0-7

8-31

32-39

40--63

0-15

16-31

32-47

32-47

Content

Failure code.

1 Nonfatal marginal drive indicator (MDI)

2 Too many erase/ write errors

3 Too many read errors

4 Too many positioning/loop fault errors

5 Fatal marginal drive indicator (MDI)

Absolute PRU count (number of interblock gaps
encountered on the tape).

Current file position.

0 Within a file
1 End of information
2 End of file
3 End of file and end of information
4 End of LRU
8 Beginning of inf ormati.on

Current PRU count·. It does not include label PRUs.

Total recoverable write errors for the volume.

Total recoverable read errors for the volume.

Tota.1 single-track, hardware-corrected errors.

Total double-track, hardware-corrected errors.

Figure 9-11. Tapes Table Entry Format (Sheet 2 of 2)

9-38 60459410 E

QSGETB - GET A BUFFER RECORD

A QSGETB call (refer to figure 9-12) gets the next buffer record from the file specified.
If the tape file is of B-record type, QSGETB copies the tape block directly from the file to
the specified working storage area; it does not use intermediate I/O buffers.

If the specified file is not a tape file with the B record type, a QSGETB call is equivalent
to a QSGETN call.

If the call specifies the RSN=,rsn parameter, QSGETB returns control to you immediately.
The task can then perform other processing while the tape I/O request completes processing.
To determine whether the I/O request is complete, the program must call the QSCHECKB routine.

Call Format

{

'LFN=' ,lfn }
CALL QSGETB('FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=',lfn

'FLUN=',flun

'WSA=',wsa

'WSL=',wsl

Return Parameters

'ERRLEN=' ,len

'ERRMSG=',msg

'RSN=',rsn

'RL=',rl

'STATUS=' ,stat

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

File logical unit number SIL assigned to the FIT. FLUN=,flun must
be specified if LFN=,lfn is omitted.

Address of the array to which QSGETB copies data. If WSA=,wsa is
omitted, the working storage area specified in the FIT is used.

Length (in bytes) of the working storage area. If WSL=,wsl is
omitted, the length specified in the FIT is used.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Request serial number. If RSN=,rsn is specified, QSGETB returns
control to you immediately. The task specifies the returned RSN on
a QSCHECKB call to determine whether the QSGETB request has
completed.

If RSN=,rsn is omitted, the task is not resumed uritil the QSGETB
request has completed.

Record length (in bytes) actually transferred.

Status code. Possible values: 0 through 199.

Figure 9-12. QSGETB Call Format

60459410 H 9-39

QSGETFIL - OPEN OR CREA TE AND OPEN A FILE

A Q5GETFIL call (refer to figure 9-13) either opens an existing file or requests and opens a
new local file.

Q5GETFIL cannot request a file having a security level higher than that of the task. An
attempt to do so returns a message stating that the file is not found.

If you specify the BUFl=,bl and BUF2=,b2 parameters, the virtual address range that is to be
the I/O buffer for the file can be assigned. The BUFl=,bl and/or BUF2=,b2 parameters must
be specified if you expect to explicitly read or write the opened file. After the task opens
the file and executes the first I/O request for the file, the buffer can contain file data
at any time until the file is closed. SIL flushes the I/O buffers when the file is closed.

Call Format

I NOTE I
Do not assign the same virtual memory space
to be an I/O buffer for two files that are
open at the same time. Data for one file
could overwrite data for the other.

CALL Q5GETFIL('LFN=',lfn, optional parameters)

Calling Parameters

'ACS=' ,acs Access modes requested.

'R' Read access

'W' Write access

'RW'
or Read and write access

'WR'

'A' Append access

'RA'
or Read and append access (mass storage files only)

'AR'

'M' Modify access (mass storage files only)

'RM'
or Read and modify access (mass storage files only)

'MR'

If ACS=,acs is omitted and the file exists, Q5GETFIL opens the file
for the access specified in the FIT for the file, if one exists;
otherwise, it opens the file for the access specified when the file
was requested, attached, or defined.

If Q5GETFIL requests a new file, it opens the file for read and
write access.

Figure 9-13. Q5GETFIL Call Format (Sheet 1 of 8)

9-40 60459410 G

Calling Parameters

'AU=' , blocks

'BUFLl=' ,bll

'BUFL2=', bl2

'BUFl=' ,bl

'BUF2=' ,b2

'DT=' ,dt

'LFN=' ,lfn

'MNR=' ,mnr

'MXR=' ,mxr

Allocation unit. The integer number of 512-word blocks to be
allocated for the file when it is extended. The value range of
blocks is 1 to 65,535. If the file is created and blocks is not a
multiple of the DAU for the device in which the first allocation
occurs, blocks is rounded up to the next multiple of the DAU.

Length of buffer 1 in 512-word blocks. If BUFLl=,bll is omitted,
the installation-defined buffer length is used (release value is 3
blocks). The values are 1 to 24*N, where N is the number of blocks
per page (with N=l, 4, 16, or 128). The values are validated when
I/O is performed.

Length of buffer 2 in 512-word blocks. If BUFL2=,bl2 is omitted,
the installation-defined buffer length is used (release value is 3
blocks). The values are 1 to 24*N, where N is the number of blocks
per page (with N=l, 4, 16 or 128). The values are validated when
I/O is performed.

Array to be used as data buffer 1. The buffer must be on a page
boundary (specified by a LOAD utility parameter). If the buffer is
128 blocks (a large page), it must be on a large page boundary.
BUFl is not required.

Array to be used as data buffer 2. The buffer must be on a page
boundary (specified by a LOAD utility parameter).. If the buffer is
128 blocks (a large page), it must be on a large page boundary.
Data buffer 2 is not required.

Device type on which the file is to reside. DT=,dt is ignored if
the file exists. Only DT=,MS is valid for a direct access file. If
DT=,dt is omitted and the file does not already exist, the file
resides on mass storage.

'MS' Mass storage

'NT' Magnetic tape

'TE' Interactive terminal

File name. LFN=,lfn is required.

Minimum record length in bytes. If MNR=,mnr is omitted and Q5GETFIL
requests the file, the minimum record length is zero bytes. If
MNR=,mnr is omitted and file already exists, its minimum record
length is not changed.

Maximum record length in bytes. If MXR=,mxr is omitted and Q5GETFIL
requests the file, no maximum record length is set. If MXR=,mxr is
omitted and the file already exists, its maximum record length is
not changed.

Figure 9-13. QSGETFIL Call Format (Sheet 2 of 8)

60459410 G 9-41

Calling Parameters

'NOCOMP'

'OFP=' ,ofp

'SLEV=' ,sl

'WSA=' ,wsa

'WSL=' ,wsl

Indicates that blank compression and expansion should not be
performed on the file. If NOCOMP is omitted, blank compression and
expansion are performed.

File positioning when the file is opened.

If the file is a direct access file, the parameter specification is
ignored; the file is not rewound.

'N' Do not rewind the file.

'R' Rewind the file.

Security level (1 through 8, but less than or equal to that of the
calling task). SLEV=,sl is ignored if the file already exists and
Q5GETFIL does not return the file. If SLEV=,sl is omitted and
Q5GETFIL requests the file, its security level is that of the
calling task.

Working storage area used by get and put I/O calls.

Length (in bytes) of the working .storage area.

Calling Parameters for Mass Storage Files Only

'DC=' ,de

'FC=' ,fc

Disposition code. If DC=,dc is omit~ed and Q5GETFIL requests the
file, the system default disposition code is used; if DC=,dc is
omitted and the file already exists, its disposition code is not
changed.

'IN' Batch job input.

'LR' Print on a 580-12 printer.

'LS' Print on a 580-16 printer.

'LT' Print on a 580-20 printer.

'PF' Store as a permanent file.

'PR' Print on any available line printer.

'PU' Punch file.

'Pl' Print on a 501 printer.

'P2' Print on a 512 printer.

'SC' Discard file at the end of the task.

File category. FC=,fc is ignored if the file already exists. If
FC=,fc is omitted and Q5GETFIL requests the file, it requests a user
file.

'B' Batch input file

'U' User file

Figure 9-_13. Q5GETFIL Call Format (Sheet 3 of 8)

9-42 60459410 J

Calling Parameters for Mass Storage Files Only

'IC=' ,ic

'IBP'

'LEN=' ,len

'MODDROP'

'NOEXT'

'NOSEG'

'PN=' ,pn

'RETURN'

'SFO=' ,fo

File format. If IC=,ic is omitted and Q5GETFIL requests the file,
the file format is the system default; if the file already exists,
its file format is not changed.

'AS' 8-bit ASCII code; ANSI carriage control if print file

'BI' Binary

'PA' 8-bit ASCII code; ASCII carriage control if print file

Indicates that the file is to be opened for implicit I/O. The
record format in the file's FIT is changed to undefined; the record
format in the file's FILEI entry is not changed. If IMP is omitted,
the file is opened for explicit I/O.

File length i~ 512-word blocks. If the file already exists, the
parameter is ignored. If Q5GETFIL requests the file and LEN=,len is
omitted, the file length is eight blocks.

Indicates that modified pages of a file opened for implicit I/O are
written to the task drop file rather than to the original file. If
MODDROP is specified, IMP must also be specified. If MODDROP is
omitted, modified pages are written to the original file.

Indicates that the file cannot be extended. If NOEXT is omitted,
the file can be extended.

Indicates that the initial file space allocation cannot be
segmented. NOSEG is ignored if the file already exists and is not
returned. If NOSEG is omitted and QSGETFIL requests the file, the
initial file space allocation can be segmented.

Six-character identifier of a disk pack in the device set on which
the file is created. PN=,pn is ignored if the file already exists
and is not returned. If PN=,pn is omitted and Q5GETFIL requests the
file, the system determines the file residence.

Indicates that the file is to be returned if it is an existing local
mass storage file. If RETURN is omitted, the existing local mass
storage file is opened. For more information, refer to the call
description.

File organization. If SFO=,fo is omitted, SIL assumes the
installation-defined default organization (released value,
sequential access).

'D' Direct access

'S' Sequential access

Figure 9-13. QSGETFIL Call Format (Sheet 4 of 8)

60459410 G 9-43

I

Calling Parameters for Mass Storage Files Only

""TYPE="",typ File type.

'PD' Physical data file

""VC"" Virtual code (controllee) file

TYPE=,typ is ignored if the file already exists and is not
returned. If TYPE=,typ is omitted and Q5GETFIL requests the file,
the file is a physical data file.

Calling Parameters for Mass Storage and Tape Files Only

'BT=', bt

'PC=' ,pc

""RMK="" ,rmk

'RT=', rt

Blocking type. If BT=,bt is omitted, character count blocking is
assumed.

""C"" Character count blocking

'I' Internal blocking

""K"" Record count blocking

ASCII padding character. If PC=,pc is omitted, SIL pads with the
installation-defined character (released value, blank).

Record delimiting character for R format records. If RMK=,rmk is
omitted, SIL uses the installation-defined default character
(released value, ASCII US, #lF code).

Record format. If SFO=,D is specified, the only valid record format
is F. If RT=,rt is omitted, SIL assumes the installation default
format (released value, R) for sequential access files and F format
for direct access files.

""B"" System block (tape files only)

""F"" ANSI fixed length

""L"" CYBER Record Manager control word (tape files only)

""R"" Record mark delimited

""U"" Undefined

""W"" Control word

Calling Parameters for Privileged Users Only

""FITE="",array

""FITEL="",alen

Name of the array in which a copy of the file index table for the
file is returned. Enter the user number or pool name in the first
word of the array and the file name in the second word (refer to the
file index entry format in volume 2 of this manual).

Length (in words) of the array named by the FITE=,array parameter.
The system checks to see that this length is the length of a file
index entry. FITEL=,alen must be specified if FITE=,array is
specified.

Figure 9-13. Q5GETFIL Call Format (Sheet 5 of 8)

9-44 60459410 E

Calling Parameters for Privileged Users Only

'SA=' ,sa

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'OCAT=' ,oc

'RACS=' ,acs

'RDT=' ,dt

'RFLUN=' ,rflun

60459410 E

Shared access status. If SA=,sa is omitted, the file is opened only
if no other tasks have the file open, and no other tasks can open
the file until the calling task closes it.

'Y' Other tasks can open the file for read access.

'N' Other tasks cannot open the file until the file is
closed.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

File ownership (ASCII, left-justified, blank filled).

PO Pool file

PR Private file

PU Public file

Access granted (ASCII, left-justified, blank filled).

R Read access

w Write access

RW
or Read and write access
WR

A Append access

RA
or Read and append access
AR

M Modify access

RM
or Read and modify access
MR

Device type (ASCII, left-justified, blank filled).

MS Mass storage

NT Magnetic tape

TE Interactive terminal

Number SIL assigned to this opening of the file.

Figure 9-13. QSGETFIL Call Format (Sheet 6 of 8)

9-45

I

Return Parameters

'RSLEV=',sl

'STATUS=' ,stat

Security level of the file (integer, 1 through 8).

Status code (integer). Possible values: 0 through 199, 303,
1448, 1454, 1459, 1460, 1479, 1483 thru 1486, 1566, 1616, 1710,
1711, 1716, 1720, 1735, 1800, 1801.

Return Parameters for Mass Storage Files Only

'CONT=' ,cont

'EXT=' ,ext

'FSTO=' ,fsto

'LP=' ,lp

'NEWFILE=' ,nfl

'RLEN=' ,len

'RPN=' ,pn

'RTYPE=' ,typ

File contiguity (ASCII, left-justified, blank filled).

Y The file is contiguous.

N The file is not contiguous.

File extendability (ASCII, left-justified, blank filled).

Y The file can be extended.

N The file cannot be extended.

File segment table ordinal; integer returned only if the file
was opened.

File duration (ASCII, left-justified, blank filled).

L Local file

P Permanent file

Indicates whether the opened file is a new file (ASCII, left­
justified, blank filled).

Y Q5GETFIL requested the file.

N Q5.GETFIL opened an existing file.

File length in 512-word blocks (integer).

Six-character identifier of the pack on which the file resides
(ASCII, left-justified, blank filled).

File type (ASCII, left-justified, blank filled).

PD Physical data file

VC Virtual code (controllee) file

Return Parameters for Mass Storage and Tape Files Only

'RBT=' ,bt Blocking type (ASCII, left-justified, blank filled).

C Character count blocking

I Internal blocking (tapes only)

K Record count blocking (tapes only)

Figure 9-13. Q5GETFIL Call Format (Sheet 7 of 8)

9-46 60459410 G

Return Parameters for Tape Files Only

'RFID=', fid File identifier from HDRl label (17 ASCII characters); applies to
ANSI labeled tape files only.

'RFSN=', rfsn

'RMPRU=' ,mpru

'RRPB=', rpb

'RTF=' ,fmt

Mass Storage Files

File sequence number from HDRl label (integer); applies to ANSI
labeled tape files only.

MPRU size in bytes (integer); applies to V format files only.

Records per block (integer); applies to K blocked files only.

Tape format (ASCII, left justified, blank filled).

I Internal

LB Large block

SI SCOPE internal

V Variable

NV Non-ANSI, variable

Figure 9-13. QSGETFIL Call Format (Sheet 8 of 8)

For mass storage files, the action taken depends on the file specified and the presence or
omission of the RETURN parameter on the call. The possible actions are summarized as
follows:

Specified
File Status

Not assigned to job

A local file

An attached permanent
file

An attached pool file
(except a system pool
file)

A public file or
system pool file

60459410 E

RETURN Omitted

Requests and opens a new
local file

Opens the existing local
file

Opens the existing per­
manent file

Opens the existing pool
file

Requests and opens a new
local file

RETURN Specified

Requests and opens a new
local file

Returns the existing local
file and requests and
opens a new local file

Opens the existing per­
manent file

Requests and opens a new
local file

Requests and opens a new
local file

9-47

Opening a File for Implicit 1/0

You can open a mass storage file for implicit I/O and specify that all modified pages of the
file be written to the task drop file instead of to the opened file. To do so, specify the
IMP and MODDROP parameters. If the IMP parameter is specified, the MODDROP parameter must
also be specified; otherwise, Q5GETFIL returns a fatal error (status code 1428).

I
If the IMP parameter is specified on the Q5GETFIL call to open the file for implicit I/O,
then Q5MAPIN must also be called to map in the file.

Files Connected to Terminals

The RETURN parameter has no effect for files connected to a terminal. If the file exists,
Q5GETFIL creates a FIT and opens the file. If the file does not exist, Q5GETFIL requests
the file, creates its FIT, and opens the file.

Only an interactive task initiated by an interactive execute line (a level 2 controllee) can
call Q5GETFIL for a file connected to a terminal. An attempt by a batch controllee or by an
interactive controllee at another level returns a fatal error (status code 1459).

If the Q5GETFIL call for a file connected to a terminal specifies mass storage or tape
parameters, Q5GETFIL ignores the parameters and returns a warning error (status code 1454).

When you call Q5GETFIL to open an existing file that is only partially available with
read-only access, a warning error of 1616 is returned. (Note that this status is returned
to you if the status parameter is supplied on a FORTRAN 200 OPEN statement.)

If you try to call Q5GETFIL to create a file greater than the maximum allowed file size, a
new fatal status 1710 is returned.

If a specific private device set is selected via the PACK= parameter and allocation is off
for all devices in the set with space available, or if all system allocatable packs are off
or full, a fatal error status 1711 is returned, as it is when space cannot be allocated.

Tape Files

If the Q5GETFIL call specifies the magnetic tape device type (DT=,NT), Q5GETFIL opens the
tape files whether or not the call specifies the RETURN parameter. If a FIT exists for the
file, Q5GETFIL uses the existing FIT; otherwise, it generates a FIT, using the information
in the file index entry for the file. The file index entry is generated when the file is
requested. If the tape file has not previously been requested, Q5GETFIL returns a fatal
error (status code 1479).

The specified blocking type (BT) and record type (RT) must not conflict with the tape format
specified when the file was requested. The valid combinations of tape format, block type,
and record type are shown in table 9-3. If the specified values conflict, QSGETFIL returns
a fatal error (status code 1484).

For ANSI labeled tape files, the specified access mode (ACS) must not conflict with the
label processing option specified when the file was requested. If the access mode is read
only and labels are to be written, Q5GETFIL returns a fatal error (status code 1480).

9-48 60459410 H

If the tape file request specified read only access, the tape volume was mounted without a
write ring. If the subsequent Q5GETFIL call for the file specifies write access to the
file, QSGETFIL returns a fatal error (status code 1481).

For V format files, QSGETFIL checks to ensure that the specified buffers are at least as
large as the MPRU size. If a specified buffer is too small, Q50PEN returns a warning error
(status code 1486).

When opening a file in a multifile set, QSGETFIL searches for an HDRl label containing the
file sequence number and file identifier specified on the file request. If it cannot find
the file, it returns a fatal error (status code 1485).

60459410 E 9-49

QSGETFIT - GET FIT FIELD VALUES

Call the Q5GETFIT routine (refer to figure 9-14) to retrieve the contents of specified
fields in a file's FIT. SIL copies the FIT field contents to the variable specified by the
return parameter. The contents are left justified, blank filled for character data, and
right justified, zero filled for numerical data (such as buffer lengths).

Call Format

CALL QSGETFIT({
'LFN=', lfn }
'FLUN=',flun ,optional parameters)

Calling Parameters

-LFN=',lfn

'FLUN=' ,flun

Return Parameters

'ACS=',acs

'BUFLl= -'bll

'BUFL2= -,bl2

'BUFl= ... ,bl

'BUF2= ... ,b2

'BN=', bn

'BT=' ,bt

'CBO=',cbo

File name in the FIT. LFN=,lfn must be specified if FLUN=,flun is
omitted.

Logical number SIL assigned to the file and its FIT. FLUN=,flun
must be specified if LFN=,lfn is omitted.

Access permission set. SIL returns a character string composed of
the following letters:

R Read permission

w Write permission

x Execute permission

A Append permission

M Modify permission

Length of buff er 1 in 512-word blocks.

Length of buffer 2 in 512-word blocks.

Array to be used as data buffer 1.

Array to be used as data buff er 2.

Block ordinal of the last disk block SIL has accessed.

Blocking type (ASCII, left justified, blank filled).

c Character count blocking

I Internal blocking

K Record count blocking

Current byte offset within the data buffer. It is used to determine
the buffer space remaining for get and put I/O operations.

Figure 9-14. QSGETFIT Call Format (Sheet l of 5)

9-50 60459410 E

Return Parameters

'CLTYP=' ,ctp

'DT=' ,dt

'ECT=' ,ect

'ERL=' ,erl

'ERRLEN=' ,len

'ERRMSG=' ,msg

'ES=' ,es

'FNF=' ,fnf

'HBYTE=' ,hbyte

'LEN=' ,len

'LFP=' ,lfp

Close type. The type of close operation performed corresponds to
the type of open operation performed. SIL can return the following
ASCII values:

R Nonprivileged

p Privileged

Ul Privileged system task

Device type of the file (ASCII, left-justified, blank filled).

MS Mass storage

NT Magnetic tape

TE Interactive terminal

Number of SIL warning errors issued for the file.

Maximum number of SIL warning errors allowed for the file before SIL
aborts the task.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes.

Last SIL error code for the file.

Indicates whether the last SIL error for the file was fatal. SIL
can return the following ASCII values:

y The last error was fatal.

N The last error was nonfatal.

Highest available byte in the file.

Length in bytes of the data transferred in the last I/O operation on
this file.

Logical file position (ASCII, left-justified, blank filled).

BO! Beginning of information

BOV Beginning of volume

BOF Beginning of logical file

MPF Within a file (positioned somewhere between BOI and
EOI)

MLR Within a logical record

Figure 9-14. Q5GETFIT Call Format (Sheet 2 of 5)

60459410 G 9-51

I

I

I

Return Parameters

'LLOP=' ,lop

I
'MNR=' ,mnr

'MXR=' ,mxr

I 'NBYTE=' ,nbyte

'OCS=' ,ocs

'OFP=' ,ofp

'PC=' ,pc

'PEF=' ,pef

EOR End of logical record

EOG End of group (R and W formats only)

EOF End of logical file

EOV End of volume

EOI End of information

Last logical operation performed on the file (two-digit number
value). The possible values and their meanings are listed in the
FIT field description in appendix D of this manual.

Minimum record length in bytes. For record types other than F, SIL
checks to ensure that the record is not shorter than this value.
SIL does not use this parameter when writing F format records.

Maximum record length in bytes. For F format records, mxr is the
fixed record length. For other record types, SIL checks to ensure
that the record is not longer than this value.

Next available byte in the file.

Indicates whether file is open or closed. SIL can return the
following ASCII values:

N The file has never been opened.

0 The file is open for explicit I/O.

I The file is open for implicit I/O.

c The file is closed.

File positioning when the file is opened (ASCII, left-justified,
blank filled).

N

p

R

Do not rewind the file.

Position the file after the last block read or
written, as indicated by information in the tapes
table entry copied when the file was last open (tape
files only).

Rewind the file.

Padding character for F format records.

Indicates whether a parity error occurred during file I/O. SIL can
return the following ASCII values:

Y A parity error occurred.

N No parity error occurred.

Figure 9-14. QSGETFIT Call Format (Sheet 3 of 5)
9-52 60459410 G

Return Parameters

'PTL=' ,ptl

'RC=' ,re

'RFLUN=' ,rflun

'RL=' ,rl

'RLFN=',lfn

'RMK=' ,rmk

'RT=' ,rt

'SFO=' ,fo

'SRF=' ,srf

'STATUS=' ,stat

'UNIT=' ,dn

'WSA=' ,wsa

Partial transfer length in bytes (the amount of data transferred by
the last QSGETP or QSPUTP call).

Number of last full record read or written.

Number SIL assigned to the file.

Record length (in bytes) actually transferred.

ASCII file name.

Record delimiting character for R format records.

Record type (ASCII, left-justified, blank filled).

B System block

F ANSI fixed length

L CYBER Record Manager control word

R Record mark delimited

u Undefined

w Control word

File organization. SIL can return the following ASCII values:

D Direct access

s Sequential access

Indicates whether SIL must complete an I/O request before returning
control to you. SIL can return the following ASCII values:

y I/O overlap suppressed.

N I/O overlap allowed.

Status code. Possible values: 0 through 199, 303.

Logical device number for the unit on which the file resides (used
by operating system).

Working storage area used by get and put I/O calls.

Figure 9-14. Q5GETFIT Call Format (Sheet 4 of 5)

60459410 G 9-53

I

I

Return Parameters

'WSL=' ,wsl

'WPF=' ,wpf

Length (in bytes) of the working storage area.

Indicates whether the last I/O operation was a write operation. SIL
can return the following ASCII values:

y The last operation was a write.

N The last operation was not a write.

Return Parameters for Tape Files Only

'CONV=' ,cvt

'DEN=' ,den

'FID=' ,fid

'FSN=' ,rfsn

'IOER=' ,ioer

'MPRU=' ,mpru

'RPB=' ,rpb

'TAPETBA=' ,adr

'TAPETBL=' ,n

'TF=' ,tf

Data conversion option {ASCII, left-justified, blank filled).

y

N

Tape data is character data to be converted to and
from character codes.

Tape data is binary data, and no conversion is
performed.

Recording density (ASCII, left-justified, blank filled).

PE 1600 cpi

GE 6250 cpi

File identifier from HDRl label (17 ASCII characters); applies to
ANSI labeled tape files only.

File sequence number from HDRl label (integer); applies to ANSI
labeled tape files only.

Error code for last tape I/O error (integer). Refer to the tape
error list in table B-4 in appendix B of this manual.

MPRU size in bytes (integer); applies to V format files only.

Records per block (integer); applies to K blocked files only.

Address of the array to which each tape I/O request copies the
current system tapes table entry for the file. If the address is
zero, tape I/O requests do not copy the tapes table entry.

Number of words in the tapes table entry array (integer). A tapes
table entry is twelve words long.

Tape format (ASCII, left-justified, blank filled).

I Internal

LB Large block

SI SCOPE internal

V Variable

NV Non-ANSI!, variable

Figure 9-14. Q5GETFIT Call Format (Sheet 5 of 5)
9-54 60459410 G

QSGETN - READ PARTITION

Call the QSGETN routine (refer to figure 9-15) to transfer a logical partition (record,
group, or file) of data into the working storage area.

For sequential access, SIL skips to the beginning of the next partition before transferring
data. For direct access, SIL reads from the starting address of the specified record.

If the requested direct access record does not exist, QSGETN returns a fatal error (status
code 1434); the data in the working storage area remains unchanged.

SIL transfers the data from a physical I/O buffer specified in the FIT. (Two buffers can be
specified and used alternately.) SIL automatically reads data from the file when a buffer
is empty.

If the data in the partition exceeds the working storage area, SIL truncates the data, skips
to the next partition, and returns a warning error (status code 1436).

QSGETN transfers partition delimiters of partitions with levels lower than those specified.
For example, if the specified partition is a file, QSGETN transfers record and group
delimiters to the working storage area.

If a working storage area is not specified on the Q5GETN call, SIL uses the working storage
area specified in the file's FIT.

SIL recognizes logical partitions as described under Logical Record Formats in chapter 2 of
this manual.

QSGETN expands compressed strings of blank characters within R format partitions unless the
NOCOMP parameter is specified on the Q50PEN call for the file.

For more information on blank compression, refer to Record Mark Delimited (R) Record Format
in chapter 2 of this manual.

The file must be open for read access. If it is not, QSGETN returns a fatal error (status
code 1726).

Tape Files

In general, getting a tape record is the same as getting a mass storage record. However,
besides the F, R, U, and W record types, tape files can also use the B and L record types.

When getting an L record, QSGETN strips off the block control word and record control words
before copying the data to the working storage area.

A B record is an LRU. If the tape is written using I, SI, or LB tape format, each LRU is
terminated by a short or zero-length PRU. The LRU terminators are not copied to the working
storage area.

An LRU terminator contains a level number, in the range 0 through 9 and A through F. If the
level number is F, the LRU terminator terminates a group.

If the RLEVEL parameter is specified on the QSGETN call when an LRU terminator is read,
QSGETN returns the level number in the specified variable. The RLEVEL parameter is valid
only when reading an I, SI, or LB format tape file; if the RLEVEL parameter is specified for
a nontape file or a V format tape file, QSGETN returns a warning error (status code 1477).

60459410 E 9-55

I

Call Format

CALL Q5GETN({
'LFN=' ,lfn }
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=',flun

'PART=' ,part

'REC=' ,n

'WSA=' ,wsa

'WSL=' ,wsl

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'RL=' ,rl

'STATUS=' ,stat

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

File partition to be transferred. If PART=,part is omitted, Q5GETN
transfers a record.

'R' Record

'G' Group (R, W, and L formats only)

'F' File

Record number (integer greater than zero). Ignored for a sequential
access file. If REC=,n is omitted for a direct access file, the
value in the RC FIT field plus 1 is used.

Working storage area. Specifying this parameter overwrites the
corresponding FIT field with the specified value. If WSA=,wsa is
omitted, SIL uses the working storage area specified in the file's
FIT.

Length of working storage area in bytes. Specifying this parameter
overwrites the corresponding FIT field with the specified value. If
WSL=,wsl is omitted, SIL uses the working storage length specified
in the file's FIT.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Record length (in bytes) actually transferred.

Status code. Possible values: 0 through 199, 203, 253, 254, 303,
1401, 1405, 1416, 1430, 1432, 1434 through 1438, 1441, 1444, 1445,
1468, 1477, 1726, 1810.

Return Parameter for Tape Files Only

'RLEVEL=' ,lvl Level number in the LRU terminator read (ASCII character, binary,
right-justified, zero filled); applicable to I, SI, and LB tape
formats only. Its possible values are 0 through 9, A through F.

Figure 9-15. Q5GETN Call Format

9-56 60459410 G

QSGETP - READ PARTIAL PARTITION

Call the QSGETP routine (refer to figure 9-16) to transfer part of a logical partition
(record, group, or file) of data into the working storage area.

QSGETP copies the data from a physical I/O buffer that SIL maintains. SIL automatically
reads data into the buffers as needed.

QSGETP transfers partition delimiters of partitions with levels lower than those specified.
For example, if the specified partition is a file, QSGETP transfers record and group
delimiters to the working storage area.

Check for the appropriate end-of-partition status code to determine when SIL has read the
end-of-partition delimiter. The following are the end-of-partition codes~

Code Meaning

1434 End of information for sequential access files. Record not found for direct
access files.

1440 End of record.

1441 End of group.

1416 End of file.

If the SKIP parameter is specified on the QSGETP call, SIL skips to the beginning of the
next partition before transferring data.

Call Format

CALL QSGETP(l 'LFN=', lf n l
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=',flun

'PART=',part

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

File partition to be transferred. If PART=,part is omitted, QSGETP
transfers a record.

'R' Record

'G' Group (R, W, and L formats only)

'F' File

Figure 9-16. Q5GETP Call Format (Sheet 1 of 2)

60459410 E 9-57

I

Calling Parameters

'REC=' ,n

'SKIP'

'WSA=' ,wsa

'WSL=' ,wsl

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'RL=' ,rl

'STATUS=',stat

Record number (integer greater than zero). Ignored for a sequential
access file. If REC=,n is omitted for a direct access file, the
record number in the RC FIT field plus 1 is used.

Indicates that SIL must transfer data from the beginning of a
partition. If the file is positioned within a partition, SIL skips
to the next partition delimiter. If 'SKIP' is omitted, SIL
transfers data from the current file location.

Working storage area. Specifying this parameter overwrites the
corresponding FIT field with the specified value. If WSA=,wsa is
omitted, SIL uses the working storage area specified in the file's
FIT.

Length of working storage area in bytes. Specifying this parameter
overwrites the corresponding FIT field with the specified value. If
WSL=,wsl is omitted, SIL uses the working storage length specified
in the file's FIT.

Error message length is bytes (integer).

Error message. The variable msg must be 80 bytes long.

Length (in bytes) of data transferred. This value is the working
storage area length unless SIL encountered an error or a partition
delimiter.

Status code. Possible values: 0 through 199, 203, 253, 254, 303,
1401, 1405, 1416, 1430, 1432, 1434, 1435, 1437, 1438, 1440, 1441,
1444, 1445, 1456, 1468, 1726, 1810.

Return Parameter for Tape Files Only

'RLEVEL=' ,lvl Level number in the LRU terminator read (binary, zero filled);
applicable to I, SI, and LB tape formats only.

Figure 9-16. Q5GETP Call Format (Sheet 2 of 2)

Q5GETP expands compressed R-type records unless the NOCOMP parameter is specified on the
Q50PEN call for the file. Blank compression is described under Record Mark Delimited (R)
Record Format in chapter 2 of this manual.

If a working storage area is not specified on the Q5GETP call, SIL uses the working storage
area specified in the file's FIT.

Q5GETP expands compressed strings of blank characters within R format partitions unless the
NOCOMP parameter is specified on the Q50PEN call for the file. For more information on
blank compression, refer to Record Mark Delimited (R) Record Format in chapter 2 of this
manual.

9-58 60459410 J

The file must be open for read access. If it is not, Q5GETP returns a fatal error (status
code 1726).

Specifying a file connected to a terminal on a Q5GETP call returns a fatal error (status
code 1456).

Tape Files

In general, getting a partial tape record is the same as getting a partial mass storage
record. However, besides the F, R, U, and W record types, tape files can also use the Band
L record types.

When getting an L record, Q5GETP strips off the block control word and record control words
before copying the data to the working storage area.

A B record is an LRU. If the tape is written using I, SI, or LB tape format, each LRU is
terminated by a short or zero-length PRU. The LRU terminators are not copied to the working
storage area.

An LRU terminator contains a level number, in the range 0 through 9 and A through F. If the
level number is F, the LRU terminator terminates a group.

If the RLEVEL parameter is specified on the Q5GETP call when an LRU terminator is read,
Q5GETP returns the level number in the specified variable. The RLEVEL parameter is valid
only when reading an I, SI, or LB format tape file; if the RLEVEL parameter is specified for
a nontape file or a V format tape file, Q5GETP returns a.warning error (~tatus code 1477).

60459410 E 9-59

I

QSGIVE - GIVE FILE OWNERSHIP

The Q5GIVE routine (refer to figure 9-17·) transfers ownership of a private file. If the
CUSER parameter is not used, the file must be closed and must be either a local mass storage
file or an attached permanent file. If the CUSER parameter is used, the file must be an
unattached permanent file. Only privileged tasks are allowed to use the CUSER parameter.

A file owner may give an attached private file. Only the pool boss can give a pool file.

Nonprivileged users can give a file to another user or to a pool. To do so, the
nonprivileged user must specify the name or number of the file and either the user number or
the pool to which the file is given.

Privileged users can also give a file to the public file list. To do so, the user specifies
the name of the file and the PUBLIC parameter.

When you give a private file to another user, Q5GIVE immediately changes the user number
that owns the file. However, the account identifier associated with the file does not
change until the file is referenced by its new owner. The system accounting tables then
indicate the total time that the original account owned the file.

After ownership transfer, the file is an unattached permanent file belonging to the
specified owner. The file is no longer attached to the job that 'issued the Q5GIVE call.

Q5GIVE cannot give a file to a user number whose maximum security level is less than the
security level of the file. An attempt to do so returns a fatal error (status code 1525).

QSGIVE cannot change the ownership of a file connected to a terminal. An attempt to do so
returns a fatal error (status code 1457).

You can specify a variable rate accounting factor for the file, using the VRI parameter.
The system provides variable rate accounting for public utilities and application packages
that are not to be charged the full rate. The VRI parameter specifies an index into the
variable rate table, T_VRF. You should consult a systems analyst for the appropriate index
value.

QSGIVE uses the GIVE FILE system message.

Call Format

{
""LFN="" , lf n }
""FLUN="" ,flun_

{

'USER="" un } ·
""POOL="":pool ,optional parameters)
'PUBLIC"" · · .

CALL Q5GIVE(

Calling Parameters

""LFN="" ,lfn

""FLUN="" ,rflun

'USER="" ,un

File name. LFN=,lfn must be specified if FLUN=,rflun is omitted.

Number SIL assigned to the file. FLUN=,rflun must be specified if
LFN=,lfn is omitted.

User number to which SIL gives the file (if POOL=, or PUBLIC is not
specified). The user number must be an ASCII string, left­
justified, blank-filled.

Figure 9-17. QSGIVE Call Format (Sheet 1 of 3)

9-60 60459410 J

Calling Parameters

'ACS=',acs

'VRI=',vri

New access permission set (any combination of the following letters
without separators).

R Read permission

w Write permission

x Execute permission

A Append permission

M Modify permission

The effect of the ACS parameter and its defaults are shown in table
9-4.

Variable rate index (0 through 255). If VRI=,vri is omitted, SIL
sets the variable rate index to zero.

Calling Parameters for Pool Files Only

'POOL=',pool Name of the pool to which SIL transfers file ownership. You must
specify either USER=,un, POOL=,pool, or PUBLIC.

Calling Parameters for Privileged Callers

'CUSER=',cuser

'FIJDN=',fijdn

'RJDN=',rjdn

'PUBLIC'

Current owner's user number (ASCII, left justified, blank filled).
When specified, the file specified by LFN or FLUN that has this user
number is given t-0 the user number speciTied by USER.

FILE! job descriptor number (binary). If specified when giving a
file to the output queue, VSOS will attempt to assign the value of
fijdn to the FI JDN field of the file's FILEI. The value of fijdn
must either be zero or the same as the caller's in the range 1
thr~ugh 2047. This parameter is mutually exclusive with the RJDN,
POOL, CUSER, and PUBLIC parameters.

A return parameter. If specified when giving a file to the output
queue, the value that VSOS assigned to the FI JDN field of the FILE!
is returned. The value of rjdn must be in the range 1 through
2047. If fijdn is zero, the caller's jdn is assigned to the FI JDN
field. This parameter is mutually exclusive with the FIJDN~ POOL,
CUSER, and PUBLIC parameters.

Indicates that file ownership is transferred to the public file
list. You must specify either USER=,un, POOL=,pool, or PUBLIC.

Figure 9-17. QSGIVE Call Format (Sheet 2 of 3)

60459410 H 9-61

I

I

9-62

Calling Parameters for Privileged Callers

'FLAGS=', flg

'FIOUSER=',ouser

Indicates requested SIL action. If FLAGS=,flg is omitted, no action
is taken.

'COU'

'SPB'

'CSPB'

Clear the originating user field in the file index
table.

Set the file's privileged bit to allow the file, if
executed, to issue privileged calls. (The file's
controllers· do not have privileged status.)

Perform the actions of both COU and SPB.

FILEI originating user field (ASCII, left justified, blank filled).
If specified, VSOS will assign the binary value of ouser to the
OUSER field in the file's ·FILEI. This parameter is mutually
exclusive with the 'FLAGS=','COU' and 'FLAGS=','CSPB' parameters.

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'STATUS=',stat

Old File
Ownership

Private

Private

Private

Pool

Pool

Pool

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 205, 303, 0510,
0512, 0513, 1425, 1457, 1525, 1644, 1680, 1682, 1683, 1683, 1685
through 1691, 1709, 1722, 1812, -1814, 1815, 1816 ..

Figure 9-17. Q5GIVE Call Format (Sheet 3 of 3)

Table 9-4. Q5GIVE Default Access Permission Sets

New File
Ownership

Private

Pool

Public

Private

Pool

Public

Default Access Permission Sets

The old owner's access permission set becomes the new
owner's access permission set.

The old owner's access permission set becomes the general
access permission set for all pool members and the pool
boss.

The general access permission set contains read and
execute permissions.

The old pool boss access permission set becomes the new
owners' access permission set.

The old pool boss access permission set becomes the new
pool boss access permission set; the old general access
permission set becomes the new general access permission
set.

The general access permission set contains read and
execute permissions.

60459410 J

QSLABEL - REQUEST flLE FROM MUUJFllE SET

A QSLABEL call (refer to figure 9-18) specifies the contents of an ANSI standard HDRl label
for a tape file. A QSLABEL call is applicable only if the QSREQUEST call does not specify
the contents of the HDRl label for the file.

I NOTE I

A QSLABEL call performs the same function as
a LABEL control statement. If a QSLABEL
call specifies a file previously specified
on a LABEL statement, QSLABEL returns a
fatal error (status code 1626).

The HDRl label specifications are stored in the file index entry of the file. The
information in the file index entry is referenced when the file is opened.

If the tape file is opened for write access, the specified values are written in the new
HDRl label. If the tape file is opened for read access, the specified HDRl values are
compared with the values in the existing HDRl label.

Before a QSLABEL statement is processed, a tape file request must specify the file name. (A
tape file request can be either a REQUEST control statement or a QSRQUEST call.) Unless the
operator is to mount an unlabeled tape volume for the file, the tape fil~ request also
specifies the tape volumes for the file.

The tape file request and the Q5LABEL call share several data format parameters. If the
same parameter is specified on the tape file request and the QSLABEL call, the value on the
QSLABEL call overrides the value on the tape file request.

A LABEL statement or QSLABEL call is required to read or write a file that is a member of a
multif ile set.

Call Format

CALL QSLABEL('LFN=#,lfn,optional parameters)

Calling Parameters

'LFN=' ,lfn

... FA=' ,x

File name by which the tape file is referenced in the job (one to
eight characters). This parameter is required •

File accessibility character. If the HDRl label is read, the
specified character must match the accessibility character in the
label. If the HDRl label is written, the specified character is
written in the label. If FA=,x is omitted, the default character is
determined by an installation parameter {released value, blank).

Figure 9-18. QSLABEL Call Format (Sheet 1 of 4)

u045-94l0 E 9-63

Calling Parameters

'FID=' ,fid

'OFA=' ,x

'RP=' ,rp

File identifier (1 to 17 characters). If FID=,fid is omitted and
the HDRl label is written, the file identifier field in the HDRl
label is all blanks. If FID=,fid is omitted and the HDRl label is
read, the contents of the file identifier field is not checked.

Original file accessibility character. If the HDRl label is to be
overwritten, the specified character must match the accessibility
character in the existing label. If OFA=,x is omitted, the default
character is determined by an installation parameter (released
value, blank).

Retention period in days. The retention period is added to the
creation date to determine the expiration date for the file. If
RP=,rp is omitted, the default value is 30 days.

I NOTE I
When a new file is added to a multifile set,
its expiration date cannot be later than the
expiration date of the first file in the
multifile set.

Calling Parameters Used to Override Tape File Request Values

'ACS=' ,acs

""BT="" ,bt

Data access requested.

'R"" Read access

""W"" Write access

""RW""
or Read and write access
'WR""

If ACS=,acs is omitted, the access specified on the tape file
request is used (default, R).

Blocking type.

""I' Internal

'C' Character count

'K' Record count

If BT=,bt is omitted, the blocking type specified on the tape file
request is used (default, C).

Figure 9-18. Q5LABEL Call Format (Sheet 2 of 4)

9-64 60459410 E

Calling Parameters Used to Override Tape File Request Values

'CONVERT'

'LPROC=' ,lp

'MXR=',maxr

'MNR=',minr

'MPRU=' ,mpru

'PC=' ,x

'RMK=' ,x

'RPB=' _,rpb

'RT= ... ,rt

Data conversion option. If CONVERT is specified, tape data is read
and written as character codes. If CONVERT is omitted, data
conversion depends on whether CONVERT is specified on the tape file
request.

Label processing option.

'R' Read existing labels (verify existing HDRl label).

'W' Write new labels.

If LPROC=,lp is omitted, the label processing value specified on the
tape file request is used (default: R for read or read and write
access, W for write access).

Maximum record length in bytes. If MXR=, maxr is omitted, the
maximum record length specified on the tape file request is used
(default, O).

Minimum record length in bytes. If MNR=',minr is omitted, the
minimum record length specified on the tape file request is used
(default, 1).

MPRU size in bytes; used only if the file uses the V tape format.
If MPRU=,mpru is omitted, the MPRU size specifie9 on the tape file
request is used (default, 32768).

Padding character. If PC=,x is omitted, the padding character
specified on the tape file request is used (default, blank).

Character used as the record delimiter for R format records. If
RMK=,x is omitt-ed, the record mark delimiter specified on the tape
file request is used {default, ASCII US (code #lF)].

Records per block; used only for the K blocking type. If JU>B=,rpb
is omitted, the records per block value specified on the tape file
request is used (default, 1).

Record type.

'B' System block

'F' ANSI fixed length

'L' CYBER Record Manager (CRM) control word

'R' Record mark delimited

'U' Undefined

'W' Control word delimited

If RT=rt is omitted, the record type specified on the tape file
request is used (default, R).

Figure 9-18. QSLABEL Call Format (Sheet 3 of 4)

60459410 E 9-65

Calling Parameters for Multif ile Sets Only

'MFN=' ,mfn

'FSN=' ,fsn

Return Parameters

'ERRLEN= , len

'ERRMSG=', msg

'RFLUN=', rflun

'STATUS=', stat

Multifile set name (one to eight characters). The multifile set
name must be specified on a previous tape file request. If MFN=,mfn
is omitted, the multifile set name is assumed to be the same as the
file name.

File sequence number (1 to 9999). If FSN=9999, a new file is added
to an existing multifile set. If FSN=OOOO, file sequence number
0001 is used.

If FSN=,fsn is omitted, the file is identified by its file
identifier as specified on the FID parameter. If both FSN=,fsn and
FID=,fid are omitted, the first file in the set is opened.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

File logical unit number (integer). Subsequent calls can reference
the file by this number instead of by file name.

Status code. Possible values: 0 ihrough 199, 1624, 1625, 1627.

Return Parameters for Tape Files Only

'RACS=', racs Access permission set assigned to the tape file by the system
(ASCII, left justified, blank filled).

R Read permission.

W Write permission.

R/W Read and Write permission.

Figure 9-18. Q5LABEL Call Format (Sheet 4 of 4)

9-66 60459410 J

Multifile Sets

A multifile set is a set of tape files. The set can reside on one or more tape volumes.
Each file begins with an HDRl label and ends with an EOFl label.

The tape file request specifies the name of the multifile set and the tape volumes that
belong to the set. A LABEL statement or Q5LABEL call must specify each file in the set that
is to be read or written in the job.

The file name specified on the QSLABEL call is the file name specified on the Q50PEN call
for the file. The file name specified on the Q5LABEL call is not stored with the file and
is discarded when the file is returned.

A file within a multifile set is identified by~its file sequence number and its file
identifier. The file sequence number and file identifier are written in its HDRl label when
the file is written.

The data format parameter values on the tape file request for the multif ile set apply to all
files in the set unless the parameter is also specified on the label statement or call for
the file.

The QSLABEL call can specify the same label parameters for a file in a multifile set as for
any tape file.

Writing a Multifile Set

To write a multifile set, specify 1 as the file sequence number for the first file of the
set and 9999 as the file sequence number for all subsequent files. If the specified file
sequence number is 9999, the actual file sequence number written is the next number in
sequence for the set.

The Q5LABEL calls for the files in a multifile set can be in any order. No error is
returned if a file specified on a Q5LABEL call is not opened.

For example, suppose a program contains the following calls:

CALL QSRQUEST('MFN=', 'FILESET', 'DT=', 'NT',
+'VSN=',VSNLIST,'ACS=','W','RT=','B')

CALL Q5LABEL('LFN=',"X','MFN=",'FILESET',
+'FID=','FILEl','FSN=',l)

CALL Q5LABEL('LFN=','Y','MFN=",'FILESET',
+'FID=','FILE2' ,'FSN=',9999)

CALL Q50PEN('LFN=','X')
CALL Q5PUTB('LFN=','X','WSA=',DATA1,'WSL=',512)
CALL Q5CLOSE('LFN=','X')
CALL Q50PEN('LFN=','Y')
CALL Q5PUTB('LFN=','Y','WSA=',DATA2,'WSL=',512)
CALL Q5CLOSE('LFN=','Y')

The Q5RQUEST call specifies FILESET as the multif ile set name for files written on the tape
volumes specified in the array VSNLIST. The Q5LABEL calls specify HDRl labels for files in
the multifile set.

The first Q50PEN call writes the HDRl label specified on the first Q5LABEL call. The file
sequence number in the label is 1, and the file identifier is FILE!. The first Q5PUTB call
writes a tape block on the file.

60459410 E 9-67

The second QSOPEN call writes the HDRl label specified on the second QSLABEL call. The fil~
sequence number in the label is 2 (the next number in sequence for the set), and the file
identifier is FILE3. The second QSPUTB call writes a tape block to the second file in the
multifile set.

Reading a Multifile Set

To read a file in a multifile set, specify its file sequence number on its QSLABEL call.
The file sequence number specifies the HDRl label read when the file is opened.

If the file sequence number of the file is unknown, but the file identifier is known,
specify the file identifier and omit the file sequence number on the Q5LABEL call. If a
file identifier is specified, the HDRl labels in the multif ile set are searched until the
label containing the specified file identifier is found.

If the HDRl label of the file contains a nonblank accessibility charact.er, the QSLABEL call
must specify the accessibility character on the OFA=,x parameter.

For example, suppose a program contains the following calls to read a block from the second
file in a multifile set named FILESET.

CALL QSRQUEST('LFN=','FILESET','DT=','NT',
+'VSN=',VSNLIST,'RT=','B')

CALL Q5LABEL('LFN=','X','MFN=','FILESET',
+'FID=','SECOND','FSN=',2)

CALL Q50PEN('LFN=','X')
CALL QSGETB('LFN=','X','WSA=',DATAl,'WSL=',512)
CALL Q5CLOSE('LFN=','X')

The Q5RQUEST call specifies the multifile set name and the tape volumes to be read. The
Q5LABEL call specifies a local file name for the file, the multifile set name, the file
identifier, and the file sequence number. The Q50PEN call opens file X. To open file X,
the Q50PEN call reads the second HDRl label in the multifile set and checks. to see that its
file identifier is SECOND and that its file accessibility character is blank. The QSGETB
call reads a tape block and the QSCLOSE call closes the file.

Rewriting Files in a Multifile Set

Files in a multifile set can be rewritten. However, the last file written is always the
last file in the set. So, when rewriting a file in a multifile set, all subsequent files to
be kept in the set must also be rewritten.

The HDRl label of a rewritten file need not be rewritten. To verify the HDRl label but not
overwrite the label, specify LPROC=,R and ACS=,W on the Q5LABEL call.

9-68 60459410 E

For example, suppose a multifile set named FILESET has three files. The following calls in
a program replace the data in the second file.

CALL Q5RQUEST('LFN=' ,'FILESET' ,'DT=','NT',
+'VSN=' ,VSNLIST,'ACS=' ,'RW' ,'RT=' ,'B').

CALL Q5LABEL('LFN=','X' ,'MFN=','FILESET',
+'FSN=' ,3)

CALL Q5LABEL('LFN=','Y','MFN=','FILESET',
+'FSN=',2,'LPROC=','R','ACS=','W')

CALL Q5LABEL('LFN=','Z','MFN=','FILESET',
+'FSN=',9999)

CALL Q50PEN('LFN=','X')
CALL Q5GETB('.LFN=' ,'X' ,'WSA=' ,TEMP,'WSL=' ,512).
CALL Q5CLOSE('LFN=','X')
CALL Q50PEN('LFN=','Y')
CALL QSPUTB('LFN=','Y','WSA=' ,NEW,'WSL=',512).
CALL Q5CLOSE(.'LFN=','Y')
CALL Q50PEN('LFN=','Z')
CALL Q5PUTB('LFN=','Z','WSA=',TEMP,'WSL=',512).
CALL Q5CLOSE('LFN=' ,'Z')

The Q5RQUEST call specifies the multifile set name, the tape volume containing the multifile
set, and read and write access for the files in the set. The fi'rst Q5LABEL call is used to
read the third file in the set. The second Q5LABEL call is used to rewrite the data in the
second file without rewriting the HDRl label of the file lthe label processing option
(LPROC) is read, but the data access (ACS) is write]. The third Q5LABEL call is used to
rewrite the third file (data and labels). It specifies file sequence nu~ber 9999 because
the file is appended to the multifile set.

The first Q50PEN call opens the third file in the set; the Q5GETB call copies data from the
third file to an array named TEMP so that the data is not lost. (For the purposes of this
example, assume that each file has only one block.) The second Q50PEN call opens the second
file; the first Q5PUTB call overwrites the data in the second file with the data from array
NEW. The third Q50PEN call opens the third file; the second Q5PUTB call rewrites the data
saved in the TEMP array.

6045%10 E 9-69

QSMAPIN - MAP IN VIRTUAL SPACE

Call the Q5MAPIN routine (refer to figure 9-19) to associate a virtual address range with a
mass storage file. Specify as the virtual address range an array declared within the
program. Q5MAPIN associates the array with the specified mass storage file. For more
information, refer to Implicit I/O in this chapter.

Read or write access to the mass storage file is required, and the file for implicit I/O
must be opened.

SIL, by default, maps into the drop file data areas not mapped into other files. You can
also specify the drop file on a Q5MAPIN call. Q5MAPIN cannot map in a controllee file.

SIL changes the record type in the file's FIT to undefined when it opens the file for
implicit I/O. It does not change the record type in the file's file index entry.

If the region being mapped is not covered by the file and the file is nonextendable with
write access permitted, a fatal error is returned (status code 1539).

Q5MAPIN cannot map in a file connected to a terminal. An attempt to do so returns a fatal
error (status code 1458).

Q5MAPIN issues the MAP system message.

Call Format

{

'LFN=', lfn }
CALL Q5MAPIN('FLUN=',flun ,'VBA=',vba,'LEN=',ln,optional parameters)

'DROPF'

Calling Parameters

'LFN=' ,lfn

'FLUN=', flun

'DROPF'

'EXT=',ext

'LEN=',ln

Name of the mass storage file. LFN=,lfn must be specified if
FLUN=,flun and DROPF are omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn and DROPF are omitted.

Indicates that SIL should map in the drop file. DROPF must be
specified if LFN=,lfn and FLUN=,rflun are omitted.

File extendability indicator. If EXT=,ext is omitted, the file is
extendable.

'Y' The file is extendable.

'N' The file is not extendable.

Length in 512-word blocks of the virtual region specified by the
VBA=,vba parameter. LEN=,ln must be specified.

Figure 9-19. Q5MAPIN Call Format (Sheet l of 2)

9-70 60459410 E

Calling Parameters

'LMA=' ,lma

'LPAGE'

'VBA=' ,vba

Return Parameters

'CONT=',cont

'ERRLEN=',len

'ERRMSG=' ,msg

'EXT=' ,ext

'RLEN=', rlen

'STATUS=' ,stat

Number (relative to the beginning of the file) of the first file
block to be associated with the virtual region. If LMA=,lma is
omitted, SIL assumes lma is zero and uses the first sector of the
file.

Indicates that SIL should map in 128-block units (large pages). If
'LPAGE' is omitted, SIL maps in 1, 4, or 16-block units (small
pages).

Address of the first word of the array to be mapped in as the
virtual region (subscripted array name not entered as a literal).
The array must be at least 512 words (one block) and it must begin
on a page boundary. VBA=,vba must be specified.

Indicates whether the file is contiguous. SIL can return the
following ASCII values:

y The file is contiguous.

N The file is not contiguous.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

File extendability indicator (ASCII, left justified, blank filled).

y The file is extendable.

N The file is not extend able.

Returns the effective length of the mapped virtual region.

Status code. Possible values: 0 through 199, 204, 205, 303, 1421,
1458, 1516, 1519, 1537, 1538, 1548, 1551, 1553, 1560, 1707, 1708,
1813.

Figure 9-19. Q5MAPIN Call Format (Sheet 2 of 2)

60459410 J 9-71

I

QSMAPOUT - MAP OUT VIRTUAL SPACE

Call the Q5MAPOUT routine (refer to figure 9-20) to disassociate a virtual address range
from a mass storage file.

If you have write access to the mass storage file, SIL writes the modified data over the
original data. If you do not have write access to the file, SIL discards the modified data
at program termination.

The mass storage file mapped out can be one of your files, the task drop file, or the
controllee file being executed.

After a virtual region is mapped out, references to addresses within the region no longer
cause the operating system to transfer the corresponding data on mass storage into central
memory. However, the program can reference the data that was implicitly read into the
region while it was mapped in. Changes to the data are not written on the mass storage file.

Call Format

CALL Q5MAPOUT(
{

'LFN=' ,lfn }
'FLUN=' ,flun
'DROPF'
'CONTF'

,'VBA=',vba,'LEN~~,ln,optional parameters)

Calling Parameters

'LFN=' ,lfn

.... FLUN=', flun

'DROPF'

'CONTF'

'VBA=', vba

'LEN=' ,ln

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' , msg

'STATUS=', stat

Name of the mass storage file. LFN=,lfn must be specified if
FLUN=,flun, DROPF, and CONTF are omitted •

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn, DROPF, and CONTF are omitted.

Indicates that SIL should map out the drop file. DROPF must be
specified if LFN=,lfn, FLUN=,rflun, and CONTF are omitted.

Indicates that SIL should map out the controllee file. CONTF must
be specified if LFN=,lfn, FLUN=,rflun, and DROPF are omitted.

Name of the array to be mapped out. VBA=,vba must be specified.

Length of the array in 512-word blocks. LEN=,ln must be specified.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 205, 303, 1421,
1458, 1516, 1519, 1550, 1551, 1553, 1560, 1561, 1562, 1565, 1566,
1707' 1708.

Figure 9-20. Q5MAPOUT Call Format

9-72 60459410 E

Q5MAPOUT cannot map out a file connected to a terminal. An attempt to do so returns a fatal
error (status code 1458).

Q5MAPOUT issues the MAP system message.

60459410 E 9-73

QSOPEN - OPEN FILE

Call the Q50PEN routine (refer to figure 9-21) to open a file. Opening a file allows the
task to read or write data on the file.

A file index entry must exist for the file opened. A file index entry is created when a
file is requested, attached, or defined.

Opening a file requires a FIT. If a FIT exists for the file, the existing FIT is used.
Otherwise, Q50PEN generates a FIT for the file, using information from the file index entry
and parameter values specified on the Q50PEN call. Q50PEN parameter values do not change
the file index entry.

Q50PEN issues the OPEN FILE system message.

Access Modes

The ACS parameter on the Q50PEN call specifies the type of access allowed to the file while
it is open. The access modes requested must be the same access modes or a subset of the
access modes in the file index entry.

Shared Access

A privileged open call must specify whether other jobs are to be allowed to open the file
concurrently. Other jobs cannot open the file for write access.

A privileged user's job can open a file for read access while another job also has the file
open for read access. However, if the privileged user's job requests write or append access
or if another user has write or append access to the· file when the privileged user's job
attempts to open the file, the request returns a fatal error (status code 1730).

9-74 60459410 E

Nonprivileged Call Format

{
'LFN=', lfn }

CALL QSOPEN('FLUN=',flun ,optional parameters)

Privileged Call Format

CALL QSOPEN ({
'LFN=', lfn }
'FLUN =' , f lun ,'SA=',sa,optional parameters)

Calling Parameters

'LFN=', lfn

'FLUN=',flun

'ACS=' ,acs

'BUFLl=',bll

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

Access mode requested.

'R' Read access

'W' Write access

'RW'
or Read and write access

'WR'

'A' Append access

'.RA'
or Read and append access

'AR'"'

'M' Modify acces.s

'RM'
or Read and modify access

'MR'

If ACS=,acs is omitted, QSOPEN opens the file for the access
specified in the FIT for the file, if one exists; otherwise, it
opens the file for the access specified when the file was requested,
attached, or defined.

Length of buffer 1 in 512-word blocks. If BUFLl=,bll is omitted,
the installation-defined buffer length is used (the release value is
8 blocks). The values are 1 to 24*N, where N is the number of
blocks per page (with N=l, 4, 16 or 128). The value is validated
when I/O is performed.

Figure 9-21. Q50PEN Call Format (Sheet 1 of 9)

60459410 F 9-7 5

I

Calling Parameters

""BUFL2="" ,bl2

""BUFl="" ,bl

'BUF2=' ,b2

'MNR=' ,mnr

'MXR=' ,mxr

'WAIT=' ,wait

'WSA=' ,wsa

'WSL=' ,wsl

Length of buffer 2 in 512-word blocks. If BUFL2=,bl2 is omitted,
the installation-defined buffer length is used (the release value is
8 blocks). The values are 1 to 24*N, where N is the number of
blocks per page (with N=l, 4, 16 or 128). The value is validated
when I/O is performed.

Array to be used as data buffer 1. The buffer must be on a block
boundary (specified by a LOAD utility parameter). If the buffer is
mapped on a large page, it must not cross a large page boundary.

Array to be used as data buffer 2. The buffer must be on a block
boundary (specified by a LOAD utility parameter). If the buffer is
mapped on a large page, it must not cross a large page boundary.

Minimum record length in bytes. For record "types other than F, SIL
checks to ensure that a record is not shorter than this value. SIL
does not use this value when writing F format records. If MNR=,mnr
is omitted, SIL assumes that ·the maximum record length is zero bytes.

Maximum record length in bytes. For F format records, mxr is the
fixed record length. For other record types, SIL checks to ensure
that the record is not longer than this value. If MXR=,mxr is
omitted, SIL assumes·that the maximum record length is the default
set by an installation parameter.

Indicates whether the-task waits for a file that is currently opened
by another task.

Y Suspends the task to wait until the file is available.
The amount of time the task is suspended is determined by
installation parameters. The default is Y.

N Does not wait for the file.

Working storage area used by get and put I/O calls.

Length (in bytes) of the working storage area.

Calling Parameters for Mass Storage Files Only

'EXT=' ,ext File extendability indicator. If EXT=,ext is omitted, the f.ile is
extendable.

'Y' The file is extendable.

'N' The file is not extendable.

Figure 9-21. Q50PEN Call Format (Sheet 2 of 9)

9-76 60459410 J

Calling Parameters.for Mass Storage Files Only

'IMP'

'MODDROP'

'NOCOMP'

'SFO=' ,fo

Indicates that SIL should open the file for implicit I/O. The
record format in the file's FIT is changed to undefined; the
record format in the file's FILE! entry is not changed. If IMP
is omitted, the file is opened for explicit 1/0.

Indicates that modified pages of a file opened for implicit 1/0
are written to the task drop file rather than to the original
file. If MODDROP is specified, IMP must also be specified. If
MODDROP is omitted, modified pages are written to the original
file.

Indicates that SIL should not perform blank compression and
expansion on this file. If NOCOMP is omitted, SIL performs
blank compression and expansion.

File organization. If SFO=,fo is omitted, SIL assumes the
installation-defined default organization (released value,
sequential access).

'D' Direct access

'S' Sequential access

Calling Parameters for Mass Storage and Tape Files Only

'BT=' ,bt

'OFP=',ofp

'PC=',pc

'RMK=',rmk

Blocking type. If BT=,bt is omitted, the file has character
count blocking.

'C' Character count blocking

'I' Internal blocking

'K' Record count blocking

File positioning when the file is opened.

If the file is a direct access file, the parameter
specification is ignored; the file is not rewound.

'N' Do not rewind the file. (Default.)

'R' Rewind the file.

Padding character for F format records. If PC=,pc is omitted,
SIL pads with the installation-defined character (released
value, blank).

Record delimiting character for R format records. If RMK=,rmk
is omitted. SIL uses the installation-specified character
(usually ASCII US, #lF).

Figure 9-21. QSOPEN Call Format (Sheet 3 of 9)

60459410 J 9-77

I

Calling Parameters for Mass Storage and Tape Files Only

'RT=', rt Record type. If SFO=,D is specified, the only valid record
format is F. If RT=,rt is omitted, Q50PEN uses the existing
record type for the file.

'B' System block (tape files only)

'F' ANSI fixed length

'L' CYBER Record Manager control word (tape files only)

'R' Record mark delimited

'U' Undefined

'W' Control word

Calling Parameters for Tape Files Only

'ADO=' ,ado

'CONVERT=',tm

Assembly/disassembly option used for CYBER 170/CYBER 200 binary
tape interchange (ASCII, left justified, blank filled). If
selected, each 60 bits of tape data read is stored in a CYBER
200 64-bit word with the upper 4 bits as zero.

'BI' Binary; no assembly/disassembly performed.

'BW' 60 to 64; assembly/disassembly performed.

If ADO=, ado is. omitted, BI is used for all files except files
with L record type and I blocking, for which BW is the default.

I NOTE I
The assembly/disassembly option (ADO=,BW) is
invalid if the data conversion option is
selected (CONVERT). Assembly/disassembly is
valid only for binary data; it is not valid
for character coded data.

Data conversion mode; indicates whether the tape data is to be
stored as binary or character data.

'Y' Character data; convert data to and from character codes.

'N' Binary data; do not convert data.

Figure 9-21. Q50PEN Call Format (Sheet 4 of 9)

9-78 60459410 F

Calling Parameters for Tape Files Only

'ETP'

'LABA=',addr

'LABL=',n

'TAPETBA~' ,adr

'TAPETBL=' ,n

'UEP'

'ULABA=',addr

'ULABL=' ,n

'VSN=' ,adr

End of tape processing option. If ETP is specified, control returns
to .. ou when the end of a tape volume is encountered. You can then
call Q5REELSW to change tape volumes.

If ETP is omitted, the system switches tape volumes automatically
when it encounters the end of a tape volume.

Address of an array to which Q50PEN returns the labels it writes or
has read. The array must begin on a word boundary. If LABA=,addr
is omitted, Q50PEN does not return the labels written.

Number of words in the array to which Q50PEN returns the labels it
writes. The length should be a multiple of 10; if it is not, the
length is reduced to a multiple of 10. The valid range is from 10
throu h 510 words. To view the HDRl label, "the length must be at
least 20.

If LABL=,n is omitted, the length is assumed to be 10 words.

Address of the array to which each tape I/O request copies the
current system tapes table entry for the file. The array must begin
on a word boundary. If TAPETBA=,adr is omitted, tape I/O requests
do not copy the tapes table entry.

Number of words in the tapes table entry array (integer). Each
tapes table entry requires twelve words.

User error processing option. If UEP is specified, a tape I/O
request returns control to you when it detects a tape I/O error
whose code is in the range 101 through 299. The error code is
returned in the error message, for status code 1476. Appendix B of
this manual lists the meanings· of the error codes.

If UEP is omitted, a tape I/O error gives control to the system for
standard error recovery.

Address of an array containing user-specified labels to be written
after the HDRl label. The array must begin on a word boundary. If
ULABA=,addr is omitted, Q50PEN writes no user-specified labels.

Number of words in the array containing the user-specified labels.
The length should be a multiple of 10; if it is not, the length is
reduced to a multiple of 10. The valid range is from 10 through 510
words.

If ULABL=,n is omitted, the length is assumed to be 10 words.

Address of the array to which Q50PEN returns the VSN list for the
file. The array must begin on a word boundary. If VSN=,adr is
omitted, Q50PEN does not return the VSN list.

Figure 9-21. Q50PEN Call Format (Sheet 5 of 9)

60459410 J 9-79

I

I

Calling Parameters for Tape Files Only

'VSNL=',n Number of words in the VSN list array (integer). Each VSN requires
one word. If VSNL=,n is omitted, the array is assumed to be one
word long.

Calling Parameters for Privileged Users Only

'FADE=',aray

'FITE=',array

'FITEL=',alen

'SA=',sa

Return Parameters

'DT=',dt

'ERRLEN=',len

'ERRMSG=',msg

'RACS=',acs

Name of the 16-word array to receive a copy of the file access
directory entry for the file if one exists. If a file access
directory entry does not exist for the file, Q50PEN sets the first
two words of the array to binary zero.

Name of array to receive a copy of the file index entry for the
opened file. The first word of the array must contain the owner's
user number or the name of the pool to which the file belongs. The
second word must contain the file name.

Length (in words) of the array named by the FITE=,array parameter.
The system checks that this length is the length of a file index
entry.

Shared access status. This parameter is required for privileged
open calls. It cannot be specified if IMP is specified.

'Y' Other tasks can open the file for other than write
access.

'N' No other task can open the file.

Device type on which the file resides (ASCII, left justified, blank
filled).

MS Mass storage

NT Magnetic tape

TE Interactive terminal

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Access granted (ASCII, left justified, blank filled).

R Read access

w Write access

RW
or Read and write access
WR

Figure 9-21. Q50PEN Call Format (Sheet 6 of 9)

9-80 60459410 F

Return Parameters

'RFLUN=' ,flun

'RRT=' ,rrt

'SLEV=' ,sl

'STATUS=' ,stat

A Append access

RA
or Read and append access
AR

M Modify access

RM
or Read and modify access
MR

Logical number SIL assigned to the file and its FIT.

Record type returned (left-justified, blank tilled in a word).

B System block

F ANSI fixed length

L CYBER Record Manager control word

R Record mark delimited

u Undefined

w Control word

Security level of the file (integer from 1 through 8).

Status code. Possible values: 0 through 199, 203, 204, 205, 252,
258, 300, 303, 1402, 1411, 1425, 1427, 1428, 1454, 1459, 1460, 1472,
1474 thru 1476, 1480 thru 1487, 1517, 1518, 1522, 1525, 1529, 1541,
1543, 1560, 1570, 1616, 1619, 1620, 1628, 1629, 1650, 1685, 1687,
1726, 1730, 1735, 1800.

Return Parameters for Mass Storage Files Only

'CONT=' ,con

'EXT=' ,ext

Contiguity requirement for the file (ASCII, left-justified, blank
filled).

y The file must be contiguous.

N The file can be noncontiguous (segmented).

File extendability indicator (ASCII, left-justified, blank filled).

Y The file is extendable.

N The file is not extendable.

Figure 9-21. Q50PEN Call Format (Sheet 7 of 9)

60459410 G 9-81

Return Parameters for Mass Storage Files Only

'FC=',cat

'LEN=' ,fl

'LP=' ,lp

'OCAT=' ,own

'PN=' ,pn

'REXT=' ,rext

'TYPE=' ,typ

File category (ASCII, left-justified, blank filled).

BA Batch input file

MS Mass storage file

OT Output file

SD System-generated drop file

SR Scratch file

UD User-generated drop file

UN Undefined file

WT Modified drop file

Amount of space allocated to the file and known to the system. If a
file is segmented and some segments are on devices that are down,
the length of the segment available is returned.

File duration (ASCII, left-justified, blank filled).

L Local (job duratiort file)

p Permanent file

File ownership category (ASCII, left-justified, blank filled).

PO Pool file

PR Private file

PU Public file

Six-character identifier of the pack on which the file resides.

File extendability indicator (ASCII, left-justified, blank filled).

y The file is extendable

N The file is not extendable

File type (ASCII, left-justified, blank filled).

PD Physical data file

VC Virtual code (controllee) file

Figure 9-21. QSOPEN Call Format (Sheet 8 of 9)

9-82 60459410 G

Return Parameters for Tape Files Only

"RFID=" ,fid

"RFSN=", rf sn

"RLABL=" ,n

"RVSNL=" ,n

1/0 Buffers

File identifier from HDRl label (17 ASCII characters); applies to
ANSI labeled tape files only.

File sequence number from HDRl label (integer); applies to ANSI
lab-led tape files only.

Length in words of the labels written (integer). The length
returned is always a multiple of 10. If RLABL=,n is omitted, QSOPEN
does not return the length.

Length in words of the VSN list returned (integer).

Figure 9-21. QSOPEN Call Format (Sheet 9 of 9)

By specifying the BUFl=,bl and BUF2=,b2 parameters, the virtual address range that is to be
the I/O buffer for the file can be assigned. The BUFl=,bl and/or BUF2=,b2 parameters must
be specified if you expect to explicitly read or write the opened file. After the task
opens the file and executes the first I/O request for the file, the buffer could contain
file data at any time until the file is closed. SIL flushes the I/O buffers when the file
is closed.

60459410 J

I NOTE I
Do not assign the same virtual memory space
as an I/O buffer for two files that are open
at the same time. Data for one file could
overwrite data for the other file.

9-82.1/9-82.2

I

Implicit 1/0

A Q50PEN call can open a mass storage file for explicit I/O or implicit I/O. When opening a
file for implicit I/O, specify read or read and write access. An attempt to open a file for
implicit I/O without read access returns a fatal error (status code 1620).

A mass storage file for implicit I/O can be opened. All modified pages of the file can be
specified to write to the task drop file instead of to the opened file. To do so, specify
the IMP and MODDROP parameters on the Q50PEN call. The IMP parameter must be specified in
the MODDROP parameter; otherwise, Q50PEN returns a fatal error (status code 1428).

Files Connected to Terminals

Only a level 2 controllee of the interactive processor can open a file connected to a
terminal. If a co.ntrollee at a lower level in a controllee chain attempts to do so, a fatal
error is returned (status code 1459).

Q50PEN cannot open a file connected to a terminal for implicit I/O. A Q50PEN call that
specifies the TE device type and the IMP parameter returns a fatal error (status code 1460).

If a Q50PEN call to open a file connected to a terminal specifies mass storage or tape
parameters, Q50PEN returns a warning error (status code 1454).

Tape Files

A tape file must be requested
blocking type (BT) and record
the tape file was requested.
type are shown in table 9-3.
(status code 1484).

before it is opened. Q50PEN checks to see that the specified
type (RT) do not conflict with the tape format specified when
The valid combinations of tape format, block type, and record
If the specified values conflict, QSOPEN returns a fatal error

For V format files, Q50PEN checks to see that the specified buffers are at least as large as
the MPRU size. If a specified buffer is too small, Q50PEN returns a warning error (status
code 1486).

When a tape file request specifies read-only access, the tape volume is mounted without a
write ring. If the subsequent Q50PEN call for the file specifies write access, Q50PEN
returns a fatal error (status code 1481).

If the QSOPEN call specifies tape parameters for a nontape file, SIL returns a warning error
(status code 1472).

By default, the system processes fatal tape I/O errors. However, if the Q50PEN call
specifies the UEP parameter, a fatal tape I/O error returns control to you. It returns the
fatal error status code 1476. The status message specifies a tape I/O error code in the
range 101 through 299. The tape I/O error codes and their meanings are listed in appendix B
of this manual. To clear a tape error status, call the Q5CLIOER routine.

60459410 E 9-83

Multivolume Tape Files

A tape file can extend for more than one tape volume. The tape volumes assigned to the file
are specified as a list of volume serial numbers (VSNs) when the file is requested. If the
Q50PEN call specifies an array with the VSNA and VSNL parameters, Q50PEN returns the VSN
list in the array. If the Q50PEN call specifies the RVSNL parmeter, Q50PEN returns the
number of VSNs returned in the VSN list array.

By default, the system automatically switches to the next tape volume in the VSN list when
it encounters the end of a tape volume. However, if the Q50PEN call specifies the ETP
parameter, the system returns control to you when it encounters the end of a tape volume.
You can then call the Q5REELSW routine to switch to another tape volume.

Tape Label Processing

For ANSI labeled tape files, the specified access mode (ACS) must not conflict with the
label processing option specified when the file was requested. If the access mode is read
only and labels are to be written, Q50PEN returns a fatal error (status code 1480).

Assuming that the label processing option (LPROC) indicates that the existing labels are to
be read and verified, Q50PEN searches for an HDRl label when it opens the file. If it does
not find an HDRl label, it returns a fatal error (status code 1482). If it finds illegal
user labels, it also returns a fatal error (status code 1475).

When opening a file in a multifile set, Q50PEN searches for an HDRl label containing the
file sequence number and file identifier specified on the file request. If it cannot find
the file, it returns a fatal error (status code 1485).

When Q50PEN opens an ANSI labeled tape file for write access and write label processing
(LPROC=W), it writes an HDRl label to indicate the beginning of the file. The content of
the label is copied from the FIT, as specified when the file was requested.

Q50PEN returns the contents of the labels it reads or writes if the Q50PEN call specifies an
array using the LABA and LABL parameters. The array should be long enough for all labels
written (80 bytes for the HDRl label plus the length of any user-specified labels). If the
array is too short, SIL returns a warning error (status code 1474).

If the Q50PEN call specifies the RLABL parameter, QSOPEN returns the length of the labels
written.

User-Specified Labels

If the QSOPEN call specifies the ULABA parameter, QSOPEN writes the contents of the
specified array as additional header labels after the HDRl label. The valid user~specified
ANSI header labels are HDRn and UHLn. (The ANSI label formats are shown appendix F of this
manual.)

If user-specified label array contains invalid labels, QSOPEN returns a fatal error (status
code 1475).

9-84 60459410 G

Q5PATACH - ATTACH POOL

Call the Q5PATACH routine (refer to figure 9-22) to attach an existing pool. Attaching a
pool attaches all files that belong to the pool and that have a security level not greater
than that of the task.

Only the pool boss or a pool member can attach a pool. (A pool member is a user granted
access by the pool boss.) The type of access allowed for a pool file is defined when the
file is given to the pool. For more information, refer to Pool Files in chapter 2 of this
manual.

A task can have up to four pools attached at the same time (including the system pool).

Q5PATACH issues the POOL FILE MANAGER system message.

Call Format

CALL Q5PATACH('POOL=',pool, optional parameters)

Calling Parameters

'POOL=',pool

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=',stat

Name of pool to be attached. The name must be left justified and
blank filled. This parameter is required.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 301, 1503, 1508,
1544, 1545, 1618.

Figure 9-22. Q5PATACH Call Format

60459410 E 9-85

QSPCREA T - CREATE POOL

Call the Q5PCREAT routine (refer to figure 9-23) to create a pool. Q5PCREAT adds the
specified name to the pool list. The user who creates the pool is the pool boss.

Initially, no files belong to the newly created pool. A file can be given to the pool with
a Q5GIVE call. For more information, refer to Pool Files in chapter 2 of this manual.

Q5PCREAT issues the POOL FILE MANAGER system message.

9-86

Call Format

CALL Q5PCREAT('POOL=' ,pool, optional parameters)

Calling Parame~ers

'POOL=' ,pool

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'STATUS=' ,stat

Name of the new pool. The name must be eight letters and digits,
starting with a letter, left justified and blank filled. This
parameter is required.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes.

Status code. Possible values: 0 through 199, 204, 1507, 1508, 1511.

Figure 9-23. Q5PCREAT Call Format

60459410 G

QSPDESTR - DESTROY POOL

Call the Q5PDESTR routine (refer to figure 9-24) to remove the specified pool name from the
pool list.

Only the pool boss can remove a pool name; no files can belong to the pool, and the pool
cannot be attached to a task (including the task issuing the QSPDESTR call).

Q5PDESTR issues the POOL FILE MANAGER system message.

Call Format

CALL QSPDESTR('POOL=',pool, optional parameters)

Calling Parame~ers

'POOL=',pool

Return Parameters

'ERRLEN=', len

'ERRMSG=',msg

'STATUS=',stat

Name of the new pool. The name must be left justified and blank
filled. This parameter is required.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: O·through 199, 204,' 301, 1508, 1531,
1547.

Figure 9-24. QSPDESTR Call Format

60459410 E 9-87

QSPDTACH - DETACH POOL

Call the QSPDTACH routine (refer to figure 9-25) to return an attached pool of files. All
files in the pool need not be closed before the job returns the pool.

Q5PDTACH issues the POOL FILE MANAGER system message.

Call Format

CALL Q5PDTACH('POOL=',pool,optional parameters)

Calling Parameters

'POOL=',pool

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=',stat

Pool name, left justified and blank filled. This parameter is
required.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 301, 1506.

Figure 9-25. Q5PDTACH Call Format

9-88 60459410 E

QSPERMIT - CHANGE ACCESS PERMISSION SET

Call the QSPERMIT routine (refer to figure 9-26) to change an access permission set.

Only the file owner can change the access permission sets of a private file. Only the pool
boss can change the access permission sets of a file belonging to a pool. Only a privileged
user can change the access permission set of a public file.

To change an access permission set of a private file, the file must be attached. The pool
boss need not attach the pool to change the access permission set of a pool file.

The parameters PRODTN= and OWNER= allow the site security administrator user number to grant
or remove production status for a file. These parameters are mutually exclusive with the
access permission parameters ACS= and OWNER= • Refer to chapter 7 of the Installation
Handbook for details.

Tape Access

Assuming that a tape file request specifies read and write access to the file, a QSPERMIT
call can change the requested access mode for the file to read only or write only. For
example, if read and write access is requested for a multifile set, QSPERMIT calls could
change the access mode to read only or write only for each file in the set.

Append, modify, and. execute access are not valid for a tape file. If a QSPERMIT call
specifies A, Mor ~-access, QSPERMIT returns a fatal error (status code 16~0).

If a QSPERMIT call specifies an access mode not specified when the file was requested,
QSPERMIT returns a fatal error (status code 1631).

Call Format

CALL QSPERMI T({ :LFN=~!lfn, } 'ACS=',acs,optional parameters)
FLUN- ,rflun, .

Calling Parameters

'LFN=' ,lfn

'FLUN='·, rf 1 un

'ACS=', acs

Name of the file. LFN=,lfn must be specified if FLUN=,rflun is
omitted.

Number SIL assigned to the file. FLUN=,rflun must be specified if
LFN=,lfn is omitted.

New access permission set. To grant no access to the file, specify
'ACS=','NONE'. To grant one or more access permissions, acs must be
a string composed of the following letters without separators:

R Read permission
W Write permission
X Execute permission
A Append permission
M Modify permission

Figure 9-26. QSPERMIT Call Format (Sheet 1 of 2)

60459410 H 9-89

I

Calling Parameters

'POOL=',poolname

'PUBLIC'

'USER=' ,user

'PRODTN=',prod

'OWNER=' ,ownum

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'STATUS=',stat

Name of the pool to which the file belongs (ASCII characters,
left justified, blank filled). POOL=,poolname and PUBLIC are
mutually exclusive. If POOL=,poolname and PUBLIC are omitted,
the file must be a private file.

Indicates that the file is a public file. POOL=,poolname and
PUBLIC are mutually exclusive. If POOL=,poolname and PUBLIC
are omitted, the file must be a private fil~.

Indicates the access permission sets changed.

userno

'GENERAL'

'*'

Individual access permission set for the
specified user number (ASCII, left justified,
blank filled). This option is valid only for a
private permanent file.

General access permission set.

All access permission sets.

If USER=user is omitted, the access permission set changed
depends on the file category as follows:

Private Owner's access permission set.

Pool Pool boss's access permission set.

Public General access permission set.

Only the site security administrator user number can use this
parameter. Specify:

prod=Y

prod=N

To grant production status to the file; all
write access permissions are removed.

To remove production status from the file.
Access permissions are not changed.

PRODTN= is mutually exclusive with ACS= •

Owner's ASCII user number, left-justified, blank-filled, for. a
private permanent file when PRODTN is specified. If omitted,
the site security administrator is assumed to be the owner.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes.

Status code. SIL returns one of the following integers: 0
through 199, 200, 204, 205, 210, 264, 301, 303, 306, 307, 310,
517, 518, 1402, 1425, 1546, 1630, 1631, 1682, 1691, 1727, 1728,
1731.

Figure 9-26. Q5PERMIT Call Format (Sheet 2 of 2)

9-90 60459410 J

1

QSPGRACC- GRANT ACCESS TO POOL

Call the Q5PGRACC routine (refer to figure 9-27) to grant other users access to a pool.
Only the pool boss for the specified pool can grant users access.

Q5PGRACC can grant access to all users or to a specified list of users. The type of file
access allowed is defined when the file is given to the pool.

Q5PGRACC issues the POOL FILE MANAGER system message.

Call Format

CALL Q5PGRACC('POOL=',pool, optional parameters)

Calling Parameters

'POOL=',pool

'NU=' ,nu

'ULIST=',ul

Return Parameters

'ERRLEN=', len

'ERRMSG=',msg

'STATUS=',stat

Pool name, left justified and blank filled. This parameter is
required.

Number of user numbers in the list specified by the ULIST=,ul
parameter. If NU=,nu is omitted, SIL assumes that the ULIST=,ul
parameter does not specify a list of user numbers.

List of user numbers to be granted access to the pool. The numbers
must be in integer format, one user number per word. If ULIST=,ul
is omitted, SIL grants all user numbers access to the pool.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 301, 1508, 1547.

Figure 9-27. Q5PGRACC Call Format

60459410 E 9-91

QSPOOLS - LIST POOLS

The entry format for the QSPOOLS routine is defined in figure 9-28. Call the QSPOOLS
routine (refer to figure 9-29) to obtain a list of all pools and pool bosses. QSPOOLS
copies the list into the specified buffer. It copies a two-word entry for each pool.

QSPOOLS can return the number of words copied to the buffer. Divide this number by two to
obtain the number of pool entries copied.

QSPOOLS issues the POOL FILE MANAGER system message.

pcount 16 I res 161 pfree 121
pboss 20

pool name 64

pcount Number of users that have the pool attached
res Reserved
pf ree Currently unused
pboss User number of pool boss (binary format)
pool name Pool name (eight ASCII characters)

Figure 9-28. Pool List Entry Format

Call Format

CALL Q5POOLS('BUFFER=',bfr,'BUFLEN=',bl,optional parameters)

Calling Parameters

'BUFFER=', bfr

'BUFLEN=',bl

Return Parameters

'RBUFLEN=',rbl

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=',stat

Array to which the pool and pool boss names are copied. This
parameter is required.

Length of the array specified by the BUFFER=,bfr parameter. This
parameter is required.

Number of words copied to the buffer.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 1549.

Figure 9-29. QSPOOLS Call Format

9-92 60459410 E

QSPREACC - REMOVE ACCESS TO POOL

Call the Q5PREACC routine (refer to figure 9-30) to remove pool access granted to one or
more users. The user calling Q5PREACC must be the pool boss for the specified pool.

If you attach the pool when SIL processes a QSPREACC call to remove your access, the removal
of the pool access goes into effect after you have detached the pool.

Q5PREACC issues the POOL FILE MANAGER system message.

Call Format

CALL Q5PREACC('POOL=',pool,'ULIST=',ul,optional parameters)

Calling Parameters

'POOL=',pool

'ULIST=' ,ul

'NU=', nu

Return Parameters

'ERRLEN=',len

'ERRMSG=',msg

'STATUS=',stat

Name of the pool from which SIL should remove access privileges.
The pool name must be left justified and blank filled in the name.
This parameter is required.

List of user numbers whose access privileges SIL should remove. The
user numbers must be in binary (right justified, zero filled). This
parameter is required.

Number of user numbers specified by ULIST=,ul. If NU=,nu is
omitted, SIL assumes that ULIST=,ul specifies one user number.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 301, 1503, 1508,
1547.

Figure 9-30. Q5PREACC Call Format

60459410 E 9-93

QSPURGE - PURGE FILE

Call the Q5PURGE routine (refer to figure 9-31) to purge a permanent file. Q5PURGE deletes
the file index entry for the specified file and releases its mass storage space.

SIL assumes that the file is the private file with the specified name unless the OCAT
parameter on the Q5PURGE call specifies that the file is a pool or public file.

Only a file owner or a privileged user can purge a private file. Only a privileged user or
the pool boss can purge a pool file (the pool must be attached to the task). Only a
privileged user can purge a public file.

A privileged user can purge other users' private and pool files.

The file must be closed before it is purged. If the purged file is attached to a job, it
becomes a local file.

Q5PURGE cannot purge a file connected to a terminal. An attempt to do so returns a fatal
error (status code 1463).

Q5PURGE issues the DESTROY FILE system message.

Call Format

Nonprivileged call

CALL Q5PURGE({
'LFN=',lfn }
'FLUN=',rflun ,optional parameters)

Privileged Call

{
'LFN=' ,lfn }

CALL Q5PURGE('FLUN=',rflun ,'OWNER=',un, optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=',flun

'OCAT=',oc

'POOL=',poolname

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,f lun must be
specified if LFN=,lfn is omitted.

File ownership category. If OCAT=,oc is omitted, SIL purges a
private file.

'PO' Pool file

'PR' Private file

'PV' Public file

Name of the attached pool from which the file is purged. This
parameter is required if OCAT=,PO is specified.

Figure 9-31. Q5PURGE Call Format (Sheet 1 of 2)

9-94 60459410 E

Calling Parameter for Privileged Users Only

'OWNER=',own

Return Parameters

'ERRLEN=',len

'ERRMSG=',msg

'STATUS=',stat

User number or pool name to which the file belongs. A user number
must be an integer, right justified and zero filled; a pool name
must be a character string, left justified and blank filled.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 205, 303, 1402,
1424, 1546, 1685, 1687, 1690, 1735.

Figure 9-31. Q5PURGE Call Format (Sheet 2 of 2)

60459410 E 9-95

QSPUSERL - LIST USERS WITH ACCESS TO POOL

Call the Q5PUSERL routine (refer to figure 9-32) to obtain a list of users having access to
a pool. Only the pool boss of the specified pool can obtain the list.

Q5PUSERL copies the user numbers to the specified buffer, one user number per word in
integer format.

Q5PUSERL issues the POOL FILE MANAGER system message.

Call Format

CALL Q5PUSERL('POOL=',pool,'ULIST=',ul,'NU=',nu,optional parameters)

Calling Parameters

'POOL=',pool

'NU=' ,nu

'RNU=' ,rnu

Return Parameters

'ERRLEN=' ,len

'ERRMSG=',msg

'STATUS=',stat

'ULIST=',ul

Name of pool whose access list SIL is to supply. The name must be
left justified and blank filled. This parameter is required.

Number of words in the buffer specified by the ULIST=,ul parameter.
This parameter is required.

Number of user numbers copied to the buff er specified by
'ULIST=',ul. If all users can access the pool, Q5PUSERL returns the
value 1 in the variable.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 301, 1508.

Buffer in which Q5PUSERL returns the list of user numbers that can
access the pool, one user number per word. This parameter is
required. If all users can access the pool, Q5PUSERL returns one
word to the buffer; the word has the value 1000000 (decimal).

Figure 9-32. Q5PUSERL Call Format

9-96 60459410 E

QSPUTB - PUT A BUFFER RECORD

A QSPUTB call (refer to figure 9-33) writes the next record on a file. If the tape file
writes B-record type, QSPUTB copies the tape block directly from the specified working
storage area to the file; it does not use intermediate I/O buffers.

If the specified file is not a tape file with the B record type, a QSPUTB call is equivalent
to a QSPUTN call.

Call Format

CALL QSPUTB({
'LFN=' ,lfn }
'FLUN=' ,flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=',flun

'WSA=',wsa

'WSL=' ,wsl

Return Parameters

'ERRLEN=', len

'ERRMSG=', msg

'RSN=' ,rsn

'STATUS=',stat

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

File logical unit number SIL assigned to the FIT. FLUN=,flun must
be specified if LFN=,lfn is omitted.

Address of the array from which QSPUTB copies data. If WSA=,wsa is
omitted, the working storage area specified in the FIT is used.

Length (in bytes) of the working storage area. If WSL=,wsl is
omitted, the length specified in the FIT is used.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Request serial number. If RSN=,rsn is specified, QSPUTB returns
control to you immediately. The task specifies the returned RSN on
a QSCHECKB call to determine whether the QSPUTB request has
completed.

If RSN=,rsn is omitted, the system suspends the task until the
QSPUTB request has completed.

Status code. Possible values: 0 through 199.

Figure 9-33. QSPUTB Call Format

If the call specifies the RSN=,rsn parameter, QSPUTB returns control to you immediately.
The task can then perform other processing while the tape I/O request completes. To
determine whether the I/O request is complete, the program must call the QSCHECKB routine.

60459410 E 9-97

QSPUTN - WRITE PARTITION

Call the Q5PUTN routine (refer to figure 9-34) to transfer data from the working storage
area to a physical I/O buffer. Q5PUTN appends a partition delimiter to the data.

The Q50PEN call for the file determines the buffer used. SIL automatically writes the data
to the file when the buff er is full.

If a working storage area is not specified on the Q5PUTN call, SIL uses the working storage
area specified in the file's FIT. QSPUTN transfers the amount of data specified as the
working storage area length.

The file must be open for write, modify, or append access. If it is not, Q5PUTN returns a
fatal error (status code 1726).

Call Format

CALL Q5PUTN({
'LFN=' ,lfn }
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=',lfn

'PART=',part

'FLUN=',flun

'REC=',n

'WSA=',wsa

'WSL=' ,wsl

Return Parameters

'ERRLEN=',len

'ERRMSG=',msg

'STATUS=',stat

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Partition delimiter appended to the data transferred. If PART=,part
is omitted, a record delimiter is appended.

R Record

G Group (R, W, and L formats only)

F File

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

Record number (integer greater than zero). Ignored for a sequential
access file. If REC=,n is omitted for a direct access file, the
value in the RC FIT field plus 1 is used.

Working storage area. Specifying this parameter overwrites the
corresponding FIT field with the specified value. If WSA=,wsa is
omitted, SIL uses the working storage area specified in the file's
FIT.

Number of bytes of data transferred (working storage area length).
Specifying this parameter overwrites the corresponding FIT field
with the specified value. If WSL=,wsl is omitted, SIL uses the
working storage length specified in the file's FIT.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 253, 303, 1401, 1405,
1430, 1432, 1434, 1435, 1439, 1443, 1444, 1452, 1521, 1719, 1726.

Figure 9-34. Q5PUTN Call Format

9-98 60459410 E

For F format records, Q5PUTN transfers the number of bytes specified in the working storage
area length (WSL) field of the FIT. If WSL is less than the fixed record length (MXR) field
of the FIT, Q5PUTN returns a warning error (status code 1452) and pads the record to the MXR
length. If WSL is greater than MXR, Q5PUTN returns a fatal error (status code 1435) and
transfers no data.

For record formats other than F, Q5PUTN checks to ensure that WSL is within the minimum and
maximum lengths specified by the MNR and MXR fields of the fit before transferring the
record data. If WSL is outside the specified range, Q5PUTN returns a fatal error (status
code 1435).

For R format records, Q5PUTN compresses all strings comprising three or more blank
characters unless the NOCOMP parameter was specified on the Q50PEN call. For more
information, ref er to Record Mark Delimited (R) Record Format in chapter 2 of this manual.

For a direct access file, SIL determines the beginning of the requested record as described
under File Organization in chapter 2. If writing the record would write data past the
current end of the file, Q5PUTN returns a fatal error (status code 1434).

To append a record to a mass storage file, the file must be positioned after its data but
before the file delimiter if there is one. To position the file, read or skip to the end of
the file and then skip backward over the file delimiter. An attempt to append a record at
another file position returns a fatal error (status code 1521). For more information, refer
to Appending Data in this chapter.

When a mass storage file is opened for modify access, it must be positioned at the beginning
of an existing record. An attempt to write a record beyond the end of the file returns a
fatal error (status code 1719).

Tape Files

In general, writing a tape record is the same as writing a mass storage record. However,
besides the F, R, U, and W record types, tape files can also use the B and L record types.

When writing L records, Q5PUTN adds block control word and record control words. The L
record format is described in chapter 2.

AB record is an LRU; therefore, a Q5PUTN call to write a B record writes an LRU. If the
tape is written using I, SI, or LB tape format, an LRU terminator is appended to the data.

60459410 E 9-99

I

QSPUTP - WRITE PARTIAL PARTITION

Call the Q5PUTP routine (refer to figure 9-35) to transfer data from the working storage
area to a physical I/O buffer. The Q50PEN call for the file determines the buffer used.
SIL automatically writes the data to the file when the buffer is full.

Call Q5PUTP to write partial records or undefined records (U format). Q5PUTP does not add a
partition delimiter to the data unless the TERM parameter is specified. A partition
delimiter can also be added by issuing a Q5ENDPAR call.

The file must be open for write, modify, or append access. If it is not, Q5PUTP returns a
fatal error (status code 1726).

Call Format

{
'LFN=' ,lfn }

CALL Q5PUTP('FLUN=' ,flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=' ,flun

'PART=' ,part

'REC=' ,n

'TERM'

'WSA=' ,wsa

'WSL=' ,wsl

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

part is the partition delimiter appended to the data transferred.
If PART=,part is omitted, a record delimiter is appended if TERM is
specified.

R Record

G Group (R, W, and L formats only)

F File

Record number (integer greater than zero). Ignored for a sequential
access file. If REC=,n is omitted for a direct access file, the
value in the RC FIT field plus 1 is used.

Indicates that the call is the last call for the record. For R and
W formats, SIL appends a partition delimiter to the data
transferred. If TERM is omitted, a partition delimiter is not
appended.

Working storage area. Specifying this parameter overwrites the
corresponding FIT field with the specified value. If WSA=,wsa is
omitted, SIL uses the working storage area specified in the file's
FIT.

Number of bytes of data transferred (working storage area length).
Specifying this parameter overwrites the corresponding FIT field
with the specified value. If WSL=,wsl is omitted, SIL uses the
working storage length specified in the file's FIT.

Figure 9-35. QSPUTP Call Format (Sheet 1 of 2)

9-100 60459410 G

Return Parameters

'ERRLEN=',len Error message length in bytes (integer).

'ERRMSG=' , msg Error message. The variable msg must be 80 bytes long.

'STATUS=',stat Status code. Possible values: 0 through 199, 253, 303, 1401, 1405,
1430, 1432, 1434, 1435, 1439, 1443, 1444, 1451, 1452, 1461, 1521,
1719, 1726.

Figure 9-35. Q5PUTP Call Format (Sheet 2 of 2)

For F format records, Q5PUTP compares the WSL value with the fixed record length (MXR) field
of the FIT. If the values do not match, it takes the following action:

If

WSL is less than MXR and the TERM
parameter is not specified,

WSL added to the length of the data
already written to the record is
less than MXR and the TERM parameter
is specified,

WSL is greater than MXR and the call
is the first call for the record,

The call is not the first call for the
record and WSL added to the length of
the data already written to the record,
is greater than MXR,

Then Q5PUTP

Writes the data and returns normal status.

Returns a warning error (status code 1452)
and pads the record to the MXR length.

Returns a fatal error (status code 1435)
and transfers no data.

Returns a warning error (status code 1451)
and discards the excess data.

For R format files, Q5PUTP compresses all strings comprising three or more blank characters
unless you specify the NOCOMP parameter on the Q50PEN call. For more information, refer to
Record Mark Delimited (R) Record Format in chapter 2 of this manual.

For a direct access file, SIL determines the beginning of the requested record as described
under File Organization in chapter 2. If writing the record would write data past the
current end of the file, Q5PUTN returns a fatal error ~status code 1434).

When a mass storage file is opened for append access, it must be positioned after the
existing file data but before the file delimiter, if there is one, before a write operation
is requested. To position the file, read or skip to the end of the file and then skip
backward over the file delimiter. An attempt to append a partial record at another file
position returns a fatal error (status code 1521).

When a mass storage file is opened for modify access, it must be positioned at the beginning
of an existing record. An attempt to write a record beyond the end of the file returns a
fatal error (status code 1719).

Q5PUTP cannot write output to a file connected to a terminal. An attempt to do so returns a
fatal error (status code 1461).

60459410 E 9-101

I

Tape Files

In general, writing a tape record is the same as writing a mass storage record. However,
besides the F, R, U, and W record types, tape files can also use the B and L record types.

When writing L records, block control words and record control words are added to the data
written on the file. The L record format is described in chapter 2.

A B record is an LRU; therefore, a Q5PUTP call with TERM specified that writes a B record
writes an LRU. If the tape is written using I, SI, or LB tape format, an LRU terminator is
appended to the data.

Q5READ - READ BLOCK

Call the Q5READ routine (ref er to figure 9-36) to transfer one or more blocks of data from a
file to a program buffer. Attach the file and open it for explicit I/O before issuing the
Q5READ call. Specify the buffer to be used on the Q5READ call; otherwise, SIL uses buffer 1
as specified in the FIT.

Call Format

CALL Q5READ({
'LFN=', lfn }.
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=', lfn

'FLUN=', flun

'BUFFER=', bfr

'BUFLEN=',bfl

'BUFl'

'BUF2'

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

Array to be used as the data buffer. The buff er must be on a block
boundary (specified by a LOAD utility parameter). If the buffer is
mapped on a large page, it must not cross a large page boundary. If
BUFFER=,bfr is omitted and BUF2 is specified, SIL uses buffer number
2; if BUFFER=,bfr and BUF2 are omitted, SIL uses buffer number 1, as
specified in the FIT. If BUFFER=bfr is specified, either BUFLEN=bfl
or BYTCNT=,bytcnt must be specified.

Length of the buffer specified by the BUFFER=,bfr parameter in
512-word blocks. If this parameter is specified, the BYTCNT=,bytcnt
parameter must be omitted. The value is 1 to 24 * N, where N is the
number of blocks per page, large or small. The value is validated
before the system performs READ.

Indicates that SIL should use buffer number 1, as specified in the
FIT. If BUFl is omitted and either BUFFER=,bfr or BUF2 is
specified, SIL uses the specified buffer. If BUFFER=,bfr BUFl, and
BUF2 are omitted, SIL uses buffer number 1, as specified in the FIT.

Indicates that SIL should use buff er number 2, as specified in the
FIT. If BUF2 is omitted and BUFFER=,bfr is specified, SIL uses the
specified buffer. If BUF2 and BUFFER=,bfr are omitted, SIL uses
buffer number 1, as specified in the FIT.

Figure 9-36. Q5R.EAD Call Format (Sheet 1 of 2)

9-102 60459410 F

Calling Parameters

'WAIT' Indicates that SIL should wait for completion of this read request
before returning control to the caller. If WAIT is omitted, SIL
returns control immediately to the caller.

Calling Parameters for Tape Files Only

'BYTCNT=',bytcnt

'LRUA=',adr

'LRUL=',n

'SKIP'

Return Parameters

'ERRLEN=',len

'ERRMSG=',msg

'LEN=',rl

'RSN=',rsn

'STATUS=',stat

Length of the buffer specified by the BUFFER=,bfr parameter in
bytes. If this parameter is specified, the BUFLEN=,bfl parameter
must be omitted.

Address of an array in which QSREAD returns descriptions of the LRUs
read. If LRUA=,addr is omitted, Q5READ does not return LRU
descriptions.

Number of words in the LRU description array; the maximum is 40
words. If SKIP is specified, it also specifies the number of LRUs
to read.

If SKIP is specified, Q5READ attempts to read the number of LRUs
specified by the LRUL parameter and leaves the file positioned at
the beginning of the next LRU. If SKIP is omitted, Q5READ attempts
to read the maximum number of full PRUs that fit in the I/O buffer
and leaves the file positioned at the beginning of the next PRU.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Number of bytes transferred. If the operation is not complete, the
value is undefined.

Number assigned to the request. A Q5CHECK call uses this identifier.

Status code. Possible values: 0 through 199, 203, 204, 206, 207,
303, 1400, 1401, 1405, 1409, 1411, 1416, 1417, 1422, 1430, 1434,
1462, 1472, 1476, 1488, 1489, 1494, 1589, 1596, 1598, 1604, 1605,
1653, 1708, 1726.

Return Parameters for Tape Files Only

'RLRUL=',n

'RLEVEL=',lev

If LRUA is specified, the number of entries returned in the LRU
description array. If SKIP is specified, the number of LRUs read (a
partial LRU is included in the count). If RLRUL=,n is omitted, the
entry count or LRU count is not returned.

Level number of the first LRU read if Q5READ returns the LRU
terminator (one ASCII character, 0 through 9 or A through F, right
justified and zero filled). This parameter does not apply to V tape
format.

Figure 9-36. QSREAD Call Format (Sheet 2 of 2)

60459410 H 9-103

I

Unless the WAIT parameter is specified, SIL returns control to the caller immediately after
it issues the request (before the data transfer is complete). Check for completion of the
data transfer with a Q5CHECK call; however, if the WAIT parameter is specified, SIL does not
return control to the caller until after the data transfer is complete.

If a buffer is specified on a Q5READ call using the BUFFER= parameter, the buffers specified
in the FIT are no longer defined. Subsequent Q5READ and Q5WRITE calls must specify the
BUFFER= parameter.

SIL does not check to see whether program I/O buffers overlap. For instance, one buffer
could extend from address l to address 1024 and another buffer extend from address 512 to
address 1536. In this case, a read to the second buffer after a read to the first buffer
would overwrite the last 512 words of data read into the first buff er.

The file must be opened for read access. If it is not, Q5READ returns a fatal error (status
code 1726).

Q5READ cannot read input from a file connected to a terminal. An attempt to do so returns a
fatal error (status code 1462).

For mass storage files and files connected to a terminal, Q5READ calls the EXPLICIT I/O
system message. For tape files, QSREAD issues the TAPE FUNCTION system message.

Reading Tape Data

A Q5READ call for a tape file copies data from the tape to an I/O buffer. The I/O buffer
cannot be more than 48 pages long. If the call specifies a longer buffer, QSREAD returns a
fatal error (status code 1488).

If a Q5READ call specifies tape parameters for a nontape file, Q5READ returns a warning
error (status code 1472).

Assuming that the tape is written in I, SI, or LB format, Q5READ can return the level number
from the LRU terminator. It returns the level number in the variable specified on the
RLEVEL parameter.

If the Q50PEN call for the file specified user error processing (UEP), a fatal tape I/O
error returns control to you. The error code is returned in the message for status code
1476.

The SKIP parameter determines whether the Q5READ call reads one or more PRUs or one or more
LRUs.

Reading PRUs

If a Q5READ call omits the SKIP parameter, Q5READ reads one or more PRUs. Before reading
any data, Q5READ checks to see that the specified buffer is at least as long as the MPRU
size. If it is not, QSREAD copies no data to the 1/0 buffer and returns a fatal error
(status code 1494).

Assuming that the buffer is large enough for at least one PRU, Q5READ copies a PRU. It then
checks to see whether the remaining buffer space is enough for another PRU and, if it is,
copies the next PRU. QSREAD continues to copy PRUs until the space remaining in the buffer
is less than the MPRU size. It has then completed reading data and returns the number of
bytes read in the variable specified on the LEN=,len parameter, if one is specified.

After the read, the file is left positioned at the beginning of the next PRU. The next
Q5READ call begins copying data at that PRU.

9-104 60459410 E

Reading LRUs

If a Q5READ call specifies the SKIP parameter, Q5READ reads one or more LRUs. The LRUL I
parameter on the call specifies the number of LRUs to read. (If the LRUL parameter is
omitted, only one LRU is read.)

Q5READ then begins copying data to the I/O buffer. It continues copying data until it has
either copied the number of LRUs specified by the LRUL parameter or filled the I/O buffer
with data. It returns the number of LRUs read in the variable specified on the RLRUL
parameter, if one is specified. It includes a partial LRU in the count. For example, if it
fills the buffer by reading three complete LRUs and a partial LRU, the LRU count returned is
4.

If the last LRU read is only a partial LRU, Q5READ sets the excess data flag in the LRU
description.

After copying data, Q5READ positions the file at the beginning of the next LRU. The next
Q5READ call begins reading data at the beginning of the next LRU.

LRU Description Array

If the Q5READ call specifies the LRUA=,adr parameter, Q5READ copies an LRU description to
the array for each complete or partial LRU read. If the LRU description is for a complete
LRU, the end of LRU flag is set and the LRU level number is returned in the LRU description.

The format of an LRU description is shown in figure 9-4. The RLRUL parameter returns the
number of entries returned in the array.

Writing Additional Tape Volume Labels

By default, when Q5READ encounters the end of a tape volume, the system automatically
switches to the next volume in the VSN list for the file and continues reading. However, to
write additional end-of-volume and beginning-of-volume labels on the file; the read must
stop when it encounters the end of a volume.

To return control to the program when the end of a tape volume is encountered, specify the
end of tape option (ETP) on the Q50PEN call for the file. Q5READ returns a fatal error
(status code 1489) when it encounters the end of a tape volume. A Q5REELSW call can then
write additional volume labels at the end of the current volume and the beginning of the
next volume. To continue reading data from the next volume, the program must call Q5READ
again.

60459410 G 9-105

QSREDUCE - REDUCE FILE SPACE

Call the Q5REDUCE routine (refer to figure 9-37) to reduce the length of a file to the
length of the data in the file. The Q5REDUCE releases mass storage space allocated to the
file which has addresses higher than the highest address accessed in the file.

Only the file owner or a privileged user can reduce the length of a file.

The length of a controllee file cannot be less than two small pages (the minus page and the
register file page). An attempt to reduce a controllee file to less than two pages returns
a fatal error (status code 1423).

If the file specified on a Q5REDUCE call is a file connected to a terminal, control is
returned to the caller with no action taken.

Q5REDUCE issues the REDUCE FILE LENGTH system message.

Call Format

CALL Q5REDUCE({
'LFN=', lfn }
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=', f lun

'NEWLEN=',nfl

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'LEN=' ,len

'STATUS=',stat

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

New file length in 512-word blocks. If NEWLEN=,nfl is omitted, the
file reduces to the word with the highest address accessed.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

The new length of the file in 512-word blocks.

Status code. Possible values: 0 through 199, 204, 205, 303, 1423,
1424, 1425, 1679.

Figure 9-37. Q5REDUCE Call Format

9-106 60459410 E

QSREELSW -WRITE ADDITIONAL TAPE VOLUME LABELS

A QSREELSW call (refer to figure 9-38) continues file processing with the next tape volume
in the VSN list for the file.

Call Format

I NOTE I
A QSREELSW call is valid only after VSOS
returns control to the caller after it
encounters the end-of-the tape volume. It
returns control only if end of tape
processing (the ETP parameter) is specified
on the QSOPEN call that opened the file.

CALL QSREELSW({
'LFN=', lfn }
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=',flun

'BVLABA=',addr

'BVLABL=' , n

'EVLABA=',addr

.... EVLABL= , n

'UBVLABA=',addr

'UBVLABL=',n

File name of open tape file. If LFN=,lfn is omitted, FLUN=,flun
must be specified.

File logical unit number returned when the call opened the file. If
FLUN=,flun is omitted, LFN=,lfn must be specified.

Address of the array in which QSREELSW copies the beginning­
of-volume labels written. The array must be on a word boundary. If
BVLABA=,addr is omitted, QSREELSW does not copy the beginning of
volume labels.

Length in words of the array specified on the BVLABA=,addr
parameter. If BVLABL=,n is omitted, the array is assumed to be 10
words.

Address of the array in which QSREELSW copies the end-of-volume
labels written. The array must be on a word boundary. If
EVLABA=,addr is omitted, QSREELSW does not copy the end-of-volume
labels •

Length in words of the array specified on the EVLABA=,addr
parameter. If EVLABL=,n is omitted, the array is assumed to be 10
words.

Address of the array containing the user-specified beginning­
of-volume labels that QSREELSW is to write. The array must be on a
word boundary. If UBVLABA=,addr is omitted, QSREELSW does not write
additional beginning-of-volume labels.

Length in words of the array specified on the UBVLABA=,addr
parameter. If UBVLABL=,n is omitted, the array is assumed to be 10
words.

Figure 9-38. QSREELSW Call Format (Sheet 1 of 2)
60459410 E 9-107

Calling Parameters

'UEVLABA=' ,addr

'UEVLABL=' ,n

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'RBVLABL=' ,n

'REVLABL=' ,n

'STATUS=' ,stat

Address of the array containing the user-specified end-of-volume
labels that QSREELSW is to write. The array must be on a word
boundary. If UEVLABA=,addr is omitted, QSREELSW does not write
additional end-of-volume labels.

Length in words of the array specified on the UEVLABA=,addr
parameter. If UEVLABL=,n is omitted, the array is assumed to be 10
words.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Number of words written in the array specified on the BVLABA=,addr
parameter (integer).

Number of words written in the array specified on the EVLABA=,addr
parameter (integer).

Status code. Possible values: 0 through 199, 1475 through 1476, and
1627.

Figure 9-38. Q5REELSW Call Format (Sheet 2 of 2)

The caller must reissue any uncompleted tape functions interrupted when the end of volume
was encountered.

Q5REELSW can also write additional tape volume labels and return all volume labels written.

A QSREELSW call can specify arrays containing additional end-of-volume and beginning-of­
volume labels to be written. Q5REELSW writes the end-of-volume labels after the EOVl
label. It writes the beginning-of-volume labels after the BOVl label. The valid end-of­
volume labels are EOV2 through EOV9 and UTL. The valid beginning-of-volume labels are UVL,

I HDR2 thru HDR9, and UHL. The label formats are shown in appendix F of this manual.

A Q5REELSW call can also specify arrays in which Q5REELSW returns the labels written (both
system specified and user specified). If an array is specified, the call should also
specify the RBVLABL or REVLABL parameter in which QSREELSW returns the number of bytes
written in the array.

9-108 60459410 G

QSRETFIT - RETURN FIT

Call the Q5RETFIT routine (refer to figure 9-39) to return a FIT. The file associated with
the FIT must be closed before its FIT is returned. Generate a new FIT for the file before
SIL can again read or write the file.

The RETFIT parameter on the QSCLOSE or Q5RETURN call can also return the FIT. SIL returns
all FITs when the task completes.

No more than 110 FITs can be concurrently associated with a task.

Call Format

CALL QSRETFIT({
'LFN=' ,lfn }
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=',flun

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=',stat

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: O through 199, 253, 254, 303, 1424.

Figure 9-39. Q5RETFIT Call Format

60459410 E 9-109

QSRETURN - RETURN FILE

Call the Q5RETURN routine (refer to figure 9-40) to return a file.

A file must be closed before it is returned.

A returned local file no longer exists; SIL releases its mass storage space. A returned
permanent file is detached from the job.

Returning a file does not return the file's FIT unless the RETFIT parameter is specified.

Q5RETURN issues the DESTROY FILE system message.

Call Format

{
'LFN=' ,lfn }

CALL QSRETURN('FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=',flun

'RETFIT'

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

Indicates that SIL· should discard the FIT for the file. If RETFIT
is omitted, SIL does not discard the FIT.

Calling Parameter for Tape Files Only

'DRC'

'UL=' ,ul

Decrement resource count option. If DRC is specified, QSRETURN
decrements the tape drive reservation count specified on the
RESOURCE statement for the job. If DRC is omitted, QSRETURN does
not decrement the reservation count.

Unload tape option. This option allows you to control the
disposition of a tape after the file associated with it has been
returned.

Yes The tape will be unloaded

No The tape will not be unloaded

If the UL=ul option is omitted, the tape is unloaded in accordance
with the IU option specified on the call to Q5RQUEST. If UL=,ul is
specified, it overrides the IU option.

Figure 9-40. Q5RETURN Call Format (Sheet 1 of 2)

9-110 60459410 G

Return Parameters

'ERRLEN=' , len

'ERRMSG=' , msg

'STATUS=',stat

Tape Files

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes.

Status code. Possible values: 0 through 199, 203, 204, 205, 254,
303, 1402, 1472, 1687, 1690.

Figure 9-40. Q5RETURN Call Format (Sheet 2 of 2)

Returning a tape file returns the file index entry for the file. If the specified file name
is the name of a multifile set, QSRETURN returns all files belonging to the set.

If the QSRETURN call specifies the DRC parameter, QSRETURN decrements the tape drive
reservation count specified on the RESOURCE statement for the job.

If a Q5RETURN call specifies a tape parameter for a nontape file, QSRETURN returns a warning
error (status code 1472).

60459410 G 9-110.1/9-110.2

I

QSREWIND - REWIND FILE

Call the Q5REWIND routine (refer to figure 9-41) to position a file at the beginning of its
information.

The file must be open for read, write, append, or modify access.

If the file is an R, W, or L format file and the last operation SIL performed on the file
was a write operation, Q5REWIND writes a file delimiter before rewinding the file.

QSREWIND sets the record count in the FIT to zero.

If the file specified on a Q5REWIND call is a file connected to a terminal, control is
returned to the caller with no action taken.

Call Format

CALL Q5REWIND({
'LFN=', lfn }
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=',lfn File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

'FLUN=',flun

Return Parameters

'ERRLEN=',len

'ERRMSG=' ,msg

'STATUS=',stat

Tape Files

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 206, 207, 253,
254, 303, 1405, 1416, 1580, 1596.

Figure 9-41. Q5REWIND Call Format

Q5REWIND positions a tape file at the beginning of its information. If the file is an ANSI
labeled tape file, its beginning of information is immediately after its HDRl label.

If the file is multivolume file and the current volume is not the first volume of the file,
Q5REWIND prompts the operator to mount the first volume of the file and positions the volume
at its beginning.

If the last I/O operation before the Q5REWIND call was a write operation, any data not yet
written to the tape is written before the file is rewound. QSREWIND writes the end-of-file
indicator for the file before rewinding the file. If the file is an ANSI labeled tape, it
writes the EOFl label.

60459410 E 9-111

I

I
I

QSROUTE - ROUTE FILE

Call the Q5ROUTE routine (refer to figure 9-42) to specify a file disposition or to set
certain file characteristics in the file index. Q5ROUTE can specify one of the following
file dispositions:

• Discarding the file at task termination

• Storing the file as an unattached permanent file

Only the file owner or a privileged user can route a file. The file IlllSt be a local file or
an attached permanent file. It becomes an unattached permanent file at its destination.
Its FIT is not destroyed. Q5ROUTE may not be used to send a file to a remote system.

Read access permission for the file is required to route a file.

I DEFER should always be specified when using Q5ROUTE to set file characteristics. If the
DEFER parameter is specified on the Q5ROUTE call, SIL stores the file disposition in the
file index entry but does not route the file. The file can be routed later with another
Q5ROUTE call that specifies the file name but does not specify the DEFER parameter.

Q5ROUTE cannot route a file connected to a terminal. An attempt to do so returns a fatal
error (status code 1463).

Q5ROUTE issues the FILE DISPOSITION system message.

Call Format

CALL Q5ROUTE ({
'LFN=',lfn }
'FLUN=',rflun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=', rflun

'CM=', cm

File name. LFN=,lfn nust be specified if FLUN=,rflun is omitted.

Number SIL assigned to the file. FLUN=,rflun must be specified if
LFN=,lfn is omitted.

Conversion mode. If CM=,cm is omitted, SIL uses the system default
value.

'BI' Binary

'DI' Display code (64-character set)

'EC' Extended display code (128-character set)

Figure 9-42. Q5ROUTE Call Format (Sheet l of 3)

9-112 60459410 F

Calling Parameters

'DC=' ,de

'DEFER'

'DI=', di

'EC=' ,ec

Disposition code. If DC=,dc is omitted, Q5ROUTE uses the default
value defined during system installation.

'IN' Input to the input queue of the front-end system.

'LR' Print on a 580-12 printer.

'LS' Print on a 580-16 printer.

'LT' Print on a 580-20 printer.

'PR' Print on any available line printer.

'PU' Punch file.

'Pl ... Print on a 501 printer.

'P2' Print on a 512 printer.

'SC' Discard the file at the end of the task.

Indicates that file disposition is to be def erred. If DEFER is
omitted, SIL performs the file disposition immediately.

Eight ASCII characters (from the display code 64-character set) to I
be printed on the banner page at the front-end processor. If DI=,di
is omitted, SIL uses the system default value.

Print or punch format. If EC=,ec is omitted, SIL uses the system
default value.

'26' 026 keypunch

'29' 029 keypunch

'80' 80-column binary

Files printed at the front-end processor use the following values:

'A4' ASCII 48-character set

'A6' ASCII 64-character set

'A9' ASCII 95-character set

'B4' BCD 48-character set

'B6' BCD 64-character set

Figure 9-42. Q5ROUTE Call Format (Sheet 2 of 3)

60459410 F 9-113

I

I

Calling Parameters

'IC=',ic

'OQNAME=',oq

'ST=',sid

'TID=',tid

Return Parameters

'ERRLEN=',len

'ERRMSG=',msg

'STATUS=',stat

File format. If 'IC=',ic is omitted, SIL uses the system default
value.

'AS' 8-bit ASCII code; ANSI carriage control if print file

'BI' Binary

'PA' 8-bit ASCII code; ASCII carriage control if print file

Five characters that identify the file in the output queue. The
first character must be a letter. The system adds two unique job
sequence characters as the sixth and seventh characters. The eighth
character is a blank. If OQNAME=,oq is omitted, SIL uses the system
default value.

Site identifier identifying the remote host associated with this
file. If ST=,sid is omitted, SIL uses the system default value.

Terminal identifier. tid is a one- to seven-character user number
of a logged-in remote user. For files destined for the central site
(not a terminal), tid is zero. If TID=,tid is omitted, SIL uses the
system default value.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

Status code. Possible values: 0 through 199, 204, 205, 303, 1425,
1463, 1690, 1700 through 1703, 1723.

Figure 9-42. Q5ROUTE Call Format (Sheet 3 of 3)

9-114 60459410 F

QSRQUEST - REQUEST LOCAL FILE

Call the Q5RQUEST routine (refer to figure 9-43) to create a local file.

The Q5RQUEST call specifying a file must be the first reference to the file within a task.
A FIT cannot exist for the file before the Q5RQUEST call.

A Q5RQUEST call sets the close file position in the FIT to no rewind. To change the value
in the FIT, issue a Q5SETFIT call after the Q5RQUEST call.

Q5RQUEST cannot create a file having a security level higher than that of the task. An
attempt to do so returns a message stating that the file is not found.

Q5RQUEST issues the CREATE system message.

Files Connected to Terminals

A Q5RQUEST call to request a file connected to an interactive terminal must specify TE as
the device type (DT=,TE). Q5RQUEST cannot create a file connected to a terminal from within
a batch job. An attempt to do so returns a fatal error (status code 1464).

If the Q5REQUEST call to request a file connected to a terminal specifies parameters valid
only for mass storage or tape files, Q5RQUEST returns a warning error (status code 1454).

Tape Files

The Q5RQUEST call must specify a file name and the array containing the VSN list for the
file. The VSN list contains the volume serial number of each tape volume assigned to the
file. A file can comprise 1 through 255 volumes.

A Q5RQUEST call creates a system tapes table entry as well as a file index entry for the
file.

The specified file can be a multifile set. If so, the file name is specified as the
multifile set name on the Q5LABEL call for each file in the set. If the file is a multifile
set, it must be an ANSI labeled tape file. The values specified on the Q5RQUEST call apply
to each file in the multifile set.

If the tape volumes in the file have existing ANSI labels, the character conversion mode and
density specified on the call must not conflict with the values used when the labels.were
written.

60459410 J 9-115

I

I

Call Format

CALL Q5RQUEST('LFN=',lfn, optional parameters)

Calling Parameters

'LFN=',lfn

'ACS=',acs

'AU=',blocks

'DT=' ,dt

'MNR=',mnr

'MXR=',mxr

9-116

File name. This parameter is required.

Access permission set (any combination of the following letters
without separators).

R Read permission

w Write permission

A Append permission

M Modify permission

x Execute permission

If ACS=,acs is omitted, the access permission set in the file's FIT
is used. If Q5RQUEST creates the FIT and ACS=,acs is omitted,
'RWAMX' is assumed if the file is a mass storage file, 'R' if the
file is a tape file, and 'RW' if the file is a file connected to a
terminal.

Allocation unit. The integer number of 512-word blocks to be
allocated when the file is extended. The value range of blocks is 1
to 65,535. If the file is created and blocks is not a multiple of
the DAU for the device in which the first allocation occurs, blocks
is rounded up to the next multiple of the DAU.

Device type on which the file is to reside. DT=,dt is ignored if
the file exists. Only DT=,MS is valid for a direct access file. If
DT=,dt is omitted and no tape only parameters are specified, the
file resides on mass storage. If tape only parameters are
specified, the file resides on tape.

'MS' Mass storage

'NT' Magnetic tape

'TE' Interactive terminal

Minimum record length in bytes. For record formats other than F,
SIL checks to see that the record is not shorter than this value.
SIL does not use this parameter when writing F records. If MNR=,mnr
is omitted, SIL assumes that the minimum record length is 1 byte.

Maximum record length in bytes. For F-format records, mxr is the
fixed record length. For other record formats, SIL checks to ensure
that the record is not longer than this value. If MXR=,mxr is
omitted, SIL assumes that the maximum record length is the default
set by an installation parameter.

Figure 9-43. Q5RQUEST Call Format (Sheet 1 of 6)

60459410 J

Calling Parameters

'SLEV=',sl Security level (1 through 8, but less than or equal to that of the
calling task). If SLEV=,sl is omitted, SIL sets the file security
level equal to that of the calling task.

Calling Parameters for Mass Storage Files Only

'CT=' ,ct

'EXT=',ext

'FC=',fc

'LEN=',fl

'NOSEG'

'PN=',pn

'SFO=',fo

'TYPE=',typ

Communication type. If 'CT=',ct is omitted, the file is a non-RHF
file.

'RHF' Remote Host Facility file

'NRHF' Non-Remote Host Facility file

'RWF' Remote Workstation Facility file

File extendability indicator. If EXT=,ext is omitted, the file is
extendable.

'Y' The file is extendable

'N' The file is not extendable

File category. If FC=,fc is omitted, the file is a user file.

'B' Batch input file

'U' User file

File length in 512-word blocks. If LEN=,fl is omitted, the file is
eight 512-word blocks.

Indicates that file must be contiguous (not written in segments).
If NOSEG is omitted, SIL can segment the file.

Six-character identifier of a disk pack in the device set on which
SIL creates the file. If PN=,pn is omitted, the system assigns mass
storage space for the file.

File organization. If SFO=,fo is omitted, SIL assumes the
installation-defined default organization (released value,
sequential access).

'D' Direct access

'S' Sequential access

File type. If TYPE=,typ is omitted, SIL assumes that the file is a
physical data file.

'PD' Physical data file

'VC' Virtual code (controllee) file

Figure 9-43. Q5RQUEST Call Format (Sheet 2 of 6)

60459410 H 9-117

I

Calling Parameters for Mass Storage and Tape Files Only

'BT=',bt

'PC=' ,pc

'RMK=',rmk

'RT=',rt

Blocking type. If BT=,bt is omitted, the file has character count
blocking.

'C' Character count blocking

'I' Internal blocking

'K' Record count blocking

Padding character for F records. If PC=,pc is omitted, SIL pads
with the installation-defined character (released value, blank).

Record delimiting character for R-type records. If RMK=,rmk is
omitted, SIL uses the installation-specified character lusually
ASCII US (#IF)].

Record format. If SFO=,D is specified, the only valid record format
is F. If RT=,rt is omitted, SIL assumes the installation default
format (released value, R) for sequential access files and F format
for direct access files.

'B' System block (for tape files only)

'F' ANSI fixed length

'L' CYBER Record Manager control word (for tape files only)

'R' Record mark delimited

'U' Undefined

'W' Control word delimited

Calling Parameters for Tape Files Only

'CCS=',cm Character conversion mode. If the tape is labeled, the conversion
mode must match the conversion mode used when the labels were
written. Conversion is performed only if the data conversion option
(CONV) is specified on the tape request for the file.

'AS' ASCII character set

'EB' EBCDIC character set

If CM=cm is omitted and the tape is labeled, the default mode is the
conversion mode used when the labels were written. If CM=cm is
omitted and the tape is unlabeled, the installation-defined default
mode (released value, ASCII) is used.

Figure 9-43. Q5RQUEST Call Format (Sheet 3 of 6)

9-118 60459410 E

Calling Parameters for Tape Files Only

'CONV'

'DEN=',den

'HEC'

'IU'

'LABA=',adr

'LABEL=',lsl

'LPROC=',lp

Data conversion option. If CONV is specified, tape data is read and
written as character codes, using the character set specified by the
CM parameter. If CONV is omitted, no conversion is performed and
the data is read and written as binary data.

Recording density.

'PE' 1600 cpi

'GE' 6250 cpi

If DEN=,den is omitted, the installation-defined default density
(released value, 6250 cpi) is used.

Hardware error correction option for GCR tapes (6250 cpi). If REC
is specified and the site has enabled the option, the system allows
the writing of single-track errors that can be corrected as the tape
is read (on-the-fly correction). If REC is omitted, the system
performs standard error recovery for single-track errors.

Inhibit unload option indicating whether the system unloads a tape
volume when its file is returned. If IU is specified, the system
does not unload the tape volume. If IU is omitted, the system
unloads the tape volume.

Address of a 160-byte array containing the new VOLl and HDR labels
for the tape volume. The array must begin on a word boundary. To
write the labels, the call must specify LPROC=,W. If LABA=,adr is
omitted, no labels are written.

Indicates the labels read or written.

'AN' ANSI standard labels

'NS' Nonstandard labels

'U' Unlabeled file

If LABEL=,lsl is omitted, the file is assumed to be an ANSI standard
labeled file.

Label processing option.

'R' Read existing labels (verify existing HDRl label).

'W' Write new labels.

If LPROC=,lp is omitted, label processing depends on the value of
the ACS parameter. For ACS=,R or ACS=,RW, LPROC=,R is assumed. For
ACS=,W, LPROC=,W is assumed.

Figure 9-43. Q5RQUEST Call Format (Sheet 4 of 6)

60459410 E 9-119

I

I

Calling Parameters for Tape Files Only

'MPRU=',mpru

'NEOI=' ,neoi

'NS=' ,ns

'OMSGA=' ,adr

'OMSGL=' ,n

'OVA=' ,va

'RA=', ra

'RPB=' ,rpb

'RU'

'TF=' ,fmt

9-120

MPRU size in bytes; used only if the file uses the V tape format.
If MPRU=,mpru is omitted, the MPRU size for V format is 32768 bytes.

No EOI detection option indicating whether an EOI status is returned
if two consecutive tape marks are encountered. This option is valid
only for unlabeled, non-ANSI variable format tapes
('TF=', 'V', 'LABEL=' , 'U' on the REQUEST line). If NEOI is specified,
the system does not return EOI status. If NEOI is not specified,
the system returns an EOI status when two consecutive tape marks are
encountered.

Noise size in bytes; this is used only while reading tapes generated
on a non-CYBER 200 system. Default is zero. 0 ~ ns ~ 31.

Address of array containing a message to be displayed on the
operator's.O display. If OMSGA=,adr is omitted, no message is
displayed. If OMSGA= is specified, OMSGL= must also be specified.
The message appears in the O display after the system mount message.

Number of bytes in the operator message. If OMSGL=,n is omitted, no
message is displayed. If OMSGL=,n is specified, OMSGA=,adr must
also be specified. The value n must be supplied and be between 1
and 64 inclusive. No default for n is assumed.

Volume accessibility character iri the existing VOLl label. This
parameter is required only if the character is nonblank.

Ring access option. This parameter cannot be specified if ACS= is
specified. When 'RA=' is specified, if the tape is already mounted
with the ring in, Read/Write access is assigned; otherwise, Read
only access is assigned.

Records per block; used only fo·r the K blocking type. If RPB=, rpb
is omitted, one record per block is assumed.

Read unconditional option indicating whether the system allows reads
past the end-of-tape (EOT) reflective marker on the tape volume. If
RU is specified, the system allows reads past the EOT. If RU is
omitted, the installation-defined default option is used (released
value, no reads past EOT).

Tape data format.

'I' NOS internal format

'SI' SCOPE internal format

'LB' Large block format

'V' Variable block format

'NV' Non-ANSI, variable

If TF=,fmt is omitted, the installation-defined default format
(released value, LB) is used.

Figure 9-43. QSRQUEST Call Format (Sheet 5 of 6)
60459410 J

Calling Parameters for Tape Files Only

'VSN=' ,adr

'VSNL=' ,n

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'RFLUN=' ,rflun

'STATUS=' ,stat

Address of the array containing the VSN list. The VSN list is the
list of tape volumes associated with the file name. This parameter
is required for a tape file.

Q5RQUEST returns a volume serial number in each word of the array.
The volume serial number is returned as six ASCII characters in the
rightmost 6 bytes of the word; the leftmost 2 bytes are blank-filled.

Number of words in the VSN list array. If VSNL=,n is omitted, 1 is
assumed.

Error message length in bytes (integer).

Error mess~ge. The variable msg must be 80 bytes long.

File logical unit number SIL assigned to the FIT (integer).

Status code. Possible values: 0 through 199, 203, 204, 205, 253,
1453, 1464, 1469, 1472, 1490 through 1493, 1495, 1497, 1505, 1515,
1524, 1637, 1685, 1688, 1710, 1711, 1716, 1720, 1722, 1725, 1762,
1765 through 1772.

Return Parameters for Mass Storage Files Only

'CONT=' ,con

'RPN=' ,pn

Initial contiguity of the mass storage file (ASCII, left-justified,
blank filled).

y The file space is contiguous.

N The file space is not contiguous.

Six-character identifier of the disk pack on which the file resides.

Figure 9-43. QSRQUEST Call Format (Sheet 6 of 6)

60459410 G 9-121

QSSETFIT - SET FIT FIELD VALUES

Call the QSSETFIT routine (refer to figure 9-44) to change the values of specified FIT
fields. The FIT must already exist. The values in the fields not specified are not changed.

Call Format

CALL QSSETFIT({
'LFN=', lfn }
'FLUN=',rflun ,optional parameters)

Calling Parameters

'LFN=',lfn

'FLUN=',rflun

'ACS=',acs

'WSA=',wsa

'WSL='wsl

File name in the FIT. LFN=,lfn must be specified if FLUN=,rflun is
omitted.

Number SIL assigned to the FIT. FLUN=,rflun must be specified if
LFN=,lfn i~ omitted.

Access permission set (any combination of the following letters
without separators).

R Read permission

w Write permission

A Append permission

M Modify permission

x Execute permission

If ACS=,acs is omitted, the access permission set in the FIT is not
changed.

Working storage area used by get and put calls. If WSA=,wsa is
omitted, the working storage area is not changed.

Length (in bytes) of the working storage area. If WSL=,wsl is
omitted, the working storage area length is not changed.

Calling Parameters for Mass Storage Files Only

'BN=',bn

'SFO=',fo

9-122

Number of the next available block for reading or writing. If
BN=,bn is omitted, the block number is not changed.

File organization. If SFO=,fo is omitted, the file organization is
not changed.

'D' Direct access organization

'S' Sequential organization

Figure 9~44. QSSETFIT Call Format (Sheet 1 of 4)

60459410 E

'TRY=', try Error retry option indicating whether, if a data error is detected,
the system performs its standard error recovery procedures.

'NR' Error recovery not performed.

'SR' Error recovery performed.

If TRY=,try is omitted, error recovery is performed.

Calling Parameters for Tape Files Only

'VSN=' ,adr

'VSNL=' ,n

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'RFLUN=', rflun

'STATUS=' ,stat

Address of the array containing the VSN list. The VSN list is the
list of tape volumes associated with the file name. This parameter
is required for a tape file.

Q5RQUEST returns a volume serial number in each word of the array.
The volume serial number is returned as six ASCII characters in the
rightmost 6. bytes of the word; the leftmost 2 bytes are blank-filled.

Number of words in the VSN list array. If VSNL=,n is omitted, 1 is
assumed.

Error message length in bytes (integer).

Error message. The variable msg must be 80 bytes long.

File logical unit number SIL assigned to the FIT (integer).

Status code. Possible values: 0 through 199, 203, 204, 205, 253,
1453, 1464, 1469, 1472, 1490 through 1493, 1495, 1497, 1505, 1515,
1524, 1637, 1685, 1688, 1710, 1711, 1716, 1720, 1722, 1725, 1762,
1765 through 1772.

Return Parameters for Mass Storage Files Only

'CONT=' ,con

'RPN=' ,pn

Initial contiguity of the mass storage file (ASCII, left-justified,
blank filled).

y The file space is contiguous.

N The file space is not contiguous.

Six-character identifier of the disk pack on which the file resides.

Return Parameters for Tape Files Only

'RACS=', racs

60459410 J

Access permission set assigned to the tape file by the system
(ASCII, left justified, blank filled).

R Read permission.

W Write permission.

R/W Read and Write permission.

Figure 9-43. QSRQUEST Call Format (Sheet 6 of 6)
9-123 •

Calling Parameters for Mass Storage and Tape Files Only

'OFP=' ,ofp

'PC=',pc

'RMK=',rmk

'RT=',rt

'SRF=',srf

File positioning when the file is opened. If OFP=,ofp is omitted,
the open position is not changed.

'R' Rewind the file.

'P' Position the file after the last block read or written
(tape files only).

'N' Do not rewind the file.

Padding character for F format records. If PC=,pc is omitted, the
padding character is not changed.

Record delimiting character for R format records. If RMK=,rmk is
omitted, the record delimiter is not changed.

Record type. If RT=,rt is omitted, the record type is not changed.

'B' System block

'F' ANSI fixed length

'L' CYBER record manager control word

'R' Record mark delimited

'U' Undefined

'W' Control word

Indicates that SIL must complete an I/O request before returning
control to the caller. If SRF=,srf is omitted, the I/O overlap
option is not changed.

'Y' Suppress overlapped I/O.

'N' Allow overlapped I/O.

Calling Parameters for Tape Files Only

'ADO=',ado Assembly/disassembly option used for CYBER 170/CYBER 200 binary tape
interchange (ASCII, left justified, blank filled).· If selected,
each 60 bits of tape data read is stored in a CYBER 200 64-bit word
with the upper 4 bits as zero.

'BI' Binary; no assembly/disassembly performed.

'BW' 60 to 64; assembly/disassembly performed.

Figure 9-44. QSSETFIT Call Format (Sheet 3 of 4)

9-124 60459410 E

Calling Parameters for Tape Files Only

'CM=',cm

Return Parameters

'ERRLEN=', len

'ERRMSG=' ,msg

'RFLUN=',rflun

'STATUS=', stat

I NOTE I
The assembly/disassembly option (ADO=,BW) is
invalid if the data conversion option is
selected (CONVERT). Assembly/ disassembly
is valid only for binary data; it is not
valid for character coded data.

Character conversion mode.

'AS' ASCII character set

'EB' EBCDIC character set

Error message length in bytes (integer).

Error message. The variable msg is 80 bytes long.

Number SIL assigned to the FIT.

Status code. Possible values: 0 through 199, 253, 254, 262, 303,
1454, 1650.

Figure 9-44. Q5SETFIT Call Format (Sheet 4 of 4)

60459410 E 9-125

QSSKIP - SKIP PARTITION

Call the QSSKIP routine (refer to figure 9-45) to reposition a file.

To reposition a file, read access permission to the file is required.

The file cannot be repositioned forward if the last I/O operation was a write operation.

For a direct access file, Q5SKIP can only skip records. It increments or decrements the
record count in the FIT by the specified count.

For a U format file, QSSKIP can only skip blocks.

If the file is empty, an attempt to reposition the file returns an error (warning code 1414
for a backward skip, fatal code 1434 for a forward skip).

If the file specified on a Q5SKIP call is a file connected to a terminal, control is
returned to the caller with no action taken.

Call Format

CALL Q5SKIP({
'LFN=' ,lfn }
'FLUN=',flun ,optional parameters)

Calling Parameters

'LFN=' ,lfn

'FLUN=' ,f lun

'COUNT=', cnt

'PART=', part

9-126

File name. LFN=,lfn must be specified if FLUN=,flun is omitted.

Logical number SIL assigned to the file. FLUN=,flun must be
specified if LFN=,lfn is omitted.

Number of partitions to skip. If the number is a negative value,
SIL backspaces the file the requested number of partitions. If
COUNT=,cnt is omitted, SIL skips forward one partition.

Partition type to be skipped. This parameter is ignored for direct
access files. If PART=' ,part is omitted, QSSKIP skips records.

'R' Record

'G' Group

'B' Block (PRU for tape files)

'L' Logical record unit (LRU) (tape files only)

'F' File

Figure 9-45. QSSKIP Call Format (Sheet 1 of 2)

60459410 E

Return Parameters

'ERRLEN=' ,len

'ERRMSG=' ,msg

'STATUS=' ,stat

Error message length in bytes (integer).

Error message. The variable msg is 80 bytes long.

Status code. Possible values: 0 through 199, 204, 206, 207, 253,
254, 303, 1405, 1412 through 1416, 1422, 1434, 1438, 1439, 1441,
1444, 1472, 1476, 1489, 1498, 1580, 1596, 1726.

Return Parameters for Tape Files Only

'RCOUNT=' , n

'RSN=' ,rsn

Number of partitions skipped (integer). Q5SKIP returns the count
after its repositioning is complete. If RCOUNT=,n is omitted,
Q5SKIP does not return the number of partitions skipped.

Request serial number that uniquely identifies the request
(integer) •. If RSN=,rsn is specified, control returns to you before
the tape file repositioning is complete. To determine whether the
repositioning has completed, specify the RSN on a Q5CHECK call.

If RSN=,rsn is omitted, Q5SKIP completes its repositioning of the
file before returning control to the you.

Figure 9-45. Q5SKIP Call Format (Sheet 2 of 2)

Repositioning a Sequential Access File

For a sequential access file, Q5SKIP changes the current file position the specified number
of partitions forward or backward. The specified partitions can be records, groups, files,
or blocks.

At completion of a Q5SKIP call, the file is positioned immediately after the specified
partition delimiter except when skipping backward by files. A request to skip backward one
partition positions the file immediately before the file delimiter.

If a backward skip is requested on an R, L, or W format file and the last I/O operation SIL
performed on the file was a write operation, Q5SKIP writes the file delimiter used by the
record format before repositioning the file.

Call Q5GETFIT to determine the current file position.

60459410 G 9-127

I

I

I

I

I

Example of Sequential Access File Positioning

For example, assume that an R format file named FILE! has the following structure:

record record file
data ••• delimiter ••• data ••• delimiter ••• delimiter

Assume that a task opens the file so that its current file position is at the beginning of
information (BOI) as indicated by the following caret character:

record record file
Adata ••• delimiter ••• data ••• delimiter ••• delimiter

Assume that the task executes the following call to skip forward two records.

Q5SKIP('LFN=' ,'FILE!' ,'COUNT=',2)

Q5SKIP positions the file after the second record delimiter but before the file delimiter.
[The task could append data at thi~ position (at EOF).]

record record file
data ••• delimiter ••• data ••• delimiterAdelimiter

The task then executes the following call to skip backward one record.

Q5SKIP('LFN=' ,'FILE!' ,'COUNT=',-!)

Q5SKIP positions the file after the first record delimiter (at BOR).

record record file
data ••• delimiterAdata ••• delimiter ••• delimiter

Next, the task executes the following call to skip to the end of the file.

Q5SKIP('LFN=','FILE1','PART=','F')

Q5SKIP positions the file after the file delimiter (at EOI).

record record file
data ••• delimiter ••• data ••• delimiter ••• delimiterA

To position the file before the file delimiter so that it can append data, the task could
next execute either of the following calls:

Q5SKIP('LFN=','FILE1','COUNT=',-l)
Q5SKIP('LFN=' ,'FILE!' ,'PART=' ,'F' ,'COUNT=',-!)

In either case, Q5SKIP skips backward past the file delimiter (at EOF).

record record file
data ••• delimiter ••• data ••• delimiter delimiterA

9-128 60459410 J

COMMON EXECUTE LINE SUPPORTING ROUTINES 10

This chapter contains information for a system programmer who is interested in developing an
application or utility.

CONVENTIONS

A controllee execute line is entered for processing by VSOS either as a batch processor
control statement or as an interactive terminal type-in. An execute line can occur as one
or more physical records representing card images or terminal lines. From the point of view
of the common execute line supporting routines, an exact correspondence exists between batch
commands and terminal commands, in~luding continuation of the command text to more than one
card or terminal line. (From the point of view of the user, however, this correspondence
does not exist.)

Standard processing is done on five types of linguistic expressions called tokens. The
tokens are:

• Alphanumeric identifiers.

• Decimal numeric constants.

• Hexadecimal numeric constants prefixed by the character #.

• Char:acter or string constants delimited by the character".

• The special characters, which are I ff " & •) , = and blank.

The# character is referred to in text as a hash mark. The & character is an ampersand.

Execute line options are defined by means of positional or keyword-identified values.
Standard diagnostics are issued if abnormal syntax or conditions are encountered.

A set of four system library routines are to be used to guarantee adherence to the
conventions previously stated. The routines are:

Routine Description

Q7ENVIRN Determines the program environment.

Q7KEYWRD Processes the text of an execute line.

Q7MODE Determines if the task's controller is a terminal.

Q7PROMPT Provides interaction with the controller; collects parts from several input
records, and builds the complete character string for processing by Q7KEYWRD.

60459410 J 10-1 •

When a controllee execute line requires more than one terminal line, an ampersand must be
used to designate continuation to the subsequent line. Card image continuation is performed
automatically during batch processing if a terminator character has not been encountered.
The ampersand signals a logical end of record and can be followed by comments. The text of
the execute line consists of two or more tokens: the first is alphanumeric and identifies
the task name, while the last is a special character called a terminator. The terminator
characters are a period and right parenthesis. An implicit terminator occurs at the end of
a terminal line that does not contain an ampersand. Comments can be placed immediately
following a terminator character or an ampersand. The following execute lines are
equivalent:

SAMPLE,A. optional comments

SAMPLE&,A. optional comments

SAMPLE A

A parameter list can follow the task name but must precede the terminator character.
Order-dependent parameters must be. in the order specified; key-dependent parameters can
appear in any order. Parameter formats depend on the control statement specified, but they
always follow the same general guidelines.

Consecutive parameter list items are separated by level-1 separator characters comma and
blank. In addition, the left parenthesis acts as a level-I separator between the task name
and the parameter list. A parameter list item can be defined by a list of user numbers or
file names. These values are also separated by the level-1 parameter separators. A file
name can be followed by attributes of disposition code or length, with attributes separated
from each other by the level-2 separator character slash.

Blank is a special character and only performs a separator function when not used with other
separators or terminators. Any level of separator can be preceded or followed by blanks,
which serve only to highlight the separator; in a similar fashion, the terminator characters
can be preceded by highlighting blanks.

System utilities or tasks provide default settings for all on/off options. In addition, the
input, output, and binary file options have the default names INPUT, OUTPUT, and BINARY.
Where tasks create files for the user, the task can determine the necessary file size or the
user is allowed to submit an estimate of an adequate size. Tasks that create files also
determine the disposition of the file upon task completion. The user has the opportunity to
specify file disposition.

The task name is constructed of one to eight letters and digits. Except where reference is
made to a drop file, the first character must be a letter. The task name is bound on the
left by the start of the command and on the right by a level-1 separator or a terminator.

• 10-2 60459410 J

Order-dependent parameters are strings of nonseparator, nonterminator characters. Their
interpretation is strictly a function of the particular product. An order-dependent
parameter list is ended by a terminator or by the occurrence of a key-dependent parameter.

The following are examples of execute lines using order-dependent parameter lists:

COPY(FILEA,FILEB)

PURGE,FILE1,FILE2,FILE3.

A key-dependent parameter has the general structure shown in figure 10-1. The following is
an example of an execute line using a key-dependent parameter list:

FTN(I=COMPILE,L=OUTPUT,B=BINARY/PU/#240)

key=def ns

key A string of letters and numbers, 1 to 255 characters, delimited to the left
by a level-1 separator and on the right by an= character, a separator, or a
terminator.

def ns Strings of nonseparator, nonterminator characters whose interpretation is
strictly a function of the particular product and the key identifier.

Figure 10-1. Key-Dependent Parameter Format

Examples of the use of both parameter forms are:

WXYZ(FILE1,FILE2,0U=MAPFILE)

To ensure that ambiguities do not arise, the programmer calling the keyword word processors
must not allow the following:

• A parameter resembling a file name to follow a file name list unless that parameter
has a key.

• A parameter resembling a user number to follow a user number list unless that
parameter has a key.

• A parameter resembling a text string to follow a text string unless that parameter
has a key.

60459410 J 10-3 •

Parameter values can be strings of letters and digits, decimal digit strings, hexadecimal
digit strings, and character strings delimited by quotation marks. In some cases, the
alphanumeric string can occur as two decimal digits followed by one to six letters and
numbers. This exception is provided to accommodate drop file names. Decimal digit strings
are normally interpreted as decimal constants; a hexadecimal constant is normally preceded
by a hash mark. Values that must be virtual bit addresses are always hexadecimal values
even if the hash mark is not present. In some cases, such as the GROS option of the loader,
a hash mark is required to distinguish the address from identifier data in the same list.
Some examples are:

WXYZ (EN="! FILE! ", OU=MAP /II I 0)

WXYZ(FILE,OU=MAP/16,LI=SYSLIB,MYLIB)

PURGE,12DROP,JUNK.

COPY,42DROP,SAVEDROP.

Lists of values are as order-flexiple as the values permit; the user is normally given
maximum flexibility consistent with the task requirements. The following equivalent
parameter strings illustrate this flexibility:

B=FILE/10/PR

B=FILE/PR/10

All key-dependent parameters have on and off settings where appropriate, and can be turned
on and off. Turning on keys can be accomplished by means of a key=! parameter, or by use of
the key name only; these keys can also be turned off by means of a key=O parameter. File
identification keys should be turned off with key=O. Where the option is normally off, a
parameter of the form key=filename turns the option on for a specific file, while use of the
key name only turns the option on for a default file.

The following execute lines are equivalent, and illustrate the on/off ability:

IMPL,X.

IMPL,I,X=l.

IMPL,X,I=INPUT,B=BINARY/#40 •

• 10-4 60459410 J

SUPPORTING ROUTINES

Common execute line standards are supported by four subroutines from the system library.
The subroutines, which are callable from FORTRAN, META, and IMPL, are:

Subroutine Description

Q7ENVIRN Determines the program environment of the calling task. The task may be in
one of three environments: batch, interactive, or no level-1 controller.

Q7MODE Determines whether the parent controller of the calling task is a terminal
or another task. A batch job falls into the latter category.

Q7PROMPT Inputs parameters to be passed to Q7KEYWRD for syntax checking. It prompts
terminal users for input if no parameters are specified in the execute
line. It also strips the trailing period or matching outside parenthesis
characters from the parameter text before calling Q7KEYWRD.

Q7KEYWRD Examines a charact~r string, checks its syntax, and converts data to
internal format. In the case of a detected error, it prints error messages
and requests; in interactive mode, it permits error correction by accepting
reinput of an execute line parameter. Also, in interactive mode, Q7KEYWRD
can be set to request and input each parametric keyword through the use of
an appropriate prompting message.

Assembly language routines call any of these subroutines by using the FORTRAN or IMPL type
of calling sequence, while FORTRAN and IMPL programs access the routines using CALL
statements.

If the main program is coded in FORTRAN, the original execute line is processed by FORTRAN
initialization for run-time file substitution. In interactive mode, the program may
subsequently call Q7PROMPT or Q7KEYWRD for other lines.

Q7ENVIRN

The function of this subroutine is to determine a task's program environment and to return
the information in a full word whose variable name is supplied as the only parameter to the
Q7ENVIRN routine. A full word is defined as a 64-bit word that is aligned on a word
boundary. The call statement format of Q7ENVIRN is shown in figure 10-2.

Q7ENVIRN (environ)

environ A full-word variable in which one of the following values is returned:

0 The task is executing from within a batch job.

1 The task is executing from within an interactive session.

2 The task does not have a level-1 controller (for example, QTF,
PTFS, or QTFS).

Figure 10-2. Q7ENVIRN Call Statement Format

60459410 J 10-5 e

Q7MODE

The function of this subroutine is to determine if a task's controller is a terminal and to
return the information in a full word whose variable name is supplied as the only parameter
to the Q7MODE routine. A full word is defined as a 64-bit word that is aligned on a word
boundary. The call statement format of Q7MODE is shown in figure 10-3.

CALL Q7MODE (mode)

mode A full-word variable in which one of the following values is returned:

0 Controller is not a terminal.

Controller is a terminal.

Figure 10-3. Q7MODE Call Statement Format

10-6 60459410 J

Q7PROMPT

This routine serves as an interface between a calling routine and the Q7KEYWRD subroutine.
It inputs user parameters into an input buffer, then passes the text to Q7KEYWRD for syntax
checking. If no text is specified on the execute line, Q7PROMPT can prompt the interactive
user for parameters, using the message PLEASE SPECIFY PARAMETERS or a message provided by
the calling routine; otherwise, if no text is specified on the execute line, it can proceed
with a call to Q7KEYWRD, optionally setting bit 60 in the options parameter, which causes
Q7KEYWRD to prompt for individual keywords.

An input buffer can either be supplied by the calling routine or allocated by Q7PROMPT.
Delineator characters, such as matching outside parentheses or a trailing period, are
deleted from the input text prior to the call to Q7KEYWRD.

Input text can be continued on succeeding lines in interactive mode, provided that an
ampersand (continuation character) is appended to each line.

The call statement format of Q7PROMPT is shown in figure 10-4. The opt, r, rbuf, rlen, and
ti parameters are not used by Q7PROMPT, but are passed to Q7KEYWRD for use in syntax
checking. If a text string is not specified in the controllee execute line and the
p parameter is not negative, Q7PROMPT prompts for parameters and saves them in a buffer with
the name specified as the buf parameter.

CALL Q7PROMPT (txt,p,opt,r,buf,blen,rbuf,rlen,t1, ••• ,tn)

txt Text string to be passed to Q7KEYWRD. The string must contain any desired
carriage control characters.

p Indicates whether prompting is desired:

)0 Number of character bytes in txt. Use txt to prompt for parameters.

0 Use the text string PLEASE SPECIFY PARAMETERS to prompt for
parameters.

-1 Do not prompt for parameters. The value of the variable blen is O.

-2 Do not prompt for parameters. Options bit 60 should be 0.

-3 Do not prompt for parameters. Wait for message.

buf Name of buffer file into which the parameters are to be read. If the blen
field is O, the buf field is the name given to a buffer provided by Q7PROMPT.

blen Name of a full-word variable whose nonzero value indicates the number of
character bytes in buf. If the value of blen is O, no buffer is provided by
the caller; in this case, Q7PROMPT allocates a 4096-character buffer named
buf. A count of the number of characters actually read is returned by the
system into the blen field.

The opt, r, rbuf, rlen, and ti fields are described under the Q7KEYWRD call statement.

Figure 10-4. Q7PROMPT Call Statement Format

60459410 J 10-7

Q7KEYWRD

The keyword subroutine scans a line of text, checks syntax, and converts data to internal
formats. It prints error messages and inputs replacement expressions as required. Q7KEYWRD
processes text containing both positional and keyword type parameters. The calling routine
provides Q7KEYWRD with syntax tables that completely describe the general format of the
input parameters. Q7KEYWRD uses the tables to interpret the specific parameters in the
execute line test. These input parameters, called keyword expressions, are written as
follows:

Each keyi is separated from other keyword expressions by one or more blanks or by commas,
and has one of the following formats:

lhs = rhs

lhs

rhs

The syntax tables for each keyi keyword relate the valid left-hand sides (lhs) of the
expression to valid right-hand sides (rhs). This includes specifying whether the degenerate
cases, lhs and rhs, are to be treated as having no left-hand side or no right-hand side.
Each keyi, then, can be any one of the following possibilities:

lhs(l)

lhs(l)
lhs(2)

rhs(l,l)

rhs(l,nl)
rhs(2,l)

lhs(m) = rhs(m,nm)

m is the number of possible left-hand sides for the expression, left-hand side k having nk
possible right-hand sides •

• 10-8 60459410 J

The syntax tables also specify positional relationships among the keyword expressions. A
given expression, keyi, can be flagged as positional, meaning that it must appear after
expressions key1, ••• , key(i-1) but before the expressions key(i+l) • • • If an
expression (keyi) is not flagged as positional, it can appear in any order with preceding
or succeeding nonpositional expressions; so, if keyi, key(i+l), and key(i+2) are
nonpositional, any of the following are valid:

key(i), key(i+l), key(i+2)
key(i), key(i+2), key(i+l)
key(i+l), key(i), key(i+2)
key(i+l), key(i+2), key(i)
key(i+2), key(i), key(i+l)
key(i+2), key(i+l), key(i)

The syntax tables also indicate which keyi parameters are required in the execute line
text. If a parameter flagged as required is not encountered in its required location, an
error message is issued.

Left-hand sides for an expression include:

• None (the degenerate case, lhs).

• A literal character string, 1 to 255 characters long.

Right-hand sides for an expression include:

• None (the degenerate case, rhs).

• A literal character string, 1 to 255 characters long.

• An arbitrary character string, 1 to 255 characters long.

• Any remaining unscanned text, up to 255 characters maximum.

• A number in the range 0 to 247-1 (table setting indicates whether the number can
be decimal, hexadecimal with a leading# character, or an address in hexadecimal
with no leading # sign required; table settings can also indicate the range of the
number if the default range is not sufficiently restrictive).

• A user number.

• A file name (table settings indicate whether a drop file name can be specified and
whether the length, print, and punch attributes can be specified).

Lists of numbers, user numbers, and file names separated by slashes, blanks, or commas can
be allowed as right-hand sides. A field in the syntax tables indicates that lists are to be
allowed and specifies the maximum number of elements permissible.

60459410 J 10-9 •

The entry point Q7KEYWRD is used for both FORTRAN and IMPL calling sequences. The call
statement format of Q7KEYWRD is shown in figure 10-5. The lhs table pointers are
illustrated in figure 10-6. Each entry in an lhs table points to an rhs table (also
full-word-aligned) that describes valid right-hand sides for the given left-hand side and
specifies the format in which information is returned in the return buffer to the calling
routine.

CALL Q7KEYWRD(opt,r,buf,blen,rbuf,rlen,t1, ••• ,tn)

opt Name of a full-word variable, the rightmost 5 bits of whose value indicate the
following options:

Bit Description

59 If O, send error message to the terminal. If set to 1, return error
message to the caller.

60 If O, scan the input for keyword expressions. If set to 1, prompt
for each keyword listed in the tables tl, ••• ,tn.

61 If O, or if user enters "cancel" in response to interactive prompt,
abort on syntax error. If set to 1, return to caller on either
condition.

62 If O, prompt for replacement on syntax error. If set to 1, do not
prompt for replacement.

63 If 0, send error messages to program controller for output. If set
to 1, do not output error messages.

r Name of full-word variable to contain return codes. Return codes are:

0 Text scanned successfully.
1 Internal error; or parameters processed did not match any left-hand

side or right-hand side tables; or user entered "cancel" in response
to interactive prompt.

2 Return buffer too small.
3 Incorrect number of parameters in Q7 PROMPT/Q7 KEYWORD call line.
4 Invalid type field in lhs table entry.
5 Invalid type field in rhs table entry.
6 Invalid flags field in rhs table entry.
7 Words field for return buffer entry exceeds 255.
8 Options field bit 60 is 1, and prompt message length or address in

lhs table header is O.

Code 1 is returned only if bit 61 of opt field is ~·

Figure 10-5. Q7KEYWRD Call Statement Format (Sheet 1 of 2)

• 10-10 60459410 J

buf Virtual bit address of string to be scanned for keyword expressions. This
field is not used if prompting is requested (options bit 60 is 1).

blen

rbuf

rlen

Name of full-word variable whose value specifies the number of characters in
the string indicated by buf. This field is not used if options bit 60 is 1.

Virtual bit address of the full-word-aligned buffer (the return buffer) in
which reformatted keyword information is to be returned.

Name of full-word variable whose value specifies the number of characters in
the return buffer.

ti Virtual bit address of full-word-aligned lhs table (figure 10-6) that
describes acceptable syntax constructs and specifies formats for the returned
information. The number of addresses varies with the syntax of the line being
scanned.

Figure 10-5. Q7KEYWRD Call Statement Format (Sheet 2 of 2)

lhs l -- rhs
tablei • -- tablei1 • • i-----,

rhs - tablei2 -
• • •

rhs - table in -

Figure 10-6. lhs Table Pointer Configuration

60459410 J 10-11 •

1hs Table

An lhs table consists of contiguous, variable-length, full-word-aligned entries describing
valid keyword expressions. The entries describe the left-hand sides of expressions and, in
turn, point to tables whose entries describe valid right-hand sides. A header relates
positional and existence requirements of the keywords described by this table.

The lhs table format is shown in figure 10-7. The table header contains two words in the
format shown in figure 10-8. Each lbs entry has the format shown in figure 10-9.

table header

lhs entry

lhs entry

• • •

0 entry }
type=O entry marking the
end of the table

Figure 10-7. lhs Table Format

• 10-12 60459410 J

0

0

Word

0

63

flags count table unused
8 8 8 40

prompt_len prompt

Field

flags

count

table

16 48

Description

Bits that are set to describe keywords:

Bit Description

6 If O, entries describe a keyword that is not positional (that
is, the keyword described can appear in any order with
preceding or succeeding nonpositional keywords); if set to 1,
entries describe a positional keyword.

7 If O, entries describe an optional keyword; if set to 1,
entries describe a required keyword (if no match is found, an
error message is issued).

A value that specifies the maximum number of times this table can be
used to effect a keyword match.

A value set by the caller and returned in a return buffer entry on a
successful lhs and rhs match. (The return buffer is described later
in this chapter.)

1 prompt_len A value that specifies the number of characters in a message whose

prompt

60459410 J

address is given in the prompt field; valid only when the options bit
60 is set to 1.

Address of the text to be output as a prompt to request keywords
associated with this table; valid only when the options bit 60 is set
to 1. Any ASCII carriage control characters desired must be embedded
in the text of the prompting message.

Figure 10-8. lhs Table Header Format

10-13 •

0

type
0 8

min
1 8

Word Field

0 type

left

pointer

1 min

chars

keyword

left pointer
8

chars keyword
8

(0 to 7 blanks for alignment
on word boundary)

Description

Entry type. The values are:

0 End of the table.
1 There are no left-hand sides.
2 The keyword expression contains a left-hand side.

I NOTE I
Where both a literal character string and an
arbitrary character string may be used as
parameters, the arbitrary character string
must follow the literal character string for
the parameters to be interpreted correctly.

63

48

A value set by the caller and returned in the return buffer entry upon
a successful left-hand side and right-hand side match.

Address of the table describing right-hand sides that are valid with
this particular left-hand side.

Minimum number of characters needed in the left-hand· side before
attempting a substring match against the keyword (type=2).

The number of characters in the keyword if the type field is 2; must
be 0 if the type is 1.

Text to be used in validating the left-hand side of the expression
(type=2).

Figure 10-9. lhs Table Entry Format

• 10-14 60459410 J

rhs Table

The rhs table contains contiguous, variable-length, full-word-aligned entries that describe
valid right-hand side expressions. The table format is shown in figure 10-10. The first
word of each rhs entry has the format shown in figure 10-11.

When the type field is O, the rhs table entry is one word having the format shown in
figure 10-11, but with the right, flags, and count fields unused. When the type field is 1,
the rhs table entry is one word having the format shown in figure 10-11, but with the flags
and count fields unused. When the type field is 2, the format of the rhs table entry is as
shown in figure 10-12. When the type field is 3, the format of the rhs table entry is as
shown in figure 10-13.

60459410 J

rhs entry

rhs entry

• • •

O entry
}

type=O entry marking the
end of the table

Figure 10-10. rhs Table Format

10-15 •

r type al

Field

type

right

flags

count

• 10-16

right J flags

23

1
~

count I
~

unused

Description

Entry type number. The format of each entry and the meaning of its
flags and count fields vary according to the entry type. The types
are:

0 End of the table.
1 No right-hand side in the expression.
2 Literal; the right-hand side of the expression must match the

initial substring of the literal.
3 Ele.ment list.
4 Arbitrary character string is returned in the return buffer.
5 All remaining text (255 characters maximum) is returned in

the return buffer.
6 Numbers in the range of -247-1 to 247-1 are returned in

the return buffer.
7 File names are returned in the return buffer.
8 User number.
9 Ignore the keyword.

I NOTE I
Where both a literal character string and an
arbitrary character string may be used as
parameters, the arbitrary character string
must follow the literal character string for
the parameters to be interpreted correctly.

A value set by the caller and returned in the return buffer entry on a
successful left-hand side and right-hand side match.

Flag bits, which are set to describe valid right-hand sides of
expressions. Bit meanings depend on entry type.

Maximum number of elements in the right-hand side for those entry
types that allow lists.

Figure 10-11. rhs Table Entry Format (First Word)

60459410 J

0

0

1

Word

0

0

I
Field

right

flags

count

60459410 J

2
8

min
8

Field

right

min

chars

literal

63

right unused
8 48

chars literal
8

(0 to 7 blanks for alignment
on word boundary)

De script ion

A value set bY the caller and returned in the return buff er entry on a
successful left-hand side and right-hand side match.

Minimum number of characters needed in the right-hand side before
attempting a substring match against the literal.

Number of characters in the literal.

Text to be used in validating the right-hand side of the expression.

Figure 10-12. rhs Table Entry Format, Type 2

3 a I right al flags al count al unused

Description

Value set by the caller and returned in the return buff er entry on a
successful left- and right-hand side match.

Maximum length of a list element. The length of the this field is in
the range of one to eight bytes.

Maximum number of elements in the list.

Figure 10-13. rhs Table Entry Format, Type 3

10-17 •

When the type field is 4, the format of the rhs table entry is as shown in figure 10-14,
except that the flags field is not used. The right-hand side of the expression contains 1
or more literal character strings (255 characters maximum per literal string are returned in
the return buffer). Quotes may be embedded within the literal string by using the double
quotation mark character to indicate the presence of a quote. During processing, the string
will be appropriately edited. Enclosing quotes are required only if special characters
defined in table 10-1 are part of the text.

0

416
0 8

unused

unused
2

Word Field

0 right

flags

count

1 minimum

2 maximum

16 23 63

right flags count unused
8 8 8 32

minimum
16 48

maximum
16 48

Description

A value set by the caller and returned in the return buffer entry on a
successful left-hand side and right-hand side match.

Flag bits. If bit 20 is O, the second and third words are not
present. When set to 1, bits 20 through 23 select the following
options:

20 Range check is desired; the number specified must be greater
than or equal to minimum and less than or equal to maximum.

21 Hexadecimal number valid with a leading hash mark.
22 Address valid (hexadecimal number without a leading hash

mark).
23 Decimal number valid.

Two or more of bits 21, 22, and 23 can be set at one time; however, a
potential identification problem exists if bits 22 and 23 are both
set: if the field contains digits 0 to 9 only, the number is treated
as decimal; otherwise, it is assumed to be hexadecimal.

Maximum number of values that can appear in the right-hand side.

Lower boundary for a valid number (integer).

Upper boundary for a valid number (integer).

Figure 10-14. rhs Table Entry Format, Type 4/6

When the type field is 5, the format of the rhs table entry is as shown in figure 10-11,
except that the flags and count fields are not used. When the type field is 6, the format
of the rhs table entry is as shown in figure 10-14 •

• 10-18 60459410 J

When the type field is 7, the format of the rhs table entry is as shown in figure 10-11.
Four of the individual bits in the flags field can be set to 1, in which case they have the
following meanings:

Bit Description

20 Punch attribute (PU) is valid.

21 Print attribute (PR) is valid.

22 Length attribute can be specified.

23 Drop file name can be specified.

Two or more of the bits can be set at one time. The count field contains the number of file
names that appear in the associated return buffer entry.

When the type field is 8, the format of the rhs table entry is as shown in figure 10-11.
Two of the individual bits in the flags field can be set to 1, in which case they have the
following meanings:

Bit Description

22 Return an ASCII value.

23 Return a binary value.

One or both of the bits can be set at one time.

When the type field is 9, the format of the rhs table entry is as shown in figure 10-11,
except that the right, flags, and count fields are not used. For this type, no entry is
made in the return buffer and processing continues with the next keyword expression.

60459410 J 10-19 •

Return Buffer

This buffer is used to contain reformatted keyword information that is returned. The end of
the returned information is indicated by a full-word binary O. The return buffer format is
shown in figure 10-15.

returned entry

returned entry

• • •

binary 0 }
Full word 0 marking
end of buffer

Figure 10-15. Return Buffer Format

The format and length of each return buff er entry depends on the type field of the right-hand
side table entry that successfully matched the right-hand side of the keyword expression.
Common to all entries is the first full word, whose format is shown in figure 10-16.

0

• 10-20

table

Field

table

left,
right

words

chars

count

8

63

left right words chars count unused
8 8 8 8 8 16

Description

Value from the header of the lhs table (ti) that provided the left­
and right-hand side entries affecting the keyword match.

Values from the left field of the particular lhs table entry and the
right field of the rhs table entry affecting the left- and right-hand
side matches.

Total number of words in this particular entry.

The meaning of this field varies with the type of the right-hand
side. It is the length of the returned information or the length of
an element of a returned list, such as a list of file names.

Number of returned elements if returned data consists of a list of
items.

Figure 10-16. Return Buffer Entry Format (First Word)

60459410 J

When the rhs table entry types are 1 and 2, the format of the return buffer entry is as
shown in figure 10-17. The words field is always 1.

I° table
8

1 left I
8

right I
8

unused

Figure 10-17. Return Buffer Entry Format, Types 1 and 2

When the rhs table entry type is 3, the flags field is used to specify the maximum allowable
length of a list element. The allowable range of values is 1 through 8. The format of the
return buffer is shown in figure 10-18.

0

60459410 J

table

Field

table

left,
right

words

chars

count

8

text
string i

63

left right words chars count unused
8 8 8 8 8 16

textstring 1
64

textstring 2
64

64

textstring n
64

Description

Value from the header of the lhs table (ti) that provided the left­
and right-hand side entries affecting the keyword match.

Values from the left field of the particular lhs table entry and the
right field of the rhs table entry affecting the left- and right-hand
side matches.

Total number of words in this particular entry.

The meaning of this field varies with the type of the right-hand
side. It is the length of the returned information or the length of
an element of a returned list, such as list of file names.

Number of elements returned.

Returned elements, ASCII left-justified and blank-filled.

Figure 10-18. Return Buffer Entry Format, Type 3

10-21 •

When the rhs table entry type is 4, the format of the return buffer entry is shown in figure
10-19. Since the multiple literal strings will likely be variable in length, the format of
the return buffer returned for type 4 differs from the format of all other return buffers.
A header word will precede each literal string returned.

0

table

table

table

Field

char

text
string

8

8

8

left right words char unused
8 8 8 8

textstring 1

(O to 7 blanks for alignment
on word boundary)

left right words char unused
8 8 8 8

textstring 2

(0 to 7 blanks for alignment
on word boundary)

• • •

left right words char unused
8 8 8 8

textstring n

(0 to 7 blanks for alignment
on word boundary)

Description

Number of characters returned in text.

The right-hand side of the expression.

Figure 10-19. Return Buffer Entry Format, Type 4

63

24

24

24

• 10-22 60459410 J

When the rhs table entry is 5, the format of the return buffer is as shown in figure 10-20.

0 63

table left right words chars unused
8 8 8 8 8 24

text

(0 to 7 blanks for alignment
on word boundary)

Field Description

chars Number of characters returned in text.

text The remaining text (type=S).

Figure 10-20. Return Buffer Entry Format, Type 5

When the rhs table entry type is 6, the format of the return buffer entry is as shown in
figure 10-21. The chars field is always 8.

0 63

table left right words 8 count unused
8 8 8 8 8 8 16

0 number 1
16 48

• • •
64

0 number n-1
16 48

Field Description

count The number of digits returned.

Binary form of the number specified.

Figure 10-21. Return Buffer Entry Format, Type 6

60459410 J 10-23 •

When the rhs table entry type is 7 with flag bits 20, 21, and 22 all set to O, the format of
the return buffer entry is as shown in figure 10-22. The chars field is always 8.

0 63

table left right words 8 count unused

8 8 8 8 8 8 16

filename1
64

• • •

filenamen_1
64

Field Description

count Number of files listed, equal to n-1.

f ilenamei Logical file name, in ASCII.

Figure 10-22. Return Buffer Entry Format, Type 7 with Zeroed Flags

When the rhs table entry type is 7 with flag bits 20, 21, or 22 set to 1, the format of the
return buffer entry is as shown in figure 10-23. The chars field is always 16.

0 63

table left right words 16 count unused
8 8 8 8 8 8 16

filename1
64

length 1 attribute 1 unused
16 16 32

• • •

filenamep
64

length p attribute p unused
16 16 32

Figure 10-23. Return Buffer Entry Format, Type 7 with Set Flags (Sheet 1 of 2)

• 10-24 60459410 J

Field

count

f ilenamei

lengthi

attributei

Description

Number of files listed; has the value (n-1)/2.

Name of the file specified, left-justified with blank fill.

Length of the file in small pages. If not specified, binary 0 is
returned.

File attribute: ASCII punch (PU) or print (PR). If not
specified, blanks are returned.

Figure 10-23. Return Buffer Entry Format, Type 7 with Set Flags (Sheet 2 of 2)

When the rhs table entry type is 8 with only one of flag bits 22 and 23 set, the format of
the return buffer entry is as shown in figure 10-24. The chars field is always 8.

0 63

table left right words 8 count unused
8 8 8 8 8 8 16

0 user number 1
16 48

• • •

0 user number n-1
16 48

Field Description

count Number of user numbers listed.

user number ASCII or binary user number, depending on the flags set.

Figure 10-24. Return Buffer Entry Format, Type 8 with One Set Flag

60459410 J 10-25 •

When the rhs table entry type is 8 with both flag bits 22 and 23 set, the format of the
return buffer entry is as shown in figure 10-25. The chars field is always 16.

0 63

table left right words 16 count unused

8 8 8 8 8 8 16

0 user number1
16 48

0 usernum1
16 48

• • •

0 userp
16 48

0 usernump
16 48

Field Description

count Number of user numbers returned, equal to (n-1)/2.

Binary user number.

usernumi User number of the user; interpreted as ASCII characters.

Figure 10-25. Return Buffer Entry Format, Type 8 with Two Set Flags

• 10-26 60459410 J

Special Characters

The Q7KEYWRD subroutine scans for special characters in the execute line text to extract
keyword expressions. These characters and their meanings (under given conditions) are
described in table 10-1.

Table 10-1. Execute Line Special Characters

Character Description

II

blank

60459410 J

Delimits a literal character string on the right-hand side of the
expression. An embedded quote within a literal character string must be
represented by the double quotation mark character; for example, 11 AB 11 "C1111 DE11

would be the representation of the literal string AB11 C"DE. Each string of
the right-hand side must be enclosed in quotes if it includes a special
character of table 10-1. Q7KEYWRD will not perform concatenation of a
literal in quotes and other character strings.

Delimits a keyword expression unless it occurs within a literal character
string.

Delimits a keyword expression unless it occurs within a literal character
string.

Separates the left- and right-hand sides of keyword expressions unless they
occur within a literal character string.

10-27 •

VSOS SCREEN SUPPORT ROUTINES 11

This chapter contains information about the VSOS screen utilities, Q9SCR and Q9SPRINT, for
use in generating screen format displays. This information is for a system programmer who
is interested in developing an application or utility using screen formatting displays. The
Q9SPRINT utility has usefulness apart from generating screen formatted displays in that it
makes it easier for an application, especially a non-FTN200-application, to create formatted
text strings. This chapter also contains a brief set of definitions and guidelines for
implementing screen displays to be managed by the VSOS display manager and to be viewed by
the DTA and DTN display commands.

Q9SCR

Q9SCR is a routine which implements a subset of the Unixt curses library to make it easier
for an application to create and manipulate one or more dynamic windows for the display of
information, usually on a terminal screen. These displays are used in various ways: some
can be created in response to a specific user input. Other applications may create dynamic
displays as their main method of interaction with the user. Still other applications may
build progress displays always, even though those displays are looked at only seldom (for
example, when the program seems to be having trouble).

Displays created by Q9SCR can be made visible to the user in three different ways: if the
user has access to an MCU operator's console, the displays can be viewed with the DTA or DTN
commands. If the user is logged on through ITFS (or directly at an MCU terminal), Q9SCR can
generate the control and escape sequences used by many smart terminals. These strings are
then sent by the application by way of the normal QSSNDMCR or QSSNDMJC calls to the user's
terminal. Lastly, the application can use Q9SCR to build up a full screen, piecemeal, and
then dump it all at once as normal SIL R-format text, either to a dumb terminal or to a file
for printing. All three of these capabilities are available at the same time, so that, for
example, a program could drive a display on a user's terminal which was also available to
the MCU operator and which could be preserved on a file by way of a snapshot command.

Q9SCR makes no SIL calls itself, and neither does the only routine it calls (Q9SPRINT).
Thus, it is suitable for use by VSOS resident or virtual.

Appendix G is a sample display program that illustrates the use of many of the functions of
Q9SCR.

tUnix is a trademark of AT&T Bell Laboratories.

60459410 J 11-1 •

DEFINITIONS

These words have specific meanings in relation to Q9SCR: screen, window, and subwindow. A
screen is a container for windows. Most often, a screen corresponds to the whole viewing
area of a terminal (for example, 24 lines of 80 columns each), althrough it may represent a
sheet of printer output. Screens may be declared larger or smaller than the physical device
they describe, but this is likely to be less useful than a screen which exactly matches the
device. A user application will normally describe only one screen, since most applications
interact with only one terminal at a time. VSOS resident and virtual can use three screens,
one for each MCU terminal.

A window is a rectangular region, which, if displayed, will affect all or a portion of a
screen. There may be several, possible overlapping, windows associated with a screen at any
given time. The contents of the window are independent, and changes to one window do not
affect another window. Whenever two or more windows overlap on the screen, the information
from the window refreshed most recently will determine the screen's contents in the region
of overlap.

A subwindow is a rectangular region wholly contained in another window and which shares the
same contents as the containing (parent) window in the r~gion of overlap. Subwindows make
it easy to limit modifications to a portion of a window •

• 11-2 60459410 J

SYNOPSIS

The supported functions and their arguments are summarized below:

RESULT = Q9SCR(ADDCH, CHAR)
RESULT = Q9SCR(ADDSTR,-sT'RING, LEN)
RESULT Q9SCR(BOX, VERT-CH, HORIZ-CH, ROWS, COLS, TOP, LEFT)
RESULT = Q9SCR(DLEAR)
RESULT = Q9SCR(CLRTOBOT
RESULT = Q9SCR(CLRTOEOL
RESULT = Q9SCR(DELCH)
RESULT = Q9SCR(DELETELN
RESULT = Q9SCR(DELWIN)
RESULT = Q9SCR(ENDSCR, SCREEN-NUMBER)
RESULT = Q9SCR(ERASE)
RESULT = Q9SCR(GETCOL)
WPTR = Q9SCR(GETCUR)
ADDR = Q9SCR(GETMCU, SCREEN-NUMBER)
RESULT Q9SCR(GETROW)
WPTR = Q9SCR(GETSTD, SCREEN-NUMBER)
RESULT = Q9SCR(INCH)
WPTR = Q9SCR(INITSCR, BUFFER, LEN, NSCREENS, OPTIONS, ROWS, COLS)t
WPTR = Q9SCR(INITSCR, OPTIONS)t
RESULT = Q9SCR(INSCH, CHAR)
RESULT = Q9SCR(INSERTL~
RESULT = Q9SCR(LOOKUP, ITEM)
MEMPTR = Q9SCR(MALLOC, LENGTH, FLAG)
RESULT = Q9SCR(MFREE, MEMPTR)
RESULT Q9SCR(MVWIN, NEWROW, NEWCOL)
WPTR = Q9SCR(NEWWIN, ROWS, COLS, S-ROW, S-COL, OPTIONS, SCREEN)t
RESULT = Q9SCR(NULL) -- -- --
RESULT = Q9SCR(OVERLAY, SOURCE-WINDOW)
RESULT Q9SCR(OVERWRITE, SOURCE-WINDOW)
RESULT= Q9SCR(PRINTW, FORMAT, VALUE, •••)
LEN = Q9SCR(REFRESH, RETURN-BUFFER, TERMINAL-TYPE)
WPTR = Q9SCR(RESET, SCREEN-NUMBER)
RESULT = Q9SCR(SCROLL)
RESULT = Q9SCR(SCROLLOK, FLAG)
WPTR = Q9SCR(SUBWIN, ROWS, COLS, FIRST-ROW, FIRST-COL)

Underlined arguments are required; the others are optional. See the next section on calling
conventions for how the presence of these arguments is indicated.

tThese functions do not accept the optional arguments WRTR, NEWROW, and NEWCOL.

60459410 J 11-3 •

CALLING CONVENTIONS

The general form of a call to Q9SCR is:

RESULT= Q9SCR(FUNCTION-SELECTOR+ MODIFIERS, ARGUMENTS •••)

where FUNCTION-SELECTOR is a small integer which selects which of Q9SCR's functions is
desired, and ARGUMENTS are the parameters appropriate to that function. The synopsis above
indicates that most functions have optional arguments of WPTR and NEWROW, NEWCOL. If the
WPTR argument is given, it immediately follows the FUNCTION-SELECTOR and the
FUNCTION-SELECTOR has the MODIFIER WIND added to it. If NEWROW and NEWCOL are given, they
come next, and their presence is indicated by increasing MODIFIERS by MOVE. For example,
the basic call to place a character (for example, A) at the current row and column on the
current window is:

RESULT Q9SCR(ADDCH, 'A')

to move to a different location before putting the character, the call is:

RESULT Q9SCR(ADDCH +MOVE, NEWROW, NEWCOL, 'A'

to put the character at the current row and column of an alternate window is:

RESULT = Q9SCR(ADDCH +WIND, WPTR, 'A'

and to both change windows and move before putting the character is:

RESULT = Q9SCR(ADDCH + WIND + MOVE, WPTR, NEWROW, NEWCOL, 'A')

The default window (called the current window) is the window used by the previous Q9SCR
call. However, if the WPTR argument is present, then that window becomes the current window.

Q9SCR is a function, rather than a procedure. Its typical return value is just a
success/failure flag. Success is normally indicated by a non-zero value in the low 48
bits. A failed call returns a floating-point zero, with an error indicator encoded in the
exponent and the low 48 bits zero. Thus, FTN200 programs should declare Q9SCR as a
real-valued function and should assign its result to a real variable. IMPL and C programs
can either do this or treat Q9SCR as returning a structured variable.

See table 11-1 for the possible error results. In general, any errors other than ENOMEN or
ESCROLL indicate a serious programming error. ENOMEN is usually also serious, unless the
application is one which allows the user to create multiple windows dynamically. In this
case, the application can watch for ENOMEN to indicate theat the maximum number of windows
has been reached and the current user request cannot be satisfied.

Since ESCROLL just indicates that the application tried to put more data in a window than
the window could hold, this error is not serious. The programmer may want to enlarge the
window or shrink the data. Alternatively, if the data are of a sequential nature, perhaps
the window should be made into a scrolling window with the SCROLLOK function.

As a general rule, once a program is debugged, it is not necessary to check the return
result from each Q9SCR call. However, the result from DELWIN, ENDSCR, INITSCR, MALLOC,
MFREE, NEWWIN, and SUBWIN should always be checked for the EBOTCH error, since this means
Q9SCR's memory pointers have been damaged and further calls on Q9SCR (except for another
INITSCR call) could cause Q9SCR to alter unpredictable areas in the application's memory •

• 11-4 60459410 J

Table 11-1. Symbols Known by LOOKUP

In addition to the names of all the function selectors supported by Q9SCR, the lookup
function will return values for the following symbols:

EARGC

EBOTCH

ECOL

EINIT

ENOCURR

ENOMEM

EROW

ESCROLL

EQPTR

EFUNC

EARG 1 ••• EARG 6

WIND

MOVE

OP DIR

60459410 J

Error Numbers

The function call includes the wrong number of arguments, either
too many or too few. This often means the WPTR or NEWROW, NEWCOL
arguments were supplied, but the WIND and MOVE bits were not added
to the FUNCTION-SELECTOR.

Q9SCR's memory allocation information is damaged, possibly because
the INITSCR buffer was overwritten. It is unsafe to make any
further calls to Q9SCR.

The NEWCOL argument is negative or too big for the window.

INITSCR must successfully complete before any functions other than
LOOKUP can be called.

There is no current, default window (for example, after a DELWIN or
ENDSCR call or after an EWPTR error) and the current call does not
include the WIND option.

The buffer supplied to INITSCR is too small.

The NEWROW ARGUMENT IS NEGATIVE OR TOO BIG FOR THE WINDOW.

A non-scrolling window would have to scroll to satisfy the call to
Q9SCR.

The WPTR argument is not a valid window pointer.

The FUNCTION-SELECTOR is unknown.

The n'th argument's value is illegal.

Function selector modifiers

The first argument is a pointer to a window to be made the current
window.

The first two arguments, after any WIND argument, are new values
for the row and column positions of the cursor.

Options

Modifications to the window should go directly to the screen buffer.

11-5 •

Terminal Type Names

ANSI Terminal using the ANSI escape sequences

CDC628 The normal terminal supplied with the 205 MCU

CDC752 Another 205 MCU terminal (same as CDC628 to Q9SCR)

IlOO Infoton 100

VT52 DEC VT-52

VTlOO DEC VT-100 (same as ANSI so far as Q9SCR is concerned)

z29 Zenith-29, Healthkit-29

The GETCOL, GETROW, and INCH calls might succeed, but still return zero. Since these calls
are unlikely to fail, it is easiest for an FTN200 program to just accept the result as
correct, rather than try to distinguish between a successful, integer zero and a failed,
floating point zero.

Some Q9SCR functions return window pointers (WPTR). These pointers are not to be used by
the callers in any way except as arguments to other Q9SCR calls. That is, no arithmetic of
any kind should be performed on them, including conversion from floating point to integer.

The values for FUNCTION-SELECTOR, WIND, MOVE, and the various error codes are defined in the
Q9SCRCOM common deck (where all names have a prefix of SCR). Since these definitions are
useful only to IMPL routines, an alt~rnate method is provided for FTN200 and C (and IMPL)
routines to determine the codes at runtime. The call

VALUE = Q9SCR (1, 'ADDCH'

where NAME is the name of one of the symbols in the Q9SCRCOM deck, returns the value for
that symbol. Continuing the example from above, one can get the values for ADDCH, WIND, and
MOVE by:

ADDCH
WIND
MOVE

Q9SCR(1, 'ADDCH')
Q9SCR(1, 'WIND')
Q9SCR(1, 'MOVE')

Normally, one would look up all the needed values only once in an initialization routine and
save them in a common block for later use by other routines.

By convention, screens are enumerated starting from one, but row and column positions are
zero based •

• 11-6 60459410 J

MEMORY USE

Q9SCR needs some memory to maintain tables and buffers. Because Q9SCR must be usable by the
VSOS resident kernel, it cannot allocate this memory through the normal SIL QSMEMORY
mechanism. Instead, the first call to Q9SCR (except for the name lookup calls mentioned
above) must be for the INITSCR function and should specify a buffer allocated by the caller
for use by Q9SCR. Q9SCR remembers this buffer's location for future calls until the next
INITSCR call, if any. The calling program should not modify the buffer in any way between
the INITSCR call and the last use of Q9SCR.

See the description of the INITSCR call for some guidelines for memory needs.

DESCRIPTIONS OF INDIVIDUAL ROUTINES

Each routine is described following a copy of its usage synopsis. The same conventions are
used as before: mandatory arguments are underlined routines which don't accept the WINDOW
and NEWROW, NEWCOL arguments marked with a footnote.

RESULT = Q9SCR(ADDCH, ~)

CHAR is a single character, either right-justified in a word or the first character of a
FTN200 character variable or literal. It replaces the character at the current row and
column on the window and the cursor is advanced by one position. If the cursor advances
past the end of a line, it is positioned to the first column of the next line. If it
was already on the last line in the window and scrolling is permitted, the window is
scrolled up one line, with the previous top line being discarded. If scrolling is
disabled, the ESCROLL error is returned and the cursor stays at the end of the window.

ASCII ·control characters are handled slightly differently: line-feed and unit-separator
(VSOS end-of-line, #lF) cause the remainder of the current line to be set to spaces and
the cursor advanced to the next line, with possible scrolling as above. Carriage-return
causes the cursor to move to the first character of the current line. Horizontal tab
(#09) is replaced by spaces to the next column position which is a multiple of 8. All
other control characters are replaced by the two character sequence c, where c is the
original character with the #40 bit toggled.

RESULT = Q9SCR(ADDSTR, STRING, LEN

STRING is a string of characters to be placed into the window as if by repeated calls to
the ADDCH function. If LEN is present, it gives the numbers of characters to use from
string. If LEN is absent and STRING is a FTN200 character variable or literal, then its
natural length is used. Otherwise, the first character of STRING is assumed to be a
delimiter character and all characters after this delimiter, but before the next
occurrence of the delimiter in the string, are used as the text.

If adding a character from STRING causes an ESCROLL error, the rest of STRING is not
processed.

60459410 J 11-7 •

RESULT = Q9SCR(BOX, VERT-CH, HORIZ-CH, ROWS, COLS, TOP, LEFT)

The BOX function draws a rectangle within a window. VERT-CH.is the character used for
the sides of the box and HORIZ-CH is used for the top and bottom. Both characters
should be either FTN200 character variables or literals or should be right-justified in
a word. TOP and LEFT give the row and column, respectively, of the top, left corner of
the box. ROWS and COLS give the height and width of the box. Either all four
parameters ROWS, COLS, TOP, and LEFT must be given, or all four must be omitted. If
they are omitted, the box is drawn as large as possible within the window. This is
useful to frame a window. If ROWS or COLS equals 1, then the box becomes a line. If
the box includes the bottom, right corner of the screen, then the corners of the box are
set to spaces, to prevent scrolling.

This box is part of the window and is treated no differently from other text. To
protect a box used as a frame, one can create a subwindow just inside the main window
and do all writing on the subwindow.

RESULT = Q9SCR(CLEAR)

CLEAR sets the whole window to spaces. If the window covers the whole screen, then the
next time the window is REFRESHED, Q9SCR includes the appropriate escape sequence to
clear the terminal's screen before updating the display.

RESULT = Q9SCR(CLRTOBOT)

CLRTOBOT sets the window to spaces from the current cursor position to the last
character of the last row.

RESULT = Q9SCR(CLRTOEOL)

CLRTOEOL sets the remainder of the current line to spaces.

RESULT = Q9SCR(DELCH)

The DELCH function deletes the character under the cursor and moves the remaining
characters on the same line left one space. The last character of the line is set to
space.

RESULT = Q9SCR(DELETELN)

The DELETELN function deletes the entire line the cursor is in. The remaining lines in
the window move up one line and the last line is set to spaces •

• 11-8 60459410 J

RESULT = Q9SCR(DELWIN)

A window is destroyed and its storage made available to Q9SCR for other uses with the
DELWIN function. If the window has subwindows, the subwindows and any of their
sub-subwindows, and so forth, are also destroyed.

Note that deleting a window which covers another window does not automatically cause the
contents of the now-uncovered window to appear on the screen. The uncovered window
should be REFRESHED if this is desired.

After a window is deleted, Q9SCR's notion of the current window becomes undefined, so
the next call to Q9SCR should explicitly select a window.

RESULT = Q9SCR(ENDSCR, SCREEN-NUMBER)

ENDSCR causes all windows associated with the screen specified by SCREEN-NUMBER (default
is the screen containing the current window) to be destroyed and all memory associated
with the screen to be put back in Q9SCR's available pool.

RESULT = Q9SCR(ERASE

The ERASE function is identical to the CLEAR function, except that it does not cause an
explicit terminal screen clear on the next REFRESH.

RESULT = Q9SCR(GETCOL)

This function returns the column position of the cursor in the current window. Note
that the return value is zero if the cursor is at the left edge of the window, so this
function is an exception to the rule that success is indicated by a non-zero return
value.

WPTR = Q9SCR(GETCUR)

The application can get a pointer to the current window with the GETCUR function. This
might be used in a subroutine to save the current window selection across modifications
to an alternate window. The original window could be restored as the default window by
way of the NULL function with the WIND modifier.

ADDR = Q9SCR(GETMCU, SCREEN-NUMBER)

The GETMCU function returns the bit address of the MCU buffer assoicated with the
specified screen. This address can then be used in a VSOS #OOlE system message to
register the screen with the Display Task Manager. If SCREEN-NUMBER is omitted, the
screen containing the current window is used.

RESULT = Q9SCR(GETROW)

This function returns the row position of the cursor in the current window. Note that,
like GETCOL, the return value can be zero (if the cursor is in the top line of the
window).

60459410 J 11-9 •

WPTR = Q9SCR(GETSTD, SCREEN-NUMBER)

The GETSTD function returns a window pointer which refers to the standard window for the
specified screen. If SCREEN-NUMBER is omitted, then the screen containing the current
window is used.

The standard window is normally created by the INITSCR call and is the same size as the
screen(s). However, the standard window for a screen can change or become undefined as
a result of DELWIN function calls.

RESULT = Q9SCR(INCH)

This function returns the character under the cursor, right-justified, zero filled.
Note that the result can be zero (if the character is a null.)

WPTR
WPTR

Q9SCR(INITSCR, BUFFER, LEN, NSCREENS, OPTIONS, ROWS, COLS)t
Q9SCR(INITSCR, OPTIONS)

The INITSCR function initializes Q9SCR for all later calls. It specifies the region of

memory available to Q9SCR as starting at BUFFER and extending for LEN words. The
default buffer is #800 words starting at address #60000.

The NSCREENS parameter gives the number of screens Q9SCR is to manage (default is 1).
Each screen consists of ROWS lines of COLS columns (default is 24 rows by 80 columns).
The INITSCR call does an implicit NEWWIN for a window the same size as the screen. This
window becomes the standard window for the screen.

The OPTIONS parameter is normally zero, but can be OPDIR if the standard window is to be
treated more like a subwindow than a normal window. That is, modifications to the
standard window affect the screen buffer directly, without a REFRESH call. This is
useful to reduce memory requirements for programs which need only to create displays for
the MCU or for printers.

Note that if there is only one parameter to INITSCR, that parameter is assumed to be
OPTIONS.

Each screen is allocated a buffer in which Q9SCR keeps track of what it thinks the
terminal screen looks like. This same buffer can be displayed by the MCU DTA or DTN
commands, althrough it looks right only if COLS=80 and ROWS is at least 20. Only screen
rows 0 through 19 appear on the MCU display, shifted down to allow for the normal three
MCU header lines. Row 19 is then right above the command entry line of the MCU terminal.

There is no simple formula to estimate the size needed for the buffer,.but a rough
approximation is: 512 * (1 + NSCREENS) words. Each additional window beyond the default
needs (16 +ROWS) words for tables plus (ROWS* COLS+ 7) I 8 words of text buffers.
Each subwindow needs (16 +ROWS) words. MALLOCed memory requires (4 +LENGTH) words.

INITSCR returns a pointer to the standard window for screen 1. The GETSTD function can
be used to get the pointers the other screens' standard windows.

tThese functions do not accept the optional arguments WRTR, NEWROW, and NEWCOL •

• 11-10 60459410 J

RESULT = Q9SCR(INSCH, CHAR)

INSCH inserts the character CHAR at the current cursor position. The characters to the
right of the cursor are shifted right to make room, and the last character on the line
is deleted. If the cursor is initially at the bottom, right corner of the window,
scrolling is not permitted on the window, and CHAR is not a space, then ESCROLL is
returned and the window is not altered.

CHAR should be either right-justified in a word or an FTN200 character variable or
literal. If CHAR is not a valid, printable ASCII character, it is replaced by?.

RESULT = Q9SCR(INSERTLN)

The INSERTLN function inserts a blank line above the current line by moving all lines
starting with the current line, down one line (discarding the bottom line) and then
filling the current line with spaces. The cursor stays at its current position on the
screen and thus ends up in the new, blank line.

RESULT = Q9SCR(LOOKUP, ITEM)t

The LOOKUP function takes ITEM, which is normally a character string representing the
name of one of Q9SCR's function selectors or options, and returns the internal value for
the name. LOOKUP also accepts error codes generated by Q9SCR and returns a Hollerith
(8H •••) name for the error, and vice versa. In a similar manner, LOOKUP translates a
terminal type name into the small integer needed by the REFRESH function.

The FUNCTION-SELECTOR for LOOKUP is always 1.

See table 11-1 for a list of the symbols known by LOOKUP.

MEMPTR = Q9SCR(MALLOC, LENGTH, FLAG)

If an application has several different displays it might generate in response to user
input, and many of those displays need temporary work areas while they are active, then
a significant amount of memory could be consumed by the work areas associated with
inactive displays. If only one screen can be active at a time, then the application
could simply reuse one work area. However, if the application can have more than one
screen active at the same time, this technique does not work.

To provide for such applications, Q9SCR supports the MALLOC function, which allocates
memory back to the application from the buffer given to Q9SCR on the INITSCR call. The
LENGTH argument gives the number of words needed. If the FLAG argument is present and
non-zero, then the memory is allocated on a block (512 word) boundary. Otherwise, the
memory is on a 4 word boundary.

The MALLOC function returns the word address of the allocated memory (for example, the
bit address divided by 64).

Allocated memory is associated with a screen (the screen containing the current
window). If the screen is released by way of the ENDSCR or RESET functions, then all of
its allocated memory is freed for reuse at the same time. The application can also free
memory explicitly with the MFREE function.

tThese functions do not accept the optional arguments WRTR, NEWROW, and NEWCOL.

60459410 J 11-11 •

RESULT = Q9SCR(MFREE, MEMPTR)

Memory allocated to the application with the MALLOC function is returned to Q9SCR's
available pool with the MFREE function. The MEMPTR argument is the word address of the
memory, as returned by the MALLOC function. The application must be careful not to
reference the memory after it has been freed.

RESULT = Q9SCR(MVWIN, NEWROW, NEWCOL)

A window can be moved to a different location on its screen by way of the MVWIN
function. The NEWROW and NEWCOL arguments give the new screen row and column where the
upper, left corner of the window should appear. The new position must not cause part of
the window to extend past the boundary of the screen.

If the window being moved is a subwindow, then the same description applies, except that
NEWROW and NEWCOL are relative to the parent window and the result must leave the
subwindow within the parent window.

When a window is moved, all of its subwindows are moved also.

WPTR = Q9SCR(NEWWIN, ROWS, COLS, S-ROW, ~, OPTIONS, SCREEN)t

A new window and its associated data structures are created by way of the NEWWIN
function. The S-ROW and S-COL arguments give the screen coordinates of the upper, left
corner of the window. The ROWS and COLS arguments give the size of the window, in rows
and columns, respectively. If either ROWS or COLS is O, then the largest value which
will fit, based on S-ROW or S-COL and the size of the screen, is used.

The OPTIONS parameter is the sum of selected option values. Currently the only option
is OPDIR, which requests that the window be created as a pseudo-subwindow of the screen,
rather than use a separate text buffer (see the discussion with the INITSCR function).

The SCREEN argument selects which screen the window will be displayed upon by the
REFRESH function.

RESULT = Q9SCR(NULL)

The NULL function does nothing. Its purpose is to let the application select a
different window or move the cursor without changing anything else.

Since the FUNCTION-SELECTOR for null is O, the following two calls do the same thing:

RESULT
RESULT

A9SCR(NULL +MOVE, NEWROW, NEWCOL
Q9SCR(MOVE, NEWROW, NEWCOL)

RESULT = Q9SCR(OVERLAY, SOURCE-WINDOW)

The OVERLAY function replaces the contents of the current window with the contents of
SOURCE-WINDOW in the region where they overlay on the screen. Spaces in SOURCE-WINDOW
are not copied, so the current window retains its values in those positions where
COURCE-WINDOW is blank.

tThese functions do not accept the optional arguments WRTR, NEWROW, and NEWCOL •

• 11-12 60459410 J

RESULT = Q9SCR(OVERWRITE, SOURCE-WINDOW)

OVERWRITE is identical to OVERLAY, except that spaces are not treated specially by
OVERWRITE.

RESULT= Q9SCR(PRINTW, FORMAT, VALUE, •••

The PRINTW function provides for formatted printing to a window. The FORMAT and VALUE
arguments are passed to Q9SPRINT for conversion to a character string which is then
added to the current window as if by an ADDSTR call.

See the documentation for Q9SPRINT for a description of the FORMAT and VALUE arguments.
Note: the first argument to Q9SPRINT is a buffer for the formatted result text. On a
PRINTW call, Q9SCR allocates this buffer for the user from the dynamic stack.

LEN = Q9SCR(REFRESH, RETURN-BUFFER, TERMINAL-TYPE)

Unless a window was created with the OPDIR option and it is being monitored by way of
the MCU DTA or DTN commands, none of the Q9SCR functions actually change the terminal
screen until REFRESH is called. Instread, each window has a private text buffer where
changes are recorded. Q9SCR also keeps a buffer for each screen which is what Q9SCR
thinks the terminal screen looks like.

When REFRESH is called, Q9SCR compares the window buffer to the screen buffer to see
what changes need to be made to the screen to make it match the window in the region of
the screen occupied by the window. The commands and text necessary to effect this match
are placed in the RETURN-BUFFER supplied by the caller, and the screen buffer is
updated. It is the caller's responsibility to actually send the RETURN-BUFFER to the
terminal (for example, with a QSSNDMJC call).

REFRESH returns the count of characters placed in the RETURN-BUFFER. This count is
normally passed on to QSSNDMJC or QSPUTP. Note that QSSNDMJC and QSSNDMCR silently
truncate messages after 2000 characters, so the application may need to send the
contents of RETURN-BUFFER in parts.

Q9SCR does no checking for overflowing the RETURN-BUFFER, so the application should make
sure it is large enough. Generally, a buffer size of:

SIZE = ROWS * (COLUMNS + 10) + 20

should suffice, where SIZE is in characters, and ROWS and COLUMNS are the dimensions of
the screen.

Since the escape sequences necessary to control a terminal vary from
Q9SCR needs to know what kind of termianl it should generate control
application supplies the type by way of the TERMINAL-TYPE ·argument.
terminal types are listed in table 11-1. More types can be added by
administrators.

device to device,
codes for. The
The currently known
your system

The terminal type of zero (O) requests that the entire contents of the screen (after
updating) be copied to the RETURN-BUFFER. Each screen line will end with a VSOS
end-of-line (#lF) and will have had trailing spaces removed. The RETURN-BUFFER is thus
in the correct form to be written to an R-type file as a screen snapshot or sent to a
terminal of unknown type.

60459410 J 11-13 •

If a window created with the OPDIR option is REFRESHed, the return buffer if filled as
if the TERMINAL-TYPE were O, regardless of the value supplied on the call. This is
because the screen buffer and the window buffer are identical, so there is no way Q9SCR
can compare the two to determine the changes. But note that if the window's only
purpose is to be available to the MCU, then the MCU handles the details of refreshing
the terminal, and REFRESH calls are neither necessary nor useful, except to get
snapshots.

WPTR = Q9SCR(RESET, SCREEN-NUMBER)

The RESET function is used to destroy a screen and create it afresh. All memory
associated with the screen in freed and then the window is created again, as if as the
result of an INITSCR call.

RESET returns the pointer for the new standard window for the screen.

RESULT = Q9SCR(SCROLL)

The SCROLL function scrolls the entire window up one line. That is, the current top
line is deleted, the remaining lines move up one line, and the new bottom line is filled
with spaces.

The curser position in the window does not change, which means it moves down a line
relative to the window contents.

To SCROLL function is legal even if scrolling is normally disabled on the window.

RESULT = Q9SCR(SCROLLOK, FLAG)

A window can be set to scrolling or non-scrolling. When a character is written to the
last column of the last line of a scrolling window, the contents of the window are moved
up a line and a new, blank line is created as the bottom line. The previous top line is
discarded. The cursor normally moves to the first column of this new line.

If the last character of the last line of a non-scrolling window is written, Q9SCR does
not scroll. Instead, the cursor stays where it was and an ESCROLL error is returned.

The SCROLLOK function sets whether a window is scrolling or non-scrolling. If FLAG is
zero, scrolling is disabled. If FLAG is non-zero, then scrolling is permitted. New
windows are non-scrolling by default •

• 11-14 60459410 J

WPTR = Q9SCR(SUBWIN, ROWS, f.2.!&, ~, S-COL)

Sometimes it is useful to restrict modifications to a portion of a window or to
logically partition a window into separate pieces. The SUBWIN function returns a
pointer to a subwindow of the current window. The current window is called the parent
of the subwindow. The upper, left corner of the subwindow is at coordinates S-ROW,
S-COL relative to its parent, and the subwindow's size in ROWS rows by COLS columns. If
ROWS or COLS is zero (0) then SUBWIN will set it to the largest value compatible with
the size of the parent and S-ROW and S-COL.

A subwindow must fit entirely within its parent. The subwindow and parent window share
the same text buffer, so any change to the subwindow directly affects the parent
window. Similarly, any change to the parent window in the region occupied by the
subwindow also changes the subwindow.

Subwindows move with their parent windows and are destroyed when their parents are
deleted. In addition, a subwindow may be moved or deleted directly with the MVWIN and
DELWIN functions.

LIMITS

The Q9SCR routines are not direct replacements for the Unixt routines with similar names, so
care must be taken in porting a Unix curses program to the VSOS environment. In most cases,
the functionality is the same, but the default values and argument orders may be different.

Table 11-2 shows the maxima and minima for Q9SCR:

Table 11-2. Q9SCR Maxima and Minima

Limit Min Max

Columns per line 8 136

Rows per window 2 100

Screens 1 10

Size of PRINTW result string 0 one window full

tunix is a trademark of AT&T Bell Laboratories.

60459410 J 11-15 •

Q9SPRINT

Q9SPRINT is a routine which implements most of the Unixt sprintf(3S) functionality to make
it easier for an application, especially a non-FTN200 application, to create formatted text
strings.

USAGE

Q9SPRINT takes a format string and zero or more arguments whose values are converted to a
displayable form based on the format. The resultant string is returned in a buffer supplied
by the caller.

Q9SPRINT is called as:

LEN= Q9SPRINT(RS, FORMAT, VALUE!, VALUE2, ••• VALUEN)

where:

LEN Is the length (in bytes) of the result string.

RS Is a buffer to receive the formatted result string. It is up to the
user to make sure RS is big enough. For FTN200 character variables
only, Q9SPRINT can determine the result buffer length and will
truncate the result rather than overflow the variable.

FORMAT Is a character string containing formatting directives.

VALUE!, ••• VALUEN Are the arguments to be converted according to the format.

The format contains both text which is copied directly to the result string and formatting
directives. A formatting directive starts with an escape character, normally%, and has the
form:

<e><j><z><w><.p><c>

where each of the bracketed letters stands for a specific character, character pair, or
numeric string, appearing in the order listed, and with the following meanings. The <e> and
<c> tokens are required. The rest are optional.

<e>

(j)

<Z>

An escape character to indicate the start of a formatting directive.
The default character is a percent sign. It may be changed by:

CALL Q9ESCCH (NEWCH)

where NEWCH is the new escape character. For instance, to use an
ampersand instead of a percent sign, execute the statement:

CALL Q9ESCCH (IR&)

A minus sign (-) to left justify the result. Omitted to right justify.

The digit 0 to zero fill numeric conversions. Omitted to space fill.

tunix is a trademark of AT&T Bell Laboratories •

• 11-16 60459410 J

<W>

<.p)

(c)

60459410 J

A numeric value for the field width. The conversion will be right
justified (left justified if (j) is specified) in a field <W> characters
wide. If the conversion will not fit, the field size is increased until
it will. If omittted, the field will be the minimum width necessary to
contain the converted value.

A period(.) followed by a numeric value for the precision. For E and F
conversions, this is the number of digits to follow the decimal point
(default is 6). For string conversions, it is the maximum number of
characters to copy.

A one- or two-character format selector (either upper or lower case may
be used) which specifies how the next argument (VALUEl) is to be
converted to ASCII for inclusion in the result string. The selectors
are listed in the following table. Many of the conversions produce
results very similar to FTN200 formatted output conversions. When this
is true, the FTN200 edit descriptor is also shown.

<c> FTN200

D l(w)

0

x Z(w)

F F(w)(.p)

E E<w><.p>

G G<w><. p)

c

s A(w)

I

=x

Argument Value

Decimal integer (only the low 48 bits are used).

Octal integer.

Hexadecimal integer.

Full-word floating point number.

Full-word flating point number to be converted to
scientific notation.

Full-word floating point to be converted using E or
F format, whichever gives full precision in the
minimum space.

Charcter, right justified in a word (for example,
lRX).

Zero byte terminated character string. At most
65535 characters will be processed. If the
corresponding argument is an FTN200 character
variable or literal, the zero byte is not needed
and the string has its natural length.

Delimited character string. The first character of
the string is taken to be a delimiter. Up to 65535
characters following the first character until the
delimiter is seen again will be put in the result
string.

Delimited character string. Like/, except the
delimiter character (x) is given by the next
character in FORMAT, rather than the first
character of the string. Most often, x is a space,
for example %=, in order to copy the string up to
the first blank.

11-17 •

<c> FTN200 Argument Value

N I Replaced by a newline (ti lf) in the result string.

$ Marks the end of the form.at string. A zero byte
also terminates the format string. IMPL callers
will almost always need to end their form.at strings
with %$.

x Any other character is output as is, without the
leading %, so a single % is indicated by %%.

<w> or <p> may be an asterisk (*) instead of a numeric value. In this case, the next
argument is taken to be the value. If the value is negative, the default for <w> or <p>
is used.

EXAMPLES

INTEGER ANSWER, F
REAL F ANSWER
DIMENSION RS (10)
DATA ANSWER / 1234 /
DATA FANSWER / 1234.567 /

F = Q9SPRINT (RS, 'THE ANSWER IS %D', ANSWER)
* RS = 'THE ANSWER IS 1234'

F = Q9SPRINT (RS, 'THE ANSWER IS %-lOD', ANSWER)
* RS = 'THE ANSWER IS 1234

F = Q9SPRINT (RS, 'THE ANSWER IS %-lOD', ANSWER)
* RS = 'THE ANSWER IS 1000000234'

F = Q9SPRINT (RS, 'THE ANSWER IS %0*D', ANSWER)
* RS = 'THE ANSWER IS 1000000234'

F = Q9SPRINT (RS, 'THE ANSWER IS %F', FANSWER)
* RS = 'THE ANSWER IS 1234.567000'

F = Q9SPRINT (RS, 'THE ANSWER IS %10.F', FANSWER)
* RS = 'THE ANSWER IS 1234.567000'

F = Q9SPRINT (RS, 'THE ANSWER IS%/', '#A TEXT STRING#')
* RS = 'THE ANSWER IS A TEXT STRING'

For IMPL, the last example would become: (note the %$)

F = Q9SPRINT (RS, 'THE ANSWER IS %/'%$, #A TEXT STRING#)
* RS = 'THE ANSWER IS A TEXT STRING'

• 11-18 60459410 J

ALTERNATE INTERFACES

Two additional routines make using Q9SPRINT from an IMPL or FTN200 application easier:
Q9PUTLN, which calls QSPUTN, and Q9FPUTLN, which writes to an FTN200 logical unit.

Q9PUTLN is called as:

STATUS= Q9PUTLN(FLUN, FORMAT, VALUEl, ••• VALUEN)

Q9FPUTLN is called as:

CALL Q9FPUTLN(UNIT, FORMAT, VALUEl, ••• VALUEN)

The FORMAT and VALUE arguments are the same as the Q9SPRINT. For Q9PUTLN, the FLUN argument
is the file logical unit number of an open SIL file to which the formatted string is
written. Alternatively, if FLUN is a small, negative integer, the string is output using
one of the QSSNDMxx calls as follows:

FLUN Value Call Description

- 1 QSSNDMCR Send to task controller

- 2 QSSNDMCE Send to task controllee

- 3 QSSNDMJC Send to job controller

- 4 QSSNDMDF Send to job dayfile

- 5 QSSNDMOP Send to operator

Q9PUTLN returns the SIL error code from the QSPUTP or QSSNDMxx call.

On the Q9FPUTLN call, the UNIT argument is an FTN200 logical unit number (for example, to
write to TAPE6) or a file name (for example, 'OUTPUT'). Thus, Q9FPUTLN output can be mixed
with normal FTN200 output in the same file.

MISCELLANEOUS DEFINITIONS AND GUIDELINES

This section contains the following:

• A definition of the format of the display table that is required fo.r screen displays
that may be viewed by the DTA and DTN commands (see the VSOS Operator's Guide for
descriptions of these commands).

• Guidelines to be followed in implementing display formatting programs.

FORMAT OF DISPLAY TABLE

The format of display manager controlled display tables is as follows:

Word 1

60459410 J

Flag signifying that this is a display table. This must contain the ·
following:

8HACTIVE If the display program is currently executing or

SH INACTIVE If the display program is not currently executing.

11-19 •

Word 2 Reserved for future use except for a field in bits 56 - 63. This must
be set to one to indicate that the data is formatted with no embedded
control characters for use as display manager displays.

Word 3 - 202 Contains the formatted display - 20 lines at 80 characters per line.

Display tables residing in virtual memory must be wholly confined within a 512 word block of
memory through it does not have to be alligned with the beginning of a block.

GUIDELINES FOR IMPLEMENTING TABLE DISPLAYS

The display tables that reside in VSOS shared table space shall be referred to as table
displays. For the programs that perform the formatting of these displays the following
guidelines should be followed:

• Upon initial execution of the formatting code, the following should be done:

• Set the values for first two words as indicated above.

• Format the display with initial data.

• Upon each subsequent execution of the formatting code, do the following:

• Find the display's entry in T DSPTSK (may be defined by a compiled parameter
value if various displays are-permanently assigned to specific T DSPTSK
entries). If either of the following conditions obtain, then -
refresh/reformat the display data and clear the remop bit of the flags field
of the T_DSPTSK entry:

• One of the three MCU display active fields in MISCTAB is set to the
index of the T_DSPTSK entry.

• The remop bit of the flags field of the T_DSPTSK entry is set.

GUIDELINES FOR IMPLEMENTING DISPLAY TASKS

Controllees that generate displays whose data resides in their virtual space will be
referred to as display tasks. In implementing these displays, the following guidelines
should be followed:

• Have the first two words of the data table preset to 8HINACTIVE and 1, respectively.

• Send a system message to the display manager to create a display table entry
(message option= 2).

• Fill in the initial set of display data.

• Change the first word of the display table to 8HACTIVE.

• Repeatedly update the display data. (This step might include some method of giving
up processing time to minimize time spent in the controllee.

• If the display program has a way to determine that it can quit and disappear, then
it should send a system message to the display manager to delete its table entry
(message option= 3) •

• 11-20 60459410 J

CHARACTER SET

The ASCII character set is shown in table A-1. Aids for hexadecimal-to-octal and
hexadecimal-to-decimal conversion are given in tables A-2 and A-3.

60459410 E

A

A-1

> , I
N

.,. h3 112 b,

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

LEGEND

Table A-1. American National Standard Code for Information Interchange (ASCII)
With Punched Card Codes and EBCDIC Translation

be 0 0
bi 0 0
b& 0 0
bs 0 1

~ 0 1

NUL OLE
0 12-0-9-8-1 12-11-9-8-1

NUL 00 OLE 10

SOH DC1
1 12-9-1 11-9-1

SOH 01 DC1 11

STX DC2
2 12-9-2 11-9-2,

STX 02 DC2 12

ETX DC3
3 12-9-3 11-9-3

ETX 03 TM 13

EQT DC4
4 9-7 9-8-4

EQT 37 DC4 3C

ENO NAK
s 0-9-8-S 9-8-S

ENO 20 NAK 30

ACK SYN
6 0-9-8-6 9-2

ACK 2E SYN 32

BEL ETB
7 0-9-8-7 0-9-6

BEL 2F ETB 26

BS CAN
8 11-9-6 11-9-8

BS 16 CAN 18

HT EM
9 12-9-S 11-9-8-1

HT 05 EM 19

10 LF SUB
0-9-S 9-8-7 (Al
LF 2S SUB 3F

11 VT ESC
12-9-8-3 0-9-7 (B)
VT OB ESC 27

FF FS 12 12-9-8-4 11-9-8-4
ICI FF oc IFS 1C

13 CR GS
12-9-8-S 11-9-8-S (DI CR OD IGS 10

so RS 14 12-9-8-6 11-9-8-6
IEI so OE IRS lE

1S SI us
12-9-8-7 11-9-8-7 (F)
SI OF IUS 1F

ASC 11 Character

11-8-2
5A

EBCDIC EBCDIC
Character Code

0 0 0 0
0 0 1 1

1 1 0 0
0 1 0 1

2 3 4 5

SP 0 @ p
no-punch 0 8-4 11-7
SP 40 0 FO @7C p 07

! 1 A o
12-8-7 1 12-1 11-8
I 4F 1 Fl AC1 o oa .. 2 B R
8-7 2 12-2 11-9

7F 2 F2 B C2 R 09

3 c s
8-3 3 12-3 0-2
78 3 F3 C C3 s E2

$ 4 D T
11-8-3 4 12-4 0-3
$ SB 4 F4 DC4 T E3

% s E u
0-8-4 s 12-S 0-4
% 6C s FS E CS u E4

& 6 F v
12 6 12-6 0-S
& so 6 F6 F C6 v ES

7 G w
8-S 7 12-7 0-6

70 7 F7 G C7 w E6

(8 H x
12-8-S 8 12-8 0-7
(40 8 F8 H ca x E7

I 9 I y
11-8-S 9 12-9 0-8
) SD 9 F9 I C9 y ES

J z
11-8-4 8-2 11-1 0-9

SC 7A J Dl z E9

+
ll-8-6

K [
12-8-.6 11-2 12-8-2
+ 4E SE KD2 ~ 4A

< L \
0-8-3 12-8-4 11-3 0-8-2

6B < 4C L 03 \ EO

- = M I
11 8-6 11-4 11-8-2
- 60 = 7E MD4 ! SA

> N A

12-8-3 0-8-6 11-S 11-8-7
4B > 6E NOS ~ SF

I ? 0
0-1 0-8-7 11-6 0-8-S
I 61] 6F 006 60 ----------------64-Character

ASCII Subset

0 0
1 1

1 1
0 1

6 7

p
8-1 12-11-7

79 p 97

a Q

12-0-1 12-11-8
a 81 Q 98

b r
12-0-2 12-11-9
b 82 r 99

c s
12-0-3 11-0-2
c 83 s A2

d t
12-0-4 11-0-3
d 84 t A3

e u
12-0-S 11-0-4
e 8S u A4

f v
12-0-6 11-0-S
f 86 v AS

g w
12-0-7 11-0-6
g 87 w A6

h x
12-0-8 11-0-7
h 88 x A7

I y
12-0-9 11-0-8
I 89 y AS

j z
12-11-1 11-0-9
j 91 z A9

k {
12-11-2 c2-o
k 92 co

I I

12-11-3 1(-11
I 93 6A

m
}11-0 12-11-4

m 94 } DO

n -
12-11-S 11-0-1
n 9S - Al

0 DEL
12-11-6 12-9-7
0 96 DEL 07

-------------~~~--------------96 -Ch a r act er

ASCII Subset

(Hexadecimal)

1 1 1 1 1 1
0 0 0 0 1 1

0 0 1 1 0 0
0 1 0 1 0 1

8 9 10 11 12 13
(Al (Bl (Cl (DI

11-0-9-8-1 12-11-0-9-8-1 12-0-9-1 12-11-9-8 12-11-0-9-6 12-11-8-7
OS 20 30 41 SS 76 9F

0-9-1 9-1 12-0-9-2 11-8-1 12-11-0-9-7 11-0-8-1
sos 21 31 42 S9 77 AO

0-9-2 11-9-8-2 12-0-9-3 11--0-9-2 12-11--0-9-8 11-0-8-2
FS 22 cc 1A 43 62 78 AA

0-9-3 9-3 12-0-9-4 11-0-9-3 12-0-8-1 11-0-8-3
23 33 44 63 80 AB

0-9-4 9-4 12-0-9-S 11-0-9-4 12-0-8-2 11-0-8-4
BYP 24 PN 34 4S 64 SA AC

11-9-S 9-S 12-0-9-6 11-0-9-S 12-0-8-3 11-0-8-S
NL 1S RS 3S 46 6S SB AD

12-9-6 9-6 12-0-9-7 11-0-9-6 12-0-8-4 11-0-8-6
LC 06 UC 36 47 66 SC AE

11-9-7 12-9-8 12-0-9-8 11-0-9-7 12-0-8-S 11-0-8-7
IL 17 GE 08 48 67 80 AF

0-9-8 9-8 12-8-1 11-0-9-8 12-0-8-6 12-11-0-8-1
28 38 49 68 SE BO

0-9-8-1 9-8-1 12-11-9-1 0-8-1 12--0-8-7 12-11-0-1
29 39 S1 69 SF Bl

0-9-8-2 9-8-2 12-11-9-2 12-11-0 12-11-8-1 12-11-0-2
SM 2A 3A S2 70 90 B2

0-9-8-3 9-8-3 12-11-9-3 12-11-0-9-1 12-11-8-2 12-11-0-3
CU2 2B CU3 3B S3 71 9A B3

0-9-8-4 12-9-4 12-11-9-4 12-11-0-9-2 12-11-8-3 12-11-0-4
2C PF 04 54 72 9B B4

12-9-8-1 11-9-4 12-11-9-S 12-11-0-9-3 12-11-8-4 12-11-0-S
RLF 09 RES 14 SS 73 9C BS

12-9-8-2 9-8-6 12-11-9-6 12-11-0-9-4 12-11-8-S 12-11-0-6
SMM OA 3E S6 74 90 B6

11-9-8-3 11-0-9-1 12-11-9-7 12-11-0-9-S 12-11-8-6 12-11-0-7
CUl 1B El S7 75 9E 87

1 1
1 1

1 1
0 1

14 15
(El (Fl

12-11-0-8 12-11-9-8-4
BS DC

12-11-0-9 12-11-9-8-S
B9 DD

12-11-0-8-2 12-11-9-8-6
BA DE

12-11-0-8-3 12-11-9-8-7
BB OF

12-11-0-8-4 11--0-9-8-2
BC EA

12-11-0-8-S 11-0-9-8-3
BO EB

12-11-0-8-6 11-0-9-8-4
BE rl EC

12-11-0-8-7 11-0-9-8-S
BF ED

12-0-9-8-2 11-0-9-8-6
CA EE

12-0-9-8-3 11-0-9-8-7
CB EF

12-0-9-8-4 12-11-0-9-8-2
J' cc l(LVM) FA

12-0-9-8-S 12-11-0-9-8-3
CD FB

12-0-9-8-6 12-11-0-9-8-4
y CE FC

12-0-9-8-7 12-11-0-9-8-S
CF FD

12-11-9-8-2 12-11-0-9-8-6
DA FE

EO
12-11-9-8-3 12-11-0-9-8-7

DB FF

Table A-2. Hexadecimal-Octal Conversion

~
First Hexadecimal Digit (Leftmost of a 2-digit number)

0 1 2 3 4 5 6 7 8 9 A B c D E F
"

Second 0 000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360
Hexadecimal

Digit
(Right- 1 001 021 041 061 101 121 141 161 201 221 241 261 301 321 341 361
most
of a

2-digit 2 002 022 042 062 102 122 142 162 202 222 242 262 302 322 342 362
number)

3 003 023 043 063 103 123 143 163 203 223 243 263 303 323 343 363

4 004 024 044 064 104 124 144 164 204 224 244 264 304 324 344 364

5 005 025 045 065 105 125 145 165 205 225 245 265 305 325 345 365

6 006 026 046 066 106 126 146 166 206 226 246 266 306 326 346 366

7 007 027 047 067 107 127 147 167 207 227 247 267 307 327 347 367

8 010 030 050 070 110 130 150 170 210 230 250 270 310 330 350 370

9 011 031 051 071 111 131 151 171 211 231 251 271 311 331 351 371

A 012 032 052 072 112 132 152 172 212 232 252 272 312 332 352 372

B 013 033 053 073 113 133 153 173 213 233 253 273 313 333 353 373

c 014 034 054 074 114 134 154 174 214 234 254 274 314 334 354 374

D 015 035 055 075 115 135 155 175 215 235 255 275 315 335 355 375

E 016 036 056 076 116 136 156 176 216 236 256 276 316 336 356 376

F 017 037 057 077 117 137 157 177 217 237 257 277 317 337 357 377

Octal 000 -- 040 - 100 - 140- 200 - 240- 300-· 340 -

037 077 137 177 237 277 337 377

60459410 E A-3

Table A-3. Hexadecimal-Decimal Conversion

~
Exponent for Base 16

5 4 3 2 1 0

Hexadecimal 0 0 0 0 0 0 0
Number

1 1048576 65536 4096 256 ' 16 1

2 2097152 131072 8192 512 32 2

3 3145728 196608 12288 768 48 3

4 4194304 262144 16384 1024 64 4

5 5242880 327680 20480 1280 80 5

6 6291456 393216 24576 1536 96 6

7 7340032 458752 28672 1792 112 7

8 8388608 524288 32768 2048 128 8

9 9437184 589824 36864 2304 144 9

A 10485760 655360 40960 2560 160 10

B 11534336 720896 45056 2816 176 11

c 12582912 786432 49152 3072 192 12

D 13631488 851968 53248 3328 208 13

E 14680064 917504 57344 3584 224 14

F 15728640 983040 61440 3840 240 15

-f- j16 x 16i = m10

To find e16 x 16 3 ; look at row E, column 3 and find 57344

A-4 60459410 E

MESSAGES

This appendix lists messages that system routines send to the job dayfile or interactive
terminal. Each dayfile message is preceded by the time the message was written.

Error messages from privileged system tasks occasionally appear in a job dayfile. To
determine the meaning of a privileged system task error code, refer to appendix B in the
VSOS 2 Operator's Guide.

B

Table B-1 lists the messages from the system utilities described in this manual. Each
message is listed with its return code value. When an error occurs, the system compares the
return code value with the threshold value specified on the TV control statement to
determine whether the job aborts because of the error.

Code interpretation is as follows:

0 No error

4 Warning (nonfatal) error

8 Fatal error

Table B-2 lists SIL, BATCHPRO and RHF messages. Each message consists of a maximum of 136
characters and has the following format:

severity routine code description

severity Error severity, either fatal (F), warning (W), or informative (I). If
the STATUS=,stat parameter on the SIL call is not specified, SIL returns
the appropriate return code (8, 4, or 0) to the task's controller.

routine Name of the SIL routine that detected the error. Table B-2 lists the
routines that can issue the error.

code Status code. Table B-2 lists the messages in order of their status codes.

description Description of the error.

When a fatal SIL error message.is sent to the job dayfile or interactive terminal, it is
also sent to the system dayfile. A message sent to the system dayfile is prefixed by the
user number and controllee file name.

Table B-3 lists the meanings of system error codes returned if the system quits during
program execution.

Table B-4 lists the meanings of the tape error codes returned in the SIL error message for
status code 1476. The tape error code is also stored in the ioer field of the FIT. After
receiving a status code of 1476, the caller can issue a Q5GETFIT call with the IOER=
parameter specified to get the tape error code from the FIT.

System utilities accept the returned SIL status and, if necessary, modify the severity
(first character) of the error message to be consistent with their operations. Thus, if the
utility produces a return code of 8, the corresponding error should appear in the dayfile as
a fatal message and should be modified accordingly. If the return code is 0 or 4, the error
should appear as a warning. If the return code is O, it should appear as informative.

60459410 G B-1

Table B-1. Diagnostic Messages (Sheet 1 of 24)

Message

ACCESS CONFLICT WITH
ANOTHER JOB ON FILE

ACCESS VIOLATION ON FILE
filename

ADDR=REGnn

ADR IN REG FILE

ADR NOT COD ADR

ADR BEYOND MOD

ALL DONE

ALPHA OUT OF BOUNDS

ATTACHED NEWPL TOO SMALL

ATTEMPT TO READ PAST EOF
ON FILE

Significance/Action

The file cannot be opened because another
job has the file open in an filename
access mode that conflicts with the
requested access mode. Wait until the
file is free and try again.

The request failed because the user does
not have the required access permission
to the indicated file. If possible, add
the required access permission to the
access permission set for the file and
try again.

Address indicated by the symbol specified
corresponds to register nn.

A location, or the computation of
name=location, was less than #4000.
The user cannot reference the virtual
address range 0 through #3FFF.

Address specified in EXECUTE, BKPT,
or BKPTR command is not that of
executable code. No action will be
taken.

Address specified does not fall within
the current module.

The system has completed the task.

Address of Alpha message is out-of-bounds.

The NEWPL attached to the job is too small
and cannot be extended. Rerun with larger
file.

Do not attempt to read past end of file.

ATTEMPTED READ WITH Notify a systems analyst.
INVALID FILE NUMBER - nnnn

ATTEMPTED TO READ FROM Correct READ statement.
UNKNOWN FILE

BAD BINARY FILE filename Self-explanatory.
THE WORD 'MODULE' NOT
FOUND

B-2

Return
Code

8

4

4

4

4

8

8

8

8

Issued
By

vsos

vsos

DEBUG

DEBUG

DEBUG

DEBUG

vsos

vsos

UPDATE

vsos

UPDATE

UPDATE

LOAD

60459410 H

Table B-1. Diagnostic Messages (Sheet 2 of 24)

Message

BAD CALL DIRECTIVE

BAD CARD ENCOUNTERED

BAD COMMAND

BAD DFM IN CTEE

BAD FILE NAME FOR READ -
filename

BAD FUNCTION CODE FOR
GET/SEND MESSAGE

BAD LIB FILE filename
THE WORD 'LIBRARY' NOT
FOUND

BAD LOGIN

BAD MINUS PAGE

BAD NAME, NO NAME OR
DUPLICATE IDENT

BAD ORIGIN ADDRESS FOR
GROUP

BATCHPRO PROBLEM -­
CHECK FOR DROP FILE

BKPT NOT FOUND

60459410 H

Significance/Action

Invalid deck name on CALL directive.
Correct and rerun.

Correct input file card.

Correct DEBUG directive.

The controllee to be debugged had been
loaded with only a portion of the Data
Flag Manager (DFM). When the controllee
contains DFM, DEBUG links to the con­
trollee' s copy of DFM. When the con­
trollee does not contain DFM, DEBUG uses
its own copy. However, when the con­
trollee contains only part of the DFM,
DEBUG assumes something is wrong and
aborts. The controllee should contain
all or none of the following module/
entry points: FT SYSTEM/Q7DFINIT;
DFBH_/Q7DFCL1. -

Invalid filename on a *READ directive.
Correct and resubmit.

Notify a systems analyst.

Self-explanatory.

A parameter on the LOGIN line is incorrect.

Minus page of the task is not set up
correctly.

Correct UPDATE directive.

The specified virtual bit address must
be on a small page or large page boundary.

BATCHPRO not found or aborted. Check a
BATCHPRO drop file under user's user
number, run DUMP on the drop file to
help find the problem; notify a systems
analyst.

Correct BKPTR directive.

Return
Code

8

8

4

8

8

8

8

8

8

4

Issued
By

UPDATE

UPDATE

DEBUG

DEBUG

UPDATE

UPDATE

LOAD

vsos

vsos

UPDATE

LOAD

vsos

DEBUG·

B-3

Table B-1. Diagnostic Messages (Sheet 3 of 24)

Message

BKPT TABLE FULL

BOUND IMPLICIT MAP
ANOMALY

CALL OF FOLLOWING COMDECK
IS RECURSIVE - name

CALL OF INACTIVE OR
PURGED COMDECK

CALL OF NON COMDECK

CANNOT GROS/GROL
A PRESET COMMON BLOCK

CANNOT RESTART - REGTBL
full

CANT CREATE SCRATCH FILE
TO USE COMDECK OUT OF
ORDER

CANT DESTROY EXISTING
DROP FILE

CENTRAL MEMORY PARITY
ERROR

CHARACTER STRING FOUND
AT nnnnnnnnnnnn

CHARACTER STRING FOUND
ONLY n TIMES

CHARACTER STRING NOT
FOUND

CHARGE STATEMENT
MUST BE SUPPLIED

COMDECK ARRAY TOO SMALL

COMDECK DOES NOT
EXIST - name

B-4

Significance/Action

No additional breakpoints can be set
until one or more existing breakpoints
are removed.

Garbage in the minus page. Rebuild the
minus page.

Convert call or calls and resubmit.

Informative message.

Change call to existing common deck name.

Load has detected loader text that is
presetting a common block that has no
controllee file space.

Cannot restart a drop file. System
table REGTBL is full. Try again later.

Not enough mass storage available for
handling out of order comdecks.
Rerun later.

Modified pages have been written to
the task drop file; therefore, the file
cannot be purged.

Rerun job.

The SEARCH directive was processed
successfully; LOOK found the character
string at the specified address.

LOOK encountered the end of file before
it found the specified number of occur­
rences of the string. It found n
occurrences.

LOOK encountered the end of file
before it found an occurrence of the
string.

User must execute a CHARGE statement.

Too many comdecks for the comdeck array.

Convert call and resubmit.

Return
Code

4

8

8

8

8

8

8

8

Issued
By

DEBUG

vsos

UPDATE

UPDATE

UPDATE

LOAD

vsos

UPDATE

vsos

vsos

LOOK

LOOK

LOOK

vsos

UPDATE

UPDATE

60459410 H

Table B-1. Diagnostic Messages (Sheet 4 of 24)

Message

reason - COMMAND IGNORED

COMMON BLOCK TABLE
OVERFLOW

COMPARE TERMINATED -
END OF FILE filename

CONSECUTIVE DELIMITERS IN
EXECUTE LINE

CONTRADICTION, LIST=O AND
OUTPUT=

CONTROLLEE FILE filename
IS TOO SMALL, NEED
nn(/Imm) BLOCKS

CONTROLLEE REQUIRES
SHARED LIB

CONTROLLEE FORMAT ERROR

CONTROLLEE MUST BE
RELOADED

CONTROLLEE USING WRONG
LIBRARIES

COULD NOT CREATE NEWPL

COULD NOT LINK CORRECTION
TO DIRECTORY ENTRY

CREATION RUN ABORT

Significance/Action

When the parameters for a LOOK directive
are meaningless, missing, or illegal,
the directive is ignored. Ref er to
the reason given for more information.

Loader table overflow. Contact a site
analyst and request that the loader be
rebuilt with a larger COMXR table.

Informative message.

The user cannot specify consecutive
parameter delimiters(two or more left
parentheses or commas) on a LOAD con­
trol statement. Reenter the corrected
statement.

Correct control statement.

Rerun with a larger controllee file
specified. nn indicates the number of
blocks needed; mm indicates the
hexadecimal number.

Controllee needs an active shared
library to execute.

Error in format of the controllee option.

The controllee is loaded in the format
used by a previous system release and
is not compatible with this system.
Reload the controllee and try again.

The controller is running with libraries
other than those with which it was built.

No mass storage space available.
Rerun job.

Notify a systems analyst.

One or more fatal errors were encountered
in a run. Correct errors and rerun
creation.

DECK DOES NOT EXIST - name Correct UPDATE directive.

60459410 H

Return
Code

4

4

8

8

8

8

4

8

8

8

4

Issued
By

LOOK

LOAD

COMPARE

LOAD

OLE

LOAD

LOAD

LOAD

vsos

QSINIT
QSINITCH

UPDATE

UPDATE

UPDATE

UPDATE

B-5

Table B-1. Diagnostic Messages (Sheet 5 of 24)

Message

DECK/DIREC LENGTH ERROR IN
UPDREST. NO NEWPL CREATED

DECKS OR !DENTS OUT OF
ORDER

DEVnnn BLOCK COUNT=nnnn

DEVnnn BLOCK COUNT
MISMATCH
CURRENT BLOCK COUNT=nnnn
LABEL BLOCK COUNT=nnnn

DOUBLE TRACK CORRECTABLE
ERRORS=nnnn

DROP FILE HAS WRONG
SMALL PG SIZE

DROP FILE LENGTH IS
TOO LONG

DROP FILE MAP FULL,
PAGE NOT MAPPED

DROP FILE OVERFLOW

DUMPING filename

DUMPING filename USER=user
POOL= pool

B-6

Significance/Action

Notify a systems analyst.

Ending deck specified in a range precedes
the beginning deck on the oldpl.

Informative message providing the
absolute block count. The absolute block
count is the number of tape blocks read
or written from the beginning of the tape
volume.

The block count in the EOFl or EOVl label
does not match the current block count
kept for the file or volume.

Informative message providing the number
of double-track correctable errors
detected since the beginning of the tape
volume. Additional detailed error
information is recorded in the system
error file accessible to site personnel.

The user attempted to restart a task by
executing its drop file while VSOS is
using a different small page size than
it used when the drop file was created.
Restart the task after a VSOS autoload
that selects the same small page size as
that used by the drop file.

The drop file length in the minus page
or FILE! is too large. Reload the con­
trollee or change the drop file length
with TASKATT.

The task has more than 170 noncontiguous
common blocks. The user should attempt
to group these blocks together (make them
contiguous) using the page grouping LOADER
directive. The task must be reloaded.

Drop file cannot be extended. Use LOADER
or TASKATT (DFL parameter in either case)
to define a larger drop file size.

Informative message identifying the file
being dumped.

Informative message identifying the file
being_ dumped and its owner.

Return
Code

8

4

Issued
By

UPDATE

UPDATE

vsos

vsos

vsos

Table B-1. Diagnostic Messages (Sheet 6 of 24)

Message

EDITED CARDS WILL NOT
BE RESTORED BY
REMOVING - YYYY

EMPTY INPUT FILE IN Q MODE

ENCOUNTERED READ ERRORS OF
OLDPL (BAD DATA)

ENCOUNTERED UNPROCESSED
MODIFICATIONS

ENDPROC filename

ENTRY POINT TABLE
OVERFLOW

ERROR IN Q7PROMPT

ERROR OPENING FILE
filename

ERROR OPENING LIBRARY
FILE filename

EXCEEDED DROP
FILE MAP ENTRY LIMIT

EXCEEDED MAXIMUM SEQUENCE
NUMBER

EXECUTE FILE HAS
WRONG SMALL PAGE SIZE

EXISTING PERMANENT FILE
filename OPENED

EXISTING LOCAL FILE file­
name MADE PERMANENT

EXPECTED/BAD NAME
ENCOUNTERED

EXPECTED FILE NAME NOT
ENCOUNTERED

60459410 H

Significance/Action

Informative message. Some cards
deactivated by ident YYYY have been
permanently removed by editing.

In Q mode, the input file must contain at
least a COMPILE directive. Correct and
rerun.

The oldpl has been damaged or truncated and
must be rebuilt from the previous version.

Correct UPDATE directive.

Processing of the specified procedure
file has completed successfully.

Loader table overflow. Contact a site
analyst and request that the loader be
rebuilt with a larger ENTRYXR table.

Notify a systems analyst.

Q50PEN failed to open file filename.

Q50PEN failed to open file filename.

Controllee requires more than 170 drop
file map entries, use GRLPALL=.

Maximum sequence number is 65,535.

The user attempted to execute a task
that was loaded with a page size
smaller than the one currently running.
Reload the task and try again.

File filename exists as an attached
permanent file (informative message).

Informative message.

Notify a systems analyst.

Correct UPDATE directive.

Return Issued
Code By

4 UPDATE

8 UPDATE

8 UPDATE

8 UPDATE

BATCHPRO

4 LOAD

8 OLE

8 LOAD

8 LOAD

8 LOAD

8 UPDATE

vsos

Q5GETFIL

DEFINE

8 UPDATE

8 UPDATE

B-7

Table B-1. Diagnostic Messages (Sheet 7 of 24)

Message

EXPECTED IDENT NAME NOT
FOUND

Significance/Action

Correct UPDATE directive.

EXPECTED SEQUENCE NUMBER Correct UPDATE directive.
NOT FOUND

EXTENSION TRIED BEYOND A routine attemped to write beyond the
VALIDATION, FILE filename maximum file length validation for this

user. Have the validation increased.

EXTERNAL TABLE OVERFLOW Loader table overflow. Contact a
site analyst and request that the
loader be rebuilt with a larger
EXTXR table.

FATAL SYSTEM ERROR Rerun job.

FILE filename param SWITCH has changed a file characteristic
for file filename as requested by
parameter param.

FILE filename DOES NOT
EXIST

FILE filename GIVEN TO
POOL pool

FILE filename HAS BEEN
RENAMED FILE newname

FILE filename IS NOT A
DYNAMIC/SHARED LIBRARY

FILE INDEX FULL. NONE OF
YOUR PRIVATE FILES
AVAILABLE.

FILE IS INCOMPLETE AND
CANNOT BE EXECUTED

FILE NAMED Filename
NOT AN INPUT FILE

FILE filename NOT FOUND

FILE SEGMENT TABLE IS
FULL

B-8

No file assigned to the job has the
name specified on the ROUTE statement.

The system successfully gave the
specified file to the specified pool.

SWITCH has changed the file name from
filename to newname.

The library specified by ULIB/SLIB is not
a dynamic user library or a system shared
library.

Other users must destroy some of their
files or log out to free space in the
file index. Relogon (reenter the LOGON
command after having previously issued
a BYE) to bring in private files.

The executable file spans a device
that is down.

Correct control statement.

One or more of the specified files does
not exist. Correct the file name and
try again.

Rerun job.

Return
Code

8

4

8

4

8

8

8

8

Issued
By

UPDATE

UPDATE

vsos

LOAD

vsos

SWITCH

ROUTE

GIVE

SWITCH

LOAD

vsos

vsos

OLE

LIS TAC

vsos

60459410 H

Table B-1. Diagnostic Messages (Sheet 8 of 24)

Message Significance/Action

FILES COMPARED EQUALLY

FIRST FILENAME ILLEGAL -
NO FILES PURGED

FOLLOWING CALLED COMDECK
NOT FOUND - name

FOLLOWING CARDS ARE SKIP­
PED - NOT IN INSERT MODE

FORMAT ERROR

GENERATION OF UNIQUE
IDNAME FAILED

GROUP ORIGIN AT ADDRESS
WHICH IS ALREADY
ALLOCATED

HEX VALUE FOUND AT
nnnnnnnnnnnn

HEX VALUE FOUND ONLY n
TIMES

HEX VALUE NOT FOUND

IDENT DOES NOT EXIST

ILLEGAL BKPT

ILLEGAL CHAR NUMBER

ILLEGAL COMMAND

ILLEGAL C504 REQUEST

60459410 H

Informative message.

Self-explanatory.

Correct call and resubmit.

Informative message.

Correct control statement.

Notify a systems analyst.

An attempt was made to map a group of
modules or colillllon blocks to an address
where another group of modules or common
blocks is already mapped.

The HSEARCH directive was processed
successfully; LOOK found the hexadecimal
value at the specified address.

LOOK encountered the end of file before
it found the specified number of occur­
rences of the value. It found n
occurrences.

LOOK encountered the end of file before
it found an occurrence of the value.

Correct UPDATE directive.

DEBUG has obtained control from an un­
expected point in the controllee, namely,
from a point at which DEBUG has not set
a breakpoint.

Correct hexadecimal number to include
only digits 0 through 9 and letters A
through F.

Illegal input parameters.

User jobs cannot issue a CS04 request.

Return Issued
Code By

- COMPARE

8 PURGE

8 UPDATE

8 UPDATE

8 DEBUG
EDITPUB

8 UPDATE

8 LOAD

LOOK

LOOK

LOOK

8 UPDATE

4 DEBUG

8 LOAD

8 LOAD

vsos

B-9

Table B-1. Diagnostic Messages (Sheet 9 of 24)

Message Significance/Action

ILLEGAL DECK SPECIFIED IN Correct UPDATE directive.
MOVE. MOVE IGNORED

ILLEGAL FILE NAME FOR Invalid file name on a *READ directive.
READ - filename Correct and resubmit.

address ILLEGAL Illegal instruction at bit address given.
INSTRUCTION dropf ile

ILLEGAL LINK You have specified an incorrect option
OPTION_option on the LINK parameter. Option must be

M, D, C, B, BC, or CB.

ILLEGAL PARAMETER

ILLEGAL RECORD TYPE FOR
FILE outf il

ILLEGAL REQUEST

ILLEGAL USE OF
FILE INPUT

INADR EXCEEDS inf ile FILE
LENGTH

INTERACTIVE ACCESS NOT
ALLOWED AT THIS TIME

INTERACTIVE ACCESS
NOT PERMITTED

Self-explanatory.

The output file outfil has record type
F or U. The user should rerun the task
using either another output file or no
output file.

Illegal Alpha function code.

The user cannot specify INPUT as the
output file name in batch mode.

I parameter is greater than the number
of words in infile.

The operator has turned off the INTRACTV
job category, preventing interactive
access to the system.

The user has not been granted interactive
access to the system. Contact site
personnel.

INTERNAL ERROR. UNABLE TO Notify a systems analyst.
RESTORE INACTIVE DECK

INVALID CARD Correct input.

INVALID DEVICE Specify correct device set name.
SET NAME devset

INVALID DIRECTIVE FOR
CREATION RUN

INVALID EXPRESSION:
"expression"ENTER REPLACE­
MENT OR CANCEL

B-10

Only READ, DECK, COMDECK, and ADDFILE
can appear in a creation run.

Enter correct expression, enter CANCEL
to abort, or carriage return to ignore
bad expression.

Return
Code

4

8

-

8

8

8

8

8

8

8

8

8

8

Issued
By

UPDATE

UPDATE

vsos

LOAD

OLE

DEBUG
OLE

vsos

COPY
COPYL

COPY

vsos

vsos

UPDATE

UPDATE

DMAP

UPDATE

Q7KEYWRD

60459410 H

Table B-1. Diagnostic Messages (Sheet 10 of 24)

Message

INVALID FILE NAME

INVALID FILENAME

INVALID FILE OR FUNCTION

INVALID FILE NUMBER OR
FUNCTION

INVALID PARAMETER xxx

address INVALID REF TO
SHARED LIBRARY filename

INVALID RESOURCE
CARD PARAMETER

INVALID SEQUENCE NUMBER

INVALID TIME LIMIT

INVALID UPDATE CHECK WORD

INVALID USER NUMBER

INVALID USER NUMBER

I/O ERROR RECEIVED BY
WRPLY

IOC DOESN'T VERIFY

IOC FOR filename ALREADY
IN USE

60459410 H

Significance/Action

File names must be one through eight
letters or digits beginning with a letter.

The specified file name is incorrect.
A file name must be a string of one to
eight letters or digits, beginning with a
letter.

Correct UPDATE input.

Correct UPDATE input.

The specified parameter is incorrect.
Refer to the control statement descrip­
tion for more information.

The controllee has referenced a page
in the library region that is not
locked or mapped.

A parameter specified on the RESOURCE
statement is incorrect.

Correct UPDATE directive.

The user specified an incorrect time
limit on the RESOURCE statement or on
the execute line. The time limit must
be a decimal integer between 0 and
599 940.

Notify a systems analyst.

User tried to use a reserved number.

The specified user number is not valid.
A CYBER 200 user number must be one to
six decimal digits.

Rerun job.

Invalid IOCs in a drop file being
restarted. Usually means there is an
roe for a file that is no longer
available.

Self-explanatory.

Return
Code

8

8

8

8

8

8

8

8

8

8

8

Issued
By

UPDATE

Q7KEYWRD

UPDATE

UPDATE

Q7KEYWRD

LOAD

IQM

UPDATE

vsos

UPDATE

vsos

Q7KEYWRD

vsos

vsos

DEBUG

B-11

Table B-1. Diagnostic Messages (Sheet 11 of 24)

Message

JOB DROPPED BY OPERATOR

JOB DROPPED BY USER

JOB FILE VACUOUS

JOB KILLED BY OPERATOR

JOB KILLED BY USER

LARGE PAGE LIMIT EXCEEDED
DROP FILE

LARGE PAGE LIMIT EXCEEDS
MAX WORKING SET

LARGE PAGE LIMIT OF nnn
PAGES EXCEEDED

LENGTHS DON'T MATCH FOR
COMMON BLOCK NAME1
IN MODULE NAME2

LENGTHS DON'T MATCH
FOR nn COMMON BLOCKS

LIBRARY DIRECTORY AND
INDEX TABLE FULL

LIBRARY FILE
filename IS EMPTY

B-12

Significance/Action

The operator entered a j.DROP command
to drop this task.

The user executed a DROP command for
this task.

The first record of a batch job must
contain ASCII character control
statements.

The operator entered a j.KILL command
to kill this task.

The user executed a DROP command with
the KILL option for this task.

An instruction in the program requires
more large pages than the current
large page limit. Increase the large
page limit. Address is the block
address of the large page that the
task faulted for.

The specified large page limit exceeds
the maximum working set for the job.
Specify a smaller large page limit on
the RESOURCE statement.

The user specified a large page limit
on the RESOURCE statement that exceeds
the maximum memory available in the
machine. Specify a large page limit
not greater than nnn blocks.

Name1 is the name of the common block,
and namez is the name of the module.
The largest definition is allocated.
A maximum of 10 of these error messages
will be issued.

If there are more than 10 conflicting
common block definitions, this message
is issued with total count of conflict­
ing definition, nn.

Notify a systems analyst.

The file filename has no modules
on it.

Return
Code

8

8

4

4

8

8

Issued
By

BATCHPRO

BATCHPRO

BATCHPRO

BATCHPRO

BATCHPRO

vsos

vsos

vsos

LOAD

LOAD

OLE

LOAD

60459410 H

Table B-1. Diagnostic Messages (Sheet 12 of 24)

Message

LOAD IS NOT USING THE
SYSTEM SHARED LIBRARY

LOADING filename

LOADING filename POOL=pool
USER=user

LOADMAP FORMAT ERROR

LOGIN FORMAT ERROR

MASTER CONTROL WORD DOES
NOT MATCH OLDPL

MAX WORKING SET LIMIT OF
nnn BLOCKS EXCEEDED

MAXIMUM ERRORS EXCEEDED

MAXIMUM NUMBER OF COR­
RECTION HISTORY BYTES
REACHED

MAXIMUM NUMBER OF FIELDS
EXCEEDED

MAXIMUM PERMISSIBLE
NUMBER OF JOBS EXCEEDED

MDATE TABLE OVERFLOW

MESSAGE ERROR

60459410 H

Return
Significance/Action Code

The shared library the loader is using to 4
construct the controller is not the same
one the system is using. This is because
the user has a shared library file attached,
has a pool attached containing a shared
library file, or the system was autoloaded
using a shared library file not in the
system pool or public set.

Informative message identifying file
being loaded.

Informative message identifying the file
being loaded and its owner.

Bad input parameter for creating an
output file.

The format of the LOGIN line is incorrect.

Notify a systems analyst.

The user specified a working set size
limit on the RESOURCE statement that
exceeds the maximum memory available in
the machine. Specify a working set size
limit not greater than nnn blocks.

More than 256 errors. Correct and rerun.

Create new program library.

Correct control statement.

There is a limt to the number of jobs
a user can have in the system. The user
has attempted to put a job in the input
queue that would exceed that limit.
Wait for a job to complete.

System software error; the internal
loader table, MDATE, overflowed because
the number of modules to load exceeded
2500. Notify a systems analyst.

Error in system GET A MESSAGE call.

-

-

8

-

8

8

8

8

8

8

8

8

Issued
By

LOAD

PFPRFIL

PFPRFIL

LOAD

vsos

UPDATE

vsos

UPDATE

UPDATE

UPDATE

vsos

LOAD

LOAD

B-13

Table B-1. Diagnostic Messages (Sheet 13 of 24)

Message

MISSING INPUT FILE

MODULE modulename HAS
A ZERO LENGTH COMMON
BLOCK blockname

MODULE LIMIT ON OBJECT
FILE EXCEEDED

MODULE modname INT DATA
** MODE = 1 TYPE ILLEGAL

MODULE modname INT REL
** MODE= 2 TYPE DOES

NOT EXIST

MODULE ON FILE filename
HAD A MODULE HEADER
LENGTH OF ZERO

MODULE ON FILE filename
HAS NO HEADER

MODULE module-name NOT
ON FILE filename

MODULES, NAMED, AND BLANK
COMMON CANNOT BE GROUPED
TOGETHER

MORE THAN ONE ALTERNATE
FILE WAS ATTEMPTED

MORE THAN ONE OMIT/SELECT
FOR filename

MTuu message

MULTIPLE TRANSFER SYMBOLS
DEFINED

NAME ALREADY EXISTS IN
DIRECTORY

NAME DOES NOT EXIST IN
DIRECTORY

B-14

Significance/Action

Correct control statement.

Module is trying to define a zero
length common block.

Notify a systems analyst.

Module modname has a mode 1 in an
interpretive data type that is
illegal; probably the most common
with type 9 mode 1. Table type 101.

Module modname has a mode 2 in an
interpretive data type that
does not exist. Table type 201.

Bad module header format in the input
file.

Module does not have a header table.

The module does not exist in the input
file.

The user specified blocks of more than
one type (module, named common, and
blank common) with a grouping parameter.
Each type must be specified with a
separate parameter.

Correct UPDATE directive.

Correct control statement.

See corresponding NTuu message.

Two modules have been indicated as main
programs; that is, both compilation units
have a PROGRAM statement.

Change duplicate deck name.

Change deck name or directive requested.

Return
Code

8

8

8

8

8

8

8

8

8

8

8

8

8

Issued
By

OLE

LOAD

OLE

LOAD
LOAD

LOAD

OLE

OLE

OLE

LOAD

UPDATE

OLE

LOAD

UPDATE

UPDATE

60459410 H

Table B-1. Diagnostic Messages (Sheet 14 of 24)

Message

NEW PASSWORD MUST BE
NON-BLANK

NO ALPHA POINTER

NO DISC SPACE FOR EXTEN­
SION ON FILE

NO DROP FILE

NO ENTRY

NO ERROR EXIT ADDRESS

NO EXT/ENT POINTER FILE
filename

Significance/Action

Password entry is required; therefore,
a blank password is invalid. Correct
the new password and try again.

Virtual system was called for an Alpha
message, but the pointer to the Alpha
message was O.

Rerun job with this file on a disk
that has enough space for this file.

There is no drop file for this task.

No entry point found.

Task issued an Alpha/Beta system call
which returned an error, but the error
exit address field in the Alpha portion
was O.

No type 2 table pointer found.

NO FILE Either a file with the specified name
does not exist, or the number of
characters in filename was not one
through eight.

NO FILE NAME FOR READ Add file name to READ directive.

NO FILES OR FST TABLE System file index or file segment
SPACE table full. Rerun.

NO FILES TO LIST No files exist that match the specif ica­
tions on the FILES control statement.

NO FST ORDINAL WITH C50X Rerun with an FST ordinal.
REQUEST

NO JOB CATEGORY FOUND FOR The RESOURCE control statement specified
SPECIFIED LIMITS values such that no job category can

accommodate the job. Reduce the values
and resubmit the job.

NO LOGINS Interactive terminal login lines
are inhibited.

NO MASS STORAGE FOR Not enough mass storage available on
DROP FILE the designated drop file packs. Rerun

later.

60459410 H

Return
Code

8

8

8

8

Issued
By

PASSWORD

vsos

vsos

vsos

LOAD

vsos

LOAD

vsos

UPDATE

vsos

FILES

vsos

vsos

vsos

vsos

B-15

Table B-1. Diagnostic Messages (Sheet 15 of 24)

Message Significance/Action

NO MESSAGE POINTER
FOLLOWS EXIT FORCE

NO MORE SEGMENT SPACE IN
FILEI FILE filename

NO PARAMETERS SPECIFIED

NO PP

NO SOURCE FILE

NO SUCH MODULE

NO SUCH SYMBOL

NO SWITCH PARAMETERS
FOUND, FILE NOT ALTERED.

NO TIME FOR USER

NO TIME LEFT FOR drop
file filename/controller
file filename

NO TL

NO WRITE PERMISSION -
COMMAND IGNORED

NOID CANNOT BE WRITTEN TO
NEWPL. UPDATE ABORT

NONEXECUTABLE FILE

NONMATCHING WORDS

NON-PRODUCTION PROGRAM
NOT PERMITTED

NOT A LOGIN

B-16

Rerun with a correct exit force.

The file has been extended three
times and cannot be extended again.

Correct DEBUG control statement.

No task in execution to break.

There is no controllee file.

Value entered for name=location was not
the name of a module in the controllee.

Symbol specified was not found as a
symbol of currenttype (S or L) in
current module.

File name was only parameter found.

The user has no more time available.
Either increase the time limit on the
job RESOURCE statement or interactive
task execute line or, if the maximum
time limit is already specified, ask
site personnel to increase the time
limit for the user number.

Rerun with a larger time limit. For batch
jobs, 1/2 second of CPU time is added to
allow for cleanup in exit processing.

Zero time limit (TL) specified.

Self-explanatory.

Self-explanatory.

File requested is not a virtual code
file (file type other than 2).

Listed words did not compare equally.

A production user has attempted to execute
a nonproduction program interactively.
Contact the site security administrator.

First word of the LOGIN command
must be LOGIN.

Return
Code

-

-

8

-

-

4

4

4

0

8

4

Issued
By

vsos

vsos

DEBUG

vsos

vsos

DEBUG

DEBUG

SWITCH

vsos

vsos
BATCHPRO

vsos

LOOK

UPDATE

vsos

COMPARE

vsos

vsos

60459410 H

Table B-1. Diagnostic Messages (Sheet 16 of 24)

Message Significance/Action

NOT A USER

NOT ENOUGH TIME FOR THIS
JOB

NOT EXPECTING SEQUENCE
NUMBER

OLDPL DIRECTORY CANNOT BE
PROCESSED

OLD PASSWORD DOES NOT
VERIFY

OLE TERMINATED

OMIT PARAMETER MISSING A
FILE OR MODULE

ON TTY xxxx

OPERATION NOT ALLOWED
ON YANK$$$

OPERATOR NO.=uuuuuu

ORIGIN NOT ON LARGE PAGE
BOUNDARY - ORIGIN =
neworigin

OUT OF BOUND MEMORY
REFERENCE

OUTADR EXCEEDS outf ile
FILE LENGTH

PACK packname IS
NOT AVAILABLE

PAGE SIZE CONFLICT IN
DROP FILE

PARAMETER OR FORMAT ERROR

60459410 H

Invalid user number.

Time limit specified exceeds time
remaining in repository bank.

Correct UPDATE directive.

Notify a systems analyst.

The old password specified does not
match the password associated with the
user number in its user directory entry.
Correct the password and try again.

Informative message.

Correct control statement.

User numbers cannot logon to more
than one terminal at a time.

The YANK$$$ deck cannot be purged.
However, the user can delete directives
within the YANK$$$ deck.

The system operator attempted to logon
under an invalid user number. The
correct operator number is uuuuuu.

Warning message; the GRLPALL option
is specified so the origin address is
changed to a large page boundary.

Attempt to access space outside the
task virtual space.

0 parameter is greater than the number
of words in outfile.

Try again when the device is available
(UP).

Small page fault but the drop file
is in large pages, or vice versa.

Error in parameter specifications.

Return
Code

-

-

8

8

8

8

8

4

8

8

8

Issued
By

vsos

vsos

UPDATE

UPDATE

PASSWORD

OLE

OLE

vsos

OLE

vsos

LOAD

vsos

COPY

DMAP

vsos

Pool
Utilities

B-17

Table B-1. Diagnostic Messages (Sheet 17 of 24)

Message Significance/Action

PARAMETER OR FORMAT ERROR Correct FILES control statement.
FOUND. UTILITY TERMINATED

PARAMETER OR FORMAT ERROR Correct GIVE control statement. File
FOUND. UTILITY TERMINATED remains with old owner.

PARAMETER TOO LONG
TO PROCESS

PC AND RMK MUST BE SINGLE
CHARACTER OR HEX NUMBER
FROM 0 TO FF

POOL pool ATTACHED

POOL pool CREATED

POOL pool DESTROYED

POOL pool DETACHED

POOL pool NOT FOUND

POOL FILE filename
CURRENTLY OPENED

PREMATURE EOF ENCOUNTERED
ON OLDPL. UPDATE ABORT

PROBLEM WITH FILE

PROCESSED INVALID DIREC­
TIVE IN ALTERNATE FILE

PURGE ERROR R=#rrr SS=#ss
ON FILE filename

RANGE IS NOT PERMITTED
FOR YANKDECK

READ ERROR ON FILE

B-18

The parameter string contains a value
or name that is too long.

The padding character and/or the
record mark character must be specified
as the character or its hexadecimal
code.

The system successfully attached the
specified pool.

The system successfully created the
specified pool.

The system successfully destroyed the
specified pool.

The system successfully detached the
specified pool.

The specified pool does not exist.
Correct the pool name and try again.

Self-explanatory.

OLDPL has been truncated or damaged and
must be rebuilt from the previous revision.

Notify a systems analyst.

Correct directive.

See DESTROY system message in volume
2 for an explanation of the error code.

Correct YANKDECK directive.

SIL detected an error. Refer to the
SIL message.

Return Issued
Code By

8 FILES

8

8

8

4

8

8

8

8

8

8

GIVE

LOAD

DEFINE

REQUEST
SWITCH

PATTACH

PCREATE

PDE STROY

PDETACH

LIS TAC

PURGE

UPDATE

UPDATE

UPDATE

PURGE

UPDATE

UPDATE

60459410 H

Table B-1. Diagnostic Messages (Sheet 18 of 24)

Message

READ RECOVERABLE ERRORS=
nnnn

RECURSIVE CALL NOT
PERMITTED

REQUESTED LP EXCEEDS
INTRACTV LP LIMIT OF
nnn PAGES

REQUESTED LP EXCEEDS
JOB'S LP LIMIT OF nn
PAGES

REQUESTED LP EXCEEDS TASK
WS LIMIT OF nnnn BLOCKS

REQUESTED WS EXCEEDS
INTRACTV WS LIMIT OF nnnn
BLOCKS

REQUESTED WS EXCEEDS
JOB'S WS LIMIT OF nnnn
BLOCKS

REQUESTED WS TOO SMALL
FOR JOB'S LP LIMIT OF
nnn PAGES

60459410 H

Significance/Action

Informative message providing the number
of read recoverable errors detected
since the beginning of the tape
volume. Additional detailed error
information is recorded in the system
error file accessible to site personnel.

Correct CALL references.

The large page limit specified on the
execute line exceeds the maximum large
page limit for the INTRACTV job category.
Reenter the execute line specifying a
large page limit not greater than nn
pages.

The user specified a large page limit
that exceeds the maximum large page limit
for the job. Correct the SET statement
so the large page limit is not greater
than nnn pages.

When multiplied by 128, the specified
large page limit exceeds the working set
size limit of nnnn blocks. Reenter the
execute line specifying a larger working
set size limit or a smaller large page
limit.

The user specified a working set size
limit larger than the maximum working set
size limit for the INTRACTV job category.
Reenter the execute line specifying a
working set size limit not greater than
nnnn blocks.

The user specified a working set size
limit that exceeds the maximum working
set size limit for the job. Correct
the SET statement so the working set
size limit is not greater than nnnn
blocks.

The user specified a working set limit
smaller than the current large page
field length. Correct the SET state­
ment so the working set size limit is
not smaller than nnn*l28.

Return
Code

8

8

8

8

8

8

8

Issued
By

UPDATE

vsos

BATCHPRO

XEQLN

XEQLN

BATCHPRO

BATCHPRO

B-19

Table B-1. Diagnostic Messages (Sheet 19 of 24)

Message

REQUIRED FILE NAME
MISSING FOR POOL
pool name

REQUIRED PARAMETER
MISSING. NEXT EXPRESSION
IS: expression ENTER
PARAMETER OR "CANCEL"

REQUIRES USER DYN/SHARED
LIB

RESPONSE CODE IS xxx

RESTART OF DROPFILE
NOT PERMITTED

SAY AGAIN

SBU MEMORY PARITY ERROR

SECURITY LEVEL IGNORED

SELECT PARAMETER
MISSING A FILE
OR MODULE

SEND AGAIN

SEQUENCE NUMBER EXCEEDED

SEQUENCE NUMBER MISSING
FROM DIRECTIVE

B-20

Significance/Action

The user specified a pool name without
specifying the file that belongs to the
pool. Add a file name after the pool
name.

Required positional parameter missing.
Given expression appeared in the position
where a required parameter was expected.

Fatal message. A task is running that
requires a user dynamic or shared library
file and the files are not attached.

A fatal error occurred during interpreta­
tion of the MFLINK execute line. Response
code xxx returned by Q7PROMPT.

A nonproduction user has attemped to
interactively restart a drop file that
has been flagged as nonrestartable by
the system. Contact the site security
administrator.

The special character (sc) is not
followed by a valid interactive request
character.

Parity error occurred on read or write.

Warning message; the security level
specified on the control statement is
ignored because the specified file is
a local file; it already has a security
level.

Correct control statement.

The state at this DB entry is zero; or
the job class is priority and the
privileged job permission flag is zero;
or the job is currently in interrupt
mode and an explicit I/O interrupt has
occurred.

Create two decks if text cards exceed
65,535.

Add a sequence number to the directive.

Return
Code

8

8

8

8

4

8

8

8

Issued
By

PERMIT

Q7KEYWRD

Q5INIT

MFLINK

vsos

vsos

vsos

DEFINE

OLE

vsos

UPDATE

UPDATE

60459410 H

Table B-1. Diagnostic Messages (Sheet 20 of 24)

Message

SEQUENCE NUMBER NOT FOUND

SINGLE TRACK CORRECTABLE
ERRORS=nnnn

SOURCE OR DROP FILE
ANOMALY

SYNTAX ERROR ON DIRECTIVE

SYSTEM DROP FILE CREATE
ERROR

SYSTEM INTERRUPTION,
JOB NOT RERUN

SYSTEM MESSAGE ERROR

SYSTEM TABLES FULL, TRY
AGAIN

TABLE TYPE NOT
IMPLEMENTED

**TASK BROKEN; END OF
JOB PROCESSING**

**TASK BROKEN; EXIT CARD
PROCESSING**

TASK SUSPENDED WAITING
FOR PERMANENT FILE

60459410 H

Significance/Action

Specified sequence number nonexistent.
Correct.

Informative message providing the
number of single-track correctable
errors detected since the beginning
of the the tape volume.

roe in bound implicit map is not 16
(source); or bound implicit map entry
is outside of file bounds; or drop
file (free space) map address overlap
occurred.

Correct error and resubmit.

Either the disk or file index is full.

Before the batch job completed, the
system was interrupted and reautoloaded.
However, the job was not rerun either
because a NORERUN control statement was
processed or the operator prevented a
job rerun. Resubmit the job.

Batch processor detected a system
message error. Contents of Alpha and
Beta words follow.

The XEQ buffer table is full as more
than eight execute lines have been
entered; or no DB entry can be obtained;
or no user table entries are available.

Refers to compiler output for the loader.

BATCHPRO is terminating the job because the·
current task was killed. There is no EXIT
card processing.

BATCHPRO is advancing to the next EXIT
card because the current task was dropped.

A file specified on the ATTACH statement
is already attached to another suffix.
The user specified the WAIT parameter
so the task is suspended until the file
is available.

Return
Code

8

8

8

Issued
By

UPDATE

vsos

UPDATE

vsos

vsos

BATCHPRO

vsos

LOAD

BATCHPRO

BATCHPRO

ATTACH

B-21

Table B-1. Diagnostic Messages (Sheet 21 of 24)

Message

TEXT STRING EXCEEDS LIMIT

TOO MANY ERRORS

TRANSMISSION PARITY ERROR

TROUBLE READING FILE -
xxxxxxxx

TRY AGAIN

UNABLE TO DESTROY POOL

UNABLE TO ENLARGE DROP
FILE. TRY AGAIN

UNABLE TO EXPAND
FOLLOWING COMDECK -
xxxxxxxx

UNABLE TO FIND EXECUTE
FILE

UNABLE TO FIND EXTERNAL­
ENTRY TABLE FOR MODULE
modname ON FILE filename

UNABLE TO GET TIME AND
DATE

UNDEFINED NAME OR ALREADY
IN GROUP

B-22

Significance/Action

A string specified in the statement is
longer than 2880 characters. Each
string must be delimited by double
quote (") characters.

Correct UPDATE directives.

Parity error occurred on read or write.

Notify a systems analyst.

ROLL, BACK, a display or a display register
without parameters was given before a
DISPLAY or ENTRY command and DEBUG has no
point of reference for ROLL/BACK.

CONTINUE was given before EXECUTE. A
second EXECUTE command is given. STEP
is given before EXECUTE.

The pool cannot be destroyed for one
of the following reasons:

• The pool is attached to another job.

• Files exist that belong to the pool.

• The user is not the pool boss.

Self-explanatory.

Specified COMDECK is missing and should
be supplied.

The system cannot access the execute
file for the task being restarted.

OLE could not find the external
reference table dueto bad module
structure.

Notify a systems analyst.

Grouping not done because of an
undefined name or the element to be
grouped is already in another group.

Return
Code

8

8

8

4

4

8

4

8

8

8

Issued
By

Q7KEYWRD

UPDATE

vsos

UPDATE

DEBUG

PDE STROY

PURGE

UPDATE

vsos

OLE

OLE

LOAD

60459410 H

Table B-1. Diagnostic Messages (Sheet 22 of 24)

Message

UNEXPECTED ERROR ON
VALIDATION OF ACCOUNT

UPDATE OBTAINED BAD DATA
IN PROCESSING THIS CARD

USER LOCKED OUT OF
SPECIFIED JOB CATEGORY

USER NOT VALIDATED FOR
TAPE USAGE

USER usernum NOT FOUND
LIS TAC

VALIDATE OPTION - MUST
BE Y/N

VARIABLE RATES NOT DEFINED
AT THIS INSTALLATION

WARNING *** ATTACHED POOLS

WARNING - ATTRIBUTES OF·
POOL FILE MAY NOT MATCH
INPUT FILE

WARNING - DISK
TAPE

PARAMETERS IGNORED
FOR TAPE FILE

DISK

WARNING * DUPLICATE FILES

WARNING - INPUT FILE IS
EMPTY, NO DATA TO COPY

WARNING MODULE name
FROM FILE filename IS
INACCESSIBLE AND
THEREFORE NOT LOADED

60459410 H

Significance/Action

System table incompatability. Notify
a systems analyst.

Correct card.

The user is not validated to use the
job category specified on the RESOURCE
statement. Specify another mnemonic
such as the default, JDEFAULT.

The RESOURCE control statement on a job
requested a tape with the NT parameter but
the user is not validated for tape access.

The specified user number does not
exist. Correct the user number and
try again.

Option specified must be Y or N.

The control statement specified the
VRI parameter, but the site did not
install variable rate accounting
(system installation parameter
IP_F_VR is zero).

Informative message during LOGON.
The user has attached pools.

The COPY utility cannot change pool
file attributes.

The REQUEST utility will ignore
inappropriate combinations of file
attribute parameters.

Informative message during LOGON. The
user has duplicate files.

Informative message; COPY copied no data.

Module is deleted from controllee
since it cannot be referenced.

Return
Code

8

8

8

8

8

4

4

4

4

Issued
By

vsos

UPDATE

vsos

vsos

LOAD

EDITPUB

vsos

COPY

REQUEST

vsos

COPY

LOAD

B-23

Table B-1. Diagnostic Messages (Sheet 23 of 24)

Message

WARNING MULTIPLE
TRANSFER SYMBOLS DEFINED

WARNING - NO OBJECT FILE
CREATED

WARNING - OBJECT FILE
LENGTH INCREASED TO nnnn
PAGES

WARNING - PACKID IGNORED.
f ilenam ON PACK packid

WARNING - 'POOL='
PARAM NOT SPECIFIED­
'PRIVI=' PARAM IGNORED

WARNING UNSATISFIED
EXTERNAL(S) DETECTED
DURING LOAD

WARNING xxxxxxxx IS
DUPLICATE ENTRY POINT
IN MODULES yyyyyyyy AND
zzzzzzzz

WIDTH EXCEEDS 256
CHARACTERS

nnnnnn WORDS OF FILE
inf ile COPIED TO FILE
outf ile

taskname WORKING SET TOO
SMALL nn% OF CPU TIME

WIDTH EXCEEDS 256
CHARACTERS

WRITE ON READ-ONLY FILE

B-24

Significance/Action

More than one program entry point is
defined.

Informative message.

Informative message.

File filenam is not on the pack
specified on the COPY statement. It
is on pack packid and the file was
copied to that pack.

If the POOL parameter is omitted, the
PRIVILEGED parameter is ignored.

Routine referenced but not provided.

xxxxxxxx is the entry name, and
yyyyyyyy and zzzzzzzz are the module
names. References to xxxxxxxx link
to the entry in yyyyyyyy, which was
the first encountered.

Line image width on *WIDTH directive
exceeds 256 characters.

The system copied nnnnnn words from
file infile to file outfile.

The maximum working set size for task
taskname was too small for nn% of its
execution time. The user should
consider increasing the maximum work­
ing set size limit to decrease the
paging required for the task.

Correct *WIDTH directive.

Job attempted to write to temporary
space for which the job does not have
write access.

Return Issued
Code By

4 LOAD

4 OLE

4 OLE

4 COPY

4 GIVE

4 LOAD

4 LOAD

4 UPDATE

COPY

4 BATCHPRO

4 UPDATE

vsos

60459410 H

Table .B-1. Diagnostic Messages (Sheet 24 of 24)

Message

WRITE RECOVERABLE
ERRORS=nnnn

WRITE VIOLATION IN
SYSTEM CALL

WRONG TARGET PAGE SIZE

60459410 H

Significance/Action

Informative message providing the
number of write recoverable errors
detected since the beginning of the
tape volume. Additional detailed
error information is recorded in the
system error file accessible to site
personnel.

Operating system error on read-only file.

The TSP parameter specified a small
page size other than one, four, or
sixteen blocks. Correct the TSP
parameter and try again.

Return
Code

8

Issued
By

vsos

LOAD

B-25

I Table B-2 •. System Utility Error Messages (Sheet 1 of 80)

Sever- Error
ity Code Message

F

F

F

F

F

F

F

F

F

B-26

0001 ILLEGAL PARAMETER parameter
to
0199

0001 NO MATCH FOR ERROR CODE IN
ECODE

0002 UNEXPECTED PROGRAM ERROR

0003 NO FILES TO xxxxxx

0004 MASTER DIRECTORY FILE
filename IS FULL

0005 THERE ARE TOO MANY FILES
TO PROCESS

0006 EXCEEDED SPECIFIED PACK
NAMES

0008 INVALID JCS

0009 TOO MANY JCS SPECIFIED

Significance
Issuing
Routine

The user specified an
incorrect parameter.
in the message is the

invalid or
The status
ordinal of

ALL
code SIL
the

parameter within the parameter
sequence.

Utility error; notify a systems
analyst.

Utility error; notify a systems
analyst.

No files exist that match the
qualifications on the statement so
no files are processed (audited,
loaded, or dumped).

PFERROR

DUMPF
GENLINE
PFRHDIO
PFRHLIO

AUDIT
DUMPF
LOADPF

The master directory file for the DUMPF
current disk pack is full. A master
directory file is created on the
next disk pack listed on the VSN
parameter and dumping continues on
that pack.

The statement specifies more files DUMPF
than can be processed at one time. PFGETNFI
Decrease the number of files.

Space on the specified packs is PFBUFFER
insufficient for the files; addi-
tional space is used on the default
system pack.

The job control string specified PFSCAN
on the JCS parameter is invalid.
Ask a systems analyst for the
correct job control string.

The JCS parameter specified more PFSCAN
than 10 strings. Reduce the number
of strings specified on the parameter.

60459410 J

·' f'

Table B-2. System Utility Error Messages (Sheet 2 of 80)

Sever- Error
ity Code Message

F

F

F

F

F

F

0010 VSNS ARE REQUIRED

0011 INVALID SI setid

0012 ATTEMPTED PRIVILEGED
archive/audit BY NON­
PRIVILEGED USER

0013 RHF NOT AVAILABLE

0014 TOO MANY PACKS IN DST

0016 UNEXPECTED SYSTEM SS CODE
sscode FROM FC=f c

60459410 J

Significance

The control statement must specify
the volume serial numbers on the
VSN parameters. Specify the VSN
parameter.

The set identifier specified on the
SI parameter is invalid. Ask a
systems analyst for the correct set
identifier.

An attempt was made to perform func­
tions that require the user to be
privileged.

RHF parameters were specified
on the control statement of a
version of DUMPF or LOADPF that
does not have RHF capabilities
implemented.

There are too many packs con­
figured in the system for the
utility to run. Consult a
systems analyst.

An unexpected error occured when a
system message was issued. Consult
a systems analyst.

Issuing
Routine

DUMPF

PFSCAN

AUDIT
DUMPF
LOADPF
PFSCAN

AUDIT
DUMPF
LOADPF

PFSCAN

PFUSER

B-27

1

I Table B-2. System Utility Error Messages (Sheet 3 of 80)

Sever- Error
ity Code Message

w 0017 UNABLE TO GIVE qfile
TO INPUT QUEUE - RCODE nn

Significance

An error occurred when LOADPF
attempted to reload an archived
input file. The reason is given by
nn, which has one of these values:

1 Job category does not exist.

2 Maximum working set limit
exceeded.

3 Large page limit exceeded.

4 Invalid time limit.

5 Invalid priority.

6 Large page limit exceeds maximum
working set.

7 Invalid user number.

8 Invalid resource card.

9 Invalid resource card parameter.

10 User locked out of specified job
category.

11 Input queue is full.

12 Unexpected error in entering job
to input queue.

13 Invalid user, account, password,
or security level.

14 Maximum permissable number of
jobs exceeded.

15 Maximum large page limit
exceeded for specified job
category.

16 No job category found for
specified limits.

17 No tape access allowed for user.

18 Input queue limit for user is
exceeded.

19 No jdns available to assign to
input file.

Issuing
Routine

LOAD PF

B-28 60459410 J

I Table B-2. System Utility Error Messages (Sheet 4 of 80)

Sever- Error
ity Code Message

F

F

F

F

F

F

w

F

F

0018 TRANSFER OF FILE file
REJECTED BY REMOTE HOST

0019 ILLEGAL PARAMETER

0020 VSN xxxxxxxx IS
INCORRECT

0021 INVALID ACCOUNT IDENTIFIER
- xxxxxxxx

0022

0023

0024

0025

0200

NOT A MASTER USER OF
SPECIFIED ACCOUNT

USER NOT ALLOWED
TO USE SELECT
VALUE param

SPECIFIED FILE
lf n NOT FOUND

FILE lf n ON USER usernum
HAS A BAD FILEI

SIL BUG-ILLEGAL OPTION

60459410 J

Significance

The remote host reject the file
transfer. Consult job dayfile
for specific reason.

The user specified an illegal
parameter in the control statement.

The format of one of the VSNs
specified is invalid. Device set
VSNs must follow the same conven­
tion as file names. Tape VSNs
can consist of any combination
of alphanumeric characters but
can only be one to six characters
long.

The user specified an invalid
account identifier in the
control statement. xxxxxxxx is
the account identifier in error.

The user is not a master user
for the specified account.

A user attempted to execute an
AUDIT/DUMPF/LOADPF utility
with the SELECT parameter set
to I, O, or IO on a user number
other than the system user number.

A user specified a file on the
lfn-list parameter of the
AUDIT/DUMPF/LOADPF utility
that could not be located.

The file lfn on user number usernum
cannot be processed because of a bad
FILEI associated with the file.
Consult a systems analyst.

SIL specified an illegal option
for a system message. Consult a
systems analyst.

Issuing
Routine

PFRHLIO

PF SCAN

PF SCAN

AUDIT

AUDIT

AUDIT
DUMPF
LOADPF

AUDIT
DUMPF
LOADPF

AUDIT
DUMPF
LOAD PF

ALL
SIL

B-29

I
Sever- Error
ity Code

F 0201

F 0202

F 0203

F 0204

F 0205

F 0206

F 0207

F 0210

F 0211

F 0250

B-30

Table B-2. System Utility Error Messages (Sheet 5 of 80)

Message

SIL BUG-ILLEGAL BETA

SIL BUG-UNRECOGNIZED ERROR
CODE

INTERNAL CALL TO routine
FAILED, STATUS status

SIL BUG - UNEXPECTED
R CODE code FROM FC code

SIL BUG - UNEXPECTED
SS CODE code FROM FC code

SIL BUG - UNEXPECTED
CERR CODE code FROM FC code

SIL BUG - UNEXPECTED
SERR CODE code FROM FC code

NO MATCH FOR SYSERR IN
R VCODE TABLE

NO MATCH FOR VCODE IN
T MVCT

REQUIRED PARAMETER param­
eter MISSING

Significance

The Beta area SIL supplied for
the system message was rejected
by the system. Consult a systems
analyst.

Unrecognized R code in an Alpha
or an unrecognized SS code in a
Beta. Consult a systems analyst.

Internal error. Consult a systems
analyst.

Internal error. Consult a systems
analyst.

Internal error. Consult a systems
analyst.

Internal error. Consult a systems
analyst.

Internal error. Consult a systems
analyst.

The SYSERR code passed to the
internal routine Q5 PERR is not
in the T RCODES table. Consult
a systems analyst.

A VCODE found in the T RCODES
table is not in the T MvCT table
within internal routine QS PERR.
Consult a systems analyst.-

The user omitted a required
parameter. Refer to the call
description.

Issuing
Routine

ALL
SIL

ALL
SIL

ALL
SIL

ALL
SIL

ALL
SIL

ALL
SIL

ALL
SIL

ALL
SIL

ALL
SIL

ALL
SIL

60459410 J

Table B-2. System Utility Error Messages (Sheet 6 of 80) I
~--~-----r-----1

Sever- Error
ity Code

F 0250

F 0251

F 0252

F 0253

F 0254

F 0255

F 0255

F 0256

w 0257

F 0258

60459410 J

Message

REQUIRED PARAMETER
parameter MISSING

DUPLICATE FILE NAME name

REQUIRED PARAMETER FOR SET
n MISSING

INVALID LFN filename

INVALID FLUN rflun

MUTUALLY EXCLUSIVE PARAM­
ETER SPECIFIED FOR FILE
filename

MUTUALLY EXCLUSIVE PARMETERS

ALL ALPHAS IN USE, CALL
QSCHECK

CONTROLLEE(S) DON'T MATCH
CURRENT SYSTEM LEVEL

FILE filename HAS
PURGE ONLY ACCESS

Significance

You omitted a required parameter.
Ref er to the control statement
description in chapter 6.

The user specified a file name
which already has a FIT.

The user did not specify a
required parameter identifying
the file or the action to be
performed by the call.

SIL did not recognize the speci­
fied file name.

A FIT does not currently exist
having the specified file logical
unit number. To obtain a film's
f lun, specify the RFLUN= parameter
on the QSDEFINE, Q5GENFIT, or
Q5RQUEST call that generates the
file's FIT.

The user specified two or more
mutually exclusive parameters.
Ref er to the call description to
determine which parameter to omit.

The control statement cannot specify
both the JCS and INPUT parameters or
the U option with any other parameter.
Omit one of the parameters.

The maximum allowed concurrent
I/O requests are pending. Call
Q5CHECK to determine whether an
I/O request has completed.

One or more controllee files were
loaded but were generated at a
different operating system level
than the current one. These files
may not execute correctly. Recompi­
lation and/or regeneration of the
controllee files (using the LOAD
statement) may be necessary.

Permanent file validation has found
that the named file is not usable.

Issuing
Routine

LOAD PF
PFSCAN

SIL
SIL

ALL
SIL

ALL
SIL

ALL
SIL

ALL
SIL

PF SCAN

Q5READ
Q5WRITE

LOADPF

050PEN
QSATTACH
QSINIT
QSINITCH

B-31

I
Sever- Error
ity Code

F 0261

F 0262

w 0263

F 0264

F 0265

w 0300

F 0301

F 0302

w 0303

B-32

Table B-2. System Utility Error Messages (Sheet 7 of 80)

Message

TOO MANY PARAMETERS

ILLEGAL MNEMONIC FOR PARAM­
ETER

ILLEGAL PARAMETERS FOR
CONNECTED FILE filename
IGNORED

MUTUALLY EXCLUSIVE
PARAMETER SPECIFIED

USER NOT PRIVILEGED OR
INVALID USER NUMBER

MORE FILES TO LIST

POOL poolname DOES NOT
EXIST OR IS NOT ATTACHED

PERMANENT FILE filename WAS
NOT FOUND

INVALID FILENAME filename

Significance

The user specified more than 199
parameters on the call.

The user specified an invalid
mnemonic value on aa parameter.
Correct the mnemonic and try
again.

One or more parameters specified
on the call are ignored because
the file name specified on the
call, filename, is that of a file
connected to a terminal. Refer to
the call description for the valid
parameters.

The user has specified two
parameters that cannot be used
at the same time.

The user number executing the LIMITS
command is not privileged or has
specified an invalid user number.

More file indices exist than
can fit in the buffer area SIL
defines. Consult a systems
analyst.

The specified pool either does
not exist or is not attached.
Check that the correct pool is
specified on the call.

The specified permanent file
does not exist or the user
does not have access to the file.

The syntax of the specified file
name is incorrect. A file name
is a sequence of one to eight
characters beginning with a letter.

Issuing
Routine

ALL
SIL
QSSNDM.JS

QSATTACH
QSDCDPFI
QSLFIPOL
QSLFIPRI
QSLFIPUB

QSDCDPFI

QSGETPFI
QSDCDPFI
QSLFIPOL
QSLFIPRI
QSLFIPUB
QSPERMIT

LIMITS

QSGETPFI
QSLFIPOL
QSLFIPRI
QSLFIPUB

QSLFIPOL
QSGENFIT
QSPATACH
QSPDESTR
QSPDTACH
QSPGRACC
QSPREACC
QSPERMIT
QSPUSERL

QSATTACH

ALL

60459410 J

Sever- Error
ity Code

w 0304

F 0306

F 0307

F 0308

F 0309

F 0310

F 0311

F 0312

F 0312

w 0313

w 0314

60459410 J

Table B-2. System Utility Error Messages (Sheet 8 of 80)

Message

NO FILES QUALIFY

USER TABLE IS FULL

FILE! IS FULL

INVALID USER NUMBER

NOT A MASTER USER
OR PRIVILEGED USER

NONPRIVILEGED USER

DISK I/O ERROR ON PACK
packid

packid PACKID NOT FOUND

device set DEVICE SET
NOT FOUND

DROP FILE xxxxxxxx HAS
BEEN RENAMED yyyyyyyy

ILLEGAL DATE xxxxxxxx
CORRECTED TO yyyyyyyy

Significance

No files match the qualifiers
specified on the call.

The system user activity table
is full. Notify a systems analyst
and try to rerun job.

The system file index is full.
Notify a systems analyst, and
try to rerun job.

The user number specified is
syntactically incorrect, or
does not exist.

The user is not the master user
of the account identifier, or the
user is not privileged.

A nonprivileged user attempted
to issue a privileged call.

An error was encountered when
attempting to read the PFI of the
specified disk.

The specified disk is not
currently available.

Either the specified device set
is not available or it is not
in the disk status table.

Nonprivileged users cannot
reload archived drop files
unless they are renamed using
a name that doesn't begin with
a number. Thus, to reload drop
file xxxxxxxx, it was renamed
YYYYYYYY•

The date xxxxxxxx specified by
the DATE keyword is invalid. The
utility changed the date to
yyyyyyyy. Both dates have the
format mmddyy (month, day, year).

Issuing
Routine

QSLFIPOL
QSLFIPRI
QSLFIPUB
QSPERMIT

ALL
SIL

ALL
SIL

ALL
SIL

QSGETPFI

QSGETPFI
QSPERMIT
QSSNDMJS
QSCHANGE

QSGETPFI

QSGETPFI

AUDIT
DUMPF
PF SCAN

PFLIO

PFDATEGJ

B-33

I

I Table B-2. System Utility Error Messages (Sheet 9 of 80)

Sever- Error
ity Code Message

F 0320 ILLEGAL MESSAGE LENGTH

F 0321 ILLEGAL DESTINATION

F 0322 LOGGED OUT TERMINAL

F 0324 SYSTEM BUFFER BUSY

F 0325 CONTROLLEE BUSY

F 0326 NO OPERATOR COMMUNICATION

Significance

The message length is zero.

The call specified a controller
or controllee that does not
exist.

The controller specified in the
request is a logged out terminal.

The system buffer is busy. Try
again later.

The controllee which is the
destination of the message already
has text from a controller.

Either the operator is not logged
on or the system buff er is full.
If the user specified the SAVE
parameter on the call, the message
is stored in the save table for
later access by the operator.

Issuing
Routine

Q5SNDMCR
Q5SNDMCE
Q5SNDMDF
Q5SNDMJC
Q5SNDMOP

Q5MSGCTR
Q5SNDMCE
Q5SNDMCR
Q5SNDMJC
Q5SNDSTR

Q5SNDMCR

Q5SNDMCR
Q5SNDMJC
Q5SNDMJS

Q5SNDMCE

Q5SNDMOP

w 0327 DAYFILE FULL, MESSAGES WILL
BE LOST

The user's job dayfile is full. A Q5SNDMDF

F

F

F

F

B-34

0328 DAYFILE NOT OPEN

0329 ILLEGAL VBA FOR DAYFILE

0330 DAYFILE NOT FOUND

warning has been entered in the
dayf ile. Messages will be
overwritten for the duration of the
job.

The dayfile is not open for
implicit I/O. Consult a
systems analyst.

Illegal virtual byte address
f <;>r dayf ile.

The system cannot find the
Q5DAYFLE file. Q5SNDMDF cannot
be called from an interactive
task. If the call was from a
batch job, notify a systems
analyst.

0337 ERROR IN SENDING MESSAGE TO The batch processor received a
DAYFILE message that it could not put

in the dayf ile.

QSSNDMDF

QSSNDMDF

QSSNDMDF

Q5SNDMCR
Q5SNDMJC

60459410 J

Sever- Error
ity Code

F 0339

F 0340

F 0341

F 0342

F 0343

F 0344

F 0345

F 0346

F 0347

F 0349

F 0350

F 0351

60459410 J

Table B-2. System Utility Error Messages (Sheet 10 of 80)

Message

PARAMETER NULLFILL OR
RJUSTIFY SPECIFIED WITHOUT
STD OR SYD

ILLEGAL BUFFER LENGTH

NO MESSAGE AVAILABLE

ILLEGAL MESSAGE LENGTH

LEVEL 1 TASK

CONTROLLER MESSAGE WAITING

CONTROLLEE WAITING FOR
MESSAGE

BAD MINUS PAGE

NO FST SPACE

roe FILE NOT FOUND

CONTROLLEE ALREADY EXISTS

CONTROLLEE f ilenam NOT
FOUND

Significance

The user specified the NULLFILL
or RJUSTIFY parameter without
specifying the STD or SYD
parameter.

The user's buffer is too short
or too long.

No message is waiting for this
task.

SIL encountered more than 200
delimiters in the message.

The caller is a level 1 task and
therefore cannot have a controller
from which to obtain a message.

A message cannot be transmitted
because the task has a message
from a controller waiting.

The controllee from which a
message is expected is waiting.

When initializing the controllee,
SIL found an error in a minus
page value. Discard controllee
file and generate a new controllee
file with the LOAD utility.

System software error; no space
is available for entries in the
file segment table. Notify a
systems analyst.

A file specified in the IOC
cannot be found in the file
index table (FILE!). Ensure
that all files required by the
program exist.

The controllee cannot be
initiated because a controllee
already exists.

The controllee file f ilenam
does not exist.

Issuing
Routine

Q5GETMCE

Q5GETMPG

Q5GETMCR
QSGETMOP
Q5GETMCE

Q5GETMCE
Q5GETMCR
Q5GETMOP

Q5GETMCR

Q5GETMCE

Q5GETMCE

Q5INITCH

Q5INITCH
Q50PEN

Q5INITCH

Q5INIT
Q5INITCH

Q5INIT
Q5INITCH

B-35

I

I
Sever- Error
ity Code

F 0352

F 0353

F 0354

F 0355

F 0356

F 0357

F 0358

F 0359

F 0360

F 0361

F 0362

F 0363

F 0364

F 0365

B-36

Table B-2. System Utility Error Messages (Sheet 11 of 80)

Message

NOT ENOUGH TIME

ILLEGAL PRIORITY

DROPFILE CREATE ERROR

filename NOT EXECUTABLE

filename IO ERROR

SYSTEM TABLES FULL

filename ABNORMALITY

TOO MANY LEVELS

DROPFILE TOO SMALL

PERSISTENT DROPFILE

INTERRUPT TABLE FULL

DROPFILE VERIFY ERROR

DISK READ BUFFER FULL

filename BAD MINUS PAGE

Significance

There is insufficient time to
run the controllee.

An illegal priority value was
specified.

An error was encountered when
attempting to create the drop file.

The controllee program file
f ilenam is not executable.

A mass storage error was
encountered when attempting to
read the controllee program
file filenam.

Controllee cannot be initiated
because the system tables are
full. Try again later.

The controllee file filenam
cannot be initiated because of
an abnormality in the file or
in the drop file I/O number.

Controllee cannot be initiated
because the controllee chain
already contains nine tasks.

Controllee cannot be initiated
because the drop file is too small.

System unable to destroy existing
dropf ile.

Controllee cannot be restarted
because the interrupt register
table is full. Try again later.

Controllee cannot be initiated
because the drop file cannot be
verified.

Insufficient system buff er space
to initiate task. Try again later.

The controllee file (filename)
contains a bad minus page.

Issuing
Routine

Q5INIT
QSINITCH

Q5INIT
Q5INITCH

Q5INIT

Q5INIT
Q5INITCH

Q5INIT
Q5INITCH

Q5INIT
Q5INITCH

Q5INIT
Q5INITCH

Q5INIT
Q5INITCH

Q5INIT
Q5INITCH

Q5INIT
Q5INITCH

Q5INIT

QSINIT

QSINIT

QSINIT

60459410 J

Sever- Error
ity Code

F 0366

F 0367

F 0368

F 0369

F 0370

w 0371

w 0372

w 0373

F 0374

F 0375

F 0376

60459410 J

Table B-2. System Utility Error Messages (Sheet 12 of 80)

Message

SYSTEM BUG-DROPFILE
VERIFICATION

FILE filename OPENED IN A
PRIVILEGED MODE

SOURCE FILE BAD SMALL
PAGE SIZE

DROP FILE BAD SMALL
PAGE SIZE

NO CONTROLLEE TO
DISCONNECT

EMPTY MESSAGE RECORD

EMPTY MESSAGE GROUP

EMPTY MESSAGE FILE

CHARGE STATEMENT MUST
BE SUPPLIED

EXCESSIVE CALLS

INTERNAL ERROR - USER
DIRECTORY NOT FOUND

Significance

System detected an undefined
error in drop file verification.
System error.

Controllee program file is
currently open (using a privi­
leged OPEN) to a privileged user.

The controllee cannot be initiated
due to bad source file page size.

The controller cannot be initiated
due to bad drop file small page
size.

No controllee exists to disconnect.

An interactive user entered an
EOR interactive request line in
response to an input prompt
thereby sending an empty record
delimiter to the task.

An interactive user entered an
EOG interactive request line in
response to an input prompt
thereby sending a group delimiter
to the task.

An interactive user entered an
EOR interactive request line
in response to an input prompt
thereby sending a file delimiter
to the task.

The user must execute a CHARGE
statement.

The task attempted to call the
QSCPUTIM routine more times than
allowed by the installation
parameter setting.

The user directory was not found
for an active user. Notify a
systems analyst.

Issuing
Routine

QSINIT

QSINIT
QSINITCH

QSINIT
QSINITCH

QSINIT
QSINITCH

QSTERMCE

QSGETMCR

QSGETMCR

QSGETMCR

QSINIT

QSCPUTIM

QSGETPFI

B-37

I

I
Sever- Error
ity Code

F 0378

F 0380

F 0381

F 0382

F 0383

F 0384

F 0385

F 0386

F 0387

F 0390

w 0391

F 0400

F 0410

B-38

Table B-2. System Utility Error Messages (Sheet 13 of 80)

Message

USER REPRIEVE ENABLE OR
DISABLE NOT ALLOWED

INTERRUPT ADDRESS ERROR

INTERRUPT OR DATA BASE
ADDRESS ERROR

DATA BASE LENGTH OUT OF
RANGE

USER NOT IN INTERRUPT MODE

DROP FILE TOO LONG

FILE IS INCOMPLETE

UNEXPECTED ERROR ON
VALIDATION OF ACCOUNT

POOL poolname ACCESS
DIRECTORY FULL

REQUESTED LARGE PAGE LIMIT
EXCEEDS MAX WORKING SET
LIMIT

REQUESTED LARGE PAGE LIMIT
EXCEEDS MAX LARGE PAGE
LIMIT

filename DOES NOT EXIST

ILLEGAL MESSAGE

Significance

The request to enable or disable
user reprieve processing failed.
A site accounting routine could
have prevented the reprieve request.

The program interrupt address is the
greater than virtual address range.

The program interrupt address
or the data base address is greater
than the virtual address range.

The user specified a data base
length that is out of range.

The user attempted to get
interrupted program information
when the program had not been
interrupted.

The controllee drop file is too
long.

The controllee file is incomplete.

System table incompatability.
Notify systems analyst.

The specified pool access directory
is full.

The number of blocks specified as
the new large page limit (LP * 128)
is greater than the the number of
blocks allowed for the task work­
ing set.

The current large page limit
specified on the QSSETLP call
exceeded the maximum large page
limit for the task. Therefore,
the current large page limit was
set to the maximum large page
limit.

The specified batch file filename
does not exist.

The program cannot issue the
Recall system message.

Issuing
Routine

QSREPREV

QSDISAMI
QSENAMI

Q5ENATI
QSREPREV
QSRFI

QSENATI
Q5REPREV

Q5GETIIP
Q5GETIRF

Q5INITCH

QSINIT
QSINITCH

QSINIT

QSPGRACC

QSSETLP

QSSETLP

QSDESBIF
QSRUNBIF

QSRECALL

60459410 J

Table B-2. System Utility Error Messages (Sheet 14 of 80) I
-------------.----------.

Sever- Error
ity Code Message

F

F

F

F

F

w

w

w

w

w

w

0420

0430

0434

0450

NON INTERRUPT ROUTINE

USER IS NOT PRIVILEGED OR
THE OPERATOR

UNDEFINED USER NUMBER

ADDRESS OUT OF USER VIRTUAL
RANGE

0451 ILLEGAL LENGTH

0452 ADVISE IN

0453 PARTIAL ADVISE OUT

0454 PARTIAL ADVISE REPLACE

0455 PAGE ALREADY IN CORE

0456 PARTIAL ADVISE - 0452
AND 0455

0457 PARTIAL ADVISE - 0453
AND 0455

60459410 J

Significance

The program issuing the Q5RFI
call is not an interrupt sub­
routine.

A nonprivileged user attempted
to close a file opened for a
privileged user.

An invalid user number has been
specified.

The caller specified an address
outside the user's virtual
address range with the OUTADDR=,
OUTDESC=, INADDR=, or INDESC=
parameter.

The length specified by the
user was either too long or zero.

Only part of the virtual space
requested was paged in because of
insufficient memory to accommodate
the entire specified virtual
address range.

Only part of the virtual space
specified as no longer needed
was paged out because a page
within the specified range was
locked down.

Only part of the virtual space
replacement was performed. The
reasons are given under errors
0452 and 0453.

A page of the virtual space
requested paged in was already in
memory. The rest of the space
is paged in.

Only part of the requested space
was paged due to errors 0452
and 0455.

Only part of the requested space
was paged due to errors 0453 and
0455.

Issuing
Routine

Q5RFI

Q5CLOSE

QSGRACC
QSPREACC

QSADVISE

Q5ADVISE

Q5ADVISE

QSADVISE

Q5ADVISE

Q5ADVISE

Q5ADVISE

Q5ADVISE

B-39

I Table B-2. System Utility Error Messages (Sheet 15 of 80)

Sever- Error
ity Code Message

w

F

F

F

F

F

F

F

F

F

F

B-40

0458 PARTIAL ADVISE - 0452,
0453, AND 0455

0459 ADVISE OUT ADDRESS MISSING

0460 ADVISE IN ADDRESS MISSING

0461 ADVISE OUT LENGTH NOT
POSITIVE

0462 ADVISE IN LENGTH NOT
POSITIVE

0463 ADVISE OUT PAGE COUNT
TOO LARGE

0464 ADVISE IN PAGE COUNT
TOO LARGE

0470 CALL NOT VALID FROM THIS
TASK

0471 VARIABLE RATE ACCOUNTING
NOT VALID AT THIS
INSTALLATION

0472 CALL NOT VALID ON THIS
SYSTEM

0473 ACCOUNTING ACCESS DENIED

0480 NO CONTROLLEE TO LIST

·significance

Only part of the request space
was paged due to errors 0452,
0453, and 0455.

The length of the space to be
paged out was specified, but not
its address.

The length of the space to be
paged in was specified, but not
its address.

A positive value must be speci­
fied as the length of the area
to be paged out.

A positive value must be speci­
fied as the length of the area
to be paged in.

The length of the space to be
paged out is too large to fit in
the appropriate field of the
system message.

The length of the space to be
paged in is too large to fit
in the appropriate field of the
system message.

The task cannot issue a Q5VRACC
call because it is not public
or its variable rate permi-t
flag is not set.

The site has set an installation
parameter preventing use of
variable rate accounting.

The site did not install variable
rate accounting on the system.

The task cannot change its
accounting rate. Either the
Q5VRACC call specified the wrong
password or the user number is
not validated for variable rate
changes or the call failed a
site-specified test.

No controllee was found.

Issuing
Routine

Q5ADVISE

Q5ADVISE

Q5ADVISE

Q5ADVISE

Q5ADVISE

Q5ADVISE

Q5ADVISE

Q5VRACC

Q5VRACC

Q5VRACC

QSVRACC

Q5GETCEN

60459410 J

,1
(,1,
\~

Sever- Error
ity Code

w 0481

F 0485

F 0504

F 0505

F 0506

w 0507

F 0508

F 0509

F 0510

w 0511

F 0512

60459410 J

Table B-2. System Utility Error Messages (Sheet 16 of 80)

Message

MORE LEVELS TO LIST

NO CONTROLLER TO LIST

ILLEGAL PFI ORDINAL

ILLEGAL ROUTINE USAGE

STLEN WRONG SIZE

KWD'S STLEN = AND *
WILL BE IGNORED

MYFILE WRONG SIZE

JOB SESSION NOT ACTIVE

NONPRIVILEGED USER USED
PRIVILEGED PARAMETER

MESSAGE TRUNCATED TO
2000 CHARACTERS

CUSER xxxxxxxx IS NOT
A VALID USER NUMBER

Significance

More tasks are in the chain than
the number the user specified on
the NLVL= parameter.

No controller was found. This
message can be received by an
interactive task, but not by a
batch job.

The ENTRY= parameter is either zero
or greater than the number of
entries in the SIL-defined area.

The user did not call the routine
(Q5GETPFI, Q5LFIPRI, Q5LFIPOL, or
Q5LFIPUB) before issuing this call
and did not specify the MYFILE=
parameter on this call.

An incorrect length was speci­
fied for the file segment table.

The parameters STLEN=, SEGLEN=,
and SEGADR= of Q5DCDPFI, if
specified by the user, are ignored
in a VSOS 2.2 and later operating
system. The * is filled in by
either a SEGLEN= or a SEGADR=,
whichever was specified.

An incorrect length was speci­
fied by the MYLEN= parameter for
the file index entry length.

The calling task attempted to
send a message to a job session
that was no longer active.

A nonprivileged user attempted
to use a privileged parameter.

The message contained in the MSG
array was greater than 2000
characters. Only 2000 characters
were sent to the job session.

The user number specified in the
CUSER parameter is not a valid
user number.

Issuing
Routine

Q5LSTCH

QSGETCRN

Q5DCDPFI

Q5DCDPFI
Q5DCDPLB

Q5DCDPFI

Q5DCDPFI

Q5DCDPFI

Q5SNDMJS

Q5CHANGE
Q5GIVE

Q5SNDMJS

Q5GIVE

B-41

I

I
Sever- Error
ity Code

F 0513

F 0516

F 0517

F 0518

F 0519

F 0520

w 0521

w 0522

w 0523

F 1400

B-42

Table B-2. System Utility Error Messages (Sheet 17 of 80)

Message

UNABLE TO GIVE ATTACHED
PERMANENT FILE filename

NON-PRODUCTION
PROGRAM NOT PERMITTED

CALLER NOT SITE
ADMINISTRATOR

WRITE PERMISSIONS
NOT VALID FOR
PRODUCTION CONTROLLEE

FILE IS NOT A DROPFILE

RESTART OF DROPFILE
NOT PERMITTED

PRODUCTION STATUS
LOST ON FILE filename

WRITE PERMISSIONS NOT
VALID FOR DROPFILE

ZIPCODE * IS NOT FOR A
LOGGED ON WORK.STATION

SIX I/O REQUESTS STILL
PENDING FOR FILE filename

Significance

The calling task used the CUSER=
parameter but tried to give a
file that was currently attached.

A production user number has
attempted to execute a
nonproduction program. Contact
the site security administrator.

Caller has attempted to use
parameters or options reserved
for user by the site security
administrator.

Write permissions cannot be
given to a production controllee
file. Contact the site security
administrator.

Caller has attempted to enable
the restart of a file that is
not a drop file.

An attempt has been made to
restart a drop file that has been
flagged by the system as non­
restartable. Contact the site
security administrator.

Privileged user number has
reloaded a production file.
Contact the site security
administrator to reestablish
its production status.

Write permissions cannot be
given to a drop file and are
ignored if specified.

The user tried to run a workstation
utility·and the workstation was not
logged in.

The user cannot issue another file
I/O request for the specified
until one of its outstanding file
requests completes. The user
should issue a QSCHECK call
specifying that SIL wait until
the request completes before
returning control to the caller.

Issuing
Routine

Q5GIVE

QSINIT
Q5INITCH

Q5PERMIT
Q5CHANGE

Q5PERMIT

Q5CHANGE

Q5INITCH

Q5DEFINE

Q5PERMIT

Q5DCDMSC

Q5ENDPAR
Q5READ
Q5WRITE

60459410 H

Table B-2. System Utility Error Messages (Sheet 18 of 80) I
------,------r-------.

Sever- Error
ity Code

F 1401

F 1402

w 1403

F 1404

F 1405

w 1406

w 1407

w 1408

60459410 H

Message

NO I/O BUFFER SPECIFIED
FOR FILE filename

FILE filename DOES NOT
EXIST

BAD "RSN" SPECIFIED

OVERLAPPING I/O REQUESTS
TO SAME ADDRESS, FILE
filename

FILE filename NOT CURRENTLY
OPEN

FILE filename NOT CURRENTLY
OPEN

INCONSISTENT 'NAB VALUE',
FILE IS CLOSED

FILE filename IS OPEN TO
ANOTHER PROGRAM OF THIS
USER

Significance

The user did not specify an I/O
buffer in the file's FIT or on
the I/O request.

SIL cannot perform the requested
file function because the specified
file does not exist.

The user specified a request serial
number that does not identify a
pending I/O request. To obtain
the number assigned to the request,
specify the RSN= parameter on the
QSREAD or QSWRITE call.

The user attempted two or more I/O
requests to the same address on
the file without waiting for
completion. Check the I/O for the
completion before issuing multiple
requests.

The user has not opened the
specified file for I/O. Issue
a QSOPEN call specifying the file.

The user attempted to close a
file that is not open for I/O.

The relative bit address, maintained
by SIL, of the next byte to be
written in the file, did not corre­
spond to that maintained by the
system at the block level. The file
is closed. Consult an analyst.

Because the specified file is
open to another program executing
under this user number, SIL can
close the file for this program,
but cannot destroy or give the file.

Issuing
Routine

QSGETN
QSGETP
QSPUTN
QSPUTP
QSREAD
QSSKIP
QSWRITE

QSCHANGE
QSOPEN
QSPURGE
QSRETURN

QSCHECK

QSCHECK

QSENDPAR
QSGETN
QSGETP
QSPUTN
QSPUTP
QSREAD
QSREWIND
QSSKIP
QSTRECOV
QSWRITE

QSCLOSE

QSCLOSE

QSCLOSE

B-43

I Table B-2. System Utility Error Messages (Sheet 19 of 80)

Sever- Error
ity Code Message

F

F

F

F

w

F

F

B-44

1409

1411

1412

1413

BUFFER SIZE OUT OF BOUNDS
FOR FILE filename

LARGE-PAGE BUFFER FOR FILE
filename IS GREATER THAN
128 *24 BLOCKS

ILLEGAL SKIP ON U-TYPE FILE
filename

SKIP FORWARD ILLEGAL. LAST
OP. WAS WRITE ON FILE
filename

1414 BEGINNING OF INFORMATION
ENCOUNTERED, FILE filename

1415 SKIP OF GROUPS ILLEGAL FOR
F-TYPE FILE, NAME=filename

1416 EOF ENCOUNTERED ON FILE
filename

Significance
Issuing
Routine

The I/O buff er length must fit in 24 Q50PEN
pages and be at least 1 block long. Q5CHECK
If the user is using the maximum Q5READ
buffer length of 24, the number of Q5WRITE
blocks per page, the buffer must be
on a page boundary. Correct the
buff er size.

The I/O buffer length must fit in 24
pages and be at least 1 block long.
If the user is using the maximum
buffer length of 24, the number of
blocks per page, the buffer must be
on a page boundary. Correct the
buffer size.

SIL cannot skip logical parti­
tions (records, groups or files)
on a U format file. It can skip
physical blocks.

The user cannot issue a Q5SKIP
call to skip forward on a file
when the last operation on the
file was a write operation. The
user can request a skip backward.

SIL cannot skip further backward
as it has reached the beginning
of information for the file.

The F file format does not allow
skipping by groups because group
delimiters do not exist in F
format.

SIL has read to the end of the
file.

Q5CHECK
Q50PEN
Q5READ
Q5WRITE

Q5SKIP

Q5SKIP

Q5SKIP

Q5SKIP

Q5CHECK
Q5GETN
Q5GETP
Q5READ
Q5SKIP
Q5WRITE

60459410 J

Sever- Error
ity Code

w 1417

F 1421

F 1422

F 1423

F 1424

F 1425

w 1427

F 1428

60459410 J

Table B-2. System Utility Error Mess.ages (Sheet 20 of 80)

Message

STATUS OF LAST I/O NOT
CHECKED FOR FILE filename

FILE filename NOT IMPLICITLY
OPEN

FILE filename FUNCTION
ABORTED BY THE STATION
OPERATOR

VIRTUAL FILE filename CANNOT
BE LESS THAN 2 PAGES

FILE filename IS STILL OPEN

FILE filename DOES NOT EXIST
OR IS NOT ATTACHED

FILE filename IS ALREADY
OPEN

IMPLICIT MODE REQUIRED WITH
MODDROP ON FILE filename

Significance

The user did not check the status
returned by the last I/O operation.
If the QSREAD or QSWRITE call did
not specify the WAIT parameter, a
QSCHECK call must check its status.
If the QSREAD or QSWRITE call did
specify the WAIT parameter, it must
also specify the STATUS parameter
indicating the variable to which
status is returned.

The user cannot issue a QSMAPIN
or QSMAPOUT call for the specified
file because it has not been
opened for implicit I/O.

The station operator aborted
the function being performed on
the specified file. If needed,
request an explanation from the
station operator.

The user cannot create a
controllee file shorter than
two small pages or reduce an
existing controllee file to
less than two small pages.

SIL cannot perform the file
request because the file is
open to another task. Try
again later.

SIL (or TASKATT) cannot perform
the requested operation on
an unattached permanent file or
a file that does not exist.
The user must attach,
define, or request the file.

SIL cannot open the file because
it is already open.

The caller specified the MODDROP
parameter without specifying the
IMP parameter to open the file
for implicit I/O. Specify the
IMP parameter and try again.

Issuing
Routine

QSREAD
QSWRITE

QSMAPIN
QSMAPOUT

QSCHECK
QSENDPAR
QSREAD
QSSKIP
QSWRITE

QSDEFINE
QSREDUCE
QSRQUEST

QSPURGE
QSREDUCE
QSRETFIT
QSRETURN

QSCHANGE
QSGIVE
Q50PEN
QSPERMIT
Q5REDUCE
Q5ROUTE
TASKATT

Q5GETFIL
Q50PEN

Q5GETFIL
QSOPEN

B-45

I

I
Sever- Error
ity Code

F 1429

F 1430

F 1432

F 1433

F 1434

F 1435

w 1436

F 1437

F 1438

B-46

Table B-2. System Utility Error Messages (Sheet 21 of 80)

Message

filename MUST BE A VIRT.
CODE FILE TO CHANGE THE
DROPFILE LEN.

FILE filename NOT OPEN
FOR EXPLICIT I/O

NO WSA= DEFINED FOR FILE
filename

WSA LOCATION NOT IN VALID
RANGE FOR FILE filename

END OF INFORMATION ENCOUNT­
ERED ON FILE filename

RECORD LENGTH OUTSIDE
MIN/MAX RANGE FOR FILE
filename

DATA QUANTITY EXCEEDS WSL
FOR FILE filename

GET FOLLOWS OUTPUT
OPERATION ON FILE filename

CONTROL WORD PARITY ERROR
ON FILE filename

Significance

SIL cannot change the drop file
length when the file is a
physical data file. Remove the
DFLEN= parameter from the
Q5CHANGE call.

Either the file is not open or
it is open for implicit I/O.

The user cannot perform explicit
I/O by logical partitions without
specifying a working storage area
for the file.

The memory address for the WSA is
in the register file area or in
the virtual system range.

SIL either attempted to read past
the end of the file or attempted
to write past the maximum length
of the file. If the file is a
direct access file, ensure that
the specified record number is
correct.

SIL transferred a record shorter
or longer than the range of record
lengths specified by the mnr and
mxr fields in the FIT.

The length of the partition
requested exceeds the working
storage area length. SIL
truncated the partition,
discarding the excess data.

The user cannot issue a QSGETN or
QSGETP call for the specified file
because the last operation on the
file was an output operation.

Issuing
Routine

QSCHANGE

QSENDPAR
QSGETN
QSGETP
QSPUTN
QSPUTP
QSREAD
QSWRITE

QSGETN
QSGETP
QSPUTN
QSPUTP

QSPUTN
QSPUTP
QSPUTB

QSCHECK
QSENDPAR
QSGETN
QSGETP
QSPUTN
QSPUTP
QSREAD
QSSKIP
QSWRITE

QSGETN
QSGETP
QSPUTN
QSPUTP

QSGETN

QSGETN
QSGETP
QSREAD

SIL read a control word with a odd QSGETN
parity error. This could indicate QSGETP
that the file is not a W format file. QSSKIP

60459410 J

Sever- Error
ity Code

F 1439

w 1440

w 1441

F 1442

F 1443

F 1444

F 1445

w 1448

F 1450

w 1451

60459410 J

Table B-2. System Utility Error Messages (Sheet 22 of 80)

Message

CONTROL WORD FIELD ERROR
ON FILE filename

END OF RECORD ENCOUNTERED
ON FILE filename

END OF GROUP ENCOUNTERED
ON FILE filename

WRITE NOT ALLOWED ON FILE
filename; NO WRITE ACCESS

PUT NOT ALLOWED AFTER EOF
ON FILE filename; R/U TYPE
RECORDS

PART=GROUP FOR RT=U or F
ILLEGAL; FILE filename

PART=GROUP FOR RMK NOT lF OR
lE ILLEGAL; FILE filename

MAX LENGTH OF FILE filename
LESS THAN REQUESTED LENGTH

NO SPACE IN FIT FOR ENTRY
FOR FILE filename

MXR EXCEEDED ON FIXED FILE
filename EXCESS DATA IGNORED

Significance

While checking the control word
linkage of the records within the
group, SIL read a control word
with a field error. Either the
control word was written incor­
rectly or the file does not
contain W format records.

While reading partial records,
SIL read the end of the current
record.

SIL has read to the end of the
group.

SIL cannot write on the specified
file because it was not opened
for write access.

SIL cannot write data after the
end of file in a U format file
because the U format does support
file delimiters.

SIL cannot read, write or skip
groups on the specified F or U
format file because the F and U
formats do not have group
delimiters.

The R record format does not
support groups if the record
mark character is not ASCII US
(#lF) or RS (#lE).

The user specified a file length
on the QSGETFIL call longer than
the maximum allowed file length.
Specify a smaller file length.

No more FITs can be generated
for this user number until one or
more existing FITs are discarded.

The working storage area length
(WSL) added to the length of the
data already written to the record
exceeds the fixed record length
(MXR). SIL transfers MXR charac­
ters and discards the excess data.

Issuing
Routine

QSENDPAR
QSPUTN
QSPUTP

QSGETP

QSGETN
QSGETP
QSSKIP

QSWRITE

QSPUTN
QSPUTP

Q5ENDPAR
Q5GETN
Q5GETP
Q5PUTN
Q5PUTP
Q5SKIP

QSGETN
Q5GETP

Q5GETFIL

Q5GENFIT

Q5PUTP

B-47

I

I
Sever- Error
ity Code

w 1452

F 1453

w 1454

F 1455

F 1456

F 1457

F 1458

B-48

Table B-2. System Utility Error Messages (Sheet 23 of 80)

Message

MXR UNSATISFIED ON FIXED
FILE filename DATA RECORDS
PADDED

CANNOT DEFINE CONNECTED
FILE filename

CANNOT CHANGE GIVEN
ATTRIBUTES FOR dt FILE
filename

CANNOT CREATE dt FIT FOR
FILE filename

GET PARTIAL RECORD FOR
CONNECTED FILE filename NOT
ALLOWED

GIVE NOT ALLOWED FOR
CONNECTED FILE filename

MAP OPERATION NOT ALLOWED
ON CONNECTED FILE filename

Significance

For Q5PUTN, the working storage
area length (WSL) is less than the
fixed record length (MKR). For
Q5PUTP, the WSL added to the length
of the data written to the record
is less than MKR. SIL pads the
record to MXR characters.

The name of a file connected to
a terminal was specified on a
define request. A connected file
is created with a REQUEST control
statement or a QSRQUEST call.

The user specified attribute
changes that cannot be performed
for the specified device type.
The invalid parameters are
ignored; the valid attribute
changes are performed.

The device type specified on the
generate FIT request is not the
same as the actual device type of
the file specified on the request.
Correct the file name or the
device type.

The name of a file connected to a
terminal was specified on a get
partial record request. The only
valid input request for a file
connected to a terminal is a
request for a full logical record
(Q5GETN).

The name of a file connected to a
terminal was specified on a give
file request. The user cannot
change the ownership of a file
connected to a terminal.

The name of a file connected to a
terminal was specified on a map
in or map out request. A file
connected to a terminal cannot be
mapped in or mapped out.

Issuing
Routine

QSENDPAR
QSPUTN
Q5PUTP

Q5DEFINE

QSCHANGE

Q5GENFIT

Q5GETP

Q5GIVE

Q5MAPIN
Q5MAPOUT

60459410 J

Sever- Error
ity Code

F 1459

F 1460

F 1461

F 1462

F 1463

F 1464

F 1465

F 1466

60459410 J

Table B-2. System Utility Error Messages (Sheet 24 of 80)

Message

INELIGIBLE TO OPEN CONNECTED
FILE filename AT THIS CHAIN
LEVEL

CONNECTED FILE filename
CANNOT BE OPENED IMPLICITLY

PUT OF PARTIAL RECORD FOR
CONNECTED FILE filename
NOT ALLOWED

Q5READ CALL FOR CONNECTED
FILE filename NOT ALLOWED

ROUTE NOT ALLOWED ON
CONNECTED FILE filename

CONNECTED FILE NOT ALLOWED
IN BATCH JOB

Q5WRITE CALL FOR CONNECTED
FILE filename NOT ALLOWED

ILLEGAL MESSAGE DETECTED
BY THE NAO/STATION

Significance

The name of a file connected to a
terminal was specified on an open
request from a controllee not at
level 2 of a controllee chain.
Only a task initiated by an inter­
active execute line can open a
connected file.

A file connected to a terminal
cannot be opened for implicit I/O.
Remove the IMP parameter from
the Q50PEN call.

The name of a file connected to
a terminal was specified on a put
partial record request. The only
valid output request for a file
connected to a terminal is a
request for a full logical record
(QSPUTN).

The name of a file connected to a
terminal was specified on a read
physical block request. The only
valid input request for a file
connected to a terminal is a
request for a full logical record
(Q5GETN).

The name of a file connected to a
terminal was specified on a route
file request. The user cannot
route a file connected to a
terminal.

A batch job cannot create a file
connected to a terminal. The
request to create a connected file
must be entered as an interactive
execute line.

The name of a file connected to a
terminal was specified on a write
physical block request. The only
valid output request for a con­
nected file is a request for a
full logical record (QSPUTN).

A NAD or peripheral station has
received an illegal message on a
mass storage explicit I/O request.

Issuing
Routine

QSGETFIL
QSOPEN

QSGETFIL
QSOPEN

QSPUTP

Q5READ

QSROUTE

Q5RQUEST

QSWRITE

Q5CHECK
Q5READ
QSWRITE

B-49

I

I Table B-2. System Utility Error Messages (Sheet 25 of 80)

Sever- Error
ity Code Message.

F

F

F

w

w

w

w

w

F

B-50

1467

1468

1469

1470

1471

1472

1473

FATAL DEVICE ERROR DETECTED
BY THE NAO/STATION

INVALID COMPRESSED BLANK
COUNT IN FILE filename

USER NOT VALIDATED FOR
TAPE USAGE

RPB - NOT APPLICABLE FOR
FILE filename

MPRU - NOT APPLICABLE FOR
FILE filename

FILE filename PARAMETERS
IGNORED - INCONSISTENT
WITH DT=device type

LABEL PARAMETERS IGNORED FOR
FILE filename

1474 LABEL BUFFER TOO SHORT FOR
FILE filename

1475 ILLEGAL USER LABELS
ENCOUNTERED FOR FILE
filename

Significance
....

A NAD or peripheral station has
received a fatal device error on
a mass storage explicit I/O request.

An error has occurred in expand­
ing blank compression information,
or in putting a #lB with an illegal
blank compression count. A blank
count number, reduced by the #30
bias, is less than zero and
therefore invalid.

The user has requested a tape; but
is not validated for tape access.

A records per block (RPB) value
was specified for a tape file
whose blocking type is not K
(record count blocking). The
RPB value is ignored.

An MPRU size value was specified
for a tape file whose tape format
is not V (variable). The MPRU
value is ignored.

The user specified parameters
for a nontape file operation that
are applicable to tape files only.
The tape parameters are ignored.

The user-specified label param­
eters for a file that is not an
ANSI standard labeled file. 'The
label parameters are ignored.

The specified label array length
is shorter than all labels to be
copied. Labels are copied to fill
the array.

The user-specified label array
contains invalid labels. The
valid label formats are shown in
appendix F of this manual.

Issuing
Routine

Q5CHECK
Q5READ
Q5WRITE

QSGETN
Q5GETP
Q5PUTN
Q5PUTP

Q5RQUEST

Q5CHANGE
Q5GENFIT

QSCHANGE
Q5GENFIT

QSCHANGE
QSCHECK
Q5GENFIT
Q50PEN
Q5READ
Q5RETURN
QSRQUEST
Q5SKIP
QSWRITE

Q5CLOSE

Q5CLOSE
Q50PEN
QSREELSW

Q5CLOSE
Q50PEN
Q5REELSW

60459410 J

Table B-2. System Utility Error Messages (Sheet 26 of 80)

Sever- Error
ity Code Message Significance

F

F

F

F

F

F

F

w

F

1476

1479

1482

IOER=code ENCOUNTERED ON
FILE filename

TAPE FILE filename DOES NOT
EXIST

HDRl LABEL NOT FOUND FOR
TAPE FILE filename

1483 ILLEGAL FSN FOR TAPE FILE
filename

1484 ILLEGAL COMBINATION OF
RT/BT FOR dt FILE filename

1485 FILEID/SEQNO NOT FOUND FOR
TAPE FILE filename

1486 BUFFER SIZE IS .LT. MPRU
FOR TAPE FILE filename

1487 ADO OPTION IGNORED FOR
CODED TAPE FILE filename

The tape I/O error corresponding
to the specified code has occurred
for the file. The error code
meanings are listed in table B-4.
To clear the tape error status,
call the QSCLIOER routine.

The specified tape file has not
been requested. A tape file can
be requested with a REQUEST con­
trol statement or a QSRQUEST call.

An attempt to open an ANSI labeled
tape file for read access could
not find a HDRl label on the tape.
Either the file is an unlabeled
file or it contains no data.

The specified file sequence number
(FSN) is invalid. Valid numbers
range from 1 through 9999.

The specified combination of
record type and blocking type
is invalid for the specified
device type. The valid combina­
tions for tape files are shown in
figure 9-2, QSCHANGE Call Format.

A HDRl label containing the speci­
fied file identifier and/or file
sequence number cannot be found
in the multifile set.

The specified buffer is smaller
than the MPRU size for the tape
file. Increase the buffer length.

The assembly/disassembly option
(ADO) is invalid if the data
conversion option (CONVERT) has
been selected. Remove either ADO
or CONVERT.

1488 BUFFER SIZE GREATER THAN 48 The specified buffer is more than
PAGES FOR TAPE FILE filename 48 pages long. Decrease the

buffer size.

60459410 J

Issuing
Routine

QSCHECK
QSCLOSE
QSGETFIL
QSOPEN
QSREAD
QSREELSW
QSSKIP
QSWRITE

QSGETFIL

QSOPEN

QSGETFIL
QSOPEN
QSRTPOS
QSTRECOV

QSGETFIL
QSOPEN

QSGETFIL
QSOPEN

QSGETFIL
QSOPEN
QSREAD

QSGETFIL
QSOPEN

QSREAD

B-51

I

I
Sever- Error
ity Code

F 1489

F 1490

F 1491

F 1492

F 1493

F 1494

F 1495

F 1496

F 1497

B,...52

Table B-2. System Utility Error Messages (Sheet 27 of 80)

Message

EOT ENCOUNTERED ON TAPE FILE
filename

CONVERSION DOES NOT MATCH
LABEL FOR TAPE FILE filename

NO VSN LIST SPECIFIED FOR
filename

MORE THAN 255 VSN'S
SPECIFIED FOR filename

ILLEGAL CONVERSION MODE
FOR filename

ATTEMPT TO READ PRU
LONGER THAN MPRU FOR
FILE filename

ILLEGAL DENSITY SPECIFIED
FOR filename

MULTIFILE SET filename
SHOULD BE ANSI - STD
LABELED

ILLEGAL VSN'S SPECIFIED FOR
filename

Significance

The I/O request has encountered
the end of the tape volume. The
I/O operation is terminated. At
this point, a Q5REELSW call could
write additional volume labels.
Another I/O request must be
processed to continue the I/O
operation on the next tape volume.

The specified character conversion
mode (CM) does not match the
character conversion mode used
to write the tape labels. Correct
the CM parameter or overwrite the
tape labels.

The tape file request did not
specify the tape volumes for the
file. Specify an array on the
VSNA= parameter that contains one
or more VSNs, one VSN per word.

The VSN list contains more than
255 VSNs. Decrease the number
of VSNs.

The only valid character conver­
sion modes are ASCII (AS) and
EBCDIC (EB). Correct the CM
specification.

The user attempted to read a PRU
longer than the MPRU size for the
file. Either decrease the number
or length of the LRUs read or
increase the buff er length.

The valid recording densities are
1600 cpi (PE) and 6250 cpi (GE).
Correct the density specification.

The tape requested is unlabeled
or nonstandard. A multifile set
must use ANSI standard labels to
delimit the files in the set.

One or more of the specified
VSNs is invalid. A valid VSN is
six characters long.

Issuing
Routine

Q5READ
Q5SKIP
Q5WRITE

Q5RQUEST

Q5RQUEST

Q5RQUEST

Q5RQUEST

Q5CHECK
Q5READ

Q5RQUEST

Q5LABEL

Q5RQUEST

60459410 J

Table B-2. System Utility Error Messages (Sheet 28 of 80)

Sever- Error
ity Code Message

F

F

F

F

w

w

w

1498 READ/SKIP iORWARD AFTER
WRITE ON FILE filename

1499 ATTEMPT TO WRITE PRU LONGER
THAN MPRU FOR FILE filename

1500

1501

1502

1503

1504

SUM OF LRU"'S GREATER
THAN BUFFER LENGTH
FOR FILE filename

FILE filename IS IN USE BY
ANOTHER JOB

FILE filename ALREADY EXISTS
AS A LOCAL FILE

POOL NAME poolname ALREADY
ATTACHED

FILE filename ALREADY
ATTACHED AS A PERMANENT FILE

60459410 J

Significance

The user attempted to reposition
the tape file forward after
writing on the file. A tape file
cannot be positioned beyond the
end of the file data.

The user attempted to write a PRU
longer than the MPRU size for the
file. Either increase the MPRU
size or decrease the amount of
data written.

The sum of the LRU lengths
in the LRU description array
is longer than the buffer
length. Either decrease the
number or length of the LRUs
written or increase the buffer
length.

SIL cannot attach the specified
file because it is currently
attached to another job in write,
append, or modify mode.

SIL cannot attach the specified
permanent file because a local
file with that name is currently
assigned to the job. If the
attach request was for all
unattached files belonging to
the user (Q5ATTACH,*), no filename
is returned; the characters 1 OR >
are returned in the filename
field.

SIL cannot attach the specified
pool because it is already
attached to the job.

SIL cannot attach the specified
permanent file because it is
already attached to the job.

Issuing
Routine

Q5SKIP

Q5WRITE
Q5CHECK

Q5CHECK

Q5ATTACH

Q5ATTACH

Q5PATACH
Q5PREACC

Q5ATTACH

B-53

I

I

I Table B-2. System Utility Error Messages (Sheet 29 of 80)

Sever- Error Issuing
Routine ity Code Message Significance

F

w

F

F

F

F

F

w

F

F

B-54

1505

1506

1507

1508

1509

1510

FILE filename ALREADY EXISTS SIL cannot create a file with
or change a file's name to the
specified file name because a
file with that name already
exists.

POOL NAME pname IS NOT
ATTACHED

DUPLICATE POOL NAME pname

INVALID POOLNAME pname

INVALID USER NUMBER

UNABLE TO ATTACH ALL FILES

SIL cannot detach the specified
pool because it is not attached
to the job.

SIL cannot add the specified pool
name to the pool list because it
already exists in the pool list.

The specified pool name does not
conform to the pool naming
conventions (one through eight
characters, beginning with a
letter).

The user specified the input
queue manager user number on the
Q5GIVE call. To give a file to
the input queue manager, the user
must specify the !QM and ACCT=
parameters.

SIL could not attach one or more
of the files belonging to the
user number.

Q5CHANGE
Q5DEFINE
Q5RQUEST

Q5PDTACH

Q5PCREAT

Q5PATACH
QSPCREAT
QSPDESTR
Q5PERMIT
Q5PGRACC
Q5PREACC
QSPUSERL

QSGIVE

QSATTACH

1511 NO ROOM IN SYSTEM FOR ANY
MORE POOLS

The user attempted to create a Q5PCREAT

1512 POOL pname CANNOT BE
DETACHED BECAUSE OF OPEN
FILES

1515 CANNOT CREATE TAPE FILE
filename

1517 ILLEGAL USER NUMBER FOR
USER! FUNCTION ON FILE
filename

pool, but the system list of pools
(Q5POOLS) is full. Until a
PDESTROY is done on a pool, no
new pools can be created.

SIL cannot detach the specific pool Q5PDTACH
because there are files open from
the pool.

The user attempted to create a Q5RQUEST
tape file; tape files are not
supported by the current VSOS
version.

The user number does not have
User-1 privileges, but was
attempting a User-I function
on the specified file.

Q5CLOSE
Q50PEN

60459410 J

Table B-2. System Utility Error Messages (Sheet 30 of 80)

Sever- Error
ity Code Message

F

F

F

F

F

F

F

F

F

1518

1519

CANNOT PRIVILEGE OPEN
ATTACHED FILE filename

VIRTUAL ADDRESS OVERLAP
ON FILE filename

1521 FILE filename NOT AT EOI IN
APPEND MODE

1522 UNABLE TO PROCESS FILE
filename, TOO MANY ACTIVE
FILES

1523 NEW FILENAME IS INVALID

1524 CANNOT CREATE FILE WITH
HIGHER SECURITY LEVEL

1525 SECURITY LEVEL OF FILE
filename TOO HIGH

1526 USER DIRECTORY OR POOL WAS
NOT FOUND FOR FILE filename

1529 FILE filename NOT OPENED;
NO ROOM IN USER TABLE

60459410 J

Significance

A nonprivileged user attempted
a privileged open.

Either the user specified an area
of virtual space to be mapped in
to the specified file that is
already mapped in to another file
or specified an area to be mapped
out that is not mapped in to the
drop file. Check that the array
was properly specified on GROS
parameter of LOAD statement.

The caller attempted to write
on a file that is open for append
access but is not positioned at
the end of the file data. Reposi­
tion the file at its end and try
again. (Read access permission is
required to position the file.)

SIL cannot create or open the
specified file because 70 files
(the operation system limit) are
already active for this task.

The new filename specified in the
Q5CHANGE call is invalid.

A call to create a file specified
a security level greater than the
security level of the calling
task. Request a lower security
level for the new file.

If the call attempted to open the
file, the security level of the
file is higher than the maximum
security level allowed the caller.
If the call attempted to give the
file to a pool or to another user,
the security level of the file is
higher than the maximum security
level allowed the pool boss or
the other user.

The owner of filename was not found
in the user directory or poollist.

The system cannot enter the speci­
fied file in the user activity
table. Consult a systems analyst.

Issuing
Routine

Q50PEN

Q5MAPIN
QSMAPOUT

Q5PUTN
QSPUTP
Q5WRITE

Q5DEFINE
Q50PEN
Q5RQUEST

Q5CHANGE

Q5DEFINE
Q5RQUEST

QSGIVE
Q50PEN

Q50PEN
Q5GETFIL

Q50PEN

B-55

I

I

I Table B-2. System Utility Error Messages (Sheet 31 of 80)

Sever- Error
ity Code Message

F

F

F

F

F

F

F

F

B-56

1531 UNABLE TO DESTROY POOL
pname

1532 SELECT=P IS REQUIRED WHEN
DEVICE=O IS SPECIFIED

1533 DEV=O AND VSN= PARAMETERS
ARE MUTUALLY EXCLUSIVE

1536 MASS STORAGE FILE INDEX
TABLE ENTRY NOT FOUND

1537 NOT ENOUGH ROOM IN
DROPFILE

1538 CANNOT MAPIN FILE
filename AT VIRTUAL
PAGE ZERO

1541 FILE INDEX COPY FOR FILE
filename IS OUT OF BOUNDS

1542 CANNOT ATTACH
POOL pname - FILE
INDEX IS FULL

Significance

The user cannot destroy the
specified pool for one of the
following reasons:

• The user is not the
pool boss.

• Another job has the pool
attached.

• Files still exist that
belong to the pool.

The user has selected DEVICE=O but
has not selected SELECT=P

The user has selected DEVICE=O and
has specified the VSN parameter.
These parameters should not both
be specified.

File was not found in system
file index table. Contact a
systems analyst.

The user can map no more virtual
space into the drop file.

The user attempted to map virtual
space beginning at the first page
(virtual page zero). Virtual page
zero is reserved for the register
file. The user can begin to map
space at the second page (virtual
page one).

The user specified an array con­
taining the File Index entry that
is outside the virtual address
space the user is permitted to
access.

Other users must destroy some of
their files or log off to free
space in the file index. Reenter
the PATTACH command to attach POOL.

Issuing
Routine

Q5PDESTR

DUMPF

DUMPF

Q5MAPIN

Q5MAPIN

Q5MAPIN

Q50PEN

Q5PATACH

60459410 J

Table B-2. System Utility Error Messages (Sheet 32 of 80) I
------.---~--------------------.

Sever- Error
ity Code

F 1543

F 1544

F 1545

w 1546

F 1547

F 1548

F 1549

F 1551

F 1553

60459410 J

Message

FILE CURRENTLY IN USE BY A
PRIVILEGED TASK

CANNOT ATTACH pname,
ALREADY ATTACHED TO 4
POOLS

CANNOT ATTACH POOL pname -
USER HAS NO ACCESS

USER IS NOT THE POOL BOSS
FOR POOL FILE filename

USER IS NOT THE POOL BOSS
FOR POOL pname

NO READ ACCESS SPECIFIED
FOR FILE filename

DATA EXCEEDS USER SPECIFIED
LENGTH OF BUFFER

MASS STORAGE ADDR+LENGTH
EXCEEDS LENGTH OF FILE
filename

A VIRTUAL ADDRESS OF FILE
filename NOT ON PAGE
BOUNDARY

Significance

You have specified WAIT=N or an
access permission of write, modify,
or append on an ATTACH or Q50PEN
which cannot access the file because
a system utility has the file open.
Try again later or change the access
permission.

The job has four pools attached
and so cannot attach another pool.
To attach the specified pool,
detach one of the attached pools.

The pool boss for the specified
pool has not granted pool access
to this user number. Request
pool access from the pool boss.

The user cannot perform the
requested file function because
he is not the pool boss of the
pool that owns the file. Check
that the correct file name is
specified on the call.

The user attempted to perform a
pool management function for a
pool for which he is not the
pool boss. Check that the
correct pool name is specified
on the call.

The user cannot map in a file
that is not opened for read access.

The buffer specified on the call
is not large enough to hold all
the pool list entries. Increase
the size of the buffer.

The virtual region length starting
at the specified mass storage
block exceeds the length to which
the file can extend.

The specified virtual address is
not on a page boundary. Correct
the virtual address so that it is
a multiple of the page size.

Issuing
Routine

Q5ATTACH
Q50PEN

Q5PATACH

Q5PATACH

Q5PERMIT
Q5PURGE

QSGIVE
QSPDESTR
QSPGRACC
Q5PREACC

Q5MAPIN

Q5POOLS

Q5MAPIN
Q5MAPOUT

Q5MAPIN
Q5MAPOUT

B-57

I
Sever- Error
ity Code

F 1560

F 1561

F 1562

F 1565

F 1566

F 1570

B-58

Table B-2. System Utility Error Messages (Sheet 33 of 80)

Message

FUNCTION FAILED FOR FILE
filename; BOUND IMPLICIT
MAP FULL

CANNOT PERFORM FUNCTION ON
FILE filename; PAGES STILL
LOCKED IN

SPACE UNDEFINED AT MAPOUT
FOR FILE filename

INCORRECT LENGTH OF VIRTUAL
REGION FOR FILE filename

DROP FILE MAP FULL

ERROR IN MODIFYING THE PFI
ENTRY FOR FILE filename

Significance

The user cannot map another
virtual address range into the
specified file without mapping
out a mapped in range or combin­
ing two mapped in ranges.

SIL cannot map out the virtual
address range because it is
-currently peforming implicit I/O
from that region. If the user is
nonprivileged, this message could
indicate a system error. Consult
a systems analyst.

SIL cannot map out the virtual
address range because that range
is not mapped to the specified file.

The user specified a longer virtual
address range to be mapped out
than the range originally mapped in.

SIL cannot map out another virtual
address range to the drop file.

SIL encountered an error while
attempting to modify the PFI
entry for the file filename. Try
again; if the error reoccurs,
notify a systems analyst.

Issuing
Routine

Q5MAPIN
Q5MAPOUT
QSOPEN

QSMAPOUT

Q5MAPOUT

Q5MAPOUT

Q5CLOSE
QSGETFIL
Q5MAPOUT

Q50PEN
QSGIVE

60459410 J

Sever- Error
ity Code

F 1580

60459410 J

Table B-2. System Utility Error Messages (Sheet 34 of 80)

Message

MULTIPLE STATION (SERR)
ERROR CODES; VALUE=value

Significance

The NAD detected more than one
error condition. SIL combined the
codes for the error conditions,
using inclusive OR operations to
form the value in the message.
Each bit set indicates an error
condition. The hexadecimal
values are as follows:

Value Condition

1 Device not ready.

2 Transmission parity
error.

10

40

200

400

800

End of file encountered.

Disk channel failed.

Mass storage position­
ing error.

Operator aborted
function.

File extension error.

Issuing
Routine

Q5REWIND
Q5SKIP

B-59

I

I Table B-2. System Utility Error Messages (Sheet 35 of 80)

Sever- Error
ity Code Message

F

F

F

F

F

F

F

F

B-60

1586

1589

CANNOT CHANGE REQUESTED
ATTRIBUTE FOR FILE filename

DEVICE NOT READY FOR FILE
filename

1596 ERROR IN POSITIONING MASS
STORAGE DEVICE FOR FILE
filename

1598

1604

1605

1606

1615

CANNOT PERFORM FUNCTION ON
FILE filename - I/O CHANNEL
FAILED

FATAL I/O ERROR ON FILE
filename PACK packname

SMALL AND LARGE PAGES
IN THE BUFFER.

BUFFER ALREADY IN USE

ILLEGAL LABEL FOR TAPE
FILE filename

EXIST

Significance

File filename is a tape file and
the requested attribute change is
valid only for mass storage files.

The device on which the file
resides is not ready to transfer
data. Request that the operator
ready the device.

Hardware error. Consult a
systems analyst.

SIL could not perform the
requested function because the
I/O channel failed. Consult a
systems analyst.

Hardware error. Consult a
systems analyst.

The buffer specified for I/O must
be either small or large pages but
not both.

The buffer is already in use for
explicit I/O. Call Q5CHECK to
determine if the I/O using this
buffer is completed.

In an attempt to verify the HDRl
label, labels were found in the
wrong order, there was an unknown
label, or there were illegal
characters in the HDRl label.

Issuing
Routine

Q5CHANGE

QSCHECK
QSREAD
QSWRITE

Q5CHECK
Q5READ
QSREWIND
Q5SKIP
QSWRITE

QSCHECK
QSREAD
QSWRITE

QSCHECK
QSREAD
QSWRITE

Q5CHECK
QSREAD
QSWRITE

QSREAD
QSWRITE

Q5LABEL

60459410 J

Table B-2. System Utility Error Messages (Sheet 36 of 80) I
~~~--~------r----

Sever- Error 
ity Code Message 

F 

F 

w 

F 

F 

F 

F 

F 

w 

w 

1616 DATA MAY BE LOST DUE TO 
FILE TRUNCATION 

1617 READ ONLY ACCESS REQUIRED 
FOR PARTIAL FILE ATTACH 

1618 SOME FILES ARE INCOMPLETE 
DUE TO DEVICE(S) DOWN 

1619 SOME FILE PARTS UNAVAIL­
ABLE FOR FILE 

1620 

1624 

1625 

1627 

1628 

1629 

ATTEMPT TO IMPLICITLY OPEN 
FILE filename WITH WRITE 
ONLY ACCESS 

LABEL CALL ILLEGAL FOR FILE 
filename 

MULTIFILE SET filename 
DOES NOT EXIST FOR FILE 
filename 

DUPLICATE FSN SPECIFIED 

NOT ALL TAPES TABLE ENTRIES 
RETURNED FOR TAPE FILE 
filename 

NOT ALL VSN ENTRIES 
RETURNED FOR FILE filename 

60459410 J 

Significance 

The file is only partially 
available. 

The job has requested something 
other than read-only access on 
a file for which not all segments 
are available. 

Rerun when devices are up. 

Not all segments of file are 
available. Try again when 
necessary devices are up. 

SIL cannot open a file for 
implicit I/O to which the user 
does not have read access. 

An HDRl label was specified for 
a file that is not an ANSI 
labeled file. Either change the 
label type of the file or access 
it as an unlabeled or nonstandard 
labeled file. 

The specified multifile set has 
not been requested. A REQUEST 
control statement or QSRQUEST 
call to request the multifile 
set must precede any label speci­
fication for a file in the set. 

The same FSN was specified a 
second time. Check previous· 
LABEL/QSLABEL calls. 

The array to which the tapes 
table entry was to be copied is 
less than 12 words. The entry 
is copied up to the length of 
the array. 

The VSN list array is not long 
enough for all VSNs in the VSN 
list. VSNs were copied up to the 
length of the array. 

Issuing 
Routine 

QSGETFIL 
QSOPEN 

AUDIT 
QSATTACH 
DUMPF 
QSOPEN 
ATTACH 

QSPATACH 
QSATTACH 

AUDIT 
PATTACH 
QSATTACH 
QSOPEN 
ATTACH 
DUMPF 

QSOPEN 

QSLABEL 

QSLABEL 

QSLABEL 

QSOPEN 

QSOPEN 

B-61 



I 
Sever- Error 
ity Code 

w 1630 

F 1633 

F 1635 

F 1637 

F 1639 

F 1640 

F 1644 

F 1650 

F 1653 

F 1679 

B-62 

Table B-2. System Utility Error Messages (Sheet 37 of 80) 

Message 

SPECIFIED ACCESS INVALID 
FOR TAPE FILE filename 

SUM OF LRU'S .GT. BUFFER 
LENGTH FOR TAPE FILE 
filename 

'FA' MISMATCH ON FILE 
filename 

REQUESTING TAPE FILE 
filename RESULTS IN 
OVERCOMMITMENT 

ILLEGAL REEL NUMBER FOR 
TAPE FILE filename 

ILLEGAL SECTION NUMBER FOR 
TAPE FILE filename 

POOL NAME pname IS NOT 
DEFINED OR CALLER NOT POOL 
MEMBER 

BUFFER NOT ON 512-WORD PAGE 
BOUNDARY FOR FILE filename 

BUFFER FOR FILE filename IN 
UNASSIGNED VIRTUAL SPACE 

NEW LENGTH FOR FILE 
filename GREATER THAN 
EXISTING FILE 

Significance 

Append, modify, and execute 
access modes are invalid for a 
tape file. Only read and write 
access modes are valid. 

The sum of LRU sizes specified 
in the LRU array exceeds the 
buffer length for this file. 
Increase the buffer length, or 
decrease the sum of the LRU sizes. 

The file access field in the tape 
label does not match the FA param­
eter specified. Correct the 
parameter. 

Correct the NT parameter in 
resource. 

The system tapes table entry 
contains an invalid reel number. 

The system tapes table entry 
contains an invalid section number. 

The user cannot give a file to 
the pool either because the pool 
is not attached or because the 
pool boss has not granted the 
user access to the pool. 

The I/O buff er for the specified 
file is not on a page boundary. 
The user must specify the LOAD 
utility parameter to load the 
buffer on a page boundary. 

A possible extension to a file 
mapped in for implicit I/O could 
overlap an explicit I/O buffer. 
Group the common blocks contain­
ing the explicit I/O buff er at a 
higher address so it cannot over­
lap a file extension. 

The user specified the reduced 
file length to be be greater than 
the existing file length. 

Issuing 
Routine 

Q5PERMIT 

Q5WRITE 

Q50PEN 

Q5RQUEST 

Q5RTPOS 
Q5TRECOV 

Q5RTPOS 
Q5TRECOV 

Q5GIVE 

Q5GENFIT 
Q50PEN 
Q5READ 
Q5SETFIT 
Q5WRITE 

Q5CHECK 
Q5READ 
Q5WRITE 

Q5PERMIT 
Q5REDUCE 

60459410 J 



Sever- Error 
ity Code 

F 1680 

F 1682 

F 1683 

F 1685 

F 1686 

F 1687 

F 1688 

F 1689 

F 1690 

60459410 H 

Table B-2. System Utility Error Messages (Sheet 38 of 80) 

Message 

FILE filename ALREADY EXISTS 
AT DESTINATION 

UNDEFINED USER NUMBER 
usernum 

OUTPUT FILE filename 
IMPROPERLY NAMED 

FUNCTION FAILED ON FILE 
filename USER NOT PRIVILEGED 

FILE filename IS A CONTROL­
LEE OR DROPFILE 

DISK IS LOGICALLY OFF FOR 
FILE filename 

FUNCTION ON FILE filename 
WOULD EXCEED FILE SPACE 
LIMIT 

VRI= NOT VALID FOR NON-CODE 
FILE filename 

FILE filename IS IN USE 

Significance 

The user cannot give the specified 
file as requested because the 
destined owner (another user, a 
pool, or the public file list) 
already has a file with that name. 

The user specified a nonexisting 
or invalid user number. 

Print file names must be in the 
format Pnnxxxxx where nn is two 
digits indicating the position 
of the file within a family of 
print files and xxxxx is the 
family name. 

The DUMP parameter on Q5CLOSE can 
be specified only by a privileged 
user. Remove the parameter. 

SIL cannot transfer ownership of 
a controllee file or a drop file. 

The disk on which the file resides 
is not currently available to the 
system. Ask the operator to logic­
ally turn on the disk. 

SIL did not create a local file 
or give a file as requested by 
the user because the file space 
of the user would be exceeded. 

The user cannot specify a variable 
rate index for a data file. 

SIL cannot perform the file 
request because the file is open. 
Close the file and try again. 

Issuing 
Routine 

Q5GIVE 

Q5ATTACH 
Q5CHANGE 
Q5GIVE 
Q5PERMIT 

Q5GIVE 

Q5CLOSE 

Q5GIVE 

Q5DEFINE 
Q5GIVE 
Q50PEN 
Q5PURGE 
Q5RETURN 
QSRQUEST 
Q5ATTACH 
Q5CHANGE 
QSROUTE 

Q5DEFINE 
Q5GIVE 
QSRQUEST 

Q5GIVE 

QSCHANGE 
Q5GIVE 
Q5PURGE 
Q5RETURN 
Q5ROUTE 

B-63 

I 



I 

I 

Table B-2. System Utility Error Messages (Sheet 39 of 80) 

Sever- Error 
ity Code Message 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

B-64 

1691 

1692 

1693 

1694 

1700 

1701 

1702 

USER filename IS NOT OWNER 
OF FILE 

INVALID ACCOUNT IDENTIFIER 

ILLEGAL MASTER PROJECT 
NUMBER 

FILE filename is ATTACHED 
BY ANOTHER JOB 

NO DISPOSITION SET FOR 
FILE filename 

ILLEGAL DISPOSITION CODE xx 

ILLEGAL SITE IDENTIFIER 
site, OR SITE NOT LOGGED IN 

1704 NO ROOM FOR USER TABLE, 
FILE! OR FST ENTRIES 

1707 LOGICAL FILE ADDRESS 
OVERLAP 

1708 ERROR IN EXTENDING FILE 

Significance 

The user cannot perform the 
requested file function because he 
is not the owner of the file. 

The account identifier specified 
is not a valid account for the user. 
Correct the account identifier. 

The master project number speci­
fied does not consist of one to 
three alphanumeric characters. 
Correct the MPN. 

Issuing 
Routine 

QSCHANGE 
QSGIVE 
QSPERMIT 
QSPURGE 
QSREDUCE 
QSROUTE 

QSGETUID 
QSLFIPOL 
QSLFIPRI 
QSLFIPUB 
QSCHANGE 

QSCHANGE 

The user cannot purge the file until QSPURGE 
all jobs which have the file 
attached have completed. 

To route a file, the user must 
specify a disposition code for 
the file using the DC= parameter. 

SIL does not recognize the speci­
fied disposition code. 

SIL either does not recognize the 
site identifier or the specified 
site is not logged in to the system. 

The user activity table or the 
FILEI or FST system tables have no 
more available space at this time. 
This is usually due to a very 
heavy system load. Try again 
at a time when the system 
load is lighter. 

Mapping addresses overlap; change 
the addresses. 

A system error has occurred during 
file extension. Try using another 
file on a different device set. 

Q5ROUTE 

QSGETFIL 
QSROUTE 

QSROUTE 

QSDEFINE 
QSCHANGE 
QSPERMIT 

QSMAPIN 
QSMAPOUT 

QSREAD 
QSWRITE 
QSCHECK 
QSMAPIN 
QSMAPOUT 

60459410 J 



Sever- Error 
ity Code 

F 1709 

F 1710 

F 1711 

F 1712 

F 1713 

F 1716 

F 1718 

F 1719 

F 1720 

60459410 H 

Table B-2. System Utility Error Messages (Sheet 40 of 80) 

Message 

FILE LENGTH EXCEEDS 
TARGET USER'S OR POOL'S 
ALLOWED MAXIMUM 

FILE LENGTH EXCEEDS USER'S 
ALLOWED MAXIMUM 

NO MASS STORAGE SPACE FOR 
FILE filename 

OPERATOR-INITIATED ERROR FOR 
FILE filename 

STANDBY JOB CANNOT 
REQUEST A TAPE FOR FILE 
filename 

CANNOT FIND DISK PACK pack 
FOR FILE filename 

ATTEMPT TO EXCEED MAXIMUM 
ALLOWABLE FILE SIZE FOR 
FILE filename 

WRITE BEYOND EOI IN MODIFY 
MODE FOR FILE filename 

CANNOT LOCATE THE USER OR 
POOL, owner, FOR FILE 
filename 

Significance 

The file to be given to user or 
pool exceeds maximum file size 
for that recipient. 

The user attempted to create or 
extend a file larger than the user's 
validated file size. 

The system has no mass storage 
space available for creating or 
extending the specified file. 

The operator entered a command 
preventing creation of the speci­
fied file. 

The job, running at too low a 
priority, requested a tape file. 
Increase the priority of the job 
and rerun. 

SIL cannot find an on-line disk 
whose name matches the pack name 
specified on the QSDEFINE or 
QSRQUEST call. 

The user specified a file length 
on the QSDEFINE or QSRQUEST call 
that exceeds the maximum length 
allowed by the installation. 

The user specified a write opera­
tion that would extend past the 
existing end of the file for a 
file opened for modify access. 
In modify mode, the file cannot 
be lengthened. 

A privileged user specified an 
array on the QSDEFINE call con­
taining a file index entry, but 
the entry contains an unknown user 
number or pool name. 

Issuing 
Routine 

QSGIVE 
GIVE 

DEFINE 
QSRQUEST 
QSGETFIL 
QSWRITE 
REQUEST 
QSDEFINE 

QSDEFINE 
QSRQUEST 
QSGETFIL 
QSWRITE 
QSCHECK 
QSMAPIN 

QSDEFINE 
QSRQUEST 
QSGETFIL 

QSRQUEST 

QSDEFINE 
QSGETFIL 
QSRQUEST 

QSDEFINE 
QSRQUEST 

QSENDPAR 
QSPUTN 
QSPUTP 
QSWRITE 

QSDEFINE 

B-65 

I 



I 
Sever- Error 
ity Code 

F 1721 

F 1722 

F 1723 

F 1724 

F 1725 

F 1726 

F 1727 

B-66 

Table B-2. System Utility Error Messages (Sheet 41 of 80) 

Message 

TAPE FILE filename CANNOT 
BE OPENED IMPLICITLY 

WITH FILE filename NUMBER 
OF FILES EXCEEDS LIMIT FOR 
USER 

RHF filename CAN NOT BE 
ROUTED 

ILLEGAL OPERATION ON FILE 
filename 

FIT ALREADY EXISTS FOR FILE 
filename 

ACCESS VIOLATION ON FILE 
filename 

ILLEGAL ACCESS PERMISSIONS: 

Significance 

The IMP parameter cannot be speci­
fied for a tape file. Eliminate 
the parameter. 

SIL cannot create or give the 
specified file because the number 
of files belonging to the user 
number would exceed the limit set 
for the user number. 

The QSROUTE call specified a file 
with the RHF communication type. 
To route an output file froma job 
submitted via RHF, use the MFQUEUE 
control statement. 

The requested operation (via SIL) 
cannot be performed on the file 
residing on this device. For 
example PURGE cannot be performed 
on a tape file. Eliminate the 
operation or change the device 
type for the file. 

The specified file name is 
already associated a FIT so the 
user cannot generate another FIT 
for that file. 

The request failed because the 
caller does not have the required 
access permission. If possible, 
add the access permission to the 
access permission set for the file 
and try again. 

The caller specified an invalid 
access permission identifier. 
Correct the access permission 
set specification and try again. 

Issuing 
Routine 

QSOPEN 

QSDEFINE 
QSGIVE 
QSRQUEST 

QSROUTE 

QSCLIOER 
QSGIVE 
QSREDUCE 
QSROUTE 
QSREELSW 
QPURGE 

QSGENFIT 
QSRQUEST 

QSATTACH 
Q5ENDPAR 
Q5GETN 
QSGETP 
Q5INIT 
Q5INITCH 
Q50PEN 
Q5PUTN 
QSPUTP 
QSREAD 
QSSKIP 
QSWRITE 

QSOPEN 
QSPERMIT 

60459410 J 



Sever- Error 
ity Code 

F 1728 

F 1730 

F 1731 

F 1732 

F 1733 

F 1735 

F 1736 

F 1737 

w 1738 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 42 of 80) 

Message 

ACS NOT GIVEN - ACCESS 
DIRECTORY IS FULL FOR FILE 
filename 

ACCESS CONFLICT WITH ANOTHER 
JOB ON FILE filename 

USER P ARAM OR USERNO 
INVALID FOR FILE filename 

CANNOT PRIVILEGE OPEN 
LOCAL FILE filename 

CANNOT LOCATE VSN FOR 
TAPE FILE filename 

FILE filename IS 
INACCESSIBLE TO THIS 
SYSTEM RELEASE 

CONTROLLEE REQUIRES USER 
DYN/SHARED LIB 

CONTROLLEE MUST BE 
RELOADED 

CONTROLLEE USING WRONG 
LIBRARIES 

Significance 

The user cannot specify another set 
of access permissions because the 
file access directory entry for the 
file is full. If possible, delete 
a set of access permissions and 
try again. 

A privileged user's job attempted 
either to access a file in read 
mode with the file already open 
in write, append, or modify mode, 
or to access a file in write, 
append, or modify mode with the 
file already open. Wait until the 
file is available and try again. 

The caller specified the USER 
parameter on a call that specifies 
a local file. Remove the USER 
parameter or correct the file 
name and try again. 

Local files cannot be privileged 
opened. Use a nonprivileged 
open instead. 

One or more volumes described in 
the VSN descriptor list cannot 
be found in the system tables. 
Contact the site analyst. 

The user attempted to access a 
file which was created on a system 
that is incompatible with the 
current system. Consult a systems 
analyst. If possible, recreate 
the file on the current system. 
(Seen on systems being converted 
to system 2.2 release.) 

This controllee requires the user 
dynamic or system shared library 
to be active before it can execute. 

This controllee was loaded on a 
system prior to VSOS 2.2 and must 
be reloaded. 

The libraries the controller was 
loaded with are not available and 
different libraries have been 
linked. Make the original libraries 
available. 

Issuing 
Routine 

Q5PERMIT 

Q5ATTACH 
Q5GETFIL 
Q5INIT 
Q5INITCH 
Q50PEN 

QSPERMIT 

Q50PEN 

Q50PEN 

Q5ATTACH 
Q5GETFIL 
QSINIT 
QSINITCH 
QSOPEN 
QSPURGE 

QSINIT 
QSINITCH 

QSINIT 
QSINITCH 

Q5INIT 
QSINITCH 

B-67 

I 



I 

I 

Table B-2. System Utility Error Messages (Sheet 43 of 80) 

Sever- Error 
ity Code Message 

F 

F 

F 

F 

F 

w 

F 

F 

F 

F 

B-68 

1761 FA=A AND USER NUMBER 
MISMATCH ON FILE filename 

1762 VOLUME NOT AVAILABLE FOR 
FILE filename 

1763 ATTEMPTED WRITE ON 
UNEXPIRED TAPE FILE 
filename 

1764 TRIED TO WRITE ZERO 
LENGTH RECORD OF V-FMT 
TAPE FILE filename 

1765 INVALID OPERATION FOR 
THIS USER 

1766 DENSITY MISMATCH ON 
TAPE FILE filename 

1767 

1768 

1769 

1770 

READ-ONLY ACCESS WHILE 
BLANK LABELING TAPE 

"VA" MISMATCH ON TAPE 
VOLUME 

INTERACTIVE TAPE ACCESS 
NOT ALLOWED 

NON STANDARD LABEL USAGE 
NOT ALLOWED 

Significance 

While opening a labeled (ANSI 
standard) tape file, the HDRl 
label contains file accessibility 
character of A and the first six 
characters of the ownerid does 
not match the user number under 
which the open was attempted. 

For tape file (filename) there is 
a FILEI entry but no tape unit has 
been assigned to this file. 

The unexpired tape must be blank 
labeled before itcan be written on. 

An LRU containing zero data cannot 
be written on V format tape. 

Only privileged users can BLANK 
label a tape; this message indi­
cates that a nonprivileged user 
tried to BLANK label a tape. 

Tape file filename was requested 
with a density other than that 
read from the VOL! label for the 
VSN assigned. Request was com­
pleted normally. The density on 
the tape was used. 

User issued a direct QSRQUEST 
call to BLANK label a tape speci­
fying an access of read-only. 

The volume access field in the 
tape label does not match the 
VA parameter specified. Correct 
the parameter. 

Issuing 
Routine 

QSOPEN 

QSOPEN 
QSREELSW 
QSRQUEST 

QSOPEN 
QSREELSW 
QSWRITE 

QSCHECK 
QSWRITE 

QSRQUEST 

QSRQUEST 

QSRQUEST 

QSRQUEST 

The installation parameter to allow QSRQUEST 
interactive tape usage is set to 
zero at this site. 

The installation parameter to QSRQUEST 
allow nonstandard labels is set 
to zero at this site. 

60459410 J 

/ 

\ 



Sever- Error 
ity Code 

w 1771 

F 1772 

F 1773 

F 1800 

F 1801 

w 1802 

w 1803 

w 1804 

w 1805 

F 1810 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 44 of 80) 

Message 

"RU" NOT ALLOWED ON 
TAPE FILE filename 

ILLEGAL LABELS 
ENCOUNTERED WHILE 
BLANK LABELING TAPE 

TRIED TO WRITE TWO 
SUCCESSIVE TAPE MARKS 
ON FILE filename 

RECORD TYPE MUST BE FIXED 
FOR DIRECT FILE filename 

DEVICE TYPE MUST BE MASS 
STORAGE FOR DIRECT FILE 
filename 

ILLEGAL VALUE FOR OSTAT 
FIELD 

UNABLE TO CHANGE OSTAT 
FIELD INFILEI 

PARAMETER(S) IGNORED 
FOR LOCAL filename 

I/O BUFFERS OVERLAP 

NEGATIVE OR ZERO RECORD 
NUMBER FOR DIRECT FILE 
filename 

Significance 

The installation parameter to allow 
read unconditionally is set to zero 
at this site. Otherwise, the 
processing is completed normally. 

The labels (VOLl and HDRl) passed 
to blank label a tape did not 
conform to ANSI standards. 

On V-formatted tape file filename, 
user attemptedto write two succes­
sive tape marks. The second tape 
mark was not written to the tape. 

The user specified direct access 
file organization (SFO=D) and a 
record format other than F format. 
Change either the record format 
or the file organization. 

When creating a file, the user 
specified direct access file 
organization (SFO=D) and a device 
typeother than mass storage. 
Correct the device type or the 
file organization specification. 

The calling task attempted to 
change the OSTAT field of the 
field of the FILEI to an illegal 
value. 

The system was unable to change 
the OSTAT field in the FILEI. 

User specified SIO parameters 
when defining a local file. 
These parameters have been 
ignored. 

The address of the lower I/O buffer 
plus its length is greater than the 
higher buffer address. 

The specified record number is 
not greater than zero. Specify 
an integer greater than zero as 
the record number. 

Issuing 
Routine 

QSRQUEST 

QSRQUEST 

QSRQUEST 

QSCHANGE 
QSDEFINE 
QSGENFIT 
QSGETFIL 
QSOPEN 
QSRQUEST 

QSGETFIL 
QSRQUEST 

QSCHANGE 

QSCHANGE 

QSDEFINE 

QSGETFIL 
QSGENFIL 
QSSETFIT 
QSOPEN 

QSGETN 
QSGETP 
QSPUTN 
QSPUTP 

B-69 

I 



I 
Sever- Error 
ity Code 

F 1812 

F 1813 

F 1814 

F 1815 

F 1816 

F 6001 

F 6002 

F 6003 

F 6004 

F 6005 

B-70 

Table B-2. System Utility Error Messages (Sheet 45 of 80) 

Message 

OUTPUT FILE lfn NOT 
GIVEN - NO JDNS AVAILABLE 

INVALID LENGTH SPECIFIED 
ON Q5MAPIN CALL 

SPECIFIED JDN IS NOT 
CALLER-S JDN 

CALLING TASK IS NOT 
PRIVILEGED 

RECIPIENT IS NOT AN 
OUTPUT PROCESSOR 

TASKNAME GREATER THAN EIGHT 
CHARACTERS 

NO TASK NAME SPECIFIED 

EOF ON CONTROL CARD FILE 
BEFORE END OF COMMAND 

INVALID CHARACTER SPECIFIED 

COMMAND OVER 4096 CHARACTERS 
LONG 

Significance 
Issuing 
Routine 

The system has run out of available Q5GIVE 
JDNs. Wait for a few seconds and 
try again. If the problem persists, 
contact a site analyst. 

The user specified a value for Q5MAPIN 
the LEN= parameter that was 
zero, greater than the length in 
the map, or was not modulo page 
size. 

The specified JDN must match the Q5GIVE 
caller's JDN. Correct the problem 
and recompile. 

The task is not allowed to use a 
privileged parameter. 

The task specified FIJDN= but the 
user receiving the file is not 
the user number for an output 
processor. 

The first word of the control 
statement is longer than eight 
characters. The first word names 
the task to be executed. 

The control statement began with 
a period or right parenthesis. 

The end-of-file indicator was 
encountered before a period or 
right parenthesis terminating the 
control statement. Add a period 
or right parenthesis to the 
control statement. 

The control statement contai·ns a 
character that is not in the ASCII 
64-character subset. Refer to 
appendix A of this manual for the 
characters in the subset. 

The length of the control state­
ment is greater than 4096 charac­
ters. Check that a period 
terminates the statement. 

Q5GIVE 

QSGIVE 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

60459410 J 



Sever- Error 
ity Code 

F 6006 

F 6007 

F 6008 

F 6009 

F 6010 

F 6011 

F 6012 

F 6013 

F 6014 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 46 of 80) 

Message Significance 

PROCEDURE pname NOT IN FILE The specified file does not con-
f ilename tain the specified procedure. 

KEYWORD SPECIFIED ON BEGIN 
STATEMENT NOT IN PROC 
STATEMENT 

BEGIN STATEMENT - TOO MANY 
PARAMETERS SPECIFIED 

PROC STATEMENT - TOO MANY 
PARAMETERS SPECIFIED 

BEGIN STATEMENT - POSITIONAL 
KEYWORD AFTER NONPOSITIONAL 

MISSING PROC STATEMENT IN 
PROCEDURE FILE 

PROC STATEMENT - MISSING 
PNAME 

BEGIN STATEMENT - INVALID 
FILE NAME SPECIFIED 

REQUESTED PROCEDURE FILE 
ALREADY IN USE 

Check the PROC statement in the 
file for the correct procedure 
name. 

A BEGIN statement parameter uses 
a keyword that does not appear 
on the PROC statement. Correct 
the keyword to match a PROC 
statement formal parameter. 

More substitution values are 
specified on the BEGIN statement 
than formal parameters on the 
PROC statement. Remove the 
excess parameters or commas. 

More than sixteen formal param­
eters are specified on the PROC 
statement. Remove the excess 
parameters. 

A substitution value specified 
without a keyword appears after 
one or more parameters that 
specify keywords. Either specify 
the keyword with the substitution 
value or remove the keywords from 
the preceding parameters. 

The first statement of the pro­
cedure file is not a PROC state­
ment. Add a PROC statement to 
the beginning of the file. 

The PROC statement does not 
specify a procedure name. Insert 
a procedure name after the PROC 
verb. 

The file name specified on the 
BEGIN statement does not follow 
the rules for file names (one to 
eight letters and digits, beginn­
ing with a letter). Correct the 
file name. 

The procedure file is being 
executed by another job. Try 
again later. 

Issuing 
Routine 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

B-71 

I 



I 
Sever- Error 
ity Code 

F 6015 

F 6016 

F 6017 

F 6018 

F 6019 

F 6020 

F 6021 

F 6022 

F 6023 

F 6024 

F 6025 

B-72 

Table B-2. System Utility Error Messages (Sheet 47 of 80) 

Message 

PROC STATEMENT - END OF 
FILE ENCOUNTERED WHILE 
PROCESSING 

BEGIN STATEMENT - KEYWORD 
OVER EIGHT BYTES LONG 

PROC STATEMENT - KEYWORD 
OVER EIGHT BYTES LONG 

BEGIN STATEMENT - KEYWORD 
VALUE OVER EIGHT BYTES LONG 

ATTEMPT TO ACTIVATE MORE 
THAN MAXIMUM NUMBER OF 
PROCEDURES 

BEGIN STATEMENT - PARAMETER 
SPECIFIED MORE THAN ONCE 

PROC STATEMENT - PARAMETER 
SPECIFIED MORE THAN ONCE 

INTERNAL ERROR - PROCEURE 
FILE LEVEL ERROR 

INTERNAL ERROR - NO MESSAGE 
FOR STATUS CODE status 

BEGIN STATEMENT - PROCEDURE 
NAME TOO LONG 

PROC STATEMENT - PROCEDURE 
NAME TOO LONG 

Significance 

BATCHPRO read the end of the file 
while reading the PROC statement 
of the procedure. 

A keyword specified on the BEGIN 
statement is longer than eight 
characters. Correct the keyword. 

A formal parameter specified on 
the PROC statement is longer than 
eight characters. Correct the 
formal parameter. 

A substitution value specified on 
the BEGIN statement is longer 
than eight characters. Correct 
the value. 

A procedure file eight nested 
levels from the batch input file 
contains a BEGIN statement. Change 
the eighth level procedure so that 
it does not call another procedure. 

The BEGIN statement specifies more 
than one substitution value for a 
PROC statement formal parameter. 
Remove the redundant parameter. 

The PROC statement specifies the 
same formal parameter more than 
once. Remove the redundant 
parameter. 

Error in a system routine. Notify 
a systems analyst. 

Error in a system routine. Notify 
a systems analyst. 

The procedure name specified on 
the BEGIN statement is longer 
than eight characters. Correct 
the procedure name. 

The procedure name specified on 
the PROC statement is longer than 
eight characters. Correct the 
procedure name. 

Issuing 
Routine 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

60459410 J 



Sever- Error 
ity Code 

F 6026 

F 6027 

F 6028 

F 6029 

F 6030 

F 6031 

F 6032 

F 6033 

F 6034 

F 6035 

F 6036 

F 6037 

F 6970 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 48 of 80) 

Message 

BEGIN STATEMENT - ILLEGAL 
SYNTAX 

PROC STATEMENT - ILLEGAL 
SYNTAX 

FILE NAME filename CANNOT 
BE USED FOR PROC FILE 

ILLEGAL SET/IF OPERATOR 

ILLEGAL JCL VARIABLE 
NAME 

ILLEGAL SET/IF VALUE 

ILLEGAL IF SYNTAX 

ILLEGAL ELSE SYNTAX 

ILLEGAL ENDIF SYNTAX 

ELSE/ENDIF WITH NO IF 

ELSE/ENDIF LABEL NOT 
FOUND 

LABEL/STRING TOO LONG 

INVALID ACCOUNT IDENTIFIER 

Significance 

The syntax of the BEGIN state­
ment is incorrect. Refer to the 
format shown in the BEGIN state­
ment description in chapter 4 of 
this manual. 

The syntax of the PROC statement 
is incorrect. Refer to the format 
shown in the PROC statement 
description in chapter 4. 

The specified file name is not 
valid for a procedure file. Copy 
the procedure to another file. 

An illegal operator was used in a 
SET statement or IF condition. 

An illegal name was used for a 
control statement variable in an 
IF condition. 

An illegal value was used in a 
SET statement or IF condition. 

Check the syntax of your IF 
statement. 

Check the syntax of your ELSE 
statement. 

Check the syntax of your ENDIF 
statement. 

An ELSE/ENDIF statement was found 
and there was no preceding IF 
statement. 

BATCHPRO could not find the ELSE 
or ENDIF statement when scanning 
for conditions, or could not find 
the ENDIF statement when skipping 
from an ELSE statement. 

The LABEL/STRING is more than 
eight characters. 

The account identifier specified 
is not valid. Correct the 
account identifier. 

Issuing 
Routine 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

BATCHPRO 

CHARGE 

B-73 

I 



I Table B-2. · System Utility Error Messages (Sheet 49 of 80) 

Sever~ Error 
ity Code Message 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

w 

F 

F 

B-74 

6971 

6972 

6973 

7001 

7002 

UTILITY MUST BE PRIVILEGED 

INTERNAL CALL TO USER 
VALIDATION FAILED 

PARAMETER OR FORMAT ERROR 

UNSATISFIED EXTERNAL name 

SHORT COMMON BLOCK name IN 
MODULE-LENGTH nn RETAINED 

7003 DUPLICATE ENTRY name IN 
module-ENTRY IN FIRST USED 

7004 UNSHARABLE LOADER TEXT IN 
module 

7005 INVALID LOADER TEXT FORMAT 
IN module 

7100 FORMAT OF SHARED LIBRARY 
IS NOT VALID 

7101 FORMAT OF UTILITY FILE 
filename IS BAD 

7103 LINKER IS NOT THE FIRST 
UTILITY 

7104 UTILITY name WAS ADDED 
BEFORE SYSLIB 

7105 VERSION CANNOT EXCEED 
8 CHARACTERS 

7106 LINKER UTILITY IS NOT 
VALID 

Significance 

The CHARGE utility does not have 
privileged status. Notify a 
systems analyst. 

Notify a systems analyst. 

Correct the control statement and 
reexecute. 

The controllee called a dynamic 
external that cannot be found. 

The module has a length for a 
common block name different than 
nn. The first length still holds. 
If none in block, no message is 
issued. 

The module was loaded and it has 
a duplicate entry name. The 
previous entry name in the module 
will be used for satisfying calls. 

Module has loader text that is not 
valid in a dynamic environment. 

The format of the loader text for 
module module is not correct. 

The old shared library file 
format is not correct. 

LOAD has produced a bad utility. 

Issuing 
Routine 

CHARGE 

CHARGE 

CHARGE 

LINKER 

LINKER 

LINKER 

LINKER 
SLGEN 

LINKER 
SLGEN 

SLGEN 

SLGEN 

The first utility directive must SLGEN 
be LINKER. This directive must also 
be included when no old library is 
specified and it must preceed the 
LIB directive. 

The LIB,SYSLIB directive must SLGEN 
come before the utility name 
directive. 

Correct the shared library version SLGEN 
to be eight characters or less. 

LOAD has produced an incorrect SLGEN 
linker utility. 

60459410 J 



Sever- Error 
ity Code 

F 7107 

F 7108 

F 7109 

F 7110 

F 7111 

F 7112 

F 7113 

F 7114 

F 7200 

F 7201 

F 7202 

F 7203 

F 7204 

F 7205 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 50 of 80) 

Message 

DIRECTIVE SPECIFIED IS 
NOT VALID 

DIRECTIVE EXCEEDS 
MAXIMUM DIRECTIVE LENGTH 

FILENAME EXCEEDS MAXIMUM 
FILE LENGTH 

WRONG FOR.i.'1AT USED 
SPECIFYING DIRECTIVES 

EOF REACHED BEFORE 
END DIRECTIVE 

LINKER ALREADY EXISTS ON 
LIBRARY 

INVALID LIBRARY libfile 

ORIGIN IS MUTUALLY EXCLUSIVE 
WITH OLDLIB 

FILE filename IS NOT 
EXECUTABLE 

FILE filename IS NOT A 
DYNAMIC/SHARED LIBRARY 

CONTROLLEE filename WAS NOT 
LOADED WITH THE SYSTEM 
SHARED LIBRARY 

CONTROLLEE filename WAS NOT 
LOADED WITH A USER DYNAMIC 
LIBRARY 

CONTROLLEE filename WAS 
LOADED TO USE LIBRARY 
STATICLY 

FILE filename DOES NOT EXIST 
OR IS NOT ATTACHED 

Significance 
Issuing 
Routine 

A directive to SLGEN is incorrect. SLGEN 
Ref er to the SLGEN description in 
the VSOS Installation Handbook. 

A directive to SLGEN is too long SLGEN 
to be processed. Ref er to the 
SLGEN description in the VSOS 
Installation Handbook. 

The maximum length for a file name SLGEN 
is eight characters or less. 

Ref er to chapter 4 of this manual SLGEN 
for the correct format of directives 
in this manual. 

Add the END directive to your file. SLGEN 

A directive is trying to add a SLGEN 
linker utility, and one already 
exists. 

The library specified by the LIB SLGEN 
directive is incorrect. 

The OLDLIB is already fixed for some SLGEN 
addresses that cannot be changed. 

The file specified to TASKATT must TASKATT 
be a controllee file. 

The file specified by the ULIB TASKATT 
parameter is not a dynamic or 
shared library. 

The SLIB parameter was specified for TASKATT 
a controllee that was not loaded to 
use a system shared library. 

The ULIB parameter was specified for TASKATT 
a controllee that was not loaded to 
use a user dynamic library. 

Neither ULIB nor SLIB can be speci- TASKATT 
f ied for a controller which was 
loaded to use a library statically. 
There would be no assurance that the 
new library entry points are located 
at the same locations as the entry 
points in the original library •. 

The named controllee or library TASKATT 
file either does not exist or is 
not attached. 

B-75 

I 



I Table B-2. System Utility Error Messages (Sheet 51 of 80) 

Sever- Error 
ity Code Message 

F 

F 

w 

F 

F 

w 

F 

w 

F 

F 

F 

w 

w 

w 

B-76 

7206 

7250 

7251 

7252 

CAN NOT BE USED TO MODIFY A 
DROP FILE 

DLIB REQUIRED WHEN ORIGIN 
IS SPECIFIED 

MAXIMUM ORIGIN ADDRESS MUST 
BE nn TO USE DEBUG 

INPUT FILE filename WAS 
BUILT WITH DLIB 

7300 FILE filename IS NOT A 
DROP FILE OR CONTROLLEE 

7301 FILE filename IS NOT A 
SHARED LIBRARY 

7302 NO FILE NAME SPECIFIED 

7303 FILE filename IS A BAD 
DROP FILE OR BAD CONTROLEE 

7304 DUMP BUG - DPRINT FAILED 

7305 DUMP BUG - ASCII 16 FAILED 

7306 ILLEGAL PARAMETER: 
parameter 

7307 CONTROLLEE WAS NOT LOADED 
WITH SHARED LIB SHRLIB 

7308 CONTROLLEE WAS NOT LOADED 
WITH DYNAMIC LIB filename 

7309 TOO MANY BREAKPOINTS/ 
CHANGES TO SYSTEM SHARED 
LIBRARY 

Significance 
Issuing 
Routine 

TASKATT can not be used to alter TASKATT 
attributes of a drop file. 

Origin can be specified only for OLE 
dynamic libraries. 

The origin address plus the length OLE 
of the library conflicts with DEBUG. 

A library built with the DLIB option OLE 
may not be used as input to OLE. 

The file specified to DUMP must 
be a drop file or a controllee 
file. 

The drop file incorrectly 
references a file as a shared 
library. 

A filename must be specified to 
DUMP. 

DUMP is unable to process 
completely the file specified. 

DUMP logic problem. Notify a 
systems analyst. 

DUMP logic problem. Notify a 
systems analyst. 

DUMP logic problem. Notify a 
systems analyst. 

DUMP 

DUMP 

DUMP 

DUMP 

DUMP 

DUMP 

DUMP 

This is a warning indicating that DUMP 
the controllee may not run correctly DEBUG 
with the shared library it is using. 

This is a warning indicating the DEBUG 
controllee may not run correctly DUMP 
with the user dynamic library it 
is using. 

DEBUG allows only 20 breakpoints DEBUG 
and/or changes to the system shared 
library, and the operating system 
allows only so many changes to the 
shared library for all active DEBUG 
users. Either remove some of your 
breakpoints/changes or wait until 
there are fewer active DEBUG users. 

60459410 J 



Sever- Error 
ity Code 

w 7310 

w 7311 

w 7312 

w 7400 

w 8001 

w 8002 

w 8003 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 52 of 80) 

Message 

SHARED LIBRARY WORKING SET 
IS TOO SMALL FOR BREAKPOINTS/ 
CHANGES 

DUMP BUG-DUMP TABLE 
OVERFLOW 

LOCATION IN SHARED LIBRARY 
IS ALREADY ALTERED 

FID IS LONGER THAN 17 
CHARACTERS 

INVALID COMMAND command 
RECEIVED 

INVALID ATTRIBUTE 
RECEIVED attribute 

QUALIFIER IS NOT I, S, OR M, 
QULAIFIER IS: qualifier 

Significance 

The working set for the system 
shared library is too small to allow 
any more breakpoints or changes; ask 
operator to increase the working set 
or remove some breakpoints or 
changes. 

Dump had overflowed its table. 
Notify a systems analyst. 

You can not alter the same location 
twice without restoring the first 
change. 

FID will be truncated to 17 
characters. 

RHF protocol error; notify a 
systems analyst. 

RHF protocol error; notify a 
systems analyst. 

RHF protocol error; notify a 
systems analyst. 

Issuing 
Routine 

DEBUG 

DUMP 

DEBUG 

LABEL 

AC FETCH 
AC STORE 

AP FETCH 
AP STORE 
RF KATR 
RF-MAOl 
RF-MA02 
RF-MAll 
RF-MA13 
RF-MA14 
RF-MA15 
RF-MA18 
RF-MA19 
RF PAOl 
RF-PA02 
RF-PAll 
RF-PA12 
RF PA13 
RF-PA14 
RF PAlS 
RF-PA18 
RF-PA19 

APSTORE 
RF PA12 

B-77 

I 



I 
Sever- Error 
ity Code 

w 8004 

F 8005 

F 8006 

F 8007 

I 8008 

I 8009 

w 8010 

B-78 

Table B-2. System Utility Error Messages (Sheet 53 of 80) 

Message 

INVALID TEXTL. TEXTL IS 
character length BUT SHOULD 
BE character length 

LID MUST BE 3 ALPHA-NUM 
CHARS. LID IS lid 

JCS AND INPUT ARE 
MUTUALLY EXCLUSIVE 

SYSTEM ERROR xxxxxxxx EN­
COUNTERED AT HEX BIT ADDRESS 
aaaaaaaaaaaaaaaa 

COMMAND BUFFER FULL, CONTIN­
UATION ATTRIBUTE INSERTED 

DIR MUST BE I OR M 

PRU, EOI, EOR, AND RES 
MUST BE 0 OR 1 

Significance 

RHF protocol error; notify a 
systems analyst. 

The logical identifier specified 
on the ST=parameter must be three 
alphabetic characters. 

The user cannot specify both the 
JCS and the I parameter. 

The task aborted due to a system 
problem and is terminating under 
Abnormal Termination Control (ATC). 
System errors are documented in 
appendix B of the VSOS Reference 
Manual, Volume 2. 

Warning message; the set of user 
control statements is unusually 
long. 

RHF protocol error; notify a 
systems analyst. 

RHF protocol error; notify a 
systems analyst. 

Issuing 
Routine 

AP STORE 
RF PAOO 
RF-PA03 
RF-PA04 
RF-PA05 
RF-PA06 
RF-PA07 
RFPA08 
RF-PA12 
RF-PA16 
RF-PA17 
RF-PA20 
RF-PA21 
RF PA22 
RF-PA23 
RF-PA24 
RF-PA26 
RF-PA27 
RF-PA28 
RF-PA32 
RFPA33 
RF-PA34 

MF LINK 
MFQUEUE 
SUBMIT 
RF PA25 
PFUTIL 

MF LINK 
MFQUEUE 
SUBMIT 

RF RPRVE 
RF RPV 

AP STORE 

RF MDBC 

RF MDBC 

60459410 J 



Sever- Error 
ity Code 

w 8011 

F 8012 

F 8013 

F 8014 

F 8015 

F 8016 

F 8017 

F 8018 

F 8019 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 54 of 80) 

Message 

LEVEL MUST BE BETWEEN 
0 AND ltF 

DD MUST BE C6 OR CB 
DD is: xxxx 

REMOTE HOST COMMAND 
SEQUENCE ERR. SENT 
COMMAND command. 
RVCD command 

REMOTE HOST ATTRIBUTE 
SEQUENCE ERROR 

directive DIRECTIVE HAS 
SYNTAX ERROR 

RHF INTERNAL LOGIC 
ERROR ENCOUNTERED -
xxxxxxxx ••• x 

EXPECTED CONTINUATION 
BLOCK WAS NOT RECEIVED 

ILLEGAL COMMAND RECEIVED 
FROM REMOTE HOST. 
COMMAND WAS command 

ILLEGAL ATTRIBUTE attribute 
RECEIVED ON COMMAND command 

Significance 

RHF encountered a file structure 
indicator whose record level was 
not in the range 0 to ltF. Check 
that the correct data format 
declaration is specified. 

The specif led DD= parameter must be 
two characters. Refer to descrip­
tion of MFQUEUE in chapter 3 of 
this manual. 

RHF software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

Self-explanatory. Correct error 
and retry. 

RHF software error; notify a 
systems analyst. 

Data transfer error. This error 
could be due to unusually long 
control statements. 

RHF protocol error; notify a 
systems analyst. 

RHF protocol error; notify a 
systems analyst. 

Issuing 
Routine 

RF MDBC 

RF PA12 
RF-PA31 
RF-RZB 

RF CMCRK 

RF CMCRK 
RF EACB 

PTFS 

DUMPF 
LOAD PF 
PF ERROR 
PTFS 
RF CMBLD 
RF-DC8J 
RF-EACB 
RF-INTC 
RF MAlO 
RF-PA12 
RF PTRF 
RF RECOV 
RF-RESF-N 
RF SRP 
RF_TERM 

RF EACB 

RF CMCRK 
RF-EACB 

RF EACB 
RF=RQUIT 

B-79 

I 



I ...-~~--.~~~-.-~T-ab_l_e~B_-_2_.~_s_y_s_t_em~u-t_i_l_i_t_y---.-E_r_r_o_r_M_e_s_s_a_g_e_s~(-S_h_e_e_t~SS~o-f~8-0-)~~~-.-~~~~-. 
Sever- Error 
ity Code 

F 8020 

w 8021 

F 8022 

F 8023 

I 8024 

F 8025 

F 8026 

F 8027 

F 8028 

F 8029 

B-80 

Message 

REMOTE HOST lid REJECTED 
CONNECT WITH UNDEFINED 
REASON CODE, RC = #0 

INVALID CHARACTER FOUND. 
CHAR.: character WRD NO 
w9rd number CHR NO char­
acter number 

ABN #xxxxxxxx NOT FOUND 
IN ABN TABLE T OSB 

ILLEGAL BLOCK TYPE 
RECEIVED FROM REMOTE 
HOST - block type 

TOO MANY OUTSTANDING BLOCKS 
HAVE NOT BEEN BACKED 

INVALID LFN - filename 

CONTROLLEE ABORTED 

OPERATOR KILLED JOB 

RCD NAD FOR LID lid IS 
DISABLED 

OPERATOR DROPPED JOB 

Significance 

LCN software error. Inform a 
systems analyst. 

RHF protocol error. RHF 
encountered a character code not 
included in the ASCII character 
set. Its hexadecimal code was 
outside the range #20 to #7E. 
Notify a systems analyst. 

RHF protocol error. Attribute 
block number could not be found 
in the attribute block number 
table T OSB. Notify a systems 
analyst7 

RHF protocol error; notify a 
systems analyst. 

RHF protocol error; notify a 
systems analyst. 

The specified file name is invalid. 

A fatal error in the MFLINK 
control statement sequence caused 
its execution abort. Ensure that 
the attached pool or private file 
does not have the same name as a 
control verb. 

The OPERATOR executed an n.KILL 
command which caused the task 
to terminate without any further 
processing. 

The operator has logically 
disabled the RCD NAD(s) required 
to perform the MFLINK. Either 
wait until the operator enables 
the RCD NAD or choose another LID. 

The OPERATOR executed an n.DROP 
command which causes the task 
to terminate. Processing may 
continue if an EXIT statement 
follows in the job stream. 

Issuing 
Routine 

RF MCONN 

AP STORE 

RF FABN 

RF RCVBK 
RF-RCVCS 
RF-RECOV 
RF-VENR 
RF-VL6HD 

RF SABN 

RF SPLIT 

RF INTC 

RF INTC 

RF VALID 

RF INTC 

60459410 J 



Table B-2. System Utility Error Messages (Sheet 56 of 80) 

Sever- Error 
ity Code Message 

I 

I 

F 

F 

F 

w 

F 

w 

F 

w 

w 

F 

8030 CONTROLLEE TERMINATED, 
FILES NOT SAVED 

8031 CONTROLLEE TERMINATED, 
FILES SAVED 

8032 USER ENTERED TERMINAL 
MESSAGE TRANSFERRING 
CONTROL TO EXIT CARD 

8033 SHD NAD FOR LID lid IS 
DISABLED 

8034 NO END OF LINE 
CHARACTER FOUND 

8035 RECOVERY NOT IMPLEMENTED 

8036 BAD FILE - filename 

8037 FAILURE TO BUILD FIRST 
MESSAGE 

8038 FAILURE TO BUILD MESSAGE 

8039 DATA MESSAGE REJECTED 

8040 EOI MESSAGE REJECTED 

8041 TRANSFER HALTED BY GET 
DATA MESSAGE COLLAPSE 

60459410 J 

Significance 

Informative message; execution 
of the control statement 
sequence terminated without 
saving the files changed by the 
sequence. 

Issuing 
Routine 

RF INTC 

Informative message; execution of RF INTC 
the control statement sequence 
terminated with the files changed 
by the sequence stored and avail-
able for later access. 

The interactive user entered a RF INTC 
break character during execution 
of the copied MFLINK. control 
statement sequence. The results 
of the control statement execution 
are discarded. 

The operator has logically RF VALID 
disabled the SHD NAD(s) required 
to perform the MFLINK. Either wait 
until the operator enables the SHD 
NAD or choose another LID. 

RHF encountered an error in the RF RZB 
file format. Ensure that the 
correct data format is specified. 

RHF software error; notify a RF PUTXF 
systems analyst. 

The format of the copied file did RF PUTXF 
not correspond to the specified 
data format declaration. Ensure 
that the correct DD=parameter 
option is specified. 

RHF software error; notify a· RF PUTXF 
systems analyst. 

RHF software error; notify a RF PUTXF 
systems analyst. 

System software error; notify a RF PUTXF 
systems analyst. 

RHF protocol error; notify a RF PUTXF 
systems analyst. 

RHF software error; notify a RF BLCND 
systems analyst. 

B-81 

I 



I 
Sever- Error 
ity Code 

F 8042 

F 8048 

F 8049 

F 8050 

F 8051 

F 8052 

F 8053 

F 8054 

F 8055 

w 8056 

F 8057 

I 8058 

F 8061 

B-82 

Table B-2. System Utility Error Messages (Sheet 57 of 80) 

Message 

TRANSFER HALTED BY BUILD 
DATA MESSAGE COLLAPSE 

FAMILY MEMBER TRANSITION 
HALTED. FAILED TO 
RELEASE EXISTING MEMBER 

FAMILY MEMBER TRANSISTION 
HALTED. FAILED TO ACQUIRE 
NEXT MEMBER 

MAX CONTROL STATEMENTS 
EXCEEDED 

DD MUST BE 2 CHARS. 
DD = character length CHARS 

INVALID KEYWORD keyword 
IN CONTROL STATEMENT, 
APPLICATION IS application 

NETON NOT PREVIOUSLY 
CALLED BEFORE -
NETXXXX CALL 

BLOCK COUNT ERROR ON -
NETXXXX CALL #00000000 

INVALID BLOCK TYPE IN 
NETXXXXX CALL #00000000 

PHYSICAL BLOCK block ADDR= 
address WAS NOT LOCKED DOWN 

APPLICATION xxxxxxxx WAS 
NOT INSTALLED AS A 
PRIVILEGED TASK 

NEITHER IMPLICIT OR 
EXPLICIT TEXT EXIST 

APPLICATION IS NOT 
ALLOWED TO RUN ON THIS 
USER NUMBER: user number 

Significance 

RHF software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

The number of control statements 
specified on the MFLINK or MFQUEUE 
statement exceeded the maximum 
limit. Up to ten statements can 
be specified on a MFLINK state­
ment; up to three statements on 
an MFQUEUE statement. 

The specified DD= parameter option 
must be two characters. 

The RHF application did not 
recognize the indicated parameter 
keyword in the control statement. 
Check the control statement format 
for the valid parameters. 

RHF software error; notify a 
systems analyst. 

RHF protocol error; notify a 
systems analyst. 

RHF protocol error; notify a 
systems analyst. 

RHF protocol error; notify a 
systems analyst. 

Installation error. The applica­
tion was not installed in the 
system pool as a privileged utility. 

Informative message; applies only 
to QTF when sending files to a 
remote host. 

Self-explanatory; if problem not 
caused by a user, notify a systems 
analyst. 

Issuing 
Routine 

RF BLCND 

RS TBFM 

RS TBFM 

RF PAOS 
RF-STORT 

RF PA31 

RF PAOS 

NETGET 
NETPUT 
NE TWAIT 

NETGET 
NET PUT 

NETPUT 

NETWAIT 

MFLINK 
MFQUEUE 
PFUSER 

RF MA05 

RF_INTQ 

60459410 H 

( 
\i 



Sever- Error 
ity Code 

F 8062 

F 8063 

I 8064 

F 8065 

F 8066 

F 8067 

F 8068 

F 8069 

F 8070 

F 8071 

F 8072 

60459410 H 

Table B-2. System Utility Error Messages (Sheet 59 of 80) 

Message 

ERROR FROM #2A CALL OPT #6, 
RC = #69 - NO EMPTY SLOT 
FOR T CAT ORDINAL IN THE 
APPLICATION ENTRY IN T CRT 

ERROR FROM #2A CALL OPT 
#6, RC= #6A - NO EMPTY 
ENTRY IN T CAT 

EXCEEDED CURRENT MAXIMUM 
ECHO TEXT LENGTH OF 256. 
LENGTH IS: length 

filename -S RT=record 
type BUT THATS INCOMPATIBLE 
WITH THE DD OF data 
declaration 

USER CONTROL STATEMENT 
FORMATTED INCORRECTLY 

BAD USER NUMBER, ACCOUNT, 
PASSWORD, OR SECURITY LEVEL 

RECEIVED UNEXPECTED ERROR 
ON VALIDATION OF USER CARD 
FROM #23 OPT 6 SYSTEM 
MESSAGE. SS=response code 

NO USER CONTROL 
STATEMENT SPECIFIED 

xxxxxxxx IS NOT A PUBLIC 
OR SYSTEM POOL CONTROLLEE 

COULD NOT SEND A QUIT TO 
REMOTE HOST WITH LID=lid 

Significance 

The system may be busy, or a 
possible configuration problem 
exists, or an RHF software problem 
exists. If problem persists, 
notify a systems analyst. 

The system may be busy, or a 
possible configuration problem 
exists, or an RHF software 
problem exists. If problem 
persists, notify a systems 
analyst. 

A minor RHF protocol violation 
has occurred; notify a systems 
analyst. 

The file has a record type which 
cannot be used with the specified 
data declaration. Either change 
the data declaration or the file's 
record type. 

The USER control statement has an 
error in its syntax. Check the 
USER control statement format 
description. 

At least one of the USER valida­
tion parameters is invalid. 
Correct the statement and retry. 

Check VSOS Reference Manual, 
Volume 2, system message call #23 
for SS response code. Notify a 
systems analyst. 

A USER control statement is 
required. Specify a USER statement 
as the first control statement 
sent. 

Either xxxxxxxx is a private copy 
of a valid controllee or it is 
nonexistent. If nonexistent, 
notify a systems analyst. 

RHF protocol error; notify a 
systems analyst. 

ATTEMPT TO VALIDATE CONTENTS RHF software error. Inform a 
OF LAST GROUP FILE FAILED systems analyst. 

Issuing 
Routine 

RF VALID 

RF VALID 

RF PA29 

RF AQXF 
RF-MFQ 
RF-OPYF 

RF PA05 

RF VUSER 

RF VUSER 

RF PA05 

RF TPEF 

RF_SQUIT 

RF RLGF 

B-83 

I 



I Table B-2. System Utility Error Messages (Sheet 58 of 80) 

Sever- Error 
ity Code Message 

F 

I 

F 

F 

F 

F 

I 

F 

F 

F 

F 

F 

F 

F 

F 

B-84 

8073 FILE: xxxxxxxx IS EMPTY. 
FILE NOT MFQUEUED 

8074 PURGING LONE LAST GROUP 
FILE xxxxxxxx 

8075 CURRENT BLOCK COUNT ISSUED 
xxxx DOES NOT MATCH CURRENT 
BLOCK COUNT RETURNED yyyy 

8076 NO BLOCKS TRANSFERRED BY 
NAD 

8078 A LEVEL 7 PROTOCOL ERROR 
err WAS IGNORED WHILE 
BUILDING ATTRIBUTE xxxx 

8079 ILLEGAL ATTRIBUTE FOR 
APPLICATION 

8080 FILES f ilenamel AND 
f ilename2 GIVEN TO USER 6 

8081 jcs IS NOT AN ALLOWED JOB 
CONTROL STATEMENT 

8082 SIL ERROR OCCURRED WHILE 
ATTEMPTING TO REPORT USER 
STATEMENT ERROR 

8083 SYNTAX ERROR IN USER 
STATEMENT 

8084 TOO MANY BLOCKS RECEIVED 

8085 BAD DBC dbc RECEIVED 

8086 DATA MESSAGE NO LONGER 
INDIRECT 

8087 WRONG AMOUNT OF DATA 
RECEIVED, xxx BITS, 
EXPECTED yyyy BITS 

8088 DID NOT RECEIVE BYTE 
MULTIPLE FOR CODED FILE, 
RECEIVED xxxx BITS 

Significance 

User attempted to MFQUEUE an 
empty file. 

Informative message for system 
dayfile. 

RHF software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

LCN level 7 protocol error; 
notify a systems analyst. 

Informative message for system 
dayf ile. 

User should correct problem 
and retry. 

VSOS software error; notify a 
systems analyst. 

User should correct error and 
retry. 

LCN level 6 protocol error; 
notify a systems analyst. 

LCN level 6 protocol error; 
notify a systems analyst. 

RHF software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

Issuing 
Routine 

RF_MFQ 

RF FCOLL 

RF EXNR 
RF VENR 
RFVL6HD 

RF IACB 

RF MA05 
RF-MA17 
RF-PA05 

RF_MFQ 

RF PA05 

RF RSTOP 

RF RSTOP 

RF VENR 

RF VENR 

RF VENR 

RF VL6HD 

RF VL6HD 

60459410 H 



Table B-2. System Utility Error Messages (Sheet 60 of 80) 

Sever- Error 
ity Code Message 

F 

F 

F 

F 

F 

F 

w 

F 

F 

F 

8089 ABN WAS OUT OF SEQUENCE, 
RECEIVED xxxx, EXPECTED 
YYYY 

8090 RECEIVED DATA AFTER EOI 

8091 FILE lfn DOES NOT HAVE READ 
ACCESS PERMISSION 

8092 SECOND COMMAND FOUND 

8093 EOI AND COMMAND FOUND 

8094 EOR OR EOI NOT SET IN DBC 
FOR LESS THAN FULL DATA 
BLOCK 

8095 REGISTER #FC=#xxxx AFTER 
DIRECT KERNEL CALL #yyyy 

8096 AN ERROR WAS RETURNED FOR 
PARAMETER SET xxxx AFTER 
DIRECT KERNEL CALL #yyyy 

8097 INVALID VALUE wwwww IN 
LOCAL VAR xxxxxxxx, VALID 
RANGE = yyyyyyyy 

8098 INVALID VALUE wwwwwwww IN 
COM BLK VAR xxxxxxxx, VALID 
RANGE = yyyyyyyy, CALLED 
BY - zzzzzzzz 

60459410 J 

Significance 

RHF software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

VSOS file lfn cannot be used for 
the transfer because this user 
does not have read permission for 
the file. 

RHF software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

LCN level 6 protocol error; 
notify a systems analyst. 

VSOS software error; notify a 
systems analyst. 

RHF software error; notify a 
systems analyst. 

An invalid value of wwwwwwww was 
encountered in the local variable 
named xxxxxxxx. The valid range 
of values for this variable is 
YYYYYYYY• This is an RHF software 
error; notify a systems analyst. 

An invalid of wwwwwwww was 
encountered in the common block 
variable named xxxxxxxx. The valid 
range of values for this variable 
is YYYYYYY• The routine issuing 
the message was called by routine 
zzzzzzzz. This is an RHF software 
error; contact a systems analyst. 

Issuing 
Routine 

RF VL6HD 

RF VL6HD 

RF_AQXF 

RF_VL6HD 

RF_VL6HD 

RF DUUU 

RF 7XC 
RF-GVUP 
RF-LKPIN 
RF UNLKP 
RF-VPAMP 

RF TCRCE 

RF ERROR 
PFERROR 

RF PSERR 
RF PSEV 
RF-TERM 
LOAD PF 

B-85 

I 



I 
Sever- Error 
ity Code 

F 8099 

F 8100 

F 8101 

F 8102 

F 8103 

F 8104 

F 8105 

B-86 

Table B-2. System Utility Error Messages (Sheet 61 of 80) 

Message 

INVALID VALUE wwwwwwww IN 
ENTRY PARM xxxxxxxx, VALID 
RANGE = yyyyyyyy, CALLED 
BY - zzzzzzzz 

CONNECTED ON PATH ZERO 

ROUTING ERROR - FROM #C70x 
CALL, RC=#02 

PATH ABORTED BY REMOTE NAD -
FROM #C70x CALL, 
RC=#03 

ILLEGAL PATH NUMBER - FROM 
#C70x CALL, RC=#04 

NO PATHS AVAILABLE - FROM 
#C70x CALL, RC=#OS 

ILLEGAL COMMAND FOR CURRENT 
PATH STATE - FROM #C70x CALL 
RC=#06 

Significance 

An invalid value of wwwwwwww was 
encountered in the entry parameter 
named xxxxxxxx. The valid range 
of values for this variable is 
YYYYYYYY• The routine issuing the 
message was called by routine 
zzzzzzzz. This is an RHF software 
error; contact a systems analyst. 

RHF software error; notify a 
systems analyst. 

RHF software or configuration 
error; notify a systems analyst. 
If the problem is a configuration 
error, the connection may be using 
a TCU that is not connected to 
a trunk. 

LCN hardware/software error. Retry, 
and if problem persists, notify 
systems analyst. routine is the 
name of the routine that caused 
the problem. 

RHF software error; notify a 
systems analyst. 

Informative message. The RHF soft­
ware is attempting to connect to 
the remote host, but the RCD NAD 
is so busy it doesn't have any paths 
to allocate to the connection. The 
RHF software will automatically try 
again after at least 10 seconds. 

RHF software error; notify a 
systems analyst. 

Issuing 
Routine 

RF PSEV 
RF PRTXT 
PFLISTOP 
PFORMAT 

RF_SQTFS 

RF EXNR 
RF MCONN 
RF-PRGP 
RF RCVBK 
RF RCVCS 
RF-RNDS 
RF SNDCS 

RF EXNR 
RF MCONN 
RF PRGP 
RF RCVBK 
RF-RCVCS 
RF RNDS 
RF-SNDCS 

RF EXNR 
RF MCONN 
RF-PRGP 
RF RCVBK 
RF-RCVCS 
RF-RNDS 
RF SNDCS 

RF MCONN 
RF RNDS 

RF EXNR 
RF MCONN 
RF_PRGP 
RF RCVBK 
RFRCVCS 
RF RNDS 
RF-SNDCS 

60459410 J 



Table B-2. System Utility Error Messages (Sheet 62 of 80) I 
Sever- Error Issuing 
ity Code Message Significance Routine 

F 8106 ILLEGAL FUNCTION CODE - RHF software error; notify a RF EXNR 
FROM II Cl Ox CALL, RC=ll07 systems analyst. RF-MCONN 

RF-PRGP 
RF RCVBK 
RF RCVCS 
RF-RNDS 
RF SNDCS 

F 8107 PATH TERMINATED BY HOST RHF software error; notify a RF EXNR 
REQUEST - FROM #C70x CALL, systems analyst. RF MCONN 
RC=l/08 RF PRGP 

RFRCVBK 
RF-RCVCS 
RF RNDS 
RF-SNDCS 

F 8108 DISCONNECT MESSAGE RECEIVED RHF software error; notify a RF EXNR 
- FROM #C70x CALL, RC=l/09 systems analyst. RF MCONN 

RF PRGP 
RF RCVBK 
RF-RCVCS 
RF RNDS 
RF SNDCS -

F 8109 CONNECT REJECTED - FROM RHF software error; notify a RF EXNR -
#C70x CALL, RC=#OA systems analyst. RF MCONN 

RFPRGP 
RF RCVBK 
RF RCVCS 
RF-RNDS 
RF-SNDCS 

F 8110 ILLEGAL SIZE SPECIFIED FOR RHF software error; notify a RF EXNR 
MESSAGE - FROM #C70x CALL, systems analyst. RF MCONN 
RC=llOB RF PRGP 

RF RCVBK 
RF-RCVCS 
RF RNDS 
RF SNDCS 

I 8111 READ MESSAGE PRE SENT - II Cl Ox The RCD NAD indicates that a RF EXNR 
CALL, RC=llOC ffiessage from the remote system is RF-MCONN 

waiting to be read. RF-PRGP 
RF RCVBK 
RFRCVCS 
RF-RNDS 
RF SNDCS 

60459410 J B-87 



I Table B-2. System Utility Error Messages (Sheet 63 of 80) 

Sever- Error Issuing 
ity Code Message Significance Routine . 
F 8112 ILLEGAL PAGE ADDRESS - FROM RHF software error; notify a RF EXNR 

#C70x CALL, RC=#OD sys terns analyst. RF MCONN 
RF-PRGP 
RF-RCVBK 
RF-RCVCS 
RF-RNDS 
RF SNDCS -

F 8113 EXCESS DATA DISCARDED - FROM RHF software error; notify a RF EXNR 
#C70x CALL, RC=#OE systems analyst. RF-MCONN 

RF PRGP 
RFRCVBK 
RF-RCVCS 
RF RNDS 
RF-SNDCS -

F 8114 INDIRECT BUFFER REQUIRED - RHF software error; notify a RF EXNR -FROM #C70x CALL, RC=#OF systems analyst. RF MCONN 
RF-PRGP 
RF-RCVBK 
RFRCVCS 
RF-RNDS 
RF SNDCS 

I F 8115, ERROR FROM #2A CALL OPT llxx, RHF software error; an error NET OFF 
8118- RC=#yy - zzz ••• zzz status=#yy was returned from NE TON 
8141 system call #2A option #xx. The RF FFF 

message zzz ••• zzz is the English RF-INTA 
description of the error; notify RF-INTP 
a systems analyst. RF=INTQ 

RF IRF2A 
RF=SQTFS 
RF VALID -

F 8116 UNDEFINED LOCAL The specified application is 
SERVER APPLICATION not in the configuration. 

Notify a system's analyst. 

F 8117 APPLICATION application The specified application is 
IS NOT IN T CAT not in table T CAT. - Notify a syste;' s analyst. 

F 8142 NO EMPTY ENTRIES Either the T_CAT length was 
IN T CAT defined too small for busy. 
RHF activity, or RHF 
applications are aborting 
without removing their entry 
from T CAT. Notify a 
system7 s analyst. 

B-88 60459410 J 



I 

Table B-2. System Utility Error Messages (Sheet 64 of 80) 

Sever- Error Issuing 
ity Code Message Significance Routine 

F 8143 NO EMPTY SLOT FOR Either the T CAT length was 
T CAT ORDINAL FOR defined too ;mall for busy 
application ENTRY RHF activity, or RHF 
IN T CAT applications are aborting 

without removing their entry 
from T CAT. Notify a 
system7 s analyst. 

F 814 7 LID lid NOT FOUND LID specified is not in the con- NETO FF 
figuration. Error is from lt2A NE TON 
call opt #02, rc=#21. RF FFF 

RF-INTA 
RF-INTP 
RF INTQ 
RF-IRF2A 
RF=SQTFS 
RF VALID -

F 8148 LID lid IS DISABLED An operator disabled the speci- NETO FF 
fied LID. Error is from ff2A call NET ON 
opt f/02, rc=/122. RF FFF 

RF-INTA 
RF-INTP 
RF-INTQ 
RF-IRF2A 
RF=SQTFS 
RF VALID -

F 8149 application CURRECTLY User should wait at least 10 NETOFF 
RUNNING LIMIT EXCEEDED seconds and try again. Error is NET ON 

from #2A call opt #02, rc=#23. RF FFF 
RF INTA 
RF-INTP 
RF-INTQ 
RF-IRF2A 
RFJ;QTFS 
RF VALID 

F 8150 RHF APPLICATION A user attempted to startup an NETOFF 
IS NOT ALLOWED TO EXECUTE RHF application under a user NET ON 
ON THIS USER NUMBER number that was not validated to RF INTA 

run that application. Error is RF INTP 
from #2A call opt #02, rc=#25. RF-INTQ 

RF-IRF2A 
RF=SQTFS 
RF VALID 
RF FFFF 

60459410 J B-89 • 



I 

Table B-2. System Utility Error Messages (Sheet 65 of 80) 

Sever- Error 
ity Code Message 

F 

F 

F 

F 

F 

F 

B-90 

8151 RUNNING APPLICATION LIMIT 
EQUALS THE MAXIMUM 

8152 RUNNING APPLICATION LIMIT 
EXCEEDS THE MAXIMUM 

8153 LID NOT FOUND 

8154 LID lid IS DISABLED 

8155 MAXIMUM NUMBER OF APPLI­
CATIONS ALREADY RUNNING 

8156 APPLICATION IS NOT ALLOWED 
TO EXECUTE ON THIS USER 
NUMBER 

Significance 

User should wait at least 10 
seconds and try again. Error is 
from #2A call opt #04, rc=#Ol. 

User should wait at least 10 
seconds and try again. Error is 
from #2A call opt #04, rc=#04. 

User specified a LID that was not 
defined in the configuration. 
Error is from #2A call opt #06, 
rc=t/61. 

An operator disabled the specified 
LID. Error is from #2A call opt 
fto 6, rc=ff62. 

Fatal informative message. Retry 
at least 10 seconds. Error is from 
#2A call opt #06, rc=#63. 

An attempt was made to startup 
an RHF application under a user 
number that was not validated to 
run that application. Error is 
from #2A call opt #06, rc=#65. 

Issuing 
Routine 

NETO FF 
NET ON 
RF FFF 
RF INTA 
RF INTP 
RF-INTQ 
RF-IRF2A 
RF SQTFS 
RF-VALID 

NETOFF 
NET ON 
RF FFF 
RF-INTA 
RF-INTP 
RF-INTQ 
RF-IRF2A 
RF-SQTFS 
RF-VALID 

NET OFF 
NET ON 
RF FFF 
RF-INTA 
RF-INTP 
RF INTQ 
RF-IRF2A 
RF-SQTFS 
RF-VALID 

NET OFF 
NET ON 
RF FFF 
RF INTA 
RF INTP 
RF INTQ 
RF-IRF2A 
RF SQTFS 
RF-VALID 

RF FFF 
RF-SQTFS 
RF-VALID 

NET OFF 
NET ON 
RF FFF 
RF INTA 
RF-INTP 
RF INTQ 
RF-IRF2A 
RF:SQTFS 
RF VALID 

60459410 J 



Sever- Error 
ity Code 

F 815 7 

F 8158 

F 8159 

F 8160 

F 8161 

F 8162 

F 8163 

F 8164 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 66 of 80) 

Message 

PID pid IS DISABLED 

LID NOT FOUND 

TRANSFER REJECTED, CAUSE 
UNKNOWN - FROM level 7 
command 

TRANSFER REJECTED, REFER 
TO ACCOMPANYING MESSAGE -
FROM level 7 command 

TRANSFER REJECTED, 
UNACCEPTABLE TRANSFER 
CONTROL SETTING - FROM 
level 7 command 

TRANSFER REJECTED, 
UNSPECIFIC FILESTORE -
FROM level 7 command 

TRANSFER REJECTED, FILE 
NOT FOUND OR DOES NOT EXIST 
- FROM level 7 command 

TRANSFER REJECTED, NO ACCESS 
TO FILE QUOTED - FROM level 
7 command 

Significance 

The operator has disabled the 
PID. Error is from #2A call 
opt 1106, rc=lf68. 

LID specified was not defined. 
Error is from #2A call opt #OE, 
rc=lfE 1. 

Remote application rejected file 
transfer without giving cause. 

Remote application rejected file 
transfer; the reason is provided 
by an additional message either 
immediately preceding or following 
this message. 

Remote application rejected file 
transfer because one of the 
transfer specifications (usually 
explicit text) was unnacceptable. 

The remote application rejected the 
file transfer because it needed 
more information to store the file. 

The remote application rejected 
the file transfer because it 
could not find the file. 

The remote application rejected 
the file transfer because the 
user needed to specify access 
permission parameters. 

Issuing 
Routine 

NETO FF 
NET ON 
RF FFF 
RF-INT A 
RF INTP 
RF-INTQ 
RF-IRF2A 
RF-SQTFS 
RF-VALID 

NETOFF 
NET ON 
RF FFF 
RF INTA 
RF-INTP 
RF-INTQ 
RF-IRF2A 
RF-SQTFS 
RF-VALID 

RF L7QSS 
RF-SS TOP 

RF L7QSS 
RF-SS TOP 

RF_L7QSS 
RF SSTOP 

RF L7QSS 
RF-SS TOP 

RF L7QSS 
RF-SS TOP 

RF L7QSS 
RF-SS TOP 

B-91 • 



Sever- Error 
ity Code 

F 8165 

F 8166 

F 8167 

F 8168 

F 8169 

F 8170 

F 8171 

F 8172 

F 8173 

F 8174 

I 8175 

e B-92 

Table B-2. System Utility Error Messages (Sheet 67 of 80) 

Message 

TRANSFER REJECTED, WRONG 
FILE TYPE - FROM level 7 
command 

TRANSFER REJECTED, FILE 
NOT AVAILABLE OR OFFLINE -
FROM level 7 command 

TRANSFER REJECTED, 
USERNAME UNKNOWN - FROM 
level 7 command 

TRANSFER REJECTED, USERNAME 
PASSWORD NOT QUOTED OR 
QUOTED INCORRECTLY - FROM 
level 7 command 

TRANSFER REJECTED, ACCOUNT 
UNKNOWN - FROM level 7 
command 

TRANSFER REJECTED, ACCOUNT 
PASSWORD NOT QUOTED OR 
QUOTED INCORRECTLY - FROM 
level 7 command 

TRANSFER REJECTED, NO 
MONEY LEFT - FROM 
level 7 command 

TRANSFER REJECTED, FILE 
SIZE QUOTED TOO BIG -
FROM level 7 command 

TRANSFER REJECTED, OUTPUT 
DEVICE UNKNOWN OR 
UNAVAILABLE - FROM 
level 7 command 

TRANSFER ABORTED, REFER 
TO ACCOMPANYING MESSAGE -
FROM level 7 command 

TRANSFER TERMINATED, 
SATISFACTORY AND INCOMPLETE, 
NO RETRY REQUIRED - FROM 
level 7 command 

Significance 

The remote application rejected 
the file transfer because the user 
specified the wrong file type. 

The remote application rejected 
the file transfer because the 
file was not available or off-line. 

The remote application rejected 
the file transfer because the 
user specified an unknown username. 

The remote application rejected 
the file transfer because the 
user specified an invalid password. 

The remote application rejected the 
file transfer because the user 
specified an invalid account number. 

The remote application rejected 
the file transfer because the user 
failed to quote the account pass­
word or quoted it incorrectly. 

The remote application rejected 
the file transfer because the 
user's account has no money left. 

The remote application rejected 
the file transfer because it does 
not have file space left for the 
file size quoted. 

The remote application rejected 
the file transfer because the 
user specified an output device 
that was unknown or unavailable. 

The remote application terminated 
the file transfer abnormally; the 
reason is provided by an addi­
tional message immed_iately preceding 
or following this message. 

The remote application terminated 
the file transfer prematurely but 
without fatal consequences. 

Issuing 
Routine 

RF_L7QSS 
RF SSTOP 

RF L7QSS 
RF-SSTOP 

RF L7QSS 
RF-SSTOP 

RF L7QSS 
RF-SSTOP 

RF L7QSS 
RF-SS TOP 

RF_L7QSS 
RF SSTOP 

RF L7QSS 
RF-SSTOP 

RF_L7QSS 
RF SSTOP 

RF_L7QSS 
RF SSTOP 

RF_L7QSS 
RF SSTOP 

RF L7QSS 
RF-SS TOP 

60459410 J 



Sever- Error 
ity Code 

F 8176 

F 8177 

F 817 8 

F 8179 

F 8180 

F 8181 

F 8182 

F 8183 

F 8184 

F 8185 

F 8186 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 68 of 80) 

Message 

TRANSFER ABORTED, RECEIVER 
PROBLEMS, RETRY POSSIBLE -
FROM level 7 command 

TRANSFER ABORTED, RECEIVER 
PROBLEMS, NO RETRY 
POSSIBLE - FROM level 7 
command 

TRANSFER ABORTED, SENDER 
PROBLEMS, RETRY POSSIBLE 
- FROM level 7 command 

TRANSFER ABORTED, SENDER 
PROBLEMS, NO RETRY POSSIBLE 
- FROM level 7 command 

TRANSFER ABORTED, TIME-OUT 
MATURED - FROM 
level 7 command 

TRANSFER ABORTED, 
IRRECOVERABLE PROTOCOL 
ANOMALY - FROM 
level 7 command 

DATA TRANSFER TERMINATED, 
RECEIVE ERROR, RETRY 
POSSIBLE - FROM 
level 7 command 

DATA TRANSFER TERMINATED, 
RECEIVE ERROR, NO RETRY 
POSSIBLE - FROM level 7 
command 

DATA TRANSFER TERMINATED, 
PROTOCOL ERROR DETECTED 
BY RECEIVER - FROM 
level 7 command 

DATA TRANSFER TERMINATED, 
GO NOT ACCEPTABLE TO 
RECEIVER - FROM 
level 7 command 

DATA TRANSFER TERMINATED, 
SENDER ERROR, RETRY 
POSSIBLE - FROM 
level 7 command 

Significance 

The remote application aborted 
the file transfer due to receiver 
problems; a retry may be successful. 

The remote application aborted the 
file transfer due to receiver 
problems; retrying will result in 
the same error. 

The remote application aborted 
the file transfer due to sender 
problems; a retry may be successful. 

The remote application aborted 
the file transfer due to sender 
problems; retrying will result 
in the same error. 

The remote application aborted 
the file/transfer because it ran 
out of time. 

The remote application aborted 
the file transfer because it 
detected fatal problems in the 
level 7 protocol exchange. 

The remote application termi­
nated the data transfer due to 
receiver problems; a retry may 
be successful. 

The remote application termi­
nated the file transfer due 
to receiver problems; a retrying 
will result in the same error. 

The remote application terminated 
the data transfer because it 
detected fatal problems in the 
level 7 protocol exchange. 

The remote application termi­
nated the data transfer because 
the receiver had fatal problems 
after the GO command was received. 

The remote application terminated 
the data transfer because of 
sender problems; a retry may be 
successful. 

Issuing 
Routine 

RF L7QSS 
RF-SSTOP 

RF _L7QSS 
RF SSTOP 

RF_L7QSS 
RF SSTOP 

RF L7QSS 
RF-SSTOP 

RF_L7QSS 
RF SSTOP 

RF L7QSS 
RF-SS TOP 

RF PA23 

RF PA23 

RF PA23 

RF PA23 

RF PA23 

B-93 • 



Table B-2. System Utility Error Messages (Sheet 69 of 80) 

Sever- Error 
ity Code Message 

F 

F 

F 

F 

F 

F 

F 

I 

• B-94 

8187 DATA TRANSFER TERMINATED, 
SENDER ERROR, NO RETRY 
POSSIBLE - FROM 
level 7 command 

8188 DATA TRANSFER TERMINATED, 
PROTOCOL ERROR DETECTED BY 
SENDER - FROM 
level 7 command 

8189 DATA TRANSFER TERMINATED, 
GO NOT ACCEPTABLE TO 
SENDER - FROM 
level 7 command 

8190 UNABLE TO FIND ERRCODE 
errcode FOR SOURCE = source 
- CALLED BY routine 

8191 

8192 

8193 

8194 

PRIVILEGED LOAD OF NON­
PRIVILEGED DUMP NOT 
ALLOWED 

CONNECT REQUEST SENT TO 
pid REJECTED - SERVER NAD 
DISABLED 

CONNECT REQUEST SENT TO 
pid REJECTED - SERVER NAD 
INVALID OR UNDEFINED 

SHD NAD ilnn RETURNED 
PATH STATUS 110000 -
PATH AVAILABLE 

Significance 

The remote application termi­
nated the data transfer because 
of sender problems; retrying 
will result in the same error. 

The remote application termi­
nated the data transfer because 
the sender detected level 7 
protocol problems. 

The remote application termi­
nated the data transfer because 
the sender had problems after 
the GO command was received. 

RHF software error; notify a 
systems analyst. 

Files archived using DUMPF under 
a nonprivileged user number 
cannot be reloaded using LOADPF 
under a privileged user number. 
Reload the files using the non­
privileged user number under which 
they were archived. 

The remote host with an ID of pid 
has rejected the connect request 
because its local RHF NAD has been 
logically disabled. Either wait 
until the remote host's operator 
enables the RHF NAD, or choose 
another LID for the MFLINK. 

The remote host with an ID of pid 
has rejected the connect request 
because the local NAD that 
received the request is not 
defined for their RHF subsystem. 
Contact a site analyst. 

The RHF software is attempting to 
connect to a remote host, but upon 
checking its allocated path, it 
discovered that the RCD NAD had 
released it. The RAF software will 
retry the connect attempt. 

Issuing 
Routine 

RF PA23 

RF PA23 

RF PA23 

RF GEP 

PF BUFFER 

RF MCONN 

RF MCONN 

RF MCONN 

60459410 J 



Table B-2. System Utility Error Messages (Sheet 70 of 80) 

Sever- Error 
ity Code Message 

F 

F 

F 

F 

F 

F 

I 

I 

I 

8195-
8219 

8220 

8221 

8223 

8224 

8225 

8226 

SHD NAD nn LID mmm RETURNED 
PATH STATUS #xxxx-yyy ••• yyy 

CALLED WITH BAD SOURCE 
source FROM routine 

UNABLE TO MAKE CONNECTION 

QUEUE FILE MUST BE LOCAL 

FILE filename DOES NOT HAVE 
WRITE ACCESS PERMISSION 

FILE filename HAS UNKNOWN 
RECORD TYPE rt 

CONNECTION ESTABLISHED WITH 
lid 

8227 CONNECT REQUEST SENT TO lid 
REJECTED - SERVER APPLICA­
TION yyyyyyy TEMPORARILY 
UNAVAILABLE 

8228 CONNECT REQUEST SENT TO lid 
REJECTED - SYSTEM RESOURCES 
TEMPORARILY UNAVAILABLE ON 
REMOTE HOST 

60459410 J 

Significance 

nn is the remote NAD number. mmm 
is the transfer lid. #xxxx is the 
path status. The English descrip­
tion of the error is given by 
YYY•••YYY• The path connection for 
this transfer is being connected or 
disconnected. There may be a 
problem with the connection. Notify 
a systems analyst. 

RHF software error; notify a 
systems analyst. 

The retry count for connection 
attempts has been exceeded; the 
remote system is not currently 
accessible. 

RHF software error; notify a 
systems analyst. 

User should use the PERMIT utility 
to redefine the access permission 
set. 

VSOS software error; notify a 
systems analyst. 

This message is issued if the RHF 
software was able to establish a 
connection to the remote host 
indicated by lid and if the 8300 
message was previously issued. 

Issuing 
Routine 

RF MCONN 
RF RNDS 

RF GEP 

RF MCONN 

RF OPYF 

RF OPYF 

RF OPYF 

RF MCONN 

Requested application has maximum RF MCONN 
number of copies running on the 
remote host. If interactive, retry 
later. If batch, initiating 
application will retry. 

Insufficient system resources RF MCONN 
(memory, buffers or table space), 
on remote host to initiate the 
specific server application. Retry 
later, if interactive. If batch, 
initiating application will retry. 

B-95 • 



Table B-2. System Utility Error Messages (Sheet 71 of 80) 

Sever- Error 
ity Code Message 

I 

I 

I 

I 

I 

I 

I 

I 

F 

F 

• B-96 

8229 CONNECT REQUEST SENT TO lid 
REJECTED - SERVER APPLICA­
TION yyyyyyy DISABLED 

8230 CONNECT REQUEST SENT TO lid 
REJECTED - SERVER LID 
DISABLED 

8231 

8232 

8233 

8234 

8235 

8236 

8237 

8238 

CONNECT REQUEST SENT TO lid 
REJECTED ~ INITIATOR APPLI­
CATION yyyyyyy DISABLED 

CONNECT REQUEST SENT TO lid 
REJECTED - INITIATOR PID 
DISABLED 

CONNECT REQUEST SENT TO lid 
REJECTED - INITIATOR NAD 
DISABLED 

CONNECT REQUEST SENT TO lid 
REJECTED - TCU DISABLED 

CONNECT REQUEST SENT TO lid 
REJECTED - RHF IS NOT ACTIVE 

CONNECT REQUEST SENT TO lid 
REJECTED - SYSTEM SHUTDOWN 
IN PROGRESS 

CONNECT REQUEST SENT TO lid 
REJECTED - SERVER APPLI­
CATION yyyyyyy INVALID OR 
UNDEFINED 

CONNECT REQUEST SENT TO lid 
REJECTED - SERVER LID 
INVALID OR UNDEFINED 

Significance 

The remote host has the requested 
server application disabled. Retry 
later, if interactive. If batch, 
initiating application will retry. 

Server LID is disabled in local 
tables of the remote host. If 
interactive, retry later. If batch, 
initiating application will retry. 

Initiator application is disabled in 
local tables of the remote host. 
If interactive, retry later. If 
batch, initiating application will 
retry. 

Initiator PID is disabled in local 
tables of the remote host. If 
interactive, retry later. If batch, 
initiat1ng application will retry. 

Initiator NAD is disabled in local 
tables of the remote host. If 
interactive, retry later. If batch, 
initiating application will retry. 

TCU is disabled in local tables of 
the remote host. If interactive, 
retry later. If batch, initiating 
application will retry. 

RHF is not active on the remote 
host. If interactive, retry later. 
If batch, initiating application 
will retry. 

Operator has issued idle (or term­
ination) command to RHF on the 
remote host. If interactive, retry 
later. If batch, initiating 
application will retry. 

The remote host does not have the 
requested server application in its 
local tables. Notify a systems 
analyst. 

Unknown server LID on the remote 
host. Notify a systems analyst. 

Issuing 
Routine 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

60459410 J 



Table B-2. System Utility Error Messages (Sheet 72 of 80) 

Sever- Error 
ity Code Message 

F 

F 

F 

F 

F 

F 

F 

F 

F 

I 

F 

8239 CONNECT REQUEST SENT TO lid 
REJECTED - INITIATOR APPLI­
CATION yyyyyyy INVALID OR 
UNDEFINED 

8240 CONNECT REQUEST SENT TO lid 
REJECTED - INITIATOR PID 
INVALID OR UNDEFINED 

8241 CONNECT REQUEST SENT TO lid 
REJECTED - INITIATOR PASS­
WORD INVALID OR UNDEFINED 

8242 CONNECT REQUEST SENT TO lid 
REJECTED - INITIATOR NAD 
INVALID OR UNDEFINED 

8243 CONNECT REQUEST SENT TO lid 
REJECTED - ACCESS CODE 
INVALID OR UNDEFINED 

8244 CONNECT REQUEST SENT TO lid 
REJECTED - DESTINATION 
DEVICE INVALID OR UNDEFINED 

8245 CONNECT REQUEST SENT TO lid 
REJECTED - TCU INVALID OR 
UNDEFINED 

8275 INPUT QUEUE ON xxxxxxxx IS 
FULL - RESEND JOB jjjjjjjj 

8276 INPUT QUEUE ON xxxxxxxx HAS 
MAX JOBS FOR THIS USER -
RESEND JOB jjjjjjjj 

8277 FULL RECOVERY INITIATED 

8278 RECOVERY LIMIT EXCEEDED­
RECOVERY ABANDONED 

60459410 J 

Significance 

Unknown initiator application on 
the remote host. Notify a systems 
analyst. 

Unknown initiator PID on the remote 
host. Notify a systems analyst. 

Unknown password for requested 
initiator-server combination on 
the remote host. Notify a systems 
analyst. 

Unknown initiator NAD on the remote 
host. Notify a systems analyst. 

Unknown access code for remote NAD 
on the remote host. Notify a 
sys terns analyst • 

Unknown destination device on the 
remote host. Notify a systems 
analyst. 

Unknown TCU on the remote host. 
Notify a systems analyst. 

Input queue already has the maximum 
number of jobs. Job should be 
resubmitted at a later time. 

User number specified by user card 
for this job already has maximum 
number of jobs allowed in the input 
queue. Job should be resubmitted 
at a later time. 

Connection to linked remote host 
was lost. Recovery attempted 
from beginning of request. 

The installation limit of recovery 
attempts was exhausted before 
successful completion of the 
transfer. 

Issuing 
Routine 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF RSTOP 

RF RSTOP 

RF RECOV 

RF RECOV 

B-97 • 



Table B-2. System Utility Error Messages (Sheet 73 of 80) 

Sever- Error 
ity Code Message 

I 

F 

I 

F 

F 

I 

I 

I 

9 B-98 

8279 OPERATOR SELECTED WAIT 
OPTION 

8280 

8281 

8282 

8283 

8285 

8286 

8287 

OPERATOR ABORTED TASK 

OPERATOR SELECTED RETRY 
OPTION 

QUALIFIER IS qualifier1 
QUALIFIER OF qualifier2 
EXPECTED 

SECONDARY USER CARDS 
NOT ALLOWED 

THE TEXT OF AN ATTRIBUTE 
RECEIVED ON AN RNEG HAD 
LENGTH xxxxxxxx SO IT 
WAS ADJUSTED TO 104 

RAN OUT OF ROOM IN REJ PARM 
BUFF BEFORE ALL THE REJECTED 
PARAMETERS WERE PROCESSED 

REMOTE JOBNAME xxxxxxxx 
CHANGED TO yyyyyyyy 

Significance 

During RHF recovery processing, 
the operator selected the option 
to wait for· the requested 
resources. 

During RHF recovery processing, 
the operator selected the option 
to abort this task. 

During RHF recovery processing, 
the operator selected the option 
to retry this request. 

The incoming command contained an 
inappropriate qualifier. LCN 
level 7 protocol error; notify a 
systems analyst. 

PTFS with recovery text option 
does not/support more than one 
user card in a session. 

QTF is attempting to save the 
rejected parameter of a level 
7 LCN RFT command for possible 
debug analysis later. However, 
the text is longer than the norm, 
so only the first 104 characters 
are saved. If the problem was not 
caused by a user error, notify a 
systems analyst. 

QTF is attempting to save the 
rejected parameters of a level 7 
LCN RFT command for possible 
debug analysis later. However, 
there was not enough space in the 
buffer REJ PARM BUFF to save all 
the text. -If the problem was not 
caused by a user error, notify a 
systems analyst. 

The remote system has sent a job or 
file transfer request that has 
jobname xxxxxxxx on that system. 
The equivalent jobname on the local 
system for the job will be YYYYYYYY• 

Issuing 
Routine 

RF RECOV 

RF RECOV 

RF RECOV 

RF PA12 

RF PA05 

RF SRP 

RF SRP 

RF PA26 

60459410 J 



Table B-2. System Utility Error Messages (Sheet 74 of 80) 

Sever- Error 
ity Code Message 

F 

F 

F 

F 

I 

F 

F 

w 

F 

I 

I 

I 

F 

8288 FILENAME MUST BE SPECIFIED 
FOR DATA TRANSFER 

8289 APPLICATION NAME MUST BE 
QTF OR QTFS 

8290 ERROR IN DATA TRANSFER 

8291 TRANSFER ENCOUNTERED 
NETWORK ERROR (QUIT 
RECEIVED) 

8292 BEGIN appl 

8294 ERROR RETURNED BY 
Q7PROMPT/Q7KEYWRD, 
RESPONSE CODE: xxxx 

8295 BAD LHS TABLE NUMBER 
RETURNED BY Q7PROMPT/ 
Q7KEYWRD, TABLE ii: xxx 

8296 LID xxx IS CURRENTLY 
DISABLED 

8297 LID xxx NOT FOUND 

8298 WAITING FOR PATH 
AVAILABILITY 

8299 CONNECT PATH IS: xxx 

8300 WAITING TO CONNECT TO lid 

8302 FILE filename IS NOT 
ATTACHED OR DOES NOT EXIST 

60459410 J 

Significance 

The job control statements sent to 
the remote system specified that a 
file was to be transferred, but the 
local file name was not entered on 
the execute line. 

A routine other than QTF or QTFS 
attempted to make a filename attri­
bute. Notify a systems analyst. 

An error occurred during the 
file transfer. Transfer aborted. 

An error was encountered during 
the data transfer, and a QUIT was 
received from the remote host. 

Application appl was entered. 

Q7PROMPT/or Q7KEYWORD returned 
a nonzero response code of xxxx. 
Recheck parameter list. 

Q7PROMPT or Q7KEYWORD returned a 
left-hand-side table number that 
was outside the range of legal 
left-hand-side tables. Contact a 
systems analyst. 

The LID xxx is currently disabled. 

The LID xxx is not a defined LID. 

No paths are available at this 
time. Controllee will wait for 
a path to become available. 

The particular path this transfer 
connected to is xxx. 

The RHF software is experiencing a 
delay in connecting to the remote 
host indicated by lid. 

The input file, filename, is not 
attached or does not exist. This 
is the file containing jcs to be 
sent to the remote system. 

Issuing 
Routine 

RF_L7QSS 

RF MA16 

PTF 

RF_L7QFS 

RF_Q5GTN 

MF QUEUE 
SUBMIT 

MFQUEUE 
SUBMIT 

SUBMIT 
MFQUEUE 

SUBMIT 
MF QUEUE 

RF MCONN 

RF MCONN 

RF MCONN 

RF OISB 

B-99 • 



Sever-' Error 
i ty Code 

F 8303 

F 8304 

F 8305 

F 8306 

F 8307 

F 8308 

F 8309 

F 8310 

F 8311 

F 8312 

F 8313 

• B-100 

Table B-2. System Utility Error Messages (Sheet 75 of 80) 

Message 

NO ANSWER, NAD #xx IS NOT 
ON THE TRUNK USED, RC=#O 

LOCAL TCI/TCU HARDWARE 
PROBLEM FROM NAD #xx, RC=#l 

RECEIVED GARBLED RESPONSE 
FROM REMOTE NAD #xx, RC=#2 

REMOTE NAD #xx NOT 
RUNNING, RC=ll3 

NO RESPONSE FROM REMOTE 
NAD llxx, RC=/14 

LOST COMMUNICATIONS TO 
LONG HAUL NAD #xx, RC=#8 

CAN'T INITIALIZE WITH 
LONG HAUL NAD #xx, RC=#9 

REMOTE NAD #xx AUTO 
LOADED, RC=lll 6 

NO PATH AVAILABLE AT 
REMOTE NAD #xx, RC=#l7 

TCU SPECIFIED FOR REMOTE 
NAD #xx DOES NOT EXIST, 
RC=tll8 

PATH TO REMOTE NAD #xx 
NO LONGER EXISTS, RC=#l9 

Significance 

The system to which the user sent an 
RHF statement has not responded. 

RHF hardware error; notify a 
systems analyst. 

RHF hardware error; retry and if 
problem persists, notify a systems 
analyst. 

RHF hardware error; can't communi­
cate because NAD has stopped. 
Retry and if problem persists, 
notify a systems analyst. 

RHF hardware error; response 
received from remote, but it was 
generated by remote trunk hardware 
(TCU) after remote NAD did not 
supply response message within 
expected time periode Retry and 
if problem persists, notify a 
systems analyst. 

RHF hardware error; retry and if 
problem persists, notify a systems 
analyst. 

RHF hardware error; retry and if 
problem persists, notify a systems 
analyst. 

NAD down on other end. Retry and 
if problem persists, notify a 
systems analyst. 

Remote NAD has no paths left; 
resources are all used up. Retry 
and if problem persists, notify a 
systems analyst. 

RHF software error or possible 
configuration error. Notify a 
systems analyst. 

RHF software error; remote host 
removed path at remote end. 

Issuing 
Routine 

RF RNDS 

RF RNDS 

RF RNDS 

RF RNDS 

RF RNDS 

RF RNDS 

RF RNDS 

RF RNDS 

RF RNDS 

RF RNDS 

RF RNDS 

60459410 J 



Table B-2. System Utility Error Messages (Sheet 76 of 80) 

Sever- Error 
ity Code Message 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

I 

8314 HOST FOR REMOTE NAD #xx 
IS INACTIVE, RC=#20 

8315 REQUESTED APPLICATION UN­
AVAILABLE ON LID lid, RC=#l 

8316 RHF SHUTDOWN IN PROGRESS 
ON LID lid, RC=#2 

8317 INITIATOR NAD OR 
DESTINATION INVALID ON 
LID lid, RC=#3 

8318 PID/LID NOT AVAILABLE ON 
LID lid, RC=#4 

8319 INVALID PASSWORD/ACCESS 
CODE ON LID lid, RC=#5 

8320 PATH OR NAD UNAVAILABLE 
ON LID lid, RC=#8 

8321 INVALID PASSWORD/ACCESS 
CODE ON LID lid, RC=#9 

8322 REQUESTED APPLICATION 
NAME UNKNOWN/INVALID 
ON LID lid, RC=#lO 

8323 RESOURCES NOT AVAILABLE 
ON LID lid, RC=#ll 

8325 RCD NAD NAD xxxxx ZIP 
CODE IS ZERO - CONFIGURA­
TION PROBLEM EXISTS 

8326 PRE 2.2 FILE FAMILY 
xxxxxxxx GIVEN TO USER 
yyyyyyyy 

60459410 J 

Significance 

RHF hardware error; remote host 
does not appear to be running to 
remote NAD. Host has not communi­
cated with NAD for last 1.5 minutes. 
Retry and if problem persists, 
notify a systems analyst. 

Issuing 
Routine 

RF RNDS 

Requested application on remote RF MCONN 
system is unavailable or undefined. 

Remote RHF host is down or tempo- RF MCONN 
rarily not accepting new connections. 

RHF software error or possible RE MCONN 
configuration error. Retry and if 
problem persists, notify a systems 
analyst. 

Remote PID/LID has been disabled RF MCONN 
or not defined. Possible 
configuration error. 

RHF software error; notify a 
systems analyst. Possible 
configuration error. 

RHF software error; notify a 
systems analyst. Possible 
configuration error. 

RHF software error; nofify a 
systems analyst. Possible 
configuration error. 

Remote application specified is 
not in configuraton. 

Remote RHF host does not currently 
have resources to accept this 
transfer. Retry and if problem 
persists, notify a systems analyst. 

System was configured incorrectly; 
notify a systems analyst. 

QTF could not transfer output file 
xxxxxxxx to the remote host, so it 
gave it to user YYYYYYYY• 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF MCONN 

RF GFF 

B-101 • 



Sever- Error 
ity Code 

F 832 7 

F 8328 

F 8329 

F 8330 

F 8331 

F 8338 

F 8339 

F 8340 

F 8344 

e B-102 

Table B-2. System Utility Error Messages (Sheet 77 of 80) 

Message 

FILE filename IS A RESERVED 
FILENAME 

FILE filename BELONGS TO 
A USERl NUMBER 

NO BUFFERS AVAILABLE 
FROM #C70X CALL, RC=#lO 

CANNOT xxxxxxxx SYSTEM 
USER DIRECTORY FILE 

FILE filename IS NOT A 
PHYSICAL DATA FILE 

UNABLE TO FIND REASON CODE 
code FOR STATE CLARIFIER = 
/lyyyyyyyy 

INPUT FILE xxxxxxxx IS EMPTY 

EITHER JCS OR INPUT MUST BE 
SPECIFIED 

UNKNOWN ARCHIVE FILE FORMAT 
ENCOUNTERED, LRU LENGTH 
WAS xxxxxxxx 

Significance 

The file specified has a name 
reserved for special system func­
tions and cannot be accessed by the 
user for transfer. 

DUMPF or LOADPF aborted because file 
filename belongs to a User-1 number. 

The RHF software has encountered a 
busy condition in the RCD NAD. The 
RHF software will automatically try 
again after at least 10 seconds. 

xxxxxxxx is either LOADPF or DUMPF. 
LOADPF/DUMPF cannot load/dump the 
system user directory file, QSUDF. 

The file type for the input file, 
filename, must be physical data. 
This is the file containing jcs to 
be sent to the remote system. 

RHF software error; notify a 
systems analyst. 

The input file xxxxxxxx specified 
by the user did not contain any 
data. Check that the proper file 
was specified and contains the 
needed control statements. 

The user did not specify any control 
statements for the application 
either in the form of an explicit 
JCS statement or an input file. 
Reenter the execute line and specify 
one or the other. 

The user tried using LOADPF to 
reload files that were not 
archived via DUMPF. 

Issuing 
Routine 

MF LINK 
MFQUEUE 
PTF 
PTFS 
SUBMIT 
SUB PRO 
RF PAl 6 
PFLIO 
PF UT IL 

PF UT IL 

RF EXNR 
RFMCONN 
RF-PRGP 
RF-RCVBK 
RF-RCVCS 
RF-RNDS 
RFSNDCS 

PF UT IL 

RF OISB 

RF GEP 

MFLINK 
MF QUEUE 
SUBMIT 
PF SCAN 

MF LINK 
PF SCAN 

PFLIO 

60459410 J 



Sever- Error 
ity Code 

F 8345 

F 8350 

F 8352 

F 8353 

I 8354 

I 8389 

F 8390 

60459410 J 

Table B-2. System Utility Error Messages (Sheet 78 of 80) 

Message 

TAPE FORMAT MISMATCH 
REQUEST TF WAS xxxxxxxx, 
TAPE TF WAS yyyyyyyy 

FILE NOT PROCESSED 
PROCESSED - NO JDNS 
AVAILABLE 

TIME LIMIT 

ILLEGAL INSTRUCTION 
ENCOUNTERED AT BIT 
ADDRESS xxxxxxxxxxxxxxx 

PROGRAM SUSPENDED FOR 
nnnn SECONDS - WILL RETRY 
AFTER RECALL 

ALL PSEUDO FILES ASSOCIATED 
WITH DVSTnn WERE PURGED 

PURGE OF PSEUDO FILES FOR 
DVSTnn INCOMPLETE - CHECK 
YOUR PERMANENT FILES 

Significance 

The user specified a tape format 
of xxxxxxxx when trying to reload 
files from a tape that was created 
with tape format YYYYYYYY• 
Execute LOADPF again specifying 
the correct format, YYYYYYYY• 

The system has run out of available 
JDNs. Wait a few seconds and try 
again. If the problem persists, 
contact a site analyst. 

The user's time limit to complete 
a task was not sufficient for the 
applicaton to complete. Increase 
the time limit specified on the 
RESOURCE statement and resubmit. 

RHF software error or possible 
hardware error. Notify a systems 
analyst. 

In response to a condition described 
in an error message displayed 
prior to this message, the 
application went into SUSPEND/RECALL 
for nnnn seconds; after that time, 
the application will retry. An 
interactive user may choose to break 
the application by entering ! • 

The reload is from mass 
storage and the user 
specified PURGE=YES parameter. 
All the user's pseudo files 
residing on device set 
DVSTnn were purged 
successfully. 

The reload is from mass 
storage and the user 
specified PURGE=YES parameter. 
While LOADPF was purging the 
user's pseudo files from 
DVSTnn, LOADPF encountered an 
error (described by the previous 
error message). The purge of 
pseudo files stopped. The user 
should check his/her permanent 
files to ascertain what pseudo 
files did not get purged. 

Issuing 
Routine 

PF LIO 

MF QUEUE 
SUBMIT 

MFLINK 
MFQUEUE 
SUBMIT 

MFLINK 
MFQUEUE 
SUBMIT 

MFLINK 

LOAD PF 

LOAD PF 

B-103 • 



Table B-2. System Utility Error Messages (Sheet 79 of 80) 

Sever- Error 
i ty Code Message 

F 

F 

I 

I 

F 

F 

F 

e B-104 

8391 TIMED OUT AFTER xxx SECS 
WAITING FOR RCD NAD ZIP = 
#nn TO COMPLETE FUNCTION 
If£ fff 

8392 PARAMETER ERROR on #FF02 
CALL 

8393 xxxxxx TRANSFERRED #nnnn 
WORDS OF DATA 

8394 lid IS A LOCAL LID, 
DESTINATION IS CHANGED 
TO lid2 

8397 

8600 

8601 

SESSION RECOVERY FILE DOES 
NOT EXIST - RETRY 
SPECIFYING LID 

INVALID JOB CARD 

INVALID USER CARD 

Significance 

RHF software or hardware 
problem. Notify a 
system's analyst. 

RHF software problem. 
Notify a system's analyst. 

The number of CYBER 200 
words of data transferred 
to/from the remote host 
is #nnnn. xxxxxx is either 
MFGIVE or MFTAKE and indicates 
the direction of the transfer. 

Informative message. The 
LID specified by lidl 
identifies the CYBER 205 
local host that is executing 
this application. Output will 
be sent to the default output 
remote host identified by lid2. 

The ST=lid parameter was not 
specified on the MFLINK so an 
attempt was made to read the 
session recovery file which 
contains the destination lid 
and user or accounting directives. 
However, the file does not exist 
so the user should retry 
specifying the ST=lid parameter. 

The file being submitted did not 
begin with a valid job card. 

The second control statement of 
the file being submitted was not 
a user card with a valid user 
number. 

Issuing 
Routine 

NETWAIT 

RF GVUP 

PTFS 

MF QUEUE 

RE RSRF 

SUB PRO 

SUB PRO 

60459410 J 



Table B-2. System Utility Error Messages (Sheet 80 of 80) 

Sever- Error Issuing 
ity Code Message Significance Routine 

F 8603 UTILITY NOT PRIVILEGED The SUBMIT utility has not been SUBMIT 
installed as a privileged task. 

F 8604 FILE MUST BE RT=R The user has attempted to submit SUB PRO 
OR RT=W a file with a record format other 

than R or W. 

F 8605 JOB NAME MUST BE The user attempted to submit SUB PRO 
1-8 CHARACTERS a file with a JN parameter 

consisting of more than eight 
characters. 

60459410 J B-105 • 



Hexadecimal Code 

5 

6 

7 

8 

9 

A 

B 

22 

24 

25 

26 

27 

~ 28 

29 

2A 

2B 

2C 

2D 

2E 

2F 

e B-106 

Table B-3. System Error Codes (Sheet 1 of 2) 

Description 

The instruction is not in the CYBER 200 instruction set. 

The exit force instruction does not have a pointer to a system 
message to be executed. 

Illegal request. 

Parity error in data transfer between the CPU and central 
memory. 

The job is unrecoverable because of an outstanding 1/0 request. 

A C50x request did not contain a file segment table ordinal. 

Illegal C504 request. 

An I/O error occurred for a read or write of a-drop file. 

Large page limit exceeded. 

Page size conflict in drop file. 

Virtual address duplicate direct fault. 

Write violation in system call. 

A write violation occurred while the system was swapping in a 
page referenced by the job. 

The job referenced a page within the virtual system address 
range. 

The drop file map is full; the job.can define no more virtual 
regions. 

The job class of the job is not allowed the use of large pages. 

The job referenced a page in the shared library reserved area. 

Drop file overflow; no more virtual space can be mapped into 
the drop file. 

The drop file map is full; no more virtual space can be mapped 
into the drop file. 

A virtual system call caused drop file overflow. 

60459410 J 



Hexadecimal Code 

30 

31 

40 

51 

209 

210 

212 

213 

215 

Bxx 

Cxx 

Dxx 

Exx 

60459410 J 

Table B-3. System Error Codes (Sheet 2 of 2) 

Description 

Time limit; the system allocates time for processing the 
interrupt subroutine. 

The paging routine received an 1/0 error. 

Bound implicit map anomaly. 

The file segment table is full. 

No source file. 

No drop file. 

The pointer to the system message Alpha does not exist. 

The pointer to the system message Alpha was out of bounds. 

No error exit address was specified, and the system message 
encountered an error. 

File already extended to maximum. 

Attempt to read past EOF on a file. 

File segment space in FILEI is used up. 

No disk space is available for extension of a file. 

B-107 • 



Code 

I/O Errors 

001 

002 

003 

004 

005 

007 

008 

009 

010 

Oll 

012 

013 

014 

016 

017 

019 

020 

021 

030 

031 

032 

033 

034 

037 

039 

e B-108 

Table B-4. .Tape Error Codes (Sheet 1 of 5) 

Meaning 

Call not in user range. 

Illegal subfunction code (sfnc). 

Nonexistent input/output connector (IOC). 

Buffer size greater than 48 pages. 

Tried to write zero length logical tape record (V tape format). 

PRU read is longer than MPRU. Device capacity exceeded. 

LRU is greater than MPRU. 

WRITE attempted a zero-length PRU. 

User WRITE buffer went minus. 

HDRl label not in label buffer. 

Non-numeric file sequence number. 

Section 1 is not in VSN list. 

Cannot swap backwards, no previous VSN. 

File accessibility characters do not match. 

Position not found in multifile set. 

Next VSN was not given. 

Tape file does not have proper access. 

Read or skip forward after write (illogical sequence). 

Attempt to reuse call before previous call is complete. 

Previous call for this unit had a fatal error. 

Call crosses page boundary. 

roe is not for a tape file. 

Tape is not assigned to this user. 

For write operation, sum of LRU sizes is greater than buff er 
length. 

Forward motion attempted when end-of-information has been detected 
on this file. 

60459410 J 



Table B-4. Tape Error Codes (Sheet 2 of 5) 

Code Meaning 

I/O Errors 

040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 

051 

052 

053 

054 

055 

101 

102 

105 

106 

107 

108 

109 

110 

111 

60459410 J 

End-of-tape encountered. (This number is returned to the user only 
if the user selected end-of-tape processing on the Q50PEN call.) 

Load point encountered on tape from backward motion. 

Tape format mismatch. 

EOI encountered while positioning to HDRl. 

Illegal user labels in label buffer. 

Small and large pages exist in the buffer. 

System tables full, try again. 

I/O request currently outstanding for this buffer. 

Length of LRU array less than 1 or greater than 255. 

Attempted to write over unexpired label. 

Buff er size smaller than MPRU for read data function. 

Tried to write two consecutive tape marks. 

Data in LRU array after end-of-group. 

Buffer length is less than MPRU. 

Tape unit not assigned to any user. 

All hardware paths to tape unit are down. 

Tape that should be labeled is unlabeled. 

Tape that should be unlabeled is labeled. 

Write parity error unrecoverable. 

Unrecognizable label group. 

Header label fields do not match. 

Record fragment encountered. 

ATS software error. 

Unexpected load point detected. 

Read parity error unrecoverable. 

B-109 • 



Table B-4. Tape Error Codes (Sheet 3 of 5) 

Code Meaning 

I/O Errors 

e B-110 

112 

113 

115 

116 

117 

118 

119 

120 

122 

123 

125 

126 

128 

129 

131 

132 

135 

136 

137 

138 

139 

140 

141 

142 

143 

145 

Unrecognizable trailer label. 

Cannot read label group. 

ATS hardware error, see hardware status. 

Position uncertain, ready dropped. 

Unrecoverable erase parity error. 

Unrecoverable tape mark parity error. 

Tape positioning parity error. 

Unit reserved by other controller. 

Tape mark write verify failure. 

Blank tape encountered during read. 

Tape repositioning error; block ID mismatch. 

Tape repositioning error; invalid block ID. 

Channel malfunction I/O suspended by driver. 

Multifile position uncertain. 

Device ID burst fault. Remount on any unit. 

Device tape cleaner fault. Remount on any unit. 

Tape unit switched offline. 

No write enable ring in reel. 

Controller not capable of requested density. 

Unexpected error returned by ATS controller. 

Software interface error between NADS. 

TAD hardware error. 

Write verify error. 

Unit remained busy after rewind. 

Unit dropped ready during rewind. 

Illegal user level number. 

60459410 J 



Table B-4. Tape Error Codes (Sheet 4 of 5) 

Code Meaning 

I/O Errors 

146 

147 

148 

149 

150 

151 

152 

153 

160 

170 

171 

172 

173 

174 

175 

Label reposition error. 

Unit reset status active, position uncertain. 

Tape label not multiple of 80 characters. 

Unit is not ready at reserve time. 

No file mark after EOFl. 

Missed file mark. 

No label block after file marks. 

VOLl not detected after load point. 

Encountered two tape marks in reverse. 

No current block count given for find position. 

Latest block ID not file mark or load point. 

No label found on labeled tape. 

Cannot find position in find position. 

Tape mark encountered position found. 

Compare count over block ID count. 

Network Hardware Errors 

208 

209 

210 

211 

213 

214 

215 

216 

217 

60459410 J 

Channel not reserved. 

Channel active from system. 

No inactive to function. 

No inactive to status function. 

No status returned. 

Incomplete status returned. 

Function parameters not accepted. 

All data not accepted from DI (device interface). 

Incomplete data returned to DI (device interface). 

B-111 • 



Table B-4. Tape Error Codes (Sheet 5 of 5) 

Code Meaning 

Network Hardware Errors 

218 Unit not connected. 

221 Abnormal general status. 

222 Subsystem hung. 

223 Unit hung busy. 

224 Interface dead. 

225 Buff er index or WC error. 

227 Data compare error - MALET. 

228 No end of operation. 

230 Command sequence error. 

231 Parameter out of legal range. 

e B-112 60459410 J 



GLOSSARY c 

The following terms are used in this manual. Ref er to the ANSI Vocabulary for lnf ormation 
Processing Standard for terms not included in this glossary. 

Abnormal Termination 

The procedure the system follows when a 
batch task returns a completion code 
greater than the error threshold value 
for the batch job. 

Access 

Permitted use of a file or files. For 
example, a user with access to a pool 
can use the files that belong to the 
pool. A user with one or more access 
permissions to a file can use the file 
in the permitted modes. 

Account Block 

The number of system resources 
accumulated per charge number. 

Account Identifier 

One through eight characters indicating 
who is to be charged for system 
resources used by a job. 

Account Number 

One to eight characters indicating who 
is to be charged for system resources 
used by a job. 

Allocation Unit 

An amount of disk space, in 512-word 
blocks which is used by the system as a 
guide to allocating a file when a write 
occurs beyond the extent of the current 
file space. 

Auto load 

The process of starting operating system 
execution (also known as system 
deadstart). 

60459410 E 

Batch Deck 

A card deck that begins with a STORE 
card and that ends with a card having 
the digits 6, 7, 8, and 9 multipunched 
in column 1. 

Batch Input File 

A mass storage file containing the 
control statements, programs, data, and 
directives that define a batch job. 

Batch Job 

A sequence of tasks the batch processor 
executes for a user number. The tasks 
are requested by batch execute lines in 
a batch input file. 

BATCHPRO 

Refer to Batch Processor. 

Batch Processor 

A system utility that processes batch 
jobs. Each batch task is executed as a 
controllee of the batch processor. 

Beginning of Information (BOI) 

The point in a file before which no data 
exists. 

For labeled tape files, the BOI is the 
point immediately after the HDRl label; 
for unlabeled tape files, the BOI is the 
load point of the tape volume. 

Block 

The smallest quantity of data that can 
be read or written by one device 
access. On CYBER 200 mass storage, a 
block is 512 64-bit words. 

C-1 



BO! 

Byte 

Ref er to Beginning of Information. 

A sequence of eight bits that is a 
subdivision of a word and is sufficient 
to represent a single character. 

Charge Number 

Combination of the account identifier 
and project number that is to be charged 
for system-resources used by a job or 
interactive session. 

Checkpoint 

A user checkpoint is a system feature 
that captures a task and any of its 
controllees at some point into execution 
such that the task can be restarted from 
that point. Checkpoint can be called 
through a FORTRAN program named CHKPNT. 

A system checkpoint is a procedure that 
captures the system state for later 
analysis. It saves the information 
necessary to restart the system where it 
was interrupted. 

Control Statement 

A sequence of words and characters that 
call a system routine to perform a job 
step. The control statement must 
conform to format specifications. The 
user can usually place a comment after 
the command terminator. 

Controllee 

A task started by another task (its 
controller). 

Controllee Chain 

I C-2 

An ordered set of tasks. Except for the 
first and last tasks in the chain, each 
task was started by the task at the next 
lower level (its controller) and starts 
the task at the next higher level (its 
controllee). The chain can comprise up 
to nine tasks. 

Controllee File 

An executable file generated by the LOAD 
utility. 

Controller 

CPU 

A task that starts another task (its 
controllee). 

Central processing unit; the 
computational facility of the CYBER 200 
system. 

Data Base 

A special common block created by the 
compiler that contains the preset data 
for the register file when a subroutine 
is entered. 

Data File 

DAU 

A nonexecutable file, also called a 
physical file or physical data file. 

Refer to Device Allocation Unit. 

Dayfile 

A file in which VSOS maintains a history 
of processing events. See also Job 
Dayf ile and System Dayf ile. 

Default Project Number 

A project number that can be assigned to 
a user number as default. Whenever a 
user executes a job or interactive 
session, the system resources 
accumulated will be charged to the 
default project number, if in existence, 
unless the user supplies a charge number 
within the job or interactive session 
and, if the user specifies an account 
identifier on the user statement or 
LOGIN statement. 

60459410 H 



Device Allocation Unit (DAU) 

The basic unit of disk space management 
for a device; all allocation units for 
file segments on a device are multiples 
of the DAU. 

Device Number 

The ordinal of a disk or tape drive in 
the System Configuration Table. 

Device Overflow 

The system feature which allows segments 
of a single file to be resident on more 
than one device; allocation on a new 
device is usually based on the previous 
one being full. 

Device Set 

A logical grouping of physical disk 
devices which the system treats as a 
single area of device space or file 
residence; a device set defines the 
limit on device overflow; a file resides 
within one device set and may not 
overflow to another. 

Directive 

Supplementary control information in a 
file required in addition to a utility 
call. Directives are required, for 
example, with UPDATE. 

Drop File 

A file the system creates for each task 
to which the system maps modified pages 
from the task's virtual. space. Drop 
file names are formed by the system by 
shifting the controllee name right one 
character, truncating the rightmost 
character, and adding one digit as the 
leftmost character of the name. The 
digit added corresponds to the 
controller level of the task. 

DVSTnn 

The device set name where nn is the 
device set number. 

60459410 H 

Dynamic Allocation 

The assignment of additional space 
incrementally to a file as the file is 
being written. 

Dynamic Library 

A library of modules that can be 
dynamically loaded and linked. 

Dynamic Linking 

An execution-time process that locates 
an external subroutine and causes a 
transfer of control to the subroutine. 

Dynamic Loading 

An execution-time process that locates 
an external subroutine, initializes its 
common blocks and data base, and causes 
transfer of control to the subroutine. 
The subroutine code is not moved. 

Dynamic Module 

A module that contains unprocessed 
loader text. The text does not modify 
the code. 

End of File (EOF) 

The point in a file after which no data 
can be accessed. The R, W, and L record 
formats mark the EOF with a file 
delimiter. 

End of Information (EOI) 

EOF 

The point in a file after which no data 
exists. 

For labeled tape files and non-V format 
unlabeled tape files, the EOI is the 
point before the EOFl label. For V 
format unlabeled tape files, the EOI is 
indicated by two consecutive tape marks. 

Ref er to End of File. 

C-3 I 



EOI 

Ref er to End of Information. 

Explicit Input/Output 

A means of accessing a file in which 
data is buffered under program control. 

Family 

File 

A set of print files generated by the 
tasks in a batch job. 

A collection of data that can be 
accessed by file name. Unless otherwise 
indicated, all references to files in 
this manual assume mass storage files. 

FILEI 

Ref er to File Index Table. 

File Index Table (FILE!) 

This term refers to the file index table 
or to an entry in this table. The file 
index table is a catalog of files. Each 
catalog entry describes the file. 
Output from the AUDIT and FILES 
utilities shows much of the table 
information. 

File Information Table (FIT) 

A table generated for each file so that 
SIL can coordinate I/O processing for 
the file. 

File Type 

FIT 

I C-4 

A mass storage file characteristic that 
determines if the file is executable. 
The file types are controllee (virtual 
code) file and physical data file. 

Ref er to File Information Table. 

Full-Length PRU 

A tape PRU that is the MPRU size. 
Contrast with Short PRU. 

Group 

IBG 

A set of data within a file consisting 
of one or more records. Groups can 
exist within R and W format files. 

Refer to Interblock Gap. 

Implicit Input/Output 

A means of accessing a mass storage file 
in which the system brings a page of the 
file into central memory in response to 
a reference to that page. 

Input/Output Connector (IOC) 

An entry in a minus page that links a 
mass storage file with a task. 

Input Queue Manager (IQM) 

The system routine that determines when 
a batch job is given to the CPU 
scheduler. IQM processes the RESOURCE 
control statement. 

Interactive Session 

A sequence of tasks keyed from a 
terminal. The duration of an 
interactive session is from login to 
logout without a task running. 

Interblock Gap (IBG) 

Space between tape blocks. The space is 
required to start the tape moving at the 
appropriate speed for reading or writing 
data. 

Invisible Package 

A hardware convention that contains the 
addres and control information for the 
corresponding task. 

60459410 H 



I 

IOC 

IQM 

JDO 

JDN 

Job 

Refer to Input/Output Connector. 

Refer to Input Queue Manager. 

Refer to Job Descriptor Ordinal. 

Refer to Job Descriptor Number. 

A sequence of tasks related by a 
specific set of characteristics and 
initiated from a single point (for 
example, batch commands in one job 
stream or interactive in one session). 
Each job has a job descriptor table 
(JDT) entry that describes the job 
characteristics. 

Job Block 

The number of system resources 
accumulated for the duration of the job. 

Job Dayfile 

A file on which the history of a job is 
recorded. The job dayfile is printed at 
the end of the job output. 

Job Descriptor Ordinal (JDO) 

The number of a physical entry in the 
job descriptor table for a specific job. 

Job Descriptor Number (JDN) 

A unique number (1 through 2047) 
assigned to a job for the life of the 
job in the CYBER 200 (whether in the 
input, execute, or output queue, or 
checkpointed). 

60459410 H 

Job Descriptor Table 

A system table containing information 
specific to a job. This includes 
job/session name, job step or task name, 
priority, working set, number of tapes 
committed, number of tapes assigned, 
pointers to descriptor blocks, and 
pointer to user activity table. 

Large Page 

128 512-word blocks; 65536 contiguous 
64-bit words (contrast with Small Page). 

Last-Group-File 

Identifies the member of an output-
f ile-f amily which contains disposition 
information for QTF. Its name can have 
one of two forms: 

PYYxxxxx 
Q5Lxxxxx 

Where: 

xxxxx 

PYY 

Q5L 

Level Number 

Five-character hash code 
derived from the system 
clock. 

Indicates that the output­
file-f amily is the output 
of a batch job. 

Indicates that the output­
f ile-f amily is the result 
of MFQUEUE. 

A character in the range 0 through 9 or 
A through F written in the LRU 
terminator. Level number use may be 
required for tape interchange with a 
CYBER 170 system. 

C-5 



Library 

LID 

A file of modules generated by the OLE 
utility that the LOAD utility can use to 
satisfy external references during 
generation of a controllee file. 

Refer to Logical Identifier. 

Local File 

A private file that is destroyed by the 
system after termination of the batch 
job or terminal session that created the 
file. 

Logical Identifier (LID) 

Nonunique identifier for a mainframe for 
the purpose of identifying its logical 
function in the LCN. 

Logical Record Unit (LRU) 

One or more tape PRUs read or written by 
a single I/O operation. For V tape 
format, an LRU is equivalent to a PRU. 
For I, SI, and LB formats, an LRU is one 
or more PRUs ending with a short PRU 
containing a terminator. 

Loosley Coupled Network (LCN) 

LRU 

Map 

The high-speed communications network 
used by CYBER 200 to transfer permanent 
files and batch jobs and to support 
interactive access. 

Refer to Logical Record Unit. 

1. Process of assigning a physical 
address range to a virtual address 
range. 

2. Table containing the correspondence 
between virtual address ranges and 
physical address ranges. 

Mass Storage 

1. In general, mass storage is disk 
storage. 

2. Specifically, a file management 
category that indicates no special 
file processing after task 
termination. 

Master Project Number 

One to three characters to be assigned 
to a mass storage file. These 
characters are the first three 
nonspecial characters of a project 
number. 

Master User 

A user who has been designated to be in 
charge of an account number and/or 
charge number and who is allowed to 
view, alter and/or create user 
descriptions within their specific 
accounts. 

Minus Page 

The first page of a virtual file used by 
the system to hold items such as the 
invisible package, input/output 
connector information, and maps of 
defined virtual space. Drop files 
contain a second minus page. 

Mul tifile Set 

A set of tape files that can be accessed 
by a single tape file request. The 
files are contiguous; each is delimited 
by its HDRl and EOFl labels. The 
multifile set can extend for one or more 
tape volumes. 

Nonprivileged User 

A user with status that allows access to 
files owned by the same user number 
under which the task is running, to 
public files, and to authorized pool and 
private files. 

60459410 H 



Object Code File 

A file generated by a compiler or 
assembler containing relocatable code 
modules. 

Output File 

A file destined for print or punch 
equipment. 

Also, a generic term for a file being 
written, as opposed to an input file 
being read. 

Output-File-Family 

A set of files residing in the output 
queue that was generated as the output 
of a batch job or as the output of 
MFQUEUE. If the output-file-family is 
from a batch job, it has at least two 
members, PXXxxxxx and PYYxxxxx; where 
xxxxx is a five-character hash code, PXX 
is the dayfile of the batch job, and PYY 
is the last-group-file of the 
output-file-family. Other members of 
the output-file-family, if present, 
result from execution of job tasks 
within the job and have the form 
POOxxxxx, POlxxxxx, P02xxxxx, and so 
forth, corresponding to the order in 
which the job tasks that produced output 
were performed. If the 
output-file-family is from MFQUEUE, it 
has exactly two members: 

QSOxxxxx The MFQUEUEd file 

QSLxxxxx The last-group-file 

Ownership 

A file characteristic that determines 
what nonprivileged tasks can access a 
mass storage file. Ownership categories 
are private, pool, and public. Private 
includes local and permanent files. 

Pack File Index (PFI) 

A table of 16-word file index table 
entries that exists on each pack to 
control the files located on each of 
those packs. 

60459410 H 

Pack Number 

Page 

A hexadecimal two-digit number which 
identifies the pack medium. It is in 
the last two characters of the pack name 
(PACKnn). 

The unit by which central memory is 
allocated (See also Large Page and Small 
Page). 

Page Fault 

Reference by virtual address to a page 
not currently in central memory, causing 
a task interrupt and paging in. 

Partition 

A logical delimiter of a record, group, 
or file. 

Permanent File 

A file that continues to exist after 
termination of the batch job or 
interactive session that creates it. 

Permanent File Transfer Facility (PTF) 

The utility used by RHF to send a 
request to a remote system for a 
permanent file transfer. 

Permanent File Transfer Facility Servicer 
(PTFS) 

The utility used by RHF to accept and 
process a request from a remote system 
for a permanent file transfer. 

PFI 

Refer to Pack File Index. 

Physical Address 

Actual central memory address. 

Physical Identifier (PID) 

Unique identifier of a mainframe in the 
LCN. 

C-7 I 



PIO 

Pool 

Refer to Physical Identifier. 

A group of files accessible by more than 
one user, but owned by the pool, not by 
an individual user. Pools are attached 
to jobs. 

Pool Boss 

The user authorized to administer a 
pool. The pool boss can delete pool 
files, destroy the pool, and grant and 
remove user access to the pool. 

Pool File 

An ownership category that indicates a 
file can be accessed by any privileged 
task and by the pool boss or any pool 
member. 

Pool Member 

A user granted access to a pool by the 
pool boss. 

Preallocation 

The assignment of space to a file before 
data is written. 

Private File 

An ownership category; a private file is 
owned by a user number. 

Privileged User 

• C-8 

A user with status that allows access to 
all permanent files in the system and to 
almost all operating system functions. 

Procedure File 

A file containing a sequence of control 
statements headed by a PROC statement. 
When the batch processor processes a 
BEGIN statement that specifies the 
procedure file, it inserts the control 
statement sequence from the procedure 
file into the control statement sequence 
for the job. 

Production Controllee 

A controllee that has been validated for 
production status by the site security 
administrator. 

Production User 

A user whose user number has been 
validated for production status by the 
site security administrator. 

Production User Number 

A user number that has been validated 
for production status by the site 
security administrator. 

Project Number 

PRU 

One to 20 alphanumeric characters 
(including the special characters * and 
-) indicating the project within the 
account identifier to which to charge 
the system resources. 

For tape files, the amount of data read 
or written by a single tape function 
(also known as a tape block). For I, 
SI, and LB formats, the PRU size is 
fixed by the system. For V format, the 
user can specify the PRU size. 

60459410 H 



PTF 

Ref er to Permanent File Transfer 
Facility. 

PTIS 

Ref er to Permanent File Transfer 
Facility Servicer. 

Public File 

An ownership category that indicates a 
file can be accessed by all users. 

Record 

The smallest logical set of data defined 
within an SIL file format. 

Remote Host 

A mainframe within the LCN with which 
the local host can communicate. 

Remote Host Facility (RHF) 

RMS 

The set of network applications and the 
supporting operating system software 
that address the LCN for CYBER 200, and 
the remote systems with which it 
communicates. 

See Rotating Mass Storage. 

Remote Workstation Facility (RWF)t 

The set of network applications and the 
supporting operating system software 
that allows direct communication between 
the CYBER 200 and a network of 
workstations. 

Remote Workstation Interface (RWI)t 

The set of network applications and the 
supporting operating system software 
that allows direct communication between 
the CYBER 200 and a network of 
workstations. 

Rotating Mass Storage 

An 819 disk. 

~u 

Refer to System Billing Unit. 

Scalar 

A data item representing a single value 
that is processed by a scalar machine 
instruction. (Refer to Vector.) 

Scratch File 

A file that is destroyed upon 
termination of the task that creates it. 

Security level 

Attribute of a file, task, job, or user 
number used to prevent unauthorized data 
access. The eight security levels are 
numbered 1 through 8, from least to 
greatest security. 

Segment 

An area of contiguous disk space 
allocated to a file. 

Shared SYSLIB 

An OLE library that was altered by SLGEN 
so that it can exist as a dynamic 
library in the system shared library 
file. It contains all the modules on a 
normal SYSLIB. 

Shared Utility 

A static module set that consists of 
loaded code that resides in the system 
shared library file and a controllee 
file containing everything but the code. 

Short PRU 

A tape PRU of less than the MPRU size. 
A short PRU is the last PRU in a logical 
record unit (LRU) for I, SI, and LB 
formats. (V format does not support 
short PRUs.) The LRU terminator is 
appended to the short PRU. Refer also 
to Zero-length PRU. Contrast with Full­
length PRU. 

SHRLIB 

Refer to System Shared Library. 

tThe necessary software and hardware to support workstation connections. This is a product 
of ETA Systems Inc. 

60459410 J C-9 • 



SIL 

Refer to System Interface Language. 

Site Security Administrator 

The individual(s) whose responsibility 
it is to maintain and grant production 
status to users and controllees. 

Small Page 

The smaller of the two page sizes 
(contrast with Large Page). The small 
page size is chosen during VSOS 
autoload; the possible sizes are one, 
four, or sixteen 512-word blocks. 

Source File 

STU 

1. A generic term for a file containing 
text read by a utility or other task. 

2. In an UPDATE utility context, a file 
produced by UPDATE that would allow 
recreation of a new program library 
on a subsequent creation run. 

Refer to System Time Unit. 

System Billing Unit (SBU) 

An installation-defined unit used for 
charging system resources. The unit 
might incorporate.tape use/access, 
number of tape functions, number of disk 
accesses, number of pages transferred to 
or from disk, and CPU usage in 
microseconds. An example of SBU is time 
in microseconds of CPU use. 

System Dayfile 

A file on which VSOS records information 
on all tasks. A privileged user can 
send a message to the system dayfile. 

System Interface Language 

e C-10 

A set of subroutines that user programs 
can call to perform system functions. 

System Message 

The means by which the operating system 
and user tasks communicate with each 
other. System messages, which are 
formatted in Alpha words and Beta words, 
are described in volume 2 of this 
reference manual. 

System Pool 

A pool of files used instead of the 
public files with the same names. If a 
system pool exists in the current 
system, the pool is attached to each 
user number when the user number submits 
a job or logs in. 

System Shared Library (SHRLIB) 

A file that is read into shared pages at 
system initialization. It includes 
directories, shared utilities, and a 
shared SYSLIB. 

System Time Unit (STU) 

An installation-defined unit used for 
allocating system resources. The unit 
might incorporate number of disk 
accesses, number of pages transferred to 
or from disk, and CPU usage in 
microseconds. An example of STU is time 
in microseconds of CPU use. 

System User 

A user executing on the system user 
number. 

Task 

One execution of a program; job step; 
controllee. Task characteristics are 
defined by a Descriptor Block (DB). 

Threshold Value 

The maximum return code that a task can 
return without causing the batch 
processor to initiate abnormal job 
termination. The user sets the 
threshold value with the TV control 
statement. 

60459410 J 



UPC 

Refer to User Project Control. 

User Number 

A 6-digit identifier that specifies a 
file owner or user of system resources. 

User Project Control 

An attribute which can be set for a user 
number so that the charge number must be 
specified for the executing job or the 
user must have a default project number 
assigned. 

Vector 

A set of data items specified as a 
single operand for a vector machine 
instruction. Execution of the vector 
instruction processes each data item in 
the set. 

Virtual Address 

Address referring to virtual memory and 
translated, by the page table, into a 
physical address. 

Virtual Code File 

Refer to Controllee File. 

60459410 J 

Virtual Memory 

A means of addressing memory in which 
the system maps the addresses referenced 
by a task to actual physical addresses 
in memory. 

Volume 

Word 

A reel of magnetic tape. 

A division of central memory or mass 
storage corresponding to 64 bits. Bits 
are numbered 0 through 63 left to right. 

Working Set 

The pages of a task's virtual space that 
are most frequently referenced during 
task execution. The size of its working 
set determines when the task can be 
scheduled for CPU use. 

Zero-length PRU 

A short tape PRU containing no data. 
The PRU consists solely of the LRU 
terminator. Refer to Short PRU. 

c-11 • 





SIL FILE INFORMATION TABLE 

SIL coordinates I/O processing for a file, using the file information table (FIT) generated 
for the file. Table D-1 shows the structure of the FIT. Figure D-1 lists, in more detail, 
the contents of the FIT. 

D 

60459410 E D-1 



Table D-1. File Information Table 

0123456789 
16 18 20 22 24 42 44 

15 17 19 21 23 2728 3132 3536 3940 43 4748 5152 5556 63 

0 lfn 
64 

s 
btJ rt 4 ~ 2~J! J 1Ji2J 1J J 1 f lfp flags reserved 12 pc rmk 8 

2 llop lvsc lvso reserved 
16 16 16 16 

peof 

conv 

3 res bufl1 
~ 

buf1 
48 3 

4 res bufl2 buf2 
4.!1 3 13 

5 acs 
8 

try 
8 

wsa 
48 

6 wsl 
~ 

reserved 
32 

7 ioer 
16 

rsc 
16 

ctfp ~ bncw 
~ 

8 re 
32 

bn 
~ 

9 mnr 
32 

mxr 
32 

10 rl 32 ptl 
~ 

11 ~ res __!! ioc cbo 48 8 

12 It adoJden gvn rp 
1J 

dt 4 sen 
16 

fsn 
!..!! 3 3 2 8 

13 rsn ~ltyp unit unused JI gs 
2JH 

fs 
20 5 3 8 

14 fid1 64 

15 fid2 64 

16 fid3 8 st id 
4J 

acst 8 

17 gn 16 vsn 48 

18 lvsn 16 vsna 48 

bflg 
19 scad 20l len 

.M 

~ ] 20! 20 res
3 rfld 8 cerr 8 aord 8 serr fadd 12 

31 reserved 
~ 

tbl 32 

32 sbn1 24 
eod1 40 

33 sbn2 
24 

eod2 
40 

34 ownr 
64 

.35 ownr2 
481 

au 
16 

36 nbyte 
32 

hbyte 
32 

37 rpb 
16 Ip J dn 

12 
ns J tf J cmJ brsn J unused 

8 

38-53 filei copy 
64 

54 tbn 
32 

mpru 
~ 

55 mfn 
64 

56 dtt 
64 

57 brl 32 bstat 32 

58 reserved 
2J 

ibo 
12l 

iwo 
24 

59-63 unused 
64 

0 63 

D-2 60459410 E 



Word Bits Field 

0 0-63 lf n 

1 0 sf o 

l 1-3 bt 

4-7 rt 

1 8 peof 

1 9-15 lf p 

1 16-17 of p 

1 18-19 cf p 

Contents 

File name; eight ASCII characters. 

SIL file organization: 

O Sequential access. 
1 Direct access. 

Blocking type: 

0 Non-SIL file. 
1 Internal blocking (I). 
2 Character count blocking (C). 
4 Record count blocking (K). 

Record type: 

0 Control word (W). 
1 ANSI fixed length (F). 
2 Record mark delimited (R). 
4 CYBER Record Manager control word (L). 
5 System block (B). 
7 Undefined (U). 

Physical end-of-file flag (end of information). 

Logical file position: 

0 Within a logical record. 
1 Beginning of information (BOI). 
2 Beginning of a logical file (BOF). 
3 Within a file (between its BOF and EOF). 
4 End of volume (EOV) 
5 End of logical file (EOF). 
8 End of logical group (EOG). 
16 End of logical record (EOR). 
32 Beginning of volume (BOV) 
64 End of information (EOI). 

File positioning when opened: 

0 Do not rewind the file. 
1 Rewind the file. 
2 Position the tape file according to the block ID 

and PRU counts in the system tapes table. 

File positioning when closed: 
0 No rewind. 
1 Rewind. 
2 Rewind and unload. 

Figure D-1. FIT Format (Sheet 1 of 7) 

60459410 E D-3 



I 

Word Bits Field 

1 20-21 conv 

1 22-23 ocs 

1 24 srf 

1 25 wpf 

1 26 bsf 

1 27 pef 

1 28 cef 

1 29 ppf 

1 30 riof 

1 31 al 

1 32 sra 

1 33 uep 

1 34 ring 

1 35 mf s 

1 36-47 

Contents 

Tape data conversion mode: 
0 Binary data; do not convert. 
1 Character data; convert to and from character 

codes. 

Open or closed file status: 

0 Never opened. 
1 Opened for explicit I/O. 
2 Closed. 
3 Opened for implicit I/O. 

Flag indicating whether control is returned immediately to 
the caller after issuance of an I/O request; if set, control 
is not returned until the I/O request is complete. 

Write flag; if set, the last operation was a write operation. 

Buffer specified flag; if set, Q50PEN, Q5GETFIT, or Q5SETFIT 
specified a buffer. 

Parity error flag set if parity violation encountered RT=W. 

Compression/expansion flag; if set, blank compression and 
expansion is performed on the file. 

Put flag; if set, a put operation was the last operation 
performed on the file. 

Random I/O flag; if set, a Q5SETFIT call has changed the 
block numbers. The flag is used when a FORTRAN read request 
specifies a file address. 

Flag indicating whether the file is accessed at the record 
level or the block level (used internally by access 
permission checking). 

Stop read ahead flag (for SIL internal use only). 

User error processing flag. Indicates whether the user gets 
control after VSOS returns a tape I/O error. 

0 User does not get control. 
1 User gets control. 

Ring specification. 

Multifile set indicator: 

0 
1 

Reserved. 

File does not belong to a multifile set. 
File belongs to a multifile set. 

Figure D-1. FIT Format (Sheet 2 of 7) 

D-4 60459410 F 



Word Bits Field 

48-55 pc 

56-63 rmk 

2 0-15 !lop 

2 16-31 lvsc 

2 32-47 lvso 

2 48-63 

3 0-2 

3 3-15 bufll 

3 16-63 buf 1 

4 0-2 

4 3-15 buf12 

4 16-63 buf 2 

5 0-7 acs 

5 8-15 try 

Contents 

Padding character; one ASCII character. 

Record mark character; one ASCII character. 

Last logical operation on the file requested by the user: 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

QSDEFINE 
QSMAPIN 
Q5MAPOUT 
QSOPEN 
QSCLOSE 
QSPURGE 
QSRETURN 
QSRQUEST 
Q5CHECK 
Q5ENDPAR 
Q5GETN 
Q5GETP 
QSPUTN 
Q5PUTP 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

QSREAD 
QSWRITE 
QSREWIND 
Q5SKIP 
Q5CHANGE 
Q5GIVE 
QSREDUCE 
Q5ROUTE 
QSLABEL 
Q5REELSW 
QSCLIOER 
Q5PERMIT 
QSGETB 
Q5PUTB 

Last virtual system function code issued for the file. 

Last virtual system suboperation code issued for the file. 

Reserved. 

Reserved. 

Length in 512-word blocks of buffer 1. 

Address of buffer one. 

Reserved. 

Length in 512-word blocks of buffer 2. 

Address of buffer 2. 

File access permissions (each bit is a flag for an access 
permission; any combination of permissions is valid). 

1 Write 
2 Read 
4 Append 
8 Modify 
16 Execute 

Error recovery for tape files: 

0 Standard error recovery procedures. 
1 No attempt to recover errors. 

Figure D-1. FIT Format (Sheet 3 of 7) 

60459410 J D-5 



Word Bits 

5 16-63 

6 0-31 

6 32-63 

7 0-15 

7 16-31 

7 32-39 

7 40-63 

8 0-31 

8 32-63 

9 00-31 

9 32-63 

10 00-31 

10 32-63 

11 0-1 

11 2-7 

11 8-15 

11 16-63 

12 0-2 

12 3-5 

Field 

wsa 

wst 

ioer 

rsc 

ctfp 

bncw 

re 

bn 

mnr 

mxr 

rl 

ptl 

cbn 

ioc 

cbo 

lt 

ado 

Contents 

Address of the working storage area. 

Length in bytes of the working storage area. 

Reserved. 

Tape I/O error returned by VSOS. 

Residual tape partition skip count. 

Current tape position as returned by VSOS. 

Number of bytes to next control word (for SIL internal use 
only). 

Record count; number of the last full record read or written. 

Ordinal of current block. 

Minimum record length in bytes. 

Maximum record length or fixed record length in bytes. 

Current record length in bytes. 

Current partial transfer length. 

Current buffer being used: 

0 Both buffers free. 
1 Buff er one in use. 
2 Buffer two in use. 

Reserved. 

Number of the system I/O connector (IOC) used by the file. 

Current byte position within the buffer. 

Tape label type: 

1 ANSI standard labels. 
2 No labels (unlabeled tape). 
3 Nonstandard labels. 

Assembly/disassembly option: 

0 Binary. 
1 60/64 format. 

Figure D-1. FIT Format (Sheet 4 of 7) 

D-6 60459410 E 



Word Bits Field 

12 6-7 den 

12 8-15 gvn 

12 16-27 rp 

12 28-31 dt 

12 32-47 sen 

12 48-63 f sn 

13 00-04 vsn 

13 05-07 cltyp 

13 08-15 unit 

13 16-21 

13 22 gsf 

13 23-42 gs 

13 43 f sf 

13 44-63 f s 

Contents 

Tape recording density: 

1 6250 cpi. 
2 1600 cpi. 

Tape file generation version number from HDRl label. 

Tape file retention period; used to determine the expiration 
date in the HDRl label. 

Device type: 

0 Mass storage. 
1 Interactive terminal. 
9 Magnetic tape. 

Tape file section number from HDRl label. 

Tape file sequence number from HDRl label. 

Request serial number of last Q5READ or Q5WRITE call. It 
also identifies the word within the FIT (stl through st6) 
containing the call response. 

Close type (as determined by the Q50PEN call): 

0 
1 
2 

Nonprivileged. 
Privileged. 
Privileged system task. 

Logical unit number of the device on which the file resides 
as set by the system. 

Reserved. 

Flag indicating whether a group separator is in the current 
I/O buffer (only valid for R record format). 

O No group separator is in the buffer. 
1 A group separator is in the buffer. 

Byte offset giving the location of the group separator in 
the I/O buffer currently in use (only valid for R record 
format). 

Flag indicating whether a file separator is in the current 
I/O buffer (only valid for R record format). 

0 No file separator is in the buffer. 
A file separator is in the buffer. 

Byte offset giving the location of the file separator in the 
I/O buffer currently in use (only valid for R record format). 

Figure D-1. FIT Format (Sheet 5 of 7) 

60459410 G D-7 

I 



Word 

14 

15 

16 

16 

16 

17 

17 

18 

18 

19 

19 

20-21 
22-23 
24-25 
26-27 
28-29 
30-31 

32 

32 

33 

33 

34 

35 

35 

36 

36 

37 

Bits 

0-63 

0-63 

0-7 

8-55 

56-63 

0-15 

16-63 

0-15 

16-63 

0-19 

20-63 

0-63 
0-63 
0-63 
0-63 
0-63 
0-63 

0-23 

24-63 

0-23 

24-63 

0-63 

0-47 

48-63 

- 0-31 

32-63 

0""".'15 

Field 

fidl 

f id2 

f id3 

stid 

acst 

gn 

vsn 

lvsn 

vsna 

scad 

len 

stl 
st2 
st3 
st4 
st5 
st6 

sbnl 

eodl 

sbn2 

eod2 

ownr 

ownr2 

au 

nbyte 

hbyte 

rpb 

Contents 

First eight characters of tape file identifier from HDRl 
label. 

Second eight characters of tape file identifier from HDRl 
label. 

Last character of tape file identifier from HDRl label. 

File set identifier for a tape file. 

File accessibility character for HDRl label. 

Tape file generation number for HDRl label. 

Volume serial number for VOLl label. 

Length in words of the user-specified VSN list. 

Address of user-specified VSN list. 

Beginning sector address of the file. 

Number of bytes of data transferred by the last I/O 
operation. 

Status words used by an internal routines for physical I/O 
operations. 

Starting block number in buff er one. 

Byte off set to end of data in buffer one. 

Starting block number in buff er two. 

Byte off set to end of data in buffer two. 

First eight characters of owner identification in VOLi label. 

Last six characters of owner identification in VOLl label. 

Allocation unit. 

Next available byte in the file. 

Highest available byte in the file. 

Records per block for K blocked files. 

Figure D-1. FIT Format (Sheet 6 of 7) 

D-8 60459410 E 



Word Bits Field 

37 16-19 lp 

37 20-31 dn 

37 32-39 ns 

37 40-43 tf 

37 44-47 cm 

37 48-SS brsn 

37 S6-63 

38-S3 0-63 f ilei 

S4 0-31 tbn 

S4 32-63 mpru 

SS 0-63 mfn 

S6 0-63 . dtt 

S7 0-31 brl 

57 32-63 bstat 

S8 0-27 

S8 28-39 ibo 

S8 40-63 iwo 

S9 0-63 

60-63 0-63 

Contents 

Label processing option: 

0 Read and verify existing labels. 
1 Write new labels. 

Device number. 

Noise size in frames (0 through 31). 

Tape data format: 

1 Large block (LB). 
2 SCOPE internal (SI). 
3 Internal (I). 
4 Variable (V). 
#C Non-ANSI interchange - V format 

Character data conversion mode: 

1 ASCII character set. 
2 EBCDIC character set. 

Request serial number (RSN) for buffer operations. 

Reserved. 

Copy of file index (FILEI) entry. 

Current block count for tapes. 

Maximum tape block (PRU) size in bytes. 

Multifile set name (ASCII characters; used only if the mfs 
field is 1). 

File descriptor in the system tapes table. 

Record length for B type records. 

Status of B type I/O operation (for internal use only). 

Reserved. 

I blocked tape file block ordinal. 

I blocked tape file word offset. 

Reserved. 

Reserved for site use. 

Figure D-1. FIT Format (Sheet 7 of 7) 

60459410 E D-9 





FORTRAN DAT A CONVERSION ROUTINES 

As an aid to the FORTRAN programmer, the standard system library, SYSLIB, contains routines 
for converting IBMt and CYBER 170 arithmetic data formats to and from CYBER 200 arithmetic 
data formats. 

IBM ARITHMETIC CONVERSION ROUTINES 

The available IBM arithmetic conversion routines support the following conversions: 

Routine 

Q9IC64 

Q9IC32 

Q9CI64 

Q9CI32 

Conversion 

IBM 64-bit floating point representation to CYBER 200 64-bit floating 
point representation. 

IBM 32-bit floating point representation to CYBER 200 32-bit floating 
point representation. 

CYBER 200 64-bit floating point representation to IBM 64-bit floating 
point representation. 

CYBER 200 32-bit floating point representation to IBM 32-bit floating 
point representation. 

E 

The special call statement Q8EXTV converts CYBER 200 32-bit floating point representation to 
CYBER 200 64-bit floating point representation. The special call statement Q8CONV converts 
CYBER 200 64-bit floating point representation to CYBER 200 32-bit floating point 
representation. These routines can be used with the IBM data representation conversion 
routines. For example, to convert a CYBER 200 64-bit floating point number to an IBM 32-bit 
floating point number, use a Q8CONV statement to convert from 64-bit to 32-bit 
representation and then call the Q9CI32 routine. To reverse the conversion, call the Q9IC32 
routine and then use the Q8EXTV statement to convert from 32-bit to 64-bit representation. 
For more information on the Q8EXTV and Q8CONV statements, refer to the CYBER 200 FORTRAN 
Language 2 Reference Manual. 

For best performance, the input array for these routines should contain at least 64 operands. 

IBM TO CYBER 200 64-BIT FLOATING POINT CONVERSION 

The Q9IC64 routine converts numbers from IBM 370 64-bit floating point representation to 
CYBER 200 64-bit floating point representation. 

The IBM 64-bit floating point representation has an 8-bit exponent and a 56-bit 
coefficient. The CYBER 200 64-bit floating point representation has a 16-bit exponent and a 
48-bit representation. Therefore, when Q9IC64 converts a floating point number, six to nine 
of the least significant bits of the coefficient are truncated. 

tIBM is a registered trademark of International Business Machines Corporation. 

60459410 E E-1 



The data flag branch manager is disabled during data conversion and reenabled after 
completion of the conversion. 

The following is the Q9IC64 call format: 

CALL Q9IC64(arrayibm,arrayc20,num,istat) 

arrayibm 

arrayc20 

num 

is tat 

Name of the array of IBM 64-bit operands to be converted. 

Name of the array to receive the operands converted to CYBER 200 
64-bit floating point representation. 

Number of operands to convert (1 to 65 535). 

Name of the integer variable in which status is returned. The 
following are the possible return values: 

0 All operands converted without errors. 

-1 The number of operands specified on the call is not 
within the range 1 to 65 535; no operands are converted. 

IBM TO CYBER 200 32-BIT FLOATING POINT CONVERSION 

The Q9IC32 routine converts numbers from IBM 370 32-bit floating point representation to 
CYBER 200 32-bit floating point representation. 

The following is the IBM floating-point representation: 

number=+ coefficient* (16.(exponent - 64)) 

The following is the CYBER 200 floating point representation: 

number = coefficient * 2exponent 

Although both 32-bit representations have 8-bit exponents and 24-bit coefficients, the IBM 
representation can represent larger exponents than the CYBER 200 representation. Therefore, 
if the exponent of an IBM operand is less than -2210, Q9IC32 converts it to CYBER 200 
machine 0, and if the exponent is greater than 3310, Q9IC32 converts it to a CYBER 200 
indefinite (its leftmost hexadecimal digit is 7). 

Also, when the higher order bit of the coefficient is 1, the least significant bit is 
truncated. 

The following is the Q9IC32 call format: 

E-2 

CALL Q9IC32(arrayibm,arrayc20,num,istat) 

arrayibm 

arrayc20 

num 

Name of the array of IBM 32-bit operands to be converted. 

Name of the array to receive the operands converted to CYBER 200 
32-bit floating point representation. 

Number of operands to convert (1 to 65 535). 

60459410 E 



is tat Name of the integer variable in which status is returned. The 
following are the possible return values: 

O All operands converted without errors. 

+n All operands converted; n operands converted to 
indefinites. 

-1 The number of operands specified on the call is not 
within the range 1 to 65 535; no operands are converted. 

CYBER 200 TO IBM 64-BIT FLOATING POINT CONVERSION 

The Q9CI64 routine converts numbers from CYBER 200 64-bit ~loating point representation to 
IBM 370 64-bit floating point representation. 

The IBM 64-bit floating point representation cannot represent numbers whose magnitude 
exceeds the following value: 

coefficient * zexponent 

where exponent is between -306 and 205. Therefore, Q9CI64 converts numbers outside that 
range and indefinites to IBM zero representation where all 64 bits are zero. 

The following is the Q9CI64 call format: 

CALL Q9CI64(arrayc20,arrayibm,num,istat) 

arrayc20 

arrayibm 

num 

is tat 

Name of the array of CYBER 200 64-bit operands to be converted. 

Name of the array to receive the operands converted to IBM 64-bit 
floating point representation. 

Number of operands to convert (1 to 65 535). 

Name of the integer variable in which status is returned. The 
following are the possible return values: 

O All operands converted without errors. 

+n All operands converted; n operands converted zero due to 
overflow. 

-1 The number of operands specified on the call is not 
within the range 1 to 65 535; no operands are converted. 

CYBER 200 TO IBM 32-BIT FLOATING POINT CONVERSION 

The Q9CI32 routine converts numbers from CYBER 200 32-bit floating point representation to 
IBM 370 32-bit floating point representation. 

The leftmost bit of the CYBER 200 zero representation is set to one. Q9CI32 converts CYBER 
200 zeros and indefinites to IBM zero representation where all 64 bits are zero. 

60459410 E E-3 



The following is the Q9CI32 call format: 

E-4 

CALL Q9CI32(arrayc20,arrayibm,num,istat) 

arrayc20 

arrayibm 

num 

is tat 

Name of the array of CYBER 200 32-bit operands to be converted. The 
operands must be packed two per word. 

Name of the array to receive the operands converted to IBM 32-bit 
floating point representation. 

Number of operands to convert (1 to 65 535). 

Name of integer variable in which status is returned. The following 
are the possible return values: 

0 

-1 

All operands converted without errors. 

All operands converted; n indefinites converted to zero. 

The number of operands specified on the call is not 
within the range 1 to 65 535; no operands are converted. 

60459410 E 



CYBER 170 ARITHMETIC CONVERSION ROUTINES 

Routines are available for the following conversions: 

• CYB ER 170 integer format to CYB ER 200 integer format. 

• CYBER 200 integer format to CYB ER 170 integer format. 

• CYB ER 170 floating point format to CYB ER 200 floating point format. 

• CYBER 200 floating point format t9 CYB ER 170 floating point format. 

The routines are stored on the standard system library, SYSLIB. The routines are written 
CYBER 200 FORTRAN with inline machine instruction calls to optimize performance. 

CONVERSION PROCESSING 

The conversion routines are intended for use within the following processing sequence: 

1. A job transfers a file of arithmetic data from a CYBER 170 system to a CYBER 200 
system. 

2. A CYBER 200 program calls a conversion routine to convert the arithmetic data from 
CYBER 170 format to CYBER 200 format. 

in 

3. A CYBER 200 program uses the converted arithmetic data as operands in a calculation 
producing a file of result data. 

4. A CYBER 200 program calls a conversion routine to convert the result data from CYBER 
200 format to CYBER 170 format. 

5. A job transfers the file of converted result data from the CYBER 200 system to a 
CYBER 170 system. 

CYBER 170 arithmetic data representations use 60 bits. The conversion routines assume the 
data is stored as one operand in each CYBER 170 60-bit word and then transferred as a packed 
binary string. 

The transferred CYBER 170 data is packed into the 64-bit words of the CYBER 200 file. That 
is, the first word of the file contains the first 60-bit operand and the top four bits of 
the second operand, the second word contains the bottom 56 bits of the second operand and 
the top eight bits of the third operand, and so forth. 

The conversion routine reads the packed CYBER 170 data and converts it to one CYBER 200 
operand per 64-bit word. 

Similarly, the reverse conversion reads one CYBER 200 operand from each 64-bit word and 
produces packed CYBER 170 data. When a job transfers the packed CYBER 170 data to a CYBER 
170 system, the CYBER 170 file contains one operand in each 60-bit word. 

60459410 E E-5 



CALL FORMAT 

Each conversion routine uses the same call format. The call specifies an input array 
containing the values to be converted and an output array to receive the converted values. 
To perform the conversion in place, specify the same array as the input array and the output 
array. 

The call format for the routines is as follows: 

CALL Q9xxx {arrayl,array2,num,istat) 

Q9xxx 

array! 

array2 

num 

is tat 

Name of conversion routine. The routine name is given in the 
conversion description. 

Name of the input array containing the operands to be converted. The 
array length must be at least the value specifed as num. 

Name of the output array to contain the converted values. The same 
array can be specified as both the input array and the output array. 
The array length must be at least the value specifed as num. 

Number of operands to be converted. The value must be greater than 
zero; it can be specified as an integer constant or integer variable 
name. 

Name of an integer variable in which one of the following status 
values is returned: 

0 No errors. 

-1 The specified num value was not a valid integer greater 
than zero. 

n Integer indicating the number of errors that occurred. 
The error type is described in the conversion description. 

For optimum performance, align the input and output arrays on 512-word block boundaries. 
Also, for most efficient storage, the number of operands to be converted by a call should be 
a multiple of 8192. A packed binary string of 81~2 operands fits into 15 blocks. When 
converted to CYBER 200 format, the 8192 operands fit into 16 blocks. 

CYBER 170 TO CYBER 200 INTEGER CONVERSION 

The Q9LCI routine converts CYBER 170 integer operands to equivalent CYBER 200 integer 
operands. 

The input array must contain a packed binary string of 60-bit integers. The first operand 
must be left-justified in the first word of the array. 

The routine converts the integers from 60-bit one's complement integers to 48-bit two's 
complement integers, one integer for each 64-bit word. 

A value outside the range -(2**47-1) through 2**47-1 is an overflow error. Its coaverted 
value is either -2**47 if its sign is negative or 2**47-1 if its sign is positive. The 
number of overflow errors is returned in the istat variable. 

E-6 60459410 E 



CYBER 200 TO CYBER 170 INTEGER CONVERSION 

The Q9CLI routine converts CYBER 200 integer operands to equivalent CYBER 170 integer 
operands. 

The input array must contain 48-bit CYBER 200 integers, one integer for each 64-bit word. 

The routine converts the integers from 48-bit two's complement integers to a packed binary 
string of 60-bit one's complement integers. The first operand is left-justified in the 
first word of the output array. 

The routine returns the number of integers which had nonzero exponents in the istat variable. 

CYBER 170 TO CYBER 200 FLOATING POINT CONVERSION 

The Q9LCF routine converts CYBER 170 floating point operands to equivalent CYBER 200 
floating point operands. 

The input array must contain a packed binary string of 60-bit normalized floating point 
operands. The first operand must be left-justified in the first word of the array. 

The routine converts the floating point operands to CYBER 200 64-bit normalized floating 
point operands. It truncates the least-significant bit of the 48-bit coefficient. 

Overflow and indefinite operands are converted to CYBER 200 indefinite values. Underflow 
(binary zero) is converted to CYBER 200 machine zero. 

Because a corresponding value exists for each CYBER 200 floating point value, no conversion 
errors can occur. Therefore the routine does not return a conversion error count in the 
istat variable. 

CYBER 200 TO CYBER 170 FLOATING POINT CONVERSION 

The QYCLF routine converts CYBER 200 floating point operands to equivalent CYBER 170 
floating point operands. 

The input array must contain CYBER 200 64-bit normalized floating point operands. 

The rou~ine converts the floating point operands to a packed binary string of CYBER 170 
60-bit normalized floating point operands. The first operand is left-justified in the first 
word of the output array. 

Indefinite operands are converted to CYBER 170 indefinite values. CYBER 200 machine zero is 
converted to CYBER 170 underflow (binary zero). 

If the value cannot be represented as a 60-bit floating point value (overflow error), it is 
converted to either positive or negative overflow depending on the sign of the overflow 
coefficient. The number of overflow errors is returned in the istat variable. 

60459410 E E-7 



CYBER 170 TO CYBER 200 NUMERIC DAT A TRANSFER EXAMPLE 

This section outlines the steps required to transfer a file of binary data from a CYBER 170 
system to a CYBER 200 system and back again. The binary data can be in floating point 
format or integer format. 

CYBER 170 to CYBER 200 Transfer 

To transfer numeric data from a CYBER 170 system to a CYBER 200 system, perform the 
following steps: 

E-8 

1. Execute the CYBER 170 program that writes the data file. The program should use a 
BUFFER OUT statement to write each data record. (An unformatted WRITE statement 
could be used instead if the job includes a FILE control statement that specifies 
BT=C,RT=S.) 

2. Execute an MFLINK statement within a CYBER 200 job to transfer the CYBER 170 file. 
Specify DD=US on the statement to transfer a binary stream that preserves the 
logical record structure. For example, the following statement transfers a file 
named Cl70B from a NOS/BE system: 

MFLINK,Cl70B,ST=XXX,DD=US,JCS="ATTACH,Cl70B,ID=XX.". 

3. Execute the CYBER 200 program that uses the data. The program must first read the 
transferred file into an array and then convert the data to the appropriate CYBER 
200 data format. 

The program must use BUFFER IN statements to read the file into an array. (It can 
use unformatted READ statements if the array bit length is a multiple of both 60 and 
64. It cannot use Q7BUFIN.) 

The record length used, LEN2, should be computed from the CYBER 170 record length, 
LENl, using the following statements: 

IREM=MOD((LEN1*60),64) 
LEN2=(LEN1*60)/64 
IF (IREM.NE.0) LEN2=LEN2+1 

IREM is the number of bits of data in the last 64-bit word. LEN2 is the number of 
64-bit words required to hold the bit string received through MFLINK. 

The program calls the appropriate conversion routine to convert the data in the 
array. For example, the following statement converts data from CYBER 170 floating 
point format to CYBER 200 floating point format: 

CALL Q9LCF(A,B,LEN1,ISTAT) 

After executing the statement, the data in array B is available for processing by 
the program. 

60459410 E 



CYBER 200 to CYBER 170 Transfer 

To transfer numeric data from a CYBER 200 system to a CYBER 170 system, perform the 
following steps: 

1. Execute a CYBER 200 program that converts the data to the appropriate CYBER 170 data 
format and then writes it to a file. 

For example, assuming the number of floating point operands in array B is LEN!, the 
following statement converts the data to CYBER 170 floating point format: 

CALL Q9CLF(B,C,LEN1,ISTAT) 

The program should then use a BUFFER OUT statement to write array C as a record on 
the file. 

The record length specified on the BUFFER OUT statement, LEN2, should be computed 
from LENl using the following statements: 

IREM=MOD((LEN1*60),64) 
LEN2=(LEN1*60)/64 
IF (IREM.NE.O) LEN2=LEN2+1 

IREM is the number of bits of data in the last 64-bit word. LEN2 is the number of 
64-bit words required to hold the bit string received through MFLINK. 

2. Execute an MFLINK statement within a CYBER 200 job to transfer the CYBER 200 file. 
Specify DD=US on the statement to transfer a binary stream that preserves the 
logical record structure. For example, the following statement transfers a file 
named C205B to a NOS/BE system: 

MFLINK,C205B,ST=XXX,DD=US,JCS="CATALOG,C205B,ID=XX,RP=90.". 

3. Execute the CYBER 170 program that uses the data. To read records from the data 
file, it should use a BUFFER IN statement that reads a record of length LEN!. (An 
unformatted READ statement could be used instead if the job includes a FILE control 
statement that specifies BT=C,RT=S.) 

After executing the BUFFER IN statement, the data is available for processing by the 
program. 

60459410 E E-9 





TAPE LABELS AND FORMATS 

VSOS supports ANSI standard tape labeling (level 2, ANSI standard X3.27-1978). 

Tape labels delimit and identify the data recorded on a tape volume. When the label type 
specified for a tape file is ANSI standard labeled, VSOS writes and expects to read the 
following required labels: 

Label 

VOLl 

HDRl 

EOFl 

EOVl 

Description 

Marks the beginning of a tape volume. 

Marks the beginning of a tape file. 

Marks the end of a tape file. 

Marks the end of a tape volume (used only if the end of the volume precedes 
the end of the file). 

A user can also specify the following additional optional labels: 

Label Description 

F 

UVLn Sequence of one to nine additional volume labels (n is a digit, 1 through 9). 

HD Rn 

UHL a 

EOFn 

UTLa 

Sequence of one to eight additional header labels (n is a digit, 2 through 
9). 

Sequence of additional header labels (a can be any character). 

Sequence of one to eight additional end of file labels (n is a digit, 2 
through 9). 

Sequence of additional trailer labels (a can be any character). 

For more information on specifying additional optional labels, refer to the QSOPEN and 
QSREELSW call descriptions. 

Figure F-1 shows ANSI standard tape label groupings. As shown, multifile sets require ANSI 
standard labeling to delimit the files in the set. 

Unlabeled tapes using I, SI, or LB tape format also use EOFl and EOVl labels to mark the end 
of the file data as shown in figure F-2. V format unlabeled tapes use no labels. 

Each tape label is written as an 80-character PRU. Table F-1 lists the formats of the 
required ANSI labels; table F-2 lists the formats of the optional labels. 

Tables F-1 and F-2 list each field, its content, and the default value VSOS writes in the 
field if no other value is specified for the field. The figures also indicate whether VSOS 
checks the existing field value when it reads or writes the label. The phrase, checked if 
specified, indicates that VSOS checks that the existing field value matches the value 
specified for the field only when a value is specified. 

60459410 E F-1 



For more information on specifying label values, refer to the LABEL control statement and 
QSLABEL call descriptions in chapters 4 and 9 of this manual. 

Table F-3 describes tape group separators for each label type and tape format. In addition, 
the allowance of multivolume and multifile processing is shown. 

Figure F-3 provides a summary of the physical data layout on the tape media for supported 
record type/tape format/tape blocking combinations. 

Figure F-4 describes the layout of labels on the tape media for tape labeling/tape format 
combinations that are supported on single-volume tape. Figure F-5 is similar for 
multivolume tape. 

F-2 60459410 E 



t:rj 
I 

w 

(Note: Shading indicates that the iabel represents a sequence of optional user-specified lables; an asterisk represents tape mark): 

An ANSI labeled NV format tape can also have tape marks embedded within the file data. The tape marks act as group delimiters. 

Single File on Single Tape Volume 

File1 data EOF1 

Multivolume File 

File1 data EOV1 

File1 data EOF1 

Multifile Set on a Single Volume 

File1 data EOF1 File2 data EOF1 

Multifile Set on Three Volumes 

Filel data EOF1 File2 data EOV1 

File2 data EOV1 

File2 data EOF1 File3 data EOF1 

NV Format 

I VOL1 I HDR1 I * I Data * I Data I * * I Data I * I EOFll * I * I 

Figure F-1. ANSI Standard Tape Label Groupings 



(Note: An asterisk represents a tape mark): 

Single Volume File Using I, SI, or LB Format 

File1 data * I EOF1 I I * I 
Multivolume File Using I, SI, or LB Format 

File1 data * I EOV1 I * I * I * 
I File1 data * I EOF1 I * I * I 

Single Volume File Using V or NV Format 

File1 data (Group 1) File1 data (Group 2) 

Multivolume File Using V or NV Format 

File1 data (Group 1) File1 data (Group 2) 

File1 data (Group 3) File1 data (Group 4) 

Figure F-2. Unlabeled Tape Files 

F-4 6045 9410 J 



Table F-1. Required ANSI Label Formats (Sheet 1 of 4) 

Byte Field Content 

Default 
Value 

Written 

VOLl Label 

1-3 Label identifier 

4 Label number 

5-10 Volume identifier 

11 Accessibility 

12-37 Reserved for 
future 
standardization 

38-51 owner identifier 

52-79 Reserved for 
future 
standardization 

80 Label standard 
version 

VOL 

1 

Volume serial number 
(VSN) 

Character restricting 
access to the volume 

Blanks 

Characters 
identifying the 
owner 

Blanks 

3 indicates 
conformity with 
ANSI X3.27-1978 
standard. Blank 
indicates agreement 
between interchange 
parties required. 

VOL 

1 

As read from 
existing label 

Blank 
(unlimited 
access) 

Blanks 

Blanks 

Blanks 

3 

HDRl Label 

1-3 

4 

5-21 

Label identifier HDR 

Label number 1 

File identifier 1 to 17 characters 
identifying the 
file 

60459410 E 

HDR 

1 

File name as 
specified on 
label 
specification 

Compared on 
Read 

(LPROC=R) 

Yes 

Yes 

Yes, if file 
assigned by 
VSN 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

Checked if 
specified 

Compared on 
Write 

(LPROC=W) 

Yes 

Yes 

Yes, if file 
assigned by 
VSN 

Yes (must be 
specified on 
the OVA 
parameter) 

No 

No 

No 

Yes 

Yes 

Yes 

Checked if 
specified 

F-5 



Byte 

22-27 

28-31 

32-35 

36-39 

40-41 

42-47 

48-53 

F-6 

Table F-1. Required ANSI Label Formats (Sheet 2 of 4) 

Field 

File set 
identifier 

File section 
number 

File sequence 
number 

Generation number 

Generation 
version number 

Creation date 

Expiration date 

Content 

One to six characters 
identifying the 
multifile set 
(not currently 
supported by VSOS) 

Four digits 
identifying the file 
section: 0001 for 
first HDRl label of 
file; incremented 
for each subsequent 
HDRl label of file. 
Used when positioning 
a file using a 
saved tapes table 
entry. 

Four digits 
identifying the 
position of the file 
within the multifile 
set. If 9999 
specified, next 
number in sequence 
assigned to field. 

Four digits 
identifying the 
generation of the 
file. 

Two digits 
identifying the 
version of the file 
generation. 

Six characters: a 
blank, two digits 
indicating the year, 
and three digits 
indicating the day 
of the year. 

Six characters: a 
blank, two digits 
indicating the year, 
and three digits 
indicating the day 
of the year. 

Default 
Value 

Written 

Blanks 

0001 

0001 

0001 

00 

Space followed 
by five zeros. 

Space followed 
by five zeros. 

Compared on 
Read 

(LPROC=R) 

No 

No 

Checked if 
specified 

No 

No 

No 

Checked if 
file opened 
for write 
access 

Compared on 
Write 

(LPROC=W) 

No 

No 

Checked if 
specified 

No 

No 

No 

Yes 

60459410 E 



Table F-1. Required ANSI Label Formats (Sheet 3 of 4) 

Byte Field 

54 Accessibility 

55-60 Block count 

61-73 System code 

74-80 Reserved for 
standardization 

1-3 Label identifier 

4 Label number 

5-54 Same as 
corresponding 
HDRl label 

55-60 Block count 

61-80 Same as 
corresponding 
HDRl label 

60459410 J 

Content 

Character restricting 
access to the file. 
If character is A, 
the user number of 
the task must match 
the owner identifier 
of the volume 

Must be zeros. 

1 to 13 characters 
identifying the 
system that wrote 
the label. 

Blanks 

Default 
Value 

Written 

Blank 
(unlimited 
access) 

Zeros 

CYBER 200 2.3 

Blanks 

Compared on 
Read 

(LPROC=R) 

Yes 

No 

No 

No 

EOFl Label 

EOF 

1 

Same as 
corresponding 
HDRl label 

Six digits that 
indicate the number 
of data blocks 
in the file 

Same as 
corresponding 
HDRl label 

EOF Yes 

1 Yes 

Same as No 
corresponding 
HDRl label 

Blanks Yes 

Same as 
corresponding 
HDRl .label 

No 

Compared on 
Write 

(LPROC=W) 

Yes (must be 
specified on 
the OFA 
parameter) 

No 

No 

No 

No, new 
label always 
written 

No, new 
label always 
written 

No, new 
label always 
written 

No, new 
label always 
written 

No, new 
label always 
written 

F-7 

I 



Table F-1. Required ANSI Label Formats (Sheet 4 of 4) 

Default Compared on Compared on 
Value Read Write 

Byte Field Content Written (LPROC=R) (LPROC=W) 

EOVl Label 

1-3 Label identifier EOV EOV Yes No, new 
label always 
written 

4 Label number 1 1 Yes No, new 
label always 
written 

5-54 Same as Same as corresponding Same as No No, new 
corresponding HDRl label corresponding label always 
HDRl label HDRl label written 

55-60 Block count Six digits that Blanks Yes No, new 
indicate the number label always 
of data blocks written 
written since the 
last HDRl la be 1 on 
the volume 

61-80 Same as Same as corresponding Same as No No, new 
corresponding HDRl label corresponding label always 
HDRl label HDRl label written 

Table F-2. Optional Label Formats (Sheet 1 of 2) 

Default Compared on Compared on 
Value Read Write 

Byte Field Content Written (LPROC=R) (LPROC=W) 

HDR2 Through HDR9 Labels 

1-3 Label identifier HDR None Yes No 

4 Label number Digit in the range None Yes No 
2 through 9 

5-80 User option Any characters None No No 

F-8 60459410 F 



Table F-2. Optional Label Formats (Sheet 2 of 2) 

Default Compared on Compared on 
Value Read Write 

Byte Field Content Written (LPROC=R) (LPROC=W) 

EOF2 Through EOF9 Labels 

1-3 Label identifier EOF None Yes No 

4 Label number Digit in the range None Yes No 
2 through 9 

5-80 User option Any characters None No No 

EOV2 Through EOV9 Labels 

1-3 Label identifier EOV None Yes No 

4 Label number Digit in the range None Yes No 
2 through 9 

5-80 User option Any characters None No No 

UVLn Labels 

1-3 Label identifier UVL None Yes No 

4 Label number Digit identifying None Yes No 
the position of the 
label in the sequence 

of UVL labels 

5-80 User option Any characters None No No 

UHL a and UTLa Labels 

1-3 Label identifier UHL or UVL None Yes No 

4 Label number Any character None Yes No 

~ 

5-80 User option Any character None No No 

60459410 F F-9 



I 

Table F-3. Tape Group Separators 

Multigroups Per File 

Label Tape Multi- Multi- Rec Type Rec Type Rec Type Rec Type 
Type Format volume file B W, L R F, V 

AN I,SI,LB YES y (1) y (17B) y (CW) y (GS) NO (2) 

UL I,SI,LB YES NO y (17B) y (CW) y (GS) NO (2) 

AN v YES y (1) NO y (CW) y (GS) NO 

AN NV YES y (1) y (*) y (CW) y (GS) NO (2) 

UL V,NV YES NO y (*) y (CW) y (GS) NO (2) 

(1) Tape marks with adjacent labels delimit files on multifile tapes. Positioning to 
a file is via LABEL 
statement only. 

(2) Multigroup F records are not defined for tape or disk. A level 17 or tape mark 
will be ignored if read from tape. 

(17B) Level 17 zero-length PRU is group delimiter for record type Bon I, SI, or 
LB-format tape. 

(*) Hardware tape mark is group delimiter for record type B on V or NV-format tape. 

(CW) The end-of-group W-control word at end of LRU delimits groups for W-type records; 
the end-of- partition W-control word at end of LRU delimits groups of L-type 
records. 

(GS) The ASCII group separator (hex lD) at end of LRU delimits groups for R-type 
records (if RMK is VS or RS [hex lF or lE]). 

F-10 60459410 J 



O'-
0 
+:'-
\J1 
\0 
+:'-,_. 
0 

trj 

RECORD/FORMAT /BLOCKING 

F/LB/C 4096 words 

F/V/C MPRU bytes 

F/V/K RPB recs 

U/l,Sl,LB/C MPRU bytes 

U/V/C 

U/V/K 

R/LB/C 

R/V/C 

R/V/K 

PRU 
LO 
MPRU 
RPB 
RMK 
GS 
178 

MPRU bytes 

RPB recs 

4096 words 

MPRU chars 

RPB recs 
I 

Physical record unit 
Level zero short PRU 
Maximum PRU size in bytes 
Records per block 
Record mark character 
Group separator character 
Level 17 zero-length PRU 
Tape mark 

4096 words 

MPRU bytes 

RPB recs 

MPRU bytes 

MPRU bytes 

RPB recs 

4096 words 
I I 

RM Ks 

MPRU chars 
I 

RM Ks 

I RPB recs 
I 
RM Ks 

BOR 
w 
EOG 
BCW 
RCW 
DLR 
EOP 

Beginning-of-record W control word 
W control word 
End-of-group control word 
I-block control word 
Record control word 
Deleted record control word 
End-of-partition control word 

4096 words < 4096 words, LO 

MPRU bytes ~ MPRU bytes 

RPB recs ~ RPB recs 

MPRU bytes < MPRU bytes, LO 

MPRU bytes: ~ .MPRU bytes 

RPB recs ~ RPB recs 

< 4096 words, LO 
I I 

GS 

~ MPRU chars 

'' GS 

I I ~ RPB recs 
I I 

GS 

Figure F-3. Summary of Tape Blocks per Group (Sheet 1 of 2) 



l'rj 
I ...... 

N 

W/LB/C 4096 W()rds 

BOR w 

W/V/C MPRU chars 

BOR w 

W/V/K RPB recs 

BOR w 

B/l,Sl,LB/C MPRU char 

B/V,NV/C,K Record 

L/l,Sl/1 

LIV/I 

PRU 
LO 
MPRU 
RPB 
RMK 
GS 
178 

512 Words 
I I I 

BCW,RCW RCW 

MPBU bytes 
I I 

BCW,RCW RCW 

Physical record unit 
Level zero short PRU 
Maximum PRU size in bytes 
Records per block 
Record mark character 
Group separator character 
Level 17 zero-length PRU 
Tape mark 

4096 words 

w 

MPRU chars 

w 

RPB recs 

BOR w 

< MPRU char, LO 

Record 

I I 

RCW BCW 

BCW 

BOR 
w 
EOG 
BCW 
RCW 
DLR 
EOP 

Beginning-of-record W control word 
W control word 
End-of-group control word 
I-block control word 
Record control word 
Deleted record control word 
End-of-partition control word 

< 4096 words, LO 
I I I 

w w EOG 

:5 MPRU chars 
I I 

w EOG 

:5 RPB recs 

BOR EOG 

MPRU char MPRU char < MPRU char, LO 

Record I * 
< 512 words, LO 

I I 

RCW DLR EOP 

~ MPRU bytes 

DLR EOP 

Figure F-3. Summary of Tape Blocks per Group (Sheet 2 of 2) 

< MPRU char, LO 178 



t'rj 

I 
t-' 

w 

Examples of the currently defined tape label types AN and UL for all tape formats are shown in Figure G-4. 
(* represents a tape mark.) 

1. AN LABELED l,Sl,LB 

VOL1 HDR1 DATA 17B DATA 17B EOF1 HDR1 

2. UL UNLABELED l,Sl,LB 

DATA I 17B I DATA f 11B I * I EOF1 I * I * 
3. AN LABELED V·FORMAT 

VOL1 HDR1 DATA EOF1 HDR1 DATA 

4 .• UL UNLABELED V-FORMAT 

DATA I * I DATA I * * I 
5. AN LABELED NV-FORMAT 

I VOL1 I HDR1 I * I DATA I * DATA I * EOF1 I * I * 
6. UL UNLABELED NV FORMAT \ 

DATA I * DATA I * I * 

Figure F-4. Single Volume Tapes 

DATA 178 EOF1 

EOF1 



Examples of the currently defined tape label types AN and UL for all tape formats are shown 
in figure F-5 (*represents a tape mark). 

1. AN LABELED 1,51,LB 

VOL1 I HDR1 I * DATA * I EOV1 I * I * 
VOL1 HDR1 I * DATA f 11BI * EOF1 I * I * I· 

2. UL UNLABELED 1,51,LB 

DATA I 17B DATA I * EOV1 * I * 
DATA I 17B I * I EOF1 I * I * 

3. AN LABELED V-FORMAT 

VOL1 HDR1 I * DATA I * EOV1 I * I * 
VOL1 HDR1 I * DATA I * EOF1 I * I * 

4. UL UNLABELED V-FORMAT 

DATA * I DATA I * I * 
DATA I * DATA * I * 

5. AN LABELED NV FORMAT 

VOL1 HDR1 DATA I * DATA ! * EOV1 ·1 * I * 
VOL1 HDR1 DATA I * 1. EOF1 I * I * I 

6. UL UNLABELED NV FORMAT 

DATA * I DATA * I * 
DATA I * DATA * I * I 

Figure F-5. Multivolume Tapes (Sheet 1 of 2) 

• F-14 60459410 J 



DISPLAY PROGRAM EXAMPLE 

The following FTN200 program illustrates many of the functions of Q9SCR. When run, the 
program should draw a box at the outer edges of the terminal screen, then draw another box 
inset within that box. Within this inner box, first the word "OKAY" should appear in two 
steps, and then the numbers 0 to 20 should appear, one per line. Since the window is less 
than 21 lines tall, the window will scroll as the later numbers are displayed. This 
sequence should repeat. Finally, the cursor will be positioned near the bottom, left 
corner, where the "STOP" and "ALL DONE" messages will appear. 

* 

* 

* 

* 

program test(output, tape6=output) 
implicit integer (a-z) 

define bounds of windows. first, the outer window 

parameter (yposbox = 0) 
parameter (xposbox = 0) 
parameter (ybox = 24) 
parameter (xbox = 80) 

next, a subwindow of that 

parameter (ypossub 2) 
parameter (xpossub 10) 
parameter (ysbox ybox -
parameter (xsbox = xbox -

window 

ypossub - 5) 
2*xpossub) 

and a scrolling window within the limits of the subwindow 

parameter (yposscr = ypossub + 1) 
parameter (xposscr = xpossub + 1) 
parameter ( yscr ysbox .2) 
parameter (xscr = xsbox - 2) 

real boxing, subbox, ovlwin, result, scrlwin 
real q9scr 

parameter (buf size 1024 
common buff(bufsize, msgbuf(300) 

get the function selector and option numbers 

addstr = q9scr(l,'addstr') 
if (addstr .eq. O) then 

stop 'cannot look up function names' 
endif 
box 
clear 
delwin 
endscr 
initscr 
overlay 
newwin 

q9scr(l, 'box') 
q9scr( 1,' clear') 
q9scr(l,'delwin') 
q9scr(l,'endscr') 
q9scr(l,'initscr') 
q9scr(l,'overlay') 
q9scr(l,'newwin') 

G 

60459410 J G-1 • 



printw q9scr(l,'printw') 
refresh q9scr(l,'refresh') 
reset q9scr(l ,'reset') 
scrlok q9scr(l,'scrollok') 
subwin q9scr(l ,subwin') 
mv q9scr(l, 'move') 
w q9scr(l,'wind') 

wbox w + box 
mvadds mv + addstr 
wdelwin w + delwin 
wmvadds w + mv + addstr 
wmove w + mv 
wovrlay w + overlay 
wrfresh w + refresh 

* change the next line to match the terminal type used for testing 

* 

termtyp = q9scr(l,'il00') 

initialize screens and get back a pointer to the basic window 

boxing= q9scr(initscr, buff, bufsize, 1, O, ybox, xbox) 
call check(boxing, 'initscr') 
if (boxing .eq. O) then 

stop 'init failed, giving up' 
end if 

do 9000 pass = 1, 2 

* define the subwindow 

subbox = q9scr(subwin, ysbox, xsbox, ypossub, xpossub) 
call check(subbox, 'subwin subbox') 

* define the window for testing the "overlay" function 

* 
* 

ovlwin = q9scr(newwin, ybox, xbox, yposbox, xposbox) 
call check(ovlwin, 'newwin ovlwin') 

draw a border for the basic window and put in some text containing 
spaces 

result= q9scr(wbox, boxing,'$','-') 
call cehck(result, 'wbox') 

result - q9scr(mvadds, ypossub+l, xpossub+l,'o a') 
call check(result, 'mvadds') 

result= q9scr(refresh, msgbuf, termtyp) 
call check(result, 'refresh') 
if (result .gt. 0) then 

call q5ndmjc('msg=',msgbuf,'len=',result,'reject') 
endif 

* draw a border for the subwindow 

result = q9scr(wbox, subbox, . , 

e G-2 

( 
\ 

60459410 J 



call check(result, 'wbox') 

* put some text in the overlay window synchronized to the text in the 
* basic window, then overlay that text on the basic window 

* 

result= q9scr(wmvadds, ovlwin, ypossub+l, xpossub+l, ' k y') 
call check(result, 'wmvadds') 

result = q9scr(wovrlay, boxing, ovlwin) 
call check(result, 'wovrlay') 

result= q9scr(refresh, msgbuf, termtyp) 
call check(result, 'refresh') 
if (result .gt. O) then 

call qSsndmjc('msg=',msgbuf,'len=',result,'reject') 
end if 

delete the overlay window and create the scrolling window 

result = q9scr(wdelwin, ovlwin 
call check(result, 'delwin') 

scrlwin = q9scr(newwin, yscr, xscr, yposscr, xposscr) 
call check(scrlwin, 'newwin scrlwin') 

result= q9scr(scrlok, 1) 
call check(result, 'scroll ok') 

* print enough strings to the window to force it to scroll 

do 1000 y = O, yscr + 5 

result = q9scr(printw, '%n-)%d(-', y) 
call check(result, 'printw') 

result= q9scr(refresh, msgbuf, termtyp) 
call check( result, 'sc.roll refresh') 
if (result .gt. O) then 

call qSsndmjc('msg=',msgbuf,'len=',result,'reject') 
endif 

1000 continue 

* the first time through, discard all the window structures 

if (pass .eq. 1) then 

result = q9scr(endscr) 
call check(result, 'endscr') 

* then try to reinitialize them via reset 

boxing = q9scr(reset, 1) 
call check( boxing, "reset' ) 

end if 

9000 continue 

* move the cursor to a nice place before exiting 

60459410 J G-3 • 



result = q9scr(wmove, boxing, ybox-3, O) 
call check(result, 'wmove') 

result= q9scr(refresh, magbuf, termtyp) 
call check(result, 'refresh') 
if (refsult .gt. 0) then 

call q5sndmjc('msg=',msgbuf,'len=',result,'reject') 
end if 

stop 
end 
subroutine check(rslt, w) 

* subroutine to report any errors returned by Q9SCR 

real rslt 
character*(*) w 
real astext 
integer errc 
data errc/5/ 

if (rslt .eq. 0.0) then 
astext = q9scr(l, rslt) 
if (astext .eq. 0.0) astext 
print 700, rslt, astext, w 

8hunknown 

700 format(' got back' ,zl6,' (' ,a8,') for ',a) 
errc = errc - 1 

• G-4 

if (errc .le. O) then 
stop 'excessive errors' 

end if 
end if 
return 
end 

60459410 J 



Abnormal job termination 
EXIT statement 4-48 

3-18 

Abnormal termination C-1 
Abnormal termination control (ATC) 

Enabling/disabling 3-29 
Subroutine 3-29 

3-29 

Abort 3-18 
Dump 3-18 
Flag 3-18 

Access C-1 
Modes 2-14 
Permission 2-14 

Listing 4-61 
Sets 2-14 

Access permission 
Changing 4-103 

Accessing tapes table entry 9-37 
Accessing the system 3-1 
Account block C-1 
Account identifier 3-4; C-1 

Validation 3-4 
Account number 4-21; C-1 
Accounting 3-33 
ADDFILE Update directive 
Addressing 1-6 
Advanced Tape System (ATS) 

5-15 

1-3 
Advising the system of task virtual 

space 8-8 
Allocating static stack memory space 
Allocation unit C-1 
Alter a task's attributes 
@ and A character removal 

Suppressing 4-12 
ANSI 

4-139 
4-11 

Carriage control 2-5 
Fixed length record format 
Standard labeled tape files 
Standard labels 2-30 

ANSI standard tape labeling F-1 
Append access permission 2-14 
Appending data 9-7 

Blocks 9-130 
Records 9-98 

Application programs 1-5 
Archive file format 4-41 
Archiving files 4-36.2 

2-18 
2-30 

8-73 

Archiving to a front-end system 4-42 
Archiving to CYBER 200 mass storage 4-42 

60459410 J 

INDEX 

Archiving to CYBER 200 on-line tapes 
Arithmetic conversion routines E-5 
ASCII 

4-43 

Carriage control 2-5 
Character set A-1 
Debug directive 6-8 

Assembly/disassembly option 3-28 
Assembly/disassembly option tape 
Assign account and project number 
ATC (abnormal termination control) 

Enabling/disabling 3-29 
Subroutine 3-29 

ATS (Advanced Tape System) 
ATTACH control statement 

WAIT parameter 4-13 
Attached pools 3-8 
Attaching 

Permanent files 
Control statement 
Program call 9-10 

Pools 

1-3 
4-13 

4~13 

Control statement 4-99 
Program call 9-85 

Attributes 
Change 4-13 9 
Files 2-1 

AUDIT control statement 4-15 
AUDIT file specification 4-15 
AUDIT output listings 4-20 
AUDIT request 3-25 
Autoload C-1 
Automatic volume recognition 2-29 
Available permissions 3-4 

B record format 2-22 
BACK 

Debug directive 
Look directive 

Bank update table 
BASE Look directive 
Batch 

Deck C-1 
Execute line 

6-6 
6-15 

8-68 
6-15 

3-14 
Input file 

Structure 
3-6; C-1 

3-14 
Job 3-14; C-1 

Processing 3-16 

2-32 
4-21 
3-29 

Index-1 • 



Scheduling 3-15 
Processor 3-14; C-1 

Control statements 4-1 
System access 3-6 

Batch input file 
Rerun 8-78 

Batch resource limits 3-31 
BATCHPRO (batch processor) C-1 
BB request line 3-8 
BEFORE Update directive 5-16 
BEGIN statement 4-6.3 
Beginning of information (BO!) C-1 
BINARY file 3-19 
BIT Look directive 
BKPT Debug directive 

6-15 
6-10 

BKPTR Debug directive 
Blank common 4-72 
BLANK control statement 
Block C-1 

6-10.1 

2-31 

Grouping unmapped 4-72 
1/0 9-7 
Reading 9-102 

Block count discrepancy 2-31 
Blocking types 2-23,33 
BO! (beginning of information) 
Bound explicit and implicit maps 
BREAK character 3-7 
! break character 3-7 
Buff er record 9-39 
Buffered I/O 2-17 
Buffers 

1/0 9-82.1 
BYE request line 3-10 
Byte C-2 

C blocking 2-23 
Call format 8-6 
Call parameters 5-4 
CALL Update directive 5-16 
Calling parameters 8-7 
Card identification 5-10 
Card image file 5-1 
Carriage control 2-5 
Case conversion request 3-9 
Category 3-15,33 
Change attributes 4-139 

C-1 
2-4 

Change job characteristics 4-127 
Change request 3-7 
Changing 

Access permission set 
Control statement 4-103 
Program call 9-89 

Accounting rate 8-96 
File attributes 

• Index-2 

Control statement 4-139 
Program call 9-12 

File ownership 
Control statement 4-53 
Program call 9-60 

FIT field values 9-122 
Job memory limits 4-127 
Large page limit 

Control statement 4-127 
Program call 8-79 

Object module linkages 4-69 
Password 4-98 
Working set size limit for job 

Channel 1-3 
Character code conversion 4-90 
Character count blocking 2-23 
Character set 1-5 
CHARGE control statement 4-22 
Charge number C-2 
Check block I/O request status 9-19 
Checking 

1/0 request status 9-16 
Termination values 4-140 

Checkpoint C-2 
Checkpointing a task 7-1 
CHKPNT call 7-1 
Clear tape 1/0 error 9-21 
Closing files 9-22 
Coded tape file 2-32 
COMDECK Update directive 5-17 
COMMENT control statement 4-22 
Comments 

In job dayfile 4-22 
In Update deck 5-25 
On control statement 

$ common block 4-69 
Common blocks 4-69 
COMPARE control statement 
Comparing controllee file 
Comparing file contents 
Comparison 4-140 
Compile file 5-8 

3-15 

4-23 
4-24 

4-23 

4-127 

4-11 
COMPILE Update directive 5-18 
Concatenating substitution values 
Concurrent file access 2-16 
Conditional breakpoints 6-10.1,11,12 
Configuration 1-1 
Connected interactive terminal files 2-37 
Construct system shared library 4-129 
& continuation character 4-5 
CONTINUE Debug directive 6-10.1 
Control statement 4-1; C-2 

Batch execution 3-14 
Condition testing 4-6.1 
Conditional 4-6.1 

Processing 4-6.2 
Execution sequence 4-7 
Format 4-74.1 (also refer to 

Execute line) 
Group 3-14 

60459410 J 

I 

~ 



Interactive execution 4-5 
List of 4-1 
Management 4-6 
Parameter format 4-4 
Procedures 4-6.3 
Summary 4-1 
Variables 4-6 

Control word delimited (W) record 
format 2-20 

Controllee 8-55,80,92; C-2 
Chain 3-3; 8-56,69; C-2 
Execution 3-1,12 
File 2-2; 3-1; C-2 

Formats 4-66 
Software C-2 
Termination status 

Returning 8-40 
Setting 8-93 

Controllees 
Dynamic linking 4-70 

Controller 8-82; C-2 
Hardware 1-2 
Software 3-1 

Conversion 
Example E-8 
Logical structures 4-90 

Conversion mode 
CM parameter 2-32 

Conversion routines E-1 
Convert parameter 2-32 
Copy calls 8-41 
COPY control statement 4-25 
Copying 8-41 

Bank update table 8-68 
File 4-25 
File indices 

By hierarchical search 8-58 
Pool 8-60 
Private 8-63 
Public 8-66 

Invisible package 8-41 
Logical records 4-28 
Minus page 8-48 
Pack label and file indices 8-49 
Register file 8-42 
Statistics buffer 8-71 
Timecard buffer 8-72 

Copying controllee file 4-27 
Copying dayf ile 4-30 
Copying to or from a mass storage file 
Copying to or from a tape file 4-26 
COPYL control statement 4-28 
Correction run 5-3,11 
CPU 1-6; C-2 

Scheduler 3-15 
Create local file 9-115 
Creating 

Controllee files 4-65 

60459410 J 

4-26 

Library files 4-94 
Local files 4-112 
Modmerge files 4-94 
Permanent files 

Control statement 
Program call 9-25 

Pool files 
Control statement 
Program call 9-60 

Pools 
Control statement 
Program call 9-86 

Public files 
Control statement 
Program call 9-60 

4-30 

4-54 

4-100 

4-54 

Creation of library or modmerge file 
Creation run 5-2,9 

4-94 

CYBER Record Manager control word (L) record 
format 2-21 

CYBER 170 arithmetic conversion 
routines E-5 

CYBER 170 compatibility 
CYBER 170 tape interchange 
CYBER 18 MCU 1-2 
CYBER 200 archiving 3-27 

2-32 
2-21 

1-5 CYBER 200/CYBER 170 comparison 
CYBER 200 job submission 3-22 
CYBER 200 model descriptions 1-2 
CYBER 200 RHF (see also RHF) 3-6 

Data 
Conversion options 2-32 
File 2-2; C-2 
Flag Branch Manager routines 3-28 
Input 3-12 

Data base C-2 
Data file C-2 
Data format specifications 
DATAOUT file 3-20 

4-119 

DAU (device allocation unit) 2-27; C-2 
Dayfile 3-16; C-2 

Copying 4-30 
DAYFILE control statement 4-30 
DDECIMAL Debug directive 6-5 
DEBUG 

Control statement 6-2 
Directives 6-3 
Use at security-sensitive sites 6-2 

Debugging utilities 6-1 
Debugging versions of routines 4-70 
DEC Look directive 6-15 
DECIMAL Debug directive 6-8 
Decimal to hexadecimal conversion A-6 
Deck 5-1 
DECK Update directive 5-19 
Decoding 

Disk status table 8-11 

Index-3 • 



Miscellaneous table 8-12 
Pack label 8-29 
Permanent file indices 8-18 

Default LOAD library 4-65 
Default project number C-2 
DEFINE control statement 4-30.1 
DEFINE Update directive 5-20 
DELETE Update directive 5-20 
Density for recording tapes 2-32 
Descriptor parameter 8-6 
Destroying 

Batch input file 
At job termination 3-18 
Program call 8-31 

Permanent files 
Control statement 4-106.1 
Program call 9-94 

Pool files 
Control statement 4-102 
Program call 9-94 

Pools 
Control statement 4-102 
Program call 9-87 

Public files 
Control statement 4-46 
Program call 9-94 

Detaching 
Permanent files 

Control statement 4-124 
Program call 9-106 

Pools 
4-102 Control statement 

Program call 9-88 
Device allocation unit (DAU) 
Device characteristics 2-26 
Device number C-2 
Device overflow C-3 
Device set 2-26; C-3 
Device types 2-23 
DFLOAT Debug directive 
Diagnostic messages B-1 

2-27; C-2 

6-5 

Direct access file organization 2-25 
Direct access file transfers 3-25 
Directive(s) 5-14; C-3 
Directory file 4-37 
Disabling 

Abnormal termination control 
Program call 8-33 

Message interrupts 8-32 
User reprieve 8-75 

Disabling standard error recovery 
Discarding FITs 9-109 
Disk 

Blocks 
Files 

2-26 
2-1 

Status table 8-11 
Units 1-2 

DISPLAY 
Debug directive 6-5 

• Index-4 

3-29 

2-37 

Look directive 6-15 

4-34 
Disposition code 2-4 
DIVERT control statement 
DLF (Dump/Load Facility) 3-21,27 

Archiving 4-36.2 
DMAP control statement 
DREG Debug directive 
DROP control statement 
Drop file 2-2; C-3 

Naming 2-3 

4-34.2 
6-7 

4-36 

6-23 DUMP control statement 
Dump/Load Facility (DLF) 

Archiving 4-36.2 
DUMPF control statement 

Output 4-43 
Example 4-45 

3-21,27 

4-36.2 

Dumping 
Cumulative accounting file 
Drop file information 6-23 
Permanent files 4-36.2 

DVSTnn C-3 
Dynamic 

Allocation C-3 
Execution 3-12; 4-70 
Library C-3 
Linking 4-70; C-3 
Loading C-3 
Module 4-70; C-3 
Stack address 4-69 

EASCII Look directive 6-15 
EDEC Look directive 6-15 
EDITPUB control statement 4-46 
EFLOAT Look directive 6-15 
EHDEC Look directive 6-15 
EHEX Look directive 6-15 
EHFLOAT Look directive 6-15 
ELSE control statement 4-6.2 
Enabling 

Abnormal termination control 
Program call 8-37 

Message interrupts 8-35 
User reprieve 8-75 

END 
Debug directive 6-11 
Look directive 6-15 

End of file (EOF) C-3 
End of information (EOI) 
End of partition codes 
End of tape processing 
ENDIF control statement 
ENDIF Update directive 
EOF (end of file) C-3 
EOFl label 2-30,37 

C-3 
9-57 
2-29 

4-6.2 
5-21 

EOI (end of information) 
EOVl label 2-30,37 
EREG Debug directive 
Error codes 

6-7 

C-3 

8-34 

3-29 

60459410 J 



CHKPNT 7-3 
2-7 
B-1 

Error conditions 
Error message(s) 

Format B-1 
Routing 8-5 
System utility 

Error processing 
SIL 8-5 
System 3-20 

B-26 
8-5 

Error recovery 
Codes 4-88 
Limit 3-30 
Tape 2-37 

Error severity 
SIL 8-5 
System 3-18 

Error threshold value 
Errors B-1 
ETP parameter 2-29 
Evicting local files 

3-16 

4-124 
Examining a mass storage file 6-13 
Executable file 2-2 

Generation 4-65 
Execute access permission 2-15 
EXECUTE Debug directive 6-10.1 
Execute line 3-10.1 

Batch 3-14 
Interactive 3-10.1 

Executing task status 4-109 
Execution 

Dynamic 4-71 
Execution line format 3-11 
Execution time file reassignment 8-80 
EXIT control statement 3-18; 4-48 
Exit path 4-48 
Exit processing 3-18 
Explicit file routing 3-23; 4-91 
Explicit I/O 2-17,25; 9-4; C-3 

Using SIL calls 9-2 
External references 4-69 

F format records 2-25 
F record format 2-18 
Family C-3 
Family of print files 2-5 
Fatal SIL errors 8-5 
File 2-1,28,37; C-4 

Access permissions 2-14 
Archiving 3-27; 4-36.2,40.1 
Blocking 2-23 
Connected to terminal 2-37 
Creation 2-27 
Duration 2-8 
Extensions 2-28 
Families 2-5; 3-18 
Formats 2-18 
I/O 2-4,17 
Identifier (HDRl) 2-30 

60459410 J 

C-4 Index table (FILE!) 
Information 4-15 
Information table (FIT) 2-37; 9-3; C-4 

Format D-1 
Limit 9-16 

Logical unit number 
Mapping 2-27 
Naming conventions 
Organization 2-25 
Ownership 2-9 
Patterning 2-9 
R formatted 2-19 

9-4 

2-1 

Reloading 3-24; 4-80,84,85 
Routing 4-91 

Program call 
Search hierarchy 
Security levels 
Segments 2-26 
Size 2-26 
Space allocation 
Structure 2-18 
Types 2-26; C-4 

9-112 
2-12 

2-9 

2-26 

Usage controls 2-9 
At security-sensitive sites 

FILE! (file index table) C-4 
FILES control statement 4-49 
FILES output 4-51 

2-9 

FIT (file information table) 
Format D-1 

2-37; 9-3; C-4 

Limit 9-16 
Fixed-length 

Blocking 2-24 
Record format 

Fixed length records 
FLOAT 

2-18 
2-25 

Debug directive 6-8 
Look directive 6-15 

flun (file logical unit number) 
Formal parameter substitution 
Formats 2-18 

Tapes 6-1 

9-4 
4-8,9 

FORTRAN compiler execution 3-19 
FORTRAN data conversion routines 
Front-end processor 1-3 

E-1 

Full length PRU C-4 
Full update mode 5-7 

General access permission set 2-15 
Generating a FIT (file information 

table) 9-31 
Getting 

Accounting information 
At terminal 3-8 
Within program 8-38 

Current date and time 
At terminal 3-8 
Within program 8-95 

FIT field values 9-50 

Index-5 • 



8-43 Large page limits 
Message from 

Controllee 8-44 
8-45 

8-47 
3-8 

Controller 
Operator 

Program state 
Task 

Information 
Time limit 

8-51 
8~5o 

8-53 User number 
Time task has used 

At terminal 3-8 
Within program 8-10 

GIVE control statement 4-53 
GO file 3-20 
Granting access to a pool 

Control statement 4-97 
Program call 9-91 

Group 2-18; C-4 
Group controllee file blocks 4-72 
Grouping data with code 4-69 
Grouping parameter mapping 4-73 
Grouping parameters on LOAD 4-69 
Grouping unmapped blocks 4-72 

Hardware description 1-1 
HDEC Look directive 6-15 
HDRl label 2-30; 4-59 
HELLO request line 3-10 
HEX Debug directive 6-8 
HEX Look directive 6-15 
# hexadecimal character 4-4 
Hexadecimal number system 1-5 
Hexadecimal to decimal conversion 
Hexadecimal to octal conversion 
HFLOAT Look directive 6-15 

A-6 
A-5 

I blocking 2-23 
I/O 9-3,5 

Buffer overlap 
Buffers 2-17; 
Calls 9-9 
Overview 9-3 

I/O calls 9-1 
I request line 3-9 
I tape format 2-34 

9-104 
9-82.1 

!BG (interblock gap) 2-23; C-4 
IBM arithmetic conversion routines 
IDEC Look directive 6-15 
!DENT Update directive 5-20 
!DISPLAY Debug directive 6-5 
!DREG Debug directive 6-7 
IF control statement 4-6.1,602 
IF Update directive 5-22 
!FLOAT Look directive 6-15 
IHDEC Look directive 6-15 

• Index-6 

E-1 

HSEARCH Look directive 6-17 
!HEX Look directive 6-15 
IHFLOAT Look directive 6-15 
Implicit I/O 1-2; 2-17; 9-8; C-4 
Individual access permission sets 2-14 
Information requests 3-8 
Initialization 4-66,73 
Initiation of controllee execution 3-1 
INPUT file 3-14,16,19 
Input line format 3-6 
Input/output channels 1-3 
Input/output connector (IOC) C-4 
Input queue 3-14 
Input queue manager (!QM) 1-4; 3-6; C-4 
Input queue status 4-108.l 
INSERT Update directive 5-21 
Integer conversion E-5 
Interactive access 3-5 

Via RHF 3-21 
Interactive execute line 3-10.l 
Interactive execution of FILE utility 
Interactive resource limits 3-32 
Interactive session C-4 
Interactive tape usage 2-28 
Interactive Transfer Facility Servicer 

(!TFS) 1-4; 3-21 
Interblock gap (!BG) 2-23; C-4 
Interface language 1-5 
Internal blocking 2-23 
Internal characteristic 
Interrupt mode disable 
Interrupt request 3-7 

2-8 
3-30 

Interrupt subroutine 3-29; 8-77 
INTRACTV job category 3-32 
Invisible package C-4 
IOC (input/output connector) C-4 

4-52 

!QM (input queue manager) 1-4; 3-6; C-4 
!TFS (Interactive Transfer Facility 

Servicer) 1-4; 3-21 

JDEFAULT job category 3-31 
JDN (job descriptor number) 
JDO (job descriptor ordinal) 
Job 4-121; C-5 

Block C-5 
Category 3-31 
Controller 8-87 
Dayfile 3-17; C-5 
Processing example 3-18 
Resource limits 4-121 

Job descriptor number (JDN) 
Job descriptor ordinal (JDO) 
Job descriptor table C-5 
Job termination 3-17 
Jobs waiting 

Interactive 3-8 

3-5,7,15; C-5 
C-5 

3-5,7,15; C-5 
C-5 

60459410 J 

( 



K blocking 2-24 
K display 8-91 
KERNEL 1-4 

L record format 2-21 
LABEL control statement 
Label tape file 4-55 
Labeled common 4-72 
Labeling tapes F-1 

2-28; 4-55 

Labels 
Tapes 6-1 

Large page 1-2,4; C-5 
Last-group-file 2-7; C-5 
LB blocking 2-23 
LB tape format 2~35 

LCN (loosely coupled network) 
C-6 

Level number C-5 
Library 4-129; 5-8; C-5 

1-3; 3-21; 

Library editing 4-94 
LID (logical identifier) 
LIMITS control statement 
Linker 4-70 

C-5 
4-60.1 

Utility 3-12 
Linking object modules 
List 

Entry format 9-92 
File 5-9 
Pools 9-92 

4-69 

User validations 4-60.1 
LISTAC control statement 4-61 
LISTAC output 4-63 
LOAD 

Control statement 4-74.1 
Execution 4-78.1 

Load map 4-66 
Utility 4-65 

LOAD PF 
Control statement 4-80 
Example 4-87 
Output 4-86.1 

Local file 2-8; C-5 
Status 4-49 

Logging in to CYBER 200 OS 3-5 
Logging out of CYBER 200 OS 3-10 
Logical file name 2-28 
Logical identifier (LID) C-5 
Logical partitions 9-55,98 
Logical record format 2-18,33 
Logical record unit (LRU) 2-33; 9-17; C-6 

Format 9-17 
Logical structure conversions 
LOGIN command 3-5 

3-26 

Look directive 6-13 
LOOK utility 6-13 
Loosely coupled network 
LRU (logical record unit) 

Format 9-17 

60459410 J 

1-3; 3-21; C-6 
2-33; 9-17; C-6 

Mainframe description 1-2 
Maintenance control unit (MCU) 1-2 
Map C-6 
Mapped files 2-17 
Mapping 3-2 

Parameter 4-72.l 
Mapping virtual space 9-70 
Mass storage C-6 

Characteristics 2-26 
Files 2-26; 9-70 

Mass storage files, copying 
Master account number 3-4 
Master control character 5-4 
Master project number C-6 
Master user C-6 

4-26 

Matching substitution values to formal 
parameters 4-8 

Maximum file size 2-27 
Maximum physical record unit (MPRU) 

2-23,36 
Maximum validation 3-4 
MBKPT/MBKPTR Debug directive 
MCU (maintenance control unit) 
Memory overcommitment 3-15 
Message interrupts 8-35 
Message sending 8-82 
Message to dayf ile 8-84 
Message to job 8-89 
Messages B-1,26 

3-25 
4-88 

6-10.1 
1-2 

System utility B-26 
MFGIVE control statement 
MFLINK control statement 
MFQUEUE control statement 
MFTAKE control statement 
Minus page 2-2; C-6 
Miscellaneous table 

3-23; 4-91 
3-25 

8-12 
Mode of system 1-4 
Modify access permission 
Modmerge file 4-94 
Monitor mode 1-4 
MOVE Update directive 

2-14 

5-21 
MPRU (maximum physical record unit) 
Multifile name 2-28 
Multifile sets 2-31; 4-58; 9-67; C-6 
Multivolume tape files 2-29 
Multivolume tapes F-14 

2-23,36 

Mutually exclusive SIL parameters 8-6 

NAD (Network Access Device) 1-3 
Nesting of procedures 4-8 
Network 1-3 
Network Access Device (NAD) 1-3 
New program library 5-7 
No-operation keywords 8-7 
Non-I/O call 8-1 
Nonprivileged user C-6 

Index-7 • 



Nonstandard labeled tape files 2-30 
Nonvariable (NV) tape format 2-36 
NORERUN control statement 4-93 
Norerun status 4-93 
NOS internal blocking 2-23 
NPSCALL 1-4 
Numbered common 
NV tape format 

Object code 2-2 

4-72 
2-36 

File C-6 
Object module 4-69 
Octal to hexadecimal conversion A-5 
Old program library 5-8 
OLE control statement 4-94 
Omitting substitution values 4-10 
Online tapes 2-28; 4-84 
OP request line 3-9 
Opening a file 9-3,40 
Operating system 1-4 
Operator 8-90 
Operator message request 3-10 
Operator messages 4-119 
Optional SIL parameters 8-6 
Optional tape label formats F-8 
Optional tape labels 2-31 
Output file 2-4; C-6 

Error processing 2-7 
Routing 3-23 
Status 4-110 

OUTPUT file 3-19 
Output-file-family 2-7; C-7 
Overcommitment percentage 3-15 
Overlays 1-5 
Ownership 2-9; C-7 

Changing 4-53 

P request line 3-8 
PACCESS control statement 4-97 
Pack file index (PFI) C-7 
Pack number C-7 
Page C-7 
Page fault C-7 
Page grouping 4-71 
PAGE Look directive 6-16 
Page sizes 1-2; 4-74 
Page table 1-6 
PAGER 1-4 
Paging 1-2,6 
Paired parameter format 8-6 
Parameter formats 4-4,9 
Parameter value ranges 9-9 
Partial logical partitions 9-57,100 
Partition C-7 

Delimiters 9-29 
PASSWORD control statement 4-98 

• Index-8 

PATTACH control statement 4-99 
PATTERN Look directive 6-16 
Patterning a file 2-9 
PCREATE control statement 
PDELETE control statement 
PDESTROY control statement 
PDETACH control statement 
Peripheral operating system 
Permanent file 2-8; C-7 

AUDIT request 3-25 
Information 4-15 
Requests 3-24 
Transfer 4-88 

4-100 
4-101 

4-102 
4-102 

1-2 

Permanent File Transfer Facility 
(PTF) 3-21; C-7 

Permanent File Transfer Facility Servicer 
(PTFS) 3-21; C-7 

Permission 3-4 
Permissions listing 4-61 
PERMIT control statement 4-103 

C-7 
4-105 

C-7 

PFI (pack file index) 
PFILES control statement 
Physical address C-7 
Physical identifier (PID) 
Physical record unit (PRU) 2-33; C-8 

Terminator 2-35 
PID (physical identifier) 
Pool 2-12; C-7 

Boss 2-12; C-7 
Files 2-12; C-8 
List users 9-93 
Member 2-12; C-8 
Remove access 9-93 

Pool access 4-97 
Removing 4-101 

C-7 

Pools listing information 4-105 
Positioning a file 4-128.1 
PR request line 3-8 
Preallocation C-8 
Preparing a file for I/O 
Presetting labeled common 
Print control characters 
Print files 2-5 
PRINT Look directive 
Priority 3-15 

6-16 

9-3 
4-73 

2-6 

Private files 2-12; ~-o 
Privileged system tasks 1-4 
Privileged user 2-12; C-8 
PROC control statement 4-6.3 
Procedure 4-6.3 
Procedure file C-8 
PROCEED control statement 3-18; 4-48,106 
Processing 2-28; 3-16 
Production files 4-36.3,51,63,80,103; 6-2; 

8-22; 9-89,90 
Production user numbers 4-60.1; 6~2; 8-54 
Program breakpoint 6-2 
Program call 8-80 

60459410 J 



~. 
) 

\ 

Program states 3-9 
Project number 3-4; 4-21; C-8 
Prompt 2-38 
Prompting for parameter values 4-5 
Propagation of deck changes 5-18 
Provide information on segment 

locations 4-34.2 
PRU (physical record unit) 2-33; C-8 

Terminator 2-35 
Pseudo file 4-42 
PTF (Permanent File Transfer Facility) 

3-21; C-7 
PTFS (Permanent File Transfer Facility 

Servicer) 3-21; C-7 
Public files 2-13; C-8 
PULLMOD directive 5-22 
Pullmod file 5-9 
PURDECK directive 5-22.1 
PURGE control statement 4-106.1 
PURGE Update directive 5-23 
Purging files 4-106.1 
Put a buff er record 9-97 
PXXfamnm file 2-5; 3-18 

Q statement 4-107 
QTF (Queue File Transfer Facility) 3-21 
QTFS (Queue File Transfer Facility Servicer) 

3-6,21 
Queue File Transfer Facility (QTF) 3-21 
Queue File Transfer Facility Servicer 

(QTFS) 3-6,21 
Queue file transfers 3-22 
Quick update mode 5-7 
Q5ADVISE call 8-8 
Q5ATTACH call 9-10 
Q5CHANGE call 9-12 
Q5CHECK call 9-16 
Q5CHECKB call 9-19 
Q5CLIOER call 9-21 
Q5CLOSE call 9-22 
Q5CPUTIM call 8-10 
Q5DAYFLE file 3-16 
QSDCDDST call 8-11 
QSDCDMSC call 8-12 
Q5DCDPFI call 8-18 
Q5DCDPLB call 8-29 
Q5DEFINE call 9-25 
QSDESBIF call 8-31 
QSDISAMI call 8-32 
Q5DISATI call 8-33 
Q5DMPACT call 8-34 
Q5ENAMI call 8-35 
Q5ENATI call 8-37 
Q5ENDPAR call 9-29 
Q5GENFIT call 9-31 
Q5GETACT call 8-38 
Q5GETB call 9-39 

60459410 J 

Q5GETCTS call 8-40 
Q5GETFIL call 9-40 
Q5GETFIT call 9-50 
Q5GETIIP call 8-41 
Q5GETIRF call 8-42 
QSGETLP call 8-43 
Q5GETMCE call 8-44 
Q5GETMCR call 8-45 
Q5GETMOP call 8-47 
Q5GETMPG call 8-48 
QSGETN call 9-55 
Q5GETP call 9-57 
QSGETPFI call 8-49 
QSGETTL call 8-50 
QSGETTN call 8-51 
Q5GETUID call 8-53 
QSGIVE call 9-60 
QSINIT call 8-55 
Q5INITCH call 8-56 
Q5JOBFLE file 3-16 
Q5LABEL call 2-31; 9-63 
Q5LFIHIR call 8-58 
Q5LFIPOL call 8-60 
Q5LFIPRI call 8-63 
Q5LFIPUB call 8-66 
Q5LSTBUT call 8-68 
Q5LSTCH call 8-69 
QSLSTSTB call 8-71 
Q5LSTTCB call 8-72 
Q5MAPIN call 9-70 
Q5MAPOUT call 9-70 
Q5MEMORY call 8-73 
Q50PEN call 9-74 
Q5PATACH call 9-85 
Q5PCREAT call 9-86 
Q5PDESTR call 9-87 
Q5PDTACH call 9-88 
Q5PERMIT call 9-89 
QSPGRACC call 9-91 
QSPOOLS call 9-92 
QSPREACC call 9-93 
QSPURGE call 9-94 
QSPUSERL call 9-96 
QSPUTB call 9-97 
QSPUTN call 9-98 
QSPUTP call 9-100 
Q5READ call 9-102 
QSRECALL call 8-74 
QSREDUCE call 9-106 
QSREELSW call 9-107 
QSREELSW routing 2-29 
QSREPREV call 8-75 
QSRETFIT call 9-109 
QSRETURN call 9-110 
QSREWIND call 9-111 
QSRFI call 8-7-7 
QSROUTE call 9-112 
QSRQUEST call 9-115 

Index-9 • 



Q5RUNBIF call 8-78 
Q5SETFIT call 9-122 
Q5SETLP call 8~79 

Q5SKIF call 9-126 
Q5SNDMCE call 8-80 
Q5SNDMCR call 8-82 
Q5SNDMDF call 8-84 
Q5SNDMJC call 8-87 
Q5SNDMJS call 8-89 
Q5SNDMOP call 8-90 
Q5SNDSTR call 8-92 
Q5TERM call 8-93 
Q5TERMCE call 8-94 
Q5TIME call 8-95 
Q5VRACC call 8-96 
Q5WRITE call 9-130 
Q9CI32 routine E-3 
Q9CI64 routine E-3 
Q9CLF routine E-7 
Q9CLI routine E-7 
Q9IC32 routine E-2 
Q9IC64 routine E-1 
Q9LCF routine E-7 
Q9LCI routine E-6 
Q9SPRINT 11-16 
Q9SCR 11-1 

Definitions 11-1 
Calling Conventions 11-3 
Descriptions 11-7 
Limits , 11-15 

Q9xxx routine format E-6 

R record format 2-19 
Random access file transfers 3-25 
Read access permission 2-14 
READ Update directive 5-24 
Reading date 9-5 
Record C-8 

Count blocking 2-24 
Format 2-18 
Mark character 2-19 
Mark delimited record format 2-19 
Number 2-25 

Recording densities 2-32 
Records per block (RPB) 2-24 
Reducing file length 9-106 
Register file 1-6 
Releasing mass storage space 9-70 
Reloading files 4-80 
Remote host C-8 
Remote Host Facility (RHF) l-5; 3-21; 

C-8 
Application 2-38 
Reloading 4-83 
Conversions 3-26 
Permanent file requests 3-24 
Structure conversion 4-90 

Remote system 3-6 
Removing user access to pool 4-101 

• Index-10 

Repositioning a sequential access 
file 9-126 

Reprieve subroutine 3-28 
REQUEST control statement 4-112 
? request line 3-8 
Request lines 3-7 
REQUEST options 4-119 
Requesting and opening a file 9-40 
Requesting files 3-24 
Required ANSI tape label formats F-5 
Required SIL parameters 8-6 
RERUN control statement 4-120 
Rerun status 4-120 
Reserved file names 4-36.2 
Resident system 1-4 
Resource allocation 3-31 
RESOURCE control statement 3-22; 4-121 
Resource limits 4-134 
Resource usage statistics 4-134 
Resource validation 3-33 
Resources used 4-134 
Restarting a checkpointed file 7-5 
Restarting a task 4-120 

At security-sensitive sites 2-3 
From drop file 2-3 
From terminal 3-7,10 

RESTORE Debug directive 6-9 
Retrieving FIT field values 9-50 
Return code B-1 
RETURN control statement 4-124 
Return parameters 8-7 
Returning file 9-110 
REWIND control statement 4-126 
Rewinding files 9-111 
Rewinding tape 4-126 
RHF (Remote Host Facility) 1-5; 3-21; C-8 

Application 2-38 
Reloading 4-84 
Conversions 3-26 
Permanent file requests 3-24 
Structure conversion 4-90 

RMS (rotating mass storage) C-8 
ROLL Debug directive 6-6 
ROLL Look directive 6-16 
Rotating mass storage (RMS) C-8 
Route QTFS directive 3-23 
Routing 

Explicit file 4-91 
Routing files 4-132 
RPB (records per block) 2-24 

S request line 3-8 
Satisfying externals 4-69 
Save table 8-84 
Saving the drop file 2-4 
SBU (system billing unit) C-9 
SBU/STU accumulators 4-21 
Scalar C-8 
Scalar processor 1-2 

60459410 J 



Scheduling 3-15 
Scratch files 2-8; C-8 
Search hierarchy 2-12 
SEARCH Look directive 6-16 
Second time limit disable 3-30 
Security administrator 4-36.3,80; 

9-14,89,90 
Security levels 2-9; C-9 
Security-sensitive sites 2-3,9; 3-1,31; 6-2 
Segment(s) 2-27; C-9 

Location 4-34.2 
Selection number 3-15 
SEQ Look directive 6-16 
Sequence number 5-1 
Sequential access file organization 2-25 
Session 3-7 
Session termination request 
SET control statement 4-127 
Sharable files 2-16 

3-10.1 

Shared SYSLIB C-9 
Shared utility C-9 
Short PRU 2-35; C-9 
SHRLIB (system shared library) 

4-70,129; C-10 
SI tape format 2-35 
SIL (system interface language) 

9-1; C-9 
F-13 

4-128.1 
Single volume tapes 
SKIP control statement 
Skipping tape 4-128.1 
SLGEN control statement 
SLGEN example 4-131 
Small page C-9 
Small page size 1-2 
SNAP Debug directive 
Source decks 5-1 
Source file C-9 

4-129 

6-11 

3-12; 

1-5; 8-1,6; 

Source file maintenance utility 5-1 
Space allocation 2-17 
Space initialization 4-73 
$ special character 3-7 
Specification 3-15,16; 4-119 
Specification of execution 3-10 
Specification on statements 4-4 
Standalone SIL parameter format 8-6 
Starting a previously initialized 

control lee 8-92 
STAT Debug directive 6-12 
Static execution 3-12 
Statistics buffer 8-71 
Status 4-107; 9-16 
Status code categories 8-5 
Status listing 4-107 
STEP Debug directive 6-11 
Stepping through a program 6-2 
Storage in controllee file 4-69 
Structure 3-14 
STU (system time unit) C-10 
SU request line 3-8 

60459410 J 

SUBMIT control statement 4-132 
Submitting a job file 4-91 
Submitting file to a queue 4-132 
Subroutine 8-77 
Subroutine traceback 

DUMP 6-23 
Substitution value 4-9 
SUMMARY control statement 4-134 
Suppressing parameter substitution 
Suspending task execution 8-74 
SWITCH control statement 4-136 
SYSLIB file 3-20 
System 1-4 

Access 3-4 
Billing unit (SBU) 
Block record format 
Dayf ile C-9 
Description 1-1 
Error codes B-104 

C-9 
2-22 

4-11 

Interface language (SIL) 1-5; 8-1,6; 
9-1; C-9 

Message Call parameters 
Pool 2-13; C-9 

8-5; 9-9; C-9 

Tasks 1-6 
Time unit (STU) 
User C-10 

C-10 

User number 3-4 
Utility error B-26 

System error code table B-104 
System-generated drop file 2-2 
System shared library (SHRLIB) 3-12; 

4-70,129; C-10 

T request line 3-8 
Tape 2-37 

Advanced System (ATS) 1-3 
Count discrepancy 2-31 
Data 

Blocking 2-23 
Conversion 2-32 
Organization 2-23,33 
Recording 2-23,32 

Density 2-32 
Drive reservation 2-28 
Error 

Processing 2-36 
Recovery 2-36 
Summary 2-36 

File request 4-118 
Files 2-28; 9-48 
Formats 2-23,34 

LB 2-35 
SI 2-35 
v 2-36 

I/O requests 9-31 
Label processing 9-29 
Labeling 2-29 
Labels and formats 6-1 
Operator communication 2-29 

Index-11 • 



Partition delimiters 9-30 
Processing 9-29 
Repositioning a file 4-126 
Request 2-28 
Resource parameter 2-28 
Rewinding 4-126 
Volume 2-29 

Tape blocks per group F-11 
Tape drive reservation 2-28.1; 4-123 
Tape error codes B-106 
Tape files 2-28.1; 9-110.1 

Copying 4-26 
Tape group separators F-10 
Tape I/O requests 9-17 
Tape labels and formats F-1 
Target page size 4-74 
Task 1-6; 3-16; C-10 
Task interrupt request 3-10 
Task resource limits 3-10 
TASKATT control statement 4-139 
TEMNEWPL file 5-6 
Terminal message interrupts 3-7 
Terminating a task and its controllees 8-93 
Termination 3-10.1,17,28 
Termination value 3-17; 8-93; B-1 
Threshold value 3-16; 4-140; B-1; C-10 
Time available 3-8 
Time consumed 3-8 
Timecard buffer 8-72 
Transfer conversions 3-26 
Transferring permanent files 4-88 
Transferring random access files 3-25 
Transfers between systems 3-21 
Trunk lines 1-3 
TSP parameter 4-73 
TV control statement 4-140 

U record format 2-19 
UEP (µser error processing) 2-37 
Undefined record format 2-19 
Unlabeled tape files 2-30; F-4 
UPC (user project control) 4-21; C-10 
Update 5-1 
UPDATE control statement 5-26.1 
I Update directive 5-25 
UPDATE processing 5-4 
Usage 3-10,28 
Use of system 3-2 
User 

Directory changes 3-4 
Error Processing (UEP) 2-37 
Label processing 2-29 
Number C-10 
Number 000000 2-13 
Permission 3-4 
Reprieve 3-28 
Validation information 4-142 

USER control statement 3-6,22.1; 4-142 
User-generated drop file 2-3 

• Index-12 

User project control (UPC) 4-21; C-10 
User validations 4-60.1 
USER! C-10 
User-! C-10 
Users with pool access 2-12 
Using interactive terminal files 2-37 
Using SIL calls 9-1,9 

V tape format 2-36 
Validation 3-4; 4-60.1 
Validation of user 3-4 
Variable rate accounting 4-47 
Variable rate table 4-47 
Vector C-10 
Vector processor 1-2 
Virtual 

Address C-10 
C-10 Code file 

Files 2-2 
Memory 1-2; C-10 
Space mapping 3-2 
System tasks 1-4 

6-16 
1-6 
8-8 

VIRTUAL Look directive 
Virtual memory addressing 
Virtual space requirements 
Volume 2-29; C-10 

Assignment 2-29 
Serial number 2-29 
Switching 2-29 

VOL! label 2-30 
VRI 4-47 
VSN list 2-29 
VSOS introduction 1-2 

W record format 2-20 
Warning SIL errors 8-5 
WIDTH Update directive 5-24 
Word C-10 
WORD Look directive 6-16 
Word size 1-5 
Working set C-10 
Working set size limit 4-121 
Workstation 8-17,22; 9-12 
Write access permission 2-14 
Write additional tape voiume labels 

9-107,132 
Write label processing 2-29 
Writing data 9-5 

XIOCALL 1-4 

YANK Update directive 5-24 
YANKDECK Update directive 5-25 

Zero-length PRU C-10 

2-32 
1-2 

60-bit conversion 
7639 disk controller 
819 disk unit 1-2,3 
* control statement 4-22 

60459410 J 



Comments (continued from other side) 

>}ease fold on dotted line; 
.eal edges with tape only. 

BUSINESS REPLY MAIL 
First-Class Mail Permit No. 8241 Minneapolis, MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

CONTROL DATA 
Technical Publications 
ARH219 
4201 N. Lexington Avenue 
Arden Hills, MN 55126-9983 

llfll 

1.1.1 •• 1.1 .... 11 •• 1.1.11 .. 1.1 •• 1.1 •• 1 •• 1 ••• 11 ••• 1.11 

FOLD 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



COMMENT SHEET 

MANUAL TITLE: CDC VSOS Version 2 Reference Manual, Volume 1 of 2 

PUBLICATION NO.: 60459410 REVISION: J 

STREET ADDRESS:------------------------------

CITY: ______________ STATE: _______ ZIPCODE: _______ _ 

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of 
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please 
include page number references). 

C P111se Reply C No Reply Necessary 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 
fOU) ON DOTTED UNIS AND T AH 



SIL CALL INDEX 

This index lists each system interface language (SIL) call and the page on which it is described. 

Q5ADVISE 8-8 Q5GETMPG 8-48 Q5PUSERL 9-96 
Q5ATTACH 9-10 Q5GETN 9-55 Q5PUTB 9-97 
Q5CHANGE 9-12 Q5GETP 9-57 Q5PUTN 9-98 
Q5CHECK 9-16 Q5GETPFI 8-49 Q5PUTP 9-100 
Q5CHECKB 9-19 Q5GETTL 8-50 Q5READ 9-102 
Q5CLIOER 9-21 Q5GETTN 8-51 Q5RECALL 8-74 
Q5CLOSE 9-22 Q5GETUID 8-53 Q5REDUCE 9-106 
Q5CPUTIM 8-10 Q5GIVE 9-60 Q5REELSW 9-107 
Q5DCDDST 8-11 Q5INIT 8-55 Q5REPREV 8-75 
Q5DCDMSC 8-13 Q5INITCH 8-56 Q5RETFIT 9-109 
Q5DCDPFI 8-18 Q5LABEL 9-63 Q5RETURN 9-110 
Q5DCDPLB 8-29 Q5LFIHIR 8-58 Q5REWIND 9-111 
Q5DEFINE 9-25 Q5LFIPOL 8-60 Q5RFI 8-77 
Q5DESBIF 8-31 QSLFIPRI 8-63 Q5ROUTE 9-112 
Q5DISAMI 8-32 Q5LFIPUB 8-66 Q5RQUEST 9-115 
Q5DISATI 8-33 Q5LSTBUT 8-68 Q5RUNBIF 8-78 
Q5DMPACT 8-34 Q5LSTCH 8-69 Q5SETFIT 9-122 
QSENAMI 8-35 QSLSTSTB 8-71 QSSETLP 8-79 
QSENATI 8-37 Q5LSTTCB 8-72 Q5SKIP 9-126 
Q5ENDPAR 9-29 Q5MAPIN 9-70 Q5SNDMCE 8-80 

Q5GENFIT 9-31 QSMAPOUT 9-72 Q5SNDMCR 8-82 
Q5GETACT 8-38 Q5MEMORY 8-73 Q5SNDMDF 8-84 
Q5GETB 9-39 Q50PEN 9-74 Q5SNDMJC 8-87 
Q5GETCTS 8-40 Q5PATACH 9-85 Q5SNDMJS 8-89 
Q5GETFIL 9-40 Q5PCREAT 9-86 Q5SNDMOP 8-90 
Q5GETFIT 9-50 Q5PDESTR 9-87 Q5SNDSTR 8-92 
Q5GETIIP 8-41 Q5PDTACH 9-88 Q5TERM 8-93 
Q5GETIRF 8-42 Q5PERMIT 9-89 Q5TERMCE 8-94 
Q5GETLP 8-43 QSPGRACC 9-91 Q5TIME 8-95 
Q5GETMCE 8-44 Q5POO'LS 9-92 Q5VRACC 8-96 
Q5GETMCR 8-45 QSPREACC 9-93 QSWRITE 9-130 
Q5GETMOP 8-47 Q5PURGE 9-94 

60459410 J 



CORPORATE HEADQUARTERS P.O. BOX 0 MINNEAPOLIS. MINNESOTA 55440 

~~ 
CONT"OL 

DATA 


